WorldWideScience

Sample records for carbon-fiber composite molecular

  1. Carbon fiber composite molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Rogers, M.R.; Williams, A.M.

    1996-06-01

    The removal of CO{sub 2} is of significance in several energy applications. The combustion of fossil fuels, such as coal or natural gas, releases large volumes of CO{sub 2} to the environment. Several options exist to reduce CO{sub 2} emissions, including substitution of nuclear power for fossil fuels, increasing the efficiency of fossil plants and capturing the CO{sub 2} prior to emission to the environment. All of these techniques have the attractive feature of limiting the amount of CO{sub 2} emitted to the atmosphere, but each has economic, technical, or societal limitations. In the production of natural gas, the feed stream from the well frequently contains contaminants and diluents which must be removed before the gas can enter the pipeline distribution system. Notable amongst these diluent gasses is CO{sub 2}, which has no calorific value. Currently, the pipeline specification calls for <2 mol % CO{sub 2} in the gas. Gas separation is thus a relevant technology in the field of energy production. A novel separation system based on a parametric swing process has been developed that utilizes the unique combination of properties exhibited by our carbon fiber composite molecular sieve (CFCMS).

  2. Use of Carbon Fiber Composite Molecular Sieves for Air Separation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Burchell, Timothy D [ORNL

    2005-09-01

    A novel adsorbent material, 'carbon fiber composite molecular sieve' (CFCMS), has been developed by the Oak Ridge National Laboratory. Its features include high surface area, large pore volume, and a rigid, permeable carbon structure that exhibits significant electrical conductivity. The unique combination of high adsorptive capacity, permeability, good mechanical properties, and electrical conductivity represents an enabling technology for the development of novel gas separation and purification systems. In this context, it is proposed that a fast-cycle air separation process that exploits a kinetic separation of oxygen and nitrogen should be possible using a CFCMS material coupled with electrical swing adsorption (ESA). The adsorption of O{sub 2}, N{sub 2}, and CO{sub 2} on activated carbon fibers was investigated using static and dynamic techniques. Molecular sieving effects in the activated carbon fiber were highlighted by the adsorption of CO{sub 2}, a more sensitive probe molecule for the presence of microporosity in adsorbents. The kinetic studies revealed that O2 was more rapidly adsorbed on the carbon fiber than N{sub 2}, and with higher uptake under equilibrium conditions, providing the fiber contained a high proportion of very narrow micropores. The work indicated that CFCMS is capable of separating O{sub 2} and N{sub 2} from air on the basis of the different diffusion rates of the two molecules in the micropore network of the activated carbon fibers comprising the composite material. In response to recent enquires from several potential users of CFCMS materials, attention has been given to the development of a viable continuous process for the commercial production of CFCMS material. As part of this effort, work was implemented on characterizing the performance of lignin-based activated carbon fiber, a potentially lower cost fiber than the pitch-based fibers used for CFCMS production to date. Similarly, to address engineering issues

  3. Carbon-fiber composite molecular sieves for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, Y.Q. [Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)

    1995-08-01

    The progress of research in the development of novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are produced at ORNL and activated at the CAER using steam or CO{sub 2} under different conditions, with the aims of producing a uniform degree of activation through the material, and of closely controlling pore structure and adsorptive properties The principal focus of the work to date has been to produce materials with narrow porosity for use in gas separations.

  4. Carbon-fiber composite molecular sieves for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States)

    1996-08-01

    This report describes continuing work on the activation and characterization of formed carbon fiber composites. The composites are produced at the Oak Ridge National Laboratory (ORNL) and activated at the Center for Applied Energy Research (CAER) using steam, CO{sub 2}, or O{sub 2} at different conditions of temperature and time, and with different furnace configurations. The general aims of the project are to produce uniformly activated samples with controlled pore structures for specialist applications such as gas separation and water treatment. In previous work the authors reported that composites produced from isotropic pitch fibers weighing up to 25g can be uniformly activated through the appropriate choice of reaction conditions and furnace configurations. They have now succeeded in uniformly activating composites of dimensions up to 12 x 7 x 6 cm, or up to about 166 gram - a scale-up factor of about six. Part of the work has involved the installation of a new furnace that can accommodate larger composites. Efforts were made to achieve uniform activation in both steam and CO{sub 2}. The authors have also succeeded in producing materials with very uniform and narrow pore size distributions by using a novel method involving low temperature oxygen chemisorption in combination with heat treatment in N{sub 2} at high temperatures. Work has also started on the activation of PAN based carbon fibers and fiber composites with the aim of producing composites with wide pore structures for use as catalyst supports. So far activation of the PAN fiber composites supplied by ORNL has been difficult which is attributed to the low reactivity of the PAN fibers. As a result, studies are now being made of the activation of the PAN fibers to investigate the optimum carbonization and activation conditions for PAN based fibers.

  5. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  6. Carbon Fiber Composites

    Science.gov (United States)

    1997-01-01

    HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.

  7. Activation and micropore structure determination of carbon-fiber composite molecular sieves. Topical report, 30 March 1994--14 April 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, You Qing [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research

    1995-05-19

    Progress in developing novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are activated using steam or CO{sub 2}, in order to produce uniform activation through the material and to control the pore structure and adsorptive properties. There is an overall shrinkage during activation, which is directly correlated with burnoff; burnoff above 40% results in fracture. Burnoffs higher than 10% does not produce any benefit for separation of CH{sub 4}-CO{sub 2} mixtures. Five samples of CFCMS have been prepared for testing as molecular sieves; all have relatively narrow pore size distributions with average pore diameters around 6A.

  8. Simulations of carbon fiber composite delamination tests

    Energy Technology Data Exchange (ETDEWEB)

    Kay, G

    2007-10-25

    Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-state testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.

  9. CARBON FIBER COMPOSITES IN HIGH VOLUME

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Charles David [ORNL; Das, Sujit [ORNL; Jeon, Dr. Saeil [Volvo Trucks North America

    2014-01-01

    Vehicle lightweighting represents one of several design approaches that automotive and heavy truck manufacturers are currently evaluating to improve fuel economy, lower emissions, and improve freight efficiency (tons-miles per gallon of fuel). With changes in fuel efficiency and environmental regulations in the area of transportation, the next decade will likely see considerable vehicle lightweighting throughout the ground transportation industry. Greater use of carbon fiber composites and light metals is a key component of that strategy. This paper examines the competition between candidate materials for lightweighting of heavy vehicles and passenger cars. A 53-component, 25 % mass reduction, body-in-white cost analysis is presented for each material class, highlighting the potential cost penalty for each kilogram of mass reduction and then comparing the various material options. Lastly, as the cost of carbon fiber is a major component of the elevated cost of carbon fiber composites, a brief look at the factors that influence that cost is presented.

  10. Carbon fiber content measurement in composite

    Science.gov (United States)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  11. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  12. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    Science.gov (United States)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  13. Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment

    International Nuclear Information System (INIS)

    In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XP S, Sem, and single-filament tensile test. The interlaminar shear strength (Ilks) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the Ilks of the plasma-treated specimen increased with the treatment time. The Ilks of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen

  14. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  15. Carbon Fiber Foam Composites and Methods for Making the Same

    Science.gov (United States)

    Leseman, Zayd Chad (Inventor); Atwater, Mark Andrew (Inventor); Phillips, Jonathan (Inventor)

    2014-01-01

    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.

  16. Quasi-Carbon Fibers and the Composites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The aim of this report is to study the properties of quasi-carbon fibers (QCF) prepared from the PAN fiber precursor by pyrolysis at a temperature between 400℃ and 1200℃. The resistivity of QCF with different heat-treated temperature (HTT) was investigated by a Hall-35 testing system,and the flexural properties of the result composites (QCFC) are also discussed. In addition, the scanning electronic microscope (SEM) was utilized to observe the surface morphology of QCF and the fracture section of QCFC obtained from flexural testing.

  17. The dynamic response of carbon fiber-filled polymer composites

    OpenAIRE

    Patterson B.; Orler E.B.; Furmanski J.; Rigg P.A.; Scharff R.J.; Stahl D.B.; Sheffield S.A.; Gustavsen R.L.; Dattelbaum D.M.; Coe J.D.

    2012-01-01

    The dynamic (shock) responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE) composite to 18.6 GPa in the through-thickness direction,...

  18. Carbon Fiber Reinforced, Zero CME Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technical Abstract: This project proposes to develop moisture insensitive, high performance, carbon fiber laminates for future missions. Current space-qualified...

  19. Hansen solubility parameters for a carbon fiber/epoxy composite

    DEFF Research Database (Denmark)

    Launay, Helene; Hansen, Charles M.; Almdal, Kristoffer

    2007-01-01

    In this study, the physical affinity between an epoxy matrix and oxidized, unsized carbon fibers has been evaluated using Hansen solubility (cohesion) parameters (HSP). A strong physical compatibility has been shown, since their respective HSP are close. The use of a glassy carbon substrate as a...... model for unsized carbon fiber has been demonstrated as appropriate for the study of interactions between the materials in composite carbon fiber-epoxy systems. The HSP of glassy carbon are similar to those of carbon fibers and epoxy matrix. (C) 2007 Elsevier Ltd. All rights reserved....

  20. Radiation processing for PTFE composite reinforced with carbon fiber

    International Nuclear Information System (INIS)

    The present work is an attempt to evaluate the performance of crosslinked PTFE as a polymer matrix for carbon fiber-reinforced composite materials. The carbon fiber-reinforced PTFE pre-composite, which is laminated with PTFE fine powder, is crosslinked by electron beam irradiation. Mechanical and frictional properties of the crosslinked PTFE composite obtained are higher than those of PTFE resin. The crosslinked PTFE composite with high mechanical and radiation resistant performance is obtained by radiation crosslinking process

  1. Fiber Length and Orientation in Long Carbon Fiber Thermoplastic Composites

    OpenAIRE

    Hanhan, Imad; Sullivan, Connor; Sharma, Bhisham; Sangid, Michael

    2014-01-01

    Carbon fiber composites have become popular in aerospace applications because of their lightweight yet strong material properties. The injection molding process can be used to produce discontinuous fiber composites using less time and resources than traditional methods, thereby broadening carbon fiber composites’ applications in different industries. Utilization of longer fibers offers more load carrying capability and superior strength properties for injected molded composites. Since the fib...

  2. Carbon fiber reinforced thermoplastic composites for future automotive applications

    Science.gov (United States)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  3. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  4. Controlled interface between carbon fiber and epoxy by molecular self-assembly method

    International Nuclear Information System (INIS)

    In this paper, a new treatment method based on molecular self-assembly on carbon fiber surface was proposed for obtaining a controlled interface between carbon fiber and epoxy matrix in composite system. To form the controlled interfacial region, the surfaces of carbon fibers were first metallized by electroless Ag plating, then were reacted with a series of thiols (different chain lengths and terminally functional groups) to form self-assembly monolayers (SAMs), which further reacted with epoxy resin to generate a strong adhesion interface. The morphology, structure and composition of untreated and treated carbon fiber surface were investigated by atomic force microscope (AFM), surface-enhanced Raman scattering spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS), respectively. SERS study showed that thiols chemisorbed on Ag/carbon fiber in the form of thiolate species via the strong S-Ag coordinative bond. XPS study further confirmed the chemisorption by an S 2p3/2 component observed at 162.2 eV. The binding energy was characteristic of silver thiolate. The interfacial shear strength of the carbon fiber/epoxy microcomposites was evaluated by the microbond technique. The results showed that there was a direct effect of the interfacial parameters changes such as chain lengths and surface functional groups on the fiber/matrix adhesion

  5. Electron microscopy investigation of interface between carbon fiber and ultra high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Stepashkin, A.A.; Chukov, D.I., E-mail: dil_chukov@yahoo.com; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-02-15

    Highlights: • Effect of the carbon fibers surface treatments on the adhesive interactions in UHMWPE composites was studied. • Air oxidation of carbon filler ensures most significant increase in adhesion interaction in UHMWPE based composites. • Nanosized UHMWPE fibers with 20–40 nm in diameter and with 6–10 μm in length, was observed on the surface of carbon fibers. -- Abstract: Scanning electron microscopy was used to investigate the surface of initial and modified high-strength and high-modulus carbon fibers as well as interfaces in the ultra high molecular weight polyethylene, filled with above-mentioned fibers. Effect of the fibers surface modifying method on the adhesive interactions in composites was studied. It was observed that interaction of matrix with a modified surface of fibers results in a formation of bonds with strength higher than the yield strength of the polymer. It results in a formation of long nanosized polymer wires at tensile fracture of composites.

  6. Plasma exposure tests of a carbon fiber/epoxy composite

    International Nuclear Information System (INIS)

    An experiment was conducted to test the exposure of a vacuum chamber made of a carbon fiber/epoxy composite to a plasma environment. In previous tests this material(CE 339, made by Ferro Corp.) has shown good vacuum properties and has also demonstrated the capability to withstand high energy electron beams in tests at the Naval Research Laboratory. Based on these promising results, the Torsatron Group at Auburn University conducted plasma exposure tests on a section of carbon fiber/epoxy composite pipe furnished by Oak Ridge National Laboratory. 1 ref, 2 figs

  7. Mechanical properties of carbon fiber composites for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, R.; Grulke, E. [Univ. of Kentucky, Lexington, KY (United States)

    1996-10-01

    Activated carbon fiber composites show great promise as fixed-bed catalytic reactors for use in environmental applications such as flue gas clean-up and ground water decontamination. A novel manufacturing process produces low density composites from chopped carbon fibers and binders. These composites have high permeability, can be activated to have high surface area, and have many potential environmental applications. This paper reports the mechanical and flow properties of these low density composites. Three point flexural strength tests were used to measure composite yield strength and flexural moduli. Composites containing over 10 pph binder had an adequate yield strength of about 200 psi at activations up to 40% weight loss. The composites were anisotropic, having along-fiber to cross-fiber yield strength ratios between 1.2 and 2.0. The friction factor for flow through the composites can be correlated using the fiber Reynolds number, and is affected by the composite bulk density.

  8. Mechanical properties of carbon fiber composites for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, R.; Grulke, E.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States)

    1996-12-31

    Activated carbon fiber composites show great promise as fixed-bed catalytic reactors for use in environmental applications such as flue gas clean-up and ground water decontamination. A novel manufacturing process produces low density composites from chopped carbon fibers and binders. These composites have high permeability, can be activated to have high surface area, and have many potential environmental applications. This paper reports the mechanical and flow properties of these low density composites. Three point flexural strength tests were used to measure composite yield strength and flexural moduli. Composites containing over 10 pph binder had an adequate yield strength of about 200 psi at activations up to 40% weight loss. The composites were anisotropic, having along-fiber to cross-fiber yield strength ratios between 1.2 and 2.0. The pressure drop of air through the composites correlated with the gas velocity, and showed a dependence on sample density.

  9. Oxidation behaviour of ribbon shape carbon fibers and their composites

    International Nuclear Information System (INIS)

    Carbon fibers, though important constituent as reinforcements for high performance carbon/carbon composites, are shadowed by their oxidation in air at temperatures beginning 450 deg. C. Owing to tailorable properties of carbon fibers, efforts are underway to explore structural modification possibilities to improve the oxidation resistance of the fibers and their composites. The pitch based ribbon shape carbon fibers are found to have highly preferential oriented graphitic structure resulting in high mechanical properties and thermal conductivity. In the present work oxidation behaviour of ribbon shape carbon fibers and their composites heat treated to 1000-2700 deg. C has been studied. SEM examination of these composites exhibits development of graphitic texture and ordering within the fibers with increase in heat treatment temperature. Oxidation studies made by thermogravimetric analysis in air show that matrix has faster rate of oxidation and in the initial stages the matrix gets oxidized at faster rate with slower rate of oxidation of the fibers depending on processing conditions of fibers and composites

  10. Aligning carbon fibers in micro-extruded composite ink

    Science.gov (United States)

    Mahajan, Chaitanya G.

    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus.

  11. The dynamic response of carbon fiber-filled polymer composites

    Directory of Open Access Journals (Sweden)

    Patterson B.

    2012-08-01

    Full Text Available The dynamic (shock responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3. The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall for the CE composite in the TT and 0∘ (fiber directions.

  12. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  13. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    OpenAIRE

    André Navarro de Miranda; Luiz Claudio Pardini; Carlos Alberto Moreira dos Santos; Ricardo Vieira

    2011-01-01

    Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/e...

  14. Carbon fiber composite molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Rogers, M.R. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Monolithic adsorbents based on isotropic pitch fibers have been developed jointly by ORNL and the University of Kentucky, Center for Applied Energy Research. The monoliths are attractive for gas separation and storage applications because of their unique combination of physical properties and microporous structure. Currently at ORNL the monoliths are produced in billets that are 10 cm in diameter and 25 cm in length. The monolithic adsorbent material is being considered for guard bed applications on a natural gas (NG) powered device. In order for the material to be successful in this application, one must attain a uniform activation to modest micropore volumes throughout the large monoliths currently being produced. Here the authors report the results of a study directed toward attaining uniform activation in these billets.

  15. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    OpenAIRE

    Mehran Tehrani; Ayoub Yari Boroujeni; Claudia Luhrs; Jonathan Phillips; Al-Haik, Marwan S.

    2014-01-01

    Carbon nanofilament and nanotubes (CNTs) have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs) and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers emplo...

  16. Activation and micropore structure of carbon-fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  17. Smart Behavior of Carbon Fiber Reinforced Cement-based Composite

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers.Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress andstrain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relationof thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to theincrease in the material volume resistivity during crack generation or propagation and the decrease in the resistivity duringcrack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect inthe cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage andtemperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in theconcrete structures.

  18. Tough carbon fiber composites by hybridization with self-reinforced composites

    OpenAIRE

    Swolfs, Yentl; Gorbatikh, Larissa; Hine, Peter; Ward, Ian; Verpoest, Ignace

    2014-01-01

    While the interest in carbon fiber composites for automotive applications is rapidly increasing, their high cost and low failure strain or toughness continue to impede their widespread use. Both factors can be improved by hybridizing carbon fibers with a material that offers both ductility and reduced cost. In this work, the hybridization with highly oriented polypropylene tapes was investigated. Hybrid co-woven cloths of carbon fiber/polypropylene (PP) prepregs and oriented PP tapes were use...

  19. Toughened carbon fiber fabric-reinforced pCBT composites

    OpenAIRE

    Abt, Tobias Martin; Krager-Kocsis, Joseph; Sánchez Soto, Miguel

    2014-01-01

    Toughened carbon fiber-fabric reinforced polymerized cyclic butylene terephthalate (pCBT) composites were obtained by chemical modification of cyclic butylene terephthalate (CBT) with small amounts of epoxy resin and isocyanates as chain extenders. Homogeneous CBT/epoxy and CBT/isocyanate blends were prepared by melt blending the components in a lab-scale batch mixer at low temperatures and high shear rate. Melt blending was stopped before the ring-opening polymerizati...

  20. and Carbon Fiber Reinforced 2024 Aluminum Alloy Composites

    Science.gov (United States)

    Kaczmar, Jacek W.; Naplocha, Krzysztof; Morgiel, Jerzy

    2014-08-01

    The microstructure and mechanical properties of 2024 aluminum alloy composite materials strengthened with Al2O3 Saffil fibers or together with addition of carbon fibers were investigated. The fibers were stabilized in the preform with silica binder strengthened by further heat treatment. The preforms with 80-90% porosity were infiltrated by direct squeeze casting method. The microstructure of the as-cast specimens consisted mainly of α-dendrites with intermetallic compounds precipitated at their boundaries. The homogenization treatment of the composite materials substituted silica binder with a mixture of the Θ phase and silicon precipitates distributed in the remnants of SiO2 amorphous phase. Outside of this area at the binder/matrix interface, fine MgO precipitates were also present. At surface of C fibers, a small amount of fine Al3C4 carbides were formed. During pressure infiltration of preforms containing carbon fibers under oxygen carrying atmosphere, C fibers can burn releasing gasses and causing cracks initiated by thermal stress. The examination of tensile and bending strength showed that reinforcing of aluminum matrix with 10-20% fibers improved investigated properties in the entire temperature range. The largest increase in relation to unreinforced alloy was observed for composite materials examined at the temperature of 300 °C. Substituting Al2O3 Saffil fibers with carbon fibers leads to better wear resistance at dry condition with no relevant effect on strength properties.

  1. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  2. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  3. Hybrid Matrices Layer of Carbon Fiber Composites

    OpenAIRE

    J. Dhanraj Pamar; Dr. B. Balu Naik

    2013-01-01

    Polymeric composites have gone through a level of maturity beyond the laboratory stage with the development of all composite aircraft structures. Yet the basic understanding of the material used in its primary structure has not been extensively investigated. Although this may be attributed in part to the proprietary nature of the system, we believe that it is because of lack of specific tools required for its analysis. Specifically, micromechanical models always as...

  4. Hybrid Matrices Layer of Carbon Fiber Composites

    Directory of Open Access Journals (Sweden)

    Dr. B. Balu Naik

    2013-04-01

    Full Text Available Polymeric composites have gone through a level of maturity beyond the laboratory stage with the development of all composite aircraft structures. Yet the basic understanding of the material used in its primary structure has not been extensively investigated. Although this may be attributed in part to the proprietary nature of the system, we believe that it is because of lack of specific tools required for its analysis.Specifically, micromechanical models always assume an evenly distributed homogeneous matrix while lamination theory assumes constant stress through the laminate thickness. Specifically, this work focuses on the development of model systems that can be studied without concerns of proprietary and/or export control requirements. Consequently, the amount of toughness improvement must be balanced between interlaminar and intralaminar fracture toughness. Finally, this work has demonstrated that even though the multilayer structured laminates provide Mode II interlaminar fracture toughness improvements, their mechanical testing behavior is extremely different than conventional composite structures.

  5. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Science.gov (United States)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the

  6. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  7. Interfacial Properties Modification of Carbon Fiber/ Polyarylacetylene Composites

    Institute of Scientific and Technical Information of China (English)

    FU Hong-jun; MA Chong-qi; KUANG Nai-hang; LUAN Shi-lin

    2007-01-01

    This work was dedicated to performing surface oxidation and coating treatments on carbon fibers (CF) and investigating the changes of fiber surface properties after these treatments, including surface composition, relative volume of functional groups, and surface topography with X-ray photoelectron spectroscopy (XPS) and atom force microscopy (AFM) technology. The results show that,after oxidation treatments, interfacial properties between CF and non-polar polyarylacetylene (PAA) resin are remarkably modified by removing weak surface layers and increasing fiber surface roughness. Coating treatment by high char phenolic resin solution after oxidation makes interface of CF/PAA composites to be upgraded and the interfacial properties further bettered.

  8. Surface modification of carbon fibers and its effect on the fiber–matrix interaction of UHMWPE based composites

    Energy Technology Data Exchange (ETDEWEB)

    Chukov, D.I., E-mail: dil_chukov@yahoo.com; Stepashkin, A.A.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-02-15

    Highlights: • Both chemical and thermal treatments of UKN 5000 carbon fibers allow one to obtain well-developed surface. • The changes of structure and properties of VMN-4 fibers after both thermal and chemical oxidation are insignificant due to more perfect initial structure of these fibers. • The oxidative treatment of carbon fibers allows one to improve the interfacial interaction in the UHMWPE-based composites. • The oxidative treatment of the fibers allows one to a triple increase of Young’s modulus of the modified fibers reinforced UHMWPE composites. -- Abstract: The PAN-based carbon fibers (CF) were subjected to thermal and chemical oxidation under various conditions. The variation in the surface morphology of carbon fibers after surface treatment was analyzed by scanning electron microscopy (SEM). It was found that the tensile strength of carbon fibers changed after surface modification. The interaction between the fibers and the matrix OF ultra-high molecular weight polyethylene (UHMWPE) was characterized by the Young modulus of produced composites. It was shown that the Young modulus of composites reinforced with modified carbon fibers was significantly higher than that of composites reinforced with non-modified fibers.

  9. Surface modification of carbon fibers and its effect on the fiber–matrix interaction of UHMWPE based composites

    International Nuclear Information System (INIS)

    Highlights: • Both chemical and thermal treatments of UKN 5000 carbon fibers allow one to obtain well-developed surface. • The changes of structure and properties of VMN-4 fibers after both thermal and chemical oxidation are insignificant due to more perfect initial structure of these fibers. • The oxidative treatment of carbon fibers allows one to improve the interfacial interaction in the UHMWPE-based composites. • The oxidative treatment of the fibers allows one to a triple increase of Young’s modulus of the modified fibers reinforced UHMWPE composites. -- Abstract: The PAN-based carbon fibers (CF) were subjected to thermal and chemical oxidation under various conditions. The variation in the surface morphology of carbon fibers after surface treatment was analyzed by scanning electron microscopy (SEM). It was found that the tensile strength of carbon fibers changed after surface modification. The interaction between the fibers and the matrix OF ultra-high molecular weight polyethylene (UHMWPE) was characterized by the Young modulus of produced composites. It was shown that the Young modulus of composites reinforced with modified carbon fibers was significantly higher than that of composites reinforced with non-modified fibers

  10. BASIC PROPERTIES OF REFERENCE CROSSPLY CARBON-FIBER COMPOSITE

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.

    2001-01-11

    This report provides basic in-air property data and correlations-tensile, compressive, shear, tensile fatigue, and tensile creep-for a reference carbon-fiber composite being characterized as a part of the Durability of Carbon-Fiber Composites Project at Oak Ridge National Laboratory. The overall goal of the project, which is sponsored by the Department of Energy's Office of Advanced Automotive Materials and is closely coordinated with the Advanced Composites Consortium, is to develop durability-based design guidance for polymeric composites for automotive structural applications. The composite addressed here is a {+-}45{degree} crossply consisting of continuous Thornel T300 fibers in a Baydur 420 IMR urethane matrix. Basic tensile, compressive, and shear properties are tabulated for the temperature range from {minus}40 to 120 C. Fatigue response at room-temperature and 120 C are presented, and creep and creep rupture at room temperature only are reported. In all cases, two fiber orientations--0/90{degree} and {+-}45{degree}--relative to the specimen axes are addressed. The properties and correlations presented are interim in nature. They are intended as a baseline for planning a full durability test program on this reference composite.

  11. Carbon fiber composite characterization in adverse thermal environments.

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  12. Application of carbon fiber reinforced carbon composite to nuclear engineering

    International Nuclear Information System (INIS)

    Carbon fiber reinforced carbon matrix composite (C/C composite) is thought to be one of promising structural materials with high temperature resistivity in the nuclear engineering field. In the high temperature gas-cooled reactors with gas outlet temperature maximum around 1000degC, high performance core internal structures, such as control rod sheath, core restraint mechanism, will be expected to achieve by the C/C composite application. Moreover, in the fusion reactors, plasma facing structures having high temperature with high neutron irradiation and particle collision will be expected to achieve by the C/C composite application. In this paper, current research and development studies of the C/C composite application on both reactors are reviewed and vista of the future on the C/C composite application is mentioned. (author)

  13. Energy Absorption in Chopped Carbon Fiber Compression Molded Composites

    Energy Technology Data Exchange (ETDEWEB)

    Starbuck, J.M.

    2001-07-20

    In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. The carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified.

  14. Energy Absorption in Chopped Carbon Fiber Compression Molded Composites

    International Nuclear Information System (INIS)

    In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. The carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified

  15. Deuterium trapping in carbon fiber composites exposed to D plasma

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.r [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Brosset, C.; Gunn, J.P.; Grisolia, C. [Association EURATOM-CEA, CEA/DSM/DRFC Cadarache, 13108 St. Paul lez Durance (France); Kuzmin, A. [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Loarer, T.; Lipa, M.; Monier-Garbet, P. [Association EURATOM-CEA, CEA/DSM/DRFC Cadarache, 13108 St. Paul lez Durance (France); Shigin, P. [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Tsitrone, E. [Association EURATOM-CEA, CEA/DSM/DRFC Cadarache, 13108 St. Paul lez Durance (France); Zakharov, A. [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation)

    2009-06-15

    Deuterium trapping in carbon fiber composite N11 and pyrolitic graphite PG99 irradiated with plasma ions and electrons was examined with thermal desorption spectrometry. It has been found that the deuterium trapping takes place even at ion and electron energies of about 10 eV. For equal ion fluences, the deuterium retention and probability of CD{sub 4} formation are higher for ion irradiation at lower ion flux. Peculiarities of the deuterium retention and CD{sub 4} formation are explained; driving forces and mechanisms of the D trapping are discussed.

  16. Laser ultrasound technology for fault detection on carbon fiber composites

    Science.gov (United States)

    Seyrkammer, Robert; Reitinger, Bernhard; Grün, Hubert; Sekelja, Jakov; Burgholzer, Peter

    2014-05-01

    The marching in of carbon fiber reinforced polymers (CFRPs) to mass production in the aeronautic and automotive industry requires reliable quality assurance methods. Laser ultrasound (LUS) is a promising nondestructive testing technique for sample inspection. The benefits compared to conventional ultrasound (US) testing are couplant free measurements and an easy access to complex shapes due to remote optical excitation and detection. Here the potential of LUS is present on composite test panels with relevant testing scenarios for industry. The results are evaluated in comparison to conventional ultrasound used in the aeronautic industry.

  17. Fracture morphology of carbon fiber reinforced plastic composite laminates

    Directory of Open Access Journals (Sweden)

    Vinod Srinivasa

    2010-09-01

    Full Text Available Carbon fiber reinforced plastic (CFRP composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compression and flexural loadings; and microscopic study with the aid of Scanning Electron Microscope (SEM has been performed on failed (fractured composite surfaces to identify the principle features of failure. Efforts have been made in correlating the fracture surface characteristics to the failure mode. The micro-mechanics analysis of failure serves as a useful guide in selecting constituent materials and designing composites from the failure behavior point of view. Also, the local failure initiation results obtained here has been reliably extended to global failure prediction.

  18. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Science.gov (United States)

    2010-04-01

    ... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous...

  19. Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites

    International Nuclear Information System (INIS)

    In this work, O3 modification method was used for the surface treatment of polyacrylonitrile (PAN)-based carbon fiber. The surface characteristics of carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS). The interfacial properties of carbon fiber-reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fiber pull-out tests. As a result, it was found that IFSS values of the composites with O3 treated carbon fiber are increased by 60% compared to that without treatment. XPS results show that O3 treatment increases the amount of carboxyl groups on carbon fiber surface, thus the interfacial adhesion between carbon fiber and PA6 matrix is effectively promoted

  20. Interfacial studies on the O{sub 3} modified carbon fiber-reinforced polyamide 6 composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [School of Mechanical and Electronic Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China)], E-mail: ljsxh2008@sina.com

    2008-12-30

    In this work, O{sub 3} modification method was used for the surface treatment of polyacrylonitrile (PAN)-based carbon fiber. The surface characteristics of carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS). The interfacial properties of carbon fiber-reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fiber pull-out tests. As a result, it was found that IFSS values of the composites with O{sub 3} treated carbon fiber are increased by 60% compared to that without treatment. XPS results show that O{sub 3} treatment increases the amount of carboxyl groups on carbon fiber surface, thus the interfacial adhesion between carbon fiber and PA6 matrix is effectively promoted.

  1. Interfacial studies on the O 3 modified carbon fiber-reinforced polyamide 6 composites

    Science.gov (United States)

    Li, J.

    2008-12-01

    In this work, O 3 modification method was used for the surface treatment of polyacrylonitrile (PAN)-based carbon fiber. The surface characteristics of carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS). The interfacial properties of carbon fiber-reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fiber pull-out tests. As a result, it was found that IFSS values of the composites with O 3 treated carbon fiber are increased by 60% compared to that without treatment. XPS results show that O 3 treatment increases the amount of carboxyl groups on carbon fiber surface, thus the interfacial adhesion between carbon fiber and PA6 matrix is effectively promoted.

  2. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Highlights: • Laminate squeeze casting shortens infiltration distance to half the fabric thickness. • Oxide scale on aluminum sheets serves as initial carbon–aluminum diffusion barrier. • Liquid infiltrates fiber fabrics from their respective neighboring aluminum layers. • Hydrostatic pressure in molten aluminum preserves the laminate configuration. • A good carbon fiber–aluminum matrix interface bond is achieved. - Abstract: Carbon fiber reinforced aluminum matrix composites show an excellent combination of lightweight, mechanical properties, ease of processing and low costs. However, standard liquid infiltration squeeze casting often requires complex preforms in order to control fiber configuration and distribution. It also requires relatively high pressures to overcome the pressure drop across the preform, which can lead to preform compaction and damage and can limit the maximum component thickness that can be thoroughly infiltrated. Therefore, a laminate squeeze casting process is investigated as alternative whereby alternate layers of fiber fabrics and aluminum sheets are hot consolidated. Liquid infiltrates the fiber fabrics from their two respective neighboring aluminum layers, thereby reducing the infiltration distance from the entire component height to only half the thickness of individual fiber layers. This results in a rapid and thorough infiltration. Composites with fiber contents between 7 and 14 vol% are successfully fabricated. Despite complete melting of the aluminum layers at 850 °C, optical and scanning electron microscopy investigations show that hydrostatic pressure practically preserves the laminate configuration during fabrication and no fiber agglomeration occurs. The composites show good fiber–matrix bonding. No noticeable fiber damage is observed despite some carbide formation primarily at interfaces. A composite hardness over 50% higher compared to the reference 6061 matrix alloy is achieved at a carbon fiber content of 7

  3. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    Science.gov (United States)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  4. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m2/g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  5. Physical Characterization and Steam Chemical Reactivity of Carbon Fiber Composites

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, Robert Andrew; Pawelko, Robert James; Smolik, Galen Richard

    2001-05-01

    This report documents experiments and analyses that have been done at the Idaho National Engineering and Environmental Laboratory (INEEL) to measure the steam chemical reactivity of two types of carbon fiber composites, NS31 and NB31, proposed for use at the divertor strike points in an ITER-like tokamak. These materials are 3D CFCs constituted by a NOVOLTEX preform and densified by pyrocarbon infiltration and heat treatment. NS31 differs from NB31 in that the final infiltration was done with liquid silicon to reduce the porosity and enhance the thermal conductivity of the CFC. Our approach in this work was twofold: (1) physical characterization measurements of the specimens and (2) measurements of the chemical reactivity of specimens exposed to steam.

  6. TECHNICAL NOTE: Design and development of electromagnetic absorbers with carbon fiber composites and matching dielectric layers

    Science.gov (United States)

    Neo, C. P.; Varadan, V. K.

    2001-10-01

    Radar absorbing materials are designed and developed with carbon fibers and suitable matching layers. Complex permittivities of carbon fiber composite are predicted on the basis that the modulus of permittivity obeys a logarithmic law of mixtures and the dielectric loss tangents are related through a linear law of mixtures. Linear regression analysis performed on the data points provides the constants which are used to predict the effective permittivities of carbon fiber composite at different frequencies. Using the free space measurement system, complex permittivities of the lossy dielectric at different frequencies are obtained. These complex permittivities are used to predict the reflectivity of a thin lossy dielectric layer on carbon fiber composite substrate. The predicted results agree quite well with the measured data. It is interesting to note that the thin lossy dielectric layer, about 0.03 mm thick, has helped to reduce the reflectivity of the 5.2 mm thick carbon fiber composite considerably.

  7. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    International Nuclear Information System (INIS)

    Highlights: ► We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. ► Carbon fiber surface functional groups were analyzed by LRS and XPS. ► Proper treatment of carbon fiber can prove an effective way to increase composite's performance. ► Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H2SO4, KClO3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  8. Effect of electropolymer sizing of carbon fiber on mechanical properties of phenolic resin composites

    Institute of Scientific and Technical Information of China (English)

    LI Jin; FAN Qun; CHEN Zhen-hua; HUANG Kai-bing; CHENG Ying-liang

    2006-01-01

    Carbon fiber/phenolic resin composites were reinforced by the carbon fiber sized with the polymer films of phenol,m-phenylenediamine or acrylic acid,which was electropolymerized by cyclic voltammetry or chronopotentiometry. The contact angles of the sized carbon fibers with deionized water and diiodomethane were measured by the wicking method based on the modified Washburn equation,to show the effects of the different electropolymer film on the surface free energy of the carbon fiber after sizing by the electropolymerization. Compared with the unsized carbon fiber,which has 85.6°of contact angle of water,52.2° of contact angle of diiodomethane,and 33.1 mJ/m2 of surface free energy with 29.3 mJ/m2 of dispersive components (γL) and 3.8 mJ/m2 of polar components (γsp),respectively. It is found that the electropolymer sized carbon fiber tends to reduce the surface energy due to the decrease of dispersive γL with the increase of the polymer film on the surface of the carbon fiber that plays an important role in improving the mechanical properties of carbon/phenolic resin composites. Compared with the phenolic resin composites reinforced by the unsized carbon fiber,the impact,flexural and interlaminar shear strength of the phenolic resin composites were improved by 44 %,68% and 87% when reinforced with the carbon fiber sized by the electropolymer of m-phenylenediamine,66%,100%,and 112% by the electropolymer of phenol,and 20%,80 %,100% by the electropolymer of acrylic acid. The results indicate the skills of electropolymerization may provide a feasible method for the sizing of carbon fiber in a composite system,so as to improve the interfacial performance between the reinforce materials and the matrix and to increase the mechanical properties of the composites.

  9. Global Carbon Fiber Composites. Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Joshua A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    The objective of this study is to identify key opportunities in the carbon fiber (CF) supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas—wind energy, aerospace, automotive, and pressure vessels—that top the list of industries using CF and carbon fiber reinforced polymers (CFRP) and are particularly relevant to the mission of U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE). For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  10. Piezoresistivity in Carbon Fiber Reinforced Cement Based Composites

    Institute of Scientific and Technical Information of China (English)

    Bing CHEN; Keru WU; Wu YAO

    2004-01-01

    The resu lts of some i nteresti ng investigation on the piezoresistivity of ca rbon fi ber reinforced cement based com posites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity.

  11. Enrichment of ventilation air methane (VAM) with carbon fiber composites.

    Science.gov (United States)

    Bae, Jun-Seok; Su, Shi; Yu, Xin Xiang

    2014-05-20

    Treatment of ventilation air methane (VAM) with cost-effective technologies has been an ongoing challenge due to its high volumetric flow rate with low and variable methane concentrations. In this work, honeycomb monolithic carbon fiber composites were developed and employed to capture VAM with a large-scale test unit at various conditions such as VAM concentration, ventilation air (VA) flow rate, temperature, and purging fluids. Regardless of inlet VAM concentrations, methane was captured at almost 100%. To regenerate the composites, the initial vacuum swing followed by combined temperature and vacuum swing adsorption (TVSA) was applied. It was found that initial vacuum swing is a control step for the final methane concentration having 5 or 11 times the VAM enrichment by one-step adsorption, which is, to our knowledge, the best performance achieved in VAM enrichment technologies worldwide. Five-time enriched VAM can be utilized as a principle fuel for lean burn turbine. Also, it can be further enriched by second step adsorption to more than 25% which then can be used for commercially available gas engines. In this way, the final product can be out of the methane explosive range (5-15%). PMID:24787090

  12. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  13. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das. Sujit; Warren, Josh; West, Devin; Schexnayder, Susan M.

    2016-05-11

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  14. Hybrid Carbon Fiber/ZnO Nanowires Polymeric Composite for Stuctural and Energy Harvesting Applications

    OpenAIRE

    Masghouni, Nejib

    2014-01-01

    Despite the many attractive features of carbon fiber reinforced polymers (FRPs) composites, they are prone to failure due to delamination. The ability to tailor the fiber/matrix interface FRPs is crucial to the development of composite materials with enhanced structural performance. In this dissertation, ZnO nanowires (NWs) were grown on the surface of carbon fibers utilizing low temperature hydrothermal synthesis technique prior to the hybrid composite fabrication. The scanning electron micr...

  15. UV-cured adhesives for carbon fiber composite applications

    Science.gov (United States)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  16. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    Science.gov (United States)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  17. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Science.gov (United States)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Bismaleimide (BMI) resins are an attractive new addition to world-wide composite applications. This type of thermosetting polyimide provides several unique characteristics such as excellent physical property retention at elevated temperatures and in wet environments, constant electrical properties over a vast array of temperature settings, and nonflammability properties as well. This makes BMI a popular choice in advance composites and electronics applications [I]. Bismaleimide-2 (BMI-2) resin was used to infuse intermediate modulus 7 (IM7) based carbon fiber. Two panel configurations consisting of 4 plies with [+45deg, 90deg]2 and [0deg]4 orientations were fabricated. For tensile testing, a [90deg]4 configuration was tested by rotating the [0deg]4 configirration to lie orthogonal with the load direction of the test fixture. Curing of the BMI-2/IM7 system utilized an optimal infusion process which focused on the integration of the manufacturer-recommended ramp rates,. hold times, and cure temperatures. Completion of the cure cycle for the BMI-2/IM7 composite yielded a product with multiple surface voids determined through visual and metallographic observation. Although the curing cycle was the same for the three panellayups, the surface voids that remained within the material post-cure were different in abundance, shape, and size. For tensile testing, the [0deg]4 layup had a 19.9% and 21.7% greater average tensile strain performance compared to the [90deg]4 and [+45deg, 90deg, 90deg,-45degg] layups, respectively, at failure. For tensile stress performance, the [0deg]4 layup had a 5.8% and 34.0% greater average performance% than the [90deg]4 and [+45deg, 90deg, 90deg,-45deg] layups.

  18. The friction and wear properties of Polypropylene composite filled with carbon fiber and Polyamide 6

    OpenAIRE

    Li, Jian; Kao-Walter, Sharon

    2014-01-01

    Carbon fiber composites were prepared in order to study the influence of fillers (polyamide 6; PA6) on the tensile and tribological properties of polypropylene (PP) composites. Tensile fracture mechanism was discussed based on the tensile testresults. Tribological tests were conducted on a Mobile Remote Handler-3 (MRH-3) friction and wear tester using a block-on-ring arrangement. It was observed that the carbon fiber (CF) played a main role in the tensile-resistant and wear-resistant properti...

  19. Ultrasound assisted process for enhanced interlaminar shear strength of carbon fiber/epoxy resin composites

    OpenAIRE

    Bogoeva-Gaceva, Gordana; Herakovic, Niko; Dimeski, Dimko; Stefov, Viktor

    2010-01-01

    The influence of ultrasonic treatment, applied during the impregnation of carbon fiber bundle by resin system, on interface sensitive properties of carbon fiber/epoxy resin composites has been analyzed. The formation of the network has been followed on model composites containing untreated, oxidized and epoxy sized fibers by Fourier transform infrared microscopy (FTIR-microscopy) and differential scanning calorimetry (DSC). The enhanced interlaminar shear strength (ILSS), found for the compos...

  20. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  1. Repairable Woven Carbon Fiber Composites with Full Recyclability Enabled by Malleable Polyimine Networks.

    Science.gov (United States)

    Taynton, Philip; Ni, Huagang; Zhu, Chengpu; Yu, Kai; Loob, Samuel; Jin, Yinghua; Qi, H Jerry; Zhang, Wei

    2016-04-01

    Carbon-fiber reinforced composites are prepared using catalyst-free malleable polyimine networks as binders. An energy neutral closed-loop recycling process has been developed, enabling recovery of 100% of the imine components and carbon fibers in their original form. Polyimine films made using >21% recycled content exhibit no loss of mechanical performance, therefore indicating all of the thermoset composite material can be recycled and reused for the same purpose. PMID:26875745

  2. A study of tribological behaviors of the phenolic composite coating reinforced with carbon fibers

    International Nuclear Information System (INIS)

    The nitric acid treatment was used as a method to bind acidic oxygen functional groups on carbon fiber surfaces, thereafter these fibers (CFO) and unmodified carbon fibers (CF) were incorporated into the phenolic composite coating for wear investigations. Surface analyses of the carbon fibers before and after treatments were performed by FTIR, X-ray photoelectron spectrometer (XPS). Tribological behaviors of carbon fibers filled phenolic coatings were investigated using a ring on block wear tests under dry friction condition, and the worn surfaces and the transfer films formed on the surface of counterpart ring were, respectively, studied by SEM and optical microscope. The results show that the additions of carbon fibers were able to reduce the friction coefficient of the phenolic coating and enhance the wear life of it, especially, the wear life of the phenolic coating was the best when content of carbon fibers is at 10 wt.%. Moreover, we found that the friction and wear behaviors of the phenolic coating reinforced with 10 wt.% CFO were better than those of the coating reinforced with 10 wt.% CF. FTIR and XPS analyses indicated that the oxygen functional groups, such as -OH, O-C=O, C=O, and C-O, were attached on the carbon fiber surfaces after the oxidated treatment. In both cases, appropriate treatments could effectively improve the mechanical and tribological properties in the phenolic composite coating due to the enhanced fiber-matrix interfacial bonding

  3. Shockwave response of two carbon fiber-polymer composites to 50 GPa

    Science.gov (United States)

    Dattelbaum, Dana M.; Coe, Joshua D.; Rigg, Paulo A.; Scharff, R. Jason; Gammel, J. Tinka

    2014-11-01

    Shock compression of two molded, carbon fiber-filled polymer composites was performed in gas gun-driven plate impact experiments at impact velocities up to ≈5 km/s. Hugoniot states for both composites were obtained from chopped carbon fibers, bound by either phenolic or cyanate ester polymeric resins. Their dynamic responses were similar, although the 10 wt. % difference of carbon fill produced measureable divergence in shock compressibility. The chopped carbon fibers in the polymer matrix led to moderately anisotropic shocks, particularly when compared with the more commonly encountered filament-wound carbon fiber-epoxy composites. A discontinuity, or cusp, was observed in the principal Hugoniot of both materials near 25 GPa. We attribute the accompanying volume collapse to shock-driven chemical decomposition above this condition. Inert and reacted products equations of state were used to capture the response of the two materials below and above the cusp.

  4. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  5. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    Science.gov (United States)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  6. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2014-12-01

    Full Text Available The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo

  7. Circuit models for Salisbury screens made from unidirectional carbon fiber composite sandwich structures

    Science.gov (United States)

    Riley, Elliot J.; Lenzing, Erik H.; Narayanan, Ram M.

    2016-05-01

    Carbon fiber composite materials have many useful structural material properties. The electromagnetic perfor- mance of these materials is of great interest for future applications. The work presented in this paper deals with the construction of Salisbury screen microwave absorbers made from unidirectional carbon fiber composite sand- wich structures. Specifically, absorbers centered at 7.25 GHz and 12.56 GHz are investigated. Circuit models are created to match the measured performance of the carbon fiber Salisbury screens using a genetic algorithm to extract lumped element circuit values. The screens presented in this paper utilize unidirectional carbon fiber sheets in place of the resistive sheet utilized in the classic Salisbury screen. The theory, models, prototypes, and measurements of these absorbers are discussed.

  8. Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS Composites Reinforced with Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Pedro Garcés

    2013-10-01

    Full Text Available In recent years, several researchers have shown the good performance of alkali activated slag cement and concretes. Besides their good mechanical properties and durability, this type of cement is a good alternative to Portland cements if sustainability is considered. Moreover, multifunctional cement composites have been developed in the last decades for their functional applications (self-sensing, EMI shielding, self-heating, etc.. In this study, the strain and damage sensing possible application of carbon fiber reinforced alkali activated slag pastes has been evaluated. Cement pastes with 0, 0.29 and 0.58 vol % carbon fiber addition were prepared. Both carbon fiber dosages showed sensing properties. For strain sensing, function gage factors of up to 661 were calculated for compressive cycles. Furthermore, all composites with carbon fibers suffered a sudden increase in their resistivity when internal damages began, prior to any external signal of damage. Hence, this material may be suitable as strain or damage sensor.

  9. Rheological behavior of composites based on carbon fibers recycled from aircraft waste

    OpenAIRE

    Marcaníková, Lucie; Hausnerová, Berenika; Kitano, Takeshi

    2009-01-01

    Rheological investigation of composite materials prepared from the recycled aircraft waste materials based on thermoset (epoxy/resin) matrix and long carbon fibers (CF) is presented with the aim of their utilization in consumer industry applications. The carbon fibers recovered via thermal process of pyrolysis were cut into about 150 pm length and melt mixed with thermoplastic matrices based on polypropylene (PP) and polyamide 6 (PA) and various modifiers - ethylene-ethyl acrylate-maleic anhy...

  10. Poly(borosiloxanes) as precursors for carbon fiber ceramic matrix composites

    OpenAIRE

    Renato Luiz Siqueira; Inez Valéria Pagotto Yoshida; Luiz Claudio Pardini; Marco Antônio Schiavon

    2007-01-01

    Ceramic matrix composites (CMCs), constituted of a silicon boron oxycarbide (SiBCO) matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS) or poly(borosiloxane) (PBS) matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence o...

  11. Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites

    OpenAIRE

    Doorn, S.; Dai, L.; Phillips, J.; A. K. Roy; M. M. Reda Taha; C. C. Luhrs; Al-Haik, M.

    2010-01-01

    Pitch-based carbon fibers are commonly used to produce polymeric carbon fiber structural composites. Several investigations have reported different methods for dispersing and subsequently aligning carbon nanotubes (CNTs) as a filler to reinforce polymer matrix. The significant difficulty in dispersing CNTs suggested the controlled-growth of CNTs on surfaces where they are needed. Here we compare between two techniques for depositing the catalyst iron used toward growing CNTs on pitch-based ca...

  12. Interfacial enhancement of carbon fiber composites by generation 1–3 dendritic hexamethylenetetramine functionalization

    International Nuclear Information System (INIS)

    Highlights: • A new chemical grafting method for carbon fibers was proposed. • The oxidation system adopts K2S2O8 and AgNO3. • The interfacial shear strength (IFSS) of carbon fiber increased by 61%, and the interfacial adhesion increased with dendritic generation number. • The tensile strength of carbon fiber does not decrease distinctly. • The treatment conditions are mild and convenient. - Abstract: PAN-based carbon fibers (CF) were functionalized with generation (n) 1–3 dendritic hexamethylenetetramine (HMTA) (denoted as CF-Gn-HMTA, n = 1, 2 and 3) in an attempt to improve the interfacial properties between carbon fibers and epoxy matrix. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), dynamic contact angle analysis (DCA), interfacial shear strength (IFSS) and single fiber tensile testing were carried out to investigate the functionalization process of carbon fibers and the interfacial properties of the composites. Experimental results showed that generation (n) 1–3 dendritic hexamethylenetetramine was grafted uniformly on the fiber surface through the chemical reaction, and then it increased significantly the fiber surface polarity and roughness. The surface energy and IFSS of carbon fibers increased obviously after the graft CF-G3-HMTA, by 147.6% and 81%, respectively. Generation (n) 1–3 dendritic hexamethylenetetramine enhanced effectively the interfacial adhesion of the composites by improving resin wettability, increasing chemical bonding and mechanical interlocking, and the interfacial adhesion increased with dendritic generation number. Moreover, the grafting of generation (n) 1–3 dendritic hexamethylenetetramine on the carbon fiber surface improved the fiber tensile strength, which is beneficial to the in-plane properties of the resulting composites

  13. Activation and micropore structure determination of activated carbon-fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  14. Electromagnetic Interference Shielding Properties of Electroless Nickel-coated Carbon Fiber Paper Reinforced Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; WANG Jun; WANG Tao; WANG Junpeng; XU Renxin; YANG Xiaoli

    2014-01-01

    Carbon fibers (CFs) were coated with a nickel-phosphorus (Ni-P) film using an electroless plating process. The morphology, elemental composition and phases in the coating layer of the CFs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. Wet paper-making method was used to prepare nickle coated carbon fiber paper (NCFP). Vacuum assisted infusion molding process (VAIMP) was employed to manufacture the NCFP reinforced epoxy composites, and carbon fiber paper (CFP) reinforced epoxy composites were also produced as a comparison. Electromagnetic interference (EMI) shielding properties of the composites were measured in the 3.22-4.9 GHz frequency range using waveguide method. Both NCFP and CFP reinforced epoxy composites of 0.5 mm thickness exhibited high EMI shielding effectiveness (SE) at 8wt%fiber content, 35 dB and 30 dB, respectively, and reflection was the dominant shielding mechanism.

  15. Effect of anodic surface treatment on PAN-based carbon fiber and its relationship to the fracture toughness of the carbon fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Sarraf, Hamid; Skarpova, Ludmila

    2008-01-01

    The effect of anodic surface treatment on the polyacrylonitrile (PAN)-based carbon fibers surface properties and the mechanical behavior of the resulting carbon fiber-polymer composites has been studied in terms of the contact angle measurements of fibers and the fracture toughness of composites...... that the K-IC of the composite continually increases with increased current densities of the treatments up to 0.5 A m(-2), and a maximum strength value is found about 294 MPa cm(1/2) at the anodic treatment of 0.5 A m(-2). It can be concluded that the anodic surface treatment is largely influenced in...... the fiber surface nature and the mechanical interfacial properties between the carbon fiber and epoxy resin matrix of the resulting composites, i.e., the fracture toughness. We suggest that good wetting plays an important role in improving the degree of adhesion at interfaces between fibers and...

  16. Determination of Water Diffusion Coefficients and Dynamics in Adhesive/ Carbon Fiber Reinforced Epoxy Resin Composite Joints

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; WANG Zhi; WANG Jing; SU Tao

    2007-01-01

    To determinate the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxygen in the adhesive in adhesive/carbon fiber reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analysis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of both energy dispersive X-ray spectroscopy and elemental analysis. The determined results with EDX analysis are almost the same as those determined with elemental analysis and the results also show that the durability of the adhesive/carbon fiber reinforced epoxy resin composite joints subjected to silane coupling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treatment.

  17. RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites.

    Science.gov (United States)

    Yu, Seunggun; Park, Bo-In; Park, Cheolmin; Hong, Soon Man; Han, Tae Hee; Koo, Chong Min

    2014-05-28

    In this paper, we demonstrate a facile route to produce epoxy/carbon fiber composites providing continuous heat conduction pathway of Cu with a high degree of crystal perfection via electroplating, followed by rapid thermal annealing (RTA) treatment and compression molding. Copper shells on carbon fibers were coated through electroplating method and post-treated via RTA technique to reduce the degree of imperfection in the Cu crystal. The epoxy/Cu-plated carbon fiber composites with Cu shell of 12.0 vol % prepared via simple compression molding, revealed 18 times larger thermal conductivity (47.2 W m(-1) K(-1)) in parallel direction and 6 times larger thermal conductivity (3.9 W m(-1) K(-1)) in perpendicular direction than epoxy/carbon fiber composite. Our novel composites with RTA-treated carbon fiber/Cu core/shell hybrid showed heat conduction behavior of an excellent polymeric composite thermal conductor with continuous heat conduction pathway, comparable to theoretical values obtained from Hatta and Taya model. PMID:24758290

  18. Research on the melt impregnation of continuous carbon fiber reinforced nylon 66 composites

    Science.gov (United States)

    Jia, M. Y.; Li, C. X.; Xue, P.; Chen, K.; Chen, T. H.

    2016-07-01

    Impregnation mold of continuous carbon fiber reinforced thermoplastic composites was designed and built in the article. Based on the theory of fluid mechanics and Darcy's law, a model of the melt impregnation was also established. The influences of fiber bundle width and impregnation pins’ diameter on the impregnation degree were studied by numerical simulation. Continuous carbon fiber reinforced nylon 66 composites were prepared. The effects of coated angle and impregnation mold temperature on the mechanical properties of the composites were also described.The agreement between the experimental data and prediction by the model was found to be satisfactory.

  19. Surface and sub-surface degradation of unidirectional carbon fiber reinforced epoxy composites under dry and wet reciprocating sliding

    OpenAIRE

    Dhieb, H.; Buijnsters, J. G.; Eddoumy, F.; Vázquez, Luis; Celis, J. P.

    2013-01-01

    The role of water on the sub-surface degradation of unidirectional carbon fiber reinforced epoxy composite is examined. The correlation between the debonding of carbon fibers at the fiber-epoxy interface, and the wear behavior of the carbon fiber composite are discussed based on an in-depth analysis of the worn surfaces. We demonstrate that a reciprocating sliding performed along an anti-parallel direction to the fiber orientation under dry conditions results in a large degradation by debondi...

  20. Development of Carbon Fiber Reinforced Stellite Alloy Based Composites for Tribocorrosion Applications

    Science.gov (United States)

    Khoddamzadeh, Alireza

    This thesis reports the design and development of two classes of new composite materials, which are low-carbon Stellite alloy matrices, reinforced with either chopped plain carbon fiber or chopped nickel-coated carbon fiber. The focus of this research is on obviating the problems related to the presence of carbides in Stellite alloys by substituting carbides as the main strengthening agent in Stellite alloys with the aforementioned carbon fibers. Stellite 25 was selected as the matrix because of its very low carbon content (0.1 wt%) and thereby relatively carbide free microstructure. The nickel coating was intended to eliminate any chance of carbide formation due to the possible reaction between carbon fibers and the matrix alloying additions. The composite specimens were fabricated using the designed hot isostatic pressing and sintering cycles. The fabricated specimens were microstructurally analyzed in order to identify the main phases present in the specimens and also to determine the possible carbide formation from the carbon fibers. The material characterization of the specimens was achieved through density, hardness, microhardness, corrosion, wear, friction, and thermal conductivity tests. These novel materials exhibit superior properties compared to existing Stellite alloys and are expected to spawn a new generation of materials used for high temperature, severe corrosion, and wear resistant applications in various industries.

  1. Enhanced vibration damping of carbon fibers-ZnO nanorods hybrid composites

    Science.gov (United States)

    Alipour Skandani, A.; Masghouni, N.; Case, S. W.; Leo, D. J.; Al-Haik, M.

    2012-08-01

    In this study, ZnO nanorods are grown on the surface of polyacrylonitrile based carbon fibers using a low temperature hydrothermal synthesis technique. Bi-layered carbon fiber-ZnO nanorod hybrid composite with epoxy matrix is prepared and tested for vibrational attenuations using dynamic mechanical analysis. Results revealed that the growth of ZnO nanorods on top of carbon fiber increases the damping performance by 50% while causing a slight decrease (˜7%) on the storage modulus. The enhanced damping of the hybrid composites can be related to the frictional mechanisms between the ZnO nanorod/epoxy and nanorod/nanorod interfaces combined with piezoelectric effect of ZnO.

  2. Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area

    International Nuclear Information System (INIS)

    Boron nitride can be used as a good catalyst carrier because of its high thermal conductivity and chemical stability. However, a high specific surface area of boron nitride is still desirable. In this work, a carbon fiber composite coated with boron nitride villous nano-film was prepared, and was also characterized by means of scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The results indicated that the carbon fibers were covered by uniform villous boron nitride films whose thickness was about 150 - 200 nm. The specific surface area of the boron nitride/carbon fiber composite material was 96 m2 g-1, which was markedly improved compared with conventional boron nitride materials. (orig.)

  3. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers

    International Nuclear Information System (INIS)

    Highlights: • Multiscale composite was prepared by incorporation of carbon nanotubes and fibers. • Carbon nanotubes were also grown on short carbon fibers to enhance stress transfer. • Significant improvements were achieved in mechanical properties of composites. • Synergic effect of carbon nanotubes and fibers was demonstrated. - Abstract: Carbon nanotubes (CNT) and short carbon fibers were incorporated into an epoxy matrix to fabricate a high performance multiscale composite. To improve the stress transfer between epoxy and carbon fibers, CNT were also grown on fibers through chemical vapor deposition (CVD) method to produce CNT grown short carbon fibers (CSCF). Mechanical characterization of composites was performed to investigate the synergy effects of CNT and CSCF in the epoxy matrix. The multiscale composites revealed significant improvement in elastic and storage modulus, strength as well as impact resistance in comparison to CNT–epoxy or CSCF–epoxy composites. An optimum content of CNT was found which provided the maximum stiffness and strength. The synergic reinforcing effects of combined fillers were analyzed on the fracture surface of composites through optical and scanning electron microscopy (SEM)

  4. Tribological characteristics of innovative Al6061–carbon fiber rod metal matrix composites

    International Nuclear Information System (INIS)

    Highlights: • Innovative carbon rod reinforced aluminum Al6061 composites have been developed. • The tribological behavior of the developed composites are evaluated. • The developed Composites have exhibited superior tribological properties when compared with the matrix. - Abstract: Rods made of continuous carbon fibers are being extensively used as structural materials in light weight micro-air vehicles owing to their excellent specific modulus and strength. Further, they possess excellent tribological characteristics – low friction and wear coupled with high conductivity making them an ideal reinforcement in developing light weight, high strength aluminum based metal matrix composites. In the last three decades, researchers have focused mainly on the study of mechanical and tribological behavior of discontinuous carbon fiber reinforced metal matrix composites. However, no information is available regarding the tribological behavior of carbon fibers rod reinforced metal matrix composites, although it is interesting and will result in expanding the applications of metal matrix composites (MMC) where tribological failures are expected. In the light of the above, the present work focuses on development of innovative Al6061–carbon fiber rods composites by casting route and assessing their tribological characteristics. Carbon fiber rods of 4 mm and 6 mm diameters were surface sensitized to achieve electro less nickel coating. Copper plating on the electro less nickel coated carbon fiber rods were carried out. The copper plated carbon fiber rods were arranged in cylindrical array in the metallic mold to which molten Al6061 alloy after degassing was poured at a temperature of 700 °C. The developed innovative composites were subjected to density tests, microstructure studies, hardness, friction and wear tests. A pin on disk configuration was used with hardened steel as the counter face. Load was varied from 20 N to 60 N while the sliding velocity was varied

  5. Friction Behaviour of Polymeric Composite Materials Mixed with Carbon Fibers Having Different Orientations Layout

    Science.gov (United States)

    Caliman, R.

    2016-06-01

    This paper presents a study of the friction properties of polymeric composite materials reinforced with unidirectional carbon fibers having different stratified structure. So, the composites are complex and versatile materials but their behaviour in practice is not fully studied. For instance, these polymeric composite materials mixed with carbon fibers after being investigated in terms of wear, did not elucidate the effect of fiber orientation on wear properties. Is therefore necessary to investigate the effect of carbon fibers orientation on the friction-wear properties of the reinforced composite materials tested to abrasive and adhesive friction. Research work has been done with unidirectional composite materials having overlap 18 successive layers made from a polymeric resine and 60% of carbon fibers. The stratified structure was obtained by compressing multiple pre-impregnated strips, positioned manually. During this experimental work, three types of test samples were investigated: parallel, normal and anti-parallel, taking in consideration the carbon fibre orientation with respect to the sliding direction. The friction coefficient is computed function to the friction load and loading value. Also, the specific wear rate was calculated according to: the mass loss, density, the normal contact surface, the sliding distance and load rating.

  6. Toughness and Hot/Wet Properties of a Novel Modified BMI/Carbon Fiber Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The toughness and hot/wet properties of a novel modified bismaleimide (BMI) 5428/carbon fiber composite was investigated. Results indicate that the prepared BMI/T700 composite owns high toughness, excellent hot/wet properties and mechanical properties. The compression strength after impact (CAl) of 5428/T700 composite is 260 MPa, and the results of hot/wet test show that the long-term service temperature of 5428/T700 composite can maintain at 170°C.

  7. Size Classification of Chopped Carbon Fibers in the Composite Materials Manufacturing

    Directory of Open Access Journals (Sweden)

    А.S. Dovbysh

    2010-01-01

    Full Text Available Information synthesis of the learning decision support system for automation of the chopped carbon fibers size control used for the matrix filling within the manufacturing of composite materials based on polytetrafluoroethylene is considered. To improve the reliability of recognition learning algorithm with the optimization of the precision control is proposed.

  8. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  9. Size Classification of Chopped Carbon Fibers in the Composite Materials Manufacturing

    OpenAIRE

    А.S. Dovbysh; А.F. Budnik; N.І. Andriienko

    2010-01-01

    Information synthesis of the learning decision support system for automation of the chopped carbon fibers size control used for the matrix filling within the manufacturing of composite materials based on polytetrafluoroethylene is considered. To improve the reliability of recognition learning algorithm with the optimization of the precision control is proposed.

  10. Anodization of carbon fibers on interfacial mechanical properties of epoxy matrix composites.

    Science.gov (United States)

    Park, Soo-Jin; Chang, Yong-Hwan; Kim, Yeong-Cheol; Rhee, Kyong-Yop

    2010-01-01

    The influence of anodic oxidation on the mechanical interfacial properties of carbon-fiber-reinforced epoxy resin composites was investigated. The surface properties of the anodized carbon fibers were studied through the measurement of contact angles and through SEM, XPS, and FT-IR analyses. The mechanical interfacial properties of the composites were studied through measurements of interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and critical strain energy release rate (G(IC)). It was shown that the surface functional groups containing oxygen on the anodized carbon fibers exert great effects on the surface energetics of fibers and the mechanical interfacial properties, e.g., ILSS, of the resulting composites. Contact angle measurements based on the wicking rate of a test liquid showed that anodic oxidation lead to an increase in the surface free energy of the carbon fibers, mainly in its specific (or polar) component. In terms of surface energetics, it was found that wetting played an important role in increasing the degree of adhesion at interfaces between the fibers and the resin matrices of the composites. PMID:20352820

  11. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments

    International Nuclear Information System (INIS)

    The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.

  12. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.;

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...... CNT nanoreinforcement into the matrix and/or the sizing of carbon fiber/reinforced composites ensures strong increase of the composite strength. The effect of secondary CNTs reinforcement is strongest when some small addition of CNTs in the polymer matrix is complemented by the fiber sizing with high...

  13. STUDY OF DEPENDENCE OF POLYETHYLENE AND CARBON FIBERS COMPOSITES PROPERNIES ON SURFACE CHARACTERISTICS OF FIBER AND TYPE OF SAMPLES

    Directory of Open Access Journals (Sweden)

    Petukhova E. S.

    2015-06-01

    Full Text Available PE2NT11 and chopped carbon fibers and PE2NT11 and modified carbon fibers composites were investigated. It was shown that the mechanical properties depend on the surface characteristics of fibers. It was found that laboratory and tube samples have some difference in mechanical properties that connected with specific distribution of fibers in samples

  14. The effect of fiber oxidation on the friction and wear behaviors of short-cut carbon fiber/polyimide composites

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available Pitch-based short-cut carbon fibers were treated by HNO3 oxidation, thereafter the treated (CFN and untreated carbon fibers (CF were incorporated into polyimide (PI matrix to form composites. The carbon fibers before and after treatment were examined by Fourier Transform Infrared Spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and scanning electron microscope (SEM. The friction and wear behaviors of PI composites sliding against GCr15 steel rings were evaluated on an M-2000 model ring-on-block test rig, which revealed that small incorporation of carbon fibers can decrease the friction coefficient and improve the wear resistance of PI composites, and that the reinforcement effect of treated carbon fibers was better than that of the untreated ones. It was found that the optimum content of carbon fibers is 15 wt% when a thin and continuous transfer film was formed on the counterpart surface during the friction process. With further increasing content of carbon fibers, the friction coefficient increased and the wear resistance reduced owing to the drop out of carbon fibers from PI matrix. Besides, the friction coefficient of the PI composites decreased and the wear resistance improved with increasing load, while for the pure PI, its wear resistance decreased drastically owing to the micro-melting and mechanical deterioration caused by friction heat under a higher load.

  15. STUDY OF DEPENDENCE OF POLYETHYLENE AND CARBON FIBERS COMPOSITES PROPERNIES ON SURFACE CHARACTERISTICS OF FIBER AND TYPE OF SAMPLES

    OpenAIRE

    Petukhova E. S.

    2015-01-01

    PE2NT11 and chopped carbon fibers and PE2NT11 and modified carbon fibers composites were investigated. It was shown that the mechanical properties depend on the surface characteristics of fibers. It was found that laboratory and tube samples have some difference in mechanical properties that connected with specific distribution of fibers in samples

  16. Properties of glass/carbon fiber reinforced epoxy hybrid polymer composites

    Science.gov (United States)

    Patel, R. H.; Sevkani, V. R.; Patel, B. R.; Patel, V. B.

    2016-05-01

    Composite Materials are well known for their tailor-made properties. For the fabrication of composites different types of reinforcements are used for different applications. Sometimes for a particular application, one type of reinforcement may not fulfill the requirements. Therefore, more than one type of reinforcements may be used. Thus, the idea of hybrid composites arises. Hybrid composites are made by joining two or more different reinforcements with suitable matrix system. It helps to improve the properties of composite materials. In the present work glass/carbon fiber reinforcement have been used with a matrix triglycidyl ether of tris(m-hydroxy phenyl) phosphate epoxy resin using amine curing agent. Different physical and mechanical properties of the glass, carbon and glass/carbon fiber reinforced polymeric systems have been found out.

  17. Effect of Rare Earths on Tribological Properties of Carbon Fibers Reinforced PTFE Composites

    Institute of Scientific and Technical Information of China (English)

    Shangguan Qianqian; Cheng Xianhua

    2007-01-01

    Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was investigated. Experimental results revealed that RE was superior to air oxidation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.

  18. Performance of carbon fiber reinforced rubber composite armour against shaped charge jet penetration

    Directory of Open Access Journals (Sweden)

    Yue Lian-yong

    2016-01-01

    Full Text Available Natural rubber is reinforced with carbon fiber; the protective performances of the carbonfiber reinforced rubber composite armour to shaped charge jet have been studied based on the depth of penetration experiments. The craters on the witness blocks, the nature rubber based composite plates’ deformation and the Scanning Electron Microscopy for the hybrid fiber reinforced rubber plate also is analyzed. The results showed that the composite armour can affect the stability of the jet and made part of the jet fracture. The carbon fiber reinforced rubber composite armour has good defence ablity especially when the nature rubber plate hybrid 15% volume percentage carbonfiber and the obliquity angle is 68°. The hybrid fiber reinforced rubber composite armour can be used as a new kind of light protective armour.

  19. Surface Characterization of Carbon Fiber Polymer Composites and Aluminum Alloys After Laser Interference Structuring

    Science.gov (United States)

    Sabau, Adrian S.; Greer, Clayton M.; Chen, Jian; Warren, Charles D.; Daniel, Claus

    2016-05-01

    The increasing use of carbon fiber-reinforced polymer matrix composites (CFPC) and aluminum alloys as lightweight materials in the automotive and aerospace industries demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using an Nd:YAG laser in a two-beam interference setup, enabling the (1) structuring of the AL 5182 surface, (2) removal of the resin layer on top of carbon fibers, and (3) structuring of the carbon fibers. CFPC specimens of T700S carbon fiber, Prepreg—T83 epoxy, 5 ply thick, 0°/90° plaques were used. The effects of laser fluence, scanning speed, and number of shots-per-spot were investigated on the removal rate of the resin without an excessive damage of the fibers. Optical micrographs, 3D imaging, and scanning electron microscope imaging were used to study the effect of the laser processing on the surface morphology. It was found that an effective resin ablation and a low density of broken fibers for CFPC specimens was attained using laser fluences of 1-2 J/cm2 and number of 2-4 pulses per spot. A relatively large area of periodic line structures due to energy interference were formed on the aluminum surface at laser fluences of 12 J/cm2 and number of 4-6 pulses per spot.

  20. Surface Characterization of Carbon Fiber Polymer Composites and Aluminum Alloys After Laser Interference Structuring

    Science.gov (United States)

    Sabau, Adrian S.; Greer, Clayton M.; Chen, Jian; Warren, Charles D.; Daniel, Claus

    2016-07-01

    The increasing use of carbon fiber-reinforced polymer matrix composites (CFPC) and aluminum alloys as lightweight materials in the automotive and aerospace industries demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using an Nd:YAG laser in a two-beam interference setup, enabling the (1) structuring of the AL 5182 surface, (2) removal of the resin layer on top of carbon fibers, and (3) structuring of the carbon fibers. CFPC specimens of T700S carbon fiber, Prepreg—T83 epoxy, 5 ply thick, 0°/90° plaques were used. The effects of laser fluence, scanning speed, and number of shots-per-spot were investigated on the removal rate of the resin without an excessive damage of the fibers. Optical micrographs, 3D imaging, and scanning electron microscope imaging were used to study the effect of the laser processing on the surface morphology. It was found that an effective resin ablation and a low density of broken fibers for CFPC specimens was attained using laser fluences of 1-2 J/cm2 and number of 2-4 pulses per spot. A relatively large area of periodic line structures due to energy interference were formed on the aluminum surface at laser fluences of 12 J/cm2 and number of 4-6 pulses per spot.

  1. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  2. Rate dependent response and failure of a ductile epoxy and carbon fiber reinforced epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric N [Los Alamos National Laboratory; Rae, Philip J [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory

    2010-01-01

    An extensive characterization suite has been performed on the response and failure of a ductile epoxy 55A and uniaxial carbon fiber reinforced epoxy composite of IM7 fibers in 55A resin from the quasistatic to shock regime. The quasistatic and intermediate strain rate response, including elastic modulus, yield and failure have are characterized by quasistatic, SHPB, and DMA measurements as a function of fiber orientation and temperature. The high strain rate shock effect of fiber orientation in the composite and response of the pure resin are presented for plate impact experiments. It has previously been shown that at lower impact velocities the shock velocity is strongly dependent on fiber orientation but at higher impact velocity the in-plane and through thickness Hugoniots converge. The current results are compared with previous studies of the shock response of carbon fiber composites with more conventional brittle epoxy matrices. The spall response of the composite is measured and compared with quasistatic fracture toughness measurements.

  3. Thermogravimetric analysis and thermal degradation behaviour of advanced PMR-X carbon fiber composites

    International Nuclear Information System (INIS)

    Thermal degradation behavior of sized and unsized carbon fibers in polyimide matrix was investigated. Degradation of neat resin and unidirectional laminates were investigated by thermogravimetric analysis technique at temperatures between 470 digC-650 digC and up to 250 h rs. Isothermal ageing of the PMR-X composite samples under different test conditions (i. e. different temperatures and prolonged aging times), showed that oxidation and degradation occurs in stage three different rates. Thermogravimetric analysis showed that the cured PMR-X composite panels are more stable in an inert atmosphere (nitrogen atmosphere)than in air and the degradation of neat resin is much higher than the composite samples. However, the rate of degradation of the unsized untreated carbon fibers in nitrogen environment is much higher than that for the PMR-X composites containing sized fibers

  4. Durability-Based Design Properties of Reference Crossply Carbon-Fiber Composite

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.

    2001-04-16

    This report provides recommended durability-based design properties and criteria for a crossply carbon-fiber composite for possible automotive structural applications. Although the composite utilized aerospace-grade carbon-fiber reinforcement, it was made by a rapid-molding process suitable for high-volume automotive use. The material is the first in a planned progression of candidate composites to be characterized as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. The composite addressed in this report is a ({+-}45{degree})3S crossply consisting of continuous Thornel T300 fibers in a Baydur 420 IMR urethane matrix. This composite is highly anisotropic with two dominant fiber orientations--0/90{degree} and {+-}45{degree}. Properties and models were developed for both orientations. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  5. Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes

    OpenAIRE

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF ...

  6. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    International Nuclear Information System (INIS)

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  7. Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites

    Directory of Open Access Journals (Sweden)

    S. Doorn

    2010-01-01

    Full Text Available Pitch-based carbon fibers are commonly used to produce polymeric carbon fiber structural composites. Several investigations have reported different methods for dispersing and subsequently aligning carbon nanotubes (CNTs as a filler to reinforce polymer matrix. The significant difficulty in dispersing CNTs suggested the controlled-growth of CNTs on surfaces where they are needed. Here we compare between two techniques for depositing the catalyst iron used toward growing CNTs on pitch-based carbon fiber surfaces. Electrochemical deposition of iron using pulse voltametry is compared to DC magnetron iron sputtering. Carbon nanostructures growth was performed using a thermal CVD system. Characterization for comparison between both techniques was compared via SEM, TEM, and Raman spectroscopy analysis. It is shown that while both techniques were successful to grow CNTs on the carbon fiber surfaces, iron sputtering technique was capable of producing more uniform distribution of iron catalyst and thus multiwall carbon nanotubes (MWCNTs compared to MWCNTs grown using the electrochemical deposition of iron.

  8. Friction and wear of rare earths modified carbon fibers filled PTFE composite under dry sliding condition

    International Nuclear Information System (INIS)

    Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The friction and wear properties of polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers, sliding against GCr15 steel under dry sliding condition, were investigated on a block-on-ring M-2000 tribometer. Experimental results revealed that RE treatment largely reduced the friction and wear of CF reinforced PTFE (CF/PTFE) composites. The RE treated composite exhibited the lowest friction and wear under dry sliding. Scanning electron microscopy (SEM) investigation of worn surfaces and transfer films of CF/PTFE composites showed that RE treated CF/PTFE composites had the smoothest worn surface under given load and sliding speed, and a continuous and uniform transfer film formed on the counterface. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the oxygen concentration was obviously increased after RE treatment, and more carboxyl groups were introduced onto CF surfaces after RE treatment. The increase in the amount of oxygen-containing groups increased the interfacial adhesion between CF and PTFE matrix, and accordingly increased the tribological properties of the composite

  9. The effect of bromination of carbon fibers on the coefficient of thermal expansion of graphite fiber-epoxy composites

    Science.gov (United States)

    Jaworske, D. A.; Maciag, C.

    1987-01-01

    To examine the effect of bromination of carbon fibers on the coefficient of thermal expansion (CTE) of carbon fiber epoxy composites, several pristine and brominated carbon fiber-epoxy composite samples were subjected to thermomechanical analysis. The CTE's of these samples were measured in the uniaxial and transverse directions. The CTE was dominated by the fibers in the uniaxial direction, while it was dominated by the matrix in the transverse directions. Bromination had no effect on the CTE of any of the composites. In addition, the CTE of fiber tow was measured in the absence of a polymer matrix, using an extension probe. The results from this technique were inconclusive.

  10. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    OpenAIRE

    Cantrell, John H.

    2015-01-01

    The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions τ to the ILSS and magnitudes KN of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites,...

  11. Influence of the polymeric coating thickness on the electrochemical performance of Carbon Fiber/PAni composites

    Directory of Open Access Journals (Sweden)

    Carla Polo Fonseca

    2015-10-01

    Full Text Available Abstract Carbon fiber/polyaniline composites (CF/PAni were synthesized at three different deposition time of 30, 60 and 90 min by oxidative polymerization. The composite materials were morphologically and physically characterized by scanning electron microscopy and by Raman spectroscopy, respectively. Their electrochemical responses were analyzed by cyclic voltammetry, by galvanostatic test, and by electrochemical impedance spectroscopy. The influence of the PAni layer thickness deposited on carbon fibers for the composite formation as well as for their electrochemical properties was discussed. The CF/PAni-30 showed a nanometric thickness with more homogeneous morphology compared to those formed in deposition times of 60 and 90 min. It also showed, from the electrochemical impedance spectroscopy measurements, the lowest charge transfer resistance value associated to the its highest value for the double-layer capacitance of 180 Fg-1 making it a very strong candidate as a supercapacitor electrode.

  12. Effect of properties of carbon fiber surface modified by anodic treatment and a coupling agent on electron beam cured epoxy composites

    International Nuclear Information System (INIS)

    A double modification method of carbon fiber surface physical and chemical properties was presented by which the carbon fibers were electrochemically oxidized and subsequently coated with an electron beam compatible coupling agent. The treated and untreated carbon fiber surface chemical properties and morphology were analyzed using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). And the carbon fiber surface energy was calculated through Kaelble method using contract angle measurement. The results show that the roughness and reactive groups of carbon fiber surface increase after anodic oxidization, moreover, polar composition of surface energy increase obviously. During EB curing the nitrogen-containing groups and basic species chemisorbed by carbon fiber surface restrain the initiators in the interface of composites, resulting in the weaker adhesion between the carbon fiber and the matrix. The coupling agent, acting as chemical bridge between the carbon fibers and the matrix, improves the interfacial properties of EB cured composites

  13. Effect of rare earths surface treatment on tribological properties of carbon fibers reinforced PTFE composite under oil-lubricated condition

    Institute of Scientific and Technical Information of China (English)

    SHANGGUAN Qianqian; CHENG Xianhua

    2008-01-01

    The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers;carbon fibers were strongly bonded with PTFE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.

  14. Development and Characterization of Healable Carbon Fiber Composites with a Reversibly Cross Linked Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzo, Fabrizia; Smith, David R.; Starr, Tatiana N.; Perram, Timothy; Starr, Anthony F.; Darlington, Thomas K.; Baldwin, Richard K.; Oldenburg, Steven J. (Nanocomposix); (SensorMetrix); (Duke)

    2010-10-18

    Carbon fiber reinforced polymer (CFRP) laminates with remendable cross-linked polymeric matrices were fabricated using a modified resin transfer mold (RTM) technique. The healable composite resin, bis-maleimide tetrafuran (2MEP4F), was synthesized by mixing two monomers, furan (4F) and maleimide (2MEP), at elevated temperatures. The fast kinetic rate of the reaction of polymer constituents requires a fast injection of the healable resin into the carbon fiber preform. The polymer viscosity as a function of time and temperature was experimentally quantified in order to optimize the fabrication of the composite material and to guarantee a uniform flow of the resin through the reinforcement. The method was validated by characterizing the thermo-mechanical properties of the polymerized 2MEP4F. Additionally, the thermo-mechanical properties of the remendable CFRP material were studied.

  15. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    OpenAIRE

    Petersen, Richard C.

    2014-01-01

    The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide ...

  16. Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes

    OpenAIRE

    Lonjon, Antoine; Demont, Philippe; Dantras, Eric; Lacabanne, Colette

    2012-01-01

    An increase and homogenization of electrical conductivity is essential in epoxy carbon fiber laminar aeronautical composites. Dynamic conductivity measurements have shown a very poor transversal conductivity. Double wall carbon nanotubes have been introduced into the epoxy matrix to increase the electrical conductivity. The conductivity and the degree of dispersion of carbon nanotubes in epoxy matrix were evaluated. The epoxy matrix was filled with 0.4 wt.% of CNTs to establish the percolatio...

  17. Three-Phase Carbon Fiber Amine Functionalized Carbon Nanotubes Epoxy Composite: Processing, Characterisation, and Multiscale Modeling

    OpenAIRE

    Kamal Sharma; Mukul Shukla

    2014-01-01

    The present paper discusses the key issues of carbon nanotube (CNT) dispersion and effect of functionalisation on the mechanical properties of multiscale carbon epoxy composites. In this study, CNTs were added in epoxy matrix and further reinforced with carbon fibres. Predetermined amounts of optimally amine functionalised CNTs were dispersed in epoxy matrix, and unidirectional carbon fiber laminates were produced. The effect of the presence of CNTs (1.0 wt%) in the resin was reflected by pro...

  18. Mechanical Properties of Low-Density SiC-Coated Carbon-Bonded Carbon Fiber Composites

    Czech Academy of Sciences Publication Activity Database

    Ahmed, A. S.; Chlup, Zdeněk; Dlouhý, Ivo; Rawlings, R. D.; Boccaccini, A. R.

    2012-01-01

    Roč. 9, č. 2 (2012), s. 401-412. ISSN 1546-542X R&D Projects: GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : SiC coating * Carbon bonded * Carbon Fiber Composites * Fracture Toughness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.153, year: 2012

  19. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    Science.gov (United States)

    Barjasteh, Ehsan

    anhydride/epoxy network used in composite-reinforced conductor cables was investigated to determine the extent of thermal oxidative (surface effect) and non-oxidative (bulk effect) degradation. Thermal oxidation tests were performed in air-circulating and vacuum ovens at 180°C and 200ºC (the maximum emergency temperature for ACCC conductors). The extent of oxidation during aging was determined by monitoring the thickness of the oxidized layer. Results showed that the oxidized layer thickness did not increase monotonically as a function of exposure time, and even decreased for a limited period of time. A phenomenological reaction-diffusion model was implemented to predict the thickness of oxidized layer, and the calculated results were compared with measurements for aging times up to 10,000 hours. The accuracy of the reaction-diffusion-based thickness values for the isothermally aged epoxy specimen was affected by the permeability properties of the oxidized material, and to a lesser extent by the degree of oxidation. The diffusivity varied because of changes in the density of the oxidized layer, the macro-void content, crack formation, and the molecular structures. To investigate the effects on diffusivity, the morphology of the oxidized layer and the void content was monitored over time. In addition, the density of the oxidized specimens was calculated by direct measurements of volume and weight during exposure. An empirically based volume-loss model was developed to predict the changes in volume of the specimen as a function of aging times and hence to predict the effects on the oxidized layer thickness. Volume-loss measurements provide an indication of material degradation by demonstrating a direct measurement of shrinkage rates and insight into crack initiation, as opposed to typical weight-loss measurements that provide no insight into material failure. Thermal oxidation of a unidirectional carbon-fiber/glass-fiber hybrid composite was also investigated in this study

  20. A novel surface modification of carbon fiber for high-performance thermoplastic polyurethane composites

    Science.gov (United States)

    Zhang, Yuanyuan; Zhang, Yizhen; Liu, Yuan; Wang, Xinling; Yang, Bin

    2016-09-01

    Properties of carbon fiber (CF) reinforced composites depend largely on the interfacial bonding strength between fiber and the matrix. In the present work, CF was grafted by 4,4‧-diphenylmethane diisocyanate (MDI) molecules after electrochemical oxidation treatment. The existence of functional groups introduced to the fiber surface and the changes of surface roughness were confirmed by FTIR, AFM, XPS, SEM and Raman spectroscopy. To evaluate the possible applications of this surface modification of carbon fiber, we examined the mechanical properties as well as the friction and wear performance of pristine CF and MDI-CF reinforced thermoplastic polyurethane (TPU) composites with 5-30 wt.% fiber contents, and found that the mechanical properties of TPU composites were all significantly improved. It is remarkable that when fiber content was 30 wt.%, the tensile strength of TPU/MDI-CF was increased by 99.3%, which was greater than TPU/CF (53.2%), and the friction loss of TPU/MDI-CF was decreased by 49.09%. The results of DMA and SEM analysis indicated the positive effects of MDI modification on the interfacial bonding between fibers and matrix. We believed that this simple and effective method could be used to the development of surface modified carbon fiber for high-performance TPU.

  1. Hybrid carbon fiber/carbon nanotube composites for structural damping applications

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) were grown on the surface of carbon fibers utilizing a relatively low temperature synthesis technique; graphitic structures by design (GSD). To probe the effects of the synthesis protocols on the mechanical properties, other samples with surface grown CNTs were prepared using catalytic chemical vapor deposition (CCVD). The woven graphite fabrics were thermally shielded with a thin film of SiO2 and CNTs were grown on top of this film. Raman spectroscopy and electron microscopy revealed the grown species to be multi-walled carbon nanotubes (MWCNTs). The damping performance of the hybrid CNT–carbon fiber-reinforced epoxy composite was examined using dynamic mechanical analysis (DMA). Mechanical testing confirmed that the degradations in the strength and stiffness as a result of the GSD process are far less than those encountered through using the CCVD technique and yet are negligible compared to the reference samples. The DMA results indicated that, despite the minimal degradation in the storage modulus, the loss tangent (damping) for the hybrid composites utilizing GSD-grown MWCNTs improved by 56% compared to the reference samples (based on raw carbon fibers with no surface treatment or surface grown carbon nanotubes) over the frequency range 1–60 Hz. These results indicated that the energy dissipation in the GSD-grown MWCNTs composite can be primarily attributed to the frictional sliding at the nanotube/epoxy interface and to a lesser extent to the stiff thermal shielding SiO2 film on the fiber/matrix interface. (paper)

  2. Formation of carbon fiber-reinforced ceramic matrix composites with polysiloxane/silicon derived matrix

    International Nuclear Information System (INIS)

    A ceramic matrix for carbon fiber-reinforced ceramic matrix composites (CMCs) has been developed from poly(methylsilsesquioxane)/silicon mixtures, using a low-cost process. In this process the space in two-dimensional carbon fiber preform was filled with a slurry composed by Si powder dispersed into poly(methylsilsesquioxane)/trietoxysilane solutions. Three different volume ratio of Si:polymer were used to stack eight-harness plain weave of carbon fiber, forming laminates composites, which were pressed and cured up to 200 deg. C. The compact bodies were first pre-pyrolyzed at 1000 deg. C and then pyrolyzed at 1450 deg. C/2 h and 1500 deg. C/1 h. On pyrolysis, the polymer-filler mixture was converted to a multiphase ceramic matrix through reactions between Si, gaseous and solids products from the polymer degradation and the N2 atmosphere. Pyrolysis led to conversion of the initial matrix into silicon oxide (SiO2), silicon carbide (SiC) and silicon oxinitride (Si2ON2), though after pyrolysis at 1450 deg. C metallic silicon was still detected. With one cycle of infiltration the composite characteristics were followed by bulk density and open porosity measurements, X-ray diffraction, microscopy and mechanical testing

  3. Hybrid carbon fiber/carbon nanotube composites for structural damping applications

    Science.gov (United States)

    Tehrani, M.; Safdari, M.; Boroujeni, A. Y.; Razavi, Z.; Case, S. W.; Dahmen, K.; Garmestani, H.; Al-Haik, M. S.

    2013-04-01

    Carbon nanotubes (CNTs) were grown on the surface of carbon fibers utilizing a relatively low temperature synthesis technique; graphitic structures by design (GSD). To probe the effects of the synthesis protocols on the mechanical properties, other samples with surface grown CNTs were prepared using catalytic chemical vapor deposition (CCVD). The woven graphite fabrics were thermally shielded with a thin film of SiO2 and CNTs were grown on top of this film. Raman spectroscopy and electron microscopy revealed the grown species to be multi-walled carbon nanotubes (MWCNTs). The damping performance of the hybrid CNT-carbon fiber-reinforced epoxy composite was examined using dynamic mechanical analysis (DMA). Mechanical testing confirmed that the degradations in the strength and stiffness as a result of the GSD process are far less than those encountered through using the CCVD technique and yet are negligible compared to the reference samples. The DMA results indicated that, despite the minimal degradation in the storage modulus, the loss tangent (damping) for the hybrid composites utilizing GSD-grown MWCNTs improved by 56% compared to the reference samples (based on raw carbon fibers with no surface treatment or surface grown carbon nanotubes) over the frequency range 1-60 Hz. These results indicated that the energy dissipation in the GSD-grown MWCNTs composite can be primarily attributed to the frictional sliding at the nanotube/epoxy interface and to a lesser extent to the stiff thermal shielding SiO2 film on the fiber/matrix interface.

  4. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    Science.gov (United States)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  5. Reciprocating sliding wear characteristics of copper-carbon fiber composites

    Science.gov (United States)

    Kuniya, Keiichi; Arakawa, Hideo; Namekawa, Takashi

    1988-01-01

    The effect of fiber orientation and alloy composition on the reciprocating sliding wear behavior of Cu-C fiber composite was studied. The wear volume was smaller than that of Cu alloys. The wear volume increased with increasing sliding load and volume fraction of C fibers above 30 volume percent. The effectiveness of fiber orientation in decreasing the wear volume was the highest for random orientation, medium in the direction perpendicular to the fiber direction, and lowest in the fiber direction. The wear volume was decreased by the addition of Sn and Zr. However, the additions did not achieve isotropic wear characteristics of the composite. Isotropic wear was obtained by the addition of C powder. Isotropic and decreased composite wear were attained by adding Zr and C powder together.

  6. A novel carbon fiber based porous carbon monolith

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-06-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described. A novel adsorbent carbon composite material has been developed comprising carbon fibers and a binder. The material, called carbon fiber composite molecular sieve (CFCMS), was developed through a joint research program between Oak Ridge National Laboratory (ORNL) and the University of Kentucky, Center for Applied Energy Research (UKCAER).

  7. Formation of interfacial network structure via photo-crosslinking in carbon fiber/epoxy composites

    Directory of Open Access Journals (Sweden)

    S. H. Deng

    2014-07-01

    Full Text Available A series of diblock copolymers (poly(n-butylacrylate-co-poly(2-hydroxyethyl acrylate-b-poly(glycidyl methacrylate ((PnBA-co-PHEA-b-PGMA, containing a random copolymer block PnBA-co-PHEA, were successfully synthesized by atom transfer radical polymerization (ATRP. After being chemically grafted onto carbon fibers, the photosensitive methacrylic groups were introduced into the random copolymer, giving a series of copolymers (poly(n-butylacrylate-co-poly(2-methacryloyloxyethyl acrylate-b-poly(glycidyl methacrylate((PnBA-co-PMEA-b-PGMA. Dynamic mechanical analysis indicated that the random copolymer block after ultraviolet (UV irradiation was a lightly crosslinked polymer and acted as an elastomer, forming a photo-crosslinked network structure at the interface of carbon fiber/epoxy composites. Microbond test showed that such an interfacial network structure greatly improved the cohesive strength and effectively controlled the deformation ability of the flexible interlayer. Furthermore, three kinds of interfacial network structures, i physical crosslinking by H-bonds, ii chemical crosslinking by photopolymerization, and iii interpenetrating crosslinked network by photopolymerization and epoxy curing reaction were received in carbon fiber/epoxy composite, depending on the various preparation processes.

  8. Piezoresistivity of Carbon Fiber Graphite Cement-based Composites with CCCW

    Institute of Scientific and Technical Information of China (English)

    FAN Xiaoming; FANG Dong; SUN Mingqing; LI Zhuoqiu

    2011-01-01

    The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(l% by the weight of cement), graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials, 4% by the weight of cement) were studied. The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena. The percolation threshold was about 20%. A clear piezoresistive effect was observed in CFGCC with 1 wt% of carbon fibers, 20wt% or 30wt% of graphite powders under uniaxial compressive tests, indicating that this type of smart composites was a promising candidate for strain sensing. The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22, respectively. With the addition of CCCW, the mechanical properties of CFGCC were improved, which benefited CFGCC piezoresistivity of stability.

  9. Poly(borosiloxanes as precursors for carbon fiber ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Renato Luiz Siqueira

    2007-06-01

    Full Text Available Ceramic matrix composites (CMCs, constituted of a silicon boron oxycarbide (SiBCO matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS or poly(borosiloxane (PBS matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence of Si-O-B bonds at 880 cm-1, due to the incorporation of the crosslinker trigonal units of BO3 in the polymeric network. X ray diffraction analyses exhibited an amorphous character of the resulting polymer-derived ceramics obtained by pyrolysis up to 1000 °C under inert atmosphere. The C/SiBCO composites showed better thermal stability than the C/SiOC materials. In addition, good adhesion between the carbon fiber and the ceramic phase was observed by SEM microscopy

  10. Boron-doped MnO{sub 2}/carbon fiber composite electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hong Zhong, E-mail: hzchi@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhu, Hongjie [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Gao, Linhui [Center of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Interstitial ion in MnO{sub 2} lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO{sub 2}/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO{sub 2}/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO{sub 2} crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO{sub 2} lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO{sub 2} still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn{sup 2+} and the absence of active site on the outer surface.

  11. Boron-doped MnO2/carbon fiber composite electrode for supercapacitor

    International Nuclear Information System (INIS)

    Highlights: • Interstitial ion in MnO2 lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO2/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO2/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO2 crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO2 lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO2 still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn2+ and the absence of active site on the outer surface

  12. Method of induction curing conductive carbon fiber composites with radio frequency energy

    International Nuclear Information System (INIS)

    Full text: In recent years, microwave and radio frequency dielectric heating have been investigated as techniques for accelerating the cure cycle of fiberglass/epoxy composites. By this method, select composite parts can be cured by dielectric coupling to the epoxy matrix, where the glass reinforcement is mostly transparent to the electromagnetic energy. But the relatively high conductivity of carbon fiber in carbon fiber/epoxy composite systems precludes the use of traditional dielectric heating as a cure mechanism. This paper describes techniques and process we have developed to inductively couple to the conductive carbon fiber and induce curing of the epoxy. Induction heating is used almost exclusively to heat metals. During induction heating, the transfer of energy takes place between a high frequency current carrying conductor, which sets up a magnetic flux inducing currents to flow in the conductive part. The magnetic flux imparted by the heating coil penetrates the material. Depending on the properties of the heated material, various mechanisms are responsible for heat generation based upon the wave-material interaction including eddy currents, and in ferrous metals hysteresis losses. As in all RF heating applications, there is an ultimate relationship between applicator and material. With induction processes, the heating coil can be actually be modeled as the primary side of a transformer, and the work piece as the secondary side of a transformer. An important design relationship involves the resistivity of the material, permeability μ and the frequency 'f' of the applied energy that gives a reference depth (skin depth) 'd' for the penetration of the field. Since the carbon fiber material has no magnetic component, relatively low densities and significantly different structure compared to metals, the wave/material interaction deviates from the wave/material interaction observed in metals. Losses occur principally due to induced eddy currents, but the

  13. Preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites

    International Nuclear Information System (INIS)

    Graphical abstract: We report preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites. Thermally composites showed enhanced thermal conductivity increasing from up to 59% by the thermal network. - Highlights: • A new method of Si−N coating on carbon fibers was reported. • Silane layer were successfully converted to Si−N layer on carbon fiber surface. • Si−N formation was confirmed by FT-IR, XPS, and EDX. • Thermal conductivity of Si−N coated CF composites were enhanced to 0.59 W/mK. - Abstract: This study investigates the effect of silicon nitride (Si−N)-coated carbon fibers on the thermal conductivity of carbon-fiber-reinforced epoxy composite. The surface properties of the Si−N-coated carbon fibers (SiNCFs) were observe using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the thermal stability was analyzed using thermogravimetric analysis. SiNCFs were fabricated through the wet thermal treatment of carbon fibers (Step 1: silane finishing of the carbon fibers; Step 2: high-temperature thermal treatment in a N2/NH3 environment). As a result, the Si−N belt was exhibited by SEM. The average thickness of the belt were 450–500 nm. The composition of Si−N was the mixture of Si−N, Si−O, and C−Si−N as confirmed by XPS. Thermal residue of the SiNCFs in air was enhanced from 3% to 50%. Thermal conductivity of the composites increased from 0.35 to 0.59 W/mK after Si−N coating on carbon surfaces

  14. Preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon-Hye [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Han, Woong [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Lee, Hae-seong [Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Min, Byung-Gak [Department of Polymer Science & Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of); Kim, Byung-Joo, E-mail: ap2-kbj@hanmail.net [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of)

    2015-10-15

    Graphical abstract: We report preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites. Thermally composites showed enhanced thermal conductivity increasing from up to 59% by the thermal network. - Highlights: • A new method of Si−N coating on carbon fibers was reported. • Silane layer were successfully converted to Si−N layer on carbon fiber surface. • Si−N formation was confirmed by FT-IR, XPS, and EDX. • Thermal conductivity of Si−N coated CF composites were enhanced to 0.59 W/mK. - Abstract: This study investigates the effect of silicon nitride (Si−N)-coated carbon fibers on the thermal conductivity of carbon-fiber-reinforced epoxy composite. The surface properties of the Si−N-coated carbon fibers (SiNCFs) were observe using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the thermal stability was analyzed using thermogravimetric analysis. SiNCFs were fabricated through the wet thermal treatment of carbon fibers (Step 1: silane finishing of the carbon fibers; Step 2: high-temperature thermal treatment in a N{sub 2}/NH{sub 3} environment). As a result, the Si−N belt was exhibited by SEM. The average thickness of the belt were 450–500 nm. The composition of Si−N was the mixture of Si−N, Si−O, and C−Si−N as confirmed by XPS. Thermal residue of the SiNCFs in air was enhanced from 3% to 50%. Thermal conductivity of the composites increased from 0.35 to 0.59 W/mK after Si−N coating on carbon surfaces.

  15. The research and development of damage tolerant carbon fiber composites

    Science.gov (United States)

    Miranda, John Armando

    This record of study takes a first hand look at corporate research and development efforts to improve the damage tolerance of two unique composite materials used in high performance aerospace applications. The professional internship with The Dow Chemical Company---Dow/United Technologies joint venture describes the intern's involvement in developing patentable process technologies for interleave toughening of high temperature resins and their composites. The subsequent internship with Hexcel Corporation describes the intern's involvement in developing the damage tolerance of novel and existing honeycomb sandwich structure technologies. Through the Doctor of Engineering professional internship experience this student exercised fundamental academic understanding and methods toward accomplishing the corporate objectives of the internship sponsors in a resource efficient and cost-effective manner. Also, the student gained tremendous autonomy through exceptional training in working in focused team environments with highly trained engineers and scientists in achieving important corporate objectives.

  16. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  17. Electrical resistance stability of high content carbon fiber reinforced cement composite

    Institute of Scientific and Technical Information of China (English)

    YANG Zai-fu; TANG Zu-quan; LI Zhuo-qiu; QIAN Jue-shi

    2005-01-01

    The influences of curing time, the content of free evaporable water in cement paste, environmental temperature, and alternative heating and cooling on the electrical resistance of high content carbon fiber reinforced cement (CFRC) paste are studied by experiments with specimens of Portland cement 42.5 with 10 mm PAN-based carbon fiber and methylcellulose. Experimental results indicate that the electrical resistance of CFRC increases relatively by 24% within a hydration time of 90 d and almost keeps constant after 14 d, changes hardly with the mass loss of free evaporable water in the concrete dried at 50℃C, increases relatively by 4% when ambient temperature decreases from 15℃ to-20℃, and decreases relatively by 13% with temperature increasing by 88℃. It is suggested that the electric resistance of the CFRC is stable, which is testified by the stable power output obtained by electrifying the CFRC slab with a given voltage. This implies that such kind of high content carbon fiber reinforced cement composite is potentially a desirable electrothermal material for airfield runways and road surfaces deicing.

  18. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.

    2002-04-17

    This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

  19. Properties of Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Matrix Composites

    Science.gov (United States)

    Cano, Roberto J.; Kang, Jin Ho; Grimsley, Brian W.; Ratcliffe, James G.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strength- and stiffness-to-weight ratios, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Carbon nanotubes (CNT) offer the potential to enhance the multi-functionality of composites with improved thermal and electrical conductivity. In this study, hybrid CNT/carbon fiber (CF) polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing. Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated.

  20. High thermal conductivity phase change composite with percolating carbon fiber network

    International Nuclear Information System (INIS)

    Highlights: • A phase change composite with a percolating network of carbon fiber was developed. • The composites were prepared by the melt-dispersion and hot-press methods. • The composites prepared by the hot-press had a percolating network of carbon fiber just using 20 vol% of it. • The composites with the percolating network had high thermal conductivity. • The phase change material particles with high packing ratio accelerated percolation. - Abstract: Latent heat storage (LHS) using phase change materials (PCM) is a promising technology for the effective use of solar and industrial exhaust heat. However, the heat transfer rate of an LHS system is severely limited by the low thermal conductivity of the PCM. Therefore, this paper describes the development of a high thermal conductivity phase change composite (PCC) with a percolating network of a high thermal conductivity filler. The relationship between the effective thermal conductivity of the PCC and the network structure of the filler was investigated. The PCC were prepared by the conventional melt-dispersion (MD) method and a novel hot-press (HP) method. Erythritol (melting point: 118 °C, thermal conductivity: 0.73 W m−1 K−1) was used as the PCM, and carbon fiber (thermal conductivity: 900 W m−1 K−1 in the fiber direction) was used as the high thermal conductivity filler. The effective thermal conductivity of the PCC was measured by the laser flash method and the network structures were observed by energy dispersive spectroscopy using a scanning electron microscope. As a result, we observed that the percolating filler network in the PCC could be easily formed by the HP method, presenting a higher thermal conductivity with less filler additive than the PCC fabricated by the MD method. Additionally, we found that PCM raw materials with a high packing ratio accelerated the formation of the percolating filler network

  1. Evaluation of Tribological Performance of PTFE Composite Filled with Rare Earths Treated Carbon Fibers under Water-Lubricated Condition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites filled with carbon fibers treated with different treatment methods. Tribological properties of the PTFE composites, sliding against GCrl5 steel under water-lubricated condition, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the composites were examined using scanning electron microscopy. Experimental results reveal that RE treatment is superior to air oxidation in promoting tribological properties of CF reinforced PTFE (CF/PTFE) composite. The friction and wear properties of PTFE composite filled with RE treated CF are the best of the PTFE composites. RE treatment is more effective than air oxidation to improve the tribological properties of CF/PTFE composite owing to the effective improvement of interfacial adhesion between carbon fibers and PTFE matrix.

  2. Fabrication and Resistivity of IBr Intercalated Vapor-Grown Carbon Fiber Composites

    Science.gov (United States)

    Gaier, James R.; Smith, Jaclyn M.; Gahl, Gregory K.; Stevens, Eric C.; Gaier, Elizabeth M.

    1998-01-01

    Composites using vapor-crown carbon fibers (VGCF), the most conductive of the carbon fiber types, are attractive for applications where low density, high strength, and at least moderate conductivity are required, such as electromagnetic interference shielding covers for spacecraft. The conductivity can be enhanced another order of magnitude by intercalation of the VGCF. If a high Z intercalate is used, the protection of components from ionizing radiation can be enhanced also. Thus, the intercalation of VGCF with IBr is reported. Since composite testing is required to verify properties, the intercalation reaction optimization, stability of the intercalation compound, scale-up of the intercalation reaction, composite fabrication, and resistivity of the resulting composites is also reported. The optimum conditions for low resistivity and uniformity for the scaled up reaction (20-30 g of product) were 114 C for at least 72 hr, yielding a fiber with a resistivity of 8.7+/-2 micro-Omega-cm. The thermal stability of these fibers was poor, with degradation occurring at temperatures as low as 40 C in air, though they were insensitive to water vapor. Composite resistivity was 20-30 micro-Omega-cm, as measured by contactless conductivity measurements, about a factor of five higher than would be expected from a simple rule of mixtures. The addition of 1.0 percent Br2, intercalated microfibers increased the resistivity of the composites by more than 20 percent.

  3. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: Preparation and characterizations

    International Nuclear Information System (INIS)

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields. - Highlights: • ACF with strong adsorption capacity and porous structure for enhanced surface area • The incorporation of ACF promoting the porosity of composite scaffolds • The composite scaffolds having no side effect on cell adhesion and proliferation • The composite scaffolds presenting good biocompatibility in vivo

  4. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: Preparation and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanni [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Han, Hao [College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Bayer Material Science China Co., Ltd, Shanghai 200120 (China); Quan, Haiyu; Zang, Yongju; Wang, Ning; Ren, Guizhi [College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Xing, Melcolm [Department of Mechanical Engineering, Faculty of Engineering and Department of Biochemistry and Genetics, Faculty of Medicine P.I., Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba (Canada); Wu, Qilin, E-mail: wql@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2014-10-01

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields. - Highlights: • ACF with strong adsorption capacity and porous structure for enhanced surface area • The incorporation of ACF promoting the porosity of composite scaffolds • The composite scaffolds having no side effect on cell adhesion and proliferation • The composite scaffolds presenting good biocompatibility in vivo.

  5. Environmental effects on the hybrid glass fiber/carbon fiber composites

    Science.gov (United States)

    Tsai, Yun-I.

    2009-12-01

    Fiber reinforced polymer composites (FRPCs) have been widely used to replace conventional metals due to the high specific strength, fatigue resistance, and light weight. In the power distribution industry, an advanced composites rod has been developed to replace conventional steel cable as the load-bearing core of overhead conductors. Such conductors, called aluminum conductor composite core (ACCC) significantly increases the transmitting efficiency of existing power grid system without extensive rebuilding expenses, while meeting future demand for electricity. In general, the service life of such overhead conductors is required to be at least 30 years. Therefore, the long-term endurance of the composite core in various environments must be well-understood. Accelerated aging by hygrothermal exposure was conducted to determine the effect of moisture on the glass fiber (GF)/carbon fiber (CF) hybrid composites. The influence of water immersion and humid air exposure on mechanical properties is investigated. Results indicated that immersion in water is the most severe environment for such hybrid GF/CF composites, and results in greater saturation and degradation of properties. When immersed directly in water, the hybrid GF/CF composites exhibit a moisture uptake behavior that is more complex than composite materials reinforced with only one type of fiber. The unusual diffusion behavior is attributed to a higher packing density of fibers at the annular GF/CF interface, which acts as a temporary moisture barrier. Moisture uptake leads to the mechanical and thermal degradation of such hybrid GF/CF composites. Findings presented here indicate that the degradation is a function of exposure temperature, time, and moisture uptake level. Results also indicate that such hybrid GF/CF composites recover short beam shear (SBS) strength and glass transition temperature (Tg) values comparable to pre-aged samples after removal of the absorbed moisture. In the hygrothermal environment

  6. Effect of epoxy resin properties on the mechanical properties of carbon fiber/epoxy resin composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Hong-Wei; Gao, Feng [Taiyuan Univ. of Technology (China). College of Materials Science and Engineering; Taiyuan Univ. of Technology (China). Key Laboratory of Interface Science and Engineering in Advanced Materials; Li, Kai-Xi [Chinese Academy of Sciences, Taiyuan, Shanxi (China). Key Laboratory of Carbon Materials

    2013-09-15

    Three kinds of epoxy resins, i.e. tetraglycidyl diaminodiphenyl methane (AG80), difunctional diglycidyl ether of bisphenol-A (E51) and novolac type epoxy resin (F46) were selected as matrices for carbon fiber/epoxy composites. The objective of this work is to study the mechanical properties of fiber/epoxy composites by using these three kinds of epoxy resins with different physical and chemical performance. The results show that the composites fabricated with AG80 present the best stiffness and the composites prepared with E5 1have the best toughness. The stiffness and toughness of the composites prepared with F46 are middle values located between those for AG80/epoxy and E51/epoxy composites. Thus, the mixed epoxy resin is a promising approach for industrial production. (orig.)

  7. In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites

    International Nuclear Information System (INIS)

    The crack initiation and propagation of short carbon fiber reinforced geopolymer matrix composites (Cf/geopolymer composites) during bending test were observed in situ by environmental scanning electron microscope (ESEM). Lots of micro cracks initiate, and then propagate on the side of the beam sample with the increase of the bending load. A nearly elastic response of load-displacement curve and significant deformation of the composites are observed at the initial stages. The propagation of the micro cracks ceases, and these cracks tend to close to some extent while the main crack forms. The fiber bridging effect in the micro and main cracks effectively keeps the composites integrity and makes the composites exhibit a non-catastrophic fracture behavior. A simple mode for the damage behavior of the composites during the bending test is discussed.

  8. Mechanical properties of carbon fiber/cellulose composite papers modified by hot-melting fibers

    Institute of Scientific and Technical Information of China (English)

    Yunzhou Shi; Biao Wang

    2014-01-01

    Carbon fiber (CF)/cellulose (CLS) composite papers were prepared by papermaking techniques and hot-melting fibers were used for modi-fication. The mechanical properties of the obtained composite papers with different CF, CLS and hot-melting fiber ratios were studied and further discussed. It is observed that, for both CF/CLS composite papers and those modified by hot-melting fibers, the normal stress firstly increases and then declines with the addition of carbon fibers. The results also show that with the addition of hot-melting fibers, the modified papers exhibit enhanced mechanical performance compared to CF/CLS composite papers. Through SEM characterization, it is confirmed that the improvement of mechanical properties attributes to the reinforcement of adhesive binding at the fiber overlap nodes. Also, through four-probe method, the resistivity and the electrical performance of the modified and unmodified papers were characterized and the result shows that the hot-melting fiber modification brings no harm to the electrical properties.

  9. Application of carbon fiber composite materials for the collision sections of particle accelerators

    International Nuclear Information System (INIS)

    Components made of carbon fiber composite material (CFCM) with Epoxy or BMI matrix were designed for various applications such as vacuum tubes, vertex chambers or support structures. The outstanding properties of CFCM which in many aspects are superior to metal structures especially qualify CFCM components for use in the collision sections of particle accelerators. A total of some 50 m of CFCM beam-tubes and of around 20 different CFCM structures and support elements of various configurations were produced following the specific needs and requirements of high energy particle physics at CERN, DESY and several other research institutes

  10. Finite element analysis of drilling in carbon fiber reinforced polymer composites

    International Nuclear Information System (INIS)

    Carbon fiber reinforced polymer composite (CFRP) laminates are attractive for many applications in the aerospace industry especially as aircraft structural components due to their superior properties. Usually drilling is an important final machining process for components made of composite laminates. In drilling of CFRP, it is an imperative task to determine the maximum critical thrust forces that trigger inter-laminar and intra-laminar damage modes owing to highly anisotropic fibrous media; and negotiate integrity of composite structures. In this paper, a 3D finite element (FE) model of drilling in CFRP composite laminate is developed, which accurately takes into account the dynamic characteristics involved in the process along with the accurate geometrical considerations. A user defined material model is developed to account for accurate though thickness response of composite laminates. The average critical thrust forces and torques obtained using FE analysis, for a set of machining parameters are found to be in good agreement with the experimental results from literature.

  11. Finite element analysis of drilling in carbon fiber reinforced polymer composites

    Science.gov (United States)

    Phadnis, V. A.; Roy, A.; Silberschmidt, V. V.

    2012-08-01

    Carbon fiber reinforced polymer composite (CFRP) laminates are attractive for many applications in the aerospace industry especially as aircraft structural components due to their superior properties. Usually drilling is an important final machining process for components made of composite laminates. In drilling of CFRP, it is an imperative task to determine the maximum critical thrust forces that trigger inter-laminar and intra-laminar damage modes owing to highly anisotropic fibrous media; and negotiate integrity of composite structures. In this paper, a 3D finite element (FE) model of drilling in CFRP composite laminate is developed, which accurately takes into account the dynamic characteristics involved in the process along with the accurate geometrical considerations. A user defined material model is developed to account for accurate though thickness response of composite laminates. The average critical thrust forces and torques obtained using FE analysis, for a set of machining parameters are found to be in good agreement with the experimental results from literature.

  12. A Modeling Technique and Representation of Failure in the Analysis of Triaxial Braided Carbon Fiber Composites

    Science.gov (United States)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Quasi-static tests have been performed on triaxially braided carbon fiber composite materials with large unit cell sizes. The effects of different fibers and matrix materials on the failure mode were investigated. Simulations of the tests have been performed using the transient dynamic finite element code, LS-DYNA. However, the wide range of failure modes observed for the triaxial braided carbon fiber composites during tests could not be simulated using composite material models currently available within LS-DYNA. A macroscopic approach has been developed that provides better simulation of the material response in these materials. This approach uses full-field optical measurement techniques to measure local failures during quasi-static testing. Information from these experiments is then used along with the current material models available in LS-DYNA to simulate the influence of the braided architecture on the failure process. This method uses two-dimensional shell elements with integration points through the thickness of the elements to represent the different layers of braid along with a new analytical method for the import of material stiffness and failure data directly. The present method is being used to examine the effect of material properties on the failure process. The experimental approaches used to obtain the required data will be described, and preliminary results of the numerical analysis will be presented.

  13. Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites

    International Nuclear Information System (INIS)

    Highlights: ► Carbon fiber was introduced into the PA6/PPS blend. ► Strength, modulus and hardness of the PA6/PPS composites improved apparently. ► Friction coefficient was reduced with the addition of CF into PA6/PPS blend. ► Tribological behavior under different time, load and speed was investigated. ► Practical guidance can be provided for the application of the composites. -- Abstract: Polymer-based composite reinforced by fibrous filler has aroused wide concern in the field of tribology and material science. In this manuscript, the effect of carbon fiber (CF) as filler on the structure, mechanical and tribological properties of the polyamide6/polyphenylene sulfide (PA6/PPS) composites were investigated carefully in order to provide a practical guidance for the use of the polymer-based composites. It was found that the introducing of carbon fibers improved strength, modulus and hardness of the PA6/PPS blend apparently while breaking elongation rate and impact strength just decreased in a small degree. Average friction coefficient value of the carbon fiber-reinforced PA6/PPS composites (PA6/PPS-CF) was lower than PA6/PPS blend at the stable stage. As the content of carbon fiber increased, the wear rate of the PA6/PPS-CF composites trended to increase. Under the friction condition of high applied load or high sliding speed, the friction coefficient of the PA6/PPS-CF composites inclined to decrease while wear rate increased. When slided under a relatively high load of 20 N or high speed of 1500 r/min, the wear resistance of PA6/PPS-CF behaved was better as the content of carbon fiber increased. Scanning electron microscopy of worn surface morphology has revealed that the main wear mechanism of the PA6/PPS-CF composites were adhesive wear.

  14. Injection Molding of Polystyrene Matrix Composites Filled with Vapor Grown Carbon Fiber

    Science.gov (United States)

    Enomoto, Kazuki; Yasuhara, Toshiyuki; Ohtake, Naoto; Kato, Kazunori

    Vapor grown carbon fiber (VGCF) is a kind of carbon nanotube (CNT), which has outstanding properties such as high mechanical strength and high electrical conductivity. In this study, injection molding properties of polystyrene (PS) filled with VGCF and evaluation of mechanical and electrical properties are discussed in comparison with composites in which conventional carbon fillers were filled. As a result, volume resistivity of VGCF/PS composites dropped significantly between VGCF concentration of 3 and 4vol.%. Resistivity of the composites filled with VGCF was 1.2×102Ω·cm when VGCF concentration was 11.6vol.%. The resistivity was significantly lower than that of composites which were filled with conventional carbon fillers. The elastic modulus slightly increases with increasing VGCF concentration, whereas the tensile strength slightly decreases in the VGCF concentration in the range from 0 to 12vol.%.

  15. Thermal and electrical conductivities of carbon fibers and carbon nanotubes incorporated polyurethanes composites

    International Nuclear Information System (INIS)

    Single filler polyurethane composites with carbon fibers (CFs) and multi-walled carbon nanotubes (MWNTs) were prepared by melt mixing methods and its thermal as well as electrical resistivity characteristics were investigated. The influences of fillers and mixing methods on thermal and electrical conductivity of CF/- and MWNT/polyurethane composites were investigated and the result shows that the addition of carbon fillers improved the thermal conductivity of the polyurethane composites. Higher filler concentration results in better thermal conductivity because better formation of thermally conductive networks along polymer matrix to ensure the thermal was conducted through the matrix and the network along the polymer composites. The presence of carbon additives improves the electrical resistivity of the materials as well. The present study revealed the potential of carbon as agent for better thermal and electrical conductivities and their properties depend strongly on the dispersion and distribution of the fillers in the polymer matrix. (author)

  16. Thermo-physical Properties of Continuous Carbon Fiber Reinforced Copper Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    曹金华; 黄俊波; 陈先有

    2007-01-01

    Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction)of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE)and thermal conductivity.Thermo-physical properties have been measured in both, longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K)in longitudinal orientation and(14.98×10-6/K)in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K)in longitudinal orientation and(58.2 W/m·K)in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.

  17. Influence of Terahertz Waves on Unidirectional Carbon Fibers in CFRP Composite Materials

    Directory of Open Access Journals (Sweden)

    Kwang-Hee IM

    2014-12-01

    Full Text Available Terahertz time domain spectroscopy (THz TDS system based on the reflective and through-transmission modes was utilized. Influence of terahertz waves (T-ray on the fiber surface layups in the CFRP solid composites was studied. It was found that the value of electrical conductivity in the carbon fibers varies by the layup directions of carbon fibers based on E-field (Electrical field. T-ray optimized scanning data could be obtained at the 90° angle normal to the E-field direction. GFRP (Glass-fiber reinforced plastics composite laminates were scanned with two saw cuts using a T-ray THz TDS system and the terahertz optimized scanning images were obtained at the angles normal to the E-field direction on the nonconducting materials. Also, by use of 2-dimensional spatial Fourier transform, interface C-scan images were transformed into quantitative angular distribution plots in order to show the fiber orientation information therein and to make the orientation of the ply predictable. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6440

  18. Investigations on damage resistance of carbon fiber composite panels toughened using veils

    Institute of Scientific and Technical Information of China (English)

    Zhu Lingang

    2013-01-01

    This research focused on how to improve damage resistance of carbon fiber laminates.It was carried out at Cranfield University Composites Centre,Milton Keynes,UK as an MSc by research thesis project.A series of low-cost composite laminates,with or without novel veils provided by Tenax,was manufactured using current aircraft carbon fiber preforms via vacuum infusion (Ⅵ) molding in this research.All the investigations on damage resistance of these panels were carried out according to the British Standard (BS ISO 18353:2009).Initial damage was induced using a falling weight apparatus mounting a 16mm hemispherical tip.C-scan and Micrograph were employed to reveal damage characteristics.Finally,both compression after impact (CAI) and plain compression strength were experimented.The behaviors of these panels,including damage size,damage construction,residual compression strength,and compression strength reduction,were utilized to investigate how and to what extent the veils affected the damage resistance.The results show that using veils is an efficient method of improving the damage resistance of the laminates studied.Maximum 32% increase in residual compression strength is achieved via veils accompanying with 7% increase in cost.

  19. Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for li-ion batteries.

    Science.gov (United States)

    Zhang, Huijuan; Feng, Yangyang; Zhang, Yan; Fang, Ling; Li, Wenxiang; Liu, Qing; Wu, Kai; Wang, Yu

    2014-07-01

    Herein, we introduce a peapod-like composite with Ni12 P5 nanoparticles encapsulated in carbon fibers as the enhanced anode in Li-ion batteries for the first time. In the synthesis, NiNH4 PO4 ⋅H2 O nanorods act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source. With the aid of hydrogen bonding between the precursor and carbon source, a polymer layer is hydrothermally formed and then rationally converted into carbon fibers upon inert calcination at elevated temperatures. Meanwhile, NiNH4 PO4 ⋅H2 O nanorods simultaneously turn into Ni12 P5 nanoparticles encapsulated in carbon fibers by undergoing a decomposition and reduction process induced by high temperature and the carbon fibers. The obtained composite performs excellently as a Li-ion batteries anode relative to pure-phase materials. Specific capacity can reach 600 m Ah g(-1) over 200 cycles, which is much higher than that of isolated graphitized carbon or phosphides, and reasonably believed to originate from the synergistic effect based on the combination of Ni12 P5 nanoparticles and carbon fibers. Due to the benignity, sustainability, low cost, and abundance of raw materials of the peapod-like composite, numerous potential applications, in fields such as optoelectronics, electronics, specific catalysis, gas sensing, and biotechnology can be envisaged. PMID:24648293

  20. Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin

    Energy Technology Data Exchange (ETDEWEB)

    Thunga, Mahendra [Ames Laboratory; Bauer, Amy [Iowa State University; Obusek, Kristine [Fleet Readiness Center East; Meilunas, Ray [Naval Air Warfare Center Aircraft Division; Akinc, Mufit [Ames Laboratory; Kessler, Michael R [Ames Laboratory

    2014-08-01

    Resin injection of bisphenol E cyanate ester, a low viscosity resin that cures into a high temperature thermoset polymer, is investigated as a reliable repair method to restore strength and stiffness in delaminated carbon fiber/bismaleimide composites used in aircraft panels. The influence of temperature on the viscosity of the uncured resin was measured to optimize the injection conditions for high resin infiltration into the delaminations. The repair efficiency of the resin was evaluated by varying the panel thickness and the method by which the delamination damage was created in the composite specimens. Ultrasonic scanning (C-scan), flash thermography images, and cross-section analysis of repaired panels revealed excellent resin infiltration into the damaged region. Evaluation of mechanical repair efficiency using both bending stiffness and in-plain compressive strength of the composite panels as the repair metrics showed values exceeding 100%.

  1. Effect of Water Absorption on the Impact Properties of Carbon Fiber/ Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-jun; ZHANG Qi

    2006-01-01

    In this paper, the effects of test temperatures and time on the impact damage behavior of unidirectional carbon fiber reinforced epoxy resin composites, immersed in pure water, on a pendulum impact tester, was studied. The results show that immersion in liquids has a significant effect on the impact resistance of the unidirectional composite material. It is obvious that after immersion, the mass of the material increases. The fracture initiation forces as well as the fracture initiation energy decrease as the immersion time lengthens. Moreover, the higher the temperature and the longer the time are, the more the crack propagation energy and the ductility index will be. Immersion makes the fracture mode change from the dominant fiber fracture into dominant delamination. All in all, immersion decreases the impact resistance of the composites and causes the fracture mode to change.

  2. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging.

    Science.gov (United States)

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  3. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-06-01

    Full Text Available Terahertz (THz time-domain spectroscopy (TDS imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  4. Synergetic Effects of Mechanical Properties on Graphene Nanoplatelet and Multiwalled Carbon Nanotube Hybrids Reinforced Epoxy/Carbon Fiber Composites

    OpenAIRE

    2015-01-01

    Graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, an outstanding synergetic effect on the grapheme nanoplatelets (GNPs) and multiwalled carbon nanotubes (CNTs) hybrids were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical propertie...

  5. Effect of temperature on the dynamic characteristics of the glass-carbon fiber hybrid composites

    Science.gov (United States)

    Hidayat, Yon Afif; Susilo, Didik Djoko; Raharjo, Wijang W.

    2016-03-01

    This study aimed to investigate the effect of temperature on the dynamic characteristics of hybrid composites. Hybrid composites consisting of unsaturated polyester resin and glass fiber reinforced with carbon fiber. The volume fraction used in this study was 0.4. The hybrid composite was made using hand lay-up technique. The dynamic characteristics were obtained through vibration testing. The testing was conducted according to ASTM E756. The variables studied were composite without heating, heating at 100 °C, 200 °C and 280 °C. The experiments were done in three mounting configurations, i.e. upright, downward and horizontal configurations. The natural frequency and damping ratio was determined using half-power bandwidth method. The results showed that heating of composite structure affects the natural frequency and damping ratio of the hybrid composite. Heating until 100 °C will increase the natural frequency of the hybrid composite and decrease the damping ratio, but heating at the temperature above 100 °C will decrease the natural frequency and will damage the hybrid composite structure. The composite mounting configurations do not give significant effect to natural frequency and damping ratio of the hybrid composites.

  6. Nanoparticle Filtration in a RTM Processed Epoxy/Carbon Fiber Composite

    Science.gov (United States)

    Miller, Sandi G.; Micham, Logan; Copa, Christine C.; Criss, James M., Jr.; Mintz, Eric A.

    2011-01-01

    Several epoxy matrix composite panels were fabricated by resin transfer molding (RTM) E862/W resin onto a triaxially braided carbon fiber pre-form. Nanoparticles including carbon nanofiber, synthetic clay, and functionalized graphite were dispersed in the E862 matrix, and the extent of particle filtration during processing was characterized. Nanoparticle dispersion in the resin flashing on both the inlet and outlet edges of the panel was compared by TEM. Variation in physical properties such as Tg and moisture absorption throughout the panel were also characterized. All nanoparticle filled panels showed a decrease in Tg along the resin flow path across the panel, indicating nanoparticle filtration, however there was little change in moisture absorption. This works illustrates the need to obtain good nano-particle dispersion in the matrix resin to prevent particle agglomeration and hence particle filtration in the resultant polymer matrix composites (PMC).

  7. Damage threshold study of sonic IR imaging on carbon-fiber reinforced laminated composite materials

    Science.gov (United States)

    Han, Xiaoyan; He, Qi; Zhang, Ding; Ashbaugh, Mike; Favro, Lawrence D.; Newaz, Golam; Thomas, Robert L.

    2013-01-01

    Sonic Infrared Imaging, as a young NDE technology, has drawn a lot of attentions due to it's fast, wide-area evaluation capability, and due to its broad applications in different materials such as metal/metal alloy, composites and detection of various types of defects: surface, subsurface, cracks, delaminations/disbonds. Sonic IR Imaging combines pulsed ultrasound excitation and infrared imaging to detect defects in materials. The sound pulse causes rubbing due to non-unison motion between faces of defects, and infrared sensors image the temperature map over the target to identify defects. However, concerns have also been brought up about possible damages which might occur at the contact spots between the ultrasound transducer from the external excitation source and the target materials. In this paper, we present our results from a series of systematically designed experiments on carbon-fiber reinforced laminated composite panels to address the concerns.

  8. Dynamic tensile response of a carbon-fiber-reinforced LCP composite and its temperature sensitivity

    Science.gov (United States)

    Shim, Victor P. W.; Yuan, J.; Lim, C. T.

    2001-06-01

    The tensile mechanical behavior of a short carbon fiber filled liquid crystalline polymer (LCP) composite, Vectra A230, was examined under static extension and dynamic loading at three temperatures. Dynamic tension was applied using a pendulum-type tensile spilt Hopkinson bar device. Specimens fabricated according to both the mould flow and transverse directions were tested. The stress-strain curves at various strain rates and temperatures were determined and found to be sensitive to strain rate as well as temperature for both types of specimens. With reference to the properties of pure LCP, mechanical anisotropy and fiber reinforcement effects were characterized and are discussed. Failed specimens were observed suing an optical microscope. Deformation and failure mechanisms in the microstructure of the LCP composite were studied to understand the effects of strain rate and temperature on material strength and failure strain.

  9. Radiation resistance of the carbon fiber reinforced composite material with PEEK as the matrix resin

    International Nuclear Information System (INIS)

    In the fast breeder reactor etc. the structural materials are exposed to various environment, i.e., repeated high and low temperature, stress, etc. Irradiation effect (electron radiation) in the mechanical characteristic at low and high temperature has been studied in the PEEK-CF, polyarylether · ether · ketone - carbon fiber composite. Following are the results. (1) Radiation resistance of PEEK-CF is higher than that of PEEK-PES-CF, PEEK - polyethersulfone surface treated CF composite. In PEEK-PES-CF, PES is deteriorated by irradiation so the adhesive power lowers. (2) In the unirradiated PEEK-CF, its mechanical characteristic decreases beyond 140 deg C. With increase of the radiation dose, however, the characteristic rises. (3) Mechanical characteristic of PEEK-CF thus little drops by the heat treatment after the irradiation. (Mori, K.)

  10. Carbon fiber/reaction-bonded carbide matrix for composite materials - Manufacture and characterization

    International Nuclear Information System (INIS)

    The processing of self-healing ceramic matrix composites by a short time and low cost process was studied. This process is based on the deposition of fiber dual inter-phases by chemical vapor infiltration and on the densification of the matrix by reactive melt infiltration of silicon. To prevent fibers (ex-PAN carbon fibers) from oxidation in service, a self-healing matrix made of reaction bonded silicon carbide and reaction bonded boron carbide was used. Boron carbide is introduced inside the fiber preform from ceramic suspension whereas silicon carbide is formed by the reaction of liquid silicon with a porous carbon xerogel in the preform. The ceramic matrix composites obtained are near net shape, have a bending stress at failure at room temperature around 300 MPa and have shown their ability to self-healing in oxidizing conditions. (authors)

  11. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Li, J., E-mail: lijian2006d@sina.com [School of Mechanical and Electronic Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China)

    2009-07-30

    Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 {mu}m are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.

  12. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber

    International Nuclear Information System (INIS)

    Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.

  13. Wear and transfer characteristics of carbon fiber reinforced polymer composites under water lubrication

    Institute of Scientific and Technical Information of China (English)

    JIA Jun-hong; CHEN Jian-min; ZHOU Hui-di; CHEN Lei

    2004-01-01

    The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron microscopy (SEM) was utilized to examine composite microstructures and modes of failure. The typical chemical states of elements of the transfer film on the stainless steel were examined with X-ray photoelectron spectroscopy (XPS). Wear testing and SEM analysis show that all the composites hold the lowered friction coefficient and show much better wear resistance under water lubricated sliding against stainless steel than those under dry sliding. The wear of composites is characterized by plastic deformation, scuffing, micro cracking, and spalling under both dry-sliding and water lubricated conditions. Plastic deformation, scuffing, micro cracking, and spalling, however, are significantly abated under water-lubricated condition. XPS analysis conforms that none of the materials produces transfer films on the stainless steel counterface with the type familiar from dry sliding, and the transfer of composites onto the counterpart ring surface is significantly hindered while the oxidation of the stainless steel is speeded under water lubrication. The composites hinder transfer onto the steel surface and the boundary lubricating action of water accounts for the much smaller wear rate under water lubrication compared with that under dry sliding. The easier transfer of the composite onto the counterpart steel surface accounts for the larger wear rate of the polymer composite under dry sliding.

  14. Fracture analysis for pressure pipe wrapped with carbon-fiber reinforced composites

    International Nuclear Information System (INIS)

    A coupled FEM/EFG numerical method is introduced to calculate the stress intensity factors (SIF) along the crack front of a cracked pressure pipe line wrapped with carbon-fiber reinforced composite material (CFRC). Two types of crack shape, traverse through-wall crack and surface ellipse crack are considered respectively, based on which the effect of the CFRC sleeve length to the Stress Intensity Factors is numerically investigated. It shows that using the algorithm presented in this paper, the stress intensity factors of 3D component can be calculated effectively, and the SIF of the cracked pressure pipe line repaired with CFRC decrease obviously, compared to the original cracked pipe without any repair. Better repair efficiency is obtained with the increase of the sleeve length, but when the length is increased to a certain value, the length increasing of the sleeve contributes little to the decrease of the SIF, therefore to the repair efficiency. (authors)

  15. Segmenting delaminations in carbon fiber reinforced polymer composite CT using convolutional neural networks

    Science.gov (United States)

    Sammons, Daniel; Winfree, William P.; Burke, Eric; Ji, Shuiwang

    2016-02-01

    Nondestructive evaluation (NDE) utilizes a variety of techniques to inspect various materials for defects without causing changes to the material. X-ray computed tomography (CT) produces large volumes of three dimensional image data. Using the task of identifying delaminations in carbon fiber reinforced polymer (CFRP) composite CT, this work shows that it is possible to automate the analysis of these large volumes of CT data using a machine learning model known as a convolutional neural network (CNN). Further, tests on simulated data sets show that with a robust set of experimental data, it may be possible to go beyond just identification and instead accurately characterize the size and shape of the delaminations with CNNs.

  16. Processing of thermo-structural carbon-fiber reinforced carbon composites

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Pardini

    2009-06-01

    Full Text Available The present work describes the processes used to obtain thermostructural Carbon/Carbon composites. The processing of these materials begins with the definition of the architecture of the carbon fiber reinforcement, in the form of stacked plies or in the form of fabrics or multidirectional reinforcement. Incorporating fiber reinforcement into the carbon matrix, by filling the voids and interstices, leads to the densification of the material and a continuous increase in density. There are two principal processing routes for obtaining these materials: liquid phase processing and gas phase processing. In both cases, thermal processes lead to the formation of a carbon matrix with specific properties related to their precursor. These processes also differ in terms of yield. With liquid phase impregnation the yield is around 45 per cent, while gas phase processing yields around 15 per cent.

  17. Cohesive zone model of carbon nanotube-coated carbon fiber/polyester composites

    International Nuclear Information System (INIS)

    It has been previously reported that the average properties of carbon nanotube-coated carbon fiber/polyester multiscale composites critically depend on the length and density of nanotubes on the fiber surface. In this paper the effect of nanotube length and density on the interfacial properties of the carbon nanotube-coated carbon fiber–polymer interface has been studied using shear lag and a cohesive zone model. The latter model incorporates frictional sliding after complete debonding between the fiber and matrix and has been developed to quantify the effect of nanotube coating on various interfacial characterizing parameters. Our numerical results indicate that fibers with an optimal coverage and length of nanotubes significantly increase the interfacial strength and friction between the fiber and polymer. However, they also embrittle the interface compared with bare fibers. (paper)

  18. Electrical Resistance and Microstructure of Latex Modified Carbon Fiber Reinforced Cement Composites

    Institute of Scientific and Technical Information of China (English)

    WEI Jian; CHENG Feng; YUAN Hudie

    2012-01-01

    The electrical resistance,flexural strength,and microstructure of carbon fiber reinforced cement composites (CFRC) were improved greatly by adding water-redispersible latex powder.The electrical resistance of CFRC was investigated by two-probe method.The input range of CFRC based strain sensors was therefore increased,whereas electrical resistance was increased and remained in the perfect range of CFRC sensors.The analysis of scanning electron microscopy indicated that elastic latex bridges and a latex layer existed among the interspaces of the adjacent cement hydration products which were responsible for the enhancement of the flexural strength and electrical resistance.The formation mechanism of the elastic latex bridges was also discussed in detail.The continuous moving of two opposite interfaces of the latex solution-air along the interspaces of the adjacent hydrated crystals or colloids was attributed to the formation of the elastic latex bridges.

  19. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, John H., E-mail: john.h.cantrell@nasa.gov [Research Directorate, NASA Langley Research Center, Hampton, Virginia 23681 (United States)

    2015-03-15

    The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions τ to the ILSS and magnitudes K{sub N} of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The K{sub N} calculations fall in the range (2.01 – 4.67) ×10{sup 17} N m{sup −3}. The average ratio K{sub N}/|τ| is calculated to be (2.59 ± 0.043) × 10{sup 10} m{sup −1} for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of K{sub N} via a technique such as angle beam ultrasonic spectroscopy.

  20. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    International Nuclear Information System (INIS)

    The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions τ to the ILSS and magnitudes KN of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The KN calculations fall in the range (2.01 – 4.67) ×1017 N m−3. The average ratio KN/|τ| is calculated to be (2.59 ± 0.043) × 1010 m−1 for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of KN via a technique such as angle beam ultrasonic spectroscopy

  1. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    Directory of Open Access Journals (Sweden)

    John H. Cantrell

    2015-03-01

    Full Text Available The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS of the composite. The H-bond contributions τ to the ILSS and magnitudes KN of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The KN calculations fall in the range (2.01 – 4.67 ×1017 N m−3. The average ratio KN/|τ| is calculated to be (2.59 ± 0.043 × 1010 m−1 for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of KN via a technique such as angle beam ultrasonic spectroscopy.

  2. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

    2006-04-01

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  3. Activation and Micropore Structure Determination of Activated Carbon-Fiber Composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.

    1999-04-23

    Previous work focused on the production of carbon fiber composites and subsequently activating them to induce adsorbent properties. One problem related to this approach is the difficulty of uniformly activating large composites. In order to overcome this problem, composites have been made from pre-activated fibers. The loss of surface area upon forming the composites after activation of the fibers was investigated. The electrical resistivity and strength of these composites were compared to those made by activation after forming. It was found that the surface area is reduced by about 35% by forming the composite from pre-activated fibers. However, the properties of the activated sample are very uniform: the variation in surface area is less than {+-}0.5%. So, although the surface area is somewhat reduced, it is believed that making composites from pre-activated fibers could be useful in applications where the BET surface area is not required to be very high. The strength of the composites produced from pre-activated fibers is lower than for composites activated after forming when the carbon burnoff is below 45%. For higher burnoffs, the strength of composites made with pre-activated fibers is as good or better. In both cases, there is a dramatic decrease in strength when the fiber:binder ratio is reduced below 4:1. The electrical resistivity is slightly higher for composites made from pre-activated fibers than for composites that are activated after forming, other parameters being constant (P-200 fibers, similar carbon burnoffs). For both types of composite the resistivity was also found to increase with carbon burnoff. This is attributed to breakage of the fiber causing shorter conductive paths. The electrical resistivity also increases when the binder content is lowered, which suggests that there are fewer solid contact points between the fibers.

  4. Polypropylene/Graphene and Polypropylene/Carbon Fiber Conductive Composites: Mechanical, Crystallization and Electromagnetic Properties

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-11-01

    Full Text Available This study aims to examine the properties of composites that different carbon materials with different measurements can reinforce. Using a melt compounding method, this study combines polypropylene (PP and graphene nano-sheets (GNs or carbon fiber (CF to make PP/GNs and PP/CF conductive composites, respectively. The DSC results and optical microscopic observation show that both GNs and CF enable PP to crystalize at a high temperature. The tensile modulus of PP/GNs and PP/CF conductive composites remarkably increases as a result of the increasing content of conductive fillers. The tensile strength of the PP/GNs conductive composites is inversely proportional to the loading level of GNs. Containing 20 wt% of GNs, the PP/GNs conductive composites have an optimal conductivity of 0.36 S/m and an optimal EMI SE of 13 dB. PP/CF conductive composites have an optimal conductivity of 10−6 S/m when composed of no less than 3 wt% of CF, and an optimal EMI SE of 25 dB when composed of 20 wt% of CF.

  5. Effect of chemical vapor infiltration treatment on the wave-absorbing performance of carbon fiber/cement composites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology.A thinner layer ofpyrocarbon was deposited on the fiber surface.The dispersion of carbon fibers in a cement matrix and the mechanical properties of carbon fiber/cement composites were investigated by scanning electron microscopy (SEM) and other tests.The reflectivity of electromagnetic waves by the composites was measured in the frequency range of 8.0-18 GHz for different carbon fiber contents of 0.2wt%,0.4wt%,0.6wt% ,and 1.0wt%.The results show that the reflectivity tends to increase with the increase of fiber content above 0.4wt%.The minimum reflectivity is -19.3 dB and the composites exhibit wave-absorbing performances.After pyrocarbon is deposited on the fiber,all the reflectivity data are far greater.They are all above -10 dB and display mainly wave-reflecting performances.

  6. Preparation of PAN/phenolic-based carbon/carbon composites with flexible towpreg carbon fiber

    International Nuclear Information System (INIS)

    Carbon/carbon composites made with flexible towpreg carbon fiber as reinforcement and phenolic resins as matrix precursor were impregnated with pitch during re-carbonization process. The structural characteristics of the composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), three-point bending tests, Archimedes' method and water adsorption. Results showed that the density of the carbon/carbon composites increases from 1.45 to 1.54 g/cm3 with the cycles of pitch impregnated and re-carbonization. Open porosity measurement indicated that the increase of porosity resulted from the decomposition of phenolic resin matrix, and the open porosity of the composite gradually decreased after the impregnation and re-carbonization process. These composites also exhibited an improvement in flexural strength with increasing number of densification cycles. From SEM morphological observation, it was concluded that few cracks appeared in the surfaces and a few smaller pores with a diameter <1 μm could be observed

  7. A Micromechanical Constitutive Model of Progressive Crushing in Random Carbon Fiber Polymer Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.K.; Simunovic, S.

    1999-09-01

    A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage evolution in random carbon fiber polymer matrix composites (RFPCs).To estimate the overall elastoplastic damage responses,an effective yield criterion is derived based on the ensemble-volume averaging process and first-order effects of eigenstrains due to the existence of spheroidal (prolate) fibers.The proposed effective yield criterion,to ether with the assumed overall associative plastic flow rule and hardening law, constitutes the analytical foundation for the estimation of effective elastoplastic behavior of ductile matrix composites.First,an effective elastoplastic constitutive dama e model for aligned fiber-reinforced composites is proposed.A micromechanical damage constitutive model for RFPCs is then developed.The average process over all orientations upon overning constitutive field equations and overall yield function for aligned fiber-reinforced composites i s performed to obtain the constitutive relations and effective yield function of RFPCs.The discrete numerical integration algorithms and the continuum tan ent operator are also presented to implement the proposed dama e constitutive model.The dama e constitutive model forms the basis for the pro ressive crushing in composite structures under impact loading.

  8. The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Carbon fiber reinforced aluminum matrix composites are used as advanced materials in aerospace and electronic industries. In order to investigate role of aspect ratio of carbon fiber on fracture toughness of aluminum matrix composite, the composite was produced using stir casting. Al-8.5%Si-5%Mg selected as a matrix. The samples were prepared with three volume fractions (1, 2 and 3) and three aspect ratios (300, 500 and 800). Three-point bending test was performed on the specimens to evaluate the fracture toughness of the materials. The results showed that the fracture toughness of composites depends on both fiber volume fraction and aspect ratio. Scanning electron microscopy (SEM) was employed to elucidate the fracture behavior and crack deflection of composites. The study also, showed that the toughening mechanism depends strongly on fiber volume fraction, aspect ratio and the degree of wetting between fiber and matrix

  9. Properties Variation of Carbon Fiber Reinforced Composite for Marine Current Turbine in Seawater

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available Turbine blade which are generally made of composite is a core device among components of tidal current power generator that converts the flow of tidal current into a turning force. Recent years, damages of composite turbine blades have been reported due to reasons like seawater degradation, lake of strength, manufacture etc. In this paper, water absorption, tensile, bending, longitudinal transverse shearing properties of carbon fiber reinforced plastic (CRP composite which would be applied to fabricate the marine current turbine blade has been investigated. Furthermore, the variations of properties with seawater immersion period were studied. The results indicated that the water absorption increased almost linearly at the beginning of immersion and then became stable. Tensile strength of specimen tended to decrease firstly and then recovered slightly. However, the longitudinal transverse shearing strength showed reverse variation trend comparing to tensile strength. And the bending property of specimens was depressed significantly. The properties variations in seawater shall be referenced to design and fabrication of composite marine current turbine blade.

  10. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    Science.gov (United States)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  11. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • COOH-CNTs can react with sizing agent, and the optimum reaction ratio was 1:20. • Carbon fibers were dipped into the mixture bath of CNTs and sizing agent. • SEM results indicate that fibers surfaces were coated with CNTs and sizing agent. • ILSS was increased by 67.01% for the composites after the mixture coating process. • Single fibers tensile strength was maintained after the deposited process. - Abstract: The effects of deposition to carbon fibers surfaces with mixture of functionalized multi-walled carbon fibers (MWCNTs) and sizing agent were investigated. Relationships between CNTs and sizing agent were studied with Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS) and Ubbelohde viscometer. The results revealed that CNTs could react with sizing agent at 120 °C, and optimal reaction occurs when mass ratio was about 1:20. Then, carbon fibers were immersed in mixed aqueous suspension of CNTs and sizing agent with the above ratio dispersed by ultrasonication. According to scanning electron microscope (SEM) observations, fibers surfaces were coated with CNTs and sizing agent. The static contact angle tests indicated wetting performance between fibers and epoxy resin were improved after deposited procedures. Interlaminar shear strength was increased by 67.01% for fibers/epoxy resin composites after mixture deposited process. Moreover, the tensile strength of single fibers after depositing showed a slightly increase compared with that of fibers without depositing layer

  12. Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures

    Directory of Open Access Journals (Sweden)

    Rita Salvado

    2015-05-01

    Full Text Available This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the “wet process”, which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.

  13. Carbon fiber epoxy composites for both strengthening and health monitoring of structures.

    Science.gov (United States)

    Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal

    2015-01-01

    This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the "wet process", which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring. PMID:25954955

  14. Double layer oxidation resistant coating for carbon fiber reinforced silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Double layer coatings, with celsian-Y2SiO5 as inner layer and Y2Si2O7 as outer layer, were prepared by microwave sintering on the surface of carbon fiber reinforced silicon carbide matrix composite. Both celsian, Y2SiO5 and Y2Si2O7 were synthesized by in situ method using BAS glass, Y2O3 and SiO2 as staring materials. The sintering temperature was 1500 deg. C, and little damage was induced to the composite. The composition and micrograph of the fired coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The oxidation and thermal shock resistance of samples with doubled-layered coating were characterized at 1400 deg. C in air. After 150 min oxidation and thermal cycling between 1400 deg. C and room temperature for 15 times, the weight loss of double layer-coated sample was 1.22% and there were no cracks in the coating.

  15. Double layer oxidation resistant coating for carbon fiber reinforced silicon carbide matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.H. [College of Aerospace and Materials Engineering, National University of Defense Technology, Deya Road, Changsha 410073 (China)], E-mail: zheng_nudt@163.com; Du, Y.G.; Xiao, J.Y.; Zhang, W.J.; Zhang, L.C. [College of Aerospace and Materials Engineering, National University of Defense Technology, Deya Road, Changsha 410073 (China)

    2009-01-15

    Double layer coatings, with celsian-Y{sub 2}SiO{sub 5} as inner layer and Y{sub 2}Si{sub 2}O{sub 7} as outer layer, were prepared by microwave sintering on the surface of carbon fiber reinforced silicon carbide matrix composite. Both celsian, Y{sub 2}SiO{sub 5} and Y{sub 2}Si{sub 2}O{sub 7} were synthesized by in situ method using BAS glass, Y{sub 2}O{sub 3} and SiO{sub 2} as staring materials. The sintering temperature was 1500 deg. C, and little damage was induced to the composite. The composition and micrograph of the fired coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The oxidation and thermal shock resistance of samples with doubled-layered coating were characterized at 1400 deg. C in air. After 150 min oxidation and thermal cycling between 1400 deg. C and room temperature for 15 times, the weight loss of double layer-coated sample was 1.22% and there were no cracks in the coating.

  16. Double layer oxidation resistant coating for carbon fiber reinforced silicon carbide matrix composites

    Science.gov (United States)

    Zheng, X. H.; Du, Y. G.; Xiao, J. Y.; Zhang, W. J.; Zhang, L. C.

    2009-01-01

    Double layer coatings, with celsian-Y 2SiO 5 as inner layer and Y 2Si 2O 7 as outer layer, were prepared by microwave sintering on the surface of carbon fiber reinforced silicon carbide matrix composite. Both celsian, Y 2SiO 5 and Y 2Si 2O 7 were synthesized by in situ method using BAS glass, Y 2O 3 and SiO 2 as staring materials. The sintering temperature was 1500 °C, and little damage was induced to the composite. The composition and micrograph of the fired coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The oxidation and thermal shock resistance of samples with doubled-layered coating were characterized at 1400 °C in air. After 150 min oxidation and thermal cycling between 1400 °C and room temperature for 15 times, the weight loss of double layer-coated sample was 1.22% and there were no cracks in the coating.

  17. Production and characterization of composite material based on ablative phenolic resin and carbon fibers

    International Nuclear Information System (INIS)

    The optimisation of technology for production of moulding compound based on short carbon fibers and ablative phenolic resin is carried out. The characterisation of the starting raw materials is performed and moulding compounds With different fiber/matrix ratios and different fiber lengths are prepared. From the different samples, mouldings are produced by thermal compression. All physical, mechanical and thermal properties of the composites are tested. From the obtained results the optimal fiber/matrix ratio, for high temperature moulding compounds production are determined. Also, in order to meet the request for high thermal and mechanics properties of the composite, optimization is carded out on the moulding process itself. The optimization is fulfilled by a planned experiment. The full factorial experimental design is applied in which the following parameters are varied: fiber length, temperature and time of the press cycle. Regression equations for the influence of the parameters to the impact resistance, compression strength, flexural strength and the modulus of elasticity of the molding, are obtained. The obtained mechanical properties of the composite rate this material for potential application in the automotive, leisure, military and other industries.(Author)

  18. Interface property improvement of the composite reinforced by radiation grafted carbon fibers

    International Nuclear Information System (INIS)

    Radiation processing is a high efficient, energy-saving and environment-friendly technology, and has been widely used to modify material interfaces. In this paper, simultaneous γ-ray radiation graft copolymerization was used to improve surface property of carbon fibers (CF) with phenolic aldehyde/ethyl alcohol solutions of different concentrations. The CF samples treated with the solutions were irradiated by 60Co γ-rays to 30 kGy at a dose rate of 4.8 kGy/h. The grafted samples were characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). And interlaminar shear strength (ILSS) of the composite reinforced by the grafted CFs was compared to the control (composites reinforced by the virgin CFs). The AFM measurement revealed obvious morphology changes of the grafted CF. The XPS spectra showed that the oxygen/carbon ratio and quantity of oxygen functional groups were enhanced efficiently by the radiation graft copolymerization. And interfacial performance of the composite reinforced by the grafted CFs was enhanced significantly. (authors)

  19. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite

    Directory of Open Access Journals (Sweden)

    José Díaz-Álvarez

    2014-06-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRPs composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained.

  20. Design and Manufacturing of a Composite Lattice Structure Reinforced by Continuous Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    FAN Hualin; YANG Wei; WANG Bin; YAN Yong; FU Qiang; FANG Daining; ZHUANG Zhuo

    2006-01-01

    New techniques have been developed to make materials with a periodic three-dimensional lattice structure. The high stiffness per unit weight and multifunction of such lattice structures make them attractive for use in aeronautic and astronautic structures. In this paper, epoxy-soaked continuous carbon fibres were first introduced to make lattice composite structures, which maximize the specific load carrying capacity. A micromechanical analysis of several designs, each corresponding to a different manufacturing route, was carried out, in order to find the optimized lattice structure with maximum specific stiffness. An intertwining method was chosen and developed as the best route to make lattice composite materials reinforced by carbon fibers. A sandwich-weaved sample with a three-dimensional intertwined lattice structure core was found to be best. The manufacturing of such a composite lattice material was outlined. In addition to a high shear strength of the core and the integral manufacturing method, the lattice sandwich structure is expected to possess better mechanical capability.

  1. Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites

    International Nuclear Information System (INIS)

    Highlights: → Carbon fibers (CFs) are the most widely used advanced reinforcing fiber materials. → Improvement of adhesion between polypropylene (PP) matrix and CF were aimed. → PP matrix was modified by addition of maleic anhydride grafted PP (PP-g-MAH). → Mechanical properties of the composites were improved by PP-g-MAH compatibilizer. → Modification of matrix with PP-g-MAH was improved the interfacial adhesion. -- Abstract: The aim of this study was to determine the effect of the maleic anhydride grafted polypropylene (PP-g-MAH) on the properties of short carbon fiber (CF) reinforced polypropylene (PP) composites. The composites were prepared by melt blending and injection molding techniques at different percentages of CF. Tensile tests, hardness, differential scanning calorimeter (DSC) and scanning electron microscopy (SEM) were performed to characterize the physical and morphological properties of the prepared composites. It was observed from SEM photographs that modification with PP-g-MAH improved the interfacial adhesion between the carbon fibers and PP matrix. The ultimate tensile strength, hardness and modulus values of modified PP composites were higher compared to the values of CF reinforced PP composites. Melting temperature of all composites was not changed significantly with increasing CF content; however degree of crystallinity values were decreased with the increasing CF content level.

  2. Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites

    Science.gov (United States)

    Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.

    2010-01-01

    In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix

  3. Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Hongwei; Sui, Xianhang; Zhao, Zhongbo; Xu, Zhiwei; Chen, Lei, E-mail: chenlei@tjpu.edu.cn; Deng, Hui; Liu, Ya; Qian, Xiaoming, E-mail: qianxiaoming@tjpu.edu.cn

    2015-08-30

    Highlights: • Multiple sizing treatments were used to modify the surface of carbon fiber with carbon nanotubes. • The distribution state of carbon nanotubes in interface had a great effect on the performance of carbon fiber composites. • Interfacial microstructure changes brought by sizing treatment were detected by energy dispersive X-ray spectroscopy and atomic force microscope. • Gradient interphase composed of carbon nanotubes and epoxy was favorable to improve the mechanical properties of carbon composites. - Abstract: Repetitious sizing treatment was used to modify the carbon fiber (CF) surface with carbon nanotubes (CNTs) for improving interfacial properties of CF/epoxy composites. Interlaminar shear and flexural results showed that mechanical properties of composites were significantly depended on the dispersion state and contents of CNTs in interfacial regions. Increases of 13.45% in interlaminar shear strength and 20.31% in flexural strength were achieved in quintuple sized-CF/epoxy composites, whereas excessive CNTs led to decrease of interfacial performance due to defects induced by agglomerated CNTs. Energy dispersive X-ray spectroscopy and force modulation atomic force microscope were used to detect the structure of interfacial phase and results indicated that gradient interfacial structure with various thicknesses was formed due to CNT incorporation. This means that such a simple and efficient method to improve interfacial performance of composites via regulating the fiber–matrix interphase structure was developed and showed great commercial application potential.

  4. Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing

    International Nuclear Information System (INIS)

    Highlights: • Multiple sizing treatments were used to modify the surface of carbon fiber with carbon nanotubes. • The distribution state of carbon nanotubes in interface had a great effect on the performance of carbon fiber composites. • Interfacial microstructure changes brought by sizing treatment were detected by energy dispersive X-ray spectroscopy and atomic force microscope. • Gradient interphase composed of carbon nanotubes and epoxy was favorable to improve the mechanical properties of carbon composites. - Abstract: Repetitious sizing treatment was used to modify the carbon fiber (CF) surface with carbon nanotubes (CNTs) for improving interfacial properties of CF/epoxy composites. Interlaminar shear and flexural results showed that mechanical properties of composites were significantly depended on the dispersion state and contents of CNTs in interfacial regions. Increases of 13.45% in interlaminar shear strength and 20.31% in flexural strength were achieved in quintuple sized-CF/epoxy composites, whereas excessive CNTs led to decrease of interfacial performance due to defects induced by agglomerated CNTs. Energy dispersive X-ray spectroscopy and force modulation atomic force microscope were used to detect the structure of interfacial phase and results indicated that gradient interfacial structure with various thicknesses was formed due to CNT incorporation. This means that such a simple and efficient method to improve interfacial performance of composites via regulating the fiber–matrix interphase structure was developed and showed great commercial application potential

  5. Comparative Characterization of Multiscale Carbon Fiber Composite with Long and Short MWCNTs at Higher Weight Fractions

    Directory of Open Access Journals (Sweden)

    Michael Zimmer

    2012-01-01

    Full Text Available There are documented advantages to using carbon nanotubes (CNTs in composites for various property enhancements. However, to date, only limited studies have been conducted on using of longer CNTs over 1 mm in length. This study used long multiwalled carbon nanotubes (LMWCNTs and their longer extended networks to test multiple properties in thermal conductivity, electrical conductivity, mechanical strength, and modulus and then compared these properties to those of shorter multi-walled carbon nanotubes (SMWCNTs. For carbon fiber-reinforced composites, the longer graphite paths from LMWCNTs in the matrix were expected to improve all properties. The longer networks were expected to allow for more undisturbed phonon transportation to improve thermal conductivity. This in turn relates to improved electrical conductivity and better mechanical properties. However, results have shown that the LMWCNTs do not improve or decrease thermal conductivity, whereas the shorter MWCNTs provide mixed results. LMWCNTs did show improvements in electrical, mechanical, and physical properties, but compared to shorter MWCNTs, the results in other certain properties varied. This perplexing outcome resides in the functioning of the networks made by both the LMWCNTs and shorter MWCNTs.

  6. Viscoelastic characterization of carbon fiber-epoxy composites by creep and creep rupture tests

    International Nuclear Information System (INIS)

    One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)

  7. Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2014-01-01

    Full Text Available The chemical vapor deposition method is used to prepare CNT (carbon nanotube/PCF (PAN-based carbon fiber felt composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution’s pH, the better the desalting; the smaller the ions’ radius, the greater the amount of adsorption.

  8. Electroadsorption desalination with carbon nanotube/PAN-based carbon fiber felt composites as electrodes.

    Science.gov (United States)

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption. PMID:24963504

  9. Characterization, test and interpretative simulations of one-dimensional Carbon Fiber Composite prototype for SPIDER experiment

    International Nuclear Information System (INIS)

    Highlights: • Prototype ITER neutral beam injector to study the beam source behavior requires beam characterization. • Among several types of diagnostic, a calorimeter made of fiber carbon composite (CFC) tiles will be used. • The CFC thermal behaviour is study by laser beam and will be characterize in particel beam. • Experiments and simulations results are discussed. • Designs for tests in particle beams are presented. -- Abstract: For ITER operations, additional heating systems are required. One of these systems is the neutral beam injector (NBI). The SPIDER experiment, a small-scale NBI, is going to be built with the aim to optimize the beam source. For this reason it is provided with several diagnostics, among which the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE). In this contribution, a characterization of the Carbon Fiber Composite (CFC) tiles, which are the main component of the diagnostic, is presented. Such analyses include tests with a power laser, exposure to particle beams and thermal stress tests. The results are discussed, which will drive the definition of the acceptance tests of the final supply of CFC tiles

  10. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  11. Thermal management of a Li-ion battery using carbon fiber-PCM composites

    International Nuclear Information System (INIS)

    A combination of latent and sensible heat capabilities has made phase change materials (PCMs) very useful in a variety of heat transfer applications. The main purpose of using the phase change material in lithium-ion (Li-ion) battery thermal management systems (BTMs) is to mitigate the excessive temperature rise in the cells and to create uniform temperature distribution within the battery pack. In this work, carbon fibers were added to a PCM to enhance its heat transfer potentials. Various strategies were adopted to manage temperature distribution around a single AA-battery-like simulator. The effects of carbon fiber size and weight percent within the PCM on thermal performance were studied. Experimental results have indicated that a mixture of PCM with 2-mm-long carbon fibers and mass percentage of 0.46% showed the best thermal performance for which the maximum temperature rise in the battery simulator can be reduced by up to 45%. - Graphical abstract: The schematic of the experimental setup and data acquisition system (1-power source 2-container 3-battery module 4-thermocouples 5-temperature indicator 6-data acquisition system). - Highlights: • Thermal performance of a Li-ion battery simulator is studied in the presence of PCM. • The effect of carbon fiber on heat transfer enhancement is examined. • Better thermal management can be achieved by the presence of carbon fiber in PCM. • Both carbon fiber mass fraction and length play crucial role in thermal management

  12. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    International Nuclear Information System (INIS)

    Highlights: • Carbon fibers are grafted with phenyl amine group via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 73%. • Tensile strength of the carbon fibers does not decrease distinctly. • Using water as the reaction medium can avoid pollution from organic solvents. • Grafting via aryl diazonium reaction in one step can improve modification efficiency. - Abstract: Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction “on water” to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction “on water” could be a facile green platform to functionalize carbon fibers for many interesting applications

  13. Processing and Damage Tolerance of Continuous Carbon Fiber Composites Containing Puncture Self-Healing Thermoplastic Matrix

    Science.gov (United States)

    Grimsley, Brian W.; Gordon, Keith L.; Czabaj, Michael W.; Cano, Roberto J.; Siochi, Emilie J.

    2012-01-01

    Research at NASA Langley Research Center (NASA LaRC) has identified several commercially available thermoplastic polymers that self-heal after ballistic impact and through-penetration. One of these resins, polybutadiene graft copolymer (PB(sub g)), was processed with unsized IM7 carbon fibers to fabricate reinforced composite material for further evaluation. Temperature dependent characteristics, such as the degradation point, glass transition (T(sub g)), and viscosity of the PBg polymer were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic parallel plate rheology. The PBg resin was processed into approximately equal to 22.0 cm wide unidirectional prepreg tape in the NASA LaRC Advanced Composites Processing Research Laboratory. Data from polymer thermal characterization guided the determination of a processing cycle used to fabricate quasi-isotropic 32-ply laminate panels in various dimensions up to 30.5cm x 30.5cm in a vacuum press. The consolidation quality of these panels was analyzed by optical microscopy and acid digestion. The process cycle was further optimized based on these results and quasi-isotropic, [45/0/-45/90]4S, 15.24cm x 15.24cm laminate panels were fabricated for mechanical property characterization. The compression strength after impact (CAI) of the IM7/pBG composites was measured both before and after an elevated temperature and pressure healing cycle. The results of the processing development effort of this composite material as well as the results of the mechanical property characterization are presented in this paper.

  14. In-situ change and repairing method of armour tile made of carbon fiber composite material in divertor

    International Nuclear Information System (INIS)

    A joint portion of a damaged armour tile of a carbon fiber composite material and a divertor substrate is locally heated spontaneously to re-melt the soldering. Then, the damaged tile is removed and the portion where the tile is removed is heated again to melt the soldering, then a tile for exchange is joined. Alternatively, a thermosetting type adhesive is coated on the surface of the damaged armour tile made of carbon fiber composite material on the divertor, and a tile for repairing is adhered thereon then the joint surface is locally heated to cure the adhesive. For local heating, for example, high frequency heating or dielectric heating is used. It is preferably conducted by remote handling by using robot arms under vacuum in an vacuum vessel of the thermonuclear device. The operations of the heating and pressurization for the joint surface are preferably repeated for several times. (N.H.)

  15. Application of vibrational spectroscopy in the in vitro studies of carbon fiber-polylactic acid composite degradation.

    Science.gov (United States)

    Blazewicz, Marta; Gajewska, Maria Chomyszyn; Paluszkiewicz, Czeslawa

    1999-05-01

    Vibrational spectroscopy was used for assessment of new material for stomatology, for guided tissue regeneration (GTR) techniqe.Implants applied in the healing of periodontal defects using GTR technique have to meet stringent requirements concerning their chemical as well physical properties.At present the implants prepared from two layers membranes differing in porosity in their outer and inner layers are studied clinically. Composite plates prepared by us consist of three layers: polylactic acid film, carbon fibres coated with polylactic acid and carbon fabric.Vibrational spectroscopic studies of the material; polylactic acid- carbon fiber have made it possible to analyse chemical reactions occurring between the polymer and carbon surface. Analysis of the IR spectra of samples treated in Ringer solution allowed to describe the phenomena resulting from the composite degradation. It was shown that material biostability is related to the presence of carbon fibers.

  16. Evolution of the composition and structure of PAN carbon fiber during preoxidation

    Institute of Scientific and Technical Information of China (English)

    LI; Xiaojia; LUO; Qianhua; ZHU; Yijun; WANG; Haizhou

    2001-01-01

    Using scanning electronic microscope, X-ray diffraction analysis, PYR-GCMS and IR etc., we studied the evolving process of the composition and structure of PAN carbon fiber during preoxidation. In the initial stage of preoxidation, PAN filament tows disappear and become semi-thaw. At first, reactions happen between the copolymers and esters disappear. The molecules annularly crosslink and the index of cyclation slowly increases. It is easy to fix the structure and form defects during the initial and the medium stages, which are most reactive. More traction is advised in these stages to minimize the structural deficiencies. In the medium stage of preoxidation, the fiber was reshaped into new sheet stacks and gradually changed to sheet sectors, and this structure tends to be stable in the final stage. Induced by acid and ester copolymer, PAN fiber forms a very stable cycle structure in the final stage. Besides, monomer, dimmer and trimer obviously decrease. In the final stage of the preoxidation, there exists only the fragment of -CN, and it also disappears at last. The index of cyclation rises with the process of preoxidation and the structural shape stabilizes.

  17. Flexural Properties of E Glass and TR50S Carbon Fiber Reinforced Epoxy Hybrid Composites

    Science.gov (United States)

    Dong, Chensong; Sudarisman; Davies, Ian J.

    2013-01-01

    A study on the flexural properties of E glass and TR50S carbon fiber reinforced hybrid composites is presented in this paper. Specimens were made by the hand lay-up process in an intra-ply configuration with varying degrees of glass fibers added to the surface of a carbon laminate. These specimens were then tested in the three-point bend configuration in accordance with ASTM D790-07 at three span-to-depth ratios: 16, 32, and 64. The failure modes were examined under an optical microscope. The flexural behavior was also simulated by finite element analysis, and the flexural modulus, flexural strength, and strain to failure were calculated. It is shown that although span-to-depth ratio shows an influence on the stress-strain relationship, it has no effect on the failure mode. The majority of specimens failed by either in-plane or out-of-plane local buckling followed by kinking and splitting at the compressive GFRP side and matrix cracking combined with fiber breakage at the CFRP tensile face. It is shown that positive hybrid effects exist for the flexural strengths of most of the hybrid configurations. The hybrid effect is noted to be more obvious when the hybrid ratio is small, which may be attributed to the relative position of the GFRP layer(s) with respect to the neutral plane. In contrast to this, flexural modulus seems to obey the rule of mixtures equation.

  18. Vapotron as heat sink for flat high-conductivity unidirectional carbon-fiber-composite tiles

    International Nuclear Information System (INIS)

    Two vapotrons from the Joint European Torus (JET) actively cooled divertor design have been fitted by the Japan Atomic Energy Research Institute with unidirectional high-conductivity carbon-fiber-composite tiles and have been tested in the JET Neutral Beam Test Bed. The test section showed excellent uniformity and accepted power densities up to 30 MW/m2 for equilibrium pulses. The surface temperature was 1100 degree C at 20 MW/m2. One tile detached at a power density of 25MW/m2. A total of just under 300 pulses at power densities mostly between 20 and 30 MW/m2 have been fired onto the test sections without additional failure. The hydraulic parameters were as follows: water inlet temperature, 15 to 20 degree C; average water pressure in the component, 0.4 and 0.69 MPa; flow velocity, 6.9 and 7.5 m/s. 8 refs., 15 figs., 1 tab

  19. Mechanical properties of a carbon fiber reinforced self-healing multilayered matrix composite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chengyu, E-mail: cyzhang@nwpu.edu.cn [National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Qiao Shengru; Yan Kefei; Liu Yongsheng; Wu Qi; Han Dong; Li Mei [National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-03-25

    Research highlights: {yields} The tensile, interlaminar shear and in-plane shear strengths exhibited a significant dependency on the temperature. {yields} The debonding of the interface between the different layers in the matrix can arrest and deflect the cracks in the multilayered matrix. {yields} The thermal residual stress and the volume shrinkage caused by the crystallization of the boron-containing phase can contribute to the variation of strength with temperature. - Abstract: The mechanical properties of a two dimensional carbon fiber reinforced multilayered ceramic matrix composite (C/Si-B-C) were investigated at elevated temperatures. The fracture surfaces were examined by a scanning electron microscope. The results show that the tensile strength and failure strain of the C/Si-B-C increase with increase in temperatures up to 1273 K, then decrease at temperature of above 1273 K. However, the tensile modulus keeps constant in the investigated temperature range. The reduced nonlinear region and short pullout length of fibers suggest a strong interfacial strength between the fibers and the matrix. The interlaminar shear strength (ILSS) and the in-plane shear strength (IPSS) present the similar tendency to the tensile strength. IPSS is about three times of ILSS regardless of temperature. The variation of strength with temperature can be explained by thermal residual stress and crystallization of B{sub 4}C in the multilayered matrix.

  20. Mechanical properties of a carbon fiber reinforced self-healing multilayered matrix composite at elevated temperatures

    International Nuclear Information System (INIS)

    Research highlights: → The tensile, interlaminar shear and in-plane shear strengths exhibited a significant dependency on the temperature. → The debonding of the interface between the different layers in the matrix can arrest and deflect the cracks in the multilayered matrix. → The thermal residual stress and the volume shrinkage caused by the crystallization of the boron-containing phase can contribute to the variation of strength with temperature. - Abstract: The mechanical properties of a two dimensional carbon fiber reinforced multilayered ceramic matrix composite (C/Si-B-C) were investigated at elevated temperatures. The fracture surfaces were examined by a scanning electron microscope. The results show that the tensile strength and failure strain of the C/Si-B-C increase with increase in temperatures up to 1273 K, then decrease at temperature of above 1273 K. However, the tensile modulus keeps constant in the investigated temperature range. The reduced nonlinear region and short pullout length of fibers suggest a strong interfacial strength between the fibers and the matrix. The interlaminar shear strength (ILSS) and the in-plane shear strength (IPSS) present the similar tendency to the tensile strength. IPSS is about three times of ILSS regardless of temperature. The variation of strength with temperature can be explained by thermal residual stress and crystallization of B4C in the multilayered matrix.

  1. Modeling the response of a rotating eddy current sensor for the characterization of carbon fiber reinforced composites

    OpenAIRE

    Menana, H.; Féliachi, M.

    2010-01-01

    Abstract This work deals with the eddy current nondestructive testing of carbon fiber reinforced polymer composites (CFRPs), and the development of rapid numerical models for the simulation of the interaction between the electromagnetic field and complex structures. We show qualitatively the possibility of characterizing the CFRPs by using a rotating eddy current sensor. We make use of a numerical model which we have developed in a previous work for eddy cur...

  2. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    OpenAIRE

    Ploeckl Marina; Kuhn Peter; Koerber Hannes

    2015-01-01

    In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s−1 a modified version...

  3. The role of surface pretreatment and surface analysis in the bondability of carbon fiber-polyimide matrix composites

    OpenAIRE

    Moyer, Denise Joy DeGeorge

    1989-01-01

    The effect of surface pretreatment on the physical and chemical properties of carbon fiber-polyimide matrix composite surfaces was evaluated. Eight pretreatments were studied: methanol wash, gritblast, sulfuric acid soak, ammonia plasma, argon plasma, argon plasma followed by ammonia plasma, nitrogen plasma, and oxygen plasma. The pretreated surfaces were chemically characterized through the use of XPS (X-ray photoelectron spectroscopy), ISS (ion scattering spectroscop...

  4. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    OpenAIRE

    G. AGARWAL; Patnaik, A.; Sharma, R. K.

    2014-01-01

    This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to re...

  5. The performance of integrated active fiber composites in carbon fiber laminates

    International Nuclear Information System (INIS)

    Piezoelectric elements integrated into fiber-reinforced polymer-matrix laminates can provide various functions in the resulting adaptive or smart composite. Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers can be used as a component in a smart material system, and can be easily integrated into woven composites. However, the impact of integration on the device and its functionality has not been fully investigated. The current work focuses on the integration and performance of AFC integrated into carbon-fiber-reinforced plastic (CFRP) laminates, focusing on the strain sensor performance of the AFC–CFRP laminate under tensile loading conditions. AFC were integrated into cross-ply CFRP laminates using simple insertion and interlacing of the CFRP plies, with the AFC always placed in the 90° ply cutout area. Test specimens were strained to different strain levels and then cycled with a 0.01% strain amplitude, and the resulting signal from the AFC was monitored. Acoustic emission monitoring was performed during tensile testing to provide insight to the failure characteristics of the PZT fibers. The results were compared to those from past studies on AFC integration; the strain signal of AFC integrated into CFRP was much lower than that for AFC integrated into woven glass fiber laminates. However, the profiles of the degradations of the AFC signal resulting from the strain were nearly identical, showing that the PZT fibers fragmented in a similar manner for a given global strain. The sensor performance recovered upon unloading, which is attributed to the closure of cracks between PZT fiber fragments

  6. Microwave absorbing properties of linear low density polyethylene/ethylene-octene copolymer composites filled with short carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Ling Qincai [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China); Sun Jianzhong [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: bigwig@zju.edu.cn; Zhao Qian; Zhou Qiyun [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2009-06-15

    Linear low density polyethylene/ethylene-octene copolymer composites filled with short carbon fiber were prepared by melt blending. The structure and surface morphology of the samples were characterized by scanning electron microscopy and transmission electron microscopy. The electromagnetic parameters were determined with transmission/reflection method in the range of 2.6-17.8 GHz, and microwave absorbing properties of the composites were determined using the arch method in the frequency range of 2.0-18.0 GHz. The experimental results show that short carbon fiber loading influences the absorbing peak position and reflection loss, and that the composites containing 30 wt.% short carbon fiber display two absorbing peaks. The maximum reflection losses achieve -15.66 dB at 4.6 GHz and -17.37 dB at 16.4 GHz. The bandwidth corresponding to the reflection loss below -10 dB amounts to about 3.6 GHz. The contribution for the microwave absorption comes from the dielectric loss. The theoretical calculation results of reflection loss are in agreement with the experimental results using the transmission line theory.

  7. Microwave absorbing properties of linear low density polyethylene/ethylene-octene copolymer composites filled with short carbon fiber

    International Nuclear Information System (INIS)

    Linear low density polyethylene/ethylene-octene copolymer composites filled with short carbon fiber were prepared by melt blending. The structure and surface morphology of the samples were characterized by scanning electron microscopy and transmission electron microscopy. The electromagnetic parameters were determined with transmission/reflection method in the range of 2.6-17.8 GHz, and microwave absorbing properties of the composites were determined using the arch method in the frequency range of 2.0-18.0 GHz. The experimental results show that short carbon fiber loading influences the absorbing peak position and reflection loss, and that the composites containing 30 wt.% short carbon fiber display two absorbing peaks. The maximum reflection losses achieve -15.66 dB at 4.6 GHz and -17.37 dB at 16.4 GHz. The bandwidth corresponding to the reflection loss below -10 dB amounts to about 3.6 GHz. The contribution for the microwave absorption comes from the dielectric loss. The theoretical calculation results of reflection loss are in agreement with the experimental results using the transmission line theory.

  8. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite

    Science.gov (United States)

    Ma, Quansheng; Gu, Yizhuo; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2016-08-01

    This paper aims to study the effects of surface treating methods, including electrolysis of anodic oxidation, sizing and heat treatment at 200 °C, on physical and chemical properties of T700 grade high-strength carbon fiber GQ4522. The fiber surface roughness, surface energy and chemical properties were analyzed for different treated carbon fibers, using atom force microscopy, contact angle, Fourier transformed infrared and X-ray photoelectron spectroscopy, respectively. The results show that the adopted surface treating methods significantly affect surface roughness, surface energy and active chemical groups of the studied carbon fibers. Electrolysis and sizing can increase the roughness, surface energy and chemical groups on surface, while heat treatment leads to decreases in surface energy and chemical groups due to chemical reaction of sizing. Then, unidirectional epoxy 5228 matrix composite laminates were prepared using different treated GQ4522 fibers, and interlaminar shear strength and flexural property were measured. It is revealed that the composite using electrolysis and sizing-fiber has the strongest interfacial bonding strength, indicating the important roles of the two treating processes on interfacial adhesion. Moreover, the composite using heat-treating fiber has lower mechanical properties, which is attributed to the decrease of chemical bonding between fiber surface and matrix after high temperature treatment of fiber.

  9. Carbon fiber based composites stress analysis. Experimental and computer comparative studies

    Science.gov (United States)

    Sobek, M.; Baier, A.; Buchacz, A.; Grabowski, Ł.; Majzner, M.

    2015-11-01

    Composite materials used nowadays for the production of composites are the result of advanced research. This allows assuming that they are among the most elaborate tech products of our century. That fact is evidenced by the widespread use of them in the most demanding industries like aerospace and space industry. But the heterogeneous materials and their advantages have been known to mankind in ancient times and they have been used by nature for millions of years. Among the fibers used in the industry most commonly used are nylon, polyester, polypropylene, boron, metal, glass, carbon and aramid. Thanks to their physical properties last three fiber types deserve special attention. High strength to weight ratio allow the use of many industrial solutions. Composites based on carbon and glass fibers are widely used in the automotive. Aramid fibers ideal for the fashion industry where the fabric made from the fibers used to produce the protective clothing. In the paper presented issues of stress analysis of composite materials have been presented. The components of composite materials and principles of composition have been discussed. Particular attention was paid to the epoxy resins and the fabrics made from carbon fibers. The article also includes basic information about strain measurements performed on with a resistance strain gauge method. For the purpose of the laboratory tests a series of carbon - epoxy composite samples were made. For this purpose plain carbon textile was used with a weight of 200 g/mm2 and epoxy resin LG730. During laboratory strain tests described in the paper Tenmex's delta type strain gauge rosettes were used. They were arranged in specific locations on the surface of the samples. Data acquisition preceded using HBM measurement equipment, which included measuring amplifier and measuring head. Data acquisition was performed using the Easy Catman. In order to verify the results of laboratory tests numerical studies were carried out in a

  10. Effect of sonication applied during production of carbon fiber/epoxy resin composites evaluated by differential scanning calorimetry and thermo-gravimetric analysis

    OpenAIRE

    Bogoeva-Gaceva, Gordana; Dimeski, Dimko; Herakovic, Niko

    2011-01-01

    The influence of ultrasonic treatment, applied during the impregnation of carbon fiber bundle by epoxy resin system, on thermal behavior of carbon fiber/epoxy resin composites in the course of crosslinknetwork formation has been analyzed by differential scanning calorimetry (DSC). It was previously shown [1] that this treatment has resulted in drastically increased interlaminar shear strength (ILSS) of the bulk composites, produced by hot pressing. The enhanced ILSS was attributed...

  11. Prospects in using carbon-carbon composite materials based on viscose carbon fibers for the space technology needs

    International Nuclear Information System (INIS)

    Due to the unique combination of low density, high mechanical strength under elevated temperatures, high resistance to thermal shock loads and ablation resistance, carbon-carbon composite materials (CCCM) are widely used for manufacturing of highly thermally loaded structural components. The important scientific and technical difficulty is to increase and stabilize CCCM properties, reduce cost and leads to searching for new raw materials and engineering solutions. The article describes the prospects of replacing carbon fiber fills based on PAN-precursors which are traditionally used for producing CCCM by carbon fillers on the basis of viscose raw material; shows the advantages of using viscose-based carbon fibers when forming products of complex shape as well as the possibility of obtaining products with high functional characteristics. The creation of CCCM of layered reinforcement structure, in which carbon fabric layers interleave with layers of discontinuous carbon fibers, enabled to increase the overall density of carbon composites, to ensure sufficiently high level of mechanical characteristics and resistance to ablation

  12. Preparation of carbon fiber-reinforced zirconium carbide matrix composites by reactive melt infiltration at relative low temperature

    International Nuclear Information System (INIS)

    An attractive way to prepare carbon fiber-reinforced ZrC matrix composites was proposed and confirmed experimentally. The experimental results showed that the resulting composites were fabricated by immersing carbon/carbon preforms in molten Zr2Cu at 1200 °C for 3 h. ZrC was the main phase, with a content of 42.2 ± 1.3 vol.%. The composites exhibited excellent ablation resistance when undergoing ablation with an oxyacetylene torch, the mass loss rate and linear recession rate being 0.0006 ± 0.0001 g s−1 and 0.0003 ± 0.0001 mm s−1, respectively.

  13. Carbon Fiber Biocompatibility for Implants

    Science.gov (United States)

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  14. Dynamic tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Graphical abstract: The dynamic tensile behavior of 2D C/SiC composites was experimentally investigated by means of SHTB. Both the fracture surface and bundle fracture surfaces of composites were observed. The strain rate sensitivity of in-bundle interface was concluded as the dominant contributor to the strain rate sensitivity of the tensile strength. Highlights: → The tensile strength increases with strain rate. → The tensile failure strain remains independent of strain rate. → Macro-structural morphology reveals rough fracture surface under dynamic loading. → SEM morphology reveals integrated bundle pull-out under dynamic loading. → Strain rate sensitivity of in-bundle interface leads to that of the tensile strength. - Abstract: An investigation has been undertaken to determine the dynamic and quasi-static tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix (2D-C/SiC) composites by means of the split Hopkinson tension bar and an electronic universal test machine respectively. The results indicate that the tensile strength of 2D C/SiC composites is increased at high strain rate. Furthermore, coated specimens show not only a 15% improvement in tensile strength but heightened strain rate sensitivity compared with uncoated ones. It is also shown that the tensile failure strain is strain rate insensitive and remains around 0.4%. Optical macrograph of failed specimens under dynamic loading revealed jagged fracture surfaces characterized by delamination and crack deviation, together with obvious fiber pull-out/splitting, in contrast with the smooth fracture surfaces under quasi-static loading. Scanning electron microscopy micrograph of fracture surface under dynamic loading clearly displayed integrated bundle pull-out which implies suppressed in-bundle debonding and enhanced in-bundle interfacial strengthening, in contrast with extensive in-bundle debonding under quasi-static loading. Thus we conclude that, with 2D C

  15. Acoustic characterization of void distributions across carbon-fiber composite layers

    Science.gov (United States)

    Tayong, Rostand B.; Smith, Robert A.; Pinfield, Valerie J.

    2016-02-01

    Carbon Fiber Reinforced Polymer (CFRP) composites are often used as aircraft structural components, mostly due to their superior mechanical properties. In order to improve the efficiency of these structures, it is important to detect and characterize any defects occurring during the manufacturing process, removing the need to mitigate the risk of defects through increased thicknesses of structure. Such defects include porosity, which is well-known to reduce the mechanical performance of composite structures, particularly the inter-laminar shear strength. Previous work by the authors has considered the determination of porosity distributions in a fiber-metal laminate structure [1]. This paper investigates the use of wave-propagation modeling to invert the ultrasonic response and characterize the void distribution within the plies of a CFRP structure. Finite Element (FE) simulations are used to simulate the ultrasonic response of a porous composite laminate to a typical transducer signal. This simulated response is then applied as input data to an inversion method to calculate the distribution of porosity across the layers. The inversion method is a multi-dimensional optimization utilizing an analytical model based on a normal-incidence plane-wave recursive method and appropriate mixture rules to estimate the acoustical properties of the structure, including the effects of plies and porosity. The effect of porosity is defined through an effective wave-number obtained from a scattering model description. Although a single-scattering approach is applied in this initial study, the limitations of the method in terms of the considered porous layer, percentage porosity and void radius are discussed in relation to single- and multiple-scattering methods. A comparison between the properties of the modeled structure and the void distribution obtained from the inversion is discussed. This work supports the general study of the use of ultrasound methods with inversion to

  16. A New Fiber Preform with Nanocarbon Binder for Manufacturing Carbon Fiber Reinforced Composite by Liquid Molding Process.

    Science.gov (United States)

    Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun

    2015-11-01

    Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing. PMID:26726642

  17. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  18. An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt

    Science.gov (United States)

    Gong, Xiaobo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2016-03-01

    Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures.

  19. Study the Effect of Carbon Fiber Volume Fraction and their Orientations on the Thermal Conductivity of the Polymer Composite Materials.

    Directory of Open Access Journals (Sweden)

    Mohammed Sellab Hamza

    2008-01-01

    Full Text Available The effect of fiber volume fraction of the carbon fiber on the thermal conductivity of the polymer composite material was studied. Different percentages of carbon fibers were used (5%, 10%, 15%, 20%, and 25%. Specimens were made in two groups for unsaturated polyester as a matrix and carbon fibers, first group has parallel arrangement of fibers and the second group has perpendicular arrangement of fibers on the thermal flow, Lee's disk method was used for testing the specimens. This study showed that the values of the of thermal conductivity of the specimens when the fibers arranged in parallel direction was higher than that when the fibers arranged in the perpendicular direction The results indicated that the thermal conductivity increases with the increasing the fiber volume fraction. Minimum value was (0.64 W/m.?C for parallel arrangement and (0.1715 W/m.?C for perpendicular arrangement at (Vf = 5% .Maximum value for parallel and perpendicular were (2.65 W/m. ?C and (0.215 W/m.?C at (Vf = 25% respectively.

  20. Low-temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metal oxides

    International Nuclear Information System (INIS)

    In previous works, the authors were involved in the preparation and optimization of Nomex-based activated carbon fibers (ACFs) monoliths and their use as catalytic supports of manganese oxides for the selective catalytic reduction (SCR) of NOx with NH3 at low temperature. Thus, a low density monolith made of carbonized Nomex rejects was fabricated and submitted to different surface conditioning treatments in order to maximize the dispersion and loading of manganese oxides which were highly active in the SCR process. In order to complete the study, in this work different carbon fibers were used to fabricate the monolithic support, and the catalytic activity of the derived manganese oxide-based catalysts was analyzed and compared to that of the standard Nomex-supported catalyst. These fibers were coal Pitch-, Rayon-, PAN-, and phenolic Resin-based carbon fibers. Additionally, catalysts based on other metal oxides (nickel, chromium, vanadium and iron) were prepared via equilibrium adsorption (EA) and pore volume impregnation (PVI) of the strategically modified supports, in an attempt to surpass the catalytic performance of the already highly active manganese oxide-based catalysts and to tackle one of the main drawbacks for the utilization of these catalysts under practical conditions; the SO2 deactivation. For all the prepared catalysts the following parameters were evaluated at a standard reaction temperature of 150C: catalytic activity, selectivity, extent of support gasification, H2O inhibition and SO2 deactivation. Additionally temperature programmed desorption (TPD) of NO was conducted on specific samples in order to analyze the different adsorption modes of NO on the catalyst surface. All this research procedure has eventually derived in the selection of a catalyst (Nomex rejects-based activated carbon fiber composite (ACFC) supported iron oxides) which constitutes a compromise between high catalytic performance and moderate SO2 deactivation

  1. Characterization of composites fabricated from discontinuous random carbon fiber thermoplastic matrix sheets produced by a paper making process

    Science.gov (United States)

    Ducote, Martin Paul, Jr.

    In this thesis, a papermaking process was used to create two randomly oriented, high performance composite material systems. The primary objective of this was to discover the flexural properties of both composite systems and compare those to reported results from other studies. In addition, the process was evaluated for producing quality, randomly oriented composite panels. Thermoplastic polymers have the toughness and necessary strength to be alternatives to thermosets, but with the promise of lower cycle times and increased recyclability. The wet-lay papermaking process used in this study produces a quality, randomly oriented thermoplastic composite at low cycle times and simple production. The materials chosen represent high performance thermoplastics and carbon fibers. Short chopped carbon fiber filled Nylon 6,6 and PEEK composites were created at varying fiber volume fractions. Ten nylon based panels and five PEEK based panels were subjected to 4-point flexural testing. In several of the nylon-based panels, flexural testing was done in multiple direction to verify the in-plane isotropy of the final composite. The flexural strength performance of both systems showed promise when compared to equivalent products currently available. The flexural modulus results were less than expected and further research should be done into possibly causes. Overall, this research gives good insight into two high performance engineering composites and should aid in continued work.

  2. The Smart Behavior of Cement-based Composite Containing Carbon Fibers under Three-point-bending Load

    Institute of Scientific and Technical Information of China (English)

    CHEN Bing; WU Keru; YAO Wu

    2005-01-01

    The influences of the fiber volume fraction on the electrical conductivity and the fraction change of electrical resistance under three-point- bending test were discussed. It is found that the relationship between the electrical conductivity of composites and the fiber volume fraction can be explained by the percolation theory and the change of electrical resistance of specimens reflects to the process of loading. The sensitivity and the response of the change of electrical resistance to the load for specimens with different fiber volume fractions are quite different,which provide an important guide for the manufacture of conductive and intrinsically smart carbon fiber composite.

  3. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    OpenAIRE

    Singh, B. P.; Veena Choudhary; Parveen Saini; Mathur, R.B.

    2012-01-01

    In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs) carbon fiber (CF) fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz). The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE) from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale comp...

  4. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

    OpenAIRE

    Rubio-Bollinger, G.; Castellanos-Gomez, A.; Bilan, S.; Zotti, L. A.; Arroyo, C. R.; Agraït, N.; Cuevas, J.

    2012-01-01

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron transport through single-molecule junctions formed by a single octanethiol molecule bonded by the thiol anchoring group to a gold electrode and linked to a carbon tip by the methyl group. We observe...

  5. Obtaining and characterization of composite material base on ablative phenolic resin and carbon fibers

    OpenAIRE

    Srebrenkoska, Vineta

    2002-01-01

    In this master paper is optimized a technological treatment for production of a molding compound based on short carbon fibers and ablative phenol- formaldehyde resin for high temperature application. The characterization of the starting raw materials is performed and molding compounds with different fiber/matrix ratio and different fiber length are obtained. From the different lab-samples molded parts are made by thermocompression. All physical, mechanical and thermal properties of the co...

  6. High-resolution Brillouin analysis in a carbon-fiber-composite unmanned aerial vehicle model wing

    Science.gov (United States)

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Shlomi, Orel; Silbiger, Maayan; Adler, Gadi; Zadok, Avi

    2016-05-01

    Standard optical fibers are successfully embedded within a model wing of an unmanned aerial vehicle, constructed of carbon fiber and epoxy, during its production. Time-gated Brillouin optical correlation domain analysis along the embedded optical fibers is performed with a spatial resolution of 4 cm. Tests were carried out using a portable measurement setup prototype. The results represent an important step towards applications of high-resolution Brillouin analysis outside the research laboratory.

  7. Carbon fiber composite targets for nuclear fusion technology: a focused ion beam/scanning electron microscope investigation.

    Science.gov (United States)

    Ghezzi, F; Magni, S; Milani, M; Tatti, F

    2007-01-01

    Carbon fiber composite (CFC) targets are investigated by a focused ion beam/scanning electron microscope (FIB/SEM) in a joint project aiming at the development of robust divertors in the International Thermonuclear Experimental Reactor (ITER). These mockups are exposed to a plasma that simulates the off-normal thermal loads foreseen for ITER and display a rich, puzzling impact scenario. Morphological elements are identified at the exposed surface and beneath it, and are examined in order to point out the relevant processes involved. Each technique adopted is discussed and evaluated. PMID:18200678

  8. Deformation behavior of FRP-metal composites locally reinforced with carbon fibers

    Science.gov (United States)

    Scholze, M.; Kolonko, A.; Lindner, T.; Lampke, T.; Helbig, F.

    2016-03-01

    This study investigates variations of hybrid laminates, consisting of one aluminum sheet and a unidirectional glass fiber (GF) reinforced polyamide 6 (PA6) basic structure with partial carbon fiber (CF) reinforcement. To create these heterogeneous FRP laminates, it is necessary to design and produce semi-finished textile-based products. Moreover, a warp knitting machine in conjunction with a warp thread offset unit was used to generate bionic inspired compounds. By the variation of stacking prior to the consolidation process of the hybrid laminate, an oriented CF reinforcement at the top and middle layer of the FRP is realized. In both cases the GFRP layer prevents contact between the aluminum and carbon fibers. In so doing, the high strength of carbon fibers can be transferred to the hybrid laminate in load directions with an active prevention of contact corrosion. The interface strength between thermoplastic and metal component was improved by a thermal spray coating on the aluminum sheet. Because of the high surface roughness and porosity, mechanical interlock was used to provide high interface strength without bonding agents between both components. The resulting mechanical properties of the hybrid laminates are evaluated by three point bending tests in different load directions. The effect of local fiber orientation and layer positioning on failure and deformation mechanism is additionally investigated by digital image correlation (DIC).

  9. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  10. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Science.gov (United States)

    Singh, B. P.; Choudhary, Veena; Saini, Parveen; Mathur, R. B.

    2012-06-01

    In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs) carbon fiber (CF) fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz). The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE) from -29.4 dB for CF/epoxy-composite to -51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  11. Carbon Fiber Biocompatibility for Implants

    OpenAIRE

    Richard Petersen

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-rein...

  12. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite

    International Nuclear Information System (INIS)

    Highlights: → Voids and debonding lead to a higher absorption rate and lower moisture content. → The changes in three absorption behaviors can be explained by an Arrhenius method. → ILSS reduction induced by hygrothermal aging has a plateau. → Dry specimens and wet specimens have different failure patterns owing to the moisture. → High test temperature and aging induce the rapid drop of mechanical properties. -- Abstract: In this research, hygrothermal aging behaviors of carbon fiber/bismaleimide (BMI) composite materials were investigated. Water diffusivity was measured through 3 wet-dry cycles for BMI resin reinforced with unidirectional carbon fiber CCF300/QY9511 composite. The changes of the diffusion coefficient and saturation level of water absorption during the 3 cycles were determined. Electron microscopy revealed that micro-cracks near the weak interface together with the de-bonding provided routes for water uptake. The interlaminar property of composite was characterized by interlaminar shear strength (ILSS). ILSS reduction of CCF300/QY9511 from hygrothermal aging could come to a plateau during the first 14 days. The different damage morphologies between dry specimens and wet specimens were characterized by electron microscopy. ILSS under different test temperatures was also studied with an Arrhenius method, and the result of the Arrhenius method confirmed that routes, such as micro-cracks and de-bonding, for water uptake were also instrumental in speeding up the drying.

  13. Fracture Toughness of Carbon Fiber Composites Containing Various Fiber Sizings and a Puncture Self-Healing Thermoplastic Matrix

    Science.gov (United States)

    Cano, Roberto J.; Grimsley, Brian W.; Ratcliffe, James G.; Gordon, Keith L.; Smith, Joseph G.; Siochi, Emilie J.

    2015-01-01

    Ongoing efforts at NASA Langley Research Center (LaRC) have resulted in the identification of several commercially available thermoplastic resin systems which self-heal after ballistic impact and through penetration. One of these resins, polybutylene graft copolymer (PBg), was selected as a matrix for processing with unsized carbon fibers to fabricate reinforced composites for further evaluation. During process development, data from thermo-physical analyses was utilized to determine a processing cycle to fabricate laminate panels, which were analyzed by photo microscopy and acid digestion. The process cycle was further optimized based on these results to fabricate panels for mechanical property characterization. The results of the processing development effort of this composite material, as well as the results of the mechanical property characterization, indicated that bonding between the fiber and PBg was not adequate. Therefore, three sizings were investigated in this work to assess their potential to improve fiber/matrix bonding compared to previously tested unsized IM7 fiber. Unidirectional prepreg was made at NASA LaRC from three sized carbon fibers and utilized to fabricate test coupons that were tested in double cantilever beam configurations to determine GIc fracture toughness.

  14. Computational modeling of the electromagnetic characteristics of carbon fiber-reinforced polymer composites with different weave structures

    Science.gov (United States)

    Hassan, A. M.; Douglas, J. F.; Garboczi, E. J.

    2014-02-01

    Carbon fiber reinforced polymer composites (CFRPC) are of great interest in the aerospace and automotive industries due to their exceptional mechanical properties. Carbon fibers are typically woven and inter-laced perpendicularly in warps and wefts to form a carbon fabric that can be embedded in a binding matrix. The warps and wefts can be interlaced in different patterns called weaving structures. The primary weaving structures are the plain, twill, and satin weaves, which give different mechanical composite properties. The goal of this work is to computationally investigate the dependence of CFRPC microwave and terahertz electromagnetic characteristics on weave structure. These bands are good candidates for the Nondestructive Evaluation (NDE) of CFRPC since their wavelengths are comparable to the main weave features. 3D full wave electromagnetic simulations of several different weave models have been performed using a finite element (FEM) simulator, which is able to accurately model the complex weave structure. The computational experiments demonstrate that the reflection of electromagnetic waves from CFRPC depend sensitively on weave structure. The reflection spectra calculated in this work can be used to identify the optimal frequencies for the NDE of each weave structure.

  15. Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Li; Linzhi Wu∗; Li Ma; Xiangqiao Yan

    2016-01-01

    This paper focuses on the effect of temperature on the out-of-plane compressive properties and failure mechanism of carbon fiber/epoxy composite pyramidal truss cores sandwich panels (CF/CPTSP). CF/CPTSP with novel reinforced frames are manufactured by the water jet cutting and interlocking assembly method in this paper. The theoretical analysis is presented to predict the out-of-plane compressive stiffness and strength of CF/CPTSP at different ambient temperatures. The tests of composite sandwich panels are per-formed throughout the temperature range from−90◦C to 180◦C. Good agreement is found between theo-retical predictions and experimental measurements. Experimental results indicate that the low tempera-ture increases the compressive stiffness and strength of CF/CPTSP. However, the high temperature causes the degradation of the compressive stiffness and strength. Meanwhile, the effects of temperature on the failure mode of composite sandwich panels are also observed.

  16. Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes

    International Nuclear Information System (INIS)

    In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at 0° was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at 90° was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively

  17. Scanning electron microscopy (SEM) study of advanced PMR-X Carbon fiber composites after high temperature exposure

    International Nuclear Information System (INIS)

    Degradation behavior of neat resin, epoxy sized and unsized carbon fibers in polyimide matrix were investigated. Degradation of neat resin and unidirectional laminates (08 and 06)were investigated at temperature between 470 digC-650 digBy using scanning electron microscopy technique, voids formation in neat resin, transverse cracking and microcracking at fiber-matrix interface were investigated. The results showed that PMR-X composites are more stable in an inert atmosphere (nitrogen atmosphere)than in air, degradation of PMR-X neat resin is accompanied by volatilization and microcrack formation at longitudinal and transverse direction of fiber-matrix interface with in composite panels. However, it was concluded that there is good adhesion between fiber and matrix in epoxy sized composites

  18. Effect of Carbon Fiber Content on Mechanical Properties of Short Carbon Fiber Reinforced PE Composites%碳纤维含量对碳纤维增强PE复合材料力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    李力; 曹昌林

    2012-01-01

    以短切碳纤维为增强体,以聚乙烯树脂为基体,运用螺杆注射成型的方法制备碳纤维增强热塑性复合材料.研究了碳纤维含量对复合材料硬度、拉伸、疲劳等性能的影响.结果表明,随着碳纤维含量的增加,复合材料的维氏硬度呈S形增加,拉伸强度、弹性模量、条件疲劳极限值都有提高;当碳纤维含量为4.021%时,相对纯聚乙烯,硬度、拉伸强度、弹性模量、条件疲劳极限值分别增加了35.489%、18.421%、208.024%、213.240%%Taking chopped carbon fiber as reinforce element and the polyethylene resin as matrix, the carbon fiber reinforced thermoplastic composites were prepared by the way of screw injection molding method. The effects of carbon fiber content on mechanical properties were investigated by measuring the hardness, tensile and fatigue. The results show that: with the increase of carbon fiber content, the hardness increase tendency in S-shape. The tensile strength and elastic modulus and the fatigue cycle and the fatigue limit were increased by 35.489%, 18.421%, 208.024%, 213.240%, respectively.

  19. Nondestructive evaluation of braided carbon fiber composites with artificial defect using HTS-SQUID gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    Shinyama, Y., E-mail: y083818@edu.imc.tut.ac.jp [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Yamaji, T.; Hatsukade, Y. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Takai, Y.; Aly-Hassan, M.S.; Nakai, A.; Hamada, H. [Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Tanaka, S. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2011-11-15

    We applied a current-injection-based NDE method using a HTS-SQUID gradiometer to a braided CFRP with artificial cracks. Current distributions in the braided CFRP were estimated from measured field gradient distributions. A small crack, in which a few carbon-fiber bundles were cut, was well detected from the current distributions. A cross-section of the CFRP showed that a density of the bundles at edges is higher than the other part. The experimental results demonstrated the capability of the method to detect sub-mm cracks. Braided carbon fiber reinforced plastics (CFRPs) are one of multifunctional materials with superior properties such as mechanical strength to normal CFRPs since the braided CFRPs have continuous fiber bundles. In this paper, we applied the current-injection-based nondestructive evaluation (NDE) method using a HTS-SQUID gradiometer to the braided CFRP for the detection of the breakage of the bundles. We prepared planar braided CFRP samples with and without artificial cracks of 1 and 2 mm lengths, and measured the current density distribution above the samples using the NDE method. In the measurement results, not only a few completely-cut bundles but also the additional partially-cut bundles were detected from decrease in the measured current density along the cut bundle around the cracks. From these results, we showed that it is possible to inspect a few partially-cut bundles in the braided CFRPs by the NDE method.

  20. Evaluation of contact resistance between carbon fiber/epoxy composite laminate and printed silver electrode for damage monitoring

    International Nuclear Information System (INIS)

    An addressable conducting network (ACN) makes it possible to monitor the condition of a structure using the electrical resistance between electrodes on the surface of a carbon fiber reinforced plastics (CFRP) structure. To improve the damage detection reliability of the ACN, the contact resistances between the electrodes and CFRP laminates needs to be minimized. In this study, silver nanoparticle electrodes were fabricated via printed electronics techniques on a CFRP composite. The contact resistance between the silver electrodes and CFRP were measured with respect to various fabrication conditions such as the sintering temperature of the silver nano-ink and the surface roughness of the CFRP laminates. The interfaces between the silver electrode and carbon fibers were observed using a scanning electron microscope (SEM). Based on this study, it was found that the lowest contact resistance of 0.3664Ω could be achieved when the sintering temperature of the silver nano-ink and surface roughness were 120 degree C and 0.230 a, respectively.

  1. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    Directory of Open Access Journals (Sweden)

    Marta Invernizzi

    2016-07-01

    Full Text Available Glass (GFR and carbon fiber-reinforced (CFR dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride as hardener and (2,4,6,-tris(dimethylaminomethylphenol as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  2. Evaluation of contact resistance between carbon fiber/epoxy composite laminate and printed silver electrode for damage monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Eun Beom; Kim, Hak Sung [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of); Takahashi, Kosuke [Dept. of Mechanical Sciences and Engineering, Tokyo Institute of Technology, Tokyo (Korea, Republic of)

    2014-10-15

    An addressable conducting network (ACN) makes it possible to monitor the condition of a structure using the electrical resistance between electrodes on the surface of a carbon fiber reinforced plastics (CFRP) structure. To improve the damage detection reliability of the ACN, the contact resistances between the electrodes and CFRP laminates needs to be minimized. In this study, silver nanoparticle electrodes were fabricated via printed electronics techniques on a CFRP composite. The contact resistance between the silver electrodes and CFRP were measured with respect to various fabrication conditions such as the sintering temperature of the silver nano-ink and the surface roughness of the CFRP laminates. The interfaces between the silver electrode and carbon fibers were observed using a scanning electron microscope (SEM). Based on this study, it was found that the lowest contact resistance of 0.3664Ω could be achieved when the sintering temperature of the silver nano-ink and surface roughness were 120 degree C and 0.230 a, respectively.

  3. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    Science.gov (United States)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-05-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ɛ-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ɛ-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  4. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    Directory of Open Access Journals (Sweden)

    Ploeckl Marina

    2015-01-01

    Full Text Available In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s−1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462–470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10−4 s−1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.

  5. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    Science.gov (United States)

    Ploeckl, Marina; Kuhn, Peter; Koerber, Hannes

    2015-09-01

    In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s-1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462-470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10-4 s-1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.

  6. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production

    Science.gov (United States)

    Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan

    2014-05-01

    Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.

  7. Matrix structure evolution and thermo-mechanical properties of carbon fiber-reinforced Al2O3-SiC-C castable composites

    International Nuclear Information System (INIS)

    Highlights: • Carbon fibers are formed in Al2O3-SiC-C castable composites under the action of nano Ni. • Starting growth temperature is 900 °C and growth mechanism agrees with V–S model. • The high temperature strength of composites can be increased by above 40%. • The thermal shock resistance can be enhanced by above 20%. - Abstract: The spalling and corrosion during the thermal cycles are the main causes of the damages observed in Al2O3-SiC-C castable composites that are used in molten-iron system. Using the catalyst of nano Ni and ball pitch in the matrix, Al2O3-SiC-C castable composites were prepared with the anti-oxidant addition of silicon. The results indicate that the high temperature of the Al2O3-SiC-C castable composites can be increased by above 42%, and the thermal shock resistance can be enhanced by above 20% because the ball pitch is carbonized and releases CxHy vapor, which can be pyrolized to carbon atoms and subsequently deposited into carbon fibers under the catalyst action. The starting temperature of carbon fiber growth is approximately 900 °C, and their diameter and aspect ratio can increase with the rising temperature. The in-situ generation of carbon fibers in Al2O3-SiC-C castable composites can significantly improve the fibers’ thermo-mechanical properties

  8. MODIFYING V-14 RUBBER WITH CARBON FIBERS

    OpenAIRE

    Shadrinov N. V.; Nartakhova S. I.

    2016-01-01

    The influence of carbon fibers and modified carbon fibers on properties of industrially produced V-14 rubber is examined. The dependences of physical and mechanical properties, hardness, abrasion resistance and resistance in aggressive environment on few amount of filled fiber are established. Structural properties of reinforced elastomeric composites are studied by scanning electron microscopy. Elastomeric layer on the surface of modified carbon fiber, confirmed with high adhesion is identified

  9. Finite Element Analysis of Progressive Failure and Strain Localization of Carbon Fiber/Epoxy Composite Laminates by ABAQUS

    Science.gov (United States)

    Liu, P. F.; Yang, Y. H.; Gu, Z. P.; Zheng, J. Y.

    2015-12-01

    Interaction mechanism between the intralaminar damage and interlaminar delamination of composite laminates is always a challenging issue. It is important to consider the progressive failure and strain softening behaviors simultaneously during the damage modeling and numerical simulation of composites using FEA. This paper performs three-dimensional finite element analysis of the progressive failure and strain localization of composites using FEA. An intralaminar progressive failure model based on the strain components is proposed and the nonlinear cohesive model is used to predict the delamination growth. In particular, the nonlocal integral theory which introduces a length scale into the governing equations is used to regularize the strain localization problems of composite structures. Special finite element codes are developed using ABAQUS to predict the intralaminar and interlaminar damage evolution of composites simultaneously. The carbon fiber/epoxy composite laminates with a central hole demonstrates the developed theoretical models and numerical algorithm by discussing the effects of the mesh sizes and layups patterns. It is shown the strain localization problem can be well solved in the progressive failure analysis of composites when the energy dissipation due to the damage of the fiber, matrix and interface occurs at a relatively wide area.

  10. A study on damage and fatigue characteristics of plain woven carbon fiber reinforced composite material(I)

    International Nuclear Information System (INIS)

    The characteristics of damage and fatigue subjected to tensile fatigue loading in plain woven carbon fiber reinforced composite material were studied. Constant amplitude load of 90% stress of notch strength was applied to each specimen, which had different initial notch length, and crack dectectvie compliance curve was determined form load-displacement data. The effective crack length(aeff) was obtained form this compliance curve and the effective crack growth could be divided to three-steps and explained separately. After cycling the shape of fatigue crack was observed by S.E.M.. Change of elastic modulus(EN) during fatigue cycle was explained by repeated sudden-death medel. The material constant determined by Jen-Hsu model was more useful to evaluate damage than Wang-Chim model. (Author)

  11. Mechanical analysis of carbon fiber reinforced shape memory polymer composite for self-deployable structure in space environment

    Science.gov (United States)

    Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.

  12. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qi, E-mail: yuqi1027@126.com [Liaoning Key Laboratory of Advanced Polymer Matrix Composites and Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136 (China); Chen, Ping, E-mail: chenping_898@126.com [Liaoning Key Laboratory of Advanced Polymer Matrix Composites and Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136 (China); State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Gao, Yu; Ma, Keming; Lu, Chun; Xiong, Xuhai [Liaoning Key Laboratory of Advanced Polymer Matrix Composites and Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136 (China)

    2014-10-01

    Highlights: •Electron irradiation decreased the storage modulus finally. •T{sub g} decreased first and then increased and finally decreased. •The thermal stability was reduced and then improved and finally decreased. •The changing trend of flexural strength and ILSS are consistent. -- Abstract: The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 10{sup 15} cm{sup −2}, the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 10{sup 15} cm{sup −2}, the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites.

  13. Research on 3D Braided Nickel Plated Carbon Fiber/epoxy Resin Composites and Their Electromagnetic Protection Properties

    Institute of Scientific and Technical Information of China (English)

    QU Zhaoming; WANG Qingguo; LEI Yisan; ZHANG Ruigang

    2013-01-01

    To develop electromagnetic protection composites with integrated structure-function properties,the three-dimension (3D) braided nickel plated carbon fiber/epoxy resin (Ni-CF3D/EP) composites were prepared based on 3D five-directional braiding,unitary nickel plating and mold compression shaping.The electromagnetic protection properties of Ni-CF3D/EP composites including shielding effectiveness (SE) and reflection loss against plane electromagnetic wave,shielding properties against electromagnetic pulse (EMP) were investigated.The test results show that the novel composites have good electromagnetic protection properties in a wide frequency range of 14 kHz~ 18 GHz with SE of 42 dB~95 dB,the absorption bandwidth of-5 dB in 2 GHz~ 18 GHz can reach 10 GHz and the pulse peak SE against EMP is 43.7 dB which can reduce the electromagnetic energy greatly.Meanwhile,the mechanic properties were also investigated and the results indicate that the Ni-CF3D/EP composites can replace metal materials for loading-bearing structural applications because of their excellent mechanic properties.

  14. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    International Nuclear Information System (INIS)

    Highlights: •Electron irradiation decreased the storage modulus finally. •Tg decreased first and then increased and finally decreased. •The thermal stability was reduced and then improved and finally decreased. •The changing trend of flexural strength and ILSS are consistent. -- Abstract: The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 1015 cm−2, the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 1015 cm−2, the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites

  15. Transitions in Wear and Friction of Carbon Fiber Reinforced Copper Matrix Composite Sliding Against AISI-1045 Steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The friction and wear properties of carbon fiber reinforced copper matrix composite in dry sliding against AISI-1045 steel was evaluated by a block-on-ring test machine. It was shown that the low frictional factor and wear rate of the composite block could be maintained when pressure or velocity was below a certain value. But when the pressure or velocity exceeded the critical value, the friction factor and wear rate tended to increase rapidly with pressure and sliding velocity. The morphologies, elemental compositions, and surface profile of worn composite surfaces at different wear stages were analyzed by means of scanning electron microscopy, energy dispersive spectrometry, and profile-meter. It was found that low values of friction and wear were due to a thin solid film forming on the surface of the composite block which includes carbon and copper at a mild wear stage. The film could impede adhesion and provide some degree of self-lubrication. When the film included more metal elements and were damaged, severe wear happened, and the wear rate increased sharply. As a result, a transition diagram in friction and wear was constructed, which provided pressure and velocity conditions of change from mild wear and low friction to severe wear and high friction for the wear-resisting design.

  16. Novel platinum nanoparticles/vapor grown carbon fibers composite counter electrodes for high performance dye sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: • The Pt nanoparticles (PtNPs) are highly dispersed on vapor grown carbon fibers (VGCFs). • The power conversion efficiency of DSSCs depends substantially on the relative content of VGCFs to PtNPs. • Electrocatalytic activities of PtNPs/VGCFs are examined using impedance, cyclic voltammetry, and Tafel polarization techniques. • Moderate combination of PtNPs and VGCFs exhibits higher power conversion efficiency of DSSCs than that of PtNPs or VGCFs alone. - Abstract: A composite film composed of platinum nanoparticles (PtNPs) and vapor grown carbon fibers (VGCFs) was coated on FTO glass acted as a counter electrode (CE) for high performance dye-sensitized solar cell (DSSC) via a facially thermal approach. The PtNP/VGCF hybrid film was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetry (TGA), X-ray diffraction (XRD), Raman, and X-ray photoelectroscopy (XPS). In addition, cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS) were measured to correlate electrocatalytic activity to photovoltaic performance of DSSCs based on these PtNP/VGCF hybrid counter electrodes (CEs). Results indicated that PtNPs can enhance the thermal stability of VGCFs and were uniformly distributed over VGCFs with high porosity to provide large exposed surface area for redox reactions occurring within the films. VGCFs were found to benefit Pt reduction during annealing at 450 °C. A DSSC comprising the hybrid CE with a weight ratio of PtNPs to VGCFs of 3:7 (PV37) illustrated a higher solar-to-electricity efficiency of 7.77% in comparison to 7.31% for a conventional Pt CE or 3.79% for a pure VGCF CE. Electrochemical analyses demonstrated that PV37 CE featured the strongest electrocatalytic ability for the reduction of I3− to I− and the lowest Nernst diffusion resistance, confirming the highest power conversion efficiency among the samples evaluated

  17. Coating of Carbon Fiber with Polyhedral Oligomeric Silsesquioxane (POSS) to Enhance Mechanical Properties and Durability of Carbon/Vinyl Ester Composites

    OpenAIRE

    Mujib Khan; Mahesh Hosur; Hassan Mahfuz; Richard Granata; Felicia Powell

    2011-01-01

    Our continuing quest to improve the performance of polymer composites under moist and saltwater environments has gained momentum in recent years with the reinforcement of inorganic nanoparticles into the polymer. The key to mitigate degradation of composites under such environments is to maintain the integrity of the fiber/matrix (F/M) interface. In this study, the F/M interface of carbon/vinyl ester composites has been modified by coating the carbon fiber with polyhedral oligomeric silsesqui...

  18. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Dongxian Zhuo

    2013-01-01

    Full Text Available Carbon nanotube/graphene nanoplatelet (MWCNT/GNP hybrid membranes with lower liquid permeability and better barrier effect compared to MWCNT membranes were successfully synthesized by vacuum filtering. Their morphologies, water permeability, and pore structures were characterized by a scanning electron microscope (SEM and nitrogen adsorption isotherms. Furthermore, MWCNT/GNP membranes were used to improve the flame retardancy of carbon fiber reinforced polymer (CFRP composites, and the influence of weight percentage of GNPs on the permeability and flame retardancy of MWCNT/GNP membranes was systematically investigated. Results show that incorporation of MWCNT/GNP membranes on CFRP composite plates can remarkably improve the flame retardancy of CFRP composites. Specifically, the incorporation of hierarchical MWCNT/GNP membrane with 7.5 wt% of GNP displays a 35% reduction in the peak heat release rate (PHRR for a CFRP composite plate with the epoxy as matrix and a 11% reduction in PHRR compared with the incorporation of MWCNT membrane only. A synergistic flame retarding mechanism is suggested to be attributed to these results, which includes controlling the pore size and penetrative network structure.

  19. Using maleic anhydride functionalized graphene oxide for improving the interfacial properties of carbon fiber/BMI composites

    Directory of Open Access Journals (Sweden)

    W. Li

    2016-11-01

    Full Text Available Maleic anhydride functionalized graphene oxide (MAH-GO was synthesized and then introduced into carbon fiber (CF reinforced bismaleimide (BMI composites, with the aim of improving the interfacial adhesion strength between CF and BMI resin. Various characterization techniques including Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectra (XPS and thermogravimetric analysis (TGA demonstrated that the maleic anhydride has been successfully grafted onto the GO surfaces. The study showed that the interlaminar shear strength (ILSS and flexural properties of CF/BMI composites were all improved by the incorporation of GO and MAH-GO, and the MAH-GO showed the substantially improved effect due to the strong interaction between the MAH-GO and the resin matrix. The maximum increment of the ILSS, flexural strength and flexural modulus of composites were 24.4, 28.7 and 49.7%, respectively. Scanning electron microscope (SEM photographs of the fracture surfaces revealed that the interfacial bonding between CF and resin matrix was significantly strengthened by the addition of MAH-GO. The results suggest that this feasible method may be an ideal substitute for the traditional method in the interfacial modification of composites.

  20. Improvement of carbon fiber surface properties using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for struetural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface.

  1. Interfacial Studies of Sized Carbon Fiber

    International Nuclear Information System (INIS)

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  2. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy and Implications for Composite Structures

    Science.gov (United States)

    Waller, J. M.; Nichols, C. T.; Wentzel, D. J.; Saulsberry R. L.

    2010-01-01

    Broad-band modal acoustic emission (AE) data was used to characterize micromechanical damage progression in uniaxial IM7 and T1000 carbon fiber-epoxy tows and an IM7 composite overwrapped pressure vessel (COPV) subjected to an intermittent load hold tensile stress profile known to activate the Felicity ratio (FR). Damage progression was followed by inspecting the Fast Fourier Transforms (FFTs) associated with acoustic emission events. FFT analysis revealed the occurrence of cooperative micromechanical damage events in a frequency range between 100 kHz and 1 MHz. Evidence was found for the existence of a universal damage parameter, referred to here as the critical Felicity ratio, or Felicity ratio at rupture (FR*), which had a value close to 0.96 for the tows and the COPV tested. The implications of using FR* to predict failure in carbon/epoxy composite materials and related composite components such as COPVs are discussed. Trends in the FFT data are also discussed; namely, the difference between the low and high energy events, the difference between early and late-life events, comparison of IM7 and T1000 damage progression, and lastly, the similarity of events occurring at the onset of significant acoustic emission used to calculate the FR.

  3. Design and performance of new type carbon fiber reinforced polyimide-based composites for X/γ photon shielding

    International Nuclear Information System (INIS)

    Background: With the rapid development of radiation technology, demands of functional and structural integration have been put forward for the photon shielding material. Purpose: To meet this need, a new type of carbon fiber reinforced polyimide composite has been designed and tested. Methods: Shielding properties of composite materials of different PbO contents are modeled based on MCNP. According to the simulation results, shielding material is designed and prepared. And its shielding properties, mechanical properties as well as radiation-resistant properties are tested. Results: Through photon shield experiment and mechanical performance experiment, the composite material has good shielding performance for photons. Its photon transmission rate at thickness of 4.80-mm is 54.13% for 137Cs (662 keV) gamma-ray, bend strength and stretch strength at l.2-mm thickness can reach 263 MPa and 369 MPa, respectively. After 90-kGy irradiation, the stretch strength can retain 83.47% of its performance. Conclusion: Therefore, the material possesses great application potential in medicine and industry such as gamma ray flaw detection. (authors)

  4. In vitro studies of carbon fiber microbiosensor for dopamine neurotransmitter supported by copper-graphene oxide composite

    International Nuclear Information System (INIS)

    A composite was prepared from copper and graphene oxide (Cu-GO) by in-situ chemical reduction of a mixture containing GO and Cu(II) ions with potassium borohydride. The morphology and structure of the composite were confirmed by various physicochemical techniques. The materials were used in a tyrosinase-based microbiosensor where the enzyme is immobilized in a biocompatible matrix consisting of poly(ortho-phenylene diamine) and Cu-GO. The composite was deposited on the surface of an 8-μm thick carbon fiber microelectrode. The role of each component in the sensing layer was systematically investigated with respect to the analytical performance of the system. In its optimal configuration, the biosensor demonstrated (a) a sensitivity of 6.1 ± 3 nA mM-1 dopamine (DA), (b) a linear response to DA (with a Michaelis-Menten constant of 0.29 ± 0.03 mM), (c) good selectivity over ascorbic acid and uric acid, and (d) a high blocking capacity (112.2 ± 2 mM) for ascorbic acid. (author)

  5. Effects of Temperature, Oxidation and Fiber Preforms on Fatigue Life of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2016-04-01

    In this paper, the effects of temperature, oxidation and fiber preforms on the fatigue life of carbon fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) have been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of unidirectional, cross-ply, 2D, 2.5D and 3D C/SiC composites at room temperature, 800 °C in air, 1100, 1300 and 1500 °C in vacuum conditions have been predicted.

  6. Effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coating deposited onto carbon fiber reinforced epoxy composites

    International Nuclear Information System (INIS)

    This paper investigates the effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coatings deposited on carbon fiber reinforced epoxy composites (CFRE composites). The bond strength between the Zn-Al coatings and the substrates was tested on a RGD-5 tensile testing machine. The microstructures and phase composition of the as-sprayed coatings were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results showed that both the melting extent of Zn-Al particles and the bond strength of the coatings were evidently improved by increasing the spraying power. Moreover, the content of crystalline Zn-Al coatings was slightly changed. Observation of fracture surfaces showed that the Zn-Al coatings could bond well with the carbon fiber bundles using 40 kW spraying power.

  7. Continuous Processing of Multi-Walled Carbon Nanotube-Studded Carbon Fiber Tapes for Enhanced Through-Thickness Thermal Diffusivity Composites.

    Science.gov (United States)

    Craddock, John D; Qian, Dali; Lester, Catherine; Matthews, JohnJ; Mansfield, J Patrick W; Foedinger, Richard; Weisenberger, Matthew C

    2015-09-01

    Carbon fiber reinforced polymer (CFRP) composites offer advantages over traditional metallic structures, particularly specific strength and stiffness, but at much reduced thermal conductivity. Moreover, fiber-to-fiber heat conduction in the composite transverse directions is significantly lower. When these structures contain electronics (heat generators), shortfalls in heat transport can be problematic. Here we report the achievement of a continuous, reel-to-reel process for growing short multiwalled carbon nanotubes (MWCNT) on the surfaces of spread-tow carbon fiber tapes. These tapes were subsequently prepregged with an epoxy matrix, and laid up into multi-ply laminate panels, cured and tested for through-thickness thermal diffusivity. The results showed up to a 57% increase in through thickness thermal diffusivity compared to the baseline composite with no MWCNT. PMID:26716256

  8. X-ray microtomography, ultrasound and thermography for the characterization of defects in fiberglass and carbon fiber composite materials and elements

    International Nuclear Information System (INIS)

    Glass and carbon fiber reinforced plastics (GRP or CFRP composites) may have different defects that arise on the one hand in the manufacturing process and on the other hand occur or propagate under quasi-static or oscillating mechanical load. The characterization of the nature, location and size of defects is important among other things for optimization of manufacturing processes, modeling of material or component behavior and for the estimation of the useful life of components or structures from GFK or CFK composites. The contribution shows selected examples of the application of X-ray microtomography, ultrasound and thermography for the characterization of defects in fiberglass or carbon fiber composite components. In ''thick'' laminates and complex shapes the X-ray method is particularly suitable.

  9. A LASER INTERFERENCE-BASED SURFACE TREATMENT OF AL AND CARBON FIBER POLYMER COMPOSITES FOR ENHANCED BONDING

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Warren, Charles David [ORNL; ERDMAN III, DONALD L [ORNL; Daniel, Claus [ORNL; Skszek, Timothy [Vehma International of American, Inc.; Caruso-Dailey, Mary M. [3M Company

    2016-01-01

    Due to its increased use in the automotive and aerospace industries, joining of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) to metals demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using a new laser based technique, in which the laser interference power profile was created by splitting the beam and guiding those beams to the sample surface by overlapping each other with defined angles to each other. Results were presented for the overlap shear testing of single-lap joints made with Al 5182 and CFPC specimens whose surfaces prepared by (a) surface abrasion and solvent cleaning; and (b) laser-interference structured surfaces by rastering with a 4 mm laser beam at approximately 3.5 W power. CFPC specimens of T700S carbon fiber, Prepreg T70 epoxy, 4 or 5 ply thick, 0/90o plaques were used. Adhesive DP810 was used to bond Al and CFPC. The bondline was 0.25mm and the bond length was consistent among all joints produced. First, the effect of the laser speed on the joint performance was evaluated by laser-interference structure Al and CFPC surfaces with a beam angle of 3o and laser beam speeds of 3, 5, and 10 mm/s. For this sensitivity study, 3 joint specimens were used per each joint type. Based on the results for minimum, maximum, and mean values for the shear lap strength and maximum load for all the 9 joint types, two joint types were selected for further evaluations. Six additional joint specimens were prepared for these two joint types in order to obtain better statistics and the shear test data was presented for the range, mean, and standard deviation. The results for the single-lap shear tests obtained for six joint specimens, indicate that the shear lap strength, maximum load, and displacement at maximum load for those joints made with laser-interference structured surfaces were increased by approximately 14.8%, 16%, and 100

  10. Synergism of carbon fiber and polyimide in polytetrafluoroethylene-based composites: Friction and wear behavior under sea water lubrication

    International Nuclear Information System (INIS)

    Highlights: ► The effect of PI and CF on the microstructure of PTFE was investigated. ► PI and CF had synergism on the improvement of tribological property of PTFE. ► PTFE-4 (with 5% PI and 15% CF) showed promising application in ocean environment. -- Abstract: Polytetrafluoroethylene-based (PTFE-based) composites reinforced simultaneously with carbon fiber (CF) and polyimide (PI) of different volume fractions were prepared. The microstructure and phase composition of as-prepared PTFE-based composites were analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). Besides, their friction and wear behavior under sea water lubrication was evaluated in relation to the synergistic effect between CF and PI using a ring-on-block test rig, and their worn surfaces were also analyzed using SEM. Results showed that the incorporation of PI induced loosening of the microstructure of PTFE but increased the wear resistance. Contrary to the above, the incorporation of CF led to increased compactness of PTFE, and the compactness as well as wear resistance of the PTFE-based composites increased with the increase of CF content. More importantly, the simultaneous incorporation of PI and CF at a proper volume fraction led to drastically reduced wear rate of PTFE under sea water lubrication. This implies that there exists synergistic friction-reducing and wear-resistant effect between PI and CF. As a result, the PTFE-based composite containing 5% PI (volume fraction) and 15% CF had the best wear resistance, showing promising application in ocean environment.

  11. Digitally focused array ultrasonic testing technique for carbon fiber composite structures

    Science.gov (United States)

    Salchak, Y.; Zhvyrblya, V.; Sednev, D.; Lider, A.

    2016-06-01

    Composite fiber reinforced polymers are highly promising structures. At present, they are widely used in different areas such as aeronautics and nuclear industries. There is a great number of advantages of composite structures such as design flexibility, low cost per cubic inch, resistance to corrosion, lower material costs, lighter weight and improved productivity. However, composites degradation may be caused by different mechanisms such as overload, impact, overheating, creep and fatigue. Comparing to inspection of other materials some unique consideration is required for testing and analysis. Ultrasound testing is the most common method for inspection of composite structures. Digitally Focused Array Technology is considered as novel approach which enables fast and effective quantitative automatic testing. In this study new methodology of quality assurance of composite structure components based on DFA is performed.

  12. Synthesis of higher molecular weight PAN and its copolymers for carbon fibers

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Higher molecular weight polyacrylonitrile (PAN) was obtained by the free-radical suspension copolymerization of itaconic acid (IA) and acrylonitrile (AN) which was carried out in DMSO/H2O using 2,2'-azodiisobutyronitrile (AIBN) as the initiator. The effects of polymerization parameters, such as IA monomer concentration and DMSO/H2O ratio, on the conversion of polymerization and number-average molecular weight are specially described. The copolymerization reaction rate and the number-average molecular weight of the resultant copolymers decrease with the result of high chain transfer constant of DMSO. For the copolymerization of AN and IA, with the inclusion of the good solvent DMSO, the solution degree of AN in DMSO/H2O is higher than that in water, as a result, the resulting copolymer pellets range from soft bulk to solid grain, as characterized by the use of SEM. Higher molecular weight P(AN-co-IA) copolymers have a lower initiation of exothermal reaction temperature and wider DSC exothermal peaks compared with PAN homopolymers, which corresponds with the results of an IR study.

  13. Validation of the numerical model of single-layer composites reinforced with carbon fiber and aramid

    Science.gov (United States)

    Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius

    2016-06-01

    In this work we studied the experimental validation of the model and finite element analysis for a single layer of composite materials reinforced with carbon (denoted as C), aramid (K) and carbon-aramid (C-K) fibers. In the literature there are not many details about the differences that arise between transversal and longitudinal characteristics of composite materials reinforced with fabric, compared to those with unidirectional fibers. In order to achieve carbon and aramid composites we used twill fabric and for carbon-aramid plain fabric, as shown in Figure 1. In order to observe the static behavior of the considered specimens, numerical simulations were carried out in addition to the experimental determination of the characteristics of these materials. Layered composites are obviously the most widespread formula for getting advanced composite structures. It allows a unique variety of material and structural combinations leading to optimal design in a wide range of applications [1,2]. To design and verify the material composites it is necessary to know the basic mechanical constants of the materials. Almost all the layered composites consider that the every layer is an orthotropic material, so there are nine independent constants of material corresponding to the three principal directions: Young modulus E1, E2 and E3, shear modulus G12, G23 and G13, and major poison ratios ν12, ν23, ν13. Experimental determinations were performed using traction tests and strain gauges. For each of the three above mentioned materials, five samples were manufactured.

  14. Modelling of fracture phenomenon in case of composite materials reinforced with short carbon fibers

    Science.gov (United States)

    Caliman, R.

    2015-11-01

    The research work presented in this paper describes the composite materials in terms of formation and propagation of cracks using an algorithm that imposes disproportional loads to composite samples. The required parameters that describe the composites fracture demand inputs as: load intensity, geometry features and relative loading direction. In order to obtain reliable results, it should be a good correlation between the model which describes the facture propagation, the composition of the material and the structural homogeneity. The presented study is using a Functionally Graded Material with local homogeneity in fracture area, and a numerical model based on integration of interactions (Mori - Tanaka method). The parameters that describes the fracture behaviour, includes a factor of stress intensity which is important for establish the fracture direction. The model used in simulations is considering a composite sample with rectangular shape and 6 mm thickness. The sample is loaded with predefined stress σct (MPa) above and under the fracture line. σct represents the critical stress able to lead to fracture propagation. The main objective of this research work it was to generate a numerical model which describes the fracture behaviour of a composite material. The obtained model and its accuracy to describe the fracture behaviour of a composite material is presented in the final part of this paper.

  15. Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites

    OpenAIRE

    Jalili, Mohammad Mehdi; Mousavi, Seyyed Yahya; Pirayeshfar, Amir Soheil

    2015-01-01

    Wood is one of the main materials used for making musical instruments due to its outstanding acoustical properties. Despite such unique properties, its inferior mechanical properties, moisture sensitivity, and time- and cost-consuming procedure for making instruments in comparison with other materials (e.g., composites) are always considered as its disadvantages in making musical instruments. In this study, the acoustic parameters of three different polyester composites separately reinforced ...

  16. Micromechanics model for predicting anisotropic electrical conductivity of carbon fiber composite materials

    Science.gov (United States)

    Haider, Mohammad Faisal; Haider, Md. Mushfique; Yasmeen, Farzana

    2016-07-01

    Heterogeneous materials, such as composites consist of clearly distinguishable constituents (or phases) that show different electrical properties. Multifunctional composites have anisotropic electrical properties that can be tailored for a particular application. The effective anisotropic electrical conductivity of composites is strongly affected by many parameters including volume fractions, distributions, and orientations of constituents. Given the electrical properties of the constituents, one important goal of micromechanics of materials consists of predicting electrical response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. The benefit of homogenization is that the behavior of a heterogeneous material can be determined without resorting or testing it. Furthermore, continuum micromechanics can predict the full multi-axial properties and responses of inhomogeneous materials, which are anisotropic in nature. Effective electrical conductivity estimation is performed by using classical micromechanics techniques (composite cylinder assemblage method) that investigates the effect of the fiber/matrix electrical properties and their volume fractions on the micro scale composite response. The composite cylinder assemblage method (CCM) is an analytical theory that is based on the assumption that composites are in a state of periodic structure. The CCM was developed to extend capabilities variable fiber shape/array availability with same volume fraction, interphase analysis, etc. The CCM is a continuum-based micromechanics model that provides closed form expressions for upper level length scales such as macro-scale composite responses in terms of the properties, shapes, orientations and constituent distributions at lower length levels such as the micro-scale.

  17. 机床用碳纤维传动轴设计与分析%Design and analysis of carbon fiber composite propeller shaft for machine tool

    Institute of Scientific and Technical Information of China (English)

    宋春生; 徐仕伟; 张锦光; 龚静雯

    2012-01-01

    根据机床传动轴的设计参数,设计了碳纤维传动轴,确定了铺层层数及厚度.在此基础上,根据碳纤维布的铺层原则,制定了6种铺层方案,通过比较几种方案的变形和应力分布,从中选取最优铺层方案.运用ANSYS有限元仿真软件,对设计的碳纤维复合材料传动轴,进行静态扭转分析和模态分析,得到其扭转性能参数和固有频率,根据仿真结果可知设计的碳纤维传动轴能够满足机床传动轴的使用要求.%A carbon fiber composite material propeller shaft was developed, its stacking layers and thickness were determined according to the design parameters of the machine tool propeller shaft. On this basis, six different stacking sequences were developed with the stacking principles of carbon fiber cloth; the optimal stacking sequence was chosen by comparing the strain and stress distribution of those different stacking sequences. The finite element analysis software ANSYS has been used to analysis the static torsion and modal of the designed carbon fiber composite material propeller shaft, acquired its torsional performance parameters and natural frequency. The simulation results showed that the developed carbon fiber composite material propeller shaft could meet the usage requirements of propeller shaft for heavy machine tool.

  18. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-10-30

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  19. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    International Nuclear Information System (INIS)

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES

  20. Electric and dielectric properties of composites of polyaniline coated short carbon fibers in epoxy resin

    Czech Academy of Sciences Publication Activity Database

    Paligová, M.; Vilčáková, J.; Sáha, P.; Křesálek, V.; Quadrat, Otakar; Stejskal, Jaroslav

    Wroclaw: Wroclaw University of Technology, National Institute of Telecommunications, Association of Polish Electric al Engineers, 2002, s. 599-604. [International Wroclav Symposium and Exhibition on Electromagnetic Compatibility. Wroclaw (PL), 25.06.2002-28.06.2002] R&D Projects: GA AV ČR KSK4050111 Keywords : coatings with polyaniline * dielectric properties * polymer composites Subject RIV: CD - Macromolecular Chemistry

  1. Lightning Strike Ablation Damage Characteristic Analysis for Carbon Fiber/Epoxy Composite Laminate with Fastener

    Science.gov (United States)

    Yin, J. J.; Li, S. L.; Yao, X. L.; Chang, F.; Li, L. K.; Zhang, X. H.

    2016-04-01

    In order to analyze the lightning strike ablation damage characteristic of composite laminate with fastener, based on the energy-balance relationship in lightning strike, mathematical analysis model of ablation damage of composite laminate with fastener was constructed. According to the model, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate with fastener suffered from lightning current was established based on ABAQUS, and lightning strike ablation damage characteristic was analyzed. Analytical results reveal that lightning current could conduct through the thickness direction of the laminate due to the existence of metallic fastener, and then distribute to all layers, finally conducted in-the-plane of each layer, conductive ability of different layup orientations depend on potential distribution and in-the-plane electrical conductivity along potential gradient declining direction; different potential boundaries correspond to different potential distribution in each layer, and result in conductive ability of different layup orientations was changed, then caused different lightning strike ablation damage distribution. According to the investigation in this paper, we can recognize the lightning strike ablation damage characteristic of composite laminate with fastener qualitatively.

  2. A comprehensive study of woven carbon fiber-reinforced nylon 6 composites

    Science.gov (United States)

    Pillay, Selvum

    Liquid molding of thermoset composites has become very popular in all industry sectors, including aerospace, automotive, mass transit, and sporting goods, but the cost of materials and processing has limited the use to high-end applications. Thermoplastic composites are relatively cheap; however, the use has been limited to components with short fiber reinforcing. The high melt viscosity and short processing window precludes their use in the liquid molding of large structures and applications with continuous fiber reinforcement. The current research addresses the processing parameters, methodology, and limitations of vacuum assisted resin transfer molding (VARTM) of carbon fabric-reinforced, thermoplastic polyamide 6 (PA6). The material used is casting grade PA6. The process developed for using VARTM to produce carbon fabric-reinforced PA6 composites is explained in detail. The effects of infusion temperature and flow distance on the fiber weight fraction and crystallinity of the PA6 resin are presented. The degree of conversion from monomer to polymer was determined. Microscopic studies to show the wet-out of the fibers at the filament level are also presented. Tensile, flexural, short beam shear strength (SBSS), and low-velocity impact test results are presented and compared to a equivalent thermoset matrix composite. The rubber toughened epoxy system (SC-15) was chosen for the comparative study because the system has been especially developed to overcome the brittle nature of epoxy composites. The environmental effects of moisture and ultraviolet (UV) radiation on the carbon/nylon 6 composite were investigated. The samples were immersed in boiling water for 100 hr, and mechanical tests were conducted. Results showed that moisture causes plasticization of the matrix and attacks the fiber matrix interface. This leads to deterioration of the mechanical properties. The samples were also exposed to UV for up to 600 hr, and post exposure tests were conducted. The

  3. Carbon Fiber Composite Materials in Modern Day Automotive Production Lines – A Case Study

    OpenAIRE

    Petersson, Håkan; Motte, Damien; Bjärnemo, Robert

    2014-01-01

    New and innovative production equipment can be developed by introducing lightweight materials in modern day automotive industry production lines. The properties of these new materials are expected to result in improved ergonomics, energy savings, increased flexibility and more robust equipment, which in the end will result in enhanced productivity. Carbon composite materials are one such alternative that has excellent material properties. These properties are well documented, and the market f...

  4. Characterization of the Interphase in Carbon Fiber Reinforced Polymeric Composite by a Modulus Mapping Test

    Czech Academy of Sciences Publication Activity Database

    Sucharda, Zbyněk; Suchý, Tomáš; Sedláček, R.; Balík, Karel; Šepitka, J.; Sochor, M.

    Zurich: Trans Tech Publications, 2014 - (Pešek, L.; Zubko, P.), s. 253-256. (Key Engineering Materials. 586). ISBN 978-3-03785-876-9. ISSN 1013-9826. [International Conference on Local Mechanical Properties /9./. Levoča (SK), 07.11.2012-09.11.2012] R&D Projects: GA ČR(CZ) GAP108/10/1457 Institutional support: RVO:67985891 Keywords : nanoindentation * modulus mapping * intherphase * sterilization Subject RIV: JI - Composite Materials

  5. Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers

    OpenAIRE

    Pedro Garcés; Emilio Zornoza; Oscar Galao; Josep Lluís Vilaplana; Francisco Javier Baeza

    2013-01-01

    In recent years, several researchers have shown the good performance of alkali activated slag cement and concretes. Besides their good mechanical properties and durability, this type of cement is a good alternative to Portland cements if sustainability is considered. Moreover, multifunctional cement composites have been developed in the last decades for their functional applications (self-sensing, EMI shielding, self-heating, etc.). In this study, the strain and damage sensing possible applic...

  6. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20–80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 108 and 2.8 × 106 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC

  7. Fabrication and characterization of Polymer laminate composites reinforced with bi-woven carbon fibers

    Directory of Open Access Journals (Sweden)

    P.V.Sanjeev Kumar

    2015-04-01

    Full Text Available The present paper evaluate slaminatedcarbonbi-wove fibers Reinforced with vinyl ester composites. Vinyl ester was used as a matrix to prepare composites by in situ polymerization technique. Four planar layers were made simultaneously by keeping one over the other and each layer made sure to be weighed off by 15% which was maintained in all layers with different orientations. Pre-assumed Layer-1 is (50/5050%,0º; Layer-2 is (35/35/30 35% 0º, 35% +45º,30%,0;Layer-3is (25/50/25 25% 0º, 50%+45º,25-45º; and Layer-4is (25/25/25/25 (25% 0º, 25% +45º,25% -45º,25% 90º.The composite was prepared with the help of hand layup technique. Test ready specimens were tested with the help of shearing machine in accordance with ASTM Standards .It was observed that vinyl ester made good interface with parent fiber material. Flexural strength and Tensile strength have improved up to 3rd layer and decreased afterwards whereas Flexural modulus and Tensile modulus have linearly increased up to 4th layer. Thermal stability and Glass transition temperature have also been found to be satisfactory for all the laminated layers. Chemical resistance was good for the entire chemicals except sodium hydroxide.

  8. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Heitbrink, William A. [LMK OSH Consulting LLC (United States); Lo, Li-Ming, E-mail: LLo@cdc.gov [Centers for Disease Control and Prevention (CDC), Division of Applied Research and Technology, National Institute for Occupational Safety and Health (NIOSH) (United States)

    2015-08-15

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20–80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 10{sup 8} and 2.8 × 10{sup 6} fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC.

  9. Supersonic Retropulsion Surface Preparation of Carbon Fiber Reinforced Epoxy Composites for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Belcher, Marcus A.; Wohl, Christopher J.; Blohowiak, Kay Y.; Connell, John W.

    2013-01-01

    Surface preparation is widely recognized as a key step to producing robust and predictable bonds in a precise and reproducible manner. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, can lack precision and reproducibility, which can lead to variation in surface properties and subsequent bonding performance. The use of a laser to ablate composite surface resin can provide an efficient, precise, and reproducible means of preparing composite surfaces for adhesive bonding. Advantages include elimination of physical waste (i.e., grit media and sacrificial peel ply layers that ultimately require disposal), reduction in process variability due to increased precision (e.g. increased reproducibility), and automation of surface preparation, all of which improve reliability and process control. This paper describes a Nd:YAG laser surface preparation technique for composite substrates and the mechanical performance and failure modes of bonded laminates thus prepared. Additionally, bonded specimens were aged in a hot, wet environment for approximately one year and subsequently mechanically tested. The results of a one year hygrothermal aging study will be presented.

  10. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    Science.gov (United States)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  11. In Situ Tomography of Microcracking in Cross Ply Carbon Fiber Composites with Pre-existing Debonding Damage

    KAUST Repository

    Traudes, Daniel

    2012-07-01

    Carbon fiber based composites are an essential material in weight-critical applications such as in the aerospace industry. However, these materials are susceptible to damage such as matrix microcracking and fiber/matrix debonding (diffuse damage), which occurs at stresses much lower than the failure stress. A T700/M21 [0/90]s laminate was tensile loaded to introduce diffuse damage and prepared for a study on the initiation of transverse microcracks. The material was tensile loaded in a [+45/-45]s orientation to induce diffuse damage. A diffuse damage indicator was developed by measuring the decrease in shear stiffness. Samples with diffuse damage levels of 0, 0.05, 0.10, 0.15, 0.20, and 0.25 were prepared to be tensile tested in a [0/90]s orientation to induce microcracks. A successful development of the microcracking test procedure was performed. The edge of the material was studied with optical microscopy and x-ray to establish the structure of the fiber bundle geometry when undamaged. A sample containing microcracks was treated with diiodomethane dye penetrant, which successfully highlighted microcracks during x-ray imaging. The application time was not sufficient to produce consistent x-ray images over time, so a 45 minute soak time was recommended instead. The same damaged sample was subjected to a tomographic scan without a dye penetrant and while unloaded. Transverse microcracks were successfully identified from the data, although the results were not clean enough and likely omitted some smaller microcracks. Results are expected to be cleaner if performed during tensile testing. Future tensile testing will quantify the induced crack density of samples containing various degrees of initial diffuse damage, either using x-rays with a dye penetrant or using x-ray microtomography.

  12. Effect of particle incorporation on mechanical properties of carbon fiber textile composites

    Science.gov (United States)

    Kobayashi, Satoshi; Kitagawa, Jun; Tokyo Metropolitan University Collaboration

    2014-03-01

    In this study, the effect of mechanical properties and fracture behavior due to the inclusion of the fine particles was investigated. The tensile and flexural properties of CFRPs with rubber or Al2O3 particle modified matrix were characterized as a function of particle loading. Tensile strength of particle incorporated CFRP were nearly equal to that of neat matrix CFRP. Flexural strength of CFRP composites were influenced by both matrix modulus and toughness. It is found that higher flexural strength for 5wt.% rubber particle incorporated specimen largely depends on matrix toughness, although lower flexural strength for 10wt.% rubber particle incorporated specimen depends on matrix flexural modulus. In case of Al2O3 particle incorporated specimen, particle content of 10wt.% had a maximum flexural strength. However, further particle addition up to 20wt.%, decreased the flexural strength due to the worse formability.

  13. Surface characterization in composite and titanium bonding: Carbon fiber surface treatments for improved adhesion to thermoplastic polymers

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.

    1987-01-01

    The effect of anodization in NaOH, H2SO4, and amine salts on the surface chemistry of carbon fibers was examined by X-ray photoelectron spectroscopy (XPS). The surfaces of carbon fibers after anodization in NaOH and H2SO4 were examined by scanning transmission electron microscopy (STEM), angular dependent XPS, UV absorption spectroscopy of the anodization bath, secondary ion mass spectrometry, and polar/dispersive surface energy analysis. Hercules AS-4, Dexter Hysol XAS, and Union Carbide T-300 fibers were examined by STEM, angular dependent XPS, and breaking strength measurement before and after commercial surface treatment. Oxygen and nitrogen were added to the fiber surfaces by anodization in amine salts. Analysis of the plasmon peak in the carbon 1s signal indicated that H2SO4 anodization affected the morphological structure of the carbon fiber surface. The work of adhesion of carbon fibers to thermoplastic resins was calculated using the geometric mean relationship. A correlation was observed between the dispersive component of the work of adhesion and the interfacial adhesion.

  14. Influence of the interface structure on the thermo-mechanical properties of Cu–X (X = Cr or B)/carbon fiber composites

    International Nuclear Information System (INIS)

    Highlights: ► Two copper alloys/carbon fibers composites have been produced. ► Correlation of the thermo-mechanical properties with the microstructure and the chemistry. ► A composite with CTE 25% lower than a classic Cu/CF composite has been obtained. -- Abstract: This study focuses on the fabrication, for power electronics applications, of adaptive heat sink material using copper alloys/carbon fibers (CF) composites. In order to obtain composite material with good thermal conductivity and a coefficient of thermal expansion close to the ceramic substrate, it is necessary to have a strong matrix/reinforcement bond. Since there is no reaction between copper and carbon, a carbide element (chromium or boron) is added to the copper matrix to create a strong chemical bond. Composite materials (Cu–B/CF and Cu–Cr/CF) have been produced by a powder metallurgy process followed by an annealing treatment in order to create the carbide at the interphase. Chemical (Electron Probe Micro-Analysis, Auger Electron Spectroscopy) and microstructural (Scanning and Transmission Electron Microscopies) techniques were used to study the location of the alloying element and the carbide formation before and after diffusion. Finally, the thermo-mechanical properties have been measured and a promising composite material with a coefficient of thermal expansion 25% lower than a classic copper/carbon heat sink has been obtained.

  15. Coating Carbon Fibers With Platinum

    Science.gov (United States)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  16. Effect of graphite intercalation compounds in the interfacial zone on the mechanical and thermal properties of unidirectional carbon fiber reinforced spodumene composite

    International Nuclear Information System (INIS)

    The interface in unidirectional carbon-fiber-reinforced β-spodumene matrix composite (UD-Cf/β-spodumene) significantly affected the thermal conductivity characteristics and mechanical properties due to the presence of a multi-layer interface. The mechanical and thermal properties of UD-Cf/β-spodumene composites with and without a multi-layer interface have been studied. The measured thermal conductivities, flexural strength and fracture toughness of composites with a multi-layer interface were much better than those composites with a clear interface. Interfacial layers with a multi-layer morphology originated from the diffusion of lithium from the β-spodumene matrix to the surface of the carbon fiber, which led to the formation of graphite intercalation compounds. The mechanical properties and thermal conductivity of UD-Cf/β-spodumene hot pressed at 1350 and 1400 °C were enhanced due to the textured interfacial microstructure and high thermal conductivity of graphite intercalation compounds. The textured interface decomposed at 1450 °C, resulting in the formation of a “strong” interface. Inevitably, the mechanical properties and thermal conductivity decreased

  17. Surface analysis of plasma grafted carbon fiber

    International Nuclear Information System (INIS)

    The surface characteristics of carbon fibers were studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and wetting measurements. The surface of carbon fiber was modified by means of plasma graft silsesquioxane. The oxygen/carbon and silicon/carbon ratio increased rapidly after treatments. Fitting the C 1s, O 1s, and Si 2p spectra demonstrated that new photopeaks were emerged, which were indicated C-Si, Si-O groups, respectively. The degree of surface roughness and the wettability of carbon fiber surface were both increased by plasma graft silsesquioxane. The results may shed some light on the design of the appropriate surface structure, which could react with resin, and the manufacture of the carbon fiber reinforced composites

  18. Experimental investigation of fatigue behavior of carbon fiber composites using fully-reversed four-point bending test

    Science.gov (United States)

    Amiri, Ali

    Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about

  19. Processing of carbon-fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites

    OpenAIRE

    Kim, C. P.; Busch, R.; Masuhr, A.; Choi-Yim, H.; Johnson, W. L.

    2001-01-01

    Carbon-fiber-reinforced bulk metallic glass composites are produced by infiltrating liquid Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 into carbon fiber bundles with diameter of the individual fiber of 5 mum. Reactive wetting occurs by the formation of a ZrC layer around the fibers. This results in a composite with a homogeneous fiber distribution. The volume fraction of the fibers is about 50% and the density of the composite amounts to 4.0 g/cm(^3).

  20. Application of carbon fiber composites in the automotive industry%碳纤维复合材料在汽车工业中的应用

    Institute of Scientific and Technical Information of China (English)

    赵艳荣; 胡平; 梁继才; 张文杰

    2015-01-01

    节能减排是当前汽车工业可持续发展迫切需要解决的问题,采用碳纤维复合材料等轻质材料使汽车轻量化是一个有效的解决办法.介绍了碳纤维复合材料的性能特点和在汽车上的应用现状,从材料、设计和成型工艺3个方面分析了其在国内汽车工业应用中的问题,提出了促进碳纤维复合材料广泛应用的发展建议,并展望了其在汽车工业中的应用前景.%Energy conservation and emission reduction are two urgent problems to be solved in the sustainable development of automotive industry, an effective solution is to use carbon fiber composites and other light materials to make automobile lightweight. Performance characteristics and application status in the automotive industry of carbon fiber composites are introduced, application problems in the domestic automotive industry are analyzed from three aspects of material, design and forming process, some development suggestions are put forward and application prospect in the automotive industry is forecasted.

  1. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    Directory of Open Access Journals (Sweden)

    Kumamoto Soichiro

    2016-01-01

    Full Text Available The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP. To change the locational states of submicron fibers, two kinds of fabrication processes were applied in preparing specimen by hand lay-up method. Submicron fibers were simply added into epoxy resin with ethanol after they were stirred by a dispersion process using homogenizer to be located far from the interface between reinforcement and matrix. In contrast, submicron fibers were attached onto the carbon fibers by injecting from a spray nozzle accompanying with ethanol to be located near the interface, after they were tentatively contained in ethanol. The plain-woven CFRP plates were fabricated by hand lay-up method and cured at 80 degree-C for 1 hour and then at 150 degree-C for 3 hours. After curing, the plain-woven CFRP plates were cut into the dimension of specimen. Tensile shear strength and Mode-II fracture toughness of CFRP were determined by tensile lap-shear test and End-notched flexure(ENF test, respectively. When submicron fibers were located far from the interface between carbon fibers and epoxy resin, tensile shear strength and Mode-II fracture toughness of CFRP were improved 30% and 18% compared with those of unmodified case. The improvement ratio in modified case was rather low (about few percentages in the case where submicron fibers were located near the interface. The result suggested that crack propagation should be prevented when submicron fibers were existed far from the interface due to the effective stress state around the crack tip.

  2. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    Science.gov (United States)

    Kumamoto, Soichiro; Okubo, Kazuya; Fujii, Toru

    2016-01-01

    The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP). To change the locational states of submicron fibers, two kinds of fabrication processes were applied in preparing specimen by hand lay-up method. Submicron fibers were simply added into epoxy resin with ethanol after they were stirred by a dispersion process using homogenizer to be located far from the interface between reinforcement and matrix. In contrast, submicron fibers were attached onto the carbon fibers by injecting from a spray nozzle accompanying with ethanol to be located near the interface, after they were tentatively contained in ethanol. The plain-woven CFRP plates were fabricated by hand lay-up method and cured at 80 degree-C for 1 hour and then at 150 degree-C for 3 hours. After curing, the plain-woven CFRP plates were cut into the dimension of specimen. Tensile shear strength and Mode-II fracture toughness of CFRP were determined by tensile lap-shear test and End-notched flexure(ENF) test, respectively. When submicron fibers were located far from the interface between carbon fibers and epoxy resin, tensile shear strength and Mode-II fracture toughness of CFRP were improved 30% and 18% compared with those of unmodified case. The improvement ratio in modified case was rather low (about few percentages) in the case where submicron fibers were located near the interface. The result suggested that crack propagation should be prevented when submicron fibers were existed far from the interface due to the effective stress state around the crack tip.

  3. The Oxidation Kinetics of Continuous Carbon Fibers in a Cracked Ceramic Matrix Composite. Degree awarded by Case Western Reserve Univ., May 2000

    Science.gov (United States)

    Halbig, Michael C.

    2001-01-01

    Experimental observations and results suggest two primary regimes as a function of temperature, i.e., diffusion and reaction controlled kinetics. Thermogravimetric analysis of carbon fiber in flowing oxygen gave an activation energy of 64.1 kJ/mol in the temperature range of 500 to 600 C and an apparent activation energy of 7.6 kJ/mol for temperatures from 600 to 1400 C. When C/SiC composite material was unstressed, matrix effects at temperatures from 900 to 1400 C protected the internal fibers. When under stress, self-protection was not observed. Increasing the stress from 10 to 25 ksi caused a 67 to 82 percent reduction in times to failure at temperatures from 750 to 1500 C. Based on experimental results, observation, and theory, a finite difference model was developed, which simulates the diffusion of oxygen into a matrix crack that is bridged by carbon fibers. The model allows the influence of important variables on oxidation kinetics to be studied systematically, i.e., temperature, reaction rate constant, diffusion coefficient, environment, and sample geometry.

  4. Coating of Carbon Fiber with Polyhedral Oligomeric Silsesquioxane (POSS to Enhance Mechanical Properties and Durability of Carbon/Vinyl Ester Composites

    Directory of Open Access Journals (Sweden)

    Mujib Khan

    2011-09-01

    Full Text Available Our continuing quest to improve the performance of polymer composites under moist and saltwater environments has gained momentum in recent years with the reinforcement of inorganic nanoparticles into the polymer. The key to mitigate degradation of composites under such environments is to maintain the integrity of the fiber/matrix (F/M interface. In this study, the F/M interface of carbon/vinyl ester composites has been modified by coating the carbon fiber with polyhedral oligomeric silsesquioxane (POSS. POSS is a nanostructured inorganic-organic hybrid particle with a cubic structure having silicon atoms at the core and linked to oxygen atoms. The advantage of using POSS is that the silicon atoms can be linked to a substituent that can be almost any chemical group known in organic chemistry. Cubic silica cores are ‘hard particles’ and are about 0.53 nm in diameter. The peripheral organic unit is a sphere of about 1–3 nm in diameter. Further, cubic structure of POSS remains intact during the polymerization process and therefore with appropriate functional groups, if installed on the fiber surface, would provide a stable and strong F/M interface. Two POSS systems with two different functional groups; namely, octaisobutyl and trisilanolphenyl have been investigated. A set of chemical and mechanical procedures has been developed to coat carbon fibers with POSS, and to fabricate layered composites with vinyl ester resin. Interlaminar shear and low velocity impact tests have indicated around 17–38% improvement in mechanical properties with respect to control samples made without the POSS coating. Saltwater and hygrothermal tests at various environmental conditions have revealed that coating with POSS reduces water absorption by 20–30% and retains the composite properties.

  5. Low Cost Carbon Fiber From Renewable Resources

    International Nuclear Information System (INIS)

    The Department of Energy Partnership for a New Generation of Vehicles has shown that, by lowering overall weight, the use of carbon fiber composites could dramatically decrease domestic vehicle fuel consumption. For the automotive industry to benefit from carbon fiber technology, fiber production will need to be substantially increased and fiber price decreased to$7/kg. To achieve this cost objective, alternate precursors to pitch and polyacrylonitrile (PAN) are being investigated as possible carbon fiber feedstocks. Additionally, sufficient fiber to provide 10 to 100 kg for each of the 13 million cars and light trucks produced annually in the U.S. will require an increase of 5 to 50-fold in worldwide carbon fiber production. High-volume, renewable or recycled materials, including lignin, cellulosic fibers, routinely recycled petrochemical fibers, and blends of these components, appear attractive because the cost of these materials is inherently both low and insensitive to changes in petroleum price. Current studies have shown that a number of recycled and renewable polymers can be incorporated into melt-spun fibers attractive as carbon fiber feedstocks. Highly extrudable lignin blends have attractive yields and can be readily carbonized and graphitized. Examination of the physical structure and properties of carbonized and graphitized fibers indicates the feasibility of use in transportation composite applications

  6. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  7. ELECTRODEPOSITION OF POLYMERS ON CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    HE Jiasong; WU Renjie

    1983-01-01

    Styrene-co-maleic anhydride, vinyl acetate-co-maleic anhydride, methyl methacrylate-co-maleic anhydride copolymers were deposited on the surface of carbon fibers by an electrodeposition technique.The anion-free radical mechanism of this process and the physical adhesion to the surface were preliminarily confirmed. The adhesion at fiber-resin matrix interface in carbon fiber reinforced plastics was improved by the electrodeposited polymer interlayer and the shear failure occurred mainly in the matrix.Interlaminar shear strength of the unidirectional carbon fiber reinforced epoxy composite is increased from about 600 kg/cm2 to 1000 kg/cm2 by electrodeposition of polymers and the strength loss of the composite which has been immersed in boiling water for 100 hrs is decreased.

  8. Heat Treated Carbon Fiber Material Selection Database

    Science.gov (United States)

    Effinger, M.; Patel, B.; Koenig, J.

    2008-01-01

    Carbon fibers are used in a variety high temperature applications and materials. However, one limiting factor in their transition into additional applications is an understanding of their functional properties during component processing and function. The requirements on the fibers are governed by the nature of the materials and the environments in which they will be used. The current carbon fiber vendor literature is geared toward the polymeric composite industry and not the ceramic composite industry. Thus, selection of carbon fibers is difficult, since their properties change as a function of heat treatment, processing or component operational temperature, which ever is greatest. To enable proper decisions to be made, a program was established wherein multiple fibers were selected and heat treated at different temperatures. The fibers were then examined for their physical and mechanical properties which are reported herein.

  9. Design and construction of the structure of the DEMONSTRATOR of the CALIFA detector for R3B-FAIR using carbon-fiber composites

    Directory of Open Access Journals (Sweden)

    Casarejos E.

    2014-03-01

    Full Text Available In this paper we describe the DEMONSTRATOR structures and active units (PETALs developed for the detector CALIFA of the experiment R3B - FAIR. The design is based in the CALIFA BARREL mechanical solutions, but adapted to the characteristics of the PETALs, namely in what concerns the load distribution during setup and service. The R&D program defined the materials and procedures for both producing the pieces of carbon fiber (CF composites as well as the mounting of the bundles to make an alveolar structure. The procedures also include a quality control program to ensure the dimensional properties of the CF assemblies. We are also developing the use of tomographic imaging analysis for this quality program, that will be of mayor interest in the construction of the future CALIFA CF-structure.

  10. Polypropylene/Expanded Graphite/Carbon Fiber Thermal Conductive Composite%聚丙烯/膨胀石墨/碳纤维导热复合材料

    Institute of Scientific and Technical Information of China (English)

    徐睿杰; 雷彩红; 杨志广; 廖敦锃; 刘舜莉

    2012-01-01

    The thermal conductivity, mechanical properties and processing property of polypropylene ( PP)/expanded graphite (EG)/carbon fiber(CF) composite were studied. The results showed that the thermal conductivity of the composite with 20 % content of EC was 2 times that of pure PP,but its melt flow rate was decreased. The PE wax at the weight fraction of 1 % could improve the melt flow rate. When the content of carbon fiber was 5 % , the thermal conductivity reached 0.91 W ? M-1K-1 and was five times of pure PP. The melt flow rate was 1.72 g/10 min and the mechanical properties were good.%研究了聚丙烯(PP)/膨胀石墨(EG)/碳纤维(CF)复合材料的导热、力学以及加工性能.研究发现:当膨胀石墨的质量含量达到20%时,热导率是纯聚丙烯的2倍,但熔体流动性能有所下降;添加1%的聚乙烯蜡可以明显改善体系的熔体流动性能;将膨胀石墨与5%的碳纤维杂化使用,热导率达0.91 W·m-1K-1,是纯聚丙烯的5倍,熔体指数达到1.72 g/10 min,同时该复合材料具有较好的力学性能.

  11. Research Progress of Carbon Fiber-Reinforced Polylactic Acid Composites%碳纤维增强聚乳酸复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    李健; 杨柳; 杨建忠

    2012-01-01

    The carbon fiber-reinforced polylactide(C/PLA) composites made of the carbon fiber as reinfoced fiber and polylactide as matrix are introduced. Compared with polylactied material, mechanical properties and shock resistance performance of the composites are improved, and they have some degradability. They also have favorable biocompatibility, and are suitable for development of internal fixation for bone fracture, bone repair material, etc. The main problems existing in the industrial production and application are summarized and the future application research are prospected.%介绍了以碳纤维为增强纤维、聚乳酸为基体,采取相应的加工工艺制备出碳纤维增强聚乳酸复合材料的种类与制备工艺,研究了该复合材料的相关性能,发现该材料与聚乳酸材料相比力学性能、抗冲击性能得到了明显改善,有一定的降解性,并且生物相容性良好,适合于开发骨折内固定材料、骨修复材料等.概述了碳纤维增强聚乳酸复合材料在工业化生产及应用中存在的主要问题,并对今后的应用研究进行了展望.

  12. Microstructure of carbon fiber preform and distribution of pyrolytic carbon by chemical vapor infiltration

    Institute of Scientific and Technical Information of China (English)

    陈建勋; 黄伯云

    2004-01-01

    The carbon/carbon composites were made by chemical vapor infiltration(CVI) with needled felt preform. The distribution of the pyrolytic carbon in the carbon fiber preform was studied by polarized light microscope(PLM) and scanning electronic microscope(SEM). The experimental results indicate that the amount of pyrolytic carbon deposited on the surface of chopped carbon fiber is more than that on the surface of long carbon fiber. The reason is the different porosity between the layer of chopped carbon fiber and long carbon fiber. The carbon precursor gas which passes through the part of chopped carbon fibers decomposes and deposits on the surface of chopped carbon fiber. The pyrolytic carbon on the surface of long carbon fibers is produced by the carbon precursor gas diffusing from the chopped fiber and the Z-d fiber. Uniform pore distribution and porosity in preform are necessary for producing C/C composites with high properties.

  13. Quantitative Damage Detection and Sparse Sensor Array Optimization of Carbon Fiber Reinforced Resin Composite Laminates for Wind Turbine Blade Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2014-04-01

    Full Text Available The active structural health monitoring (SHM approach for the complex composite laminate structures of wind turbine blades (WTBs, addresses the important and complicated problem of signal noise. After illustrating the wind energy industry’s development perspectives and its crucial requirement for SHM, an improved redundant second generation wavelet transform (IRSGWT pre-processing algorithm based on neighboring coefficients is introduced for feeble signal denoising. The method can avoid the drawbacks of conventional wavelet methods that lose information in transforms and the shortcomings of redundant second generation wavelet (RSGWT denoising that can lead to error propagation. For large scale WTB composites, how to minimize the number of sensors while ensuring accuracy is also a key issue. A sparse sensor array optimization of composites for WTB applications is proposed that can reduce the number of transducers that must be used. Compared to a full sixteen transducer array, the optimized eight transducer configuration displays better accuracy in identifying the correct position of simulated damage (mass of load on composite laminates with anisotropic characteristics than a non-optimized array. It can help to guarantee more flexible and qualified monitoring of the areas that more frequently suffer damage. The proposed methods are verified experimentally on specimens of carbon fiber reinforced resin composite laminates.

  14. Active brazing of carbon fiber reinforced SiC composite and 304 stainless steel with Ti–Zr–Be

    International Nuclear Information System (INIS)

    Carbon fiber reinforced SiC (Cf/SiC) was successfully joined to 304 stainless steel with Ti–Zr–Be filler metal by vacuum brazing. The interfacial microstructure was investigated by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), auger electron energy spectroscopy (AES) and X-diffraction (XRD). The mechanical properties of the brazed joints were measured by a mechanical testing machine. The results show that Ti and Zr elements in the interlayer can react with the brazed materials, the brazed joint mainly consists of Ti5Si3, TiSi, TiBe, TiFe and Zr(s,s) reaction products. The 304 stainless steel constantly dissolved and Ti, Be diffused into 304 stainless steel, which formed the diffusion layers between interlayer and 304 stainless steel. Ti and Be elements have an effect on promoting the formation of α-Fe layer. The maximum shear strength of 109.13±2.55 MPa is obtained at 950 °C with 60 min holding time

  15. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 First Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Simmons, Kevin L.; Mathur, Raj N.; Sangid, Michael D.; Jin, Xiaoshi; Costa, Franco; Gandhi, Umesh N.; Mori, Steven; Tucker III, Charles L.

    2014-02-19

    The CRADA between PNNL, Autodesk, Toyota and Magna has been effective since October 28th, 2013. The whole team including CRADA and subcontract partners kicked off the project technically on November 1st, 2013. This report describes work performed during the first quarter of FY 2014. The following technical progresses have been made toward project milestones: 1) The project kickoff meeting was organized at PlastiComp, Inc. in Winona on November 13th, 2013 involving all the project partners. During this meeting the research plan and Gantt chart were discussed and refined. The coordination of the research activities among the partners was also discussed to ensure that the deliverables and timeline will be met. 2) Autodesk delivered a research version of ASMI to PNNL for process modeling using this tool under the project. PNNL installed this research version on a PNNL computer and tested it. Currently, PNNL is using ASMI to prepare the models for PlastiComp plaques. 3) PlastiComp has compounded long carbon-fiber reinforced polypropylene and polyamide 6,6 compounds for rheological and thermal characterization tests by the Autodesk laboratories in Melbourne, Australia. 4) Initial mold flow analysis was carried out by PlastiComp to confirm that the 3D complex part selected by Toyota as a representative automotive part is moldable. 5) Toyota, Magna, PlastiComp and PNNL finalized the planning for molding the Toyota 3D complex part. 6) Purdue University worked with PNNL to update and specify the test matrix for characterization of fiber length/orientation. 7) Purdue University developed tools to automate the data collection and analysis of fiber length and orientation measurements. 8) Purdue University designed and specified equipment to replace the need for equipment using the technology established by the University of Leeds at General Motors.

  16. Effect of air-oxidation on the thermal diffusivity of the nuclear grade 2-dimensional carbon fiber reinforced carbon/carbon composite

    International Nuclear Information System (INIS)

    2D-C/C composite is one of the promising materials as a next-generation core material in gas-cooled reactors. Effect of air-oxidation on the thermal diffusivity of the 2D-C/C composite was investigated in this study. Tested composite consists of 6K plain-woven fabrics with PAN-based carbon fiber and graphite matrix. Final heat-treatment of around 3073 K was applied to the composite. The C/C composite specimens for measurement of thermal diffusivity were oxidized from 1 to 11% weight loss in air at 823 K. Oxidation loss of the composite preferentially occurred at matrix part near the fiber bundles, and then occurred at fiber bundles. This composite exhibited large anisotropy in thermal diffusivity, higher value for parallel to lamina direction and lower value for perpendicular, e.g. thermal diffusivity of 1.1 cm2/s for parallel to lamina and 0.2 cm2/s for perpendicular at room temperature. Thermal diffusivity at room temperature declined 10∼20% for parallel to lamina direction and 5∼9% for that of perpendicular within 11% weight loss by oxidation. Thermal diffusivity tended to decrease gradually as the increase of oxidation loss in parallel to lamina, however, it decreased in the beginning of oxidation pretty much and not so changed by further oxidation loss in perpendicular to lamina. The different behavior due to air-oxidation on the thermal diffusivity in two directions was discussed from the fiber and/or matrix texture changes due to air-oxidation. Change in thermal conductivity under oxidation condition was also estimated from the obtained thermal diffusivity. (author)

  17. High sensitivity gravimetric sensor made of unidirectional carbon fiber epoxy composite on (1 − x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystal substrate

    International Nuclear Information System (INIS)

    We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) waveguide layer on (1 − x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-xPT) single crystal substrate with the carbon fibers parallel to the x1 and x2 axes, respectively. The normalized maximum sensitivity (|Smf|λ)max exhibits an increasing tendency with the decrease of (h/λ)opt and the maximum sensitivity (|Smf|λ)max increases with the elastic constant c66E of the piezoelectric substrate material. For the CFEC/[011]c poled PZN-7%PT single crystal sensor configuration, with the carbon fibers parallel to the x1 axis at λ = 24 μm, the maximum sensitivity (|Smf|λ)max can reach as high as 1156 cm2/g, which is about three times that of a traditional SiO2/ST quartz structure gravimetric sensor. The better design selection is to have the carbon fibers parallel to the direction of propagation of Love wave in order to obtain the best sensitivity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Characteristics of Resistivity-temperature for Carbon Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The resistance response to temperature change of carbon fiber reinforced cement-based composites (CFRC) is reported, which shows some outstanding phenomena of positive temperature coefficient (PTC) of resistance and negative temperature coefficient (NTC) of resistance during the temperature rising.The influences of carbon fiber, cement-based matrix and thermal cycles on the characteristics of temperature-resistivity for the system were also discussed.Because of the special characteristics for temperature resistivity, carbon fiber cement based composites can be useful in structure with the function of alarm for fire.

  19. Multimetallic Electrodeposition on Carbon Fibers

    Science.gov (United States)

    Böttger-Hiller, F.; Kleiber, J.; Böttger, T.; Lampke, T.

    2016-03-01

    Efficient lightweight design requires intelligent materials that meet versatile functions. One approach is to extend the range of properties of carbon fiber reinforced plastics (CFRP) by plating the fiber component. Electroplating leads to metalized layers on carbon fibers. Herein only cyanide-free electrolytes where used. Until now dendrite-free layers were only obtained using current densities below 1.0 A dm-2. In this work, dendrite-free tin and copper coatings were achieved by pre-metalizing the carbon fiber substrates. Furthermore, applying a combination of two metals with different sized thermal expansion coefficient lead to a bimetallic coating on carbon fiber rovings, which show an actuatory effect.

  20. Current Situation of the Carbon Fiber and Related Composites Industry%碳纤维及复合材料产业链现状分析

    Institute of Scientific and Technical Information of China (English)

    张传雄

    2015-01-01

    By discussing the spinning, pre-oxidation, carbonization, compounding and recycling technologies for making carbon ifber and related composites, the paper discussed the present situation of technological development in the field of carbon fiber and related composites; analyzed the market situation of such products and their application prospects in aerospace, national defense, wind turbine, sport and leisure, transportation vehicles, civil-engineering, etc. It also pointed out some problems existing in China’s carbon ifber industry and gave related solutions.%从碳纤维纺丝、预氧化、碳化、复合成型和回收利用等方面概述碳纤维及复合材料产业链技术现状,分析碳纤维及复合材料市场现状以及在国防航空、交通工具、风力发电、运动休闲、土木建筑等领域的应用前景,指出中国碳纤维产业发展存在的问题及建议。

  1. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Second FY 2015 Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kijewski, Seth A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sangid, Michael D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Jin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Costa, Franco [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, III, Charles L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathur, Raj N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gandhi, Umesh N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mori, Steven [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-19

    During the second quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Autodesk reviewed 3D fiber orientation distribution (FOD) comparisons and provided support on improving accuracy. 2) Autodesk reviewed fiber length distribution (FLD) data comparisons and provided suggestions, assisted PNNL in FOD and FLD parameter settings optimization, and advised PNNL on appropriate through thickness thermal conductivity for improved frozen layer effect on FOD predictions. Autodesk also participated in project review meetings including preparations and discussions towards passing the go/no-go decision point. 3) Autodesk implemented an improved FOD inlet profile specification method through the part thickness for 3D meshes and provided an updated ASMI research version to PNNL. 4) The University of Illinois (Prof. C.L. Tucker) provided Autodesk with ideas to improve fiber orientation modeling 5) Purdue University re-measured fiber orientation for the fast-fill 50wt% LCF/PA66 edge-gated plaque, and delivered the fiber orientation data for this plaque at the selected locations (named A, B, and C, Figure 1) to PNNL. Purdue also re-measured fiber orientation for locations A on the fast-fill 30wt% LCF/PP and 50wt% LCF/PA66 center-gated plaques, which exhibited anomalous fiber orientation behavior. 6) Purdue University conducted fiber length measurements and delivered the length data to PNNL for the purge materials (slow-fill 30wt% LCF/PP and 30wt% LCF/PA66 purge materials) and PlastiComp plaques selected on the go/no-go list for fiber length model validation (i.e., slow-fill edge-gated 30wt% LCF/PP and 30wt% LCF/PA66 plaques, Locations A, B, and C). 7) PNNL developed a method to recover intact carbon fibers from LCF/PA66 materials. Isolated fibers were shipped to Purdue for length distribution analysis. 8) PNNL completed ASMI mid-plane analyses for all the PlastiComp plaques defined on the go/no-go list for fiber orientation (FO) model

  2. Study on Preparation and Fatigue Property of Short Carbon Fiber Reinforced Thermoplastics Composites%短碳纤维增强热塑性树脂复合材料的制备及其疲劳性能研究

    Institute of Scientific and Technical Information of China (English)

    盛永华; 李力

    2012-01-01

    Thermoplastic composites of polyethylene and chopped carbon fiber were prepared via injection molding. The influence of carbon fiber content on the fatigue property of the composites was studied, and the fracture mechanism of the composites was analyzed. The lifespan of the composites was prolonged with increasing content of carbon fiber.%采用注射成型的方法,以短切碳纤维为增强体,聚乙烯为基体制备了碳纤维增强热塑性树脂复合材料,并研究了碳纤维含量对该复合材料疲劳:I生能的影响,分析了短碳纤维增强热塑性树脂复合材料的断裂机理。结果表明,短碳纤维增强热塑性树脂复合材料的疲劳寿命随着碳纤维含量的增加而延长。

  3. An Experimental Study on Non-Compression X-Bracing Systems Using Carbon Fiber Composite Cable for Seismic Strengthening of RC Buildings

    Directory of Open Access Journals (Sweden)

    Kang Seok Lee

    2015-09-01

    Full Text Available Cross-bracing (X-bracing is one of the most popular methods of seismic retrofitting, and has been shown to significantly increase the structural stiffness and strength of buildings. Conventional steel X-bracing methods typically exhibit brittle failure at the connection between the brace and the building, or buckling failure of the braces. This study investigated the structural properties of a new type of non-compression X-bracing system using carbon fiber composite cable (CFCC. This non-compression X-bracing system uses CFCC bracing and bolt connections between structural members and the terminal fixer of the CFCC, instead of conventional steel bracing. The aim is to overcome the brittle and buckling failures that can occur at the connection and bracings with conventional steel X-bracing methods. We carried out cyclic loading tests, and the maximum load carrying capacity and deformation were investigated, as well as hysteresis in the lateral load–drift relations. The test results revealed that the CFCC X-bracing system installed in reinforced concrete frames enhanced the strength markedly, and buckling failure of the bracing was not observed.

  4. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density

    Science.gov (United States)

    Xie, Qinxing; Bao, Rongrong; Xie, Chao; Zheng, Anran; Wu, Shihua; Zhang, Yufeng; Zhang, Renwei; Zhao, Peng

    2016-06-01

    Graphene wrapped nitrogen-doped active carbon fibers (ACF@GR) of a core-shell structure were successfully prepared by a simple dip-coating method using natural silk as template. Compared to pure silk active carbon, the as-prepared ACF@GR composites exhibit high specific surface area in a range of 1628-2035 m2 g-1, as well as superior energy storage capability, an extremely high single-electrode capacitance of 552.8 F g-1 was achieved at a current density of 0.1 A g-1 in 6 M KOH aqueous electrolyte. The assembled aqueous symmetric supercapacitors are capable of deliver both high energy density and high power density, for instance, 17.1 Wh kg-1 at a power density of 50.0 W kg-1, and 12.2 Wh kg-1 at 4.7 kW kg-1 with a retention rate of 71.3% for ACF@GR1-based supercapacitor.

  5. 碳纤维表面改性对C_f/Mg复合材料微观组织和界面的影响%Effect of Carbon Fiber Surface Modification on nicrostructure and Interface of Cf/Mg Composites

    Institute of Scientific and Technical Information of China (English)

    黄元飞; 刘越; 王全兆; 孙毅

    2009-01-01

    研究在碳纤维表面分别用化学法镀Ni和溶胶-凝胶法涂SiO_2两种涂层,用真空压力浸渗法制备C_f/Mg复合材料.用SEM、EDS和TEM对C_f/Mg复合材料微观组织和界面特征进行分析.结果表明:无涂层的碳纤维与Mg基体浸润性较差,碳纤维在C_f/Mg复合材料微观组织巾分布不均匀,界面结合强度较弱.碳纤维表面包覆Ni或SiO_2涂层改善了碳纤维与Mg基体的润湿性;包覆Ni涂层的碳纤维在Mg基体中分布均匀,并在其界面处生成金属间化合物Mg_2Ni,界面为强结合;碳纤维表面的SiO_2涂层与Mg进行少量的反应生成MgO和Si,界面结合好.能很好地传递载荷.%C_f/Mg composites with three kinds of carbon fiber (without coating, coated with Ni or SiO_2) were fabricated by vacuum pressing method. The microstructure and fracture surface were characterized by SEM, EDS and TEM. The results show that the wettability between carbon fiber without coatings and Mg was low. And the wettability is enhanced by coating the carbon fiber with Ni or SiO_2. The Ni coating reacting with Mg obtains Mg_2Ni. The flat fracture of the Mg matrix composite reinforced by carbon fiber with Ni coating shows that the combination of the carbon fiber with Mg matrix is very strong. The fracture surface of the Mg matrix composite reinforced by carbon fiber with SiO_2 coating shows that the combination of the interface is optimum.

  6. Surface State of Carbon Fibers Modified by Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yunxia GUO; Jie LIU; Jieying LIANG

    2005-01-01

    Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5%which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.

  7. 复合材料厚壁圆筒的损伤问题%Failure Analysis of Thick Wall Tube of Carbon Fiber/Epoxy Composite

    Institute of Scientific and Technical Information of China (English)

    杨宇宙; 钱林方

    2012-01-01

    基于连续介质损伤力学理论,引入表征材料内部微细缺陷的损伤变量,导出了三维复合材料厚壁圆筒的损伤模型,预测该结构内各处的损伤过程;针对不同损伤模式,推导出包含不同结合力和损伤变量的损伤扩展准则;利用三维有限元分析软件模拟计算出结构损伤破坏的全过程,分析了复合材料圆筒的损伤模式与破坏机理,以及能量变化关系。%Based on the CDM theory,damage models are proposed to predict the progressive failure properties of thick-wall tube of the steel-carbon fiber/epoxy composite.Internal damage variables were introduced in order to quantify damage concentration associated with each possible failure mode during the damage process.A 3D finite element technique is adopted to perform the progressive failure analysis.The material model has been implemented into ABAQUS explicit finite element code within solid elements and the computed result has proven to be capable of reproducing experimental results with good accuracy in terms of static responses,energy dissipation and extent of damage.This work provides a progressive understanding of the damage initiation and propagation behaviors of composite laminated cylindrical structures above.

  8. Evaluation of Nanomaterial Approaches to Damping in Epoxy Resin and Carbon Fiber/Epoxy Composite Structures by Dynamic Mechanical Analysis

    Science.gov (United States)

    Miller, G.; Heimann, Paula J.; Scheiman, Daniel A.; Duffy, Kirsten P.; Johnston, J. Chris; Roberts, Gary D.

    2013-01-01

    Vibration mitigation in composite structures has been demonstrated through widely varying methods which include both active and passive damping. Recently, nanomaterials have been investigated as a viable approach to composite vibration damping due to the large surface available to generate energy dissipation through friction. This work evaluates the influence of dispersed nanoparticles on the damping ratio of an epoxy matrix. Limited benefit was observed through dispersion methods, however nanoparticle application as a coating resulting in up to a three-fold increase in damping.

  9. Towards the carbon fibers in the building industry

    OpenAIRE

    Miravete, A.

    2001-01-01

    There are two mainstreams in the building industry in the area of carbon fibers: rehabilitation and use as building material. The using of carbon fiber as a building material is taking place slower than as rehab system due to the very low cost of traditional building materials, the limitations of composite structure manufacturing processes and the conservative building regulations concerning materials in all the industrialized countries. However, these three issues are being solved in a very ...

  10. External reinforcing of fiber concrete constructions by carbon fiber tapes

    OpenAIRE

    S.V. Klyuyev; Yu.V. Guryanov

    2013-01-01

    Strengthening the concrete and reinforced concrete structures with carbon fiber tapes is very actively applied in Europe nowadays. In Russia composites based on carbon fiber have also widely spread recently. The main advantages of these materials for strengthening structures are its high specific strength (strength-weight ratio) and strength-to-density ratio.Experimental studies on strengthening and restoration of the constructions were held. Flexible fiber concrete constructions based on man...

  11. Processing of carbon fiber reinforced composites with particulate-filled precursor-derived Si-C-N matrix phases

    OpenAIRE

    Lee, Sea-Hoon

    2004-01-01

    Die Arbeit widmet sich Faktoren, die bei der Herstellung von keramischen Faser-Matrix-Verbundwerkstoffen (FRC, fiber-reinforced composites) deren mechanische und thermische Eigenschaften beeinflussen. Insbesondere wurden der Einfluss von Fuellstoffen und die Optimierung des PIP-Verfahrens (Precursor Impregnation and Pyrolysis) zur Herstellung kohlenstofffaserverstaerkter Si-C-N-Precursorkeramiken untersucht. Dabei wurden fuenf Bereiche betrachtet, die jeweils in einem Kapitel dargelegt wurden...

  12. Numerical simulating and experimental study on the woven carbon fiber-reinforced composite laminates under low-velocity impact

    Science.gov (United States)

    Liu, Hanyang; Tang, Zhanwen; Pan, Lingying; Zhao, Weidong; Sun, Baogang; Jiang, Wenge

    2016-05-01

    Impact damage has been identified as a critical form of the defects that constantly threatened the reliability of composite structures, such as those used in the aerospace structures and systems. Low energy impacts can introduce barely visible damage and cause the degradation of structural stiffness, furthermore, the flaws caused by low-velocity impact are so dangerous that they can give rise to the further extended delaminations. In order to improve the reliability and load carrying capacity of composite laminates under low-velocity impact, in this paper, the numerical simulatings and experimental studies on the woven fiber-reinforced composite laminates under low-velocity impact with impact energy 16.7J were discussed. The low velocity impact experiment was carried out through drop-weight system as the reason of inertia effect. A numerical progressive damage model was provided, in which the damages of fiber, matrix and interlamina were considered by VUMT subroutine in ABAQUS, to determine the damage modes. The Hashin failure criteria were improved to cover the failure modes of fiber failure in the directions of warp/weft and delaminations. The results of Finite Element Analysis (FEA) were compared with the experimental results of nondestructive examination including the results of ultrasonic C-scan, cross-section stereomicroscope and contact force - time history curves. It is found that the response of laminates under low-velocity impact could be divided into stages with different damage. Before the max-deformation of the laminates occurring, the matrix cracking, fiber breakage and delaminations were simulated during the impactor dropping. During the releasing and rebounding period, matrix cracking and delaminations areas kept increasing in the laminates because of the stress releasing of laminates. Finally, the simulating results showed the good agreements with the results of experiment.

  13. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy Tows and Implications for Composite Structures

    Science.gov (United States)

    Waller, Jess M.; Saulsberry, Regor L.; Lucero, Ralph; Nichols, Charles T.; Wentzel, Daniel J.

    2010-01-01

    ASTM-based ILH methods were found to give a reproducible, quantitative estimate of the stress threshold at which significant accumulated damage began to occur. a) FR events are low energy (300 kHz) d) FR events show a consistent hierarchy of cooperative damage for composite tow, and for the COPV tested, regardless of applied load. Application of ILH or related stress profiles could lead to robust pass/fail acceptance criteria based on the FR. Initial application of FR and FFT analysis of AE data acquired on COPVs is promising.

  14. Response to high heat fluxes and metallurgical examination of a brazed carbon-fiber-composite/refractory-metal divertor mock-up

    International Nuclear Information System (INIS)

    As a feasibility-study an actively cooled divertor mock-up has been subjected to high heat flux loading in electron beam simulation. The divertor design concept is based on a carbon-fiber-composite material (Aerolor 05) brazed onto a TZM/Mo41Re heat sink. The plasma facing carbon armor is divided in seven tiles to allow variable loading parameters - and repeated destructive tests. The mock-up has survived high heat flux loading up to about 12 MW/m2 surface heat flux in steady-state conditions. One armor tile showed no change in the thermal response even after 500 s at ∝14 MW/m2. To estimate the general thermal response of the mock-up design, numerical methods were applied. The predicted behavior was confirmed by the experimental results. The loading experiments were followed by a detailed metallurgical investigation of the loaded sample regions and the braze joints. The typical damages after high heat flux testing and cycling were failure (i.e. detachment) in the Zr brazed carbon/TZM joint, and failure in the CuPd bonded TZM/TZM joint due to an excess of the melting temperature of the brazes. The microstructural changes in the braze regions and the recrystallization behavior of the refractory alloys are discussed. Only in one case the loaded surface of the carbon armor shows considerable erosion, caused by a partial detachment along a braze joint and thus loss of the good thermal contact during the last applied loading shots. The thermal analyses and high heat flux performance of the Aerolor-05 armored mock-up are compared to the thermal response of a previously tested mock-up of corresponding geometry with armor tiles of isotropic graphite. (orig.)

  15. Efficient conversion of dimethylarsinate into arsenic and its simultaneous adsorption removal over FeCx/N-doped carbon fiber composite in an electro-Fenton process.

    Science.gov (United States)

    Lan, Huachun; Li, Jianfei; Sun, Meng; An, Xiaoqiang; Hu, Chengzhi; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2016-09-01

    In this study, a FeCx/N-doped carbon fiber composite (FeCx/NCNFs) was developed via an electrospinning method. According to the characterization results of XRD, TEM and XPS, FeCx (a mixture of Fe7C3 and Fe3C) was either embedded in or attached to the NCNFs. It was used for the first time as a catalyst for dimethylarsinate (DMA) degradation and as an absorbent for inorganic arsenic (As (V)), with degradation and adsorption occurring simultaneously, in an electro-Fenton process. The effects of catalyst dosage, initial DMA concentration, solution pH, and applied current on the treatment efficiency and the corresponding H2O2 generation were systematically investigated. The results showed that DMA could be efficiently oxidized into As(V). 96% of DMA was degraded after reaction time of 360 min and the residual As(V) concentration in solution was below the allowable limit of 0.01 mg/L under the optimum treatment conditions. Based on an ESR and radical scavenger experiment, OH was proven to be the sole reactive oxygen species involved in the degradation process of DMA. DMA was oxidized to MMA as the primary oxidation product, which was subsequently oxidized to inorganic arsenic, As (V). TOC was also efficiently removed at the same time. The DMA removal mechanism for simultaneous degradation of dimethylarsinate and adsorption of arsenic over FeCx/NCNFs in the electro-Fenton process was also proposed based on the experimental results. PMID:27179339

  16. Computational modeling of ring textures in mesophase carbon fibers

    Directory of Open Access Journals (Sweden)

    de Andrade Lima Luiz Rogério Pinho

    2003-01-01

    Full Text Available Carbon fibers are widely used in many industrial applications due the fact of their excellent properties. Carbonaceous mesophases are liquid crystalline precursor materials that can be spun into high performance carbon fibers using the melt spinning process, which is a flow cascade consisting of pressure driven flow-converging die flow-free surface extensional spinline flow that modifies the precursor molecular orientation structure. Carbon fiber property optimization requires a better understanding of the principles that control the structure development during the fiber formation processes and the rheological processing properties. This paper presents the elastic and continuum theory of liquid crystalsand computer simulations of structure formation for pressure-driven flow of carbonaceous liquid crystalline precursors used in the industrial carbon fiber spinning process. The simulations results capture the formation of characteristic fiber macro-textures and provide new knowledge on the role of viscous and elastic effects in the spinning process.

  17. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  18. Studies on copper coating on carbon fibers

    Institute of Scientific and Technical Information of China (English)

    CAO; Zhuo-kun; LIU; Yi-han; YAO; Guang-chun

    2005-01-01

    The weak interface bonding of metal matrix reinforced by carbon fibers is the central problem of fabricating such composites. Depositing copper coating on carbon fibers is regarded as a feasible method to solve the problem. In this paper, copper coating has been deposited on the fibers through both electroless deposition and electroplating methods. Two kinds of complexing agents and two stabilizing agents are taken during the electroless plating process. The solution is stable, and little extraneous component is absorbed on the surface. After adding additive agents and increasing the concentration of H2SO4 to the acid cupric sulfate electrolyte, the "black core" during usual electroplating process is avoided. The quality of copper coating is analyzed using SEM and XRD, etc.

  19. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  20. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite

    Directory of Open Access Journals (Sweden)

    Deng Y

    2015-02-01

    Full Text Available Yi Deng,1,2 Xiaochen Liu,2 Anxiu Xu,3 Lixin Wang,4 Zuyuan Luo,2 Yunfei Zheng,1 Feng Deng,3 Jie Wei,5 Zhihui Tang,1 Shicheng Wei1–3 12nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, 2Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 3Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, 4Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 5Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China Abstract: As United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. In this study, CFRPEEK–nanohydroxyapatite ternary composites (PEEK/n-HA/CF with variable surface roughness have been successfully fabricated. The effect of surface roughness on their in vitro cellular responses of osteoblast-like MG-63 cells (attachment, proliferation, apoptosis, and differentiation and in vivo osseointegration is evaluated. The results show that the hydrophilicity and the amount of Ca ions on the surface are significantly improved as the surface roughness of composite increases. In cell culture tests, the results reveal that the cell proliferation rate and the extent of osteogenic differentiation of cells are a function of the size of surface roughness. The composite with moderate surface roughness significantly increases cell attachment

  1. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Razaq, Aamir; Sjoedin, Martin; Stroemme, Maria; Mihranyan, Albert [Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala (Sweden); Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden); Nyholm, Leif [Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden)

    2012-04-15

    Composites of polypyrrole (PPy) and Cladophora nanocellulose, reinforced with 8 {mu}m-thick chopped carbon filaments, can be used as electrode materials to obtain paper-based energy-storage devices with unprecedented performance at high charge and discharge rates. Charge capacities of more than 200 C g{sup -1} (PPy) are obtained for paper-based electrodes at potential scan rates as high as 500 mV s{sup -1}, whereas cell capacitances of {proportional_to}60-70 F g{sup -1} (PPy) are reached for symmetric supercapacitor cells with capacitances up to 3.0 F (i.e.,0.48 F cm{sup -2}) when charged to 0.6 V using current densities as high as 31 A g{sup -1} based on the PPy weight (i.e., 99 mA cm{sup -2}). Energy and power densities of 1.75 Wh kg{sup -1} and 2.7 kW kg{sup -1}, respectively, are obtained when normalized with respect to twice the PPy weight of the smaller electrode. No loss in cell capacitance is seen during charging/discharging at 7.7 A g{sup -1} (PPy) over 1500 cycles. It is proposed that the nonelectroactive carbon filaments decrease the contact resistances and the resistance of the reduced PPy composite. The present straightforward approach represents significant progress in the development of low-cost and environmentally friendly paper-based energy-storage devices for high-power applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effect of electron beam irradiation on the properties of carbon fiber

    International Nuclear Information System (INIS)

    Carbon fibers are used as a reinforcement material in an epoxy matrix in advanced composites due to their high mechanical strength, rigidity and low specific density. An important aspect of the mechanical properties of composites is associated to the adhesion between the surface of the carbon fiber and the epoxy matrix. This paper aimed to evaluate the effects of electron beam irradiation on the physicochemical properties of carbon fibers to obtain better adhesion properties in resultant composite. Chemical structure and surface of carbon fiber were determined by FT-IR, elemental analysis and X-ray photoelectron spectroscopy, which indicated that the oxygen content increased significantly with increasing the radiation dose. Thermal stability of the carbon fibers was studied via the thermal gravimetric analysis. Surface morphology of carbon fiber was analyzed by scanning electron microscope. It was found that the degree of surface roughness was increased by electron beam irradiation

  3. Electrical Properties of Carbon Fiber Support Systems

    OpenAIRE

    W. Cooper; Daly, C; Demarteau, M.; Fast, J.(Pacific Northwest National Laboratory, Richland, Washington, 99352, U.S.A.); K. Hanagaki; Johnson, M.; Kuykendall, W.; Lubatti, H.; Matulik, M; Nomerotski, A.; B. Quinn; Wang, J.

    2005-01-01

    Carbon fiber support structures have become common elements of detector designs for high energy physics experiments. Carbon fiber has many mechanical advantages but it is also characterized by high conductivity, particularly at high frequency, with associated design issues. This paper discusses the elements required for sound electrical performance of silicon detectors employing carbon fiber support elements. Tests on carbon fiber structures are presented indicating that carbon fiber must be ...

  4. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    Science.gov (United States)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  5. Predictive engineering tools for injection-molded long-carbon-fiber thermoplastic composites - FY 2015 third quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mori, Steven [MAGNA Exteriors and Interiors Corp. Aurora, ON (Canada); Gandhi, Umesh N. [Toyota Research Institute North America, Ann Arbor, MI (United States); Wang, Jin [Autodesk, Inc., Ithaca, NY (United States); Costa, Franco [Autodesk, Inc., Ithaca, NY (United States); Wollan, Eric J. [PlastiComp, Inc., Winona, MN (United States); Tucker, III, Charles L. [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    2015-07-01

    During the third quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Magna oversaw the tool build and prepared the molding plan for the complex part of Phase II. 2) PlastiComp hosted a visit by Magna and Toyota on April 23rd to finalize the molding scope and schedule. The plan for molding trials including selection of molding parameters for both LFT and D-LFT for the U-shape complex part was established. 3) Toyota shipped the U-shape complex part tool to Magna on May 28th, 2015. 4) Plasticomp provided 30wt% LCF/PP and 30wt% LCF/PA66 compounded pellets to Magna for molding the complex part. 5) Magna performed preliminary molding trials on June 2nd, 2015 to validate wall thickness, fill profile, tool temperature and shot size requirements for the complex part. 6) Magna performed the first complex part run on June 16th and 17th, 2015 at Magna’s Composite Centre of Excellence in Concord, ON, Canada. Dale Roland of Plasticomp, and Umesh Gandhi of Toyota also attended the molding. 7) Magna discussed and finalized the plan with PNNL and the team for cutting samples from molded parts at selected locations for fiber orientation and length measurements. 8) Magna provided the computer-aided design (CAD) files of the complex parts with and without ribs to PNNL and Autodesk to build the corresponding ASMI models for injection molding simulations. Magna also provided the actual parameters used. 9) Plasticomp’s provided knowledge and experience of molding LCF materials essential to the successful molding of the parts including optimization of fill speed, tool temperatures, and plasticizing conditions for the 30wt% LCF/PP and 30wt% LCF/PA66 materials in both rib and non-rib versions. 10) Magna molded additional parts for evaluation of mechanical property testing including torsional stiffness on June 29th and 30th, 2015 at Magna’s Composite Center of Excellence. 11) Toyota began preparation for the torsion test of the specimens

  6. Characterization of electrospun lignin based carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri [School of Engineering, Thornbrough Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada); Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada)

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  7. Characterization of electrospun lignin based carbon fibers

    International Nuclear Information System (INIS)

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems

  8. Patterned functional carbon fibers from polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Marcus A [ORNL; Saito, Tomonori [ORNL; Brown, Rebecca H [ORNL; Kumbhar, Amar S [University of North Carolina, Chapel Hill; Naskar, Amit K [ORNL

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  9. Friction and wear behavior of carbon fiber reinforced brake materials

    Institute of Scientific and Technical Information of China (English)

    Du-qing CHENG; Xue-tao WANG; Jian ZHU; Dong-bua QIU; Xiu-wei CHENG; Qing-feng GUAN

    2009-01-01

    A new composite brake material was fabri-cated with metallic powders, barium sulphate and modified phenolic resin as the matrix and carbon fiber as the reinforced material. The friction, wear and fade character-istics of this composite were determined using a D-MS friction material testing machine. The surface structure of carbon fiber reinforced friction materials was analyzed by scanning electronic microscopy (SEM). Glass fiber-reinforced and asbestos fiber-reinforced composites with the same matrix were also fabricated for comparison. The carbon fiber-reinforced friction materials (CFRFM) shows lower wear rate than those of glass fiber- and asbestos fiber-reinforced composites in the temperature range of 100℃-300℃. It is interesting that the frictional coefficient of the carbon fiber-reinforced friction materials increases as frictional temperature increases from 100℃ to 300℃, while the frictional coefficients of the other two composites decrease during the increasing temperatures. Based on the SEM observation, the wear mechanism of CFRFM at low temperatures included fiber thinning and pull-out. At high temperature, the phenolic matrix was degraded and more pull-out enhanced fiber was demonstrated. The properties of carbon fiber may be the main reason that the CFRFM possess excellent tribological performances.

  10. 碳纤维布加固锈蚀钢筋混凝土梁的疲劳性能试验%FATIGUE PERFORMANCE OF CORRODED RC BEAMS STRENGTHENED WITH CARBON FIBER COMPOSITE SHEETS

    Institute of Scientific and Technical Information of China (English)

    宋力; 张伟平

    2009-01-01

    完成了粘贴碳纤维布加固锈蚀钢筋混凝土梁的疲劳试验.试验结果表明,碳纤维布加固可以明显提高梁的疲劳寿命,减小梁的变形,提高梁的疲劳抗裂性能.因此,粘贴碳纤维布可以较大提高锈蚀钢筋混凝土梁的疲劳性能,延长锈蚀钢筋混凝土结构的使用寿命,为碳纤维布加固锈蚀钢筋混凝土结构的长期疲劳性能研究提供了试验依据.%Tests,including two corroded reinforced concrete(RC)beams strengthened with carbon fiber composite sheets and one corroded RC beams,were carried out under fatigue loadings.It is found that the fa-tigue life of beams strengthened with csrbon fiber composite sheets is greatly improved,and fatigue delforma-tion is decreased,and performance of anti-crack is obviously improved.Thus,after stuengthening with exter-ally bonded carbon fiber composite sheets,the flexural fatigue behavior of a corroded RC beam may be con-siderably improveded,the fatigue life of corrosion RC structures may be obviously increased.It sets up the test-base for the study of long-term performance of corroded RC beam reinforced with carbon fiber composite she-ets.

  11. Nanowire modified carbon fibers for enhanced electrical energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  12. High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength

    Science.gov (United States)

    Fan, Wenxin; Wang, Yanxiang; Wang, Chengguo; Chen, Jiqiang; Wang, Qifen; Yuan, Yan; Niu, Fangxu

    2016-02-01

    An innovative technique has been developed to obtain the uniform catalyst coating on continuously moving carbon fibers. Carbon nanotube (CNT)-grafted carbon fibers with significantly improved tensile strength have been succeeded to produce by using chemical vapor deposition (CVD) when compared to the tensile strength of untreated carbon fibers. The critical requirements for preparation of CNT-grafted carbon fibers with high tensile strength have been found, mainly including (i) the obtainment of uniform coating of catalyst particles with small particle size, (ii) the low catalyst-induced and mechano-chemical degradation of carbon fibers, and (iii) the high catalyst activity which could facilitate the healing and strengthening of carbon fibers during the growth of CNTs. The optimum growth temperature was found to be about 500 °C, and the optimum catalyst is Ni due to its highest activity, there is a pronounced increase of 10% in tensile strength of carbon fibers after CNT growth at 500 °C by using Ni catalyst. Based on the observation from HRTEM images, a healing and crosslink model of neighboring carbon crystals by CNTs has been formulated to reveal the main reason that causes an increase in tensile strength of carbon fibers after the growth of CNTs. Such results have provided the theoretical and experimental foundation for the large-scale preparation of CNT-grafted carbon fibers with the improved tensile strength, significantly promoting the development of CNT-grafted carbon fiber reinforced polymer composites.

  13. Failure Analysis of Carbon Fiber/Epoxy Composite Transverse Pipe%碳/环氧复合材料横管开裂失效分析

    Institute of Scientific and Technical Information of China (English)

    万蕾; 孙璐; 李晶; 杨耀东

    2015-01-01

    碳/环氧复合材料横管作为天线结构的一部分,在进行第60次展开试验的过程中发生了开裂. 通过弯曲试验、宏观观察、微观观察及金相分析等手段,对横管的破坏模式、失效原因进行分析,并提出后续解决措施建议. 结果表明:横管的破坏形式为弯曲破坏,其在收拢、展开过程中受反复加载的压缩-弯曲载荷的作用发生弯曲变形,在变形集中区缺陷发生扩展并逐步形成分层开裂损伤,使局部区域刚度下降,在后续使用中分层开裂损伤进一步加剧,导致横管的整体刚度逐渐下降,最终在第60次展开试验中发生弯曲失稳破坏.%Carbon fiber/epoxy composite transverse pipe, a part of antenna structure, cracked during the sixtieth unfolding test. By means of bending test, macro and micro observation, metallographic analysis, the failure mode and cause were finally found out and the resolving advice was given. The results indicate that the failure mode of the transverse pipe is bending fracture. During the test, bending transformation occurred under the effect of the reloading compressing-bending load. Defects propagated and then formed delamination damage at the transformation concentration zones, which made stiffness decrease locally. Then as the test went on, the delamination damage propagated and the stiffness of the whole pipe decreased. As a result, the pipe fractured in the form of unstably bending during the sixtieth unfolding test.

  14. ELECTRO-THERMAL EFFECTS AND DEFORMATION RESPONSE OF CARBON FIBER MAT CEMENT BEAMS

    Institute of Scientific and Technical Information of China (English)

    ZhuSirong; LiZhuoqiu; SongXianhui

    2003-01-01

    A carbon fiber mat is a sheet composed of intercrossing short carbon fibers, which has more stable and lower electrical resistivity compared with dispersed short carbon fiber mixed in cement. Thereby carbon fiber mat cement could exhibit obvious electro-thermal effect. When electrified, the temperature of composite structures made up of cement mortar and carbon fiber mat will rise rapidly. If the temperature field is not uniform, temperature difference will cause structures to deform, which can be used to adjust the deformation of structures. The temperature field and deformation response driven by the electro-thermal effects of a type of carbon fiber mat cement beams are studied. Firstly, the temperature and deformation responses are studied using theories of thermal conduction and elasticity. Secondly, experimental results are given to verify the theoretical solution. These two parts lay the foundation for temperature and deformation adjustment.

  15. Formation and chemical reactivity of carbon fibers prepared by defluorination of graphite fluoride

    Science.gov (United States)

    Hung, Ching-Cheh

    1994-01-01

    Defluorination of graphite fluoride (CFX) by heating to temperatures of 250 to 450 C in chemically reactive environments was studied. This is a new and possibly inexpensive process to produce new carbon-based materials. For example, CF 0.68 fibers, made from P-100 carbon fibers, can be defluorinated in BrH2C-CH = CH-CH2Br (1,4-dibromo-2butene) heated to 370 C, and graphitized to produce fibers with an unusually high modulus and a graphite layer structure that is healed and cross-linked. Conversely, a sulfur-doped, visibly soft carbon fiber was produced by defluorinating CF 0.9 fibers, made from P-25, in sulfur (S) vapor at 370 C and then heating to 660 C in nitrogen (N2). Furthermore, defluorination of the CF 0.68 fibers in bromine (Br2) produced fragile, structurally damaged carbon fibers. Heating these fragile fibers to 1100 C in N2 caused further structural damage, whereas heating to 150 C in bromoform (CHBr3) and then to 1100 C in N2 healed the structural defects. The defluorination product of CFX, tentatively called activated graphite, has the composition and molecular structure of graphite, but is chemically more reactive. Activated graphite is a scavenger of manganese (Mn), and can be intercalated with magnesium (Mg). Also, it can easily collect large amounts of an alloy made from copper (Cu) and type 304 stainless steel to form a composite. Finally, there are indications that activated graphite can wet metals or ceramics, thereby forming stronger composites with them than the pristine carbon fibers can form.

  16. PROGRESS ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  17. X-ray microtomography, ultrasound and thermography for the characterization of defects in fiberglass and carbon fiber composite materials and elements; Roentgen-Mikrotomografie, Ultraschall und Thermographie fuer die Charakterisierung von Defekten in GFK- und CFK-Verbundwerkstoffen und -Elementen

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Andreas J.; Jerjen, Iwan; Plamondon, Mathieu; Furrer, Roman; Neuenschwander, Juerg [EMPA Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland)

    2015-07-01

    Glass and carbon fiber reinforced plastics (GRP or CFRP composites) may have different defects that arise on the one hand in the manufacturing process and on the other hand occur or propagate under quasi-static or oscillating mechanical load. The characterization of the nature, location and size of defects is important among other things for optimization of manufacturing processes, modeling of material or component behavior and for the estimation of the useful life of components or structures from GFK or CFK composites. The contribution shows selected examples of the application of X-ray microtomography, ultrasound and thermography for the characterization of defects in fiberglass or carbon fiber composite components. In ''thick'' laminates and complex shapes the X-ray method is particularly suitable. [German] Glas- und Kohlenstoff-faserverstaerkte Kunststoffe (GFK- bzw. CFK-Verbundwerkstoffe) koennen unterschiedliche Defekte ausweisen, die einerseits im Herstellungsprozess entstehen und sich andererseits bei der Nutzung unter quasistatischer oder schwingender mechanischer Belastung ausbilden oder sich ausbreiten. Die Charakterisierung der Art, der Lage und der Groesse der Defekte ist u.a. fuer Optimierung der Herstellungsprozesse, Modellierung des Werkstoff- oder Bauteilverhaltens sowie der Abschaetzung der Nutzungsdauer von Komponenten oder Strukturen aus GFK- oder CFK-Verbundwerkstoffen wichtig. Der Beitrag zeigt ausgewaehlte Beispiele der Anwendung von Roentgen-Mikrotomografie, Ultraschall und Thermographie zur Charakterisierung von Defekten in GFK- oder CFK-Verbundwerkstoff-Bauteilen. Bei ''dicken'' Laminaten und komplexen Geometrien ist das Roentgenverfahren besonders geeignet.

  18. Preparation and selective laser sintering behavior of carbon fiber/polyamide 1 2 composite%炭纤维/尼龙12复合粉体的制备及选择性激光烧结行为

    Institute of Scientific and Technical Information of China (English)

    吴琼; 陈惠; 巫静; 夏笑虹; 许小曙; 边宏; 刘洪波

    2016-01-01

    采用液相氧化法对PAN基短切炭纤维进行表面改性,再与尼龙12混合,采用选择性激光烧结成形技术制备炭纤维/尼龙12复合粉体试样。利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)表征炭纤维改性前后的表面状态、复合粉体的分散状况及烧结试样的断口形貌。探讨了复合粉体的烧结行为及烧结试样的力学性能与孔隙率的关系。结果表明,改性炭纤维表面的含氧基团在激光烧结时热分解产生气体,导致烧结试样孔隙率较高、力学性能较差。改性炭纤维经高温热处理可以在保留炭纤维表面粗糙度的同时有效降低烧结试样的孔隙率,与未改性炭纤维/尼龙12试样相比,拉伸强度、拉伸模量、弯曲强度和弯曲模量均有不同程度的提高。%The PAN-based chopped carbon fibers were surface modified by liquid-phase oxidation,mixed with polyamide 12,and the carbon fiber reinforced polyamide 12 composites were prepared by selective laser sinte-ring technology.Scanning electron microscope and Fourier transform infrared spectrum were applied to the characterization of the surface state on the carbon fibers before and after modification,the dispersity of compos-ite powder,and fracture morphology of the sintered components.The sintering behavior of composite powder, the relationship between mechanical property and porosity of the sintered components were also discussed.The results show that the oxygen-containing groups on the surface of modified carbon fibers are thermal decomposed and release gas in the process of laser sintering,which cause a high porosity and poor mechanical properties of the sintered components.While the carbon fibers treated under high temperature after modification can preserve the surface roughness,lower the porosity at the same time,and compared with the unmodified carbon fiber re-inforced polyamide 1 2 sintered components,the tensile strength,tensile modulus

  19. Preliminary studies of epoxidized palm oil as sizing chemical for carbon fibers

    International Nuclear Information System (INIS)

    Epoxidized palm oil is derived from palm oil through chemical reaction with peracetic acid. Preliminary studies to coat carbon fibers have shown promising result towards applying natural product in carbon fibre composites. Mechanical studies of sized carbon fibers with epoxidized palm oil showed significant increase in tensile and interfacial shear strength. Surface morphology of sized or coated carbon fibers with epoxidized palm oil reveals clear increase in root means square-roughness (RMS). This indicates the change of the surface topography due to sized or coated carbon fibers with epoxidized palm oil. (author)

  20. Synthesis of Y2O3-ZrO2-SiO2 composite coatings on carbon fiber reinforced resin matrix composite by an electro-plasma process

    Science.gov (United States)

    Zhang, Yuping; Lin, Xiang; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2016-05-01

    In the present paper the Y2O3-ZrO2-SiO2 composite coating was successfully synthesized on carbon fiber reinforced resin matrix composite by an electro-plasma process. The deposition process, microstructures and oxidation resistance of the coatings with different SiO2 concentrations were systematically investigated. A relatively dense microstructure was observed for the Y2O3-ZrO2-SiO2 composite coating with the SiO2 concentration above 5 g/L. The coating exhibited very good oxidation resistance at 1273 K with the mass loss rate as low as ∼30 wt.%, compared to 100 wt.% of the substrate. The formation of the ceramic composites was discussed in detail based on the electrochemical mechanism and the deposition dynamics in order to explain the effect of the plasma discharge. We believe that the electro-plasma process will find wide applications in preparing ceramics and coatings in industries.

  1. Study on the Properties of HDPE/Graphite/Carbon Fiber Thermal Conductivity Composite%高密度聚乙烯/石墨/碳纤维导热复合材料性能的研究

    Institute of Scientific and Technical Information of China (English)

    冯博; 冷金华; 陈弦; 何波兵

    2013-01-01

    采用高密度聚乙烯(HDPE)、石墨、碳纤维制备高导热、高强度的复合材料.通过SEM照片考察高密度聚乙烯/石墨/碳纤维复合体系的微观结构;研究石墨及碳纤维的加入是否可以形成导热通道以及随着石墨的添加量的提高,复合材料的导热性能及其力学性能的变化.结果表明:当石墨的质量分数为60%,碳纤维的质量分数为5%时,复合材料的导热系数达到7.938 W/(m·K),是纯HDPE的20倍.%High density polyethylene,graphite and carbon fiber were chosen to prepare a composite material with high thermal conductivity and high strength.Its microstructure was observed by SEM as well as whether it can form a thermal channel by using graphite and carbon fiber.The changes of the material's thermal conductivity and mechanical properties with the increasing of the addition of graphite were studied.When using 60w% graphite and 5 w% carbon fiber,the coefficient index of thermal conductivity reached at 7.938 W/(m · K) which was 20 times of the pure HDPE.

  2. Excellent Adhesion of Carbon Fibers to Polyurethane Matrix and Substantial Improvement of the Mechanical Properties of Polyurethane

    OpenAIRE

    Seydibeyoglu, M. Ozgur

    2011-01-01

    In this study, polyurethane-carbon fiber composites were prepared with excellent interface with perfect adhesion of carbon fibers with the polyurethane matrix. The polyurethane was thermoplastic polyurethane and the carbon fiber was polyacrylonitrile based with 7 micron meter thickness. The composites were prepared with solvent casting technique. The composite materials were characterized with tensile testing, dynamic mechanical analysis, scanning electron microscope, and thermogravimetric an...

  3. Microwave axial dielectric properties of carbon fiber

    Science.gov (United States)

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-10-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity.

  4. Hygrothermal effects on fiber reinforced polyphenylene sulphide composites : humidity uptake and temperature influence on mechanical properties of glass and carbon fiber reinforced polyphenylene sulphide composites

    OpenAIRE

    Suárez Cabrera, Emmanuel

    2011-01-01

    In the ever-continuing quest for greener and cheaper aerospace materials, the Durability Group, part of the Design and Production of Composite Structures Department at the faculty of Aerospace Engineering of the Delft University of Technology is focusing on the use of new thermoplastic composites for aerospace structures. Currently the introduction of Nylon composites in the aerospace industry is being investigated. Nylon as a thermoplastic matrix for fibre reinforced composites can be bought...

  5. Property and Shape Modulation of Carbon Fibers Using Lasers.

    Science.gov (United States)

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes. PMID:27227575

  6. NiCF/ABS复合材料的制备及电磁屏蔽效能研究%Study on EMI Properties of Nickel Coated Carbon Fibers/ABS Composites

    Institute of Scientific and Technical Information of China (English)

    唐萍; 程真真; 张荣; 刘俊; 史然; 宾月珍

    2013-01-01

    This research investigated the metal-coating method of carbon fibers (CF). Nickel-coated carbon fibers (NiCF) were fabricated by electroless plating, and ABS composites filled with CF and NiCF were prepared by kneading method. The influence of CF and NiCF contents on the electrical conductivity and electromagnetic shielding effectiveness of ABS based composites was studied. The results indicated that an even and intact nickel coating could be plated on carbon fibers under a suiltable pretreatment and plating conditions, and the electrical resistivity of CF decreased 2 orders of magnitude when the plating time was 5min. The electrical resistivity of composites decreased with CF and NiCF content increasing. The corresponding electromagnetic shielding effectiveness of composites increased as filler content increasing, and the value reached 51 dB for the composite containing 25wt% (13. 3vol%) NiCF.%探讨了碳纤维(CF)表面镍金属的化学镀工艺,制备了镀镍碳纤维(NiCF),采用密炼工艺制备了ABS基体复合材料,研究了CF和NiCF含量对复合材料的导电性能及电磁屏蔽效能的影响.结果表明:采用化学镀的方法在碳纤维表面镀覆了金属镍,所形成的镀层均匀致密;镀覆时间为5min时,镀镍后的碳纤维电阻率降低两个数量级;复合材料电阻率随CF、NiCF含量的增加而逐渐减小;复合材料电磁屏蔽效能随CF、NiCF含量的增加而逐渐增加,当NiCF含量为25%(wt)(约13.3vo1%)时,电磁屏蔽效能最高可达51dB.

  7. Mechanical Properties of Heat-treated Carbon Fibers

    Science.gov (United States)

    Effinger, Michael R.; Patel, Bhavesh; Koenig, John; Cuneo, Jaques; Neveux, Michael G.; Demos, Chrystoph G.

    2004-01-01

    Carbon fibers are selected for ceramic matrix composites (CMC) are based on their as-fabricated properties or on "that is what we have always done" technical culture while citing cost and availability when there are others with similar cost and availability. However, the information is not available for proper selection of carbon fibers since heat-treated properties are not known for the fibers on the market currently. Heat-treating changes the fiber's properties. Therefore, an effort was undertaken to establish fiber properties on 19 different types of fibers from six different manufactures for both PAN and pitch fibers. Heat-treating has been done at three different temperatures.

  8. Vibration damping with active carbon fiber structures

    Science.gov (United States)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  9. 碳纤维复合Si3N4陶瓷材料的制备及性能研究%Preparation and Properties of Carbon Fiber/Si3N4 Composites

    Institute of Scientific and Technical Information of China (English)

    王贺云; 刘茜; 周遥; 周真真; 刘光辉

    2014-01-01

    为研究碳纤维(Cf)加入量对复合材料性能的影响,本研究以 Y2O3为烧结助剂,采用热压烧结技术制备了Cf/Si3N4复合材料,其中碳纤维加入量为0、2wt%和5wt%。选用乙醇作分散介质,通过球磨工艺可有效分散短切碳纤维。研究结果表明:碳纤维在复合材料中分散均匀,且材料中的晶粒在垂直于热压压力的方向呈现一定取向排列。高温烧结过程中,碳纤维与Si3N4或其表面的SiO2层发生反应,生成SiC中间层。适量碳纤维加入有助于提高复合材料的热导性能。当Cf加入量为2wt%时,Cf/Si3N4的热导率较高,为45.8 W/(mxK);而不添加Cf的样品,其热导率为37.1 W/(mxK)。加入Cf后, Cf/Si3N4的断裂韧性有小幅提高,维氏硬度在16.6~16.8 GPa范围内变化。%To investigate the effects of carbon fiber (Cf) adding content on the propertiesof Si3N4, Cf/Si3N4 composites with 0, 2wt% and 5wt%ofshort carbon fibers were prepared by hot-press sintering method, using Y2O3as sintering additives. With long-time ball milling process, carbon fibers were well dispersed in mixed powders using ethanol as dispersion medium. Carbon fibers distribute uniformly in the composites and Si3N4grains grow to a certain degree in the vertical direction to the pressure of hot-press. The interfacial by-product silicon carbide (SiC) phase forms due to the reaction between added Cf and Si3N4 particles or SiO2 layer on surface of Si3N4 particles during high temperature sintering. The sample with 2wt% Cf addition achieves a higher value of thermal conductivity (45.8 W/(mxK)), while the thermal conductivity of Si3N4without Cf is only 37.1 W/(mxK). Therefore, the addition of Cf can improve the ther-mal conductivity of the composites. The fracture toughness of the composites has a slight increase with Cf adding. The measured hardness values for all samples are within a range of 16.6-16.8 GPa.

  10. In-Situ Nondestructive Evaluation of Kevlar(Registered Trademark)and Carbon Fiber Reinforced Composite Micromechanics for Improved Composite Overwrapped Pressure Vessel Health Monitoring

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA has been faced with recertification and life extension issues for epoxy-impregnated Kevlar 49 (K/Ep) and carbon (C/Ep) composite overwrapped pressure vessels (COPVs) used in various systems on the Space Shuttle and International Space Station, respectively. Each COPV has varying criticality, damage and repair histories, time at pressure, and pressure cycles. COPVs are of particular concern due to the insidious and catastrophic burst-before-leak failure mode caused by stress rupture (SR) of the composite overwrap. SR life has been defined [1] as the minimum time during which the composite maintains structural integrity considering the combined effects of stress level(s), time at stress level(s), and associated environment. SR has none of the features of predictability associated with metal pressure vessels, such as crack geometry, growth rate and size, or other features that lend themselves to nondestructive evaluation (NDE). In essence, the variability or surprise factor associated with SR cannot be eliminated. C/Ep COPVs are also susceptible to impact damage that can lead to reduced burst pressure even when the amount of damage to the COPV is below the visual detection threshold [2], thus necessitating implementation of a mechanical damage control plan [1]. Last, COPVs can also fail prematurely due to material or design noncompliance. In each case (SR, impact or noncompliance), out-of-family behavior is expected leading to a higher probability of failure at a given stress, hence, greater uncertainty in performance. For these reasons, NASA has been actively engaged in research to develop NDE methods that can be used during post-manufacture qualification, in-service inspection, and in-situ structural health monitoring. Acoustic emission (AE) is one of the more promising NDE techniques for detecting and monitoring, in real-time, the strain energy release and corresponding stress-wave propagation produced by actively growing flaws and defects in composite

  11. Method of improving adhesion of carbon fibers with a polymeric matrix

    Energy Technology Data Exchange (ETDEWEB)

    Vautard, Frederic; Ozcan, Soydan; Paulauskas, Felix Leonard

    2016-06-14

    A functionalized carbon fiber having covalently bound on its surface a partially cured epoxy or amine-containing sizing agent, wherein at least a portion of epoxide or amine groups in the sizing agent are available as uncrosslinked epoxide or amine groups, which corresponds to a curing degree of epoxide or amine groups of no more than about 0.6. Composites comprised of these functionalized carbon fibers embedded in a polymeric matrix are also described. Methods for producing the functionalized carbon fibers and composites thereof are also described.

  12. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  13. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  14. Hierarchical core/shell structure of MnO2@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors.

    Science.gov (United States)

    Yang, MinHo; Hong, Seok Bok; Choi, Bong Gill

    2015-11-28

    Hierarchical core/shell structured arrays of MnO2@polyaniline (PANI) nanosheets are successfully deposited on the surface of carbon fiber paper (CFP) by a two-step method of a redox reaction-assisted deposition of MnO2 and post electrodeposition of PANI. The CFP is used as a three-dimensional (3D) current collector to ensure 3D transport of ions and electrons with a large surface area. In addition, the electrodeposition technique enables conformal and thin coating of a layer of PANI across the entire MnO2 nanosheet. The MnO2@PANI on the CFP shows a unique architecture for efficient ion diffusion pathways in hierarchical porous structures and rapid electron transfer through PANI coated layers. The MnO2@PANI/CFP can be applied as a binder- and carbon-free electrode for supercapacitors. Evaluation of the electrochemical performance revealed that the as-prepared electrodes have a high value of specific capacitance (437 F g(-1) at 1 A g(-1)), high rate capability (62.4% retention at 15 A g(-1)), and good cycle life (∼100% at sequential current densities of 1 and 5 A g(-1) over 3000 cycles). PMID:26486195

  15. Mechanical testing of unidirectional carbon fiber reinforced plastics

    OpenAIRE

    Näreikkö, Aleksi

    2015-01-01

    The area of composites testing has been a major topic of research since the early adoption of composites in the aerospace industry, nearly 50 years ago. Today, the mechanical characterization of different material systems is of even greater importance, since most modelling software require material data to produce accurate results. This thesis studied a component consisting of 4 pultruded carbon fiber reinforced epoxy elements coated with a thermoplastic polyurethane coating. The obje...

  16. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact

    Science.gov (United States)

    Hart, Robert J.; Zhupanska, Olesya I.

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens.

  17. 炭纤维上浆剂的研究进展%Research progress on carbon fiber sizing agent

    Institute of Scientific and Technical Information of China (English)

    王学兰; 曾黎明

    2011-01-01

    The research progress on carbon fiber sizing agent used in carbon fiber composite materials was reviewed, mainly including the effects and the classification of carbon fiber sizing agent and the research situation. The carbon fiber emulsion sizing agent was discussed in the last.%论述了炭纤维复合材料中的炭纤维上浆剂.先介绍了上浆剂的作用和分类,然后重点综述了炭纤维上浆剂国内外研究现状,最后就乳液型炭纤维上浆剂做了介绍.

  18. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γSd increases and the polar surface energy γSsp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  19. Comparison of ORNL Low Cost Carbon Fiber with Commercially Available Industrial Grade Carbon Fiber in Pultrusion Samples

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Jr, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McCay, Jeff A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Connie D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    Composite Applications Group LLC in collaboration with Heil Trailer International partnered in a project to design and develop solutions for light weighting of aluminum dry bulk tank trailers. The project approach was to utilize pultruded composite sections in place of aluminum components to reduce weight thereby saving energy through more efficient transport. Low cost carbon fiber was evaluated as a potential cost saving option that could enhance weight savings at reduced cost versus current commercial material.

  20. Análise do efeito higrotérmico no comportamento em fadiga de compósitos de PPS/fibras de carbono On the analysis of hygrothermal effect on fatigue behavior of PPS/carbon fiber composite

    Directory of Open Access Journals (Sweden)

    Maria C. M. de Faria

    2012-01-01

    exposed to harsh environments such as high temperature and humidity, and should be carefully evaluated before being put into service. The aim of the present work is to evaluate the hygrothermal effect on the fatigue resistance of thermoplastic PPS/carbon fiber composite. These laminates were obtained from TenCate Company, which provides composite laminates to Airbus and Embraer. PPS/carbon fibers composites exhibited increased tensile strength under hygrothermal conditioning due to plasticization of the polymer matrix, with the fracture toughness being also increased. In contrast, the hygrothermal conditioning did not alter significantly the behavior of fatigue life of laminates from PPS/carbon fiber composite.

  1. Preparation and Research on Epoxy Resin/Carbon Fiber/BN Thermal Conductive Composites%环氧树脂/碳纤维/BN导热复合材料制备及研究

    Institute of Scientific and Technical Information of China (English)

    齐海元; 齐暑华; 曹鹏; 李美玲

    2011-01-01

    采用高温模压成型法制备环氧树脂/碳纤/BN导热复合材料.探讨了BN用量对复合材料导热性能和力学性能的影响.结果表明,当BN用量为6%(wt)时,复合材料的弯曲强度和剪切强度较佳,BN用量对复合材料的冲击强度影响不大;导热性能随BN用量的增加而增加,当BN用量为20%(wt)时,导热系数为0.8438W/m·K.%The epoxy/carbon fiber/boron nitride thermal conductive composites were prepared by compression mould method at high temperature.The effect of BN content on the thermal and mechanical properties of oomposite materials was investigated.The results showed that the flexure and the shear strength of the composites were optimal with 6% mass fraction of BN.The effect of BN content on impact strength was neglected.The thermal conductivity of the composites were improved with the increasing mass fraction of BN, and the thermal conductivity coefficient λ reached 0.8438W/(m·K) when the mass fraction of BN was 20%.

  2. Modificação de fibra de carbono com PBLH e sua utilização em compósitos com resina epoxídica Hydroxyl-terminated polybutadiene-grafted carbon fiber in epoxy resin-based composites

    Directory of Open Access Journals (Sweden)

    Fábio L. Barcia

    1999-06-01

    Full Text Available Fibras de carbono contendo 1,4 e 2,1mmol/g de grupos carboxila e hidroxila fenólica, respectivamente, foram modificadas através de reação com TDI, resultando em fibras contendo 3,1 mmol/g de grupos isocianato. A introdução de grupos isocianato na superfície da fibra tornou possível a sua modificação com polibutadieno líquido hidroxilado. Fibras de carbono modificadas e não modificadas foram empregadas na preparação de compósitos com resina epoxídica, sendo observado um aumento considerável de resistência ao impacto em compósitos constituídos de fibras de carbono enxertadas com PBLH, devido, provavelmente, à natureza elastomérica da interface e à melhor adesão interfacial.Carbon fibers containing 1,4 e 2,1 mmol/g of carboxyl and phenolic hydroxyl groups, respectively, were modified through the reaction with TDI. The presence of isocyanate groups at the fiber surface made possible the fiber modification with hydroxyl terminated polybutadiene (HTPB. These modified and unmodified carbon fibers were employed in the preparation of epoxy resin-based composites. A substantial improvement in the impact properties was observed in the composites with HTPB-grafted carbon fibers when compared to unmodified carbon fibers. These results may be attributed to a higher interfacial adhesion promoted by reactions between the functional groups present at the modified carbon fiber surface and the epoxy matrix.

  3. Production of graphene oxide from pitch-based carbon fiber

    OpenAIRE

    Miyeon Lee; Jihoon Lee; Sung Young Park; Byunggak Min; Bongsoo Kim; Insik In

    2015-01-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  4. Viscoelastic characterization of carbon fiber-epoxy composites by creep and creep rupture tests; Caracterizacao viscoelastica por meio de ensaios de fluencia e ruptura por fluencia de compositos polimericos de matriz de matriz de resina epoxidica e fibra de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Luis Claudio

    2009-07-01

    One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)

  5. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    OpenAIRE

    Suresh, G.; L. S. Jayakumari

    2015-01-01

    A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester) and PU (Polyurethane) and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU) reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests in...

  6. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop low cost diamond composite bearings utilizing our new high pressure technology for carbon fiber reinforced 3-D C/C composites and mixtures of...

  7. Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells.

    Science.gov (United States)

    Abdurhman, Abduraouf Alamer Mohamed; Zhang, Yan; Zhang, Guoan; Wang, Shuai

    2015-10-01

    We report the design and fabrication of a new type of nanohybrid microelectrode based on a hierarchical nanostructured Au/MnO2/graphene-modified carbon fiber (CF) via in situ electrochemical synthesis, which leads to better structural integration of different building blocks into the CF microelectrode. Our finding demonstrates that wrapping CF with graphene nanosheets has dramatically increased the surface area and electrical conductivity of the CF microelectrode. The subsequent template-free electrodeposition of MnO2 on graphene-wrapped CF gives rise to a porous nanonest architecture built up from twisted and intersectant MnO2 nanowires, which serves as an ideal substrate for the direct growth of Au nanoparticles. Owing to the structural merit and synergy effect between different components, the hierarchical nanostructured noble metal/metal oxide/graphene-coated CF demonstrates dramatically enhanced electrocatalytic activity. When used for nonenzymatic H2O2 sensing, the resultant modified microelectrode exhibits acceptable sensitivity, reproducibility, stability, and selectivity, which enable it to be used for real-time tracking H2O2 secretion in human cervical cancer cells. Graphical abstract A schematic illustration of preparation of hierarchical Au/MnO2/ERGO/CF nanohybrid electrode for real-time molecular detection of cancer cells. PMID:26359235

  8. 三维编织炭纤维增强环氧树脂复合材料的吸湿特性%Moisture Absorption Characteristics of 3D Braided Carbon Fiber Reinforced Epoxy Resin Composites

    Institute of Scientific and Technical Information of China (English)

    王玉果

    2009-01-01

    Three-dimensionally(_3D)braided carbon fiber reinforced epoxy resin(C_3D/EP)composites have been prepared by resin transfer molding(RTM)process. The moisture absorption characteristics,influence of temperature on the water uptake,and changes in the flexural strength during water absorption of C_3D/EP composites have been studied in the water absorption experiment. Experiment results show that the equilibrium moisture content of the C_3D/EP composites is lower than that of unreinforced epoxy resin but slightly higher than that of the long carbon fiber reinforced epoxy resin(C_L/EP)composites. The absorption behavior at the initial stage conforms to Fick's law of diffusion while the whole absorption behavior of epoxy resin composites can be described with the Sigmoidal model. The flexural strength of the C_3D/EP composites decreases quickly with immersion time at the early stage and then levels off,which is in agreement with the absorption content-time curve. It is also found that temperature affects the absorption process greatly. The absorption rate and equilibrium moisture content of the C_3D/EP composites increase with the rise of temperature. The higher the tempera-ture,more remarkable the loss of flexural strength. It is thus concluded that the reduction of mechanical property is related to the water absorption content of the C_3D/EP composites.%为了研究三维编织复合材料的吸湿行为,利用树脂传递模塑(RTM)工艺制备了三维编织炭纤维增强环氧树脂(C3D/EP)复合材料.通过吸水实验,研究了该材料的吸湿规律、温度对吸湿的影响以及吸湿过程中复合材料力学性能的变化.结果表明:C_(3D)/EP复合材料吸湿初期符合Fick扩散定律,但整个吸湿行为可用Sigmoidal曲线来描述;温度可加速C_(3D)EP复合材料的吸湿速率,并使平衡吸湿量提高;在吸湿过程中,C_(3D)EP复合材料的弯曲强度随吸湿时间的延长而下降.先快后慢,与吸湿曲线相对应,而且温

  9. 碳纤维复合材料制品生产废水处理及回用%Treatment and Reuse of Wastewater from Production of Carbon Fiber Composites

    Institute of Scientific and Technical Information of China (English)

    焦卫东

    2011-01-01

    The combined process of coagulation, air flotation, hydrolysis acidification and contact oxidation was used to treat the production wastewater of carbon fiber composite manufacturer in Xiamen City. The operation practice shows that the combined process has good operation effect, and the effluent quality meets the requirement for toilet flushing in Reuse of Urban Recycling Water-Water Quality Standard for Urban Miscellaneous Water Consumption (GB/T 18920 -2002). The process flow, design parameters and effluent quality are introduced to provide reference for similar wastewater treatment projects.%厦门某碳纤维复合材料制品厂生产废水采用混凝/气浮/水解酸化/接触氧化的组合处理工艺,运行效果较好,出水水质达到(GB/T18920-2002)的冲厕水质要求.介绍了废水处理工艺流程、设计参数及出水水质情况,可供同行业废水处理工程参考.

  10. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  11. 外加电压对沥青碳纤维/ABS树脂复合材料导电性的影响%INFLUENCE OF EXTERNAL VOLTAGE ON THE CONDUCTIVITY OF COMPOSITES COMPOSED OF CARBON FIBERS AND ABS RESIN

    Institute of Scientific and Technical Information of China (English)

    梁晓怿; 凌立成; 吕春祥; 刘朗

    2001-01-01

    通用级沥青碳纤维与ABS树脂通过单螺杆挤出机共混后模压成型, 所制复合材料的电阻率随材料中纤维添加量的增多而迅速降低.当复合材料中纤维添加量较少时,材料的电流电压关系不满足欧姆定律所描述的线性关系,材料电阻随外电压的增大而减小.随着纤维含量的增加,材料电流电压关系的线性度逐渐增大.当纤维含量达到40 wt%时,材料电阻不随外电压的增大而变化,材料满足欧姆定律.经外加高电压处理后,材料电阻率发生永久性降低,其电流电压关系的线性度提高.隧道跃迁理论能够较好地解释上述现象.%Conductive ABS resin composites filled with general pitch-based carbon fibers were fabricated by hot-press moulding after raw materials were preblended through a single screw extruder. The composite resistivity decreases with fibers content going up. And the electrical current displays non-linear dependence on the external voltage acted on composites and the resistance of composites varies down with the raise of voltage, which implies that the composites don't meet Ohm's Law. When fibers fraction increases, the linearity between current and voltage goes up correspondingly. For the sample containing fillers of 40 wt%, its resistance remains constant and it satisfies Ohm's Law very well. It is interesting that the high voltage can result in the permanent reduction of composite resistance. And the voltage, which makes the permanent reduction of composites resistance, goes up with the increase of fillers loading. Moreover, the linearity of current and voltage rises after composites were treated by high voltage. All these phenomena can be explained by quantum tunneling model the results of this paper provide a new method for improving the conductivity and stability to varied voltage of composites.

  12. Investigation of Co-cured Liquid Composite Molding and Interlaminar Property for Carbon Fiber Composites%炭纤维复合材料共固化液体成型工艺及层间性能研究

    Institute of Scientific and Technical Information of China (English)

    王炯; 李敏; 顾轶卓; 王绍凯; 张佐光

    2013-01-01

    The carbon fiber/epoxy resin matrix composite laminates were fabricated using co-cured liquid composite molding (LCM). The compaction of laminates and diffusion of the two kinds of resins were investigated. Mode-Ⅰ delamination fracture toughness and short beam shear strength were measured to evaluate the interlaminar property of the co-cured laminates and were compared with those of laminates processed by prepreg molding and liquid composite molding. Moreover, the effects of fiber orientation at the interface between prepreg part and LCM part on GIC were studied. The results show that the laminates processed by co-cured LCM have high compacting degree in the intralaminar plies and have no obvious resin-rich area between plies. The two kinds of resins at the interface between prepreg part and LCM part diffuse to some extent. Affected by the diffusion of the two kinds of resins at the interface, the interlaminar fracture toughness of co-cured laminate is equivalent to the average of those of the prepreg laminate and LCM laminate, while short beam shear strength is determined by the weaker part. The fiber orientation at the interface between prepreg part and LCM part has significantly influence on GIC, and [45/90] fiber orientation has a better resistance to interlaminar fracture and propagation of delamination.%采用共固化液体成型工艺制备了炭纤维/环氧树脂基复合材料层板,分析了层板的密实和两种树脂的相互扩散情况,采用Ⅰ型层间断裂韧性(能量释放率GⅠc)和短梁抗剪强度研究了共固化液体成型层板的层间性能,并与预浸料成型层板和液体成型层板进行了比较.进一步研究了共固化层板中预浸料/液体成型层界面处的纤维取向对GⅠc的影响.结果表明:所制备的共固化液体成型层板,层内密实程度高、层间富树脂区不明显,预浸料/液体成型层的层间处两种树脂有一定程度的相互扩散;受界面处树脂相互扩散的影

  13. Novel method for carbon nanofilament growth on carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Johathan [Los Alamos National Laboratory; Luhrs, Claudia [UNM MECH.ENG.; Terani, Mehran [UNM MECH.ENG.; Al - Haik, Marwan [UNM MECH.ENG.; Garcia, Daniel [UNM MECH.ENG.; Taha, Mahmoud R [UNM MECH.ENG.

    2009-01-01

    Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs

  14. Use of the mar-lin criteria to determine the influence of porosity on the iosipescu and short beam shear properties in carbon fiber polymer matrix composites

    OpenAIRE

    Antonio Carlos Ancelotti Junior; Luiz Claudio Pardini; Eduardo Marcelo Bezerra; Dennis Roach

    2010-01-01

    To address a critical aspect of the fast growing use of composites in aircraft and aerospace industry, the influence of the porosity on the shear strength of composites property was investigated as a mean for determining the critical values of porosity. Acid digestion techniques were applied to determine the void volume ratio of two families of carbon epoxy laminates (8 and 16 plies). Ultrasonic inspections revealed the corresponding attenuation coefficients. The void morphology was investiga...

  15. An Investigation of the Tensile Strength and Stiffness of Unidirectional Polymer-Matrix, Carbon-Fiber Composites under the Influence of Elevated Temperatures

    OpenAIRE

    Walther, Brady M.

    1998-01-01

    Traditionally it was thought that the unidirectional strength in the fiber direction of fiber dominated composites was not influenced by the matrix material. As long as the fiber was not affected then the strength would remain. However this thesis will challange that belief. The unidirectional strength in the fiber direction of fiber dominated composites is influenced by the matrix material. The object of this study was to examine the quasi-static tensile strength of unid...

  16. THERMAL INSULATION FROM LIGNIN-DERIVED CARBON FIBERS

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Tracy [GrafTech International; Chen, Chong [GrafTech International; Eberle, Cliff [ORNL; Webb, Daniel C [ORNL

    2014-01-01

    Oak Ridge National Laboratory (ORNL) and GrafTech International Holdings Inc. (GrafTech) have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers (LBCF). This was the first reported production of LBCF or resulting products at scale > 1 kg. The results will potentially lead to the first commercial application of LBCF. The goal of the commercial application is to replace expensive, foreign-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help resolve supply chain vulnerability and reduce the production cost for high temperature thermal insulation as well as create US jobs. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, the project team demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production.

  17. Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part I: Experimental Analysis

    Science.gov (United States)

    Longbiao, Li

    2016-04-01

    This paper presents an experimental analysis on the fatigue behavior in C/SiC ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply and 2.5D woven, at room and elevated temperatures in air atmosphere. The experimental fatigue life S - N curves of C/SiC composites corresponding to different stress levels and test conditions have been obtained. The damage evolution processes under fatigue loading have been analyzed using fatigue hysteresis modulus and fatigue hysteresis loss energy. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different peak stress, fiber preforms and test conditions have been estimated. It was found that the degradation of interface shear stress and fibres strength caused by oxidation markedly decreases the fatigue life of C/SiC composites at elevated temperature.

  18. Analysis of the role of reinforcing carbon fiber wastes in the formation of the structure of cement-fiber composition / Анализ роли армирующих отходов углеволокна в формировании структуры цементно-волокнистой композиции

    OpenAIRE

    Solov’eva T. A. / Соловьева Татьяна Александровна; Akchurin T. K. / Акчурин Талгать Кадимович; Pushkarskaya O. Yu. / Пушкарская Ольга Юрьевна

    2014-01-01

    Reinforcement of concrete dispersed fibrous fillers increases crack resistance and reliability of concrete products. Carbon fiber in their properties are a good option construction of fiber, but high price prevents their full use. The authors of the work offer to use carbon fiber wastes as a reinforcing element of cement compositions (fiber-cement slabs). Analysis of physical and chemical processes of the zone of interfacial contact shows the dual effect of reinforcement by carbon fiber waste...

  19. Study on the crystal morphology and melting behavior of isothermally crystallized composites of short carbon fiber and poly(trimethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    Mingtao RUN; Hongzan SONG; Yanping HAO

    2009-01-01

    The spherulites of the short carbon fibcr(SCF)/ poly (trimethylcne terephthalate) (PTT) composites forrned in limited space at designed temperatures, and their melting behaviors were studied by the polarized optical microscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. The results suggest that SCF content, isothermal crystallization temperatures, and the film thicknesses influence the crystal morphology of the composites. The dimension of the spherulites is decreased with increasing SCF content, but whether banded or nonbandcd spherulites will form in the composites is not depondcnt on SCF content However, the crystal morphology of the composites depends strongly on the temperature. When the isothermal crystallization temperatures increase from 180℃ to 230℃, the crystal morphology of SCF/PTT composites continuously changes in the following order: nonbanded → banded → nonbanded spherulites. Disconti-nuous circle lines form in the film when the film thickness increases from 30 to 60 μm. Basing on the SEM observation, it is found that these circle lines are cracks formed due to the constriction difference of the different parts of the sphemlites. These cracks are formed when the film is cooled from the isothermal crystallization temperature to the room tempera-ture at a slow cooling rate; while they will disappear gradually at different temperatures in the heating process. The crack will appear/disappear first around the center of the spherulite when the film was cooled/heated. The nontwisted or slightly twisted lamellas will reorganize to form highly twisted lamellas inducing apparent banded texture of the sphemlites.

  20. Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant:Li H, Zou X, Woo C, Ding M, Lind M, Bünger C.

    OpenAIRE

    Ding, Ming

    2007-01-01

    Implants of carbon fiber composite have been widely used in orthopedic and spinal surgeries. However, studies using carbon fiber-reinforced cages demonstrate frequent appearance of fibrous layer interposed between the implant and the surrounding bone. The aim of the present study was to test the possibility of coating a biocompatible metal layer on top of the carbon fiber material, to improve its biological performance. Tantalum was chosen because of its bone compatibility, based on our previ...

  1. Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy

    International Nuclear Information System (INIS)

    Highlights: ► Carbon fiber sizings can react itself and with resin at high temperature. ► Sizings improve IFSS of carbon fiber/epoxy, but reduce that of BMI matrix. ► IFSS of carbon fiber/epoxy is larger than corresponding carbon fiber/BMI. ► Partially desized carbon fiber shows the effect of polymeric sizing component. ► The results are helpful for optimizing sizing agent of carbon fiber composites. - Abstract: This paper aims to study impact of sizing agents on interfacial properties of two T700 grade high strength carbon fibers with bismaleimide (BMI) and epoxy (EP) resin matrix. The fiber surface roughness and chemical properties are analyzed for sized, desized, and partially desized carbon fibers, using atom force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. FTIR analysis indicates that the sizing agents are chemically reactive, and they can react with BMI and EP at high temperatures. The micro-droplet tests exhibit that the desized carbon fibers have lower interfacial strengths with EP than the sized fibers, however, for BMI matrix, opposite trend is revealed. This is consistent with the chemical reactions of the sizing agents with the EP and BMI resins, in which sufficient reactions are observed for the sizing/EP mixture, while only partial reactions are probed for the sizing/BMI mixture. Interestingly, un-extracted epoxy type sizing particles are observed on partially desized carbon fiber surface, which significantly improves the interfacial adhesion with EP matrix.

  2. Comparison of Open-Hole Compression Strength and Compression After Impact Strength on Carbon Fiber/Epoxy Laminates for the Ares I Composite Interstage

    Science.gov (United States)

    Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.

    2011-01-01

    Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.

  3. Use of the mar-lin criteria to determine the influence of porosity on the iosipescu and short beam shear properties in carbon fiber polymer matrix composites

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Ancelotti Junior

    2010-03-01

    Full Text Available To address a critical aspect of the fast growing use of composites in aircraft and aerospace industry, the influence of the porosity on the shear strength of composites property was investigated as a mean for determining the critical values of porosity. Acid digestion techniques were applied to determine the void volume ratio of two families of carbon epoxy laminates (8 and 16 plies. Ultrasonic inspections revealed the corresponding attenuation coefficients. The void morphology was investigated by optical microscopy. Results from Interlaminar shear and Iosipescu shear tests were correlated with the attenuation coefficient to determine critical values of porosity using a modified Mar-Lin fracture criteria. It has been shown that the shear strength decrease with the increase of void volume ratio and the effects are more significant in thicker laminates. This work showed that by using the Mar-Lin criteria the singularity order, which is an indicative of the sensibility to voids in composites, is dependent of type of loading and void distribution.

  4. 粉末冶金热挤法制备无钯镀镍碳纤维增强镁基复合材料及组织观察%Fabrication of Palladium-Free Nickel-Coated Carbon Fiber Reinforced Magnesium Alloy Composites by Powder Metallurgy Hot Extrusion and Their Microstructure

    Institute of Scientific and Technical Information of China (English)

    罗小萍; 张敏刚; 吕春翔; 吕晓轩

    2012-01-01

    利用粉末冶金热挤压技术制备短碳纤维增强镁合金复合材料.为了改善碳纤维与基体的润湿性,对碳纤维进行表面无钯化学镀镍处理.通过扫描电子显微镜(SEM)观察碳纤维化镀层以及碳纤维镁基复合体的形貌,通过超景深金相显微镜观察纤维在复合材料中的分布并对复合材料的挤压过程进行分析.结果表明:镀镍碳纤维能满足制备的要求并有利于纤维在复合体中的均匀分散,在含4.0%(质量分数)碳纤维的预制体采用压制压力为420 MPa,烧结温度为550℃保温0.5 h后,在480℃用280 MPa的压力进行热挤压得到材料的力学性能最佳.%Chopped carbon fibers reinforced magnesium was made using the powder metallurgy technique followed by hot extrusion. In order to enhance the carbon fiber wettability to the matrix, the carbon fibers were nickel-coated by palladium-free activated electroless coating method and then characterized by field emission-scanning electron microscope (FE-SEM) equipped with energy dispersive spectroscopy (EDS). The fiber distribution in composite materials were evaluated by super depth digital microscope and the composite extrusion process was analyzed. The results show that nickel-plated carbon fibers can meet the requirement for the preparation and the dispersion in the composite. The composite containing 4.0wt% carbon fibers can obtain the optimum mechanical properties, and its preparation process is as fellows: its green is produced by applying 420 MPa pressure at room temperature, then consolidated by hot extrusion at 480 ℃ and 280 MPa pressure, and sintered at 550 ℃ for 0.5 h.b

  5. Effect of Fiber Surface Structure on Interfacial Reaction between Carbon Fiber and Aluminium

    Science.gov (United States)

    Chang, Kuang-Chih; Matsugi, Kazuhiro; Sasaki, Gen; Yanagisawa, Osamu

    Surface structure of carbon fiber and interfacial reaction between fiber and aluminium in carbon fiber reinforced aluminium composites were investigated by high-resolution transmission electron microscopy. Low and high graphitized carbon fiber reinforced pure aluminium composites were prepared by ultrasonic liquid infiltration. Vapor grown carbon nano fiber (VGCF) reinforced pure aluminium composites were prepared by hot-pressing. Heteroatoms, which existed abundantly in the surface of low graphitized carbon fiber, caused carbon lamellar structure in the fiber surface pronounced curvature. VGCF surface structure appeared regular and linear graphitic lamellae. Low graphitized fiber reinforced pure aluminium composites revealed serious interfacial reaction produced crystalline aluminium carbides (Al4C3), compared to composites reinforced by high graphitized fiber. On the other hand, Al4C3 crystalline reactants were not found at the interface of VGCF reinforced pure aluminium composites, but formation of interlayer was observed. In order to promote Al4C3 growth, carbon fiber reinforced composites were heat-treated at 573K and 873K for 1.8ks. Al4C3 interfacial phases in low and high graphitized fiber reinforced aluminium composites grew with the rise in the temperature. The heat-treatment resulted in the formation of non-crystalline Al4C3 interlayer by energy dispersive X-ray spectroscopy analysis of electron microscopy. At high temperature, Al4C3 was not grew and increased merely at the interface between carbon fiber and pure aluminium matrix, and moreover, the formation of new Al4C3 crystal occurred in this interlayer.

  6. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, we made prototype sliding bearings from functionally-graded, diamond-coated carbon-fiber reinforced composite. In dry-sliding experiments, the friction...

  7. 短切碳纤维含量对Csf/SiC复合材料力学性能的影响%EFFECT OF SHORT CARBON FIBER CONTENT ON THE MECHANICAL PROPERTIES OF COMPOSITE Csf/SiC

    Institute of Scientific and Technical Information of China (English)

    唐汉玲; 曾燮榕; 熊信柏; 李龙; 邹继兆

    2007-01-01

    以Si作为主要烧结助剂,采用热压烧结法制备了短切碳纤维-碳化硅(short carbon fiber reinforced SiC composite,Csf/SiC)复合材料.采用X射线衍射仪、扫描电镜、硬度仪以及力学性能试验机等,研究了Csf含量对所制备材料的结构、组成、形貌及复合材料的弯曲强度、Vickers硬度和断裂韧性的影响.结果表明:采用热压法能制备出致密且Csf分布均匀的Csf/SiC复合材料.Csf/SiC复合材料的弯曲强度随Csf含量增加先增大后减小,含15%(体积分数,下同)Csf的Csf/SiC样品强度最高,达到466MPa,并且Csf含量小于30%的Csf/SiC样品强度高于无纤维SiC材料.材料的Vickers硬度随Csf含量增加而降低.Csf/SiC样品的断裂韧性随Csf含量增加而逐渐增大,Csf含量为53%时,达到最大为5.5MPa·m1/2,与无纤维SiC样品相比,增加近2倍.

  8. Fabrication and characterization of TiO2-NTs based hollow carbon fibers/carbon film composite electrode with NiOx decorated for capacitive application

    Science.gov (United States)

    Wei, Kajia; Wang, Yi; Han, Weiqing; Li, Jiansheng; Sun, Xiuyun; Shen, Jinyou; Wang, Lianjun

    2016-06-01

    This work designs a novel structure of TiO2 nanotubes (TiO2-NTs) based hollow carbon nanofibers (HCFs)/carbon film (CF) composite electrode with NiOx decorated for capacitive deionization application. The TiO2-NTs array is obtained through anode oxidation method on the titanium substrate, while the HCFs/CF is synthesized by thermal decomposition of a mixture of C6H12O6 and Ni(CH3COO)2·4H2O inside the nanochannels and over the caps of TiO2-NTs array, then followed by carbonization and HNO3 activation. The nickel possesses multi-functional effects during the synthesis process as carbon catalyst (Ni(II)), molecule binder (NiTi) and pseudo-capacitance supplier (NiOx). FE-SEM, XRD, Raman spectroscopy and water contact angle measurement reveal a uniform carbon distribution, favorable nickel dispersion, high stability and ideal hydrophilicity for this structure. With the addition of C6H12O6 and Ni(Ac)2·4H2O controlled at 10% (wt) and 2% (wt), respectively, a composite electrode with specific capacitance of 244.9 F·g-1, high oxygen evolution potential of 2.15 V and low water contact angle of 41.77° is obtained as well as minimum polarization impedance and efficient capacitive ability, which exhibits promising applications for practical employment.

  9. Hybrid solar cell on a carbon fiber.

    Science.gov (United States)

    Grynko, Dmytro A; Fedoryak, Alexander N; Smertenko, Petro S; Dimitriev, Oleg P; Ogurtsov, Nikolay A; Pud, Alexander A

    2016-12-01

    In this work, a method to assemble nanoscale hybrid solar cells in the form of a brush of radially oriented CdS nanowire crystals around a single carbon fiber is demonstrated for the first time. A solar cell was assembled on a carbon fiber with a diameter of ~5-10 μm which served as a core electrode; inorganic CdS nanowire crystals and organic dye or polymer layers were successively deposited on the carbon fiber as active components resulting in a core-shell photovoltaic structure. Polymer, dye-sensitized, and inverted solar cells have been prepared and compared with their analogues made on the flat indium-tin oxide electrode. PMID:27216603

  10. 碳纤维/单分子环氧树脂基复合材料的研究%STUDY ON THE CARBON FIBER/UNIMOLECULE EPOXY COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    杨海波; 芦艾; 李艳; 孙素明

    2012-01-01

    Took the excellent liquidity unimolecule epoxy 4,5-epoxyclyclohexyl-l ,2-diglycidyl diformate as the matrix resin, methyl hexahydrophthalic anhydride as the curing agent, benzyldimethylamine as the accelerator, the paper initially researched chemical feature of the rheology of the cure reaction and gained the essential curing process. Then took the T700S carbon fiber tabby fabrics as the reinforcing material, the paper made an epoxy/car-bon fiber composite laminate material with the thickness of 2mm. Experimental results show that, through the soak of the diluent, the mass contents of CF in the composite can be more than 70%. Without the diluent, the mass contents of CF can be 64%. The tensile strength and the flexural strength of the composite are 916MPa and 103MPa, the glass transition temperature is177℃.%以流动性优异的单分子环氧树脂4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯为基体树脂,甲基六氢邻苯二甲酸酐为固化剂,苄基二甲胺为促进剂,初步研究了其固化反应的化学流变特性,获得了基本的固化工艺.然后以T700S碳纤维平纹织物为增强材料,制备了2mm厚度的环氧/碳纤维复合材料层压板材.试验结果表明,通过稀释剂浸渍,复合材料中的CF质量分数可以达到70%以上.在完全无稀释剂时,CF的质量分数可以达到64%.复合材料的最高拉伸强度和弯曲强度分别为916MPa和1031MPa.其玻璃化转变温度为177℃.

  11. DSC Study on the Polyacrylonitrile Precursors for Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    Wangxi ZHANG; Musen LI

    2005-01-01

    Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.

  12. Carbon fiber masculinity: Disability and surfaces of homosociality

    OpenAIRE

    Hickey-Moody, Anna Catherine

    2015-01-01

    In this paper I am concerned with instances in which carbon fiber extends performances of masculinity that are attached to particular kinds of hegemonic male bodies. In examining carbon fiber as a prosthetic form of masculinity, I advance three main arguments. Firstly, carbon fiber can be a site of the supersession of disability that is affected through masculinized technology. Disability can be ‘overcome’ through carbon fiber. Disability is often culturally coded as feminine (Pedersen, 2001;...

  13. Electrical conductivity of short carbon fibers and carbon black-reinforced chloroprene rubber

    International Nuclear Information System (INIS)

    Elastomers and plastics are intrinsically insulating materials, but by addition of some conductive particles such as conductive carbon black, carbon fibers and metals, they can change to conductive form. Conductivity of these composites are due to formation of the lattices of conductive filler particles in polymer chains. In this report, conductivity of chloroprene rubber filled with carbon black and carbon fibers as a function of temperature and pressure are studied. Electrical conductivity of chloroprene in a function of temperature and pressure are studied. Electrical conductivity of chloroprene in the presence of carbon black with proper mixing conditions increases to the conductivity level of semiconductors and even in the presence of carbon fibers it increases to the level of a conductor material. Meanwhile, the sensitivity of this compound to heat and pressure rises. Thus these composites have found various applications in the manufacture of heat and pressure sensitive sensors

  14. 上浆剂对国产碳纤维复合材料界面性能的影响%Effects of sizing agents on the interface property of domestic carbon fiber composite

    Institute of Scientific and Technical Information of China (English)

    黄彬瑶; 段跃新; 杨喆; 陈达; 肇研

    2014-01-01

    To investigate the influence of sizing agens and hygrothermal environments on micro-interface property of domestic 300 carbon fibers ( A300-1、A300-2 )/epoxy resin, a series of experiments were conducted. Interface property of sizing and desized carbon fiber systems under dry and hygrothermal environments was investigated by single fiber fragmentation test ( SFFT ) . And the surface property of carbon fibers was analyzed by scanning electron microscope ( SEM ) , atomic force microscope ( AFM ) and X-ray photoelectron spectroscopy (XPS). The results show that the grooves uniformly dispersed on the surface of both sizing and desized carbon fibers. Compared with desized carbon fibers, the surface roughness of A300-1 carbon fibers was almost unchanged, but it reduced with sizing agent 2. Both of the sizing agents reduced the oxygen functional groups of the carbon fiber surface. The micro-interface property of sizing carbon fibers/epoxy resin was proved better than desized carbon fiber systems under dry and hygrothermal environments.%为了研究两种不同上浆剂和湿热环境对国产300级碳纤维/环氧树脂体系微观界面性能的影响,采用单丝断裂法,测试分析了去浆前后碳纤维单丝复合体系在自然干态、湿热处理3d及湿热处理6d的状态下微观界面剪切应力的变化。结合对扫描电镜( SEM)、原子力显微镜( AFM)及X射线光电子能谱( XPS)等测试结果的分析,研究了碳纤维上浆剂对微观界面性能及其界面耐湿热性能的影响。结果表明:去浆前后A300碳纤维表面均有明显沟槽;上浆剂1并未使A300碳纤维表面粗糙度有明显变化,但上浆剂2使A300碳纤维表面粗糙度减小,而两种上浆剂均使A300碳纤维表面含氧极性官能团含量减少。两种上浆剂对制备的复合材料界面性能和耐湿热性能都有较大的提高,其中上浆剂1在自然干态下对界面性能的提高更明显。

  15. 环境温度对架空导线用碳纤维复合芯成型工艺及性能的影响%EFFECT OF AMBIENT TEMPERATURE ON FORMING PROCESS AND PERFORMANCE OF CARBON FIBER REINFORCED COMPOSITE CORE USED FOR OVERHEAD TRANSMISSION LINE

    Institute of Scientific and Technical Information of China (English)

    何州文; 陈新; 药宁娜

    2011-01-01

    The ambient temperature-viscosity relation and the gelation time-temperature relation of two resin system were studied, then the resin system used for pulltrusion molding was confirmed. Carbon fiber reinforced composite core used for overhead transmission line was prepared by using the confirmed resin system, the effects of ambient temperature on forming process and tensile property of carbon fiber reinforced composite core were analyzed and the tensile fracture mechanism of the carbon fiber reinforced composite core was analyzed by SEM. The results showed lhat ambient temperalure had great influence on tensile property and surface per-formance of carbon fiber reinforced composite core. If pulltrusion parameters weren't timely adjusted when ambient temperature changed greatly, the defect of composite core would appeared, such as instance die blocked, whiting, cavity. When ambient temperature was 30℃ , the composite core had highest tensile strength.%研究了两种不同树脂体系黏度与环境温度、凝胶化时间与温度的关系,确定了用于拉挤工艺的树脂体系.采用该树脂体系制备了架空导线用碳纤维复合芯,分析了环境温度对碳纤维复合芯制品成型工艺和拉伸强度的影响,采用扫描电子显微镜分析了碳纤维复合芯的拉伸断裂机理.结果表明,环境温度对碳纤维复合芯的拉伸强度及表现性能影响较大,当环境温度变化较大时如不及时调整成型工艺参数,复合芯制品会出现堵模、白粉、沟痕等缺陷:当环境温度为30C时复合芯制品拉伸强度最高.

  16. Effect of Anodization on the Graphitization of PANbased Carbon Fibers of PAN-based Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    HE Dongmei; YAO Yinghua; XU Shihai; CAI Qingyun

    2011-01-01

    One-step pretreatment,anodization,is used to activate the polyacrylonitrile (PAN)-based carbon fibers instead of the routine two-step pretreatment,sensitization with SnCl2 and activation with PdCl2 The effect of the anodization pretreatment on the graphitization of PAN-based carbon fibers is investigated as a function of Ni-P catalyst.The PAN-based carbon fibers are anodized in H3PO4 electrolyte resulting in the formation of active sites,which thereby facilitates the following electroless Ni-P coating.Carbon fibers in the presence and absence of Ni-P coatings are heat treated and the structural changes are characterized by X-ray diffraction and Raman spectroscopy,both of which indicate that the graphitization of PAN-based carbon fibers are accelerated by both the anodization treatment and the catalysts Ni-E Using the anodized carbon fibers,the routine two-step pretreatment,sensitization and activation,is not needed.

  17. Efeito da degradação ambiental nas propriedades de cisalhamento de compósitos PPS/fibra de carbono Effect of environmental degradation on shear properties of PPS /carbon fiber composites

    Directory of Open Access Journals (Sweden)

    Anahi P. Costa

    2011-01-01

    Full Text Available Os compósitos termoplásticos avançados são uma alternativa a compósitos termorrígidos em algumas aplicações aeronáuticas, devido a ganhos em propriedades. Dentre as matrizes termoplásticas, o PPS (poli sulfeto de fenileno destaca-se devido às suas características estruturais. O objetivo deste trabalho é avaliar a influência do condicionamento ambiental sobre o comportamento de resistência ao cisalhamento de PPS / fibras de carbono. Por esta razão, amostras deste material foram condicionadas em solução salina, em banho higrotérmico e sob radiação UV. Após estes condicionamentos os corpos-de-prova foram avaliados quanto a sua resistência aos cisalhamentos interlaminar (ILSS e Iosipescu e os resultados obtidos foram comparados. Quando comparado ao valor de cisalhamento interlaminar obtido do compósito não-climatizado (58,4 ± 1,9 MPa, os valores de cisalhamento interlaminar ILSS decaíram em torno de 14 e 3%, respectivamente, após banho higrotérmico e banho salino. Sob condicionamento por radiação UV houve um decréscimo de 2% após exposição por 300 horas, 11% após 600 horas e 9% após 900 horas. Já o laminado ensaiado pelo método Iosipescu teve uma tensão de cisalhamento no plano de 109,2 ± 0,4 MPa. Com condicionamentos, teve um decréscimo de 6% após banho higrotérmico e 12% após banho salino. A exposição à radiação UV provocou na resistência de cisalhamento no plano um decaimento de 6% para o condicionamento de 300 horas, 10% para o condicionamento de 600 horas e 14% para o condicionamento por 900 horas.Advanced thermoplastic composites are an alternative to thermoset composites in many aeronautical applications owing to their superior properties. Among the thermoplastic matrix, PPS (poly phenylene sulfide stands out due to its structural characteristics. The objective of this study is to evaluate the influence of environmental conditioning on the shear behavior of PPS / carbon fiber composites

  18. Analysis of Treatment Methods for Carbon Fiber Reinforced Polymer Composite Wastes%聚合物基碳纤维复合材料废弃物的几种处理方法分析

    Institute of Scientific and Technical Information of China (English)

    张建川

    2011-01-01

    Considered environmental protection,sustainable development,and actual production and applications of carbon fibers(CAs) in our country,the necessity of carbon fiber reinforced polymer composite(CFRP) waste treatment was described in details.According to the category of CFRP wastes,three treatment methods including enginery material recycling,material recycling energy recovery and energy recovery by incinerating CFRP wastes were put forward.And some kinds of the possible treatment projects were evaluated reasonably from three aspects including treatment expenses,environmental impact and substitute use.Comprehensively considering environment impact and economic efficiency,the performance of substitute products,the material recycling energy recovery is the best method in present stage.In addition,in order to push forward the later polymer composite waste treatment work,related suggestion was set forth from both inner factors and external factors.%从环保和可持续发展角度出发,并结合我国碳纤维(CF)生产与使用实际情况,对聚合物基碳纤维复合材料(CFRP)废弃物处理必要性作了较为详尽的阐述。根据CFRP废弃物种类,提出了机械材料再循环法、材料再循环与能量回收法、能量回收焚烧法三种可行处理方法,并从处理费用、环境影响、替代用途三方面对多种处理方案进行了合理评估。综合考虑处理环境影响、经济效益及替代物使用性能等因素,材料再循环与能量回收法为处理CFRP废弃物最合适的方法。此外,为推进其后期处理工作的顺利进行,还从内部、外部因素两方面提出相关建议。

  19. 碳纤维复合材料废弃物的回收与再利用技术发展%Technology Development of Recovery & Reuse of Carbon Fiber Composite

    Institute of Scientific and Technical Information of China (English)

    罗益锋

    2013-01-01

    本文主要介绍了国外一些大学、科研院所和企业在碳纤维增强塑料(CFRP)和碳纤维回收再利用领域最新的技术研究进展,并对我国今后在该领域的发展提出了建议。%The current R&D situation of recycling carbon fiber reinforced plastic (CFRP) wastes was illustrated in this article, in terms of several relative technologies and processes introduced by universities;research institutes and companies abroad. Furthermore, some suggestions on how to develop domestic technologies of recycling carbon fibers from CFRP wastes and reuse them were put forward.

  20. Interposition fixing structure of TiO2 film deposited on activated carbon fibers

    Institute of Scientific and Technical Information of China (English)

    FU Ping-feng; LUAN Yong; DAI Xue-gang

    2006-01-01

    The immobilized photocatalyst, TiO2 film supported on activated carbon fibers (TiO2/ACFs) prepared with molecular adsorption-deposition (MAD), exhibits high stability in cyclic photodegradation runs. The interposition fixing structure between TiO2 film and carbon fiber was investigated by means of SEM-EDX, XRD, XPS and FTIR, and a model was proposed to explain this structure. With SEM examination of carbon fiber surface after removing the deposited TiO2 film, a residual TiO2 super-thin film was found to exist still. By determining surface groups on ACFs, titanium sulfate (Ti2(SO4)3) in burnt remainders of the TiO2/ACFs was thought to be formed with an interfacial reaction between TiO2 film and carbon fibers. These provide some evidence of firm attachment of TiO2 film to carbon fiber surface. In the consideration of characteristics of the MAD, the deposition mechanism of TiO2 film on ACFs was proposed, and the interposition fixing structure was inferred to intercrossedly form between TiO2 film and ACFs' surface. This structure leaded to firm attachment and high stability of the TiO2 film.

  1. Towards the carbon fibers in the building industry

    Directory of Open Access Journals (Sweden)

    Miravete, A.

    2001-12-01

    Full Text Available There are two mainstreams in the building industry in the area of carbon fibers: rehabilitation and use as building material. The using of carbon fiber as a building material is taking place slower than as rehab system due to the very low cost of traditional building materials, the limitations of composite structure manufacturing processes and the conservative building regulations concerning materials in all the industrialized countries. However, these three issues are being solved in a very efficient way, as we will see along the coming paragraphs of this paper. This paper is split in two parts, first the carbon fiber as a material system, its typologies, manufacturing processes and industrial presentations will be described. Second, rehab and building applications will be analyzed.

    En el área de fibra de carbono en la construcción hay actualmente dos líneas de trabajo: reparaciones e implantación en obra: La implantación en la obra civil está avanzando más despacio que la utilización en reparaciones debido al bajo coste de los materiales tradicionales, a la limitación de procesos de fabricación de estructuras de materiales compuestos y al conservadurismo de las normativas de edificación y obra civil en todos los países industrializados. Sin embargo, los tres asuntos mencionados están siendo abordados con eficiencia, como se explicará más adelante. En el presente artículo, se va a describir, el primer lugar, la fibra de carbono, sus tipos, procesos de fabricación y presentaciones industriales. En segundo lugar se tratarán las aplicaciones en la construcción, haciendo énfasis en las reparaciones y en la implantación en obra civil.

  2. Sizing and characterization of carbon fibers with aqueous water-dispersible polymeric interphases

    OpenAIRE

    Broyles, Norman S.

    1996-01-01

    Composite durability can be influenced by varying the properties of the fiber/matrix interphase region. One method to modifY the properties of this interphase is through the application of a sizing to the carbon fiber. Recent work at Virginia Tech has shown that polymer-modified interphases can lead to increases by as much as two orders of magnitude in notched fatigue lifetime. In the present work, an apparatus was constructed to uniformly coat carbon fiber tow with water-solub...

  3. Plasma electrolytic polishing of metalized carbon fibers

    OpenAIRE

    Falko Böttger-Hiller; Klaus Nestler; Henning Zeidler; Gunther Glowa; Thomas Lampke

    2016-01-01

    Efficient lightweight structures require intelligent materials that meet versatile functions. Especially, carbon-fiber-reinforced polymers (CFRPs) are gaining relevance. Their increasing use aims at reducing energy consumption in many applications. CFRPs are generally very light in weight, while at the same time being extremely stiff and strong (specific strength: CFRPs: 1.3 Nm kg–1, steel: 0.27 Nm kg–1; specific stiffness: CFRPs: 100 Nm kg–1, steel: 25 Nm kg–1). To increase performance and e...

  4. Carbon Fiber Reinforced Polymer for Cable Structures—A Review

    Directory of Open Access Journals (Sweden)

    Yue Liu

    2015-10-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRP is an advanced composite material with the advantages of high strength, lightweight, no corrosion and excellent fatigue resistance. Therefore, unidirectional CFRP has great potential for cables and to replace steel cables in cable structures. However, CFRP is a typical orthotropic material and its strength and modulus perpendicular to the fiber direction are much lower than those in the fiber direction, which brings a challenge for anchoring CFRP cables. This paper presents an overview of application of CFRP cables in cable structures, including historical review, state of the art and prospects for the future. After introducing properties of carbon fibers, mechanical characteristics and structural forms of CFRP cables, existing CFRP cable structures in the world (all of them are cable bridges are reviewed. Especially, their CFRP cable anchorages are presented in detail. New applications for CFRP cables, i.e., cable roofs and cable facades, are also presented, including the introduction of a prototype CFRP cable roof and the conceptual design of a novel structure—CFRP Continuous Band Winding System. In addition, other challenges that impede widespread application of CFRP cable structures are briefly introduced.

  5. Self-Monitoring Strengthening System Based on Carbon Fiber Laminate

    Directory of Open Access Journals (Sweden)

    Rafal Krzywon

    2016-01-01

    Full Text Available Externally bonded composites reinforced with high-strength fibers are increasingly popular in construction, especially in structures’ strengthening, where the best possible mechanical properties are required. At the same time the ability to autodetect threats is one of the most desirable features of contemporary structures. The authors of the paper have developed an intelligent fabric, wherein the carbon fibers play the role of not only tensile reinforcement but also strain sensor. The idea is based on the construction of the strain gauge, where the thread of carbon fibers arranged in zig-zag pattern works as electrical conductor and is insulated by parallel thread of glass or acrylic fibers. Preliminary laboratory tests were designed to create effective measurement techniques and assess the effectiveness of the strengthening of selected building structures, as reinforced concrete and timber beams. Presented in the paper, selected results of these studies are very promising, although there were some noted problems to be considered in next steps. The main problem here is the control of the cross section of the fibers tow, affecting the total resistance of the fabric. One of the main deficiencies of the proposed solution is also sensitivity to moisture.

  6. Effects of carbon nanotubes grafted on a carbon fiber surface on their interfacial properties with the matrix in composites%炭纤维表面接枝碳纳米管对复合材料界面性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘秀影; 宋英; 李存梅; 王福平

    2012-01-01

    采用聚酰胺-胺(PAMAM)树状分子化学修饰方法制备碳纳米管接枝炭纤维(CF-PAMAM-CNTs)新型增强体.利用X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和原子力显微镜(AFM)对接枝前后CF表面官能团和表面形貌进行表征;利用接触角测量、单丝拉伸方法研究了接枝前后纤维单丝的润湿性能及拉伸强度,并通过微脱黏法分析了其复合材料的界面剪切强度,同时探索了CNTs的最佳接枝量.结果表明,当CNTs接枝量为15%时,CF表面粗糙度提高了180%,表面能提高了300%,拉伸强度提高了22%,复合材料的界面剪切强度提高了178%,这表明CNTs接枝有利于改善CF复合材料的界面性能.%Carbon fibers (CFs) were oxidized by concentrated HNO3 and then reacted with polyamidoamine dendrimers (PAMAM) with an average molecular weight of 157 to form CF-PAMAM. The CF-PAMAM was further reacted with oxidized carbon nanotubes (CNTs) to form CF-PAMAM-CNTs that were used as the reinforcement for epoxy resin-based composites. The functional groups and structure of the CF-PAMAM-CNTs were examined by XPS, SEM and AFM, and their wettability and the tensile strength were investigated by contact angle measurements and single strand extension respectively. The interfacial shear strength of the composites was measured by a micro-debonding method. Results showed that, compared with CFs, the surface roughness, surface energy and tensile strength of the CF-PAMAM-CNTs were increased by 180% , 300% and 22% , respectively when the CNT content was 15 mass% . The interfacial shear strength of the composite reinforced with CF-PAMAM-CNTs was increased by 178% for the same CNT content, which showed that the grafted nanotubes improved the interfacial properties of the filler with the matrix.

  7. A high efficient method for introducing reactive amines onto carbon fiber surfaces using hexachlorocyclophosphazene as a new coupling agent

    International Nuclear Information System (INIS)

    Highlights: • An innovative chemical method for surface modification of carbon fiber was proposed. • Hexachlorocyclophosphazene was used as a new multifunctional coupling agent. • The hydroxyl on the fiber surface were consumed and converted into C-O-P bonds. • A great amount of free amines were grafted onto the carbon fiber surfaces. • The interfacial shear strength (IFSS) of carbon fiber composites increased by 71.2%. - Abstract: To improve the interfacial properties of carbon fiber (CF) reinforced composites, an innovative and simple functionalized strategy has been proposed by grafting 4,4′-oxydianiline (ODA) onto carbon fiber surface using hexachlorocyclophosphazene (HCCP) as a novel coupling agent at mild reaction conditions. The chemical composition of the CF surface was confirmed by X-ray photoelectron spectra (XPS). The surface topography and surface energy of CF were examined by atomic force microscope (AFM) and dynamic contact angle tests (DCA), respectively. The interfacial shear strength (IFSS) of CF reinforced composites was studied by microbond test. The tensile strength of CF was measured by single filament tensile test. After functionalization treatment, the grafted amine groups on the fiber surface enhanced the surface wettability of modified CF and formed strong chemical bonding between fiber and matrix, improving the interfacial adhesion strength of composites. The interfacial shear strength of modified CF reinforced composites increased by 71.2% compared with that of desized CF. The interfacial enhancement mechanism was also discussed in detail. Moreover, the modified CF almost kept the original mechanical properties after functionalization

  8. 短切碳纤维增强 PP 复合材料流动性能研究%Research on Liquidity of Chopped Carbon Fiber Reinforced PP Composites

    Institute of Scientific and Technical Information of China (English)

    陶振刚; 廖秋慧; 徐晨; 吕成

    2015-01-01

    在总结聚合物流变学基本理论的基础上,分析了影响聚合物流动性能的各个因素。应用正交实验设计理论,通过测定各参数组合实验的阿基米德螺旋线长度来表征其流动性,考察了熔体温度、注塑压力、保压压力、注塑速率四个因素对6种配方聚丙烯(PP)/碳纤维(CF)复合材料熔体流动性的影响,对于各因素的影响程度的大小进行了对比,同时通过优化工艺条件获得了流动性最好的工艺参数组合,并通过实验验证。应用正交实验得到了最佳工艺参数,对 CF 含量和材料的熔体流动速率以及螺旋线长度之间的影响关系和机理进行了考察。结果表明,注塑压力和注塑温度对于熔体的流动性能影响最大,PP/CF 复合材料的熔体流动速率和螺旋线流动长度随着 CF 含量的增加而降低,降低的速度先快后慢。%Based on basic theory of polymer rheology,the effect of process parameters on the liquidity of composites has been studied. By means of Taguchi DOE technique,through determination of the length of archimedes spiral of the experiment with all combinations of parameters to characterize the mobility of melt,the influence of four factors such as injection temperature,injection pressure,dwell pressure,injection rate on melt flow rate of polypropylene (PP)/carbon fiber(CF) composties with six kinds of proportion was investigated. The effect level of each factor has been compared ,either ,the best process parameter has been achieved through the optimization of process conditions,and this best process parameter had been certified by experiments. By applying the best parameter which has been achieved before,the relationship between the content of CF and MFR and the length of spiral and the mechanization behind them has also been discussed. The results show that injection temperature and injection pressure are two main influence factors of liquidity and as the content

  9. Multi-wall carbon nanotubes supported on carbon fiber paper synthesized by simple chemical vapor deposition

    International Nuclear Information System (INIS)

    Highlights: • We deposited multi-wall carbon nanotubes on carbon fiber paper with a simple CVD. • We investigated the inherent mechanism of Ni particle's self-dispersion. • The MWCNTs/CFP composite possesses wonderful electrical conductivity. - Abstract: Aiming at developing a novel carbon/carbon composite as an electrode in the electrochemical capacitor applications, multi-wall carbon nanotubes (MWCNTs)/carbon fiber paper (CFP) composite has been synthesized using a simple chemical vapor deposition, in which different metal catalysts such as Fe, Ni and Cu are used. However, randomly oriented MWCNTs were only obtained on Ni particles. The mechanism for this unique phenomenon is investigated in this article. The physical and electrochemical properties of as-prepared MWCNTs/CFP composite are characterized and the results show that the as-prepared composite is a promising substrate for electrochemical capacitor applications

  10. Plasma electrolytic polishing of metalized carbon fibers

    Directory of Open Access Journals (Sweden)

    Falko Böttger-Hiller

    2016-02-01

    Full Text Available Efficient lightweight structures require intelligent materials that meet versatile functions. Especially, carbon-fiber-reinforced polymers (CFRPs are gaining relevance. Their increasing use aims at reducing energy consumption in many applications. CFRPs are generally very light in weight, while at the same time being extremely stiff and strong (specific strength: CFRPs: 1.3 Nm kg–1, steel: 0.27 Nm kg–1; specific stiffness: CFRPs: 100 Nm kg–1, steel: 25 Nm kg–1. To increase performance and especially functionality of CFRPs, the integration of microelectronic components into CFRP parts is aspired. The functionalization by sensors, actuators and electronics can enable a high lightweight factor and a new level of failure-safety. The integration of microelectronic components for this purpose requires a working procedure to provide electrical contacts for a reliable connection to energy supply and data interfaces. To overcome this challenge, metalized carbon fibers are used. Metalized fibers are, similar to the usual reinforcing fibers, able to be soldered and therefore easy to incorporate into CFRPs. Unfortunately, metalized fibers have to be pre-treated by flux-agents. Until now, there is no flux which is suitable for mass production without destroying the polymer of the CFRP. The process of plasma electrolytic polishing (PeP could be an option, but is so far not available for copper. Thus, in this study, plasma electrolytic polishing is transferred to copper and its alloys. To achieve this, electrolytic parameters as well as the electrical setup are adapted. It can be observed that the gloss and roughness can be adjusted by means of this procedure. Finally, plasma electrolytic polishing is used to treat thin copper layers on carbon fibers.

  11. Laser Cutting of Carbon Fiber Fabrics

    Science.gov (United States)

    Fuchs, A. N.; Schoeberl, M.; Tremmer, J.; Zaeh, M. F.

    Due to their high weight-specific mechanical stiffness and strength, parts made from carbon fiber reinforced polymers (CFRP) are increasingly used as structural components in the aircraft and automotive industry. However, the cutting of preforms, as with most automated manufacturing processes for CFRP components, has not yet been fully optimized. This paper discusses laser cutting, an alternative method to the mechanical cutting of preforms. Experiments with remote laser cutting and gas assisted laser cutting were carried out in order to identify achievable machining speeds. The advantages of the two different processes as well as their fitness for use in mass production are discussed.

  12. Structure and properties of carbon fiber sorbents

    International Nuclear Information System (INIS)

    Adsorption properties of fiber carbon materials, differing in initial raw material, preparation process, final treatment temperature, i. e. the factors responsible for the fiber structure, were studied. Conditions of surface activation, like oxidant nature, gas feed rate, oxidation temperature and duration were varied in a wide range of values to prepare adsorbents featuring prescribed parameters of porous structure. One type of carbon fiber was chosen and activation conditions, permitting development of the initial surface from 0.5 to 2000 m2/g without any loss of mechanical strength, were selected for it

  13. Recycling of carbon fiber. identification of bases for a synergy between recyclers and designers.

    OpenAIRE

    Pompidou, Stéphane; PRINCAUD, Marion; PERRY, Nicolas; Leray, Dimitri

    2012-01-01

    In order to decrease both energy consumption and CO 2 emissions, the automotive, aeronautics and aerospace industries aim at making lighter vehicles. To achieve this, composite materials provide good opportunities, ensuring high material properties and free definition of geometry. As an example, for cold applications, the use of carbon fiber/thermoset composites is ever increasing, in spite of a high fiber price. But in a global and eco-friendly approach, the major ...

  14. Commercialization of New Carbon Fiber Materials Based on Sustainable Resources for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, Cliff [ORNL; Webb, Daniel C [ORNL; Albers, Tracy [GrafTech International; Chen, Chong [GrafTech International

    2013-03-01

    Oak Ridge National Laboratory (ORNL) and GrafTech International have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers. This project will potentially lead to the first commercial application of lignin-based carbon fibers (LBCF). The goal of the commercial application is to replace expensive, Chinese-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help recapture jobs that were previously exported to China while resolving a supply chain vulnerability and reducing the production cost for GrafTech s high temperature thermal insulation. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, ORNL and GrafTech demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production. A plan was developed for the commercialization of LBCF thermal insulation, with key milestones including qualification of multiple scalable lignin sources in 2013, tons-scale production and field testing by customers in 2014, and product launch as soon thereafter as production capabilities can be constructed and commissioned.

  15. Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing Data

    Directory of Open Access Journals (Sweden)

    Ma Xiaobing

    2015-01-01

    Full Text Available An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life test due to the time limitation. Therefore, most of the data presented to be high censored in high stress level and zero-failure data in low stress level. When using the traditional method for rupture life prediction, the results showed to be of lower confidence. In this study, the consistency of failure mechanism for carbon fiber and cylinder was analyzed firstly. According to the analysis result, the statistical test information of carbon fiber could be utilized for the accelerated model constitution. Then, rupture life prediction method for cylinder was proposed based on the accelerated life test data and carbon fiber test data. In this way, the life prediction accuracy of cylinder could be improved obviously, and the results showed that the accuracy of this method increased by 35%.

  16. A novel carbon fiber based porous carbon monolith

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-07-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described.

  17. Voltammetric detection of biological molecules using chopped carbon fiber.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules. PMID:20953048

  18. Deformation Resistance Effect of PAN-based Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lixia; LI Zhuoqiu; SONG Xianhui; LU Yong

    2009-01-01

    The deformation resistance effect of polyacrylonitrile(PAN)-based carbon fibers was investigated,and the variatipn law of electrical resistivity under tensile stress was analyzed.The results show that the gauge factor(fractional change in resistance per unit strain)of PAN-based carbon fibers is 1.38,which is lower than that of the commonly-used resistance strain gauge.These may due to that the electrical resistivity of carbon fibers decreases under tensile stress.In addition when the carbon fibers are stretched,the change of its resistance is caused by fiber physical dimension and the change of electric resistivity,and mainly caused by the change of physical dimension.The mechanical properties of carbon fiber monofilament were also measured.

  19. Mechanical and Thermal Properties of Irradiated Styrene Butadiene Rubber Latex Loaded With Short Carbon Fiber

    International Nuclear Information System (INIS)

    In this study, two percentages (0.5, 1%) of short carbon fiber (SCF) were added to styrene butadiene rubber latex (SBR) to prepare SBR/ SCF composites. The SBR/ SCF films were exposed to different doses (10, 30, 50, 70 and 100 kGy) of gamma radiation. The effect of radiation doses and carbon fiber loaded on mechanical and thermal properties of SBR/ SCF composites was investigated. The tensile strength of composites increased with increasing irradiation dose, while the elongation at yield strength decreased with increasing radiation dose. It was noticed that, the mechanical properties of composites improved with the addition of carbon fiber. The addition of SCF enhanced the thermal stability, while the addition of SCF and radiation vulcanization decrease the rate of thermal decomposition of SBR composites. The effects of gamma ir - radiation as well as SCF on the activation energies of SBR/SCF samples had been investigated. The activation energy of SBR, SBR/ (0.5 % SCF) and SBR/ (1 % SCF) were 133, 114 and 98.2 kJ mole-1 respectively

  20. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    Directory of Open Access Journals (Sweden)

    Jialong Wu

    2014-01-01

    Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.

  1. Carbon Fiber Damage in Particle Beam

    CERN Document Server

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  2. Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant

    DEFF Research Database (Denmark)

    Li, Haisheng; Zou, Xuenong; Woo, Charlotte;

    2007-01-01

    Implants of carbon fiber composite have been widely used in orthopedic and spinal surgeries. However, studies using carbon fiber-reinforced cages demonstrate frequent appearance of fibrous layer interposed between the implant and the surrounding bone. The aim of the present study was to test the...... carbon-carbon composite material through chemical vapor deposition. Mechanical and biological performance was tested in vitro and in vivo. Compress strength was found to be 4.9 kN (SD, 0.2). Fatigue test with 500,000 cycles was passed. In vitro radiological evaluation demonstrated good compatibility with...... X-ray and CT scan examinations. In vivo test employed eight pigs weighing 50 kg each. Instrumented lumbar spine fusion of L3/4 and L4/5 with these cages was performed on each pig. After 3 months, excellent bone integration property was demonstrated by direct contact of the cage with the host bone...

  3. Inorganic Nanoparticle-Modified Poly(Phenylene Sulphide)/ Carbon Fiber Laminates: Thermomechanical Behaviour

    OpenAIRE

    Díez-Pascual, Ana M.; Mohammed Naffakh

    2013-01-01

    Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF lamin...

  4. Carbon Fiber as Anode Material for Cathodic Prevention in Cementitious Materials

    OpenAIRE

    Zhang, Emma Qingnan; Tang, Luping; Zack, Thomas

    2016-01-01

    Cathodic prevention (CPre) technique is a promising method and has been used for the past two decades to prevent steel from corrosion in concrete structures. However, wide application of this technique has been restricted due to high costs of anode materials. In order to lower the cost and further improve this technique, carbon fiber composite anode has been introduced as an alternative anode material with affordable price and other outstanding properties. This paper presents the study of usi...

  5. Copper Nanoparticle-Incorporated Carbon Fibers as Free-Standing Anodes for Lithium-Ion Batteries

    OpenAIRE

    Han, Pan; Yuan, Tao; Yao, Long; Han, Zhuo; Yang, Junhe; Zheng, Shiyou

    2016-01-01

    Copper-incorporated carbon fibers (Cu/CF) as free-standing anodes for lithium-ion batteries are prepared by electrospinning technique following with calcination at 600, 700, and 800 °C. The structural properties of materials are characterized by X-ray diffraction (XRD), Raman, thermogravimetry (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM), and energy dispersive X-ray spectrometry (EDS). It is found that the Cu/CF composites have smooth, regular, and long fi...

  6. Electrical Conductivity of the Carbon Fiber Conductive Concrete

    Institute of Scientific and Technical Information of China (English)

    HOU Zuofu; LI Zhuoqiu; WANG Jianjun

    2007-01-01

    This paper discussed two methods to enhance the electrical conductivity of the carbon fiber(CF) electrically conductive concrete. The increase in the content of stone and the amount of water used to dissolve the methylcellulose and marinate the carbon fibers can decrease the electrical resistivity of the electrically conductive concrete effectively. Based on these two methods, the minimum CF content of the CF electrically conductive concrete for deicing or snow-melting application and the optimal ratio of the amount of water to dissolve the methylcellulose and marinate the carbon fibers were obtained.

  7. Rapid manufacturing and lightweight Composites for more precision

    OpenAIRE

    Kiela, Henk; Hond, Tim de; Bastings, Bart

    2010-01-01

    In the high-tech mechatronics world, aluminum and steel are well known materials, while carbon fiber is often neglected. In the RAAK project 'Composites in Mechatronics', the use of carbon fiber composites in mechatronics is investigated.

  8. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    Science.gov (United States)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  9. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei; Jin, Hao; Xu, Zhiwei, E-mail: xuzhiwei@tjpu.edu.cn; Shan, Mingjing; Tian, Xu; Yang, Caiyun; Wang, Zhen; Cheng, Bowen

    2014-05-01

    To improve the stress transfer and distribution of carbon fiber/epoxy interface, a gradient interphase reinforced by graphene oxide (GO) was designed in the composites. GO was introduced onto the surface of carbon fibers by physical adsorption, forming a gradient interphase in composite interface during the procedure of resin wetting. In order to improve the dispersion of GO in gradient interphase and chemical adhesion between GO and epoxy, GO was covalently functionalized with silane coupling agents and the silanized graphene oxide (SGO) was introduced into the gradient interphase as well. Compared with the base composites without nanosheets, the interfacial shear strength (IFSS), interlaminar shear strength (ILSS), flexural and tensile properties of hierarchical composites decreased seriously when 0.5 wt% GO was introduced on carbon fiber surface. However, hierarchical composites containing 0.5 wt% SGO showed a significant increase 60% in IFSS, 19% in ILSS, 15% in flexural strength and 16% in flexural modulus. A new stiffness phase between carbon fibers and matrix was found in the stiffness distribution curve of hierarchical composites by atomic force microscope in force mode. In addition, the stiffness of interphase was proved to change gradually from carbon fibers to epoxy, indicating the gradient dispersion of nanosheets in interphase. - Graphical abstract: Display Omitted - Highlights: • Graphene oxide was covalently functionalized with silane coupling agents. • Gradient interphase composed of SGO and epoxy was designed in fiber/matrix. • A new stiffness phase between fiber and matrix was found by AFM in force mode. • Interfacial properties of composites containing SGO/epoxy interphase were increased.

  10. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface

    International Nuclear Information System (INIS)

    To improve the stress transfer and distribution of carbon fiber/epoxy interface, a gradient interphase reinforced by graphene oxide (GO) was designed in the composites. GO was introduced onto the surface of carbon fibers by physical adsorption, forming a gradient interphase in composite interface during the procedure of resin wetting. In order to improve the dispersion of GO in gradient interphase and chemical adhesion between GO and epoxy, GO was covalently functionalized with silane coupling agents and the silanized graphene oxide (SGO) was introduced into the gradient interphase as well. Compared with the base composites without nanosheets, the interfacial shear strength (IFSS), interlaminar shear strength (ILSS), flexural and tensile properties of hierarchical composites decreased seriously when 0.5 wt% GO was introduced on carbon fiber surface. However, hierarchical composites containing 0.5 wt% SGO showed a significant increase 60% in IFSS, 19% in ILSS, 15% in flexural strength and 16% in flexural modulus. A new stiffness phase between carbon fibers and matrix was found in the stiffness distribution curve of hierarchical composites by atomic force microscope in force mode. In addition, the stiffness of interphase was proved to change gradually from carbon fibers to epoxy, indicating the gradient dispersion of nanosheets in interphase. - Graphical abstract: Display Omitted - Highlights: • Graphene oxide was covalently functionalized with silane coupling agents. • Gradient interphase composed of SGO and epoxy was designed in fiber/matrix. • A new stiffness phase between fiber and matrix was found by AFM in force mode. • Interfacial properties of composites containing SGO/epoxy interphase were increased

  11. Influence of Carbon Fiber Contents on the Temperature Sensibility of CFRC Road Material

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence greatly on the temperature sensibility of CFRC road material.Only with a certain amount of carbon fiber can CFRC show a sensitive and stable temperature sensibility.

  12. High-energy radiation technique treat on the surface of carbon fiber

    International Nuclear Information System (INIS)

    Co60 γ-ray irradiation as a novel method for modification of carbon fiber (CF) surface was introduced in this paper. After surface treatment by mutual irradiation the interlaminar shear strength (ILSS) of CF/epoxy composites was enhanced by about 37%. Surface elements of CF were determined by XPS analysis, which indicated that the oxygen/carbon ratio increased rapidly. Fitting the C 1s spectra demonstrated that two new photopeaks were emerged which was indicated -C=O and plasmon, respectively. Surface topography of carbon fibers was analyzed by atomic force microscopy (AFM). It could be found that the degree of surface roughness was increased by lower absorbed dose (30 kGy), but excessive irradiation (>250 kGy) was not beneficial for mechanical interlocking between CF and epoxy resin. The impregnating performance of CF was also improved after irradiation

  13. Influence of metal-containing carbon fibers on the properties of carbon-filled plastics based on aromatic polyamide

    Science.gov (United States)

    Burya, A. I.; Safonova, A. M.; Rula, I. V.

    2012-07-01

    The influence of metal-containing carbon fibers on the thermal properties of carbon-filled phenylone-based plastics has been investigated. It has been shown that carbometallic fibers containing in their composition 20- 30 mass % of a finely dispersed metal (Co, Cu) are promising fillers of phenylone C-2 for making carbonfilled plastics working in frictional units of various machines and mechanisms.

  14. Improvement of cement concrete strength properties by carbon fiber additives

    Science.gov (United States)

    Nevsky, Andrey; Kudyakov, Konstantin; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The paper presents the results of studies of fiber-reinforced concrete with carbon fibers. The effectiveness of carbon fibers uniform distribution in the concrete was obtained as a result of its preliminary mechanical mixing in water solution with chemical additives. Additives are to be used in the concrete technology as modifiers at initial stage of concrete mix preparing. The technology of preparing of fiber-reinforced concrete mix with carbon fibers is developed. The superplasticizer is based on ether carboxylates as a separator for carbon fibers. The technology allows increasing of concrete compressive strength up to 43.4% and tensile strength up to 17.5% as well as improving stability of mechanical properties.

  15. Experimental Study on Electric Properties of Carbon Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the phenomenon that the physical properties have a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area,location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility.

  16. Growth of carbon nanotubes on carbon fibers without strength degradation

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Niels [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Magrez, Arnaud; Forro, Laszlo [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Couteau, Edina; Locquet, Jean-Pierre [Laboratory of Solid-State Physics and Magnetism, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Seo, Jin Won [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2012-12-15

    Carbon nanotubes (CNTs) are grown on PAN-based carbon fibers by means of catalytic chemical vapor deposition technique. By using catalytic thermal decomposition of hydrocarbon, CNTs can be grown in the temperature range of 650-750 C. However, carbon fibers suffer significant damages resulting in decrease of initial tensile strength. By applying the oxidative dehydrogenation reaction of C{sub 2}H{sub 2} with CO{sub 2}, we found an alternative way to grow CNTs on carbon fibers at low temperatures, such as 500 C. Scanning electron microscope results combined with single fiber tests indicate that this low temperature growth enables homogeneous grafting of CNTs onto carbon fibers without degradation of tensile strength. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Preparation of anti-oxidative carbon fiber at high temperature

    Science.gov (United States)

    Kim, Bo-Hye; Kim, Su Yeun; Kim, Chang Hyo; Yang, Kap Seung; Lee, Young-Jun

    2010-11-01

    In this paper, carbon fibers with improved thermal stability and oxidation resistive properties were prepared and evaluated their physical performances under oxidation condition. Carbon fibers were coated with SiC particles dispersed in a polyacrylonitrile solution and then followed by pyrolyzed at 1400 °C to obtain the SiC nanoparticle deposition on the surface of the carbon fiber. The SiC coated carbon fiber showed extended oxidation resistive property as remaining 80-88% of the original weight even at high temperature 1000 °C under air, as compared with the control of zero weight at 600 °C. The effects of the coating conditions on the oxidation resistive properties of the coated fibers were studied in detail.

  18. Biodegradation of pitch-based high performance carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. (Yamaguchi Univ., Yamaguchi, (Japan). Faculty of Education)

    1992-09-10

    Although carbon fibers are widely used in various purposes because of their excellent mechanical properties, their behavior under biodegradation by microorganisms has not been elucidated. To elucidate the process of biodegradation of carbon fibers is important for understanding thoroughly the durability and the functionality of the fibers. In this article, a study has been made on biodegradation of pitch-based high performance carbon fibers by microorganisms. The fiber which was degraded has been examined with a scanning electron microscope. Aspergillus flavus has broken surface areas of high performance carbon fibers in 60 days and the fibril structure under the surface layer of the fiber has been exfoliated by degradation. The fibrils on the second layer have been 100-110nm wide. The fibrils have been in line nearly parallel to the fiber axis. The above carbon fibers are carbon type, but in case of graphite type high performance carbon fibers, its broken areas have not been shown and they have shown much stronger resistance against microbial attacks. 11 refs., 8 figs., 2 tabs.

  19. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    Science.gov (United States)

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. PMID:27162144

  20. Effect of the surface treatment of plain carbon fiber posts on the retention of the composite core: an in vitro evaluation Efeito do tratamento superficial de pinos de fibra de carbono lisos na retenção da resina