WorldWideScience

Sample records for carbon-epoxy laminates part

  1. Mechanical performance of carbon-epoxy laminates. Part I: quasi-static and impact bending properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part I of this study, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared. Materials tested were unidirectional cross-ply (tape and bidirectional woven textile (fabric carbon fiber lay-up architectures, impregnated with standard and rubber-toughened resins, respectively, giving rise to 1.5 mm-thick laminates. Quasi-static mechanical properties assessed in transversal mode loading were modulus of elasticity, flexural strength and tenacity at the maximum load, whereas the net absorbed energy was determined under translaminar impact conditions. Two-dimensional woven carbon fiber reinforcements embedded in a rubber-toughened matrix presented the best mechanical performance under static loading. Under dynamic loading conditions, woven fiber fabric pre-forms were favorably sensitive to increasing impact energies regardless the nature of the employed epoxy resin. However, it was concluded that great care should be taken with this material within the low energy impact regimen.

  2. Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.

  3. Interlaminar fracture in woven carbon/epoxy laminates

    Directory of Open Access Journals (Sweden)

    Paulo N.B. Reis

    2014-10-01

    Full Text Available This paper describes an experimental study developed to characterize the mode I and mode II fracture toughness of carbon/epoxy woven composites, using DCB and ENF tests, respectively. The laminates were manufactured using an epoxy resin and twelve woven balanced bi-directional layers of carbon fibres, all of them with the same orientation (0/90º. Significant instantaneous delaminations were observed particularly for the DCB specimen, which were responsible for an oscillatory behaviour of GI versus crack length. The maximum values obtained for GIC and GIIC were 281 and 1800 J/m2, respectively.

  4. Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature

    Science.gov (United States)

    2011-11-01

    ply unidirectional carbon/epoxy laminates [0]12 were fabricated from the prepreg tape of P3252-20 (TORAY). They were laid up by hand and cured in...Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature Takafumi Suzuki 1 and...Development of an engineering model for predicting the off-axis ratcheting behavior of a unidirectional CFRP laminate has been attempted. For this purpose

  5. Experimental and Numerical Simulation Analysis of Typical Carbon Woven Fabric/Epoxy Laminates Subjected to Lightning Strike

    Science.gov (United States)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-12-01

    To clarify the evolution of damage for typical carbon woven fabric/epoxy laminates exposed to lightning strike, artificial lightning testing on carbon woven fabric/epoxy laminates were conducted, damage was assessed using visual inspection and damage peeling approaches. Relationships between damage size and action integral were also elucidated. Results showed that damage appearance of carbon woven fabric/epoxy laminate presents circular distribution, and center of the circle located at the lightning attachment point approximately, there exist no damage projected area dislocations for different layers, visual damage territory represents maximum damage scope; visible damage can be categorized into five modes: resin ablation, fiber fracture and sublimation, delamination, ablation scallops and block-shaped ply-lift; delamination damage due to resin pyrolysis and internal pressure exist obvious distinguish; project area of total damage is linear with action integral for the same type specimens, that of resin ablation damage is linear with action integral, but no correlation with specimen type, for all specimens, damage depth is linear with logarithm of action integral. The coupled thermal-electrical model constructed is capable to simulate the ablation damage for carbon woven fabric/epoxy laminates exposed to simulated lightning current through experimental verification.

  6. Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates

    Science.gov (United States)

    Kuo, Shih-Yao

    2018-03-01

    This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.

  7. The effect of edge interlaminar stresses on the strength of carbon/epoxy laminates of different stacking geometry

    OpenAIRE

    MOMCILO STEVANOVIC; MILAN GORDIC; DANIELA SEKULIC; ISIDOR DJORDJEVIC

    2006-01-01

    The effect of edge interlaminar stresses on strength of carbon/epoxy laminates of different stacking geometry: cross-ply, quasi-isotropic and angle-ply laminates with additional 0º and 90º ply was studied. Coupons with two widths of laminates with an inverse stacking sequence were tested in static tensile tests. The effect of edge interlaminar stresses on strength was studied, by comparing the values of the tensile strength of laminate coupons of the same width with an inverse stacking sequen...

  8. Radiation processing of carbon fiber-acrylated epoxy composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.

    1992-01-01

    Advanced composites, specifically carbon fiber reinforced epoxies, are being used for a variety of demanding structural applications, primarily because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, and damage tolerance characteristics. For these composites the key advantages of using electron beam (EB), rather than thermal curing, are curing at ambient temperature, reduced curing times for individual components, improved resin stability, fewer volatiles, and better control of the profile of energy absorption. Epoxy compounds do, however, have to be modified to make them EB curable. The electron beam penetration limit, a function of beam energy, product density, and the thickness of any container required, must also be examined when considering EB processing. Research is being conducted to develop EB-curable carbon fiber-acrylated epoxy composites. The tensile properties of these laminates are comparable to those of thermally cured epoxy laminates. Research is continuing to develop suitable resin formulations and coupling agents to optimize the mechanical properties of EB-cured carbon fiber laminates. In this chapter the EB curing of epoxies, processing considerations, and typical properties of EB-cured carbon fiber-acrylated epoxy laminates are discussed. (orig.)

  9. Characterization of the matrix glass transition in carbon-epoxy laminates using the CSD test geometry. [centro-symmetric deformation

    Science.gov (United States)

    Sternstein, S. S.; Yang, P.

    1983-01-01

    A new test geometry, referred to as centro-symmetric deformation (CSD), is proposed for characterizing the viscoelastic behavior of the matrix of carbon-epoxy laminates. The sample consists of a thin disk, typically 6-14 plies thick, having a nominal diameter of 30 mm. The disk is freely supported on a circular anvil; the load is applied to the center of the disk using an 8-mm-diameter ball bearing nosepiece. The CSD test geometry provides viscoelastic dispersion data which are independent of the angular orientation of the sample. The test geometry is sufficiently sensitive to matrix changes to allow its use for postcuring, humidity, crosslink density, and other matrix change studies. Test results are presented for a carbon-epoxy laminate.

  10. Morphological and mechanical analyses of laminates manufactured from randomly positioned carbon fibre/epoxy resin prepreg scraps

    Science.gov (United States)

    Souza, Christiane S. R.; Cândido, Geraldo M.; Alves, Wellington; Marlet, José Maria F.; Rezende, Mirabel C.

    2017-10-01

    This study aims to contribute to sustainability by proposing the reuse of composite prepreg scrap as an added value from discards. The research evaluates the microstructure and mechanical properties of laminates processed by the reuse of uncured carbon fibre/F155-epoxy resin prepreg scraps, waste from the ply cutting area of an aeronautical industry. The composite scraps were used as collected and were randomly positioned to produce laminates to be cured at an autoclave. The mechanical characterization shows a decrease of 39% for the compression property due to the discontinuous fibres in the laminate and an increase of 34% for the interlaminar shear strength, when compared to continuous fibre laminates. This increase is attributed to the higher crosslink density of the epoxy resin, as a result of the cure temperature used in autoclave (60 °C higher than suggested by supplier) and also to the randomly positioned scraps. Microscopic analyses confirm the consolidation of laminates, although show resin rich areas with different sizes and shapes attributed to the overlapping of the scraps with different sizes and shapes. These resin rich areas may contribute to decrease the mechanical properties of laminates. The correlation between mechanical and morphological results shows potential to be used on non-critical structural application, as composite jigs, contributing to sustainability.

  11. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties.

    Science.gov (United States)

    He, Yuxin; Yang, Song; Liu, Hu; Shao, Qian; Chen, Qiuyu; Lu, Chang; Jiang, Yuanli; Liu, Chuntai; Guo, Zhanhu

    2018-05-01

    The epoxy nanocomposites with ordered multi-walled carbon nanotubes (MWCNTs) were used to influence the micro-cracks resistance of carbon fiber reinforced epoxy (CF/EP) laminate at 77 K, Oxidized MWCNTs functionalized with Fe 3 O 4 (Fe 3 O 4 /O-MWCNTs) with good magnetic properties were prepared by co-precipitation method and used to modify epoxy (EP) for cryogenic applications. Fe 3 O 4 /O-MWCNTs reinforced carbon fiber epoxy composites were also prepared through vacuum-assisted resin transfer molding (VARTM). The ordered Fe 3 O 4 /O-MWCNTs were observed to have effectively improved the mechanical properties of epoxy (EP) matrix at 77 K and reduce the coefficient of thermal expansion (CTE) of EP matrix. The ordered Fe 3 O 4 /O-MWCNTs also obviously improved the micro-cracks resistance of CF/EP composites at 77 K. Compared to neat EP, the CTE of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites was decreased 37.6%. Compared to CF/EP composites, the micro-cracks density of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites at 77 K was decreased 37.2%. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Influence of the Hybrid Combination of Multiwalled Carbon Nanotubes and Graphene Oxide on Interlaminar Mechanical Properties of Carbon Fiber/Epoxy Laminates

    Science.gov (United States)

    Rodríguez-González, J. A.; Rubio-González, C.; Jiménez-Mora, M.; Ramos-Galicia, L.; Velasco-Santos, C.

    2017-10-01

    An effective strategy to improve the mode I and mode II interlaminar fracture toughness (G IC and G IIC ) of unidirectional carbon fiber/epoxy (CF/E) laminates using a hybrid combination of multiwalled carbon nanotubes (MWCNTs) and graphene oxide (GO) is reported. Double cantilever beam (DCB) and end notched flexure (ENF) tests were conducted to evaluate the G IC and G IIC of the CF/E laminates fabricated with sprayed MWCNTs, GO and MWCNTs/GO hybrid. Scanning electron microscopy was employed to observe the fracture surfaces of tested DCB and ENF specimens. Experimental results showed the positive effect on the G IC and G IIC by 17% and 14% improvements on CF/E laminates with 0.25 wt.% MWCNTs/GO hybrid content compared to the neat CF/E. Also, the interlaminar shear strength value was increased for MWCNTs/GO-CF/E laminates. A synergetic effect between MWCNTs and GO resulted in improved interlaminar mechanical properties of CF/E laminates made by prepregs.

  13. Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading

    Directory of Open Access Journals (Sweden)

    Wanlei Liu

    Full Text Available A multiscale model based bridge theory is proposed for the progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading. The ablation model is adopted to calculate ablation temperature changing and ablation surface degradation. The polynomial strengthening model of matrix is used to improve bridging model for reducing parameter input. Stiffness degradation methods of bridging model are also improved in order to analyze the stress redistribution more accurately when the damage occurs. Thermal-mechanical analyses of the composite plate are performed using the ABAQUS/Explicit program with the developed model implemented in the VUMAT. The simulation results show that this model can be used to proclaim the mesoscale damage mechanism of composite laminates under coupled loading. Keywords: Laser irradiation, Multiscale analysis, Bridge model, Thermal-mechanical

  14. Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part I-Characterisation of Thermophysical Properties.

    Science.gov (United States)

    Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge

    2017-05-04

    Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering.

  15. Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part I—Characterisation of Thermophysical Properties

    Directory of Open Access Journals (Sweden)

    Pauline Tranchard

    2017-05-01

    Full Text Available Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA, Simultaneous Thermal analysis (STA, Laser Flash analysis (LFA, and Fourier Transform Infrared (FTIR analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper. The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering.

  16. Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part I—Characterisation of Thermophysical Properties

    Science.gov (United States)

    Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge

    2017-01-01

    Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering. PMID:28772854

  17. Effects of stacking sequence on fracture mechanisms in quasi-isotropic Carbon/epoxy laminates under tensile loading

    International Nuclear Information System (INIS)

    Hessabi, Z. R.; Majidi, B.; Aghazadeh, J.

    2006-01-01

    The progress of damage in quasi-isotropic carbon/epoxy laminates under tensile loading has been Investigated microscopically. One significant mode of failure in laminated composites is delamination initiating at free edges. The interlaminar stress in the boundary ply along the free edges of a laminated composite is the main factor to cause delamination. The laminate stacking sequence affects the interlaminar stress distribution and consequently may change the mode of failure. It is of design importance to determine a suitable criterion based on stress analysis to obtain the best stacking sequence. In the present work, tensile properties of six samples with different stacking sequences have been examined. Results showed that stress analysis at distance very close to the free edges is a suitable criterion to predict the initiation of delamination and the stacking sequence of [90/45/0/-45] s , has the highest strength among the others. Furthermore finite element analysis showed that the adjacent ±45 plies cause premature delamination during tensile loading

  18. Fatigue damage mechanics of notched graphite-epoxy laminates

    Science.gov (United States)

    Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.

    A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.

  19. Mechanical Properties of Epoxy and Its Carbon Fiber Composites Modified by Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2017-01-01

    Full Text Available Compressive properties are commonly weak parts in structural application of fiber composites. Matrix modification may provide an effective way to improve compressive performance of the composites. In this work, the compressive property of epoxies (usually as matrices of fiber composites modified by different types of nanoparticles was firstly investigated for the following study on the compressive property of carbon fiber reinforced epoxy composites. Carbon fiber/epoxy composites were fabricated by vacuum assisted resin infusion molding (VARIM technique using stitched unidirectional carbon fabrics, with the matrices modified with nanosilica, halloysite, and liquid rubber. Testing results showed that the effect of different particle contents on the compressive property of fiber/epoxy composites was more obvious than that in epoxies. Both the compressive and flexural results showed that rigid nanoparticles (nanosilica and halloysite have evident strengthening effects on the compression and flexural responses of the carbon fiber composite laminates fabricated from fabrics.

  20. Dynamic tensile stress–strain characteristics of carbon/epoxy laminated composites in through-thickness direction

    Directory of Open Access Journals (Sweden)

    Nakai Kenji

    2015-01-01

    Full Text Available The effect of strain rate up to approximately ε̇ = 102/s on the tensile stress–strain properties of unidirectional and cross-ply carbon/epoxy laminated composites in the through-thickness direction is investigated. Waisted cylindrical specimens machined out of the laminated composites in the through-thickness direction are used in both static and dynamic tests. The dynamic tensile stress–strain curves up to fracture are determined using the split Hopkinson bar (SHB. The low and intermediate strain-rate tensile stress–strain relations up to fracture are measured on an Instron 5500R testing machine. It is demonstrated that the ultimate tensile strength and absorbed energy up to fracture increase significantly, while the fracture strain decreases slightly with increasing strain rate. Macro- and micro-scopic examinations reveal a marked difference in the fracture surfaces between the static and dynamic tension specimens.

  1. The Influence of GI and GII on the Compression After Impact Strength of Carbon Fiber/Epoxy Laminates and Sandwich Structure

    Science.gov (United States)

    Nettles, A. T.; Scharber, L. L.

    2017-01-01

    This study measured the compression after impact strength of IM7 carbon fiber laminates made from epoxy resins with various mode I and mode II toughness values to observe the effects of these toughness values on the resistance to damage formation and subsequent residual compression strength-carrying capabilities. Both monolithic laminates and sandwich structure were evaluated. A total of seven different epoxy resin systems were used ranging in approximate GI values of 245-665 J/sq m and approximate GII values of 840-2275 J/sq m. The results for resistance to impact damage formation showed that there was a direct correlation between GII and the planar size of damage, as measured by thermography. Subsequent residual compression strength testing suggested that GI had no influence on the measured values and most of the difference in compression strength was directly related to the size of damage. Thus, delamination growth assumed as an opening type of failure mechanism does not appear to be responsible for loss of compression strength in the specimens examined in this study.

  2. Effect of stacking angles on mechanical properties and damage propagation of plain woven carbon fiber laminates

    Science.gov (United States)

    Zhuang, Weimin; Ao, Wenhong

    2018-03-01

    Damage propagation induced failure is a predominant damage mechanism. This study is aimed at assessing the damage state and damage propagation induced failure with different stacking angles, of woven carbon fiber/epoxy laminates subjected to quasi-static tensile and bending load. Different stages of damage processing and damage behavior under the bending load are investigated by Scanning Electron Microscopy (SEM). The woven carbon fiber/epoxy laminates which are stacked at six different angles (0°, 15°, 30°, 45°, 60°, 75°) with eight plies have been analyzed: [0]8, [15]8, [30]8, [45]8, [60]8, [75]8. Three-point bending test and quasi-static tensile test are used in validating the woven carbon fiber/epoxy laminates’ mechanical properties. Furthermore, the damage propagation and failure modes observed under flexural loading is correlated with flexural force and load-displacement behaviour respectively for the laminates. The experimental results have indicated that [45]8 laminate exhibits the best flexural performance in terms of energy absorption duo to its pseudo-ductile behaviour but the tensile strength and flexural strength drastically decreased compared to [0]8 laminate. Finally, SEM micrographs of specimens and fracture surfaces are used to reveal the different types of damage of the laminates with different stacking angles.

  3. Comparison of tensile strength of different carbon fabric reinforced epoxy composites

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2006-03-01

    Full Text Available Carbon fabric/epoxy composites are materials used in aeronautical industry to manufacture several components as flaps, aileron, landing-gear doors and others. To evaluate these materials become important to know their mechanical properties, for example, the tensile strength. Tensile tests are usually performed in aeronautical industry to determinate tensile property data for material specifications, quality assurance and structural analysis. For this work, it was manufactured four different laminate families (F155/PW, F155/HS, F584/PW and F584/HS using pre-impregnated materials (prepregs based on F155TM and F584TM epoxy resins reinforced with carbon fiber fabric styles Plain Weave (PW and Eight Harness Satin (8HS. The matrix F155TM code is an epoxy resin type DGEBA (diglycidil ether of bisphenol A that contains a curing agent and the F584TM code is a modified epoxy resin type. The laminates were obtained by handing lay-up process following an appropriate curing cycle in autoclave. The samples were evaluated by tensile tests according to the ASTM D3039. The F584/PW laminates presented the highest values of tensile strength. However, the highest modulus results were determined for the 8HS composite laminates. The correlation of these results emphasizes the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture. The microscopic analyses of the tested specimens show valid failure modes for composites used in aeronautical industry.

  4. Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites

    OpenAIRE

    Halil B. Kaybal; Hasan Ulus; Okan Demir; Ömer S. Şahin; Ahmet Avcı

    2018-01-01

    The influence of alumina (Al2O3) nanoparticles addition upon low-velocity impact behaviors of carbon fiber (CF) reinforced laminated epoxy nanocomposites have been investigated. For this purpose, different amounts of Al2O3 nanoparticles ranging from 1 to 5 wt% were added to the epoxy resin in order to observe the effect of nanoparticle loadings. CF reinforced epoxy based laminated nanocomposites were produced using Vacuum Assisted Resin Infusion Method (VARIM). The low velocity impact (LVI) t...

  5. Surface modification of carbon/epoxy prepreg using oxygen plasma and its effect on the delamination resistance behavior of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Kim, M.H.; Rhee, K.Y.; Kim, H.J.; Jung, D.H.

    2007-01-01

    It was shown in previous study that the fracture toughness of carbon/epoxy laminated composites could be significantly improved by modifying the surface of the prepreg using Ar + irradiation in an oxygen environment. In this study, the surface of carbon/epoxy prepreg was modified using an oxygen plasma to improve the delamination resistance behavior of carbon/epoxy laminated composites. The variation of the contact angle on the prepreg surface was determined as a function of the modification time, in order to determine the optimal modification time. An XPS analysis was conducted to investigate the chemical changes on the surface of the prepreg caused by the plasma modification. Mode I delamination resistance curves of the composites with and without surface modification were plotted as a function of the delamination increment. The results showed that the contact angle varied from ∼64 o to ∼47 o depending on the modification time and reached a minimum for a modification time of 30 min. The XPS analysis showed that the hydrophilic carbonyl C=O group was formed by the oxygen plasma modification. The results also showed that the delamination resistance behavior was significantly improved by the plasma modification of the prepreg. This improvement was caused by the better layer-to-layer adhesion as well as increased interfacial strength between the fibers and matrix

  6. Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part II-Comparison with Experimental Results.

    Science.gov (United States)

    Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge

    2017-04-28

    Based on a phenomenological methodology, a three dimensional (3D) thermochemical model was developed to predict the temperature profile, the mass loss and the decomposition front of a carbon-reinforced epoxy composite laminate (T700/M21 composite) exposed to fire conditions. This 3D model takes into account the energy accumulation by the solid material, the anisotropic heat conduction, the thermal decomposition of the material, the gas mass flow into the composite, and the internal pressure. Thermophysical properties defined as temperature dependant properties were characterised using existing as well as innovative methodologies in order to use them as inputs into our physical model. The 3D thermochemical model accurately predicts the measured mass loss and observed decomposition front when the carbon fibre/epoxy composite is directly impacted by a propane flame. In short, the model shows its capability to predict the fire behaviour of a carbon fibre reinforced composite for fire safety engineering.

  7. Fracture toughness behaviour of carbon fibre epoxy composite with Kevlar reinforced interleave

    International Nuclear Information System (INIS)

    Yadav, S.N.; Kumar, Vijai; Verma, Sushil K.

    2006-01-01

    This work was to evaluate as to how mode II fracture toughness G II is affected by interleave having Kevlar fibre reinforcement in the fracture plane. Thermoset interleave and chopped Kevlar fibres were applied between the carbon/epoxy composite layers. An artificial crack starter was implanted in the mid-plane to initiate the fracture process. The following five different types of carbon fibre/epoxy composites were prepared and tested. (a) Base laminate without interleave (b) unreinforced interleave and (c) 0.5, 1.0 and 1.5 mg/cm 2 chopped Kevlar fibre reinforced interleave. Results obtained show that fracture toughness G IIC enhanced up to about two times in all the laminates. However, enhancement in fracture toughness G IIC was more effective in interleaved laminate than Kevlar reinforced interleaved because of large energy absorbing capabilities of interleaf. Mechanism of fracture and toughening were examined by using scanning electron microscope

  8. Mechanical and morphological characterizations of carbon fiber fabric reinforced epoxy composites used in aeronautical field

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2009-09-01

    Full Text Available Carbon fiber reinforced composites (CFRC have been used in aeronautical industry in the manufacture of different aircraft components that must attend tight mechanical requirements. This paper shows a study involving mechanical (flexural, shear, tensile and compressive tests and morphological characterizations of four different laminates based on 2 epoxy resin systems (8552TM and F584TM and 2 carbon fiber fabric reinforcements (Plain Weave (PW and Eight Harness Satin (8HS. All laminates were obtained by handing lay-up of prepregs plies (0º/90º and consolidation in an autoclave following an appropriate curing cycle with vacuum and pressure. The results show that the F584-epoxy matrix laminates present better mechanical properties in the tensile and compressive tests than 8552 composites. It is also observed that PW laminates for both matrices show better flexural and interlaminar shear properties.

  9. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Elisa Borowski

    2015-06-01

    Full Text Available Carbon fiber reinforced polymer (CFRP laminates exhibit limited fracture toughness due to characteristic interlaminar fiber-matrix cracking and delamination. In this article, we demonstrate that the fracture toughness of CFRP laminates can be improved by the addition of multi-walled carbon nanotubes (MWCNTs. Experimental investigations and numerical modeling were performed to determine the effects of using MWCNTs in CFRP laminates. The CFRP specimens were produced using an epoxy nanocomposite matrix reinforced with carboxyl functionalized multi-walled carbon nanotubes (COOH–MWCNTs. Four MWCNTs contents of 0.0%, 0.5%, 1.0%, and 1.5% per weight of the epoxy resin/hardener mixture were examined. Double cantilever beam (DCB tests were performed to determine the mode I interlaminar fracture toughness of the unidirectional CFRP composites. This composite material property was quantified using the critical energy release rate, GIC. The experimental results show a 25%, 20%, and 17% increase in the maximum interlaminar fracture toughness of the CFRP composites with the addition of 0.5, 1.0, and 1.5 wt% MWCNTs, respectively. Microstructural investigations using Fourier transform infrared (FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS verify that chemical reactions took place between the COOH–MWCNTs and the epoxy resin, supporting the improvements experimentally observed in the interlaminar fracture toughness of the CFRP specimens containing MWCNTs. Finite element (FE simulations show good agreement with the experimental results and confirm the significant effect of MWCNTs on the interlaminar fracture toughness of CFRP.

  10. Three-Phase Carbon Fiber Amine Functionalized Carbon Nanotubes Epoxy Composite: Processing, Characterisation, and Multiscale Modeling

    Directory of Open Access Journals (Sweden)

    Kamal Sharma

    2014-01-01

    Full Text Available The present paper discusses the key issues of carbon nanotube (CNT dispersion and effect of functionalisation on the mechanical properties of multiscale carbon epoxy composites. In this study, CNTs were added in epoxy matrix and further reinforced with carbon fibres. Predetermined amounts of optimally amine functionalised CNTs were dispersed in epoxy matrix, and unidirectional carbon fiber laminates were produced. The effect of the presence of CNTs (1.0 wt% in the resin was reflected by pronounced increase in Young’s modulus, inter-laminar shear strength, and flexural modulus by 51.46%, 39.62%, and 38.04%, respectively. However, 1.5 wt% CNT loading in epoxy resin decreased the overall properties of the three-phase composites. A combination of Halpin-Tsai equations and micromechanics modeling approach was also used to evaluate the mechanical properties of multiscale composites and the differences between the predicted and experimental values are reported. These multiscale composites are likely to be used for potential missile and aerospace structural applications.

  11. Characterization of Thermo-Elastic Properties and Microcracking Behaviors of CFRP Laminates Using Cup-Stacked Carbon Nanotubes (CSCNT) Dispersed Resin

    Science.gov (United States)

    Yokozeki, Tomohiro; Iwahori, Yutaka; Ishiwata, Shin

    This study investigated the thermo-elastic properties and microscopic ply cracking behaviors in carbon fiber reinforced nanotube-dispersed epoxy laminates. The nanocomposite laminates used in this study consisted of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional nanocomposite laminates were evaluated, and quasi-static and fatigue tension tests of cross-ply laminates were carried out in order to observe the damage accumulation behaviors of matrix cracks. Clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was concluded that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, and specifically, the former was the main contribution to the retardation of matrix crack formation.

  12. Transient thermal-mechanical behavior of cracked glass-cloth-reinforced epoxy laminates at low temperatures

    International Nuclear Information System (INIS)

    Shindo, Y.; Ueda, S.

    1997-01-01

    We consider the transient thermal-mechanical response of cracked G-10CR glass-cloth-reinforced epoxy laminates with temperature-dependent properties. The glass-cloth-reinforced epoxy laminates are suddenly cooled on the surfaces. A generalized plane strain finite element model is used to study the influence of warp angle and crack formation on the thermal shock behavior of two-layer woven laminates at low temperatures. Numerical calculations are carried out, and the transient temperature distribution and the thermal-mechanical stresses are shown graphically

  13. Development of failure criterion for Kevlar-epoxy fabric laminates

    Science.gov (United States)

    Tennyson, R. C.; Elliott, W. G.

    1984-01-01

    The development of the tensor polynomial failure criterion for composite laminate analysis is discussed. In particular, emphasis is given to the fabrication and testing of Kevlar-49 fabric (Style 285)/Narmco 5208 Epoxy. The quadratic-failure criterion with F(12)=0 provides accurate estimates of failure stresses for the Kevlar/Epoxy investigated. The cubic failure criterion was re-cast into an operationally easier form, providing the engineer with design curves that can be applied to laminates fabricated from unidirectional prepregs. In the form presented no interaction strength tests are required, although recourse to the quadratic model and the principal strength parameters is necessary. However, insufficient test data exists at present to generalize this approach for all undirectional prepregs and its use must be restricted to the generic materials investigated to-date.

  14. Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2005-03-01

    Full Text Available Four families of carbon fiber reinforced composites (CFRC used in aeronautical industry were evaluated by flexural and interlaminar shear tests. It is also characterized three families of non-conditioned and conditioned CFRC by compression test. The composites were obtained by hand lay-up process in autoclave by using prepregs based on epoxy matrices (F155 and F584 and carbon fiber fabric reinforcements (PW-"Plain Weave" and 8HS-"Eight Harness Satin". The F155-epoxy matrix was cured at 121 °C and the F584-epoxy type at 177 °C. After molding, the laminates were cut in specimens attending the ASTM D790 for the flexural test, the ASTM D2344 for the interlaminar shear test (ILSS and the ASTM D3410 for the compressive test. The compressive tests were performed for testing the specimens before and after hygrothermal conditioning. The results show that the F584-epoxy matrix laminates present higher mechanical properties when compared to the F155-epoxy ones. The shear-tested samples observed by scanning electron microscopy and that ones tested in flexural, analyzed by stereoscopy, revealed that the fractured surfaces present typical aspects. The compressive results show that the hygrothermal conditioning caused the decrease of the compressive strength in, approximately, 8-20% depending on the laminate type. The failure modes of the tested specimens were evaluated showing good agreement with the literature.

  15. Assessment of cumulative damage by using ultrasonic C-scan on carbon fiber/epoxy composites under thermal cycling

    Directory of Open Access Journals (Sweden)

    Marcos Yutaka Shiino

    2012-08-01

    Full Text Available In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.

  16. The role of shape memory alloy on impact response of glass/epoxy laminates under low temperature

    International Nuclear Information System (INIS)

    Kang, K. W.; Kim, H. J.

    2007-01-01

    The paper aims to evaluate the impact response of glass/epoxy laminates with embedded shape memory alloy (SMA) subject to low velocity impact at various temperatures. For the goal, the impact tests were performed by using an instrumented impact-testing machine at three temperatures: 293K, 263K and 233K for the baseline (laminates without SMA wires) and SMA laminates (laminates with embedded SMA wires). And the resultant damages were inspected through the scanning acoustic microscope (SAM). Also, based on the impact force history and the damage configuration, the impact resistance parameters were employed to evaluate damage resistance of laminates with embedded SMA wires. As a result, it was observed that the damage resistance of glass/epoxy laminates is influenced by embedded SMA wires and embedding SMA wires into laminates does not compromise the structure any differently to laminates without wires. In fact, it has been shown that under lower temperature, the SMA laminates have a little superior damage resistance compared with the baseline laminates

  17. Predicting the mechanical behaviour of Kevlar/epoxy and carbon/epoxy filament-wound tubes

    Science.gov (United States)

    Cazeneuve, C.; Joguet, P.; Maile, J. C.; Oytana, C.

    1992-11-01

    The axial, hoop and shear moduli and failure conditions of carbon/epoxy and Kevlar/epoxy filament-wound tubes have been determined through respective applications of internal pressure, tension and torsion. The introduction in the laminated plate theory of a gradual reduction in individual moduli makes it possible to overcome the limitations of the theory and enables accurate predictions to be made of the linear and non-linear stress/strain curves of 90 deg +/- 0/90 deg tubes. The existence of a dominant layer in the failure of the multilayered tubes has been shown experimentally. When associated with a failure criterion applied to the dominant layer, the new model permits the prediction of tube failure. Agreement between calculated and experimental data is better than 5 percent.

  18. Degradation Behavior of Epoxy Resins in Fibre Metal Laminates Under Thermal Conditions

    NARCIS (Netherlands)

    Zhu, G.; Xiao, Y.; Yang, Y.; Wang, J.; Sun, B.; Boom, R.

    2012-01-01

    GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500m2 GLARE is employed in each Airbus A380 because of the superior mechanical properties over the monolithic aluminum alloys,

  19. Thermoviscoelastic characterization and prediction of Kevlar/epoxy composite laminates

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1990-01-01

    The thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material were studied. The four orthotropic material properties, S sub 11, S sub 12, S sub 22, and S sub 66, were characterized by 20 minute static creep tests on unidirectional (0) sub 8, (10) sub 8, and (90) sub 16 lamina specimens. The Time-Temperature Superposition-Principle (TTSP) was used successfully to accelerate the characterization process. A nonlinear constitutive model was developed to describe the stress dependent viscoelastic response for each of the material properties. A numerical procedure to predict long term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM PC type computers. The program was designed for ease of use. The final phase involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperatures and load level for 4 to 5 weeks. These results were compared with the VCAP program predictions to verify the testing procedure and to check the numerical procedure used in the program. The actual tests and predictions agreed for all test cases which included 1, 2, 3, and 4 fiber direction laminates.

  20. The Impact Response of Carbon/Epoxy Laminates (Center Director's Discretionary Fund, Project No. 94-13)

    Science.gov (United States)

    Nettles, A. T.; Hodge, A. J.

    1997-01-01

    Low velocity dropweight impact tests were conducted on carbon/epoxy laminates under various boundary conditions. The composite plates were 8-ply (+45,0,-45,90)s laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load, N(sub x), applied. Specimens were impacted at energies of 3.4, 4.5, and 6 Joules (2.5, 3.3, and 4.4 ft-lb). The amount of damage induced into the specimen was evaluated using instrumented impact techniques, x-ray inspection, and cross-sectional photomicroscopy. Some static identation tests were performed to examine if the impact events utilized in this study were of a quasi-static nature and also to gain insight into the shape of the deflected surface at various impact load combinations. Load-displacement curves from these tests were compared to those of the impact tests, as was damage determined from x-ray inspection. The finite element technique was used to model the impact event and determine the stress field within the laminae. Results showed that for a given impact energy level, more damage was induced into the specimen as the external in-plane load, N(sub x), was increased. The majority of damage observed consisted of back face splitting of the matrix parallel to the fibers in that ply, associated with delaminations emanating from these splits. The analysis showed qualitatively the results of impact conditions on maximum load of impact, maximum transverse deflection, and first failure mode and location.

  1. Structural properties of laminated Douglas fir/epoxy composite material

    Energy Technology Data Exchange (ETDEWEB)

    Spera, D.A. (National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center); Esgar, J.B. (Sverdrup Technology, Inc., Cleveland, OH (USA)); Gougeon, M.; Zuteck, M.D. (Gougeon Bros., Bay City, MI (USA))

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  2. Effects of stitching on fracture toughness of uniweave textile graphite/epoxy laminates

    Science.gov (United States)

    Sankar, Bhavani V.; Sharma, Suresh

    1995-01-01

    The effects of through-the-thickness stitching on impact damage resistance, impact damage tolerance, and Mode 1 and Mode 2 fracture toughness of textile graphite/epoxy laminates were studied experimentally. Graphite/epoxy laminates were fabricated from AS4 graphite uniweave textiles and 3501-6 epoxy using Resin Transfer Molding. The cloths were stitched with Kevlar(tm) and glass yarns before resin infusion. Delamination was implanted during processing to simulate impact damage. Sublaminate buckling tests were performed in a novel fixture to measure Compression After Impact (CAI) strength of stitched laminates. The results show that CAI strength can be improved up to 400% by through-the-thickness stitching. Double Cantilever Beam tests were performed to study the effect of stitching on Mode 1 fracture toughness G(sub 1c). It was found that G(sub 1c) increased 30 times for a low stitching density of 16 stitches/sq in. Mode 2 fracture toughness was measured by testing the stitched beams in End Notch Flexure tests. Unlike in the unstitiched beams, crack propagation in the stitched beams was steady. The current formulas for ENF tests were not found suitable for determining G(sub 2C) for stitched beams. Hence two new methods were developed - one based on crack area measured from ultrasonic C-scanning and the other based on equivalent crack area measured from the residual stiffness of the specimen. The G(sub 2c) was found to be at least 5-15 times higher for the stitched laminates. The mechanisms by which stitching increases the CAI strength and fracture toughness are discussed.

  3. Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites

    Science.gov (United States)

    Ibrahim, Mohd Haziq Izzuddin bin; Hassan, Mohamad Zaki bin; Ibrahim, Ikhwan; Rashidi, Ahmad Hadi Mohamed; Nor, Siti Fadzilah M.; Daud, Mohd Yusof Md

    2018-05-01

    Seawater salinity has been associated with the reduction of polymer structure durability. The aim of this study is to investigate the change in thermal degradation of fiber reinforced epoxy composite due to the presence of seawater. Carbon fiber, carbon/kevlar, fiberglass, and jute that reinforced with epoxy resin was laminated through hand-layup technique. Initially, these specimen was sectioned to 5×5 mm dimension, then immersed in seawater and distilled water at room temperature until it has thoroughly saturated. Following, the thermal degradation analysis using Differential Scanning Calorimetry (DSC), the thermic changes due to seawater infiltration was defined. The finding shows that moisture absorption reduces the glass transition temperature (Tg) of fiber reinforced epoxy composite. However, the glass transition temperature (Tg) of seawater infiltrated laminate composite is compareable with distilled water infiltrated laminate composite. The carbon fiber reinfored epoxy has the highest glass transition temperature out of all specimen.

  4. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    Science.gov (United States)

    Mirjalili, Vahid

    .% of Single Walled CNT (SWNT). Finally, the CNT-modified epoxy resin was used to manufacture carbon fibre laminates by resin film infusion and prepreg technologies. The Mode I and Mode II delamination properties of the CNT-modified composite increased by 140% and 127%, respectively. In contrast, this improvement was not observed for the base CNT-modified polymers, used to manufacture the composite laminates. A qualitative analysis of the fractured surface using a Scanning Electron Microscope revealed a good dispersion in the composites samples, confirming the importance of processing to harness the full potential of carbon nanotubes for toughening polymer composites.

  5. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements

    KAUST Repository

    Lubineau, Gilles

    2012-06-01

    Continuous-fiber/epoxy-matrix laminated composites are a key structural material for aeronautical and aerospace applications. Introducing nanoscale reinforcements to these materials is a possible way to achieve improved mechanical properties. To date, much work has been done on nano-reinforced polymers. However, few systematic studies concerning the effect of the nanoreinforcements on the mechanical properties on laminated composites were conducted. This paper presents a systematic review of the mechanisms of degradation in laminated structures and considers various nanoreinforcement strategies in the light of well-known mechanisms of degradation and phenomenologies in classical laminated composites. We also discuss various nanoreinforcement strategies in terms of their potential to reduce degradation on every scale. In addition, we review studies conducted on the role that nanoreinforcements play in mechanical properties involved in structural simulation and design. The degradation mechanisms are systematically considered to provide a full picture of each reinforcement strategy. © 2012 Elsevier Ltd. All rights reserved.

  6. Mechanical behavior of glass/epoxy composite laminate with varying amount of MWCNTs under different loadings

    Science.gov (United States)

    Singh, K. K.; Rawat, Prashant

    2018-05-01

    This paper investigates the mechanical response of three phased (glass/MWCNTs/epoxy) composite laminate under three different loadings. Flexural strength, short beam strength and low-velocity impact (LVI) testing are performed to find an optimum doping percentage value for maximum enhancement in mechanical properties. In this work, MWCNTs were used as secondary reinforcement for three-phased composite plate. MWCNT doping was done in a range of 0–4 wt% of the thermosetting matrix system. Symmetrical design eight layered glass/epoxy laminate with zero bending extension coupling laminate was fabricated using a hybrid method i.e. hand lay-up technique followed by vacuum bagging method. Ranging analysis of MWCNT mixing highlighted the enhancement in flexural, short beam strength and improvement in damage tolerance under LVI loading. While at higher doping wt%, agglomeration of MWCNTs are observed. Results of mechanical testing proposed an optimized doping value for maximum strength and damage resistance of the laminate.

  7. Prediction of energy absorption characteristics of aligned carbon nanotube/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Weidt, D; Figiel, Ł; Buggy, M

    2012-01-01

    This research aims ultimately at improving the impact performance of laminates by applying a coating of epoxy containing carbon nanotubes (CNTs). Here, 2D and 3D computational modelling was carried out to predict energy absorption characteristics of aligned CNT/epoxy nanocomposites subjected to macroscopic compression under different strain rates (quasi-static and impact rates). The influence of the rate-dependent matrix behaviour, CNT aspect ratio and CNT volume fraction on the energy absorption characteristics of the nanocomposites was evaluated. A strong correlation between those parameters was found, which provides an insight into a rate-dependent behaviour of the nanocomposites, and can help to tune their energy absorption characteristics.

  8. Thermally induced self-healing epoxy/glass laminates with porous layers containing crystallized healing agent

    Directory of Open Access Journals (Sweden)

    T. Szmechtyk

    2018-07-01

    Full Text Available Porous glass fiber and paper layers were tested for application in thermally induced self healing epoxy laminates as healing porous layers. Both types of layers were impregnated using high purity bisphenol A diglycidyl ether (BADGE epoxy with ability to crystallize during storage under 25 °C. Absorption capacity of porous layers was evaluated. Differential scanning calorimetry was used to investigate BADGE healing agent recrystallization process. Healing porous glass layers (HPGL were selected for further tests. Liquid chromatography and Fourier transform infrared (FT IR spectroscopy provided information about average molecular mass of embedded healing agent and functional groups in HPGL layers. Self-healing efficiency of three different laminates with HPGL layers was calculated based on the results of three-point bending test and Charpy impact test. Also, flexural properties and impact strength of laminates were evaluated. The obtained results confirm competitive self healing ability of composites with HPGL.

  9. Hygrothermal influence on delamination behavior of graphite/epoxy laminates

    Science.gov (United States)

    Garg, A.; Ishai, O.

    1985-01-01

    The hygrothermal effect on the fracture behavior of graphite-epoxy laminates was investigated to develop a methodology for damage tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations to evaluate the effects of temperature and humidity on delamination fracture toughness under mode 1 and mode 2 loading. It is indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during mode 1 delamination, but has a slightly deleterious effect on mode 2 delamination, and mode 1 transverse cracking. The failed specimens are examined by SEM and topographical differences due to fracture modes are identified. It is concluded that the effect of moisture on fracture topography can not be distinguished.

  10. Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring

    Science.gov (United States)

    Kravchenko, O. G.; Pedrazzoli, D.; Kovtun, D.; Qian, X.; Manas-Zloczower, I.

    2018-01-01

    A new approach employing carbon nanostructure (CNS) buckypapers (BP) was used to prepare glass fiber/epoxy composite materials with enhanced resistance to delamination along with damage monitoring capability. The CNS-BP was subjected to plasma treatment to improve its wettability by epoxy and to promote stronger interfacial bonding. An increase up to 20% in interlaminar fracture toughness in mode I and mode II was observed in composite laminates incorporating CNS BP. Morphological analysis of the fracture surfaces indicated that failure in the conductive CNS layer provided a more effective energy dissipation mechanism, resulting in interlaminar fracture toughness increase. Moreover, fracture of the conductive CNS layer enabled damage monitoring of the composite by electrical resistance measurements upon delamination. The proposed approach provides multifunctional ply interphases, allowing to couple damage monitoring with interlaminar reinforcement of composite laminates.

  11. Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole

  12. Effects of through-the-thickness stitching on impact and interlaminar fracture properties of textile graphite/epoxy laminates

    Science.gov (United States)

    Sharma, Suresh K.; Sankar, Bhavani V.

    1995-01-01

    This study investigated the effects of through-the-thickness stitching on impact damage resistance, impact damage tolerance, and mode I and mode II fracture toughness of textile graphite/epoxy laminates. Uniweave resin-transfer-molded 48 ply graphite/epoxy (AS4/3501-6) laminates were stitched with Kevlar and glass yarns of different linear densities and stitch spacings. Delaminations were implanted during processing to simulate impact damage. Sublaminate buckling tests were performed to determine the effects of stitching on the compressive strength. The results showed outstanding improvements of up to 400 percent in the compression strength over the unstitched laminates. In impact and static indentation tests the onset of damage occurred at the same level, but the extent of damage was less in stitched laminates. Mode I fracture toughness of 24 ply Uniweave unidirectional (AS4/3501-6) stitched laminates was measured by conducting double-cantilever-beam tests. The critical strain energy release rate (G(sub Ic)) was found to be up to 30 times higher than the unstitched laminates. Mode II fracture toughness of the Uniweave laminates was measured by performing end-notched-flexure tests. Two new methods to compute the apparent G(sub IIc) are presented. The apparent G(sub IIc) was found to be at least 5-15 times higher for the stitched laminates.

  13. Computational Homogenization of Mechanical Properties for Laminate Composites Reinforced with Thin Film Made of Carbon Nanotubes

    Science.gov (United States)

    El Moumen, A.; Tarfaoui, M.; Lafdi, K.

    2018-06-01

    Elastic properties of laminate composites based Carbone Nanotubes (CNTs), used in military applications, were estimated using homogenization techniques and compared to the experimental data. The composite consists of three phases: T300 6k carbon fibers fabric with 5HS (satin) weave, baseline pure Epoxy matrix and CNTs added with 0.5%, 1%, 2% and 4%. Two step homogenization methods based RVE model were employed. The objective of this paper is to determine the elastic properties of structure starting from the knowledge of those of constituents (CNTs, Epoxy and carbon fibers fabric). It is assumed that the composites have a geometric periodicity and the homogenization model can be represented by a representative volume element (RVE). For multi-scale analysis, finite element modeling of unit cell based two step homogenization method is used. The first step gives the properties of thin film made of epoxy and CNTs and the second is used for homogenization of laminate composite. The fabric unit cell is chosen using a set of microscopic observation and then identified by its ability to enclose the characteristic periodic repeat in the fabric weave. The unit cell model of 5-Harness satin weave fabric textile composite is identified for numerical approach and their dimensions are chosen based on some microstructural measurements. Finally, a good comparison was obtained between the predicted elastic properties using numerical homogenization approach and the obtained experimental data with experimental tests.

  14. Hygrothermal effects on the mechanical behaviour of graphite fibre-reinforced epoxy laminates beyond initial failure

    Science.gov (United States)

    Ishai, O.; Garg, A.; Nelson, H. G.

    1986-01-01

    The critical load levels and associated cracking beyond which a multidirectional laminate can be considered as structurally failed has been determined by loading graphite fiber-reinforced epoxy laminates to different strain levels up to ultimate failure. Transverse matrix cracking was monitored by acoustic and optical methods. The residual stiffness and strength parallel and perpendicular to the cracks were determined and related to the environmental/loading history. Within the range of experimental conditions studied, it is concluded that the transverse cracking process does not have a crucial effect on the structural performance of multidirectional composite laminates.

  15. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Eun; Yoon, Sung Ho [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2012-10-15

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly.

  16. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Hwang, Young Eun; Yoon, Sung Ho

    2012-01-01

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly

  17. In-Situ Observations of Longitudinal Compression Damage in Carbon-Epoxy Cross Ply Laminates Using Fast Synchrotron Radiation Computed Tomography

    Science.gov (United States)

    Bergan, Andrew C.; Garcea, Serafina C.

    2017-01-01

    The role of longitudinal compressive failure mechanisms in notched cross-ply laminates is studied experimentally with in-situ synchrotron radiation based computed tomography. Carbon/epoxy specimens loaded monotonically in uniaxial compression exhibited a quasi-stable failure process, which was captured with computed tomography scans recorded continuously with a temporal resolutions of 2.4 seconds and a spatial resolution of 1.1 microns per voxel. A detailed chronology of the initiation and propagation of longitudinal matrix splitting cracks, in-plane and out-of-plane kink bands, shear-driven fiber failure, delamination, and transverse matrix cracks is provided with a focus on kink bands as the dominant failure mechanism. An automatic segmentation procedure is developed to identify the boundary surfaces of a kink band. The segmentation procedure enables 3-dimensional visualization of the kink band and conveys the orientation, inclination, and spatial variation of the kink band. The kink band inclination and length are examined using the segmented data revealing tunneling and spatial variations not apparent from studying the 2-dimensional section data.

  18. On the plastic behaviour of multi directional epoxy-bolted CFRP laminates

    DEFF Research Database (Denmark)

    Jensen, Aage; Poulsen, Ervin

    2004-01-01

    The second generation of CFRP laminate has recently been developed. It is a multi directional CFRP laminate, i.e. a laminate with carbon fibres having several directions other than the first generation. The paper describes the laboratory tests carried out in order to develop anchorage devices for...

  19. Comparison of structural health assessment capabilities in epoxycarbon black and epoxycarbon nanotube nanocomposites

    OpenAIRE

    F. Inam; B. R. Bhat; N. Luhyna; T. Vo

    2014-01-01

    A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB) and epoxy – 0.2 vol% carbon nanotube (CNT) nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by...

  20. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  1. Residual stresses in non-symmetrical carbon-epoxy laminates

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Akkerman, Remko; Lamers, E.A.D.; Martin, M.J.; Hahn, H.T.

    2003-01-01

    The curvature of unsymmetrical [0/90] laminates moulded from AS4/8552 uni-directional tape has been measured. A linear thermoelastic approach has been applied to predict the related residual stress state before demoulding, giving an estimate of the stress induced by polymerisation strain. The

  2. The effect of bulk-resin CNT-enrichment on damage and plasticity in shear-loaded laminated composites

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-07-01

    One way to improve multi functionality of epoxy-based laminated composites is to dope the resin with carbon nanotubes. Many investigators have focused on the elastic and fracture behavior of such nano-modified polymers under tensile loading. Yet, in real structural applications, laminated composites can exhibit plasticity and progressive damage initiated mainly by shear loading. We investigated the damage and plasticity induced by the addition of carbon nanotubes to the matrix of a glass fiber/epoxy composite system. We characterized both the modified epoxy resin and the associated modified laminates using classical mesoscale analysis. We used dynamic mechanical analysis, scanning electron microscopy, atomic force microscopy and classical mechanical testing to characterize samples with different concentrations of nanofillers. Since the samples were prepared using the solvent evaporation technique, we also studied the influence of this process. We found that in addition to the global increase in elastic regime properties, the addition of carbon nanotubes also accelerates the damage process in both the bulk resin and its associated glass-fiber composite. © 2013 Elsevier Ltd.

  3. Hygrothermal effects on the tensile strength of carbon/epoxy laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Cândido Geraldo Maurício

    2000-01-01

    Full Text Available The interlaminar stresses are confined to a region near the free edge. Therefore, the laminate stacking sequence and the free edge finishing are some of the factors that affect the strength of the laminate and limit its life. The use of molded edges eliminates the need for trimming and machining the laminates edges thus improving productivity. However, this fabrication technique may have a detrimental effect on the laminate strength for certain stacking sequences. This effect in the presence of moisture has not been characterized. This work presents the results of a comparative study of the resistance to delamination of laminates with machined edges and molded edges. Additionally, two environmental conditions were considered: dry laminates and laminates saturated with moisture. The tensile strength of the laminates were measured and micrographs were used to analyze the microstructure of the laminates near the free edges. It is concluded that the mechanical properties of advanced composites depend on the environmental conditions and the fabrication techniques used to produce the laminates. Therefore, it is necessary to account for these factors when experimentally determining the design allowables.

  4. Comparison of structural health assessment capabilities in epoxycarbon black and epoxycarbon nanotube nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Inam

    2014-01-01

    Full Text Available A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB and epoxy – 0.2 vol% carbon nanotube (CNT nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by indentation. For comprehensive comparison, fracture toughness and percolation threshold were analysed as well. Because of the systematically induced indentation damage, a sharp decrease of 89% was observed in the electrical conductivity of epoxy – CNT nanocomposite as compared to 25% in the electrical conductivity of epoxy – CB nanocomposite. CNTs impart superior damage sensing capability in brittle nanocomposite structures, in comparison to CB, due to their high aspect ratio (fibrous nature and high electrical conductivity.

  5. Numerical evaluation of delamination in CFRP laminates by stereo X-ray pictures

    International Nuclear Information System (INIS)

    Kunoo, Kazuo; Uda, Nobuhide; Ono, Kousei; Onohara, Kaoru; Takahashi, Toshiaki; Tanaka, Hisahiro.

    1989-01-01

    This paper presents a method for quantifying damage in composite laminates by stereo X-ray pictures. A three dimensional image of delamination, which is one of the characteristic types of damage in composite laminates can be reconstructed with this method. A digital image processing technique is used to analyze X-ray pictures. Experimental results of reconstructing delaminations in carbon/epoxy cross-ply laminates show that this method is accurate enough for practical usage. (author)

  6. In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Hattel, Jesper Henri

    2012-01-01

    For large composite structures, such as wind turbine blades, thick laminates are required to withstand large in-service loads. During the manufacture of thick laminates, one of the challenges met is avoiding process-induced shape distortions and residual stresses. In this paper, embedded fibre...... Bragg grating sensors are used to monitor process-induced strains during vacuum infusion of a thick glass/epoxy laminate. The measured strains are compared with predictions from a cure hardening instantaneous linear elastic (CHILE) thermomechanical numerical model where different mechanical boundary...... conditions are employed. The accuracy of the CHILE model in predicting process-induced internal strains, in what is essentially a viscoelastic boundary value problem, is investigated. A parametric study is furthermore performed to reveal the effect of increasing the laminate thickness. The numerical model...

  7. Impact Damage In Carbon/Epoxy And Carbon/PEEK Composites

    Science.gov (United States)

    Nettles, A. T.; Magold, N. J.

    1991-01-01

    Report describes results of drop-weight impact testing of specimens of carbon-fiber/epoxy and carbon-fiber/polyetheretherketone (PEEK) composite materials. Panels made of these materials assembled into lightweight, strong, stiff structures useful in automobiles, aircraft, sporting goods, and many other products. PEEK specimens showed less delamination than epoxy specimens at given impact energy.

  8. Evaluation of contact resistance between carbon fiber/epoxy composite laminate and printed silver electrode for damage monitoring

    International Nuclear Information System (INIS)

    Jeon, Eun Beom; Kim, Hak Sung; Takahashi, Kosuke

    2014-01-01

    An addressable conducting network (ACN) makes it possible to monitor the condition of a structure using the electrical resistance between electrodes on the surface of a carbon fiber reinforced plastics (CFRP) structure. To improve the damage detection reliability of the ACN, the contact resistances between the electrodes and CFRP laminates needs to be minimized. In this study, silver nanoparticle electrodes were fabricated via printed electronics techniques on a CFRP composite. The contact resistance between the silver electrodes and CFRP were measured with respect to various fabrication conditions such as the sintering temperature of the silver nano-ink and the surface roughness of the CFRP laminates. The interfaces between the silver electrode and carbon fibers were observed using a scanning electron microscope (SEM). Based on this study, it was found that the lowest contact resistance of 0.3664Ω could be achieved when the sintering temperature of the silver nano-ink and surface roughness were 120 degree C and 0.230 a, respectively.

  9. Hansen solubility parameters for a carbon fiber/epoxy composite

    DEFF Research Database (Denmark)

    Launay, Helene; Hansen, Charles M.; Almdal, Kristoffer

    2007-01-01

    In this study, the physical affinity between an epoxy matrix and oxidized, unsized carbon fibers has been evaluated using Hansen solubility (cohesion) parameters (HSP). A strong physical compatibility has been shown, since their respective HSP are close. The use of a glassy carbon substrate...... as a model for unsized carbon fiber has been demonstrated as appropriate for the study of interactions between the materials in composite carbon fiber-epoxy systems. The HSP of glassy carbon are similar to those of carbon fibers and epoxy matrix. (C) 2007 Elsevier Ltd. All rights reserved....

  10. Standard test method for translaminar fracture toughness of laminated and pultruded polymer matrix composite materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers the determination of translaminar fracture toughness, KTL, for laminated and pultruded polymer matrix composite materials of various ply orientations using test results from monotonically loaded notched specimens. 1.2 This test method is applicable to room temperature laboratory air environments. 1.3 Composite materials that can be tested by this test method are not limited by thickness or by type of polymer matrix or fiber, provided that the specimen sizes and the test results meet the requirements of this test method. This test method was developed primarily from test results of various carbon fiber – epoxy matrix laminates and from additional results of glass fiber – epoxy matrix, glass fiber-polyester matrix pultrusions and carbon fiber – bismaleimide matrix laminates (1-4, 6, 7). 1.4 A range of eccentrically loaded, single-edge-notch tension, ESE(T), specimen sizes with proportional planar dimensions is provided, but planar size may be variable and adjusted, with asso...

  11. Low Cost, Lightweight Gravity Coring and Improved Epoxy Impregnation Applied to Laminated Maar Sediment in Vietnam

    Directory of Open Access Journals (Sweden)

    Jan P. Schimmelmann

    2018-05-01

    Full Text Available In response to the need for lightweight and affordable sediment coring and high-resolution structural documentation of unconsolidated sediment, we developed economical and fast methods for (i recovering short sediment cores with undisturbed topmost sediment, without the need for a firmly anchored coring platform, and (ii rapid epoxy-impregnation of crayon-shaped subcores in preparation for thin-sectioning, with minimal use of solvents and epoxy resin. The ‘Autonomous Gravity Corer’ (AGC can be carried to remote locations and deployed from an inflatable or makeshift raft. Its utility was tested on modern unconsolidated lacustrine sediment from a ~21 m deep maar lake in Vietnam’s Central Highlands near Pleiku. The sedimentary fabric fidelity of the epoxy-impregnation method was demonstrated for finely laminated artificial flume sediment. Our affordable AGC is attractive not only for work in developing countries, but lends itself broadly for coring in remote regions where challenging logistics prevent the use of heavy coring equipment. The improved epoxy-impregnation technique saves effort and costly chemical reagents, while at the same time preserving the texture of the sediment.

  12. Curing of Thick Thermoset Composite Laminates: Multiphysics Modeling and Experiments

    Science.gov (United States)

    Anandan, S.; Dhaliwal, G. S.; Huo, Z.; Chandrashekhara, K.; Apetre, N.; Iyyer, N.

    2017-11-01

    Fiber reinforced polymer composites are used in high-performance aerospace applications as they are resistant to fatigue, corrosion free and possess high specific strength. The mechanical properties of these composite components depend on the degree of cure and residual stresses developed during the curing process. While these parameters are difficult to determine experimentally in large and complex parts, they can be simulated using numerical models in a cost-effective manner. These simulations can be used to develop cure cycles and change processing parameters to obtain high-quality parts. In the current work, a numerical model was built in Comsol MultiPhysics to simulate the cure behavior of a carbon/epoxy prepreg system (IM7/Cycom 5320-1). A thermal spike was observed in thick laminates when the recommended cure cycle was used. The cure cycle was modified to reduce the thermal spike and maintain the degree of cure at the laminate center. A parametric study was performed to evaluate the effect of air flow in the oven, post cure cycles and cure temperatures on the thermal spike and the resultant degree of cure in the laminate.

  13. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers

    International Nuclear Information System (INIS)

    Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S.

    2014-01-01

    Highlights: • Multiscale composite was prepared by incorporation of carbon nanotubes and fibers. • Carbon nanotubes were also grown on short carbon fibers to enhance stress transfer. • Significant improvements were achieved in mechanical properties of composites. • Synergic effect of carbon nanotubes and fibers was demonstrated. - Abstract: Carbon nanotubes (CNT) and short carbon fibers were incorporated into an epoxy matrix to fabricate a high performance multiscale composite. To improve the stress transfer between epoxy and carbon fibers, CNT were also grown on fibers through chemical vapor deposition (CVD) method to produce CNT grown short carbon fibers (CSCF). Mechanical characterization of composites was performed to investigate the synergy effects of CNT and CSCF in the epoxy matrix. The multiscale composites revealed significant improvement in elastic and storage modulus, strength as well as impact resistance in comparison to CNT–epoxy or CSCF–epoxy composites. An optimum content of CNT was found which provided the maximum stiffness and strength. The synergic reinforcing effects of combined fillers were analyzed on the fracture surface of composites through optical and scanning electron microscopy (SEM)

  14. Design of carbon nanofiber embedded conducting epoxy resin

    International Nuclear Information System (INIS)

    Gantayat, Subhra; Sarkar, Niladri; Rout, Dibyaranjan; Swain, Sarat K.

    2017-01-01

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  15. Design of carbon nanofiber embedded conducting epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Gantayat, Subhra [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Sarkar, Niladri [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); Rout, Dibyaranjan [School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Swain, Sarat K., E-mail: swainsk2@yahoo.co.in [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India)

    2017-01-15

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  16. Modification of the Interfacial Interaction between Carbon Fiber and Epoxy with Carbon Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Kejing Yu

    2016-05-01

    Full Text Available The mechanical properties of the hybrid materials and epoxy and carbon fiber (CF composites were improved significantly as compared to the CF composites made from unmodified epoxy. The reasons could be attributed to the strong interfacial interaction between the CF and the epoxy composites for the existence of carbon nanomaterials. The microstructure and dispersion of carbon nanomaterials were characterized by transmission electron microscopy (TEM and optical microscopy (OM. The results showed that the dispersion of the hybrid materials in the polymer was superior to other carbon nanomaterials. The high viscosity and shear stress characterized by a rheometer and the high interfacial friction and damping behavior characterized by dynamic mechanical analysis (DMA indicated that the strong interfacial interaction was greatly improved between fibers and epoxy composites. Remarkably, the tensile tests presented that the CF composites with hybrid materials and epoxy composites have a better reinforcing and toughening effect on CF, which further verified the strong interfacial interaction between epoxy and CF for special structural hybrid materials.

  17. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    Science.gov (United States)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra

  18. Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission

    International Nuclear Information System (INIS)

    Park, Joung Man; Jang, Jung Hoon; Wang, Zuo Jia; Kwon, Dong Jun; Park, Jong Kyu; Lee, Woo Il

    2010-01-01

    Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT-epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to microfailure at the interfaces by added CNTs

  19. The effect of bulk-resin CNT-enrichment on damage and plasticity in shear-loaded laminated composites

    KAUST Repository

    Ventura, Isaac Aguilar; Lubineau, Gilles

    2013-01-01

    One way to improve multi functionality of epoxy-based laminated composites is to dope the resin with carbon nanotubes. Many investigators have focused on the elastic and fracture behavior of such nano-modified polymers under tensile loading. Yet

  20. Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase

    Directory of Open Access Journals (Sweden)

    B. E. B. Uribe

    2017-01-01

    Full Text Available In this paper, a cost-effective and eco-friendly method to improve mechanical performance in continuous carbon fiber-reinforced polymer (CFRP matrix composites is presented. Unsized fiber fabric preforms are coated with self-assembling sugarcane bagasse microfibrillated cellulose, and undergo vacuum-assisted liquid epoxy resin infusion to produce solid laminates after curing at ambient temperature. Quasi-static tensile, flexural and short beam testing at room temperature indicated that the stiffness, ultimate strength and toughness at ultimate load of the brand-new two-level hierarchical composite are substantially higher than in baseline, unsized fiber-reinforced epoxy laminate. Atomic force microscopy for height and phase imaging, along with scanning electron microscopy for the fracture surface survey, revealed a 400 nm-thick fiber/matrix interphase wherein microfibrillated cellulose exerts strengthening and toughening roles in the hybrid laminate. Market expansion of this class of continuous fiber-reinforced-polymer matrix composites exhibiting remarkable mechanical performance/cost ratios is thus conceivable.

  1. Experimental Assessment of Tensile Failure Characteristic for Advanced Composite Laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2017-10-15

    In recent years, major airplane manufacturers have been using the laminate failure theory to estimate the strain of composite structures for airplanes. The laminate failure theory uses the failure strain of the laminate to analyze composite structures. This paper describes a procedure for the experimental assessment of laminate tensile failure characteristics. Regression analysis was used as the experimental assessment method. The regression analysis was performed with the response variable being the laminate failure strain and with the regressor variables being two-ply orientation (0° and ±45°) variables. The composite material in this study is a carbon/epoxy unidirectional (UD) tape that was cured as a pre-preg at 177°C(350°F). A total of 149 tension tests were conducted on specimens from 14 distinct laminates that were laid up at standard angle layers (0°, 45°, -45°, and 90°). The ASTM-D-3039 standard was used as the test method.

  2. Experimental Assessment of Tensile Failure Characteristic for Advanced Composite Laminates

    International Nuclear Information System (INIS)

    Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

    2017-01-01

    In recent years, major airplane manufacturers have been using the laminate failure theory to estimate the strain of composite structures for airplanes. The laminate failure theory uses the failure strain of the laminate to analyze composite structures. This paper describes a procedure for the experimental assessment of laminate tensile failure characteristics. Regression analysis was used as the experimental assessment method. The regression analysis was performed with the response variable being the laminate failure strain and with the regressor variables being two-ply orientation (0° and ±45°) variables. The composite material in this study is a carbon/epoxy unidirectional (UD) tape that was cured as a pre-preg at 177°C(350°F). A total of 149 tension tests were conducted on specimens from 14 distinct laminates that were laid up at standard angle layers (0°, 45°, -45°, and 90°). The ASTM-D-3039 standard was used as the test method.

  3. An experimental investigation of the effect of shear-induced diffuse damage on transverse cracking in carbon-fiber reinforced laminates

    KAUST Repository

    Nouri, Hedi

    2013-12-01

    When subjected to in-plane loading, carbon-fiber laminates experience diffuse damage and transverse cracking, two major mechanisms of degradation. Here, we investigate the effect of pre-existing diffuse damage on the evolution of transverse cracking. We shear-loaded carbon fiber-epoxy pre-preg samples at various load levels to generate controlled configurations of diffuse damage. We then transversely loaded these samples while monitoring the multiplication of cracking by X-ray radiography. We found that diffuse damage has a great effect on the transverse cracking process. We derived a modified effective transverse cracking toughness measure, which enabled a better definition of coupled transverse cracking/diffuse damage in advanced computational models for damage prediction. © 2013 Elsevier Ltd.

  4. Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Fawad Inam

    2010-01-01

    Full Text Available Amino-modified double wall carbon nanotube (DWCNT-NH2/carbon fiber (CF/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt% to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.

  5. Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs

    Science.gov (United States)

    横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二

    Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.

  6. A study of graphite-epoxy laminate failures due to high transverse shear strains using the multi-span-beam shear test procedure

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    The multi-span-beam shear test procedure is used to study failure mechanisms in graphite-epoxy laminates due to high transverse shear strains induced by severe local bending deformations in test specimens. Results of a series of tests on specimens with a variety of stacking sequences, including some with adhesive interleaving, are presented. These results indicate that laminates with stacking sequences with several + or - 45 and 90 deg plies next to each other are more susceptible to failures due to high transverse shear strains than laminates with + or - 45 and 0 deg plies next to each other or with + or - 45 deg plies next to layers of adhesive interleaving. Results of these tests are compared with analytical results based on finite elements.

  7. A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2017-06-01

    Full Text Available A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.

  8. Low temperature measurement of thermal and mechanical properties of phenolic laminate, the pultruded polyester fiberglass and A and B epoxy putty

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Kim, N.S.; Cheng, R.S.; Hoffman, J.; Gonczy, J.

    1979-01-01

    Low temperature measurements were made and are reported of thermal and mechanical properties of phenolic laminate, pultruded polyester fiberglass, and A and B epoxy putty. To determine the modulus, compressive and tensile stress and strain, an Instron machine, a Tinus-Olsen testing machine, a Wheatstone bridge and strain gages were used

  9. Experimental Study and Numerical Modelling of Low Velocity Impact on Laminated Composite Reinforced with Thin Film Made of Carbon Nanotubes

    Science.gov (United States)

    El Moumen, A.; Tarfaoui, M.; Hassoon, O.; Lafdi, K.; Benyahia, H.; Nachtane, M.

    2018-04-01

    In this work, polymer laminated composites based on Epon 862 Epoxy resin, T300 6 k carbon fibers and carbon nanotubes (CNTs) were tested with the aim to elucidate the effect of CNTs on impact properties including impact force and capacity to absorb impact energy. The polymer matrix was reinforced by a random distribution of CNTs with fraction ranging from 0.5 to 4.wt%. Composite panels were manufactured by using the infusion process. Taylor impact test was used to obtain the impact response of specimens. Projectile manufactured from a high strength and hardened steel with a diameter of 20 mm and 1.5 kg of mass was launched by a compressed gas gun within the velocity of 3 m/s. Impact force histories and absorbed energy of specimens were recorded. A numerical model was employed to simulate the impact performance. This model has been accomplished by forming a user established subroutine (VUMAT) and executing it in ABAQUS software. Finally, the effect of CNTs amount on dynamic properties of laminated composites was discussed.

  10. Structural and electrical properties of functionalized multiwalled carbon nanotube/epoxy composite

    International Nuclear Information System (INIS)

    Gantayat, S.; Rout, D.; Swain, S. K.

    2016-01-01

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increased with increasing concentration of f-MWCNTs.

  11. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Hsieh, T.-H.; Tai, N.-H.

    2008-01-01

    Carbon nanotubes have better physical and mechanical behavior than the traditional materials. In this study, the multi-walled carbon nanotubes (MWNTs) were added to the epoxy resin as a reinforcement to fabricate MWNTs/epoxy nanocomposites. The pressure and temperature were applied to cure the MWNTs/epoxy compound by hot press method. Mechanical properties such as tensile strength, Young's modulus, and Poisson's ratio were measured. The effect of weight percentages of the MWNTs was investigated. Morphologies of the fracture surface of MWNTs/epoxy nanocomposites were observed by scanning electron microscope

  12. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mubin, Muhammad Shamsul Huda

    2007-02-15

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration.

  13. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    International Nuclear Information System (INIS)

    Mubin, Muhammad Shamsul Huda

    2007-02-01

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration

  14. Parametric study on patch repaired CFRP laminates using FEA

    Energy Technology Data Exchange (ETDEWEB)

    Kashfuddoja, M.; Ramji, M. [Indian Institute of Technology. Engineering Optics Lab. Dept. of Mechanical Engineering, Hyderabad (India)

    2012-07-01

    Carbon fibre reinforced plastic (CFRP) composite laminates have become popular for structural applications as they are lighter, stronger and tougher. Composite structures are also susceptible to damage while in service. For improved service life, the damage needs to be repaired so that repair structure integrity is enhanced. Various parameters like patch size and shape, it's layup sequence and adhesive thickness would influence the performance of the repaired structure. In present work, a parametric study is carried out using finite element analysis (FEA) to investigate the influence of various parameters involved in composite repair. The panel is made of carbon / epoxy composite laminate with stacking sequence of (0/{+-}45/900)s and is subjected to tensile load. Damaged CFRP laminates is repaired by symmetrical patch adhesively bonded over the damaged area. Circular patch of different stacking sequence and size is considered. Influence of adhesive material and it's thickness on repair efficiency is also investigated. The influence of various repair parameters on peel stress is also analysed. (Author)

  15. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite

    International Nuclear Information System (INIS)

    Shirkavand Hadavand, Behzad; Mahdavi Javid, Kimya; Gharagozlou, Mehrnaz

    2013-01-01

    Highlights: ► Preparation of epoxy polysulfide nanocomposite. ► Multi-walled carbon nanotubes have been modified and dispersed in epoxy polysulfide matrix. ► Mechanical properties of MWNT/epoxy polysulfide have been studied. - Abstract: In this research, multi-walled carbon nanotubes (MWCNTs) were modified by acid functionalization (H 2 SO 4 :HNO 3 = 1:3 by volume) and then mechanical properties of reinforced epoxy polysulfide resin by the both pure and treated MWNTs have been evaluated. For achieving this goal, different weight percentages of pure and treated MWCNT (0.1–0.3 wt%) were dispersed in the epoxy polysulfide resin separately and then mixed with curing agent. Experimental results have shown significant difference between acid treated and untreated MWCNTs in mechanical properties of epoxy polysulfide nanocomposites. In nanocomposite with 0.1–0.3% acid treated MWCNTs we observed increase of Young’s modulus from 458 to 723 MPa, tensile strength from 5.29 to 8.83 MPa and fracture strain from 0.16% to 0.25%. For understanding the structure and morphology of nanocomposite, the dispersion states were studied using scanning electron microscopy (SEM) and field emission electron microscopy (FESEM). The results showed better dispersion of modified carbon nanotube than unmodified in polymeric matrix

  16. Failure Behaviour of Aluminium/CFRP Laminates with Varying Fibre Orientation in Quasi-static Indentation Test

    Science.gov (United States)

    Romli, N. K.; Rejab, M. R. M.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd; Merzuki, M. N. M.

    2018-03-01

    The response of the aluminium/carbon laminate was examined by an experimental work. The investigation on fibre metal laminate behaviour was done through an indentation test in a quasi-static loading. The hybrid laminate was fabricated by a compression moulding technique and used two types of carbon fibre orientations; plain weave and unidirectional. The plain weave orientation is dry fibre, and unidirectional orientation is prepreg type fibre. The plain weave carbon fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy while the unidirectional carbon fibre was pressed by using a hot press machine and cured under a specific temperature and pressure. A compression moulding technique was used for the FML fabrication. The aluminium sheet metal has been roughening by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure response of the laminate under five variation of the crosshead speeds in the quasi-static loading. Based on the experimental data of the test, the result of 1 mm/min in the plain weave CFRP has lower loading than unidirectional fibre which the value of both was 4.11 kN and 4.69 kN, respectively.

  17. Modeling and mechanical performance of carbon nanotube/epoxy resin composites

    International Nuclear Information System (INIS)

    Srivastava, Vijay Kumar

    2012-01-01

    Highlights: ► The MWCNT fillers are uniformly dispersed in the epoxy resin, which improved the mechanical properties of epoxy resin. ► Modified Halpin–Tsai model is useful to calculate the Young’s modulus of MWCNT/epoxy resin composite. ► The experimental moduli are within the variation of 27% with the theoretical values. -- Abstract: The effect of multi-walled carbon nanotube (MWCNT) addition on mechanical properties of epoxy resin was investigated to obtain the tensile strength, compressive strength and Young’s modulus from load versus displacement graphs. The result shows that the tensile strength, compressive strength and Young’s modulus of epoxy resin were increased with the addition of MWCNT fillers. The significant improvements in tensile strength, compressive strength and Young’s modulus were obtained due to the excellent dispersion of MWCNT fillers in the epoxy resin. The dispersion of MWCNT fillers in epoxy resin was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Also, Halpin–Tsai model was modified by considering the average diameter of internal/external of multi-walled nanotube and orientation factor (α) to calculate the Young’s modulus of multi-walled carbon nanotubes (MWCNTs)/epoxy resin composite. There was a good correlation between the experimentally obtained Young’s modulus and modified Halpin–Tsai model.

  18. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    An, Feng; Lu, Chunxiang; Li, Yonghong; Guo, Jinhai; Lu, Xiaoxuan; Lu, Huibin; He, Shuqing; Yang, Yu

    2012-01-01

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m 2 /g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  19. Simulation of delamination crack growth in composite laminates: application of local and non-local interface damage models

    International Nuclear Information System (INIS)

    Ijaz, H.; Asad, M.

    2015-01-01

    The use of composite laminates is increasing in these days due to higher strength and low density values in comparison of metals. Delamination is a major source of failure in composite laminates. Damage mechanics based theories are employed to simulate the delamination phenomena between composite laminates. These damage models are inherently local and can cause the concentration of stresses around the crack tip. In the present study integral type non-local damage formulation is proposed to avoid the localization problem associated to damage formulation. A comprehensive study is carried out for the models and classical local damage model are performed and results are compared with available experimental data for un IMS/924 Carbon/fiber epoxy composite laminate. (author)

  20. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  1. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    Science.gov (United States)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  2. Assessment of various failure theories for weight and cost optimized laminated composites using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, T. [Indian Institute of Technology Kanpur. Dept. of Aerospace Engineering, UP (India); Gupta, R. [Infotech Enterprises Ltd., Hyderabad (India)

    2012-07-01

    In this work, minimum weight-cost design for laminated composites is presented. A genetic algorithm has been developed for the optimization process. Maximum-Stress, Tsai-Wu and Tsai-Hill failure criteria have been used along with buckling analysis parameter for the margin of safety calculations. The design variables include three materials; namely Carbon-Epoxy, Glass-Epoxy, Kevlar-Epoxy; number of plies; ply orientation angles, varying from -75 deg. to 90 deg. in the intervals of 15 deg. and ply thicknesses which depend on the material in use. The total cost is a sum of material cost and layup cost. Layup cost is a function of the ply angle. Validation studies for solution convergence and weight-cost inverse proportionality are carried out. One set of results for shear loading are also validated from literature for a particular case. A Pareto-Optimal solution set is demonstrated for biaxial loading conditions. It is then extended to applied moments. It is found that global optimum for a given loading condition is a function of the failure criteria for shear loading, with Maximum Stress criteria giving the lightest-cheapest and Tsai-Wu criteria giving the heaviest-costliest optimized laminates. Optimized weight results are plotted from the three criteria to do a comparative study. This work gives a global optimized laminated composite and also a set of other local optimum laminates for a given set of loading conditions. The current algorithm also provides with adequate data to supplement the use of different failure criteria for varying loadings. This work can find use in the industry and/or academia considering the increased use of laminated composites in modern wind blades. (Author)

  3. Fatigue of graphite/epoxy /0/90/45/-45/s laminates under dual stress levels

    Science.gov (United States)

    Yang, J. N.; Jones, D. L.

    1982-01-01

    A model for the prediction of loading sequence effects on the statistical distribution of fatigue life and residual strength in composite materials is generalized and applied to (0/90/45/-45)s graphite/epoxy laminates. Load sequence effects are found to be caused by both the difference in residual strength when failure occurs (boundary effect) and the effect of previously applied loads (memory effect). The model allows the isolation of these two effects, and the estimation of memory effect magnitudes under dual fatigue loading levels. It is shown that the material memory effect is insignificant, and that correlations between predictions of the number of early failures agree with the verification tests, as do predictions of fatigue life and residual strength degradation under dual stress levels.

  4. Tensile testing and damage analysis of woven glass-cloth/epoxy laminates at low temperature

    International Nuclear Information System (INIS)

    Kumagai, S.; Shindo, Y.; Horiguchi, K.

    2002-01-01

    In order to evaluate the tensile properties of SL-ES30 glass-cloth/epoxy laminates for superconducting magnets in fusion energy systems, tensile tests were examined both experimentally and analytically. The tensile tests were conducted in accordance with JIS K 7054 at room temperature and liquid nitrogen temperature (77 K). The general specimen geometry was a rectangular dog-bone shape with constant gage length, but with each specimen size having a different specimen width. The experimental finding provides the data for analytical modeling. The model utilizes two damage variables which are determined from experimental data. A finite element method coupled with damage was adopted for the extensional analysis. The effects of temperature, specimen geometry and gripping method on the tensile properties are examined

  5. Fabrication of CFRP/Al Active Laminates

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka

    This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.

  6. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-10-15

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  7. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    International Nuclear Information System (INIS)

    Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

    2016-01-01

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  8. Mechanical Reinforcement of Epoxy Composites with Carbon Fibers and HDPE

    Science.gov (United States)

    He, R.; Chang, Q.; Huang, X.; Li, J.

    2018-01-01

    Silanized carbon fibers (CFs) and a high-density polyethylene with amino terminal groups (HDPE) were introduced into epoxy resins to fabricate high-performance composites. A. mechanical characterization of the composites was performed to investigate the effect of CFs in cured epoxy/HDPE systems. The composites revealed a noticeable improvement in the tensile strength, elongation at break, flexural strength, and impact strength in comparison with those of neat epoxy and cured epoxy/HDPE systems. SEM micrographs showed that the toughening effect could be explained by yield deformations, phase separation, and microcracking.

  9. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Shi Fenghui; Zhang Baoyan; Li Min; Zhang Zuoguang

    2011-01-01

    This paper aims to study effect of sizing on surface properties of carbon fiber and the fiber/epoxy interfacial adhesion by comparing sized and desized T300B and T700SC carbon fibers. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the desized carbon fibers present less concentration of activated carbon, especially those connect with the hydroxyl and epoxy groups. Inverse gas chromatography (IGC) analysis reveals that the desized carbon fibers have larger dispersive surface energy γ S D and smaller polar component γ S SP than the commercial sized ones. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the desized carbon fiber/epoxy is higher than those of the T300B and T700SC. Variations of the IFSS for both the sized and desized carbon fibers correspond to γ S D /γ S tendency of the fiber surface, however the work of adhesion does not reveal close correlation with IFSS trend for different fiber/epoxy systems.

  10. A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite Laminate

    Science.gov (United States)

    Karnati, Sidharth Reddy

    A majority of aerospace structures are subjected to bending and stretching loads that introduce peel and shear stresses between the plies of a composite laminate. These two stress components cause a combination of mode I and II fracture modes in the matrix layer of the composite laminate. The most common failure mode in laminated composites is delamination that affects the structural integrity of composite structures. Damage tolerant designs of structures require two types of materials data: mixed-mode (I-II) delamination fracture toughness that predicts failure and delamination growth rate that predicts the life of the structural component. This research focuses determining mixed-mode (I-II) fracture toughness under a combination of mode I and mode II stress states and then a fracture criterion for AS4/8552 composite laminate, which is widely used in general aviation. The AS4/8552 prepreg was supplied by Hexcel Corporation and autoclave fabricated into a 20-ply unidirectional laminate with an artificial delamination by a Fluorinated Ethylene Propylene (FEP) film at the mid-plane. Standard split beam specimens were prepared and tested in double cantilever beam (DCB) and end notched flexure modes to determine mode I (GIC) and II (GIIC) fracture toughnesses, respectively. The DCB specimens were also tested in a modified mixed-mode bending apparatus at GIIm /GT ratios of 0.18, 0.37, 0.57 and 0.78, where GT is total and GIIm is the mode II component of energy release rates. The measured fracture toughness, GC, was found to follow the locus a power law equation. The equation was validated for the present and literature experimental data.

  11. Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas A.

    Epoxy-composites are widely used in the aerospace industry. In order to improve upon stiffness and thermal conductivity; carbon nanotube additives to epoxies are being explored. This dissertation presents multiscale modeling techniques to study the engineering properties of single walled carbon nanotube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently functionalized systems. Using Molecular Dynamics (MD), thermomechanical properties were calculated for a representative polymer unit cell. Finite Element (FE) and orientation distribution function (ODF) based methods were used in a multiscale framework to obtain macroscale properties. An epoxy network was built using the dendrimer growth approach. The epoxy model was verified by matching the experimental glass transition temperature, density, and dilatation. MD, via the constant valence force field (CVFF), was used to explore the mechanical and dilatometric effects of adding pristine and functionalized SWNTs to epoxy. Full stiffness matrices and linear coefficient of thermal expansion vectors were obtained. The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for the various nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. To obtain continuum-scale elastic properties from the MD data, multiscale modeling was considered to give better control over the volume fraction of nanotubes, and investigate the effects of nanotube alignment. Two methods were considered; an FE based method, and an ODF based method. The FE method probabilistically assigned elastic properties of elements from the MD lattice results based on the desired volume fraction and alignment of the nanotubes. For the ODF method, a distribution function was generated based on the desired amount of nanotube alignment

  12. Mechanical properties and environmental effects of epoxy resins in the neat state and in composites

    International Nuclear Information System (INIS)

    Yang, C.M.P.

    1984-01-01

    The dynamic mechanical properties of graphite fiber reinforced, epoxy matrix composite laminates subjected to loading perpendicular to the plane of lamination and of neat epoxy resin are reported. The centrosymmetric deformation (CSD) test geometry provides an accurate and convenient test mode for the study of the viscoelastic behavior of very stiff graphite-epoxy laminates. It is found that the in-phase and out-of-phase stiffness superpose to form master curves covering a frequency range of 12 decades. By a suitable scaling procedure of the master curves, it is found that the in-phase stiffness has the same shape and the out-of-phase has the same dispersion for all laminates irrespective of the stacking sequence. The dispersion characteristics of in-situ and neat resin epoxy were nearly identical, but with the neat resin having a lower glass-transition temperature. The graphite/epoxy composites and neat resin epoxy have been shown to be sensitive to hygrothermal environment. For postcured specimens the plasticization and inhomogeneous swelling effects due to the moisture absorbed are found to be reversible, in the sense that the initially dry properties of the laminate are recovered after redrying the wet specimen. On the other hand, for as cured specimens, the plasticization and inhomogeneous swelling effects are found to be irreversible under the same hygrothermal environment

  13. Enhanced microwave shielding and mechanical properties of high loading MWCNT–epoxy composites

    International Nuclear Information System (INIS)

    Singh, B. P.; Prasanta; Choudhary, Veena; Saini, Parveen; Pande, Shailaja; Singh, V. N.; Mathur, R. B.

    2013-01-01

    Dispersion of high loading of carbon nanotubes (CNTs) in epoxy resin is a challenging task for the development of efficient and thin electromagnetic interference (EMI) shielding materials. Up to 20 wt% of multiwalled carbon nanotubes (MWCNTs) loading in the composite was achieved by forming CNT prepreg in the epoxy resin as a first step. These prepreg laminates were then compression molded to form composites which resulted in EMI shielding effectiveness of −19 dB for 0.35 mm thick film and −60 dB at for 1.75 mm thick composites in the X-band (8.2–12.4 GHz). One of the reasons for such high shielding is attributed to the high electrical conductivity of the order of 9 S cm −1 achieved in these composites which is at least an order of magnitude higher than previously reported results at this loading. In addition, an improvement of 40 % in the tensile strength over the neat resin value is observed. Thermal conductivity of the MWCNTs–epoxy composite reached 2.18 W/mK as compared to only 0.14 W/mK for cured epoxy.

  14. Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites

    Science.gov (United States)

    Singh, B. P.; Prasanta; Choudhary, Veena; Saini, Parveen; Pande, Shailaja; Singh, V. N.; Mathur, R. B.

    2013-04-01

    Dispersion of high loading of carbon nanotubes (CNTs) in epoxy resin is a challenging task for the development of efficient and thin electromagnetic interference (EMI) shielding materials. Up to 20 wt% of multiwalled carbon nanotubes (MWCNTs) loading in the composite was achieved by forming CNT prepreg in the epoxy resin as a first step. These prepreg laminates were then compression molded to form composites which resulted in EMI shielding effectiveness of -19 dB for 0.35 mm thick film and -60 dB at for 1.75 mm thick composites in the X-band (8.2-12.4 GHz). One of the reasons for such high shielding is attributed to the high electrical conductivity of the order of 9 S cm-1 achieved in these composites which is at least an order of magnitude higher than previously reported results at this loading. In addition, an improvement of 40 % in the tensile strength over the neat resin value is observed. Thermal conductivity of the MWCNTs-epoxy composite reached 2.18 W/mK as compared to only 0.14 W/mK for cured epoxy.

  15. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shen

    2013-01-01

    Full Text Available Graphene nanoplatelets (GNPs are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of GNPs/epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The fatigue life of epoxy/carbon fiber composite laminate with GPs-added 0.25 wt% was increased over that of neat laminates at all levels of cyclic stress. Consequently, significant improvement in the mechanical properties of ultimate tensile strength, flexure, and fatigue life was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.

  16. Effect of resin system on the mechanical properties and water absorption of kenaf fibre reinforced laminates

    International Nuclear Information System (INIS)

    Rassmann, S.; Paskaramoorthy, R.; Reid, R.G.

    2011-01-01

    The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.

  17. Mechanical performance of laminated composites incorporated with nanofibrous membranes

    International Nuclear Information System (INIS)

    Liu, L.; Huang, Z.-M.; He, C.L.; Han, X.J.

    2006-01-01

    The effect of non-woven nanofibrous membranes as interlaminar interfaces on the mechanical performance of laminated composites was investigated experimentally. The nanofibrous membranes are porous, thin and lightweight, and exhibit toughness and strength to some extent. They give little increase in weight and thickness when incorporated into a laminate. More important, they can be used as a functional agent carrier for the laminate. The nanofiber membranes used in this paper were prepared by electrospinning of Nylon-6 (PA6), Epoxy 609 (EPO 1691-410) and thermoplastic polyurethane (TPU), with a thickness ranging from 20 to 150 μm. The non-woven fabrics were attached to one side of a glass/epoxy fabric lamina prior to lamination and each fabric was arranged in between two adjacent plies of the laminate. The nanofibrous membranes were characterized through scanning electron microscopy (SEM) and tensile testing, whereas the mechanical properties of the laminate were understood in terms of three-point bending and short-beam shear tests. Results have shown that the nanofibrous membranes in the ply interfaces with a proper thickness did not affect the mechanical performance of the composite laminates significantly

  18. Determination of mechanical properties of carbon/epoxy plates by tensile stress test

    Science.gov (United States)

    Bere, Paul; Krolczyk, Jolanta B.

    2017-10-01

    The polymeric composite materials used in aerospace, military, medical or racing cars manufacturing end up being used in our daily life Whether we refer to the performing vehicles, subassemblies or parts for aircrafts, wind, telegraph poles, or medical prostheses they all are present in our lives and they are made of composite materials (CM). This paper presents research regarding three different composite materials, plates by carbon fiber, in epoxy matrix. Starting with materials presentation, manufacturing methodology and determination of mechanical properties at carbon fiber/epoxy were done. Vacuum bag technology to obtain the composite structure offer opportunity to get a very compact and homogeny composite structure. For the moment this technology are adequate for high performances pieces. The mechanical characteristics of plates made of composite materials reinforced presented indicates closed value like metal materials. Based on the results, a comparative study between the reinforced materials typically used to manufacture the plates of CM is carried out.

  19. Nano-engineered composites: interlayer carbon nanotubes effect

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Glaucio, E-mail: carleyone@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Geraldo, Viviany; Oliveira, Sergio de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Avila, Antonio Ferreira [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica

    2013-11-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with Almost-Equal-To 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  20. Nano-engineered composites: interlayer carbon nanotubes effect

    International Nuclear Information System (INIS)

    Carley, Glaucio; Geraldo, Viviany; Oliveira, Sergio de; Avila, Antonio Ferreira

    2013-01-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with ≈ 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  1. Using lamb waves tomonitor moisture absorption thermally fatigues composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sun; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-06-15

    Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

  2. Plasma Treated Multi-Walled Carbon Nanotubes (MWCNTs for Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Jie Lian

    2011-12-01

    Full Text Available Plasma nanocoating of allylamine were deposited on the surfaces of multi-walled carbon nanotubes (MWCNTs to provide desirable functionalities and thus to tailor the surface characteristics of MWCNTs for improved dispersion and interfacial adhesion in epoxy matrices. Plasma nanocoated MWCNTs were characterized using scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HR-TEM, surface contact angle, and pH change measurements. Mechanical testing results showed that epoxy reinforced with 1.0 wt % plasma coated MWCNTs increased the tensile strength by 54% as compared with the pure epoxy control, while epoxy reinforced with untreated MWCNTs have lower tensile strength than the pure epoxy control. Optical and electron microscopic images show enhanced dispersion of plasma coated MWCNTs in epoxy compared to untreated MWCNTs. Plasma nanocoatings from allylamine on MWCNTs could significantly enhance their dispersion and interfacial adhesion in epoxy matrices. Simulation results based on the shear-lag model derived from micromechanics also confirmed that plasma nanocoating on MWCNTs significantly improved the epoxy/fillers interface bonding and as a result the increased composite strength.

  3. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    Science.gov (United States)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  4. Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: Chemorheology and properties

    Directory of Open Access Journals (Sweden)

    H. Maka

    2014-10-01

    Full Text Available Epoxy nanocomposites with commercial carbon nanotubes (CNT or graphene (GN have been prepared using phosphonium ionic liquid [trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl phosphinate, IL-f]. IL-f served simultaneously as nanofiller dispersing medium and epoxy resin catalytic curing agent. An influence of IL-f/epoxy weight ratio (3, 6 and 9/100, phr, carbon nanofiller type and content on viscosity of epoxy compositions during storage at ambient temperature was evaluated. Curing process was controlled for neat and CNT or GN modified epoxy compositions (0.25-1.0 wt.% load using differential scanning calorimetry and rheometry. Epoxy nanocomposites exhibited slightly increased glass transition temperature values (146 to 149°C whereas tan δ and storage modulus decreased (0.30 to 0.27 and 2087 to 1070 MPa, respectively as compared to reference material. Crosslink density regularly decreased for composites with increasing CNT content (11 094 to 7 020 mol/m3. Electrical volume resistivity of the nanocomposites was improved in case of CNT to 4•101 Ω•m and GN to 2•105 Ω•m (nanofiller content 1 wt.%. Flame retardancy was found for modified epoxy materials with as low GN and phosphorus content as 0.25 and 0.7 wt.%, respectively (increase of limiting oxygen index to 26.5%.

  5. Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties

    International Nuclear Information System (INIS)

    Abdul Khalil, H.P.S.; Firoozian, P.; Bakare, I.O.; Akil, Hazizan Md.; Noor, Ahmad Md.

    2010-01-01

    Carbon blacks (CB), derived from bamboo stem (BS-CB), coconut shells (CNS-CB) and oil palm empty fiber bunch (EFB-CB), were obtained by pyrolysis of fibers at 700 o C, characterized and used as filler in epoxy composites. The results obtained showed that the prepared carbon black possessed well-developed porosities and are predominantly made up of micropores. The BS-CB, CNS-CB and EFB-CB filled composites were prepared and characterized using scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). The SEM showed that the fractured surface of the composite indicates its high resistance to fracture. The CBs-epoxy composites exhibited better flexural properties than the neat epoxy, which was attributed to better adhesion between the CBs and the epoxy resin. TGA showed that there was improvement in thermal stability of the carbon black filled composites compared to the neat epoxy resin.

  6. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers

    International Nuclear Information System (INIS)

    Miyagawa, Hiroaki; Rich, Michael J.; Drzal, Lawrence T.

    2006-01-01

    In this study, the thermo-physical properties of epoxy nanocomposites reinforced by fluorinated single wall carbon nanotubes (FSWCNT) and vapor grown carbon fibers (VGCF) were investigated. A sonication technique using a suspension of FSWCNT and VGCF in acetone was utilized to process nanocomposites in anhydride-cured epoxy. The viscoelastic properties of the nanocomposites were measured with dynamic mechanical analysis. The glass transition temperature decreased approximately 30 deg. C with an addition of 0.14 vol.% (0.2 wt.%) FSWCNT. The depression in T g is attributed to non-stoichiometric balance of the epoxy matrix caused by the fluorine on single wall carbon nanotubes. The correct amount of the anhydride curing agent needed to achieve stoichiometry was experimentally determined by DMA measurements. After adjusting the amount of the anhydride curing agent for stoichiometry, the storage modulus of the epoxy at room temperature increased 0.63 GPa with the addition of only 0.21 vol.% (0.30 wt.%) of FSWCNT, a 20% improvement compared with the anhydride-cured neat epoxy. For VGCF, the storage modulus at room temperature increased 0.48 GPa with the addition of only 0.94 vol.% (1.5 wt.%) and then reached a plateau for larger amounts of VGCF. To understand the influence of VGCF on thermo-physical properties, the microstructure of the nanocomposites was interrogated using transmission electron microscopy (TEM). This study discusses the chemical effects of fluorine on matrix properties and the effect of stoichiometric balance on the thermo-physical properties of nanocomposites

  7. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties

    Directory of Open Access Journals (Sweden)

    Andrea Giovannelli

    2017-10-01

    Full Text Available The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young’s modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  8. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties.

    Science.gov (United States)

    Giovannelli, Andrea; Di Maio, Dario; Scarpa, Fabrizio

    2017-10-24

    The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young's modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  9. Conduction noise absorption by fiber-reinforced epoxy composites with carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Ok Hyoung; Kim, Sung-Soo; Lim, Yun-Soo

    2011-01-01

    Nearly all electronic equipment is susceptible to malfunction as a result of electromagnetic interference. In this study, glass fiber, and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave. - Research Highlights: → In this study, glass fiber and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes (CNTs) were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. → In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave.

  10. Epoxy blanket protects milled part during explosive forming

    Science.gov (United States)

    1966-01-01

    Epoxy blanket protects chemically milled or machined sections of large, complex structural parts during explosive forming. The blanket uniformly covers all exposed surfaces and fills any voids to support and protect the entire part.

  11. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  12. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water

    International Nuclear Information System (INIS)

    Bai, Yongping; Wang, Zhi; Feng, Liqun

    2010-01-01

    The carbon fibers in carbon fibers reinforced epoxy resin composites were recovered in oxygen in supercritical water at 30 ± 1 MPa and 440 ± 10 o C. The microstructure of the recovered carbon fibers was observed using scanning electron microscopy (SEM) and atom force microscopy (AFM). The results revealed that the clean carbon fibers were recovered and had higher tensile strength relative to the virgin carbon fibers when the decomposition rate was above 85 wt.%, although the recovered carbon fibers have clean surface, the epoxy resin on the surface of the recovered carbon fibers was readily observed. As the decomposition rate increased to above 96 wt.%, no epoxy resin was observed on the surface of the carbon fibers and the oxidation of the recovered carbon fibers was readily measured by X-ray photoelectron spectroscopy (XPS) analysis. The carbon fibers were ideally recovered and have original strength when the decomposition rates were between 94 and 97 wt.%. This study clearly showed the oxygen in supercritical water is a promising way for recycling the carbon fibers in carbon fibers reinforced resin composites.

  13. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    International Nuclear Information System (INIS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-01-01

    Graphical abstract: - Highlights: • Degradation behavior of modified Carbon Black (CB) epoxy coating was studied under UV irradiation using based on EIS technique. • By using SDS as a surfactant, nano particles of CB were uniformly dispersed in an epoxy matrix. • ATR-FTIR analysis showed that the CB coatings were degraded less than epoxy coating. • EIS results showed the coating with 2.5 wt% CB nanoparticles had higher corrosion resistance than neat epoxy. - Abstract: Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  14. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Kahrizsangi, Ahmad, E-mail: ahmad_usk@yahoo.com [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Shariatpanahi, Homeira, E-mail: shariatpanahih@ripi.ir [Coating Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Neshati, Jaber [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Akbarinezhad, Esmaeil [Coating Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of)

    2015-10-30

    Graphical abstract: - Highlights: • Degradation behavior of modified Carbon Black (CB) epoxy coating was studied under UV irradiation using based on EIS technique. • By using SDS as a surfactant, nano particles of CB were uniformly dispersed in an epoxy matrix. • ATR-FTIR analysis showed that the CB coatings were degraded less than epoxy coating. • EIS results showed the coating with 2.5 wt% CB nanoparticles had higher corrosion resistance than neat epoxy. - Abstract: Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  15. Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling

    Science.gov (United States)

    Jegley, Dawn C.

    2010-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.

  16. Evaluation of ionic liquid epoxy carbon fiber composites in a cryogenic environment

    Science.gov (United States)

    Lyne, Christopher T.; Henry, Christopher R.; Kaukler, William F.; Grugel, R. N.

    2018-03-01

    A novel ionic liquid epoxy (ILE) was used to fabricate carbon fiber composite discs which were then subjected to biaxial strain testing in liquid nitrogen. The ILE composite showed a greater strain-to-failure at cryogenic temperatures when compared to a commercial epoxy. This result is likely an effect, as shown in micrographs, of the strong ILE bonding with the carbon fibers as well as it exhibiting plastic deformation at the fracture surface.

  17. Boron nitride nanoparticle enhanced prepregs: A novel route for manufacturing aerospace structural composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Ajit D., E-mail: kelkar@ncat.edu [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27401 (United States); Tian, Qiong [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27401 (United States); School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Yu, Demei [School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Zhang, Lifeng, E-mail: lzhang@ncat.edu [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27401 (United States)

    2016-06-15

    Boron nitride nanoparticles (BNNPs) were surface functionalized and subsequently applied to surface of fiberglass prepregs to fabricate hybrid BNNPs/fiberglass/epoxy composite laminate. A systematic and comparative study on BNNPs functionalization routes and their effects on morphology, mechanical property and thermal conductivity of final BNNPs enhanced composite laminates was performed. The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The composite laminates with surface functionalized BNNPs demonstrated improvement in tensile and flexural strength and modulus as well as in thermal conductivity compared to the composite laminate with pristine BNNPs while physically functionalized BNNPs outperformed chemically functionalized BNNPs in all cases. SEM images indicated better compatibility and dispersion of BNNPs in epoxy matrix following either of functionalization route. BNNPs bear great radiation-shielding capability. This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials. - Highlights: • BNNPs were surface functionalized and applied onto fiberglass prepreg. • The BNNPs enhanced prepreg was employed to make hybrid BNNPs/fiberglass/epoxy composite laminate. • The hybrid laminate presented significant improvement in mechanical strength and thermal conductivity. • This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials.

  18. Boron nitride nanoparticle enhanced prepregs: A novel route for manufacturing aerospace structural composite laminate

    International Nuclear Information System (INIS)

    Kelkar, Ajit D.; Tian, Qiong; Yu, Demei; Zhang, Lifeng

    2016-01-01

    Boron nitride nanoparticles (BNNPs) were surface functionalized and subsequently applied to surface of fiberglass prepregs to fabricate hybrid BNNPs/fiberglass/epoxy composite laminate. A systematic and comparative study on BNNPs functionalization routes and their effects on morphology, mechanical property and thermal conductivity of final BNNPs enhanced composite laminates was performed. The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The composite laminates with surface functionalized BNNPs demonstrated improvement in tensile and flexural strength and modulus as well as in thermal conductivity compared to the composite laminate with pristine BNNPs while physically functionalized BNNPs outperformed chemically functionalized BNNPs in all cases. SEM images indicated better compatibility and dispersion of BNNPs in epoxy matrix following either of functionalization route. BNNPs bear great radiation-shielding capability. This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials. - Highlights: • BNNPs were surface functionalized and applied onto fiberglass prepreg. • The BNNPs enhanced prepreg was employed to make hybrid BNNPs/fiberglass/epoxy composite laminate. • The hybrid laminate presented significant improvement in mechanical strength and thermal conductivity. • This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials.

  19. Reversible dielectric property degradation in moisture-contaminated fiber-reinforced laminates

    Science.gov (United States)

    Rodriguez, Luis A.; García, Carla; Fittipaldi, Mauro; Grace, Landon R.

    2016-03-01

    The potential for recovery of dielectric properties of three water-contaminated fiber-reinforced laminates is investigated using a split-post dielectric resonant technique at X-band (10 GHz). The three material systems investigated are bismaleimide (BMI) reinforced with an eight-harness satin weave quartz fabric, an epoxy resin reinforced with an eight- harness satin weave glass fabric (style 7781), and the same epoxy reinforced with a four-harness woven glass fabric (style 4180). A direct correlation between moisture content, dielectric constant, and loss tangent was observed during moisture absorption by immersion in distilled water at 25 °C for five equivalent samples of each material system. This trend is observed through at least 0.72% water content by weight for all three systems. The absorption of water into the BMI, 7781 epoxy, and 4180 epoxy laminates resulted in a 4.66%, 3.35%, and 4.01% increase in dielectric constant for a 0.679%, 0.608%, and 0.719% increase in water content by weight, respectively. Likewise, a significant increase was noticed in loss tangent for each material. The same water content is responsible for a 228%, 71.4%, and 64.1% increase in loss tangent, respectively. Subsequent to full desorption through drying at elevated temperature, the dielectric constant and loss tangent of each laminate exhibited minimal change from the dry, pre-absorption state. The dielectric constant and loss tangent change after the absorption and desorption cycle, relative to the initial state, was 0.144 % and 2.63% in the BMI, 0.084% and 1.71% in the style 7781 epoxy, and 0.003% and 4.51% in the style 4180 epoxy at near-zero moisture content. The similarity of dielectric constant and loss tangent in samples prior to absorption and after desorption suggests that any chemical or morphological changes induced by the presence of water have not caused irreversible changes in the dielectric properties of the laminates.

  20. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Science.gov (United States)

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available In this study, electrical, thermal and mechanical properties of multi-walled carbon nanotubes (CNTs reinforced Epon 862 epoxy have been evaluated. Firstly, 0.1, 0.2, 0.3, and 0.4 wt% CNT were infused into epoxy through a high intensity ultrasonic liquid processor and then mixed with EpiCure curing agent W using a high speed mechanical agitator. Electric conductivity, dynamic mechanical analysis (DMA, three point bending tests and fracture tests were then performed on unfilled, CNT-filled epoxy to identify the loading effect on the properties of materials. Experimental results show significant improvement in electric conductivity. The resistivity of epoxy decreased from 1014 Ω•m of neat epoxy to 10 Ω•m with 0.4% CNT. The experimental results also indicate that the frequency dependent behavior of CNT/epoxy nanocomposite can be modeled by R-C circuit, permittivity of material increase with increasing of CNT content. DMA studies revealed that filling the carbon nanotube into epoxy can produce a 90% enhancement in storage modulus and a 17°C increase in Tg. Mechanical test results showed that modulus increased with higher CNT loading percentages, but the 0.3 wt% CNT-infusion system showed the maximum strength and fracture toughness enhancement. The decrease in strength and fracture toughness in 0.4% CNT/epoxy was attributed to poor dispersions of nanotubes in the composite.

  2. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  3. Cross-sectional examination of the damage zone in impacted specimens of carbon/epoxy and carbon/PEEK composites

    Science.gov (United States)

    Nettles, A. T.; Magold, N. J.

    1990-01-01

    Drop weight impact testing was utilized to inflict damage on eight-ply bidirectional and unidirectional samples of carbon/epoxy and carbon/PEEK (polyetheretherketone) test specimens with impact energies ranging from 0.80 J to 1.76 J. The impacting tip was of a smaller diameter (4.2-mm) than those used in most previous studies, and the specimens were placed with a diamond wheel wafering saw through the impacted area perpendicular to the outer fibers. Photographs at 12 x magnification were taken of these cross-sections and examined. The results on the bidirectional samples show little damage until 1.13 J, at which point delaminations were seen in the epoxy specimens. The PEEK specimens showed less delamination than the epoxy specimens for a given impact energy level. The unidirectional specimens displayed more damage than the bidirectional samples for a given impact energy, with the PEEK specimens showing much less damage than the epoxy material.

  4. Controlled interface between carbon fiber and epoxy by molecular self-assembly method

    International Nuclear Information System (INIS)

    He Jinmei; Huang Yudong; Liu Li; Cao Hailin

    2006-01-01

    In this paper, a new treatment method based on molecular self-assembly on carbon fiber surface was proposed for obtaining a controlled interface between carbon fiber and epoxy matrix in composite system. To form the controlled interfacial region, the surfaces of carbon fibers were first metallized by electroless Ag plating, then were reacted with a series of thiols (different chain lengths and terminally functional groups) to form self-assembly monolayers (SAMs), which further reacted with epoxy resin to generate a strong adhesion interface. The morphology, structure and composition of untreated and treated carbon fiber surface were investigated by atomic force microscope (AFM), surface-enhanced Raman scattering spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS), respectively. SERS study showed that thiols chemisorbed on Ag/carbon fiber in the form of thiolate species via the strong S-Ag coordinative bond. XPS study further confirmed the chemisorption by an S 2p 3/2 component observed at 162.2 eV. The binding energy was characteristic of silver thiolate. The interfacial shear strength of the carbon fiber/epoxy microcomposites was evaluated by the microbond technique. The results showed that there was a direct effect of the interfacial parameters changes such as chain lengths and surface functional groups on the fiber/matrix adhesion

  5. Synthesis of Plate-Like Nanoalumina and Its Effect on Gas Permeability of Carbon Fiber Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Ghadamali Karimi Khozani

    2017-03-01

    Full Text Available In recent years considerable efforts have been made to develop gas impermeable polymer systems. Compared with metal system counterparts they have advantages such as low density and production costs. The most important challenge in development of impermeable polymer systems is to reduce their gas permeability by proper selection of system composition and process conditions. In this work, nanoparticles were initially synthesized using Al (NO33•9H2O and sodium dodecyl sulfate as a structure-directing agent via hydrothermal method and a plate-like structure was characterized by FESEM and EDAX analyses. In the second step, epoxy/plate-like nanoalumina nanocomposites and epoxy-carbon fiber composites containing 1, 2.5, and 5 wt% nanoalumina were prepared. The effect of nanoparticle loading level on permeability of nitrogen, argon, and carbon dioxide in epoxy/plate-like nanoalumina nanocomposites was investigated. It was observed that the permeability of epoxy/plate-like nanoalumina nanocomposites toward nitrogen, argon, and carbon dioxide gases reduced 83%, 74%, and 50%, respectively. It was deduced that the permeability reduction was clearly associated with the diameter of gas molecules. Generally speaking, the results showed that the incorporation of plate-like nanoalumina particles significantly reduced the gas permeability. Also, carbon dioxide gas permeability of carbon fiber epoxy composites containing plate-like nanoalumina was investigated to show the effect of ingredients on the gas permeability of the system. The results indicated that carbon dioxide gas permeability of epoxy carbon fiber composite containing 5 wt% of plate-like nanoalumina was totally reduced 84%.

  6. Assessment of nanoparticles release into the environment during drilling of carbon nanotubes/epoxy and carbon nanofibres/epoxy nanocomposites.

    Science.gov (United States)

    Starost, Kristof; Frijns, Evelien; Van Laer, Jo; Faisal, Nadimul; Egizabal, Ainhoa; Elizextea, Cristina; Blazquez, Maria; Nelissen, Inge; Njuguna, James

    2017-10-15

    The risk assessment, exposure and understanding of the release of embedded carbon nanotubes (CNTs) and carbon nanofibers (CNFs) from commercial high performance composites during machining processes are yet to be fully evaluated and quantified. In this study, CNTs and CNFs were dispersed in epoxy matrix through calendaring process to form nanocomposites. The automated drilling was carried out in a specially designed drilling chamber that allowed elimination of background noise from the measurements. Emission measurements were taken using condensed particle counter (CPC), scanning mobility particle sizer (SMPS) and DMS50 Fast Particulate Size Spectrometer. In comparison to the neat epoxy, the study results revealed that the nano-filled samples produced an increase of 102% and 227% for the EP/CNF and EP/CNT sample respectively in average particle number concentration emission. The particle mass concentration indicated that the EP/CNT and EP/CNF samples released demands a vital new perspective on CNTs and CNFs embedded within nanocomposite materials to be considered and evaluated for occupational exposure assessment. Importantly, the increased concentration observed at 10nm aerosol particle sizes measurements strongly suggest that there are independent CNTs being released at this range. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    International Nuclear Information System (INIS)

    Méjean, Chloé; Pometcu, Laura; Benzerga, Ratiba; Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu; Pouliguen, Philippe

    2017-01-01

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S 11 coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S 11 of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  8. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    Energy Technology Data Exchange (ETDEWEB)

    Méjean, Chloé; Pometcu, Laura [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Benzerga, Ratiba, E-mail: ratiba.benzerga@univ-rennes1.fr [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Pouliguen, Philippe [Département Recherche et Innovation Scientifique de la Direction Générale de l’Armement, 7-9 rue des Mathurins, 92221 Bagneux (France)

    2017-06-15

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S{sub 11} coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S{sub 11} of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  9. Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers.

    Science.gov (United States)

    Prolongo, S G; Gude, M R; Ureña, A

    2009-10-01

    Epoxy nanocomposites were fabricated using two kinds of nanofiller, amino-functionalized multi-walled carbon nanotubes (CNTs) and non-treated long carbon nanofibers (CNFs). The non-cured mixtures were analysed through viscosity measurements. The effect of the nanoreinforcement on the curing process was determined by differential scanning calorimetry. Finally, the characterisation of cured nanocomposites was carried out studying their thermo-mechanical and electrical behaviour. At room temperature, the addition of CNTs causes a viscosity increase of epoxy monomer much more marked than the introduction of CNFs due to their higher specific area. It was probed that in that case exists chemical reaction between amino-functionalized CNTs and the oxirane rings of epoxy monomer. The presence of nanoreinforcement induces a decrease of curing reaction rate and modifies the epoxy conversion reached. The glass transition temperature of the nanocomposites decreases with the contents of CNTs and CNFs added, which could be related to plasticization phenomena of the nanoreinforcements. The storage modulus of epoxy resin significantly increases with the addition of CNTs and CNFs. This augment is higher with amino-functionalized CNTs due, between other reasons, to the stronger interaction with the epoxy matrix. The electrical conductivity is greatly increased with the addition of CNTs and CNFs. In fact, the percolation threshold is lower than 0.25 wt% due to the high aspect ratio of the used nanoreinforcements.

  10. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    Science.gov (United States)

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji

    2014-09-01

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  11. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Zaini, Mariana Binti Mohd [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Badri, Khairiah Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43 (Malaysia)

    2014-09-03

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  12. A study of thermal diffusivity of carbon-epoxy and glass-epoxy composites using the modified pulse method

    Directory of Open Access Journals (Sweden)

    Terpiłowski Janusz

    2014-09-01

    Full Text Available Transient heat transfer is studied and compared in two planeparallel composite walls and one EPIDIAN 53 epoxy resin wall acting as a matrix for both composites. The first of the two walls is made of carbonepoxy composite; the other wall is made of glass-epoxy composite, both with comparable thickness of about 1 mm and the same number of carbon and glass fabric layers (four layers. The study was conducted for temperatures in the range of 20-120 °C. The results of the study of thermal diffusivity which characterizes the material as a heat conductor under transient conditions have a preliminary character. Three series of tests were conducted for each wall. Each series took about 24 h. The results from the three series were approximated using linear functions and were found between (0.7-1.35×10−7m2/s. In the whole range of temperature variation, the thermal diffusivity values for carbon-epoxy composite are from 1.2 to 1.5 times higher than those for the other two materials with nearly the same thermal diffusivity characteristics.

  13. Tenacidade à fratura translaminar dinâmica de laminados compósitos de fibras de carbono e resina epóxi de grau aeronáutico Translaminar dynamic fracture toughness of aeronautic grade composite laminates made with carbon fiber-epoxy resin

    Directory of Open Access Journals (Sweden)

    José R. Tarpani

    2010-01-01

    Full Text Available A tenacidade à fratura translaminar dinâmica de quatro laminados compósitos de fibras de carbono e resina epóxi foi determinada nas velocidades de impacto de 2,25 e 5,52 m/s, sob as temperaturas de -70, +25 e +100 °C. Concluiu-se que a tenacidade à iniciação da fratura dos laminados confeccionados com fibras na forma de fita unidirecional é, em qualquer condição de ensaio, muito superior à dos laminados manufaturados com fibras dispostas na forma de tecido bi-direcional. Quanto à tenacidade à propagação de danos, constatou-se que o laminado fita processado a 180 °C é o mais indicado para operar sob impacto em temperaturas intermediárias, enquanto que o manufaturado a 120 °C é a melhor opção para trabalhar sob ambos os extremos do intervalo de temperatura avaliado.The translaminar dynamic fracture toughness of four carbon fiber - epoxy resin composite laminates was compared at the impact velocities of 2.25 and 5.52 m/s, under the temperatures of -70, +25 and +100 °C. It has been concluded that the initiation fracture toughness of unidirectional tape laminates is quite higher than bidirectional woven fabric composites, despite the testing conditions. In regard to the damage propagation toughness, it has been shown that the tape laminate processed at 180 °C is the best option at intermediate temperatures, whereas the tape composite manufactured at 120 °C is the most suitable to operate under impact at both the extremes of the temperature range evaluated.

  14. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  15. High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites

    Science.gov (United States)

    Lewicki, James

    2018-04-17

    An additive manufacturing resin system including an additive manufacturing print head; a continuous carbon fiber or short carbon fibers operatively connected to the additive manufacturing print head; and a tailored resin operatively connected to the print head, wherein the tailored resin has a resin mass and wherein the tailored resin includes an epoxy component, a filler component, a catalyst component, and a chain extender component; wherein the epoxy component is 70-95% of the resin mass, wherein the filler component is 1-20% of the resin mass, wherein the catalyst component is 0.1-10% of the resin mass, and wherein the chain extender component is 0-50% of the resin mass.

  16. Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    OpenAIRE

    Scafè, M.; Raiteri, G.; Brentari, A.; Dlacic, R.; Troiani, E.; Falaschetti, M. P.; Besseghini, E.

    2014-01-01

    In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen. The method chosen to perform the compression tests is the Wyoming Combined Loading Compr...

  17. Synergetic effects of thin plies and aligned carbon nanotube interlaminar reinforcement in composite laminates

    OpenAIRE

    Arteiro, Albertino; Borstnar, Gregor; Mavrogordato, Mark N.; Sinclair, Ian; Spearing, S. Mark; Camanho, Pedro P.; Cohen, Estelle; Kopp, Reed Alan; Furtado Pereira da Silva, Carolina; Ni, Xinchen; Wardle, Brian L

    2017-01-01

    Thin-ply carbon fiber laminates have exhibited superior mechanical properties, including higher initiation and ultimate strength, when compared to standard thickness plies and enable greater flexibility in laminate design. However, the increased ply count in thin-ply laminates also increases the number of ply-ply interfaces, thereby increasing the number of relatively weak and delamination-prone interlaminar regions. In this study, we report the first experimental realization of aligned carbo...

  18. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaomin [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zhu, Bo, E-mail: zhubo@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Cai, Xun, E-mail: caixunzh@sdu.edu.cn [School of Computer Science and Technology, Shandong University, Jinan 250101 (China); Liu, Jianjun [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Qiao, Kun [Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Yu, Junwei [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2017-04-15

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  19. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    International Nuclear Information System (INIS)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-01-01

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  20. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    Science.gov (United States)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  1. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    International Nuclear Information System (INIS)

    Pham, Gia Vu; Trinh, Anh Truc; Hang To, Thi Xuan; Nguyen, Thuy Duong; Nguyen, Thu Trang; Nguyen, Xuan Hoan

    2014-01-01

    In this study Fe 3 O 4 /CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe 3 O 4 ) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe 3 O 4 /CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe 3 O 4 /CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe 3 O 4 /CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe 3 O 4 /CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe 3 O 4 /CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe 3 O 4 /CNTs composite in the epoxy matrix. (paper)

  2. The extrinsic influence of carbon fibre reinforced plastic laminates to ...

    Indian Academy of Sciences (India)

    The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures ... The intrinsic advantages of strengthening the steel-based structures by the use of fibre reinforced plastic (FRP) material have ... Sadhana | News.

  3. Laser cutting of Kevlar laminates

    Energy Technology Data Exchange (ETDEWEB)

    VanCleave, R.A.

    1977-09-01

    An investigation has been conducted of the use of laser energy for cutting contours, diameters, and holes in flat and shaped Kevlar 49 fiber-reinforced epoxy laminates as an alternate to conventional machining. The investigation has shown that flat laminates 6.35 mm thick may be cut without backup by using a high-powered (1000-watt) continuous wave CO/sub 2/ laser at high feedrates (33.87 mm per second). The cut produced was free of the burrs and delaminations resulting from conventional machining methods without intimate contact backup. In addition, the process cycle time was greatly reduced.

  4. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography

    International Nuclear Information System (INIS)

    Tallman, T N; Wang, K W; Gungor, S; Bakis, C E

    2014-01-01

    Utilizing electrically conductive nanocomposites for integrated self-sensing and health monitoring is a promising area of structural health monitoring (SHM) research wherein local changes in conductivity coincide with damage. In this research we conduct proof of concept investigations using electrical impedance tomography (EIT) for damage detection by identifying conductivity changes and by imaging conductivity evolution in a carbon nanofiber (CNF) filled epoxy composite. CNF/epoxy is examined because fibrous composites can be manufactured with a CNF/epoxy matrix thereby enabling the entire matrix to become self-sensing. We also study the mechanisms of conductivity evolution in CNF/epoxy through electrical impedance spectroscopy (EIS) testing. The results of these tests indicate that thermal expansion is responsible for conductivity evolution in a CNF/epoxy composite. (paper)

  5. Investigation of non-isocyanate urethane functional latexes and carbon nanofiller/epoxy coatings

    Science.gov (United States)

    Meng, Lei

    This dissertation consists of two parts. In the first part, a new class of non-isocyanate urethane methacrylates was synthesized and the effect of the new monomers on the urethane functional latex was investigated. The second part focused on a comparison of carbon nanofillers in inorganic/organic epoxy coating system for anticorrosive applications. A new class of non-isocyanate urethane methacrylates (UMAs) monomers was synthesized through an environmentally friendly non-isocyanate pathway. The kinetics of seeded semibatch emulsion polymerization of UMAs with methyl methacrylate (MMA) and butyl acrylate (BA) was monitored. The particle size and morphology were investigated by dynamic light scattering (DLS), ultrasound acoustic attenuation spectroscopy (UAAS) and transmission electron microscopy (TEM). The minimum film formation temperature (MFFT), mechanical and viscoelastic properties were studied. It was found that the emulsion polymerization processes all proceeded via Smith-Ewart control, leading to the uniform morphology and particle size. The glass transition temperature (Tg) and the mechanical properties of poly(MMA/BA/UMA) decreased with the increasing chain length of urethane methacrylate monomers due to the increasing flexibility of side chains. Without the effect of Tg, lower MFFT and improved mechanical properties were observed from urethane functional latexes. The improved mechanical properties were due to the increasing particle interaction by forming hydrogen bonding. Furthermore, the effect of urethane functionality in terms of the polymer composition, the location and the concentration was investigated by the batch, single-stage and two-stage semibatch polymerization of 2-[(butylcarbamoyl)oxy]ethyl methacrylate (BEM) with MMA and BA. The core-shell and homogeneous structures were evaluated by TEM, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (SS-NMR). The compositional drift was observed from the batch

  6. Life cycle strain monitoring in glass fibre reinforced polymer laminates using embedded fibre Bragg grating sensors from manufacturing to failure

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Høgh, Jacob Herold

    2013-01-01

    A holistic approach to strain monitoring in fibre-reinforced polymer composites is presented using embedded fibre Bragg grating sensors. Internal strains are monitored in unidirectional E-glass/epoxy laminate beams during vacuum infusion, curing, post-curing and subsequent loading in flexure until...... of the different cure temperatures and tool/part interfaces used. Substantial internal process-induced strains develop in the transverse fibre direction, which should be taken into consideration when designing fibre-reinforced polymer laminates. Flexure tests indicate no significant difference in the mechanical...

  7. Preparation, Characterization, and Modeling of Carbon Nanofiber/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lan-Hui Sun

    2011-01-01

    Full Text Available There is a lack of systematic investigations on both mechanical and electrical properties of carbon nanofiber (CNF-reinforced epoxy matrix nanocomposites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nanocomposites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nanocomposites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nanocomposite with a 1.0 wt% CNFs. The alternate-current (AC electrical properties of the CNF/epoxy nanocomposites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt% (0.058 vol% CNFs and by ten orders of magnitude for nanocomposites with CNF volume fractions higher than 1.0 wt% (0.578 vol%. The percolation threshold (i.e., the critical CNF volume fraction is found to be at 0.057 vol%.

  8. The Role of Multi-wall Carbon Nanotubes on Fracture Mechanism of Epoxy Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Hooshiar Sadegian

    2008-12-01

    Full Text Available In order to investigate the role of multi-wall carbon nanotubes (MWCNTs on fracture mechanism of epoxy nanocomposites, a series of tensile standard specimens reinforced with different carbon nanotube contents (0, 0.3, 0.6 and 1 wt% were produced. The fracture surfaces of the produced nanocomposites were evaluated using scanning electron microscope (SEM. The results show that the surface fracture of epoxy nanocomposites comprised of three regions, i.e. mirror, transition and final propagation zones. The extension of all zones depends strongly on curing agent as well asMWCNTs content. The mirror zone is disappeared as curing agent and MWCNTs content increases, while the transition zone depends on the nucleation rate of secondary microcrack. The pattern of final propagation zone becomes coarser as MWCNTs are added to epoxy system.

  9. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Jin Fanlong; Ma Changjie; Park, Soo-Jin

    2011-01-01

    Highlights: → CNTs were functionalized by acid and amine treatments. → Epoxy resin/CNT composites were prepared. → T g of the composites increased by about 10 deg. C compared to neat epoxy resins. → Toughness of the composites was significantly improved by the addition of functionalized CNTs. - Abstract: Carbon nanotubes (CNTs) were treated by a mixture of acid and functionalized subsequently by amine treatment to improve interfacial interactions and dispersion of CNTs in epoxy matrix. The thermal stabilities and mechanical interfacial properties of epoxy/CNT composites were investigated using several techniques. The dispersion state of CNTs in the epoxy matrix was observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). As a result, the glass transition temperature of epoxy/CNT composites increased by about 11 deg. C compared to neat epoxy resins. The mechanical interfacial property of the composites was significantly increased by the addition of amine treated CNTs. The SEM and TEM results showed that the separation and uniform dispersion of CNTs in the epoxy matrix.

  10. Wear Behavior of Woven Roving Aramid / Epoxy Composite under Different Conditions

    Directory of Open Access Journals (Sweden)

    Asad A. Khalid

    2012-09-01

    Full Text Available Wear behavior studies of aramid woven roving /epoxy composite has been conducted. Sliding the material against smooth steel counter face under dry and  lubricated with oil conditions has been investigated. Powder of Silicon carbide has been mixed with the epoxy resin and tested also. The powder was mixed in a volumetric fraction of 10% with the epoxy resin. Four Laminates of six layers were fabricated by hand lay up  method. A pin on disc apparatus has been fabricated to conduct the sliding wear tests on specimens of (4 mm   4 mm   12 mm in size have been cut from the four laminates. The effect of sliding condition including dry, lubricated, dry with additives and lubricated with additives have been studied. Wear rate tests have been conducted at different sliding speeds and loads. Results show that the wear characteristics are influenced by the operating conditions and the construction of the composite material used. It was also found that the wear of aramid /epoxy composite onto the steel counter face were significantly reduced by using lubricant and additives but still took place.Keywords: Wear, Composite materials, Woven roving aramid, Epoxy, Additives, Lubricant.

  11. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    OpenAIRE

    Nitai Chandra Adak; Suman Chhetri; Naresh Chandra Murmu; Pranab Samanta; Tapas Kuila

    2018-01-01

    Thermally reduced graphene oxide (TRGO) was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF)/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spe...

  12. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  13. An experimental investigation of glare and restructured fiber metal laminates

    Science.gov (United States)

    Benedict, Adelina Vanessa

    Fiber Metal Laminates (FMLs) are a group of materials fabricated by bonding glass/epoxy layers within metal layers. This class of materials can provide good mechanical properties, as well as weight savings. An FML known as Glass Laminate Aluminum Reinforced Epoxy (GLARE) was studied. An experimental investigation comprising of microscopy and tensile testing was carried out using different grades of GLARE. Microscopy revealed the construction details of GLARE, while tensile testing provided means of measuring and analyzing its stress-strain responses. Next, different metal surface pretreatment methods were explored. These included sandblasting, Phosphoric Acid Anodizing (PAA), and AC-130 Sol-Gel treatment. Woven S-2 glass, an epoxy adhesive, and aluminum alloy sheet metal were used to fabricate restructured FMLs using time and cost effective procedures. Additional microscopy and tensile testing allowed for comparisons with GLARE and aircraft grade aluminum alloys. The restructured FMLs showed similar behaviors to GLARE with potential significant improvements in fabrication efficiency.

  14. Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2012-08-01

    Full Text Available A brand-new type of multifunctional nanocomposites with high DC conductivity and enhanced mechanical strength was fabricated. Ionic liquid functionalized Carbon Nanotubes (CNTs-IL were embedded into epoxy matrix with covalent bonding by the attached epoxy groups. The highest DC conductivity was 8.38 x 10-3 S.m-1 with 1.0 wt. (% loading of CNTs-IL and the tensile strength was increased by 36.4% only at a 0.5 wt. (% concentration. A mixing solvent was used to disperse CNTs-IL in the epoxy monomer. The dispersion and distribution of CNTs-IL in the polymer matrix were measured by utilizing both optical microscopy and scanning electron microscopy, respectively.

  15. The influences of contamination during lamination on the properties of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hall Beng, G.M. (Univ. of Portsmouth, School of Systems Engineering, Portsmouth (United Kingdom)); Mason, S.E. (Univ. of Portsmouth, School of Systems Engineering, Portsmouth (United Kingdom))

    1993-11-01

    The quality of a fibrous composite laminate can be largely attributed to the laminating process. It is therefore important to control parameters which will ultimately affect the desired quality of the laminate. Although several composite manufacturing organisations have installed clean room facilities with the hope of controlling potential contaminants, which may be detrimental to the process, the unavoidable reductions in productivity, coupled with the initial capital and maintenance costs make it an expensive solution to an unquantified problem. This study investigates the influences of contamination on structural fibre reinforced composites. Initial testing has involved contaminating Carbon/Epoxy (Fiberite 7714B) prepregs on a gross level. Contaminants have been selected on a tactile level in order to be as closely representative of situations likely to be encountered in the laminating process. The research has concentrated on airborne particulates, including fibres, condensation and humidity. Modes of contamination have been proposed for each, and suitable test methods selected to verify the modes. Test methods include the sort beam shear test (interlaminar shear strength), double cantilever beam test (interlaminar fracture data) and tensile tests. Such high levels of contamination enables the identification of those contaminants that are most detrimental to final laminate quality. Strategic reduction in the contamination levels of those identified will enable the clean room operating level to be sought. (orig.).

  16. The influences of contamination during lamination on the properties of composite materials

    International Nuclear Information System (INIS)

    Hall Beng, G.M.; Mason, S.E.

    1993-01-01

    The quality of a fibrous composite laminate can be largely attributed to the laminating process. It is therefore important to control parameters which will ultimately affect the desired quality of the laminate. Although several composite manufacturing organisations have installed clean room facilities with the hope of controlling potential contaminants, which may be detrimental to the process, the unavoidable reductions in productivity, coupled with the initial capital and maintenance costs make it an expensive solution to an unquantified problem. This study investigates the influences of contamination on structural fibre reinforced composites. Initial testing has involved contaminating Carbon/Epoxy (Fiberite 7714B) prepregs on a gross level. Contaminants have been selected on a tactile level in order to be as closely representative of situations likely to be encountered in the laminating process. The research has concentrated on airborne particulates, including fibres, condensation and humidity. Modes of contamination have been proposed for each, and suitable test methods selected to verify the modes. Test methods include the sort beam shear test (interlaminar shear strength), double cantilever beam test (interlaminar fracture data) and tensile tests. Such high levels of contamination enables the identification of those contaminants that are most detrimental to final laminate quality. Strategic reduction in the contamination levels of those identified will enable the clean room operating level to be sought. (orig.)

  17. Preparation of carbon nanotubes/epoxy resin composites by using hollow glass beads as the carrier

    International Nuclear Information System (INIS)

    Wu, X.F.; Zhao, Y.K.; Zhang, D.; Chen, T.B.; Ma, L.Y.

    2012-01-01

    Hollow glass beads had been utilized as the carrier to assist dispersion of carbon nanotubes in epoxy resin. Hollow glass beads were firstly aminated with gamma-aminopropyl-triethoxysilane, sencondly reacted with carboxyl-functionalized carbon nanotubes via an amidation reaction and susequently mixed with epoxy resin and hardener. The experimental results showed that carbon nanotubes could be loaded on the surfaces of hollow glass beads and approximately a monolayer of carbon nanotubes was formed when the weight ratio of hollow glass beads to carbon nanotubes was 100:5. Moreover, the dispersity of carbon nanotubes in the matrix was improved as compared to the control samples prepared by using a conventional mixing method. (author)

  18. Thermal conductive epoxy enhanced by nanodiamond-coated carbon nanotubes

    Science.gov (United States)

    Zhao, Bo; Jiang, Guohua

    2017-11-01

    Nanodiamond (ND) particles were coated on the surface of carbon nanotubes (CNTs) by chemical reactions. Reliable bonding was formed by the combination of acyl chloride on NDs and amine group on CNTs. ND coated CNTs (CNT-ND) were dispersed into epoxy to fabricate thermal conductive resins. The results show that the surface energy of CNTs is decreased by the coated NDs, which is contributed to the excellent dispersion of CNT-NDs in the epoxy matrix. The heat-transfer channels were built by the venous CNTs cooperating with the coated NDs, which not only plays an effective role of heat conduction for CNTs and NDs, but also avoids the electrical leakage by the protection of NDs surrounding outside of CNTs. Electrical and thermal conductance measurements demonstrate that the influence of the CNT-ND incorporation on the electrical conductance is minor, however, the thermal conductivity is improved significantly for the epoxy filled with CNT-ND.[Figure not available: see fulltext.

  19. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  20. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  1. Epoxy-based carbon nanotubes reinforced composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2011-04-01

    Full Text Available of the three major epoxy resin producers worldwide [May, 1987]. Epoxy resin is most commonly used as a matrix for advanced composites due to their superior thermal, mechanical and electrical properties; dimensional stability and chemical resistance. Epoxy... and modifiers to create products with an almost unlimited range and variety of performance properties [The epoxy book, 2000]. Epoxy resins are widely used as high-grade synthetic resins, for example, in the electronics, aeronautics and astronautic industries...

  2. Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites

    NARCIS (Netherlands)

    Shen, J. T.; Buschhorn, S. T.; De Hosson, J. Th. M.; Schulte, K.; Fiedler, B.

    2015-01-01

    In this study, we investigate the changes of electrical resistance of the carbon black (CB) and carbon nanotube (CNT) filled epoxy composites upon compression, swelling and temperature variation. For all samples we observe a decrease of electrical resistance under compression, while an increase of

  3. Evaluation of Force-Time Changes During Impact of Hybrid Laminates Made of Titanium and Fibrous Composite

    Directory of Open Access Journals (Sweden)

    Jakubczak P.

    2016-06-01

    Full Text Available Fibre metal laminates (FML are the modern hybrid materials with potential wide range of applications in aerospace technology due to their excellent mechanical properties (particularly fatigue strength, resistance to impacts and also excellent corrosion resistance. The study describes the resistance to low velocity impacts in Ti/CFRP laminates. Tested laminates were produced in autoclave process. The laminates were characterized in terms of their response to impacts in specified energy range (5J, 10J, 20J. The tests were performed in accordance with ASTM D7137 standard. The laminates were subjected to impacts by means of hemispherical impactor with diameter of 12,7 mm. The following values have been determined: impact force vs. time, maximum force and the force at which the material destruction process commences (Pi. It has been found that fibre titanium laminates are characterized by high resistance to impacts. This feature is associated with elasto-plastic properties of metal and high rigidity of epoxy - fibre composite. It has been observed that Ti/CFRP laminates are characterized by more instable force during impact in stage of stabilization of impactor-laminate system and stage of force growth that glass fibre laminates. It has been observed more stable force decrease in stage of stress relaxation and withdrawal of the impactor. In energy range under test, the laminates based on titanium with glass and carbon fibres reinforcement demonstrate similar and high resistance to low-velocity impact, measured by means of failure initiation force and impact maximum force.

  4. Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates

    Science.gov (United States)

    Liu, Yanxiong; Liaw, Benjamin

    2010-02-01

    Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.

  5. Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2015-01-01

    Full Text Available Polymer composites based on epoxy resin were prepared. Multiwalled carbon nanotubes synthesized on iron-cobalt catalyst were applied as a filler in a polymer matrix. Chlorine or hydroxyl groups were incorporated on the carbon nanotubes surface via chlorination or chlorination followed by hydroxylation. The effect of functionalized carbon nanotubes on the epoxy resin matrix is discussed in terms of the state of CNTs dispersion in composites as well as electrical properties. For the obtained materials current-voltage characteristics were determined. They had a nonlinear character and were well described by an exponential-type equation. For all the obtained materials the percolation threshold occurred at a concentration of about 1 wt%. At a higher filler concentration >2 wt%, better conductivity was demonstrated by polymer composites with raw carbon nanotubes. At a lower filler concentration <2 wt%, higher values of electrical conductivity were obtained for polymer composites with modified carbon nanotubes.

  6. Failure phenomena in fibre-reinforced composites. Part 6: a finite element study of stress concentrations in unidirectional carbon fibre-reinforced epoxy composites

    NARCIS (Netherlands)

    van den Heuvel, P.W.J.; Goutianos, S.; Young, R.J.; Peijs, A.A.J.M.

    2004-01-01

    A three-dimensional (3-D) finite element (FE) analysis of the stress situation around a fibre break in a unidirectional carbon fibre-reinforced epoxy composite has been performed. Two cases were considered: (i) good fibre/matrix adhesion and (ii) fibre/matrix debonding. In the case of good adhesion,

  7. Formation of interfacial network structure via photo-crosslinking in carbon fiber/epoxy composites

    Directory of Open Access Journals (Sweden)

    S. H. Deng

    2014-07-01

    Full Text Available A series of diblock copolymers (poly(n-butylacrylate-co-poly(2-hydroxyethyl acrylate-b-poly(glycidyl methacrylate ((PnBA-co-PHEA-b-PGMA, containing a random copolymer block PnBA-co-PHEA, were successfully synthesized by atom transfer radical polymerization (ATRP. After being chemically grafted onto carbon fibers, the photosensitive methacrylic groups were introduced into the random copolymer, giving a series of copolymers (poly(n-butylacrylate-co-poly(2-methacryloyloxyethyl acrylate-b-poly(glycidyl methacrylate((PnBA-co-PMEA-b-PGMA. Dynamic mechanical analysis indicated that the random copolymer block after ultraviolet (UV irradiation was a lightly crosslinked polymer and acted as an elastomer, forming a photo-crosslinked network structure at the interface of carbon fiber/epoxy composites. Microbond test showed that such an interfacial network structure greatly improved the cohesive strength and effectively controlled the deformation ability of the flexible interlayer. Furthermore, three kinds of interfacial network structures, i physical crosslinking by H-bonds, ii chemical crosslinking by photopolymerization, and iii interpenetrating crosslinked network by photopolymerization and epoxy curing reaction were received in carbon fiber/epoxy composite, depending on the various preparation processes.

  8. The effects of carbon nanotubes on electroactive shape-memory behaviors of hydro-epoxy/carbon black composite

    International Nuclear Information System (INIS)

    Wei, Kun; Zhu, Guangming; Tang, Yusheng; Liu, Tingting; Li, Ximin

    2012-01-01

    The objective of this work is to characterize the effect of multi-walled carbon nanotubes (MWCNTs) on the thermomechanical, electrical and shape-memory properties of hydro-epoxy/carbon black (CB) composite. The shape-memory hydro-epoxy composite is fabricated by adding MWCNTs and CB into shape-memory hydro-epoxy resin. The total amount of the fillers fixed at 1.9 wt%, five different composites are produced by varying the amount of MWCNTs between 0 and 0.8 wt% and the amount of CB between 1.1 and 1.9 wt%. The thermomechanical properties and shape-memory performance of the composites are studied. These results indicate that the glass transition temperature (Tg) and the storage modulus of the composites increases at first and then decreases as MWCNTs content increases. The shape recovery time decreases at first and then increases slightly as MWCNTs content increases. The composite presents good shape-memory behavior, and the shape recovery ratio is around 100%. Due to the synergic effect of CB and MWCNTs, the volume electrical resistivity of the composite could decrease by adding a small amount of MWCNTs. (paper)

  9. Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    Directory of Open Access Journals (Sweden)

    M. Scafè

    2014-07-01

    Full Text Available In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen. The method chosen to perform the compression tests is the Wyoming Combined Loading Compression (CLC Test Method, described in ASTM D 6641 / D 6641M-09. This method presents many advantages, especially: the load application on the specimen (end load combined with shear load, the reproducibility of measurements and the experimental equipment quite simplified. Six different laminates were tested in compressive tests. They were realized by the same unidirectional prepreg, but with different stacking sequences: two cross-ply [0/90]ns, two angle-ply [0/90/±45]ns and two unidirectional laminates [0]ns and [90]ns. The estimate of the compressive strength of the unidirectional laminates at 0°, was done by an indirect analytical method, developed from the classical lamination theory, and which uses a multiplicative parameter known as Back-out Factor (BF. The BF is determined by using the experimental values obtained from compression tests.

  10. Epoxy-based carbon nanotubes reinforced composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2011-04-01

    Full Text Available of the three major epoxy resin producers worldwide [May, 1987]. Epoxy resin is most commonly used as a matrix for advanced composites due to their superior thermal, mechanical and electrical properties; dimensional stability and chemical resistance. Epoxy... are electrical insulators, and the widespread use of the epoxy resins for many high-performance applications is constrained because of their inherent brittleness, delamination and fracture toughness limitations. There were quite a few approaches to enhance...

  11. Tenacidade à fratura translaminar dinâmica de um laminado híbrido metal-fibra para uso em elevadas temperaturas Translaminar dynamic fracture toughness of a hybrid fiber-metal laminate devised to high-temperature applications

    Directory of Open Access Journals (Sweden)

    José R. Tarpani

    2010-01-01

    Full Text Available A tenacidade à fratura translaminar dinâmica do laminado híbrido metal-fibra titânio-grafite com matriz termoplástica foi determinada sob as velocidades de impacto de 2,25 e 5,52 m/s, no intervalo de temperaturas de -196 a +180 °C, e comparada à de laminados compósitos convencionais de fibras de carbono e resina epóxi. Constatou-se que o laminado híbrido exibe uma tenacidade à iniciação da fratura inferior à dos compósitos tradicionais com fibras na forma de fita unidirecional, porém superior à dos laminados convencionais com fibras na forma de tecido bidirecional. Os ensaios de impacto revelaram que, comparativamente ao desempenho mecânico dos laminados carbono-epóxi, o emprego do laminado híbrido metal-fibra se justifica mais pela sua resistência à propagação do que à iniciação da fratura dinâmica.The translaminar dynamic fracture toughness of titanium-graphite hybrid fiber-metal laminate with thermoplastic matrix has been determined at the impact velocities of 2.25 and 5.52 m/s, within the temperature range from -196 to +180 ºC, and compared to that of conventional carbon-epoxy composite laminates. The hybrid laminate exhibits lower initiation fracture toughness than traditional unidirectional tape composites though it is tougher than conventional woven fabric laminates. Impact tests revealed that, if compared to the mechanical performance of conventional carbon-epoxy laminates, the fiber-metal laminate application must rely on its resistance to dynamic fracture propagation rather than on fracture initiation.

  12. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.

    Science.gov (United States)

    Li, Jinzhu; Gao, Yun; Ma, Wenjun; Liu, Luqi; Zhang, Zhong; Niu, Zhiqiang; Ren, Yan; Zhang, Xiaoxian; Zeng, Qingshen; Dong, Haibo; Zhao, Duan; Cai, Le; Zhou, Weiya; Xie, Sishen

    2011-09-01

    We develop a facile, effective and filter free infiltration method to fabricate high performance, freestanding and superthin epoxy nanocomposite films with directly synthesized Sing-Walled Carbon Nanotubes (SWNTs) film as reinforcement skeleton. It is found that the thicknesses of the nanocomposite films can be easily controlled in the range of 0.5-3 μm by dripping target amount of acetone diluted epoxy through the skeleton film. The consequent measurements reveal that the mechanical and electrical properties of SWNTs/epoxy nanocomposite films could be tailored in a quite wide range. For examples, the Young's modulus of nanocomposite films can be tuned from 10 to 30 GPa, and the electrical conductivity can be ranged from 1000 S·cm(-1) to be insulated. Moreover, high load transfer efficiency in the nanocomposite films is demonstrated by the measured ultrahigh Raman bands shift rate (-30 ± 5 cm(-1)/% strain) under strain. The high effective modulus is derived as 774 ± 70 GPa for SWNTs inside this nanocomposite film.

  13. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    Science.gov (United States)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-10-01

    Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  14. Characterization of adhesion at carbon fiber-fluorinated epoxy interface and effect of environmental degradation

    Science.gov (United States)

    Dasgupta, Suman

    2011-12-01

    Carbon fiber reinforced polymers are excellent candidates for aerospace, automobile and other mobile applications due to their high specific strength and modulus. The most prominent aerospace application of carbon fiber composites in recent times is the Boeing 787 Dreamliner, which is the world's first major commercial airliner to extensively use composite materials. The critical issue, which needs to be addressed hereby, is long-term safety. Hence, long-term durability of composite materials in such applications becomes a point of concern. Conventional polymer matrices, such as thermosetting resins, which are used as matrix material in carbon fiber composites, are susceptible to degradation in the form of chemical corrosion, UV degradation and moisture, in severe environmental conditions. Fluorinated polymers offer a viable alternative as matrix material, due to their reduced susceptibility to environmental degradation. The epoxy system used in this study is fluorinated Tetra-glycidyl methylene di-aniline (6F-TGMDA), which was developed by polymer scientists at NASA Langley Research Center. The hydrophobic nature of this epoxy makes it a potential matrix material in aerospace applications. However, its compatibility in carbon fiber-reinforced composites remains to be investigated. This study aims to characterize the interfacial properties in carbon fiber reinforced fluorinated epoxy composites. Typical interfacial characterization parameters, like interfacial shear strength, estimated from the microbond test, proved to be inadequate in accurately estimating adhesion since it assumes a uniform distribution of stresses along the embedded fiber length. Also, it does not account for any residual stresses present at the interface, which might arise due to thermal expansion differences and Poisson's ratio differences of the fiber and matrix. Hence, an analytical approach, which calculates adhesion pressure at the interface, was adopted. This required determination of

  15. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    International Nuclear Information System (INIS)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-01-01

    Commercially available CNFs (diameter 30–300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  16. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    Science.gov (United States)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-11-01

    Commercially available CNFs (diameter 30-300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  17. Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Zhiyong Cai; Xianyan Zhou

    2013-01-01

    This paper presents analysis of a 3-dimensional engineered structural panel (3DESP) having a tri-axial core structure made from phenolic impregnated laminated-paper composites with and without high strength composite carbon-fiber fabric laminated to the outside of both faces. Both I-beam equations and finite element method were used to analyze four-point bending of the...

  18. Modal analysis of pre and post impacted nano composite laminates

    Directory of Open Access Journals (Sweden)

    R. Velmurugan

    Full Text Available Modal analysis is carried out on pre and post impacted nano composite laminates. The laminates are prepared using 3, 5 and 8 layers of 610gsm glass woven roving mats(WRM with epoxy resin and montmorillonite(MMT clay content is varied from 1% to 5%. Impulse hammer technique is used to find natural frequency and damping factor of laminates. Medium velocity impact tests are conducted by using a gas gun. The vibration responses of natural frequency and damping factor are obtained and are studied for laminates with all edges clamped boundary conditions. Results show considerable improvement in natural frequency and damping factor due to nano clay addition. It is also seen that the nano clay controls the delamination due to impact loading.

  19. Curing agent for polyepoxides and epoxy resins and composites cured therewith. [preventing carbon fiber release

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D. (Inventor)

    1981-01-01

    A curing for a polyepoxide is described which contains a divalent aryl radical such as phenylene a tetravalent aryl radical such as a tetravalent benzene radical. An epoxide is cured by admixture with the curing agent. The cured epoxy product retains the usual properties of cured epoxides and, in addition, has a higher char residue after burning, on the order of 45% by weight. The higher char residue is of value in preventing release to the atmosphere of carbon fibers from carbon fiber-epoxy resin composites in the event of burning of the composite.

  20. Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes

    Science.gov (United States)

    Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin

    2017-08-01

    Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.

  1. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  2. Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface.

    Science.gov (United States)

    Liu, Jingwei; Chen, Chao; Feng, Yuezhan; Liao, Yonggui; Ye, Yunsheng; Xie, Xiaolin; Mai, Yiu-Wing

    2018-01-10

    Understanding the chemistry and structure of interfaces within epoxy resins is important for studying the mechanical properties of nanofiller-filled nanocomposites as well as for developing high-performance polymer nanocomposites. Despite the intensive efforts to construct nanofiller/matrix interfaces, few studies have demonstrated an enhanced stress-transferring efficiency while avoiding unfavorable deformation due to undesirable interface fractures. Here, we report an optimized method to prepare epoxy-based nanocomposites whose interfaces are chemically modulated by poly(glycidyl methacrylate)-block-poly(hexyl methacrylate) (PGMA-b-PHMA)-functionalized multiwalled carbon nanotubes (bc@fMWNTs) and also offer a fundamental explanation of crack growth behavior and the toughening mechanism of the resulting nanocomposites. The presence of block copolymers on the surface of the MWNT results in a promising double-layered interface, in which (1) the outer-layered PGMA segment provides good dispersion in and strong interface bonding with the epoxy matrix, which enhances load transfer efficiency and debonding stress, and (2) the interlayered rubbery PHMA segment around the MWNT provides the maximum removable space for nanotubes as well as triggering cavitation while promoting local plastic matrix deformation, for example, shear banding to dissipate fracture energy. An outstanding toughening effect is achieved with only a 0.05 wt % carbon nanotube loading with the bc@fMWNT, that is, needing only a 20-times lower loading to obtain improvements in fracture toughness comparable to epoxy-based nanocomposites. The enhancements of their corresponding ultimate mode-I fracture toughnesses and fracture energies are 4 times higher than those of pristine MWNT-filled epoxy. These results demonstrate that a MWNT/epoxy interface could be optimized by changing the component structure of grafted modifiers, thereby facilitating the transfer of both mechanical load and energy dissipation

  3. Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy

    International Nuclear Information System (INIS)

    Yao Lirui; Li Min; Wu Qing; Dai Zhishuang; Gu Yizhuo; Li Yanxia; Zhang Zuoguang

    2012-01-01

    Highlights: ► Carbon fiber sizings can react itself and with resin at high temperature. ► Sizings improve IFSS of carbon fiber/epoxy, but reduce that of BMI matrix. ► IFSS of carbon fiber/epoxy is larger than corresponding carbon fiber/BMI. ► Partially desized carbon fiber shows the effect of polymeric sizing component. ► The results are helpful for optimizing sizing agent of carbon fiber composites. - Abstract: This paper aims to study impact of sizing agents on interfacial properties of two T700 grade high strength carbon fibers with bismaleimide (BMI) and epoxy (EP) resin matrix. The fiber surface roughness and chemical properties are analyzed for sized, desized, and partially desized carbon fibers, using atom force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. FTIR analysis indicates that the sizing agents are chemically reactive, and they can react with BMI and EP at high temperatures. The micro-droplet tests exhibit that the desized carbon fibers have lower interfacial strengths with EP than the sized fibers, however, for BMI matrix, opposite trend is revealed. This is consistent with the chemical reactions of the sizing agents with the EP and BMI resins, in which sufficient reactions are observed for the sizing/EP mixture, while only partial reactions are probed for the sizing/BMI mixture. Interestingly, un-extracted epoxy type sizing particles are observed on partially desized carbon fiber surface, which significantly improves the interfacial adhesion with EP matrix.

  4. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Heitbrink, William A. [LMK OSH Consulting LLC (United States); Lo, Li-Ming, E-mail: LLo@cdc.gov [Centers for Disease Control and Prevention (CDC), Division of Applied Research and Technology, National Institute for Occupational Safety and Health (NIOSH) (United States)

    2015-08-15

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20–80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 10{sup 8} and 2.8 × 10{sup 6} fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC.

  5. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    International Nuclear Information System (INIS)

    Heitbrink, William A.; Lo, Li-Ming

    2015-01-01

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20–80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 10 8 and 2.8 × 10 6 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC

  6. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    Directory of Open Access Journals (Sweden)

    Davood Askari and Mehrdad N Ghasemi-Nejhad

    2012-01-01

    Full Text Available The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength using carbon nanotubes (CNTs as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  7. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints.

    Science.gov (United States)

    Askari, Davood; Ghasemi-Nejhad, Mehrdad N

    2012-08-01

    The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength) using carbon nanotubes (CNTs) as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  8. Preparation, Characterization, and Modeling of Carbon Nano fiber/Epoxy Nano composites

    International Nuclear Information System (INIS)

    Sun, L.H.; Yang, Z.G.; Ounaies, Z.; Whalen, C.A.; Gao, X.L.

    2011-01-01

    There is a lack of systematic investigations on both mechanical and electrical properties of carbon nano fiber (CNF)-reinforced epoxy matrix nano composites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nano composites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nano composites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nano composite with a 1.0 wt % CNFs. The alternate-current (AC) electrical properties of the CNF/epoxy nano composites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt % (0.058 vol %) CNFs and by ten orders of magnitude for nano composites with CNF volume fractions higher than 1.0 wt % (0.578 vol %). The percolation threshold (i.e., the critical CNF volume fraction) is found to be at 0.057 vol %.

  9. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.

    Science.gov (United States)

    Khare, Ketan S; Khare, Rajesh

    2013-06-20

    We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.

  10. Analysis and modeling of delamination factor in drilling of woven kenaf fiber reinforced epoxy using Box Behnken experimental design

    Science.gov (United States)

    Suhaily, M.; Che Hassan, C. H.; Jaharah, A. G.; Afifah, M. A.; Nor Khairusshima, M. K.

    2018-01-01

    In this research study, it presents a comprehensive mathematical model for correlating the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates using the Box Behnken experimental design. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated HSS drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs.

  11. Extremely low temperature properties of epoxy GFRP

    International Nuclear Information System (INIS)

    Kadotani, Kenzo; Nagai, Matao; Aki, Fumitake.

    1983-01-01

    The examination of fiber-reinforced plastics, that is, plastics such as epoxy, polyester and polyimide reinforced with high strength fibers such as glass, carbon, boron and steel, for extremely low temperature use began from the fuel tanks of rockets. Therafter, the trial manufacture of superconducting generators and extremely low temperature transformers and the manufacture of superconducting magnets for nuclear fusion experimental setups became active, and high performance FRPs have been adopted, of which the extremely low temperature properties have been sufficiently grasped. Recently, the cryostats made of FRPs have been developed, fully utilizing such features of FRPs as high strength, high rigidity, non-magnetic material, insulation, low heat conductivity, light weight and the freedom of molding. In this paper, the mechanical properties at extremely low temperature of the plastic composite materials used as insulators and structural materials for extremely low temperature superconducting equipment is outlined, and in particular, glass fiber-reinforced epoxy laminates are described somewhat in detail. The fracture strain of GFRP at extremely low temperature is about 1.3 times as large as that at room temperature, but at extremely low temperature, clear cracking occurred at 40% of the fracture strain. The linear thermal contraction of GFRP showed remarkable anisotropy. (Kako, I.)

  12. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Nitai Chandra Adak

    2018-02-01

    Full Text Available Thermally reduced graphene oxide (TRGO was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spectroscopy and field emission scanning electron microscopy (FE-SEM techniques. It was observed that the wrinkled structure of synthesized TRGO may be helpful to interlock with the epoxy resin and CF.The inter-laminar shear strength, in-plane fracture toughness and impact strength increased by ~67%, 62% and 93% at 0.2 wt % of TRGO loading in the CF/epoxy composites as compared to the CF reinforced epoxy. The mechanical properties of the hybrid composites decreased beyond the 0.2 wt % of TRGO incorporation in the epoxy resin. The fracture surfaces of the hybrid composites were studied by FE-SEM image analysis to investigate the synergistic effect of TRGO in the CF/epoxy composite. This study suggested that TRGO could be used asgood nanofiller to resist the matrix and fiber fracture.

  13. Predictions of Poisson's ratio in cross-ply laminates containing matrix cracks and delaminations

    Science.gov (United States)

    Harris, Charles E.; Allen, David H.; Nottorf, Eric W.

    1989-01-01

    A damage-dependent constitutive model for laminated composites has been developed for the combined damage modes of matrix cracks and delaminations. The model is based on the concept of continuum damage mechanics and uses second-order tensor valued internal state variables to represent each mode of damage. The internal state variables are defined as the local volume average of the relative crack face displacements. Since the local volume for delaminations is specified at the laminate level, the constitutive model takes the form of laminate analysis equations modified by the internal state variables. Model implementation is demonstrated for the laminate engineering modulus E(x) and Poisson's ratio nu(xy) of quasi-isotropic and cross-ply laminates. The model predictions are in close agreement to experimental results obtained for graphite/epoxy laminates.

  14. Multidimensional Nanocomposites of Epoxy Reinforced with 1D and 2D Carbon Nanostructures for Improve Fracture Resistance

    Directory of Open Access Journals (Sweden)

    Juventino López-Barroso

    2018-03-01

    Full Text Available A hybrid nanocomposites based on epoxy reinforced with a combination of 1D and 2D carbon nanomaterials for improving impact resistance are reported. Multi-walled carbon nanotubes and oxidized-multi-walled carbon nanotubes are used as 1D nanoreinforcements, and graphene derivative materials such as graphene oxide and reduced graphene oxide are utilized as 2D nanoreinforcements. In this research, the impact resistance of epoxy matrix reinforced with 1D or 2D and the mixture of both nanomaterials is studied. The research is focused on evaluation of the influence of adding different combinations of nanomaterials into epoxy resin and their Izod impact response. Moreover, fracture surface of nanocomposites is observed by scanning electron microscopy. Images show differences between the surfaces of brittle nature on thermoset epoxy polymer and tough nanocomposites. Synergy created with 1D and 2D nanomaterials produces stable dispersions in the processing, reflected in the interface. The interactions in nanocomposites are evidenced by infrared spectra, principally on the peaks related to oxygenated functional groups present in nanomaterials and absent in polymer matrix. Consequently, an increase of 138% in fracture strength of nanocomposites is exhibited, in comparison to the neat epoxy matrix. In addition, hybrid nanocomposites were synthesized in two different methods to evaluate the influence of manufacturing method on final properties of nanocomposites.

  15. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  16. SYNTHESIS AND STUDY OF CORROSION PERFORMANCE OF EPOXY COATING CONTAINING MULTI-WALLED CARBON NANOTUBE/ POLY ORTHO AMINOPHENOL NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    N. Bahrami Panah

    2016-03-01

    Full Text Available The epoxy coatings containing multi-walled carbon nanotube/ poly ortho aminophenol nanocomposite were prepared and used as anticorrosive coatings. The nanocomposites with different contents of carbon nanotube were synthesized in a solution of sodium dodecyl sulfate and ammonium peroxy disulfate as a surfactant and an oxidant, respectively. The morphology and structural properties were confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy methods. The mean size of nanocomposite particles was 20-35 nm determined by scanning electron microscopy. The epoxy coatings containing the nanocomposites were applied over mild steel panels and their corrosion performance was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization measurements in a 3.5 % sodium chloride solution. The results showed that epoxy coatings consisting of nanocomposite with 1 wt.% multi-walled carbon nanotube exhibited higher anticorrosive properties than other prepared coatings of different carbon nanotube contents, which could be due to the strong interaction between the mild steel surface and the conjugated nanocomposite.

  17. The performance of integrated active fiber composites in carbon fiber laminates

    International Nuclear Information System (INIS)

    Melnykowycz, M; Brunner, A J

    2011-01-01

    Piezoelectric elements integrated into fiber-reinforced polymer-matrix laminates can provide various functions in the resulting adaptive or smart composite. Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers can be used as a component in a smart material system, and can be easily integrated into woven composites. However, the impact of integration on the device and its functionality has not been fully investigated. The current work focuses on the integration and performance of AFC integrated into carbon-fiber-reinforced plastic (CFRP) laminates, focusing on the strain sensor performance of the AFC–CFRP laminate under tensile loading conditions. AFC were integrated into cross-ply CFRP laminates using simple insertion and interlacing of the CFRP plies, with the AFC always placed in the 90° ply cutout area. Test specimens were strained to different strain levels and then cycled with a 0.01% strain amplitude, and the resulting signal from the AFC was monitored. Acoustic emission monitoring was performed during tensile testing to provide insight to the failure characteristics of the PZT fibers. The results were compared to those from past studies on AFC integration; the strain signal of AFC integrated into CFRP was much lower than that for AFC integrated into woven glass fiber laminates. However, the profiles of the degradations of the AFC signal resulting from the strain were nearly identical, showing that the PZT fibers fragmented in a similar manner for a given global strain. The sensor performance recovered upon unloading, which is attributed to the closure of cracks between PZT fiber fragments

  18. An experimental study on moisture absorption for jute-epoxy composite with coatings exposed to different pH media

    Directory of Open Access Journals (Sweden)

    Radhika Londhe

    2016-09-01

    The purpose of this work is to study the moisture absorption and mechanical properties of jute-epoxy composites. Jute fibres are treated with NaOH before manufacturing of composite laminate in order to improve adhesion with epoxy material. Further jute-epoxy composite specimens were coated with epoxy resin and acrylic paint. Composite specimens with and without coatings are subjected to absorption in solutions of different pH media, for 28 days (666 h. The effect of coatings on reduction in moisture absorption for jute-epoxy composite is presented in this current work.

  19. Pitch catch ultrasonic study on unidirectional CFRP composite laminates using rayleigh wave transducers

    International Nuclear Information System (INIS)

    Park, Je Woong; Yang, In Young; Im, Kwang Hee; Hsu, David K.; Jung, Jong An

    2012-01-01

    The importance of carbon fiber reinforced plastics (CFRP) has been generally recognized, and CFRP composite laminates have become widely used. Thus, a nondestructive technique would be very useful for evaluating CF/epoxy composite laminates. A pitch catch UT signal is more sensitive than is a normal incidence backwall echo of a longitudinal wave in composites. The depth of the sampling volume where the pitch catch UT signal came from is relatively shallow, but the depth can be increased by increasing the separation distance of the transmitting and receiving probes. Moreover, a method is utilized to determine the porosity content of a composite lay up by processing micrograph images of the laminate. The porosity content of a composite structure is critical to the overall strength and performance of the structure. The image processing method developed utilizes software to process micrograph images of the test sample. The results from the image processing method are compared with existing data. Beam profile is characterized in unidirectional CFRP using pitch catch Rayleigh probes. The one sided and two sided pitch catch techniques are utilized to produce C scan images with the aid of an automatic scanner. The pitch catch ultrasonic signal corresponds with the simulated results of unidirectional CFRP composites

  20. The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Zhang, W; Picu, R C; Koratkar, N

    2008-01-01

    Fatigue is one of the primary reasons for failure in structural materials. It has been demonstrated that carbon nanotubes can suppress fatigue in polymer composites via crack-bridging and a frictional pull-out mechanism. However, a detailed study of the effects of nanotube dimensions and dispersion on the fatigue behavior of nanocomposites has not been performed. In this work, we show the strong effect of carbon nanotube dimensions (i.e. length, diameter) and dispersion quality on fatigue crack growth suppression in epoxy nanocomposites. We observe that the fatigue crack growth rates can be significantly reduced by (1) reducing the nanotube diameter, (2) increasing the nanotube length and (3) improving the nanotube dispersion. We qualitatively explain these observations by using a fracture mechanics model based on crack-bridging and pull-out of the nanotubes. By optimizing the above parameters (tube length, diameter and dispersion) we demonstrate an over 20-fold reduction in the fatigue crack propagation rate for the nanocomposite epoxy compared to the baseline (unfilled) epoxy

  1. Epoxy elastomers reinforced with functionalized multi-walled carbon nanotubes as stimuli-responsive shape memory materials

    International Nuclear Information System (INIS)

    Lama, G. C.; Nasti, G.; Cerruti, P.; Gentile, G.; Carfagna, C.; Ambrogi, V.

    2014-01-01

    In this work, the incorporation of multiwalled carbon nanotubes (MWCNT) into epoxy-based elastomers was carried out in order to obtain nanocomposite systems with shape memory effect. For the preparation of elastomeric matrices, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was cured with sebacic acid. DOMS was synthesized in our laboratory and it is characterized by a rigid-rod, potentially liquid crystalline structure. A lightly cross-linked liquid crystalline elastomer was obtained. As for nanocomposites, variable amounts (0.75, 1.50, 3.0, 6.0, 12.0 wt.%) of COOH-MWCNTs were employed. In order to improve the nanotubes dispersibility and the interfacial adhesion with the epoxy matrix, an optimized two-step procedure was developed, which consisted in grafting the epoxy monomer onto the nanotube surface and then curing it in presence of crosslinking agent. DOMS-functionalized MWCNT were characterized through solvent dispersion experiments, FTIR spectroscopy and TGA analysis, which demonstrated the occurred covalent functionalization of the nanotubes with the epoxy monomers. The morphological analysis through electron microscopy demonstrated that this was an efficient strategy to improve the dispersion of nanotubes within the matrix. The second part of the work was devoted to the structural, thermal, mechanical and electric characterization of elastomeric nanocomposites. The results indicated a general improvement of properties of nanocomposites. Also, independently of the nanotube content, a smectic phase formed. Shape memory features of LC systems were also evaluated. It was demonstrated the shape could be recovered through heating, solvent immersion, as well as upon the application of an electrical field

  2. The electron beam cure of epoxy paste adhesives

    International Nuclear Information System (INIS)

    Farmer, J.D.; Janke, C.J.; Lopata, V.J.

    1998-01-01

    Recently developed epoxy paste adhesives were electron beam cured and experimentally explored to determine their suitability for use in an aerospace-quality aircraft component. There were two major goals for this program. The first was to determine whether the electron beam-curable past adhesives were capable of meeting the requirements of the US Air Force T-38 supersonic jet trainer composite windshield frame. The T-38 windshield frame's arch is currently manufactured by bonding thin stainless steel plies using an aerospace-grade thermally-cured epoxy film adhesive. The second goal was to develop the lowest cost hand layup and debulk process that could be used to produce laminated steel plies with acceptable properties. The laminate properties examined to determine adhesive suitability include laminate mechanical and physical properties at room, adhesive tack, out-time capability, and the debulk requirements needed to achieve these properties. Eighteen past adhesives and four scrim cloths were experimentally examined using this criteria. One paste adhesive was found to have suitable characteristics in each of these categories and was later chosen for the manufacture of the T-38 windshield frame. This experimental study shows that by using low-cost debulk and layup processes, the electron beam-cured past adhesive mechanical and physical properties meet the specifications of the T-38 composite windshield frame

  3. Effect of nitrogen-doped carbon dots on the anticorrosion properties of waterborne epoxy coatings

    Science.gov (United States)

    Ren, Siming; Cui, Mingjun; Zhao, Haichao; Wang, Liping

    2018-06-01

    In this work, nitrogen-doped carbon dots (NCDs) are prepared by solvothermal method and the effect of NCDs on the anticorrosion property of waterborne epoxy (EP) is investigated. Scanning probe microscopy results show that the size of the NCDs is about 4–6 nm. In addition, the anticorrosion property of NCD-incorporated waterborne epoxy coatings is investigated via electrochemical techniques and scanning electron microscopy. Electrochemical results demonstrate that the impedance modulus of 2.0% NCDs/EP is 364 times higher than that of blank EP after 800 h of immersion, indicating significant enhancement in the anticorrosion property of waterborne epoxy coating. The reason is that NCDs with lots of surface functional groups can connect with waterborne epoxy to suppress enlargement of the pores, and reduce the diffusion of oxygen in the coating, thus cutting off the connection between the substrate and oxygen, and delaying corrosion of the substrate.

  4. Bonding techniques for flexural strengthening of R.C. beams using CFRP laminates

    Directory of Open Access Journals (Sweden)

    Alaa Morsy

    2013-09-01

    Full Text Available This paper presents an experimental study of an alternative method of attaching FRP laminates to reinforced concrete beams by the way of fasting steel rivets through the FRP laminate and concrete substrate. Five full scale R.C. beams were casted and strengthened in flexural using FRP laminate bonded with conventional epoxy and compared with other beams strengthened with FRP laminate and bonded with fastener “steel rivets” of 50 mm length and 10 mm diameter. Based on experimental evidence the beam strengthened with conventional bonding methods failed due to de-bonding with about 13% increase over the un-strengthened beam. On the other hand, the beams strengthened with FRP laminate and bonded by four steel fastener rivets only failed by de-bonding also but at higher flexural capacity with increase 19% over the un-strengthened beam.

  5. Criterion of damage beginning: experimental identification for laminate composite

    International Nuclear Information System (INIS)

    Thiebaud, F.; Perreux, D.; Varchon, D.; Lebras, J.

    1996-01-01

    The aim of this study is to propose a criterion of damage beginning for laminate composite. The materials is a glass-epoxy laminate [+55 deg.,-55 deg.[ n performed by winding filament process. First of all a description of the damage is performed and allows to define a damage variable. Thanks to the potential of free energy, an associated variable is defined. The damage criterion is written by using this last one. The parameter of the criterion is identified using mechanical and acoustical methods. The result is compared and exhibit a good agreement. (authors). 13 refs., 5 figs

  6. Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles

    Science.gov (United States)

    Schlagenhauf, Lukas; Kianfar, Bahareh; Buerki-Thurnherr, Tina; Kuo, Yu-Ying; Wichser, Adrian; Nüesch, Frank; Wick, Peter; Wang, Jing

    2015-11-01

    Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of the abraded particles, and the toxicity of abraded particles, measured by in vitro toxicity tests using the THP-1 monocyte-derived macrophages. The results showed that weathering by immersion in water had no influence on the properties of abraded particles. The exposure to UV light caused a degradation of the epoxy on the surface, followed by delamination of an approx. 2.5 μm thick layer. An increased quantity of exposed CNTs in abraded particles was not found; on the contrary, longer UV exposure times decreased the released fraction of CNTs from 0.6% to 0.4%. The toxicity tests revealed that abraded particles from the nanocomposites did not induce additional acute cytotoxic effects compared to particles from the neat epoxy.Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of

  7. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts

    Directory of Open Access Journals (Sweden)

    Yiru Wang

    2018-04-01

    Full Text Available Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl-2-ethyl-4-methylimidazol(EP-1C2E4MIM system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.

  8. Hybrid Carbon-Glass Fiber/Toughened Epoxy Thick Composite Joints Subject to Drop-Weight and Ballistic Impacts

    National Research Council Canada - National Science Library

    Liaw, Benjamin; Delale, Feridun

    2007-01-01

    ... No. DAAD19-02-R-0010 to conduct research on hybrid carbon-S2 glass fiber/toughened epoxy thick-section, hybrid interwoven composite joints subject to drop-weight and ballistic impacts. Dr. Basavaraju B. Raju of U.S...

  9. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Goyat, M.S., E-mail: goyatmanjeetsingh@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India); Suresh, Sumit; Bahl, Sumit [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India); Halder, Sudipta [Department of Mechanical Engineering, National Institute of Technology, Silchar, 788010, Assam (India); Ghosh, P.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India)

    2015-09-15

    The current research on carbon nano beads (CNB) is focused on various applications such as high strength nanocomposites, electronic devices, lubricants, semiconductors, and high-performance batteries, etc. The commercial uses of CNB are yet juvenile for the market. Only limited results have been published so far on CNB reinforced polymers [1]. This study highlights the synthesis of uniform size, spherical CNB using chemical vapour deposition (CVD) method. The synthesized CNB are introduced into epoxy matrix by ultrasonic dual mode mixing route to produce CNB/epoxy nanocomposite. The CNB are characterized by X-ray diffraction, Energy dispersive X-ray analysis and field emission scanning electron microscope (FESEM). Morphology, thermal and mechanical properties of the CNB/epoxy nanocomposites is characterized by FESEM, Thermo-gravimetric analyzer and tensile and bending tests respectively. A noticeable improvement in thermal and mechanical properties of CNB reinforced epoxy matrix with low nanofiller content is observed. Several toughening mechanisms such as particle pull out, crack deflection, particle bridging, crack pinning, shear yielding or plastic deformation, and microcracking are identified. But, only the crack deflection, particle bridging and shear yielding or plastic deformations are recognized as the leading toughening mechanisms for CNB/epoxy nanocomposite. These results can be considered as symptomatic of a potential CNB espousal in new composites. - Highlights: • Synthesis of uniform size, spherical CNB using chemical vapour deposition method. • Fabrication of CNB/epoxy nanocomposites by ultrasonic dual mode mixing route. • Significant enhancement in thermomechanical properties of CNB/epoxy nanocomposite. • Main toughening mechanisms: Crack deflection, particle bridging and shear yielding.

  10. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite

    International Nuclear Information System (INIS)

    Goyat, M.S.; Suresh, Sumit; Bahl, Sumit; Halder, Sudipta; Ghosh, P.K.

    2015-01-01

    The current research on carbon nano beads (CNB) is focused on various applications such as high strength nanocomposites, electronic devices, lubricants, semiconductors, and high-performance batteries, etc. The commercial uses of CNB are yet juvenile for the market. Only limited results have been published so far on CNB reinforced polymers [1]. This study highlights the synthesis of uniform size, spherical CNB using chemical vapour deposition (CVD) method. The synthesized CNB are introduced into epoxy matrix by ultrasonic dual mode mixing route to produce CNB/epoxy nanocomposite. The CNB are characterized by X-ray diffraction, Energy dispersive X-ray analysis and field emission scanning electron microscope (FESEM). Morphology, thermal and mechanical properties of the CNB/epoxy nanocomposites is characterized by FESEM, Thermo-gravimetric analyzer and tensile and bending tests respectively. A noticeable improvement in thermal and mechanical properties of CNB reinforced epoxy matrix with low nanofiller content is observed. Several toughening mechanisms such as particle pull out, crack deflection, particle bridging, crack pinning, shear yielding or plastic deformation, and microcracking are identified. But, only the crack deflection, particle bridging and shear yielding or plastic deformations are recognized as the leading toughening mechanisms for CNB/epoxy nanocomposite. These results can be considered as symptomatic of a potential CNB espousal in new composites. - Highlights: • Synthesis of uniform size, spherical CNB using chemical vapour deposition method. • Fabrication of CNB/epoxy nanocomposites by ultrasonic dual mode mixing route. • Significant enhancement in thermomechanical properties of CNB/epoxy nanocomposite. • Main toughening mechanisms: Crack deflection, particle bridging and shear yielding.

  11. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    Directory of Open Access Journals (Sweden)

    John H. Cantrell

    2015-03-01

    Full Text Available The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS of the composite. The H-bond contributions τ to the ILSS and magnitudes KN of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The KN calculations fall in the range (2.01 – 4.67 ×1017 N m−3. The average ratio KN/|τ| is calculated to be (2.59 ± 0.043 × 1010 m−1 for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of KN via a technique such as angle beam ultrasonic spectroscopy.

  12. Effect of filler geometry on coefficient of thermal expansion in carbon nanofiber reinforced epoxy composites.

    Science.gov (United States)

    Cho, M; Jang, J; Suhr, J

    2011-02-01

    This study involves the investigation of the geometry effect of nano-fillers on thermally induced dimensional stability of epoxy composites by experimentally evaluating the linear coefficient of thermal expansion (CTE). Carbon nanofibers (CNF) were chosen as the filler in epoxy matrix to investigate the effect of an aspect ratio on the CTE of the nanocomposites at three different volume fractions of 0.5, 1, and 2% of the nano-filler. The composites were fabricated using a mechanical mixing method. The CTE values were evaluated by measuring thermal strains of the composites and also compared with a micromechanics model. It was observed that the composites with short CNF (average L/d = 10) show better thermal stability than one of the composites with long CNF (average L/d = 70), and the thermal stability of the composites was proportional to the volume fraction of the filler in each composite. In addition, the CTE of mutliwalled carbon nanotubes (MWNT) reinforced epoxy composites was evaluated and compared with the CTE of the CNF reinforced composites. Interestingly, the MWNT reinforced composites show the greatest thermal stability with an 11.5% reduction in the CTE over the pure epoxy. The experimental data was compared with micromechanics model.

  13. Development of design data for graphite reinforced epoxy and polyimide composites

    Science.gov (United States)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  14. Liquid crystal polyester-carbon fiber composites

    Science.gov (United States)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  15. ナノPZT 粒子分散層と絶縁コーティングカーボンクロス層により形成された自己診断積層CFRP の開発<論文>

    OpenAIRE

    蔭山, 健介

    2006-01-01

    CFRP laminates specimens with Nano-PZT particulate epoxy resin layers and insulating coating carbon layers were prepared. Two types of insulating coating were examined and one liquid type epoxy adhesive showed excellent insulation of carbon layers. CFRP laminates specimens suffered tensile or fatigue testing and signals of electric current generated by hitting specimens were measured simultaneously. The electric signal tended to increase with loading or fatigue cycles and sudden increase in t...

  16. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements

    KAUST Repository

    Lubineau, Gilles; Rahaman, Ariful

    2012-01-01

    . To date, much work has been done on nano-reinforced polymers. However, few systematic studies concerning the effect of the nanoreinforcements on the mechanical properties on laminated composites were conducted. This paper presents a systematic review

  17. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Cuiqin [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Julin, E-mail: julinwang@126.com [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Tao [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2014-12-01

    Graphical abstract: - Highlights: • COOH-CNTs can react with sizing agent, and the optimum reaction ratio was 1:20. • Carbon fibers were dipped into the mixture bath of CNTs and sizing agent. • SEM results indicate that fibers surfaces were coated with CNTs and sizing agent. • ILSS was increased by 67.01% for the composites after the mixture coating process. • Single fibers tensile strength was maintained after the deposited process. - Abstract: The effects of deposition to carbon fibers surfaces with mixture of functionalized multi-walled carbon fibers (MWCNTs) and sizing agent were investigated. Relationships between CNTs and sizing agent were studied with Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS) and Ubbelohde viscometer. The results revealed that CNTs could react with sizing agent at 120 °C, and optimal reaction occurs when mass ratio was about 1:20. Then, carbon fibers were immersed in mixed aqueous suspension of CNTs and sizing agent with the above ratio dispersed by ultrasonication. According to scanning electron microscope (SEM) observations, fibers surfaces were coated with CNTs and sizing agent. The static contact angle tests indicated wetting performance between fibers and epoxy resin were improved after deposited procedures. Interlaminar shear strength was increased by 67.01% for fibers/epoxy resin composites after mixture deposited process. Moreover, the tensile strength of single fibers after depositing showed a slightly increase compared with that of fibers without depositing layer.

  18. Seawater Durability of Nano-Montmorillonite Modified Single-Lap Joining Epoxy Composite Laminates

    OpenAIRE

    ULUS, Hasan; KAYBAL, Halil Burak; DEMİR, Okan; TATAR, Ahmet Caner; SENYURT, Muhammed Ali; AVCI, Ahmet

    2018-01-01

    The objective of this study was to investigate of nano-montmorillonite modified epoxy composite single-lap bonded joints, after being exposed to seawater immersion in order to understand the effect of seawater environment on their performance. To prepare the nano adhesives, nano montmorillonite (2 wt %) was incorporated into epoxy resin. Composite bonded specimens which manufactured with VARIM (Vacuum Assisted Resin Infusion Method) were prepared accordance with ASTM D5868-01 and immersed in ...

  19. Influence of Cutting Temperature on the Tensile Strength of a Carbon Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Jérémy Delahaigue

    2017-12-01

    Full Text Available Carbon fiber-reinforced plastics (CFRP have seen a significant increase in use over the years thanks to their specific properties. Despite continuous improvements in the production methods of laminated parts, a trimming operation is still necessary to achieve the functional dimensions required by engineering specifications. Laminates made of carbon fibers are very abrasive and cause rapid tool wear, and require high cutting temperatures. This creates damage to the epoxy matrix, whose glass-transition temperature is often recognized to be about 180 °C. This study aims to highlight the influence of the cutting temperature generated by tool wear on the surface finish and mechanical properties obtained from tensile tests. Trimming operations were performed on a quasi-isotropic 24-ply carbon/epoxy laminate, of 3.6 mm thickness, with a 6 flutes diamond-coated (CVD cutter. The test specimens of 6 mm and 12 mm wide were obtained by trimming. The reduced width of the coupons allowed amplification of the effect of defects on the measured properties by increasing the proportion of coupon cross-section occupied by the defects. A new tool and a tool in an advanced state of wear were used to generate different cutting temperatures. Results showed a cutting temperature of 300 °C for the new tool and 475 °C for the worn tool. The analysis revealed that the specimens machined with the new tool have no thermal damage and the cut is clean. The plies oriented at −45° presented the worst surface finish according to the failure mode of the fiber. For the worn tool, the surface was degraded and the matrix was carbonized. After cutting, observations showed a degraded resin spread on the machined surface, which reduced the surface roughness and hid the cutting defects. In support of these observations, the tensile tests showed no variation of the mechanical properties for the 12 mm-wide specimens, but did show a 10% loss in mechanical properties for the 6 mm

  20. Carbon black reinforced C8 ether linked bismaleimide toughened electrically conducting epoxy nanocomposites

    International Nuclear Information System (INIS)

    Mandhakini, M.; Chandramohan, A.; Jayanthi, K.; Alagar, M.

    2014-01-01

    Highlight: • The toughness of the epoxy is improved with C8e-BMI. • Conduction through ohmic contact chain takes the leading mechanism for electrical conduction instead of tunneling with 5 wt% CB. • The phase segregation between epoxy/C8 e-BMI improves the toughness of the nanocomposite. • Both toughening and flexibilization effect is responsible for improvement in impact strength. • The largest challenge of appropriate balance between the electrical conductivity and mechanical behavior is attained in a cost effective manner. - Abstract: The present work deals with the toughening of brittle epoxy matrix with C8 ether linked bismaleimide (C8 e-BMI) and then study the reinforcing effect of carbon black (CB) in enhancing the conducting properties of insulating epoxy matrix. The Fourier transform infrared spectroscopy (FTIR) and Raman analysis indicate the formation of strong covalent bonds between CB and C8 e-BMI/epoxy matrix. The X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) analysis indicate the event of phase separation in 5 wt% CB loaded epoxy C8 e-BMI nanocomposites. The impact strength increased up to 5 wt% of CB loading with particle pull and crack deflection to be driving mechanism for enhancing the toughness of the nanocomposite and beyond 5 wt% the impact strength started to decrease due to aggregation of CB. The dynamic mechanical analysis (DMA) also indicates the toughness of the nanocomposites was improved with 5 wt% of CB loading due to the phase segregation between epoxy and C8 e-BMI in the presence of CB. The electrical conductivity was also increased with 5 wt% of CB due to classical conduction by ohmic chain contact

  1. Improvement of Fracture Toughness in Epoxy Nanocomposites through Chemical Hybridization of Carbon Nanotubes and Alumina.

    Science.gov (United States)

    Zakaria, Muhammad Razlan; Abdul Kudus, Muhammad Helmi; Md Akil, Hazizan; Zamri, Mohd Hafiz

    2017-03-16

    The current study investigated the effect of adding a carbon nanotube-alumina (CNT-Al₂O₃) hybrid on the fracture toughness of epoxy nanocomposites. The CNT-Al₂O₃ hybrid was synthesised by growing CNTs on Al₂O₃ particles via the chemical vapour deposition method. The CNTs were strongly attached onto the Al₂O₃ particles, which served to transport and disperse the CNTs homogenously, and to prevent agglomeration in the CNTs. The experimental results demonstrated that the CNT-Al₂O₃ hybrid-filled epoxy nanocomposites showed improvement in terms of the fracture toughness, as indicated by an increase of up to 26% in the critical stress intensity factor, K 1 C , compared to neat epoxy.

  2. Analysis and Tests of Reinforced Carbon-Epoxy/Foam-Core Sandwich Panels with Cutouts

    Science.gov (United States)

    Baker, Donald J.; Rogers, Charles

    1996-01-01

    The results of a study of a low-cost structurally efficient minimum-gage shear-panel design that can be used in light helicopters are presented. The shear-panel design is based on an integrally stiffened syntactic-foam stabilized-skin with an all-bias-ply tape construction for stabilized-skin concept with an all-bias-ply tape construction for the skins. This sandwich concept is an economical way to increase the panel bending stiffness weight penalty. The panels considered in the study were designed to be buckling resistant up to 100 lbs/in. of shear load and to have an ultimate strength of 300 lbs/in. The panel concept uses unidirectional carbon-epoxy tape on a syntactic adhesive as a stiffener that is co-cured with the skin and is an effective concept for improving panel buckling strength. The panel concept also uses pultruded carbon-epoxy rods embedded in a syntactic adhesive and over-wrapped with a bias-ply carbon-epoxy tape to form a reinforcing beam which is an effective method for redistributing load around rectangular cutout. The buckling strength of the reinforced panels is 83 to 90 percent of the predicted buckling strength based on a linear buckling analysis. The maximum experimental deflection exceeds the maximum deflection predicted by a nonlinear analysis by approximately one panel thickness. The failure strength of the reinforced panels was two and a half to seven times of the buckling strength. This efficient shear-panel design concept exceeds the required ultimate strength requirement of 300 lbs/in by more than 100 percent.

  3. Thermal Protection of Carbon Fiber-Reinforced Composites by Ceramic Particles

    Directory of Open Access Journals (Sweden)

    Baljinder Kandola

    2016-06-01

    Full Text Available The thermal barrier efficiency of two types of ceramic particle, glass flakes and aluminum titanate, dispersed on the surface of carbon-fiber epoxy composites, has been evaluated using a cone calorimeter at 35 and 50 kW/m2, in addition to temperature gradients through the samples’ thicknesses, measured by inserting thermocouples on the exposed and back surfaces during the cone tests. Two techniques of dispersing ceramic particles on the surface have been employed, one where particles were dispersed on semi-cured laminate and the other where their dispersion in a phenolic resin was applied on the laminate surface, using the same method as used previously for glass fiber composites. The morphology and durability of the coatings to water absorption, peeling, impact and flexural tension were also studied and compared with those previously reported for glass-fiber epoxy composites. With both methods, uniform coatings could be achieved, which were durable to peeling or water absorption with a minimal adverse effect on the mechanical properties of composites. While all these properties were comparable to those previously observed for glass fiber composites, the ceramic particles have seen to be more effective on this less flammable, carbon fiber composite substrate.

  4. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valdirene Aparecida [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Folgueras, Luiza de Castro; Candido, Geraldo Mauricio; Paula, Adriano Luiz de; Rezende, Mirabel Cerqueira, E-mail: mirabelmcr@iae.cta.br [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Div. de Materiais; Costa, Michelle Leali [Universidade Estadual Paulista Julio de Mesquita Filho (DMT/UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia

    2013-07-01

    Nanostructured polymer composites have opened up new perspectives for multifunctional materials. In particular, carbon nanotubes (CNTs) present potential applications in order to improve mechanical and electrical performance in composites with aerospace application. The combination of epoxy resin with multi walled carbon nanotubes results in a new functional material with enhanced electromagnetic properties. The objective of this work was the processing of radar absorbing materials based on formulations containing different quantities of carbon nanotubes in an epoxy resin matrix. To reach this objective the adequate concentration of CNTs in the resin matrix was determined. The processed structures were characterized by scanning electron microscopy, rheology, thermal and reflectivity in the frequency range of 8.2 to 12.4 GHz analyses. The microwave attenuation was up to 99.7%, using only 0.5% (w/w) of CNT, showing that these materials present advantages in performance associated with low additive concentrations (author)

  5. Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: Effects of CNT morphology and dispersion state

    OpenAIRE

    Siddiqui, Naveed A.; Li, Erin L.; Sham, Man-Lung; Tang, Ben Zhong; Gao, Shang Lin; Mäder, Edith; Kim, Jang-Kyo

    2010-01-01

    A study has been made of a concept of 'healing' coatings applied onto the brittle fibre surface to reduce the stress concentrations and thus to improve the reinforcing efficiency in a composite. Coatings made from neat epoxy and carbon nanotube (CNT) reinforced epoxy nanocomposite were applied onto the individual glass fibres as well as rovings. It is shown that the 0.3 wt.% CNT–epoxy nanocomposite coating gave rise to a significant increase in tensile strength of the single fibre for all gau...

  6. Master plot analysis of microcracking in graphite/epoxy and graphite/PEEK laminates

    Science.gov (United States)

    Nairn, John A.; Hu, Shoufeng; Bark, Jong Song

    1993-01-01

    We used a variational stress analysis and an energy release rate failure criterion to construct a master plot analysis of matrix microcracking. In the master plot, the results for all laminates of a single material are predicted to fall on a single line whose slope gives the microcracking toughness of the material. Experimental results from 18 different layups of AS4/3501-6 laminates show that the master plot analysis can explain all observations. In particular, it can explain the differences between microcracking of central 90 deg plies and of free-surface 90 deg plies. Experimental results from two different AS4/PEEK laminates tested at different temperatures can be explained by a modified master plot that accounts for changes in the residual thermal stresses. Finally, we constructed similar master plot analyses for previous literature microcracking models. All microcracking theories that ignore the thickness dependence of the stresses gave poor results.

  7. Ballistic impact velocity response of carbon fibre reinforced aluminium alloy laminates for aero-engine

    Science.gov (United States)

    Mohammed, I.; Abu Talib, A. R.; Sultan, M. T. H.; Saadon, S.

    2017-12-01

    Aerospace and other industries use fibre metal laminate composites extensively due to their high specific strength, stiffness and fire resistance, in addition to their capability to be tailored into different forms for specific purposes. The behaviours of such composites under impact loading is another factor to be considered due to the impacts that occur in take-off, landing, during maintenance and operations. The aim of the study is to determine the specific perforation energy and impact strength of the fibre metal laminates of different layering pattern of carbon fibre reinforced aluminium alloy and hybrid laminate composites of carbon fibre and natural fibres (kenaf and flax). The composites are fabricated using the hand lay-up method in a mould with high bonding polymer matrix and compressed by a compression machine, cured at room temperature for one day and post cure in an oven for three hours. The impact tests are conducted using a gun tunnel system with a flat cylindrical bullet fired using a helium gas at a distance of 14 inches to the target. Impact and residual velocity of the projectile are recorded by high speed video camera. Specific perforation energy of carbon fibre reinforced aluminium alloy (CF+AA) for both before and after fire test are higher than the specific perforation energy of the other composites considered before and after fire test respectively. CF +AA before fire test is 55.18% greater than after. The same thing applies to impact strength of the composites where CF +AA before the fire test has the highest percentage of 11.7%, 50.0% and 32.98% as respectively compared to carbon fibre reinforced aluminium alloy (CARALL), carbon fibre reinforced flax aluminium alloy (CAFRALL) and carbon fibre reinforced kenaf aluminium alloy (CAKRALL), and likewise for the composites after fire test. The considered composites in this test can be used in the designated fire zone of an aircraft engine to protect external debris from penetrating the engine

  8. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  9. An Investigation on Tensile Properties of Glass Fiber/Aluminium Laminates

    Directory of Open Access Journals (Sweden)

    M. Sadighi

    2009-12-01

    Full Text Available The idea of combining low weight and good mechanical properties has led to efforts to develop a new light fiber/metal laminate (FML in the last decade. FMLs are hybrid composites consisting of alternating thin layers of metal sheets and fiber-reinforced epoxy prepregs. In this study, the effect of fiber orientation on tensile properties of this material is investigated both analytically and experimentally. An analytical constitutive model based on classical lamination theory by using Kirchhoff-Love assumption, which incorporates the elastic-plastic behavior of the aluminium alloy was applied. Test results show that fiber sheet, with zero angle in laminates, improve the tensile strength. The composite layers with different fiber orientation change specimens' mode of fracture. Good agreement is obtained between the model predictions and experimental results.

  10. Dielectric properties of carbon nanotubes/epoxy composites.

    Science.gov (United States)

    Peng, Jin-Ping; Zhang, Hui; Tang, Long-Cheng; Jia, Yu; Zhang, Zhong

    2013-02-01

    Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.

  11. Comparison of Open-Hole Compression Strength and Compression After Impact Strength on Carbon Fiber/Epoxy Laminates for the Ares I Composite Interstage

    Science.gov (United States)

    Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.

    2011-01-01

    Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.

  12. The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments.

    Science.gov (United States)

    Manoharan, M P; Sharma, A; Desai, A V; Haque, M A; Bakis, C E; Wang, K W

    2009-07-22

    Carbon nanotubes and nanofibers are extensively researched as reinforcing agents in nanocomposites for their multifunctionality, light weight and high strength. However, it is the interface between the nanofiber and the matrix that dictates the overall properties of the nanocomposite. The current trend is to measure elastic properties of the bulk nanocomposite and then compare them with theoretical models to extract the information on the interfacial strength. The ideal experiment is single fiber pullout from the matrix because it directly measures the interfacial strength. However, the technique is difficult to apply to nanocomposites because of the small size of the fibers and the requirement for high resolution force and displacement sensing. We present an experimental technique for measuring the interfacial strength of nanofiber-reinforced composites using the single fiber pullout technique and demonstrate the technique for a carbon nanofiber-reinforced epoxy composite. The experiment is performed in situ in a scanning electron microscope and the interfacial strength for the epoxy composite was measured to be 170 MPa.

  13. Investigation of the Mechanical Properties of Hybrid Carbon-Hemp Laminated Composites Used as Thermal Insulation for Different Industrial Applications

    Directory of Open Access Journals (Sweden)

    M. L. Scutaru

    2014-04-01

    Full Text Available Carbon-hemp composite laminate provides good thermal properties. For this reason this type of material is presently being used for various applications like insulator for airplanes, spaceships, nuclear reactors, and so forth. Unfortunately their mechanical properties are less studied. These characteristics are very important since they should be guaranteed also for important mechanical stress in addition to the thermal one. The present paper presents a study regarding the impact testing of some hybrid composite laminate panels based on polyester resin reinforced with both carbon and hemp fabric. The effects of different impact speeds on the mechanical behavior of these panels have been analyzed. The paper lays stress on the characterization of this hybrid composite laminate regarding the impact behavior of these panels by dropping a weight with low velocity.

  14. Studies on preparation and properties of the multi-walled carbon nanotubes (MWNTs)/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Deng Huayang; Cao Qi; Wang Xianyou; Chen Quanqi; Kuang Hao; Wang Xiaofeng

    2011-01-01

    Highlights: → We use the modified MWNTs as fillers fabricated epoxy nanocomposites. → The mechanical, thermal and dielectric properties of nanocomposites are measured. → The nanocomposites exhibited better mechanical and dielectric properties. - Abstract: The MWNTs were coated with polyaniline (PANI) by in situ chemical oxidation polymerization method. FTIR spectroscopy, scanning electron microscope (SEM) and X-ray diffraction (XRD) indicated that the MWNTs were coated with PANI. The MWNTs/epoxy nanocomposites were fabricated by using the solution blending method. Differential scanning calorimetry (DSC), tensile testing, HP 4294A impedance analyzer and SEM were used to investigate the properties of the nanocomposites. The results showed that the modified carbon nanotubes were well dispersed in the polymer matrix. The nanocomposites have enhancements in mechanical, thermal and dielectric properties compare with the neat epoxy resin. The nanocomposites were proven to be a good polymer dielectric material.

  15. Effect of Carbon Nanofiber-Matrix Adhesion on Polymeric Nanocomposite Properties—Part II

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2008-01-01

    carbon nanocomposite. Carbon nanofibers were subjected to electrochemical oxidation in 0.1 M nitric acid for varying times. The strength of adhesion between the nanofiber and an epoxy matrix was characterized by flexural strength and modulus. The surface functional groups formed and their concentration of nanofibers showed a dependence on the degree of oxidation. The addition of chemical functional groups on the nanofiber surface allows them to physically and chemically adhere to the continuous resin matrix. The chemical interaction with the continuous epoxy matrix results in the creation of an interphase region. The ability to chemically and physically interact with the epoxy region is beneficial to the mechanical properties of a carbon nanocomposite. A tailored degree of surface functionalization was found to increase adhesion to the matrix and increase flexural modulus.

  16. Evaluation of carbon fiber composites fabricated using ionic liquid based epoxies for cryogenic fluid applications

    Directory of Open Access Journals (Sweden)

    R.N. Grugel

    Full Text Available Utilizing tanks fabricated from fiber reinforced polymeric composites for storing cryogenic fluids such as liquid oxygen and liquid hydrogen is of great interest to NASA as considerable weight savings can be gained. Unfortunately such composites, especially at cryogenic temperatures, develop a mismatch that initiates detrimental delamination and crack growth, which promotes leaking. On-going work with ionic liquid-based epoxies appears promising in mitigating these detrimental effects. Some recent results are presented and discussed. Keywords: Ionic liquid, Carbon fiber, Epoxy, COPV, Cryogenic fluids

  17. Nanocomposites with Liquid-Like Multiwalled Carbon Nanotubes Dispersed in Epoxy Resin without Solvent Process

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2014-01-01

    Full Text Available Liquid-like multiwall carbon nanotubes (MWNTs were prepared with as-received carboxylic MWNTs-COOH and poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-b-PPO-b-PEO through hydrogen bonding. The sample has liquid-like behavior above 58°C. The MWNTs content is 26.6 wt%. The liquid-like MWNTs nanofluids were incorporated into epoxy matrix with solvent-free process and dispersed well. When the liquid-like MWNTs nanofluids content is up to 1 wt%, the impact toughness of the nanocomposite is 153% higher than the pure epoxy matrix.

  18. Numerical Material Model for Composite Laminates in High-Velocity Impact Simulation

    Directory of Open Access Journals (Sweden)

    Tao Liu

    Full Text Available Abstract A numerical material model for composite laminate, was developed and integrated into the nonlinear dynamic explicit finite element programs as a material user subroutine. This model coupling nonlinear state of equation (EOS, was a macro-mechanics model, which was used to simulate the major mechanical behaviors of composite laminate under high-velocity impact conditions. The basic theoretical framework of the developed material model was introduced. An inverse flyer plate simulation was conducted, which demonstrated the advantage of the developed model in characterizing the nonlinear shock response. The developed model and its implementation were validated through a classic ballistic impact issue, i.e. projectile impacting on Kevlar29/Phenolic laminate. The failure modes and ballistic limit velocity were analyzed, and a good agreement was achieved when comparing with the analytical and experimental results. The computational capacity of this model, for Kevlar/Epoxy laminates with different architectures, i.e. plain-woven and cross-plied laminates, was further evaluated and the residual velocity curves and damage cone were accurately predicted.

  19. Determination of kinetic parameters during the thermal decomposition of epoxy/carbon fiber composite material

    International Nuclear Information System (INIS)

    Lee, Jae Hun; Kim, Kwang Seok; Kim, Hyo

    2013-01-01

    An in-depth study to determine the thermal decomposition kinetics parameters such as the activation energy E_a, the reaction order n, and the pre-exponential factor A of epoxy/carbon fiber composite material has been conducted. We employ not only the modified peak property method that is proposed here, but also the conventional method in analyzing the experimental data, and compare the results to show the performance of the proposed model. The pyrolysis tests for the epoxy/carbon fiber composite materials are conducted by using thermogravimetric analyser at various heating rates. As a result, the best prediction to the experimental data can be obtained by the modified peak property method. Besides, among the methods applied here, the modified peak property method provides most convenient way to recover the parameters: it does not require a curve fitting of the data nor a long iterative computation

  20. Fatigue crack growth in fiber-metal laminates

    Science.gov (United States)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  1. Process-induced viscoelastic stress in composite laminates

    International Nuclear Information System (INIS)

    Stango, R.J.

    1985-01-01

    In recent years, considerable interest has developed in evaluating the stress response of composite laminates which is associated with cooling the material system from the cure temperature to room temperature. This research examines the fundamental nature of time-dependent residual-thermal stresses in composite laminates which are caused by the extreme temperature reduction encountered during the fabrication process. Viscoelastic stress in finite-width, symmetric composite laminates is examined on the basis of a formulation that employs an incremental hereditary integral approach in conjunction with a quasi-three dimensional finite element analysis. A consistent methodology is developed and employed for the characterization of lamina material properties. Special attention is given to the time-dependent stress response at ply-interface locations near the free-edge. In addition, the influence of cooling path on stress history is examined. Recently published material property data for graphite-epoxy lamina is employed in the analysis. Results of the investigation generally indicate that nominal differences between the thermoelastic and viscoelastic solutions are obtained. Slight changes of the final stress state are observed to result when different cooling paths are selected for the temperature history. The methodology employed is demonstrated to result in an accurate, efficient, and consistent approach for the viscoelastic analysis of advanced composite laminates

  2. Detection of layup errors in prepreg laminates using shear ultrasonic waves

    Science.gov (United States)

    Hsu, David K.; Fischer, Brent A.

    1996-11-01

    The highly anisotropic elastic properties of the plies in a composite laminate manufactured from unidirectional prepregs interact strongly with the polarization direction of shear ultrasonic waves propagating through its thickness. The received signals in a 'crossed polarizer' transmission configuration are particularly sensitive to ply orientation and layup sequence in a laminate. Such measurements can therefore serve as an NDE tool for detecting layup errors. For example, it was shown experimentally recently that the sensitivity for detecting the presence of misoriented plies is better than one ply out of a 48-ply laminate of graphite epoxy. A physical model based on the decomposition and recombination of the shear polarization vector has been constructed and used in the interpretation and prediction of test results. Since errors should be detected early in the manufacturing process, this work also addresses the inspection of 'green' composite laminates using electromagnetic acoustic transducers (EMAT). Preliminary results for ply error detection obtained with EMAT probes are described.

  3. Debonding of epoxy from glass in irradiated laminates

    International Nuclear Information System (INIS)

    Klabunde, C.E.; Coltman, R.R. Jr.

    1982-01-01

    Glass-fabric-filled epoxies irradiated at 4.7 K and examined at room temperature by 20x stereomicroscopy showed an internal flaw structure which increasingly filled the sample as the γ-dose was increased. These flaws were determined to be areas where the plastic had debonded from the glass fibers. The extent of this process correlated well with the dose-dependent loss of mechanical strength. Evidence is reported for a similar mechanism in polyimides although visible flaws have not yet been produced. Possible mechanisms for debonding are suggested. New experiments are also suggested to clarify further the failure mechanism

  4. Epoxy Nanocomposites filled with Carbon Nanoparticles.

    Science.gov (United States)

    Martin-Gallego, M; Yuste-Sanchez, V; Sanchez-Hidalgo, R; Verdejo, R; Lopez-Manchado, M A

    2018-01-10

    Over the past decades, the development of high performance lightweight polymer nanocomposites and, in particular, of epoxy nanocomposites has become one the greatest challenges in material science. The ultimate goal of epoxy nanocomposites is to extrapolate the exceptional intrinsic properties of the nanoparticles to the bulk matrix. However, in spite of the efforts, this objective is still to be attained at commercially attractive scales. Key aspects to achieve this are ultimately the full understanding of network structure, the dispersion degree of the nanoparticles, the interfacial adhesion at the phase boundaries and the control of the localization and orientation of the nanoparticles in the epoxy system. In this Personal Account, we critically discuss the state of the art and evaluate the strategies to overcome these barriers. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bearingless helicopter main rotor development. Volume 2: Combined load fatigue evaluation of weathered graphite/epoxy composite

    Science.gov (United States)

    Rackiewicz, J. J.

    1977-01-01

    Small scale combined load fatigue tests were conducted on six artificially and six naturally weathered test specimens. The test specimen material was unidirectionally oriented A-S graphite - woven glass scrim epoxy resin laminate.

  6. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    Science.gov (United States)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  7. Vibration and Energy Dissipation of Nanocomposite Laminates for Below Ballistic Impact Loading

    Directory of Open Access Journals (Sweden)

    G. Balaganesan

    Full Text Available Abstract Composite laminates are made of glass woven roving mats of 610gsm, epoxy resin and nano clay which are subjected to projectile impact. Nano clay dispersion is varied from 1% to 5%. Impact tests are conducted in a gas gun setup with a spherical nose cylindrical projectile of diameter 9.5 mm of mass 7.6 g. The energy absorbed by the laminates when subjected to impact loading is studied, the velocity range is below ballistic limit. The effect of nano clay on energy absorption in vibration, delamination and matrix crack is studied for different weight % of nano clay and for different thickness values of the laminates. The natural frequencies and damping factors are obtained for the laminates during impact and the effect of nano clay is studied. The results show considerable improvement in energy absorption due to the presence of nano clay

  8. Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminates

    DEFF Research Database (Denmark)

    Castro, Oscar; Branner, Kim; Dimitrov, Nikolay Krasimirov

    2018-01-01

    amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under......A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life...... diagrams are developed which can efficiently estimate probabilistic É›-N curves at any load level and stress ratio. The probabilistic É›-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable...

  9. Delamination in surface plies of graphite/epoxy caused by the edge trimming process

    Science.gov (United States)

    Colligan, K.; Ramulu, M.

    Delamination in surface plies of graphite/epoxy laminates caused by edge trimming using polycrystalline diamond (PCD) and carbide cutters is investigated. The effect of several machining variables on formation of delaminations in the surface plies of a graphite fiber reinforced composite material is presented. Machining tests were performed to assess the impact of cutter geometry, feedrate, rotation direction, and graphite fiber orientation. Three typical delamination modes were observed and documented. Feedrate was found to have a significant effect on surface ply delamination in graphite/epoxy composite materials.

  10. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    Science.gov (United States)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  11. Carbon epoxy front hood for an electrical city vehicle

    Directory of Open Access Journals (Sweden)

    Bere Paul

    2017-01-01

    Full Text Available In the last decade fiber-reinforced polymer (FRP had a very impressive development. Due to its physical and mechanical properties, this material is used in many high-end domains such as: aerospace, aviation, automotive, medical, engineering or building constructions. In the last period FRP are being intensely used in the automotive industry especially for the chassis manufacturing and other vehicle structural components. In this paper, the authors present the model of a carbon epoxy front hood of a two-passenger electrical car which is specially designed in urban area and which makes use of advanced FRP manufacturing.

  12. A competitive binding between O2 and epoxy with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Hsin-Jung Tsai

    2017-09-01

    Full Text Available Simulation and observation reveal a competitive binding between O2 and epoxy with carbon nanotubes. Air absorption limits tube-polymer interacting coverage and weakens the van der Waals forces. As O2 is removed the tube-polymer strongly couples and coupling is conformed in a parallel fashion. Electron microscopy verifies tubes to be weakly bonded with polymer and band-shifts of raman arise from air pressure acting on C-C bonds.

  13. Material Optimization of Carbon/Epoxy Composite Rotor for Spacecraft Energy Storage

    OpenAIRE

    R Varatharajoo; M Salit; G Hong

    2016-01-01

    An investigation to optimize the carbon/epoxy composite rotor is performed for the spacecraft energy storage application. A highspeed multi-layer rotor design is proposed and different composite materials are tested to achieve the most suitable recipe. First, the analytical rotor evaluation is performed to establish a reliable numerical rotor model. Then, finite element analysis (FEA) is employed in order to optimise the multi-layer composite rotor design. Subsequently, the modal analysis is ...

  14. Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study

    Directory of Open Access Journals (Sweden)

    Chang Zhang

    Full Text Available High photostable epoxy polymerized carbon quantum dots (C-dots luminescent thin films were prepared and their performances were compared with the CdTe quantum dots (QDs. First, water soluble C-dots (λem = 543.60 nm were synthesized. Poly (ethylene glycol diglycidyl ether (PEG and diaminooctane were used as the polymer matrix to make the epoxy resin films. FT-IR spectra showed that there were vibration at 3448 cm−1 and 1644 cm−1 which contributed to -OH and -NH respectively. SEM observations showed that the polymerizations of the films were uniform and there were no structure defects. Mechanical tests showed the tensile modulus of C-dots composite films were 4.6, 4.9, 6.4 and 7.8 MPa respectively with corresponding 0%, 1%, 2% and 5% mass fraction of C-dots, while the tensile modulus of CdTe QDs films were 4.6 MPa under the same mass fraction of CdTe QDs. Compared with semiconductor QDs, the decay of quantum yield were 5% and 10% for the C-dots and CdTe QDs, respectively. The pictures in the continuous irradiation of 48 h showed that the C-dots film was more photostable. This study provides much helpful and profound towards the fluorescent enhancement films in the field of flexible displays. Keywords: Carbon-dots, Waterborne epoxy resin, Luminescent materials, Quantum dots displays

  15. Investigation of Mechanical and Thermal Properties of Polymer Composites Reinforced by Multi-Walled Carbon Nanotube for Reduction of Residual Stresses

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Ghasemi

    2014-08-01

    Full Text Available The micromechanical models are used to investigate mechanical and thermal properties of a polymer matrix nanocomposite containing multi-walled carbon nanotubes (MWCNT in their effects to reduce residual stresses in nanocomposites. To do this, first nanotubes with different weights and volume fractions were dispersed in ML-506 epoxy resin. By using different micromechanical models, the effect additional nanotubes on elastic modulus and coefficient of thermal expansion (CTE of nanotubes/epoxy were studied as critical parameters. Comparing the model and available experimental results, the modified Halpin-Tsai model and the modified Schapery model were chosen to calculate the mechanical and thermal properties of the nanocomposites. Then, using the matrix reinforced with MWCNT and classical micromechanics models the elastic modulus and coefficients of thermal expansion of the nanocomposites were determined for a single orthotropic ply. The results showed that the rule of mixture (ROM and Hashin-Rosen model to determine the longitudinal and transverse elastic moduli and Van Fo Fy model to calculate the coefficient of thermal expansion were in good agreements with the experimental results of a single-layer nanocomposite. Finally, the classical laminated plate theory (CLPT was used to calculate the residual stresses of the CNT/carbon fiber/epoxy composites with different weights and volume fractions of MWCNT for angle-ply, cross-ply and quasi-isotropic laminated composite materials. The results showed that residual stresses were reduced using a maximum of 1% wt or 0.675% volume fraction of the MWCNT in polymer composites. Also, the highest reduction in residual stresses was observed in [02/902] cross-ply laminated composite materials.

  16. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    Science.gov (United States)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  17. Evaluation of Impact Strength of Epoxy Based Hybrid Composites Reinforced with E-Glass/Kevlar 49

    Directory of Open Access Journals (Sweden)

    SUBHAN ALIJOGI

    2017-10-01

    Full Text Available In hybridization different fibers are stacked layer by layer to produce laminates have specific strength and stiffness and employed in light weight high strength applications. Physically mean fabricated hybrid composites used in aerospace, under water, body armors and armed forces establishment. In present work drop-weight impact response of hybrid composites were investigated by making laminates of hybrid composites. In Hybridization layers of E-glass (roving and Kevlar 49 fabrics stacked with epoxy resin. The layers formulation was set up by hand layup method. Impregnationsof epoxy resin of commercial grade (601A in fabrics were accomplished by VRTM (Vacuum Bagging Resin Transfer Molding technique. Layup placementof Glass fibers/ Kevlar at 0°/90°, 45°/45° and 30°/60° were set for this work. Mechanical properties such as impact strength, bear resistance and break resistance were analyzed by usingASTM D-256 and D-3763 standard.Experimental investigation was conducted using instrumented Dart impact and Izod Impact test. E-glass/Kevlar 49 at layup 0°/90°and 30°/60°exhibited improvedimpact strength than 45°/45°. The surface morphology and fractography were also investigated by capturing different images of Specimens by using the SEM (Scanning Electron Microscopy. The fiberreinforcement and matrix fracture were also observed by using SEM.The SEM images suggest that epoxy resin tightly bonded with Kevlar fibers whereas Glass fibers were pulled out from laminations.

  18. Evaluation of impact strength of epoxy based hybrid composites reinforced with e-glass/kevlar 49

    International Nuclear Information System (INIS)

    Jogi, S.A.; Memon, I.A.; Baloch, M.; Chandio, A.D.

    2017-01-01

    In hybridization different fibers are stacked layer by layer to produce laminates have specific strength and stiffness and employed in light weight high strength applications. Physically mean fabricated hybrid composites used in aerospace, under water, body armors and armed forces establishment. In present work drop-weight impact response of hybrid composites were investigated by making laminates of hybrid composites. In Hybridization layers of E-glass (roving) and Kevlar 49 fabrics stacked with epoxy resin. The layers formulation was set up by hand layup method. Impregnations of epoxy resin of commercial grade (601A) in fabrics were accomplished by VRTM (Vacuum Bagging Resin Transfer Molding) technique. Layup placementof Glass fibers/ Kevlar at 0 degree/90 degree, 45 degree/45 degree and 30 degree/60 degree were set for this work. Mechanical properties such as impact strength, bear resistance and break resistance were analyzed by using ASTM D-256 and D-3763 standard. Experimental investigation was conducted using instrumented Dart impact and Izod Impact test. E-glass/Kevlar 49 at layup 0 degree/90 degree and 30 degree/60 degree exhibited improvedimpact strength than 45 degree/45 degree. The surface morphology and fractography were also investigated by capturing different images of Specimens by using the SEM (Scanning Electron Microscopy). The fiberreinforcement and matrix fracture were also observed by using SEM.The SEM images suggest that epoxy resin tightly bonded with Kevlar fibers whereas Glass fibers were pulled out from laminations. (author)

  19. CFRP 積層板の硬化温度の同定

    OpenAIRE

    清水, 理能; 山本, 成章; 五嶋, 孝仁

    2002-01-01

    In the present paper, curing temperature of carbon fiber reinforced plastic (CFRP) laminates was estimated from room-temperature shapes which ware calculated theoretically and compared with experimental results. The analyzed model was CFRP laminate plate having a stacking sequence [0°/90°], and the specimens were made of unidirectional carbon fiber/epoxy prepreg. And room-temperature shapes of CFRP laminates are analyzed theoretically by means of classical lamination theory, correspondence pr...

  20. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? – A review

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available Motivated by the widespread and contradictory results regarding the glass transition temperature of carbon nanotube (CNT/epoxy composites, we reviewed and analyzed the literature results dealing with the effect of unmodified multiwall carbon nanotubes (MWNT on the cure behaviour of an epoxy resin (as a possible source of this discrepancy. The aim of this work was to clarify the effective role of unmodified multiwall carbon nanotubes on the cure kinetics and glass transition temperature (Tg of their epoxy composites. It was found that various authors reported an acceleration effect of CNT. The cure reaction was promoted in its early stage which may be due to the catalyst particles present in the CNT raw material. While SWNT may lead to a decrease of Tg due to their bundling tendency, results reported for MWNT suggested an increased or unchanged Tg of the composites. The present status of the literature does not allow to isolate the effect of MWNT on the Tg due to the lack of a study providing essential information such as CNT purity, glass transition temperature along with the corresponding cure degree.

  1. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief; Watanabe, Naoyuki; Iwahori, Yutaka; Hoshi, Hikaru

    2014-01-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2

  2. Tribological analysis of nano clay/epoxy/glass fiber by using Taguchi’s technique

    International Nuclear Information System (INIS)

    Senthil Kumar, M.S.; Mohana Sundara Raju, N.; Sampath, P.S.; Vivek, U.

    2015-01-01

    Highlights: • To study the tribological property of modified epoxy with and without E glass fiber. • To analyze the tribological property of specimens by Taguchi’s technique and ANOVA. • To investigate the surface morphology of test specimens with SEM. - Abstract: In this work, a detailed analysis was performed to profoundly study the tribological property of various nano clay (Cloisite 25A) loaded epoxy, with and without inclusion of E-glass fiber using Taguchi’s technique. For this purpose, the test samples were prepared according to the ASTM standard, and the test was carried out with the assistance of pin-on-disk machine. To proceed further, L 25 orthogonal array was constructed to evaluate the tribological property with four control variables such as filler content, normal load, sliding velocity and sliding distance at each level. The results indicated that the combination of factors greatly influenced the process to achieve the minimum wear and coefficient of friction. Overall, the experiment results depicted least wear and friction coefficient for fiber reinforced laminates. In the same way, appreciable wear and friction coefficient was noted for without fiber laminates. Additionally, the SN ratio results too exhibited the similar trend. Moreover, ANOVA analysis revealed that the fiber inclusion on laminates has lesser contribution on coefficient of friction and wear when compared to without fiber laminates. At last, the microstructure behavior of the test samples was investigated with an assistance of Scanning Electron Microscope (SEM) to analyze the surface morphology

  3. Modeling Bistable Composite Laminates for Piezoelectric Morphing Structures

    OpenAIRE

    Darryl V. Murray; Oliver J. Myers

    2013-01-01

    A sequential modeling effort for bistable composite laminates for piezoelectric morphing structures is presented. Thin unsymmetric carbon fiber composite laminates are examined for use of morphing structures using piezoelectric actuation. When cooling from the elevated cure temperature to room temperature, these unsymmetric composite laminates will deform. These postcure room temperature deformation shapes can be used as morphing structures. Applying a force to these deformed laminates will c...

  4. Development of IR Contrast Data Analysis Application for Characterizing Delaminations in Graphite-Epoxy Structures

    Science.gov (United States)

    Havican, Marie

    2012-01-01

    Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.

  5. Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy

    Science.gov (United States)

    Dexter, H. B.; Funk, J. G.

    1986-01-01

    Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.

  6. A built-in sensor with carbon nanotubes coated by Ag clusters for deformation monitoring of glass fibre/epoxy composites

    Science.gov (United States)

    Slobodian, P.; Riha, P.; Matyas, J.; Olejnik, R.; Lloret Pertegás, S.; Schledjewski, R.; Kovar, M.

    2018-03-01

    A multiwalled carbon nanotube network embedded in a polyurethane membrane was integrated into a glass fibre reinforced epoxy composite by means of vacuum infusion to become a part of the composite and has been serving for a strain self-sensing functionality. Besides the pristine nanotubes also nanotubes with Ag nanoparticles attached to their surfaces were used to increase strain sensing. Moreover, the design of the carbon nanotube/polyurethane sensor allowed formation of network micro-sized cracks which increased its reversible electrical resistance resulted in an enhancement of strain sensing. The resistance sensitivity, quantified by a gauge factor, increased more than hundredfold in case of a pre-strained sensor with Ag decorated nanotubes in comparison with the sensor with pristine nanotubes.

  7. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  8. Evaluation of interlaminar shear of laminate by 3D digital holography

    Science.gov (United States)

    Mayssa, Karray; Christophe, Poilane; Mohamed, Gargouri; Pascal, Picart

    2017-05-01

    In this paper, we propose a three-color holographic interferometer devoted to the 3D displacement field analysis of a composite material. The method in applied to analyze cracks during a short beam shear test. The tested materials are a glass/epoxy composite, a flax/carbon/epoxy composite and a flax/epoxy composite. Such an evaluation provides a pertinent parameter to detect premature cracks in the structure, long before it becomes visible on the real time stress/strain curve, or with a classical microscope. Moreover, the mechanical proprieties of flax/carbon/epoxy composite and flax/epoxy composite are compared.

  9. Effects of Weave Styles and Crimp Gradients on Damage Tolerance and Energy-Absorption Capacities of Woven Kevlar/Epoxy Composites

    Science.gov (United States)

    2015-09-01

    Capacities of Woven Kevlar /Epoxy Composites Paul V. Cavallaro Ranges, Engineering, and Analysis Department NEWPORT Naval Undersea Warfare Center Division...the Kevlar woven fabrics and technical data and to Core Composites Inc. for fabricating the composite laminates. Reviewed and Approved: 1...Effects of Weave Styles and Crimp Gradients on Damage Tolerance and Energy-Absorption Capacities of Woven Kevlar /Epoxy Composites 5a. CONTRACT NUMBER 5b

  10. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures

    Directory of Open Access Journals (Sweden)

    Edson Cocchieri Botelho

    2006-09-01

    Full Text Available Weight reduction and improved damage tolerance characteristics were the prime drivers to develop new family of materials for the aerospace/aeronautical industry. Aiming this objective, a new lightweight Fiber/Metal Laminate (FML has been developed. The combination of metal and polymer composite laminates can create a synergistic effect on many properties. The mechanical properties of FML shows improvements over the properties of both aluminum alloys and composite materials individually. Due to their excellent properties, FML are being used as fuselage skin structures of the next generation commercial aircrafts. One of the advantages of FML when compared with conventional carbon fiber/epoxy composites is the low moisture absorption. The moisture absorption in FML composites is slower when compared with polymer composites, even under the relatively harsh conditions, due to the barrier of the aluminum outer layers. Due to this favorable atmosphere, recently big companies such as EMBRAER, Aerospatiale, Boing, Airbus, and so one, starting to work with this kind of materials as an alternative to save money and to guarantee the security of their aircrafts.

  11. On the Behavior of Fiberglass Epoxy Composites under Low Velocity Impact Loading

    Directory of Open Access Journals (Sweden)

    Gautam S. Chandekar

    2010-01-01

    Full Text Available Response of fiberglass epoxy composite laminates under low velocity impact loading is investigated using LS-DYNA®, and the results are compared with experimental analysis performed using an instrumented impact test setup (Instron dynatup 8250. The composite laminates are manufactured using H-VARTM© process with basket weave E-Glass fabrics. Epon 862 is used as a resin system and Epicure-W as a hardening agent. Composite laminates, with 10 layers of fiberglass fabrics, are modeled using 3D solid elements in a mosaic fashion to represent basket weave pattern. Mechanical properties are calculated by using classical micromechanical theory and assigned to the elements using ORTHOTROPIC ELASTIC material model. The damage occurred since increasing impact energy is incorporated using ADVANCED COMPOSITE DAMAGE material model in LS-DYNA®. Good agreements are obtained with the failure damage results in LS-DYNA® and experimental results. Main considerations for comparison are given to the impact load carrying capacity and the amount of impact energy absorbed by the laminates.

  12. Delamination R-curve as a material property of unidirectional glass/epoxy composites

    International Nuclear Information System (INIS)

    Shokrieh, M.M.; Heidari-Rarani, M.; Ayatollahi, M.R.

    2012-01-01

    Highlights: → The R-curve behavior of a unidirectional laminate as a material property is investigated. → Effect of initial crack length and thickness on R-curve is experimentally shown. → A mathematical relation is proposed to model the R-curve behavior of any unidirectional laminated composite. -- Abstract: It is still questionable to think of delamination resistance of a double cantilever beam (DCB) as a material property independent of the specimen size and geometry. In this research, the effects of initial crack length and DCB specimen thickness on the mode I delamination resistance curve (R-curve) behavior of different unidirectional glass/epoxy DCB specimens are experimentally investigated. It is observed that the magnitudes of initiation and propagation delamination toughness (G Ic-init and G Ic-prop ) as well as the fiber bridging length are constant in a specific range of the initial crack length to the DCB specimen thickness ratios of 8.5 0 /h < 19. Finally, a mathematical relationship is proposed for prediction of mode I delamination behavior (from the initiation to propagation) of E-glass/epoxy DCB specimens.

  13. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition

    DEFF Research Database (Denmark)

    Saber, Anne Thoustrup; Mortensen, Alicja; Szarek, Jozef

    2016-01-01

    Background: The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison.Methods: Mice recei...

  14. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  15. Organocatalyzed Domino [3+2] Cycloaddition/Payne-Type Rearrangement using Carbon Dioxide and Epoxy Alcohols.

    Science.gov (United States)

    Kleij, Arjan Willem; Sopeña, Sergio; Cozzolino, Mariachiara; Escudero-Adán, Eduardo C; Martínez Belmonte, Marta; Maquilón, Cristina

    2018-05-09

    An unprecedented organocatalytic approach towards highly substituted cyclic carbonates from tri- and tetra-substituted oxiranes and carbon dioxide has been developed. The protocol involves the use of a simple and cheap superbase under mild, additive- and metal-free conditions towards the initial formation of a less substituted carbonate product that equilibrates to a tri- or even tetra-substituted cyclic carbonate under thermodynamic control. The latter are conveniently trapped in situ providing overall a new domino process for synthetically elusive heterocyclic scaffolds. Control experiments provide a rationale for the observed cascade reactions, which demonstrate high similarity with the well-known Payne rearrangement of epoxy alcohols. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  17. Erosion protection of carbon-epoxy composites by plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Alonso, F.; Fagoaga, I.; Oregui, P.

    1991-01-01

    This paper deals with the production of plasma-sprayed erosion-resistant coatings on carbon-fibre - epoxy composites, and the study of their erosion behaviour. The heat sensitivity of the composite substrate requires a specific spraying procedure in order to avoid its degradation. In addition, several bonding layers were studied to allow spraying of the protective coatings. Two different functional coatings were sprayed onto an aluminium-glass bonding layer, a WC-12Co cermet and an Al 2 O 3 ceramic oxide. The microstructure and properties of these coatings were studied and their erosion behaviour determined experimentally in an erosion-testing device. (orig.)

  18. Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite

    Directory of Open Access Journals (Sweden)

    MA Qiang

    2016-09-01

    Full Text Available An amphiphilic random copolymer of polyglycidyl methacrylate-co-N-vinyl carbazole P(GMA-co-NVC was synthesized by free radical polymerization and was used to noncovalently modify multi-walled carbon nanotubes (MWCNTs. The obtained P(GMA-co-NVC/MWCNTs was mixed with epoxy resin and used to reinforce epoxy resin. Polymer modified carbon nanotubes/epoxy resin composites were prepared by a casting molding method. Tensile test, electrical resistivity test and differential scanning calorimeter(DSC analysis were used to study the effect of polymer modified carbon nanotubes on the mechanical, electrical, and thermal properties of epoxy resin. The results show that the epoxy composite reinforced with P(GMA-co-NVC/MWCNTs shows a remarkable enhancement in both tensile strength and elongation at break compared to either the pure epoxy or the pristine MWCNTs/epoxy composites. In addition, the electrical conductivity of epoxy is significantly improved and the volume resistivity decreases from 1014Ω·m to 106Ω·m with 0.25% mass fraction loading of P(GMA-co-NVC/MWCNTs. Moreover, glass transition temperature of the epoxy composite also increases from 144℃ to 149℃.

  19. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lik-ho Tam

    2017-10-01

    Full Text Available The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

  20. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites.

    Science.gov (United States)

    Tam, Lik-Ho; Wu, Chao

    2017-10-13

    The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

  1. Rheological and electrical properties of hybrid nanocomposites of epoxy resins filled with graphite nanoplatelets and carbon black.

    Science.gov (United States)

    Truong, Quang-Trung; Lee, Seon-Suk; Lee, Dai-Soo

    2011-02-01

    Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.

  2. Ultralow percolation threshold of single walled carbon nanotube-epoxy composites synthesized via an ionic liquid dispersant/initiator

    Science.gov (United States)

    Watters, Arianna L.; Palmese, Giuseppe R.

    2014-09-01

    Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10-5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing.

  3. EVALUATION OF MICROMECHANICAL PROPERTIES OF CARBON FIBER FABRIC USING NANOINDETATION

    Directory of Open Access Journals (Sweden)

    Pavel Klapálek

    2017-11-01

    Full Text Available This paper is focused mainly on nanoindentation of carbon fibers. Fibers are in form of carbon fiber fabric that is used in larger research that is focused on reinforcing beams made of glued laminated timber. Knowledge of this material on macro and micro level will help to understand its behavior in this specific type of use. Nanoindentation is method used in this paper to obtain material characteristics on micro level such as hardness and modulus of elasticity. Samples of the carbon fiber fabric had to be prepared for this specific testing method by polishing samples of carbon fabric attached in epoxy resin. In particular, it was found that the indentation hardness of the fibers ranges around 3.65 GPa and modulus of elasticity ranges around 26 GPa.

  4. "Unrolling" multi-walled carbon nanotubes with ionic liquids: application as fillers in epoxy-based nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Kleinschmidt, A. C.; Donato, R. K.; Perchacz, Magdalena; Beneš, Hynek; Štengl, Václav; Amico, S. C.; Schrekker, H. S.

    2014-01-01

    Roč. 4, č. 82 (2014), s. 43436-43443 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61389013 ; RVO:61388980 Keywords : carbon nanotubes * ionic liquids * epoxy Subject RIV: CD - Macromolecular Chemistry; CA - Inorganic Chemistry (UACH-T) Impact factor: 3.840, year: 2014

  5. Processing and Characterization of Needled Carbon Composites

    Science.gov (United States)

    2015-12-01

    needle is used to insert high strength yarns (i.e., threads) through the dry fabric or prepreg laminate , leaving a loose thread loop underneath [9-11...capability which uses commercially-available felting needles to insert z-fibers into composite laminates at different angles (±45/90°) relative to the... laminate plane. Previous work with needled glass/epoxy composites has shown a 270% improvement in Mode I interlaminar fracture toughness when needled

  6. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites

    International Nuclear Information System (INIS)

    Zhang Wei; Blackburn, Richard S.; Dehghani-Sanij, Abbas A.

    2007-01-01

    Electrical properties of nanocomposites are determined by the conductive paths of carbon black and influenced by a 'network' of silica. With increasing content of silica, carbon black (CB) particles are optimally dispersed, contributing to the generation of a conductive network between CB particles via direct particle contact and a tunneling effect; maximum conductivity for the epoxy resin-CB-silica nanocomposite described herein occurs at a ratio of 0.6:1.0 (SiO 2 :CB). As a non-conductive component, excessive silica will prevent electron flow, giving rise to low conductivity

  7. Rapid microwave processing of epoxy nanocomposites using carbon nanotubes

    OpenAIRE

    Luhyna, Nataliia; Inam, Fawad; Winnington, Ian

    2013-01-01

    Microwave processing is one of the rapid processing techniques for manufacturing nanocomposites. There is very little work focussing on the addition of CNTs for shortening the curing time of epoxy nanocomposites. Using microwave energy, the effect of CNT addition on the curing of epoxy nanocomposites was researched in this work. Differential scanning calorimetry (DSC) was used to determine the degree of cure for epoxy and nanocomposite samples. CNT addition significantly reduced the duration ...

  8. Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion

    International Nuclear Information System (INIS)

    Chakraborty, Amit K.; Plyhm, Tiia; Barbezat, Michel; Necola, Adly; Terrasi, Giovanni P.

    2011-01-01

    A systematic investigation of the dispersion of carbon nanotubes (CNTs), 1–6 nm in diameter and a few microns in length, in a bisphenol F-based epoxy resin has been presented. Several dispersing techniques including high-speed dissolver, ultrasonic bath/horn, 3-roll mill, etc. have been employed. Optical microscopy has been extensively used to systematically characterise the state of CNT dispersion in the epoxy resin during the entire processing cycle from mixing CNT with resin to adding and curing with hardener. Complimentary viscosity measurements were also performed at various stages of nanocomposite processing. A method to produce a good CNT dispersion in resin was established, but the state of CNT dispersion was found to be extremely sensitive to its physical and chemical environments. The cured nanocomposites were further tested for their thermo-mechanical properties by dynamic mechanical thermal analysis (DMTA), and for flexural and compressive mechanical properties. The measured properties of various nanocomposite plates were then discussed in view of the corresponding CNT dispersion.

  9. Corrosion protection and delamination mechanism of epoxy/carbon black nanocomposite coating on AA2024-T3

    NARCIS (Netherlands)

    Foyet, A.; Wu, T.H.; Kodentsov, A.; Ven, van der L.G.J.; With, de G.; Benthem, van R.A.T.M.

    2013-01-01

    The barrier property of a nanocomposite epoxy coating containing 1 or 1.25 vol% of carbon black (CB) applied on AA2024-T3 was investigated by using electrochemical impedance spectroscopy. Micro-electrochemical impedance spectroscopy and optical microscopy were also used to investigate the

  10. Effect of Graphene Oxide Mixed Epoxy on Mechanical Properties of Carbon Fiber/Acrylonitrile-Butadiene-Styrene Composites.

    Science.gov (United States)

    Wang, Cuicui; Ge, Heyi; Ma, Xiaolong; Liu, Zhifang; Wang, Ting; Zhang, Jingyi

    2018-04-01

    In this study, the watersoluble epoxy resin was prepared via the ring-opening reaction between diethanolamine and epoxy resin. The modified resin mixed with graphene oxide (GO) as a sizing agent was coated onto carbon fiber (CF) and then the GO-CF reinforced acrylonitrile-butadienestyrene (ABS) composites were prepared. The influences of the different contents of GO on CF and CF/ABS composite were explored. The combination among epoxy, GO sheets and maleic anhydride grafted ABS (ABSMA) showed a synergistic effect on improving the properties of GO-CF and GO-CF/ABS composite. The GO-CF had higher single tensile strength than the commercial CF. The maximum ILSS of GO-CF/ABS composite obtained 19.2% improvement as compared with that of the commercial CF/ABS composite. Such multiscale enhancement method and the synergistic reinforced GO-CF/ABS composite show good prospective applications in many industry areas.

  11. Comportamento de cilindros de carbono/epóxi submetidos a cargas compressivas axiais Mechanical behavior of carbon/epoxy cylinders under axial compressive loads

    Directory of Open Access Journals (Sweden)

    Adriano Gonçalves

    2001-06-01

    Full Text Available Para estruturas utilizadas no setor aeroespacial, os requisitos de baixo peso, alta resistência e rigidez, além de estabilidade dimensional, têm propiciado o aumento da utilização de materiais compósitos nas suas manufaturas. Em particular, cascas cilíndricas ou estruturas construídas pela junção de cilindros de paredes finas, confeccionadas em fibra de carbono e resina epóxi, são amplamente utilizadas neste tipo de aplicação. Neste trabalho, um programa experimental foi desenvolvido para determinar as tensões de falha, os módulos de elasticidade e o modo de falha de 47 cilindros com diâmetro interno de 40 mm e espessura nominal de 0,6 mm (com exceção de 2 corpos de prova, fabricados em carbono/epóxi, quando submetidos a cargas compressivas uniaxiais. Os espécimes testados possuíam diferentes razões entre comprimento e diâmetro (variando de 2,50 a 11,25 e seqüências de laminação variadas (orientações de camadas. Os resultados dos ensaios foram comparados aos obtidos em análises realizadas com programas de elementos finitos e os fatores que influenciaram o comportamento mecânico destes cilindros foram analisados.The requirements of low weight and dimensional stability, combined with high strength and stiffness, for aerospace structures has prompted an increasing use of fiber reinforced materials in manufacturing such structures. In particular, carbon/epoxy cylinders have been widely used in aerospace applications. In this work, an experimental program was developed to determine failure loads, modulus of elasticity and failure modes of 47 carbon/epoxy cylinders shells under compressive loads. The specimens tested had several different length/diameter (from 2.50 to 11.25 ratios and laminate lay-up. These results were compared to the analytical results from finite element code and the most important factors influencing the mechanical behavior of this type of structure were analyzed.

  12. Tribo-performance of epoxy hybrid composites reinforced with carbon fibers and potassium titanate whiskers

    Science.gov (United States)

    Suresha, B.; Harshavardhan, B.; Ravishankar, R.

    2018-04-01

    The present investigation deals with the fabrication and characterization of epoxy reinforced with bidirectional carbon fiber mat (CF/Ep) and filled with 2.5, 5 and 7.5 wt% potassium titanate whiskers (PTw) composites. The effect of PTw loading on hardness, tensile properties and dry sliding wear behaviour of CF/Ep composite were carefully investigated in expectation of providing valuable information for the application of hybrid CF/Ep composites. Results indicated that the incorporation of PTw actually improved the hardness, tensile strength and tensile modulus of CF/Ep composites. Meanwhile, the specific wear rate of CF/Ep filled by 5 wt % PTw reached to 6.3× 10-14 m3/N-m, which is 41% lower than that of CF/Ep composite at the same dry sliding condition. It also seen that the fiber and filler worked synergistically to enhance the wear resistance. Further, for all composites the friction coefficient increases with increase in load and sliding velocity. However, PTw reinforced CF/Ep exhibited considerably higher coefficient of friction compared to unfilled ones, while PTw filler loading of 5 wt% was effective in reducing the specific wear rate of CF/Ep composite. The carbon fiber carried the applied load between the contact surfaces and protected the epoxy from severe abrasion of the counterface. At the same time, the exposed PTw out of the epoxy matrix around the fiber inhibited the direct scraping between the fiber and counterface so that the fibers could be less directly impacted during the subsequent wear process and they were protected from severe damage.

  13. Computational Fatigue Life Analysis of Carbon Fiber Laminate

    Science.gov (United States)

    Shastry, Shrimukhi G.; Chandrashekara, C. V., Dr.

    2018-02-01

    In the present scenario, many traditional materials are being replaced by composite materials for its light weight and high strength properties. Industries like automotive industry, aerospace industry etc., are some of the examples which uses composite materials for most of its components. Replacing of components which are subjected to static load or impact load are less challenging compared to components which are subjected to dynamic loading. Replacing the components made up of composite materials demands many stages of parametric study. One such parametric study is the fatigue analysis of composite material. This paper focuses on the fatigue life analysis of the composite material by using computational techniques. A composite plate is considered for the study which has a hole at the center. The analysis is carried on (0°/90°/90°/90°/90°)s laminate sequence and (45°/-45°)2s laminate sequence by using a computer script. The life cycles for both the lay-up sequence are compared with each other. It is observed that, for the same material and geometry of the component, cross ply laminates show better fatigue life than that of angled ply laminates.

  14. The microwave absorbing properties of SmCo attached single wall carbon nanotube/epoxy composites

    International Nuclear Information System (INIS)

    Yu, Liming; Li, Bo; Sheng, Leimei; An, Kang; Zhao, Xinluo

    2013-01-01

    Highlights: •The SmCo nanoparticles attached SWCNTs were prepared by dc arc discharge method. •The nano-composite prepared by a rare earth permanent magnet Sm 2 Co 17 as catalyst. •The SmCo attached SWCNT/epoxy composites have an excellent electromagnetic matching characteristics. •The reflection loss and bandwidth below −20 dB of the composite can reach −23.7 dB, 6.2 GHz, respectively. -- Abstract: The SmCo nanoparticles attached single wall carbon nanotubes (SmCo attached SWCNTs) were prepared by hydrogen dc arc discharge method using 2:17 type SmCo permanent powder as catalyst. The SmCo attached SWCNT/epoxy composites with different doping ratios were investigated in the frequency region of 2–18 GHz. The complex permittivity and permeability of the SmCo attached SWCNT/epoxy composites were calculated. The reflection loss properties were simulated by transmission line theory and the microwave absorptive mechanisms were discussed. The results indicate that, due to the better interfacial polarization absorption mechanism of SmCo attached SWCNTs and the electromagnetic (EM) matching of magnetic loss and dielectric loss, the microwave absorption properties of SmCo attached SWCNT/epoxy are evidently improved. When the SmCo attached SWCNTs is doped by 1 wt%, the composite display a larger and wider absorption peak, and the bandwidth of the reflection loss below −20 dB is larger than 6 GHz with the thickness of 3.3 mm. It is expected that the new SmCo attached SWCNT/epoxy composites will be a good microwave absorbing material for the applications in X band, Ku band, or even K band

  15. Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics

    Science.gov (United States)

    Lakshmanan, A.; Srivastava, S.; Ramazani, A.; Sundararaghavan, V.

    2018-04-01

    Thermal conductivity in a pillared graphene-epoxy nanocomposite (PGEN) is studied using equilibrium molecular dynamics simulations. PGEN is a proposed material for advanced thermal management applications because it combines high in-plane conductivity of graphene with high axial conductivity of a nanotube to significantly enhance the overall conductivity of the epoxy matrix material. Anisotropic conductivity of PGEN has been compared with that of pristine and functionalized carbon nanotube-epoxy nanocomposites, showcasing the advantages of the unique hierarchical structure of PGEN. Compared to pure carbon allotropes, embedding the epoxy matrix also promotes a weaker dependence of conductivity on thermal variations. These features make this an attractive material for thermal management applications.

  16. Effect of load eccentricity on the buckling of thin-walled laminated C-columns

    Science.gov (United States)

    Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert

    2018-01-01

    The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.

  17. Ultralow percolation threshold of single walled carbon nanotube-epoxy composites synthesized via an ionic liquid dispersant/initiator

    International Nuclear Information System (INIS)

    Watters, Arianna L; Palmese, Giuseppe R

    2014-01-01

    Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10 −5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing. (paper)

  18. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers.

    Science.gov (United States)

    Domun, Nadiim; Paton, Keith R; Hadavinia, Homayoun; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-10-19

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G IC , by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  19. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

    Directory of Open Access Journals (Sweden)

    Nadiim Domun

    2017-10-01

    Full Text Available In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs and boron nitride nanotubes (BNNTs were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  20. Stress wave propagation in thin long-fiber carbon/epoxy composite panel. Numerical and experimental solutions

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš; Červ, Jan; Valeš, František

    2007-01-01

    Roč. 1, č. 1 (2007), s. 127-136 ISSN 1802-680X. [Computational Mechanics 2007. Hrad Nečtiny, 05.11.2007-07.11.2007] R&D Projects: GA AV ČR(CZ) IAA200760611 Institutional research plan: CEZ:AV0Z20760514 Keywords : FRP composite * carbon-epoxy * orthotropic material Subject RIV: BI - Acoustics

  1. Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells

    Science.gov (United States)

    Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.; Stier, Bertram; Hansen, Lucas; Bednarcyk, Brett A.; Waas, Anthony M.

    2016-01-01

    The generalized method of cells (GMC) is demonstrated to be a viable micromechanics tool for predicting the deformation and failure response of laminated composites, with and without notches, subjected to tensile and compressive static loading. Given the axial [0], transverse [90], and shear [+45/-45] response of a carbon/epoxy (IM7/977-3) system, the unnotched and notched behavior of three multidirectional layups (Layup 1: [0,45,90,-45](sub 2S), Layup 2: [0,60,0](sub 3S), and Layup 3: [30,60,90,-30, -60](sub 2S)) are predicted under both tensile and compressive static loading. Matrix nonlinearity is modeled in two ways. The first assumes all nonlinearity is due to anisotropic progressive damage of the matrix only, which is modeled, using the multiaxial mixed-mode continuum damage model (MMCDM) within GMC. The second utilizes matrix plasticity coupled with brittle final failure based on the maximum principle strain criteria to account for matrix nonlinearity and failure within the Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software multiscale framework. Both MMCDM and plasticity models incorporate brittle strain- and stress-based failure criteria for the fiber. Upon satisfaction of these criteria, the fiber properties are immediately reduced to a nominal value. The constitutive response for each constituent (fiber and matrix) is characterized using a combination of vendor data and the axial, transverse, and shear responses of unnotched laminates. Then, the capability of the multiscale methodology is assessed by performing blind predictions of the mentioned notched and unnotched composite laminates response under tensile and compressive loading. Tabulated data along with the detailed results (i.e., stress-strain curves as well as damage evolution states at various ratios of strain to failure) for all laminates are presented.

  2. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    Science.gov (United States)

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  3. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  4. High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates

    Directory of Open Access Journals (Sweden)

    Fábio de Oliveira Braga

    2017-10-01

    Full Text Available For personal protection against high kinetic energy projectiles, multilayered armor systems (MAS are usually the best option. They combine synergistically the properties of different materials such as ceramics, composites and metals. In the present work, ballistic tests were performed to evaluate multilayered armor systems (MAS using curaua non-woven fabric epoxy composites as second layer. A comparison to a MAS using aramid (Kevlar™ fabric laminates was made. The results showed that the curaua non-woven fabric composites are suitable to the high ballistic applications, and are promising substitutes for aramid fabric laminates. Keywords: Composite, Natural fiber, Curaua fiber, Non-woven fabric, Aramid laminate, Ballistic test

  5. Effect of Kevlar and carbon fibres on tensile properties of oil palm/epoxy composites

    Science.gov (United States)

    Amir, S. M. M.; Sultan, M. T. H.; Jawaid, M.; Cardona, F.; Ishak, M. R.; Yusof, M. R.

    2017-12-01

    Hybrid composites with natural and synthetic fibers have captured the interests of many researchers. In this work, Kevlar/oil palm Empty Fruit Bunch (EFB)/Kevlar and carbon/oil palm EFB hybrid/carbon composites were prepared using hand lay-up technique by keeping the oil palm EFB fiber as the core material. The tensile properties which include tensile strength, tensile modulus and elongation at break were investigated. It is observed that the tensile strength and modulus for carbon/oil palm EFB/carbon hybrid composites were much higher as compared with Kevlar/oil palm EFB/Kevlar hybrid composites. However, the elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites exhibited higher value as compared to carbon/oil palm EFB/carbon hybrid composites and oil palm EFB/epoxy composites. The tensile strength for carbon/oil palm EFB/carbon hybrid composites is 93.6 MPa and the tensile modulus for carbon/oil palm EFB/carbon hybrid composites is 6.5 GPa. The elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites is 3.6%.

  6. Etude comparative sur la propagation de l'endommagement apres impact des composites carbone/epoxy renforces par piquage au fil Kevlar et titane-nickel

    Science.gov (United States)

    Vachon, Pierre-Luc

    Composite laminates have strong in-plane mechanical properties, but they are generally weaker through their thickness. This specificity makes the laminates prone to delamination, particularly under low-velocity impact loads. Consequently numerous research efforts have been dedicated to developing interlaminar reinforcing methods, such as transverse stitching. The present project proposes the use of the stitching technique combined with a special stitching thread made of superelastic TiNi alloy. This technology is intended to improve the delamination toughness in composite laminates loaded in bending. In the first part of this study a numerical model was developed for analyzing composite structures. The 3-D finite element model was built with the ANSYS commercial software using 20-node solid and 8-node shell elements. The progressive damage modeling technique was used, allowing the prediction of delamination propagation in a laminate submitted to various loading modes. The model was validated for a plate under quasi-static traction load, and it was then used to simulate three-point bending tests. Secondly, carbon/epoxy composite panels were fabricated, with each panel containing unstitched and stitched specimens. Two different materials were used for the stitching thread: superelastic TiNi wires and Kevlar threads as a reference. Some stitched specimens were cut in slices in order to make some observations of the internal stitch using an optical microscope. Standardized low-velocity impact tests and compression after impact tests were carried out on stitched and unstitched specimens (ASTM D7136 and D7137). The Kevlar reinforcements have shown great performance in reducing the delaminated zone after impact, as well as in improving the residual compression strength. The TiNi reinforcements provided encouraging results during the impact tests, though being less effective than the Kevlar threads. During the compression after impact tests, only a slight difference could

  7. Material Optimization of Carbon/Epoxy Composite Rotor for Spacecraft Energy Storage

    Directory of Open Access Journals (Sweden)

    R Varatharajoo

    2016-09-01

    Full Text Available An investigation to optimize the carbon/epoxy composite rotor is performed for the spacecraft energy storage application. A highspeed multi-layer rotor design is proposed and different composite materials are tested to achieve the most suitable recipe. First, the analytical rotor evaluation is performed to establish a reliable numerical rotor model. Then, finite element analysis (FEA is employed in order to optimise the multi-layer composite rotor design. Subsequently, the modal analysis is carried out to determine the rotor natural frequencies and mode shapes for a safe operational regime below 50, 000 rpm.

  8. Characterization of damaged composite laminates by an optical measurement of the displacement field

    International Nuclear Information System (INIS)

    Loukil, M S; Ayadi, Z; Varna, J

    2012-01-01

    The degradation of the elastic properties of composite laminates with intralaminar cracks is caused by reduced stress in the damaged layer which is mainly due to two parameters: the crack opening displacement (COD) and the crack sliding displacement (CSD). In this paper these parameters are measured experimentally providing laminate stiffness reduction models with valuable information for validation of used assumptions and for defining limits of their application. In particular, the displacement field on the edges of a [0/ +70 4 / −70 4 ] s glass fiber/epoxy laminate specimens with multiple intralaminar cracks is studied and the COD and CSD dependence on the applied mechanical load is measured. The specimen full-field displacement measurement is carried out using ESPI (Electronic Speckle Pattern Interferometry). By studying the displacement discontinuities, the crack face displacements were measured. A comparison between the COD and the CSD (for the same crack) is performed.

  9. Response behavior of an epoxy resin/amine curing agent/carbon black composite film to various solvents

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yanling [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)]. E-mail: luoyl0401@yahoo.com.cn; Li Zhanqing [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Lan Wenxiang [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2007-04-25

    A novel polymer based sensitive film was prepared from thermosetting epoxy resins (EP) filled with carbon blacks. The curing reaction of amine curing agents with epoxy resins and the response of the curing resultants to solvent vapors were dealt with. The influence of the types and content of carbon blacks and curing agents, and curing temperatures and time on curing reactions and response selectivity of the conductive films were investigated. The structural characterization was conducted on a Fourier transform infrared spectrophotometer (FTIR). The results indicated that the conductive films showed high response selectivity to polar solvent vapors, especially to chloroform vapor, while no response was observed in non-polar solvent vapors. The responsivity of the film increased with the decreased carbon black contents. The film filled with acetylene carbon black gave an optimal response, with responsivity of about 700 times. The response performances were improved with the amount of curing agents increased, and an optimal response appeared at the amount of the curing agent of 8%. The film's responsivity was remarkably enhanced, the reversibility property, however, rapidly declined in the order of diethyleneltriamine < triethylenetetramine < ethylenediamine. The curing reaction tended to complete with the curing temperature elevated and the curing time prolonged. But the response performance dropped because of over cross-linking as the temperature was too high or the time was too long.

  10. Response behavior of an epoxy resin/amine curing agent/carbon black composite film to various solvents

    International Nuclear Information System (INIS)

    Luo Yanling; Li Zhanqing; Lan Wenxiang

    2007-01-01

    A novel polymer based sensitive film was prepared from thermosetting epoxy resins (EP) filled with carbon blacks. The curing reaction of amine curing agents with epoxy resins and the response of the curing resultants to solvent vapors were dealt with. The influence of the types and content of carbon blacks and curing agents, and curing temperatures and time on curing reactions and response selectivity of the conductive films were investigated. The structural characterization was conducted on a Fourier transform infrared spectrophotometer (FTIR). The results indicated that the conductive films showed high response selectivity to polar solvent vapors, especially to chloroform vapor, while no response was observed in non-polar solvent vapors. The responsivity of the film increased with the decreased carbon black contents. The film filled with acetylene carbon black gave an optimal response, with responsivity of about 700 times. The response performances were improved with the amount of curing agents increased, and an optimal response appeared at the amount of the curing agent of 8%. The film's responsivity was remarkably enhanced, the reversibility property, however, rapidly declined in the order of diethyleneltriamine < triethylenetetramine < ethylenediamine. The curing reaction tended to complete with the curing temperature elevated and the curing time prolonged. But the response performance dropped because of over cross-linking as the temperature was too high or the time was too long

  11. Polyaniline electrosynthesis on composite surface carbon fiber-epoxy Aeronautic application

    International Nuclear Information System (INIS)

    Sanches, Richelmy Magi; Batista, Aline Fontana; Gama, Adriana Medeiros; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: This work aims to obtain polyaniline (PAni) by electro synthesis, as thin layers on carbon fiber/epoxy composite surface, to attenuate microwave amplitude and so decrease radar cross section (RCS) on drone surfaces. In order to it, two procedures were used to obtain polyaniline on surface from aniline 0,5 mol L -1 and H 2 SO 4 1,0 mol L -1 , using cyclic voltammetry, from -0,50 up to 1,05 V x Ag/AgCl, using auxiliary electrode of Pt, by potentiostat-galvanostat Autolab PGSTAT 302. The first used 26 cycles to a sample and 53 cycles to another sample, at 25mVs -1 . The second differs to the first in to use 3 beginning cycles at 5mVs -1 and remaining cycles at 100 mVs -1 , obtaining two samples, similar to first treatment, with 26 and 53 cycles, at end. Processes temperature was 0°C. These procedures resulted in two different materials of PAni, evaluated in function of scanning velocity and variation on cycle numbers used. Resulting new composites were characterized scanning electronic microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), electromagnetic measures in waveguide of intrinsic properties, scattering parameters and reflectivity on frequency range from 8,0 up to 12,0 GHz To verify applicability on aeronautics electromagnetic shields, computing sources were used, through numeric simulations to determine RCS of objects, overlapping concepts of geometric interactions with material properties applied on their surfaces, added with interception of microwaves emitted by hypothetical radars. To this end, software Computer Simulation Technology-(CST) was used, through which efficacy of composite PAni@carbon fiber@epoxy was indicated to aeronautic application in Stealth technology. (author)

  12. Polyaniline electrosynthesis on composite surface carbon fiber-epoxy Aeronautic application

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, Richelmy Magi; Batista, Aline Fontana; Gama, Adriana Medeiros; Goncalves, Emerson Sarmento, E-mail: rms.aero94@gmail.com [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Lab. de Caracterizacao Fisico-Quimica; Quirino, Sandro Fonseca; Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: This work aims to obtain polyaniline (PAni) by electro synthesis, as thin layers on carbon fiber/epoxy composite surface, to attenuate microwave amplitude and so decrease radar cross section (RCS) on drone surfaces. In order to it, two procedures were used to obtain polyaniline on surface from aniline 0,5 mol L{sup -1} and H{sub 2}SO{sub 4} 1,0 mol L{sup -1}, using cyclic voltammetry, from -0,50 up to 1,05 V x Ag/AgCl, using auxiliary electrode of Pt, by potentiostat-galvanostat Autolab PGSTAT 302. The first used 26 cycles to a sample and 53 cycles to another sample, at 25mVs{sup -1}. The second differs to the first in to use 3 beginning cycles at 5mVs{sup -1} and remaining cycles at 100 mVs{sup -1}, obtaining two samples, similar to first treatment, with 26 and 53 cycles, at end. Processes temperature was 0°C. These procedures resulted in two different materials of PAni, evaluated in function of scanning velocity and variation on cycle numbers used. Resulting new composites were characterized scanning electronic microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), electromagnetic measures in waveguide of intrinsic properties, scattering parameters and reflectivity on frequency range from 8,0 up to 12,0 GHz To verify applicability on aeronautics electromagnetic shields, computing sources were used, through numeric simulations to determine RCS of objects, overlapping concepts of geometric interactions with material properties applied on their surfaces, added with interception of microwaves emitted by hypothetical radars. To this end, software Computer Simulation Technology-(CST) was used, through which efficacy of composite PAni@carbon fiber@epoxy was indicated to aeronautic application in Stealth technology. (author)

  13. Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes

    Directory of Open Access Journals (Sweden)

    Giuseppina Barra

    2017-09-01

    Full Text Available The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs with Polyhedral Oligomeric Silsesquioxane (POSS compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS to Tetraglycidyl Methylene Dianiline (TGMDA epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA, single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints.

  14. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    Directory of Open Access Journals (Sweden)

    André Navarro de Miranda

    2011-12-01

    Full Text Available Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/epoxy composites were molded and electrical conductivity was measured. Also, the CF/CNF/epoxy composites were tested under flexure and interlaminar shear. The results showed an overall reduction in mechanical properties as a function of added nanofiber, although electrical conductivity increased up to 74% with the addition of nanofibers. Thus CF/CNF/epoxy composites can be used as electrical dissipation discharge materials.

  15. Toughening Effect of Microscale Particles on the Tensile and Vibration Properties of S-Glass-Fiber-Reinforced Epoxy Composites

    Science.gov (United States)

    Erkliğ, A.; Bulut, M.; Fayzulla, B.

    2018-03-01

    The effect of borax, sewage sludge ash, silicon carbide, and perlite microparticles on the tensile, damping, and vibration characteristics of S-glass/epoxy composite laminates was examined Their damping and vibration properties were evaluated experimentally by using the dynamic modal analysis, identifying the response of the fundamental natural frequency to the type and weight content of the particulates. The results obtained showed that the introduction of specific amounts of such particulates into the matrix of S-glass/epoxy composite noticeably improved its mechanical properties.

  16. The influence of double nested layer waviness on compression strength of carbon fiber composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    1997-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, optimization of their production processes in eagerly being sought. One of the most common defect in production of structural composites is layer waviness. Layer waviness is more pronounced in thick section flat and cylindrical laminates that are extensively used in missile casings, submersibles and space platforms. Layer waviness undulates the entire layers of a multidirectional laminate in through-the-thickness direction leading to gross deterioration of its compression strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wave 0 degree centigrade layer fabricated in IM/85510-7 carbon - epoxy composite laminate on a steel mold using single step fabrication procedure. The laminate was cured on a heated press according to specific curing cycle. Static compression testing was performed using NASA short block compression fixture on an MTS servo Hydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of composite laminate. The experimental and analytical results revealed that up to about 35% fraction of wave 0 degree layer exceeded 35%. This analysis indicated that the percentage of 0 degree wavy layer may be used to estimate the reduction in compression strength of a composite laminate under restricted conditions. (author)

  17. Effect of Saline Solution on the Electrical Response of Single Wall Carbon Nanotubes-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hammad Younes

    2017-01-01

    Full Text Available The effects of saline solution on the electrical resistance of single wall carbon nanotubes-epoxy nanocomposites have been investigated experimentally. Ultrasonic assisted fabricated 1.0% and 0.5 W/W% SWCNTs epoxy nanocomposites are integrated into a Kelvin structure by smear cast the nanocomposites on a glass wafer. Four metal pads are deposited on the nanocomposites using the beam evaporator and wires are tethered using soldering. The effect of saline solution on the electrical resistance of the nanocomposites is studied by adding drop of saline solution to the surface of the fabricated nanocomposites and measuring electrical resistance. Moreover, the nanocomposites are soaked completely into 3 wt.% saline solution and real-time measurement of the electrical resistance is conducted. It is found that a drop of saline solution on the surface of the nanocomposites film increases the resistance by 50%. Furthermore, the real-time measurement reveals a 40% increase in the resistance of the nanocomposites film. More importantly, the nanocomposites are successfully reset by soaking in DI water for four hours. This study may open the door for using SWCNTs epoxy nanocomposites as scale sensors in oil and gas industry.

  18. Self-healing of low-velocity impact damage in glass fabric/epoxy composites using an epoxy–mercaptan healing agent

    International Nuclear Information System (INIS)

    Yuan, Yan Chao; Qin, Shi Xiang; Ye, Yueping; Chen, Haibin; Wu, Jingshen; Rong, Min Zhi; Zhang, Ming Qiu; Yang, Gui Cheng

    2011-01-01

    Self-healing woven glass fabric-reinforced epoxy composite laminates were made by embedding epoxy- and mercaptan-loaded microcapsules. After being subjected to low-velocity impact, the laminates were able to heal the damage in an autonomic way at room temperature. The healing-induced reduction in the damaged areas was visualized using a scanning acoustic microscope. The rate of damage area reduction, which is closely related to the effect of crack rehabilitation and mechanical recovery, is a function of impact energy, content and size of the healing microcapsules. Minor damage, such as microcracks in the matrix, can be completely repaired by the healing system without manual intervention, including external pressure. Microcapsules with larger size and/or higher concentration are propitious for delivering more healing agent to cracked portions, while imposition of lateral pressure on damaged specimens forces the separated faces to approach each other. Both can improve the rate of damage area reduction in the case of severe damage

  19. Standard Test Method for Gel Time of Carbon Fiber-Epoxy Prepreg

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method covers the determination of gel time of carbon fiber-epoxy tape and sheet. The test method is suitable for the measurement of gel time of resin systems having either high or low viscosity. 1.2 The values stated in SI units are to be regarded as standard. The values in parentheses are for reference only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. The Influence of Hydroxylated Carbon Nanotubes on Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jiaoxia Zhang

    2012-01-01

    Full Text Available Hydroxylated multiwall carbon nanotubes (MWNTs/epoxy resin nanocomposites were prepared with ultrasonic dispersion and casting molding. The effect of hydroxylated MWNTs content on reactive activity of composites is discussed. Then the flexural and electrical properties were studied. Transmission electron microscope was employed to characterize the microstructure of nanocomposites. As a result, the reactive activity of nanocomposites obtained increases with the increasing content of MWNTs. When MWNTs content of the composites is 1 wt%, as compared to neat resin, the flexural strength increases from 143 Mpa to 156 MPa, the modulus increases from 3563 Mpa to 3691 MPa, and the volume and surface resistance of nanocomposites decrease by two orders of magnitude, respectively.

  1. Carbon fiber epoxy composites for both strengthening and health monitoring of structures.

    Science.gov (United States)

    Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal

    2015-05-06

    This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the "wet process", which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.

  2. Exposure Assessment of Particulate Matter from Abrasive Treatment of Carbon and Glass Fibre-Reinforced Epoxy-Composites

    DEFF Research Database (Denmark)

    Jensen, Alexander C. Ø.; Levin, Marcus; Koivisto, Antti J.

    2015-01-01

    The use of composites is ever increasing due to their important structural and chemical features. The composite component production often involves high energy grinding and sanding processes to which emissions workers are potentially exposed. In this study we investigated the machining of carbon...... and glass fibre-reinforced epoxy composite materials at two facilities. We measured particle number concentrations and size distributions of the released material in near field and far field during sanding of glass-and carbon fibre-reinforced composites. We assessed the means of reducing exposure during...

  3. Three-dimensional contraction and mechanical properties of glass-cloth-reinforced epoxy materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Hamelin, J.

    1979-01-01

    In this paper three-dimensional thermal contraction and mechanical properties of glass-cloth reinforced epoxy laminates are reported. The results are shown to depend on the material density (and thus on the glass content). They cover both commercially available products and other materials of higher density recently developed with the aim of getting a thermal contraction of same amplitude as that of the superconductor, specially in the direction orthogonal to the plane of laminations. The feasibility of this last type of structural material was investigated along a R and D programme involved with the 'TORE II' project, a tokamak machine proposed for plasma physics experiments by the Euratom-CEA Association

  4. Hygrothermal Effect on Mechanical and Fatigue Properties of laminated Lower Limb Socket and Bacteria Growth

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas Abdullah

    2016-12-01

    Full Text Available In this work, hygrothermal effect on the mechanical and fatigue properties of prosthetic socket lamination and its effect on the bacteria growth were studied. Two laminations composite materials were used in manufacturing prosthetic socket by using vacuum device. The reinforced materials of these laminations were perlon and carbon nanopowder (CNP while the matrix material was polyurethane resin. Tests performed in this work were the moisture absorption properties test to calculate percent moisture content according to ASTM 5229, tensile and fatigue tests with and without the hygrothermal effect to find the mechanical and fatigue properties, and the bacteria growth test under the hygrothermal effect to calculate the number of bacteria on the laminations. The results showed that the lamination (10 perlon+1 wt % CNP has mechanical properties than lamination (10 perlon with and without hygrothermal effect. The mechanical and fatigue properties for the two laminations were decreasing with increasing temperature and moisture.. Adding carbon nanopowder to the lamination (10 perlon increased ultimate stress, modulus of elastic, and endurance limit by (1.36, 2.35, and2.72 time respectively. Finally, the results showed that the Staphylococcus aureus growth increases with increasing temperature and moisture on the two laminations used in manufacturing prosthetic socket, and adding carbon nanopowder also increased the Staphylococcus aureus growth on the lamination.

  5. Influence of fiber upon the radiation degradation of fiber-reinforced plastics

    International Nuclear Information System (INIS)

    Udagawa, Akira

    1992-01-01

    Influences of fiber upon the radiation degradation of fiber-reinforced plastics were investigated by using 2 MeV electrons. Radiation resistances were evaluated from the three-point bending strength of the fiber laminates which used bisphenol A-type epoxy resin as a matrix. Carbon fiber laminates had higher radiation resistance values than the laminates made of glass fiber. Model laminates using polyethylene as a matrix were prepared in order to examine the differences between carbon fiber and glass fiber filler, the relation between gel fraction and absorbed dose was established. When the polyethylene was filled in the carbon fiber, forming the gel was strikingly delayed. This result suggests that radiation protective action existing in carbon fiber to matrix resin is the main cause of the higher radiation resistance of carbon fiber reinforced plastics. (author)

  6. Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Wichmann, Malte H G; Buschhorn, Samuel T; Boeger, Lars; Schulte, Karl; Adelung, Rainer

    2008-01-01

    In the present work, a direction sensitive bending strain sensor consisting of a single block of epoxy/multi-wall carbon nanotube composite was developed. Moreover, the manufacturing could be realized in a straightforward single-step processing route. The directional sensitivity to bending deformations is related to the change in electrical resistance, which becomes positive or negative, depending on the direction of bending deflection. This effect is achieved by generating a gradient in electrical conductivity throughout the material. The resistance versus strain behaviour of these devices is investigated in detail and related to the microstructure of the nanocomposites.

  7. Experimental and analytical study of high velocity impact on Kevlar/Epoxy composite plates

    Science.gov (United States)

    Sikarwar, Rahul S.; Velmurugan, Raman; Madhu, Velmuri

    2012-12-01

    In the present study, impact behavior of Kevlar/Epoxy composite plates has been carried out experimentally by considering different thicknesses and lay-up sequences and compared with analytical results. The effect of thickness, lay-up sequence on energy absorbing capacity has been studied for high velocity impact. Four lay-up sequences and four thickness values have been considered. Initial velocities and residual velocities are measured experimentally to calculate the energy absorbing capacity of laminates. Residual velocity of projectile and energy absorbed by laminates are calculated analytically. The results obtained from analytical study are found to be in good agreement with experimental results. It is observed from the study that 0/90 lay-up sequence is most effective for impact resistance. Delamination area is maximum on the back side of the plate for all thickness values and lay-up sequences. The delamination area on the back is maximum for 0/90/45/-45 laminates compared to other lay-up sequences.

  8. Temperature dependence of the electrical conductivity of vapor grown carbon nanofiber/epoxy composites with different filler dispersion levels

    International Nuclear Information System (INIS)

    Cardoso, P.; Silva, J.; Agostinho Moreira, J.; Klosterman, D.; Hattum, F.W.J. van; Simoes, R.; Lanceros-Mendez, S.

    2012-01-01

    The influence of the dispersion of vapor grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/epoxy composites has been studied. A homogeneous dispersion of the VGCNF does not imply better electrical properties. The presence of well distributed clusters appears to be a key factor for increasing composite conductivity. It is also shown that the main conduction mechanism has an ionic nature for concentrations below the percolation threshold, while above the percolation threshold it is dominated by hopping between the fillers. Finally, using the granular system theory it is possible to explain the origin of conduction at low temperatures. -- Highlights: ► The influence of dispersion of carbon nanofibers on epoxy is investigated. ► A homogeneous dispersion does not imply better electrical properties. ► The conduction mechanism has an ionic nature below the percolation threshold. ► Above the percolation threshold it is dominated by hopping between the fillers. ► The granular system theory allows explaining conduction at low temperatures.

  9. Temperature dependence of the electrical conductivity of vapor grown carbon nanofiber/epoxy composites with different filler dispersion levels

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, P. [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Silva, J. [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Institute for Polymers and Composites IPC/I3N, University of Minho, Campus de Azurém, 4800-058 Guimares (Portugal); Agostinho Moreira, J. [IFIMUP and IN—Institute of Nanoscience and Nanotechnology, Department of Physics and Astronomy, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Klosterman, D. [Chemical and Materials Engineering, University of Dayton, 300 College Park, Dayton, OH 45469-0246 (United States); Hattum, F.W.J. van [Institute for Polymers and Composites IPC/I3N, University of Minho, Campus de Azurém, 4800-058 Guimares (Portugal); Simoes, R. [Institute for Polymers and Composites IPC/I3N, University of Minho, Campus de Azurém, 4800-058 Guimares (Portugal); School of Technology, Polytechnic Institute of Cávado and Ave, Campus do IPCA, 4750-810 Barcelos (Portugal); Lanceros-Mendez, S., E-mail: lanceros@fisica.uminho.pt [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); INL—International Iberian Nanotechnology Laboratory, 4715-330 Braga (Portugal)

    2012-10-01

    The influence of the dispersion of vapor grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/epoxy composites has been studied. A homogeneous dispersion of the VGCNF does not imply better electrical properties. The presence of well distributed clusters appears to be a key factor for increasing composite conductivity. It is also shown that the main conduction mechanism has an ionic nature for concentrations below the percolation threshold, while above the percolation threshold it is dominated by hopping between the fillers. Finally, using the granular system theory it is possible to explain the origin of conduction at low temperatures. -- Highlights: ► The influence of dispersion of carbon nanofibers on epoxy is investigated. ► A homogeneous dispersion does not imply better electrical properties. ► The conduction mechanism has an ionic nature below the percolation threshold. ► Above the percolation threshold it is dominated by hopping between the fillers. ► The granular system theory allows explaining conduction at low temperatures.

  10. Electrospun Fibers for Composites Applications

    Science.gov (United States)

    2014-02-01

    in traditional woven mat composites. Nanofibrous interlayers were used to increase the impact and shear performance of a prepregged carbon fiber...Nylon 66 Nanofibrilmat Interleaved Carbon/Epoxy Laminates . Polymer Composites 2011, 32, 1781–1789. 21 13. Chen, Q.; Zhang, L.; Rahman, A.; Zhou...Resistance in Laminated Composites With Electrospun Nano-Interlayers. Comp. Sci. Tech. 2008, 68, 673– 683. 15. Zhang, J.; Lin, T.; Wang, X. Electrospun

  11. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  12. The Effect of an Active Diluent on the Properties of Epoxy Resin and Unidirectional Carbon-Fiber-Reinforced Plastics

    Science.gov (United States)

    Solodilov, V. I.; Gorbatkina, Y. A.; Kuperman, A. M.

    2003-11-01

    The influence of an active diluent on the properties of an epoxy matrix and carbon-fiber-reinforced plastics (CFRP) is investigated. The physicomechanical properties of an ED-20 epoxy resin modified with diglycidyl ether of diethylene glycol (DEG-1), the adhesion strength at the epoxy matrix-steel wire interface, and the mechanical properties of unidirectional CFRP are determined. The concentration of DEG-1 was varied from 0 to 50 wt.%. The properties of the matrix, the interface, and the composites are compared. It is stated that the matrix strength affects the strength of unidirectional CFRP in bending and not their strength in tension, compression, and shear. The latter fact seems somewhat unexpected. The interlaminar fracture toughness of the composites investigated correlates with the ultimate elongation of the binder. A comparison between the concentration dependences of adhesion strength and the strength of CFRP shows that the matrices utilized provide such a high interfacial strength that the strength of CFRP no longer depends on the adhesion of its constituents.

  13. Inorganic Nanoparticle-Modified Poly(Phenylene Sulphide/ Carbon Fiber Laminates: Thermomechanical Behaviour

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2013-07-01

    Full Text Available Carbon fiber (CF-reinforced high-temperature thermoplastics such as poly(phenylene sulphide (PPS are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2 lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg. IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

  14. Verification and Validation of Carbon-Fiber Laminate Low Velocity Impact Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen; Nelson, Stacy Michelle; Briggs, Timothy; Brown, Arthur A.

    2014-10-01

    Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importance as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.

  15. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    International Nuclear Information System (INIS)

    Paruka, Perowansa; Siswanto, Waluyo Adi; Maleque, Md Abdul; Shah, Mohd Kamal Mohd

    2015-01-01

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  16. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    Energy Technology Data Exchange (ETDEWEB)

    Paruka, Perowansa [Jalan Politeknik, Kota Kinabalu (Malaysia); Siswanto, Waluyo Adi [Universiti Tun Hussein Onn Malaysia, Parit Raja (Malaysia); Maleque, Md Abdul [Universiti Islam Antarabangsa Malaysia, Kuala Lumpur (Malaysia); Shah, Mohd Kamal Mohd [Universiti Malaysia Sabah, Kota Kinabalu (Malaysia)

    2015-05-15

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  17. Preparation and characterization of rubbery epoxy/multiwall carbon nanotubes composites using amino acid salt assisted dispersion technique

    Directory of Open Access Journals (Sweden)

    S. B. Jagtap

    2013-04-01

    Full Text Available Epoxy/multiwall carbon nanotubes (MWCNT composites were prepared using sodium salt of 6-aminohexanoic acid (SAHA modified MWCNT and its effect properties of related composites were investigated. The composite prepared using a polar solvent, tetrahydrofuran exhibits better mechanical properties compared to those prepared using less polar solvent and without using solvent. The tensile properties and dynamic storage modulus was found to be increased as a result of modification of MWCNT with SAHA. This improvement in the tensile properties and dynamic mechanical properties of epoxy/MWCNT composite is a combined effect of cation-π interaction and chemical bonding. Fourier transform infrared spectroscopy (FTIR and Raman spectroscopy were used to explain cation-π interaction between SAHA with MWCNT and chemical bonding of SAHA with epoxy resin. The effect of modification of MWCNT on morphology of a nanocomposite was confirmed by using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The present approach does not disturb the ! electron clouds of MWCNT as opposed to chemical functionalization strategy.

  18. Crack Identification in CFRP Laminated Beams Using Multi-Resolution Modal Teager–Kaiser Energy under Noisy Environments

    Science.gov (United States)

    Xu, Wei; Cao, Maosen; Ding, Keqin; Radzieński, Maciej; Ostachowicz, Wiesław

    2017-01-01

    Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates. PMID:28773016

  19. Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel

    International Nuclear Information System (INIS)

    Mohammadi, Somayeh; Shariatpanahi, Homeira; Taromi, Faramarz Afshar; Neshati, Jaber

    2016-01-01

    Highlights: • FGNP was combined with TPP to obtain a hybrid nano-particle. • TEM image showed uniform distribution of the hybrid nanoparticles in epoxy coating. • FGNP is a substrate for linking of TPP anions by hydrogen bonding. • FGNP as an accelerator, provides rapid iron phosphate passive film formation. • The hybrid nano-particle can provide long-term corrosion protection. - Abstract: Functionalized graphite nano-platelets (FGNP) were combined with tripolyphosphate (TPP) to gain a hybrid nano-particle (FGNP-TPP) with homogenous dispersion in epoxy, resulting in an excellent anti-corrosion coating for carbon steel substrate. Characterization analyses of the hybrid nano-particle were performed by FT-IR, SEM, XRD and TEM. TPP was linked to FGNP nano-particles by hydrogen bondings. Different epoxy coatings formulated with 1 wt.% of FGNP, FGNP-TPP and TPP were evaluated. Electrochemical investigations, salt spray and pull-off tests showed that the hybrid nano-particle can provide long-term corrosion protection compared to FGNP and TPP due to synergistic effect between FGNP as an accelerator and TPP as a corrosion inhibitor to produce a uniform and stable iron-phosphate passive film with high surface coverage.

  20. Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Somayeh, E-mail: somaye.mohammadi32@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shariatpanahi, Homeira [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Taromi, Faramarz Afshar [Department of Polymer Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Neshati, Jaber [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • FGNP was combined with TPP to obtain a hybrid nano-particle. • TEM image showed uniform distribution of the hybrid nanoparticles in epoxy coating. • FGNP is a substrate for linking of TPP anions by hydrogen bonding. • FGNP as an accelerator, provides rapid iron phosphate passive film formation. • The hybrid nano-particle can provide long-term corrosion protection. - Abstract: Functionalized graphite nano-platelets (FGNP) were combined with tripolyphosphate (TPP) to gain a hybrid nano-particle (FGNP-TPP) with homogenous dispersion in epoxy, resulting in an excellent anti-corrosion coating for carbon steel substrate. Characterization analyses of the hybrid nano-particle were performed by FT-IR, SEM, XRD and TEM. TPP was linked to FGNP nano-particles by hydrogen bondings. Different epoxy coatings formulated with 1 wt.% of FGNP, FGNP-TPP and TPP were evaluated. Electrochemical investigations, salt spray and pull-off tests showed that the hybrid nano-particle can provide long-term corrosion protection compared to FGNP and TPP due to synergistic effect between FGNP as an accelerator and TPP as a corrosion inhibitor to produce a uniform and stable iron-phosphate passive film with high surface coverage.

  1. In-situ determination of amine/epoxy and carboxylic/epoxy exothermic heat of reaction on surface of modified carbon nanotubes and structural verification of covalent bond formation

    Science.gov (United States)

    Neves, Juliana C.; de Castro, Vinícius G.; Assis, Ana L. S.; Veiga, Amanda G.; Rocco, Maria Luiza M.; Silva, Glaura G.

    2018-04-01

    An effective nanofiller-matrix interaction is considered crucial to produce enhanced nanocomposites. Nevertheless, there is lack of experiments focused in the direct measurement of possible filler-matrix covalent linkage, which was the main goal of this work for a carbon nanotube (CNT)/epoxy system. CNT were functionalized with oxygenated (ox) functions and further with triethylenetetramine (TETA). An in-situ determination methodology of epoxy-CNTs heat of reaction was developed by Differential Scanning Calorimetry (DSC). Values of -(8.7 ± 0.4) and -(6.0 ± 0.6) J/g were observed for epoxy with CNT-ox and CNT-TETA, respectively. These results confirm the occurrence of covalent bonds for both functionalized CNTs, a very important information due to the literature generally disregard this possibility for oxygenated functions. The higher value obtained for CNT-ox can be attributed to a not complete amidation and to steric impediments in the CNT-TETA structure. The modified CNTs produced by DSC experiments were then characterized by X-Ray Photoelectron Spectroscopy, Transmission Electron Microscopy and Thermogravimetry, which confirmed the covalent linkage. This characterization methodology can be used to verify the occurrence of covalent bonds in various nanocomposites with a quantitative evaluation, providing data for better understanding of the role of CNT functional groups and for tailoring its interface with polymers.

  2. Repair and Strengthening by Use of Superficial Fixed Laminates of Cracked Masonry Walls Sheared Horizontally-Laboratory Tests

    International Nuclear Information System (INIS)

    Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw

    2008-01-01

    There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixing are presented and discussed

  3. Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures

    Directory of Open Access Journals (Sweden)

    Rita Salvado

    2015-05-01

    Full Text Available This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the “wet process”, which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.

  4. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.

    Science.gov (United States)

    Yoonessi, Mitra; Lebrón-Colón, Marisabel; Scheiman, Daniel; Meador, Michael A

    2014-10-08

    Surface functionalization of pretreated carbon nanotubes (CNT) using aromatic, aliphatic, and aliphatic ether diamines was performed. The pretreatment of the CNT consisted of either acid- or photo-oxidation. The acid treated CNT had a higher initial oxygen content compared to the photo-oxidized CNT and this resulted in a higher density of functionalization. X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) were used to verify the presence of the oxygenated and amine moieties on the CNT surfaces. Epoxy/0.1 wt % CNT nanocomposites were prepared using the functionalized CNT and the bulk properties of the nanocomposites were examined. Macroscale correlations between the interfacial modification and bulk dynamic mechanical and thermal properties were observed. The amine modified epoxy/CNT nanocomposites exhibited up to a 1.9-fold improvement in storage modulus (G') below the glass transition (Tg) and up to an almost 4-fold increase above the Tg. They also exhibited a 3-10 °C increase in the glass transition temperature. The aromatic diamine surface modified epoxy/CNT nanocomposites resulted in the largest increase in shear moduli below and above the Tg and the largest increase in the Tg. Surface examination of the nanocomposites with scanning electron microscopy (SEM) revealed indications of a greater adhesion of the epoxy resin matrix to the CNT, most likely due to the covalent bonding.

  5. Chemical changes and tensile and electrical properties of epoxy ...

    African Journals Online (AJOL)

    The properties of epoxy rsesin can be improved by the use of nanofiller such as carbon black (CB), The nanocomposite was synthesized by dispersion via sonication and shear mixing. The morphology, surface chemistry and the structure of CB and the epoxy/CB nanocomposites were investigated using XPS, FTIR, FESEM, ...

  6. Influence of Nanoclay Dispersion Methods on the Mechanical Behavior of E-Glass/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahesh V. Hosur

    2013-08-01

    Full Text Available Common dispersion methods such as ultrasonic sonication, planetary centrifugal mixing and magnetic dispersion have been used extensively to achieve moderate exfoliation of nanoparticles in polymer matrix. In this study, the effect of adding three roll milling to these three dispersion methods for nanoclay dispersion into epoxy matrix was investigated. A combination of each of these mixing methods with three roll milling showed varying results relative to the unmodified polymer laminate. A significant exfoliation of the nanoparticles in the polymer structure was obtained by dispersing the nanoclay combining three roll milling to magnetic and planetary centrifugal mixing methods. This exfoliation promoted a stronger interfacial bond between the matrix and the fiber, which increased the final properties of the E-glass/epoxy nanocomposite. However, a combination of ultrasound sonication and three roll milling on the other hand, resulted in poor clay exfoliation; the sonication process degraded the polymer network, which adversely affected the nanocomposite final properties relative to the unmodified E-glass/epoxy polymer.

  7. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  8. Damage detection in multilayered fiber-metal laminates using guided-wave phased array

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Ameneh; Ohadi, Abdolrezap; Sadighi, Mojtaba; Amindavar, Hamidreza [Amirkabir University, Tehran (Iran, Islamic Republic of)

    2016-05-15

    This study employs the Lamb wave method to detect damage in Fiber-metal laminates (FMLs). The method is based on quasiisotropic behavior approximation and beam forming techniques. Delay and sum and minimum variance distorsionless response beam formers are applied to a uniform linear phased array. The simulation in finite element software is conducted to evaluate the performance of the presented procedure. The two types of damage studied are the following: (1) Delamination between fiber-epoxy and metal layers and (2) crack on the metal layer. The present study has the following important contributions: (1) Health monitoring of multi-damaged FMLs using Lamb waves and beam forming technique, (2) detection of damage type, (3) detection of damage size by 1D phased array, and (4) identification of damages that occurred very close to the laminate edges or close to each other.

  9. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    International Nuclear Information System (INIS)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-01-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected

  10. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    Science.gov (United States)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-11-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  11. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schlagenhauf, Lukas [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Kuo, Yu-Ying; Bahk, Yeon Kyoung [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland); Nüesch, Frank [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Wang, Jing, E-mail: Jing.Wang@ifu.baug.ethz.ch [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland)

    2015-11-15

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  12. Mechanical properties of graphene oxide (GO/epoxy composites

    Directory of Open Access Journals (Sweden)

    Shivan Ismael Abdullah

    2015-08-01

    Full Text Available In this study, the effects of graphene oxide (GO on composites based on epoxy resin were analyzed. Different contents of GO (1.5–6 vol.% were added to epoxy resin. The GO/epoxy composite was prepared using the casting method and was prepared under room temperature. Mechanical tests’ results such as tensile test, impact test and hardness test show enhancements of the mechanical properties of the GO/epoxy composite. The experimental results clearly show an improvement in the Young’s modulus, tensile strength and hardness. The impact strength was seen to decrease, pointing to brittleness increase of the GO/epoxy composite. A microstructure analysis using Scanning Electron Microscopy (SEM and X-ray diffraction (XRD analysis was also performed, which showed how GO impeded the propagation of cracks in the composite. From the SEM images we observed the interface between the GO and the epoxy composite. As can be seen from this research, the GO/epoxy composites can be used for a large number of applications. The results of this research are a strong evidence for GO/epoxy composites being a potential candidate for use in a variety of industrial applications, especially for automobile parts, aircraft components, and electronic parts such as supercapacitors, transistors, etc.

  13. Current injection phase thermography for low-velocity impact damage identification in composite laminates

    International Nuclear Information System (INIS)

    Grammatikos, S.A.; Kordatos, E.Z.; Matikas, T.E.; David, C.; Paipetis, A.S.

    2014-01-01

    Highlights: • A novel Current injection phase thermography NDE method has been developed. • Blind impact damage has been successfully detected in composite laminates. • Carbon nanotubes enhance detection by improving of through thickness conductivity. • Detection is feasible with considerably less energy than for IR excited thermography. - Abstract: An innovative non-destructive evaluation (NDE) technique is presented based on current stimulated thermography. Modulated electric current is injected to Carbon Fibre Reinforced Plastics (CFRP) laminates as an external source of thermal excitation. Pulsed Phase Thermography (PPT) is concurrently employed to identify low velocity impact induced (LVI) damage. The efficiency of the proposed method is demonstrated for both plain and with Carbon Nanotubes (CNTs) modified laminates, which are subjected to low-velocity impact damaged composite laminates at different energy levels. The presence of the nano reinforcing phase is important in achieving a uniform current flow along the laminate, as it improves the through thickness conductivity. The acquired thermographs are compared with optical PPT, C-scan images and Computer Tomography (CT) representations. The typical energy input for successful damage identification with current injection is three to four orders of magnitude less compared to the energy required for optical PPT

  14. Design, Fabrication and Testing of Carbon Fiber Reinforced Epoxy Drive Shaft for All Terrain Vehicle using Filament Winding

    Directory of Open Access Journals (Sweden)

    Yeshwant Nayak Suhas

    2018-01-01

    Full Text Available Filament winding is a composite material fabrication technique that is used to manufacture concentric hollow components. In this study Carbon/Epoxy composite drive shafts were fabricated using filament winding process with a fiber orientation of [852/±452/252]s. Carbon in the form of multifilament fibers of Tairyfil TC-33 having 3000 filaments/strand was used as reinforcement with low viscosity epoxy resin as the matrix material. The driveshaft is designed to be used in SAE Baja All Terrain Vehicle (ATV that makes use of a fully floating axle in its rear wheel drive system. The torsional strength of the shaft was tested and compared to that of an OEM steel shaft that was previously used in the ATV. Results show that the composite shaft had 8.5% higher torsional strength in comparison to the OEM steel shaft and was also lighter by 60%. Scanning electron microscopy (SEM micrographs were studied to investigate the probable failure mechanism. Delamination, matrix agglomeration, fiber pull-out and matrix cracking were the prominent failure mechanisms identified.

  15. Design and Analysis of Drive Shaft using Kevlar/Epoxy and Glass/Epoxy as a Composite Material

    Science.gov (United States)

    Karthikeyan, P.; Gobinath, R.; Kumar, L. Ajith; Jenish, D. Xavier

    2017-05-01

    In automobile industry drive shaft is one of the most important components to transmit power form the engine to rear wheel through the differential gear. Generally steel drive shaft is used in automobile industry, nowadays they are more interested to replace steel drive shaft with that of composite drive shaft. The overall objective of this paper is to analyze the composite drive shaft using to find out the best replacement for conventional steel drive shaft. The uses of advanced composite materials such as Kevlar, Graphite, Carbon and Glass with proper resins ware resulted in remarkable achievements in automobile industry because of its greater specific strength and specific modulus, improved fatigue and corrosion resistances and reduction in energy requirements due to reduction in weight as compared to steel shaft. This paper is to presents, the modeling and analysis of drive shaft using Kevlar/Epoxy and Glass/Epoxy as a composite material and to find best replacement for conventional steel drive shafts with an Kevlar/epoxy or Glass/Epoxy resin composite drive shaft. Modeling is done using CATIA software and Analysis is carried out by using ANSYS 10.0 software for easy understanding. The composite drive shaft reduces the weight by 81.67 % for Kevlar/Epoxy and 72.66% for Glass/Epoxy when compared with conventional steel drive shaft.

  16. Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites

    International Nuclear Information System (INIS)

    Kundalwal, S I; Suresh Kumar, R; Ray, M C

    2013-01-01

    This paper deals with the investigation of active constrained layer damping (ACLD) of smart laminated continuous fuzzy fiber reinforced composite (FFRC) shells. The distinct constructional feature of a novel FFRC is that the uniformly spaced short carbon nanotubes (CNTs) are radially grown on the circumferential surfaces of the continuous carbon fiber reinforcements. The constraining layer of the ACLD treatment is considered to be made of vertically/obliquely reinforced 1–3 piezoelectric composite materials. A finite element (FE) model is developed for the laminated FFRC shells integrated with the two patches of the ACLD treatment to investigate the damping characteristics of the laminated FFRC shells. The effect of variation of the orientation angle of the piezoelectric fibers on the damping characteristics of the laminated FFRC shells has been studied when the piezoelectric fibers are coplanar with either of the two mutually orthogonal vertical planes of the piezoelectric composite layer. It is revealed that radial growth of CNTs on the circumferential surfaces of the carbon fibers enhances the attenuation of the amplitude of vibrations and the natural frequencies of the laminated FFRC shells over those of laminated base composite shells without CNTs. (paper)

  17. Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions

    International Nuclear Information System (INIS)

    Ayatollahi, M.R.; Shadlou, S.; Shokrieh, M.M.

    2011-01-01

    Research highlights: → Mode I and mode II fracture tests were conducted on epoxy/MWCNT nano-composites. → Addition of MWCNT to epoxy increased both K Ic and K IIc of nano-composites. → The improvement in K IIc was more pronounced than in K Ic . → Mode I and mode II fracture surfaces were studied by scanning electron microscopy. -- Abstract: The effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of epoxy/MWCNT nano-composites were studied with emphasis on fracture toughness under bending and shear loading conditions. Several finite element (FE) analyses were performed to determine appropriate shear loading boundary conditions for a single-edge notch bend specimen (SENB) and an equation was derived for calculating the shear loading fracture toughness from the fracture load. It was seen that the increase in fracture toughness of nano-composite depends on the type of loading. That is to say, the presence of MWCNTs had a greater effect on fracture toughness of nano-composites under shear loading compared with normal loading. To study the fracture mechanisms, several scanning electron microscopy (SEM) pictures were taken from the fracture surfaces. A correlation was found between the characteristics of fracture surface and the mechanical behaviors observed in the fracture tests.

  18. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion

    International Nuclear Information System (INIS)

    Petrucci, R.; Santulli, C.; Puglia, D.; Sarasini, F.; Torre, L.; Kenny, J.M.

    2013-01-01

    Highlights: ► For the first time, hybrid laminates with three different fibres were produced. ► Concerns are confirmed on the brittleness of hybrid laminates with basalt fibre core. ► An optimal configuration (FHB) for flexural properties was singled out. ► Differences between tensile and flexural properties of hybrids were identified. ► In general, the specific mechanical properties of the hybrids are quite high. - Abstract: This work concerns the production by vacuum infusion and the comparison of the properties of different hybrid composite laminates, based on basalt fibre composites as the inner core, and using also glass, flax and hemp fibre laminates to produce symmetrical configurations, all of them with a 21–23% fibre volume, in an epoxy resin. The laminates have been subjected to tensile, three-point flexural and interlaminar shear strength tests and their fracture surfaces have been characterised by scanning electron microscopy. The mechanical performance of all the hybrid laminates appears superior to pure hemp and flax fibre reinforced laminates and inferior to basalt fibre laminates. Among the hybrids, the best properties are offered by those obtained by adding glass and flax to basalt fibre reinforced laminates. Scanning electron microscopy (SEM) observation of hybrid laminates showed the diffuse presence of fibre pull-out in hemp and flax fibre reinforced layers and a general trend of brittle failure

  19. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Dongxian Zhuo

    2013-01-01

    Full Text Available Carbon nanotube/graphene nanoplatelet (MWCNT/GNP hybrid membranes with lower liquid permeability and better barrier effect compared to MWCNT membranes were successfully synthesized by vacuum filtering. Their morphologies, water permeability, and pore structures were characterized by a scanning electron microscope (SEM and nitrogen adsorption isotherms. Furthermore, MWCNT/GNP membranes were used to improve the flame retardancy of carbon fiber reinforced polymer (CFRP composites, and the influence of weight percentage of GNPs on the permeability and flame retardancy of MWCNT/GNP membranes was systematically investigated. Results show that incorporation of MWCNT/GNP membranes on CFRP composite plates can remarkably improve the flame retardancy of CFRP composites. Specifically, the incorporation of hierarchical MWCNT/GNP membrane with 7.5 wt% of GNP displays a 35% reduction in the peak heat release rate (PHRR for a CFRP composite plate with the epoxy as matrix and a 11% reduction in PHRR compared with the incorporation of MWCNT membrane only. A synergistic flame retarding mechanism is suggested to be attributed to these results, which includes controlling the pore size and penetrative network structure.

  20. Finite Element Simulation of Aluminium/GFRP Fibre Metal Laminate under Tensile Loading

    Science.gov (United States)

    Merzuki, M. N. M.; Rejab, M. R. M.; Romli, N. K.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd

    2018-03-01

    The response of a fibre metal laminate (FML) model to the tensile loading is predicted through a computational approach. The FML consisted with layers of aluminum alloy and embedded with one layer of composite material, Glass fibre Reinforced Plastic (GFRP). The glass fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy. A compression moulding technique was used in the process of a FML fabrication. The aluminium has been roughen by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure behaviour of the FML under the tensile loading. The responses on the FML under the tensile loading were numerically performed. The FML was modelled and analysed by using Abaqus/CAE 6.13 version. Based on the experimental and FE data of the tensile, the ultimate tensile stress is 120 MPa where delamination and fibre breakage happened. A numerical model was developed and agreed well with the experimental results. The laminate has an inelastic respond to increase the tensile loads which due to the plasticity of the aluminium layers.

  1. A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods

    OpenAIRE

    Min Sang Lee; Hee Jae Shin; In Pyo Cha; Sun Ho Ko; Hyun Kyung Yoon; Hong Gun Kim; Lee Ku Kwac

    2015-01-01

    The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated the reality. However, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between th...

  2. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry

    Directory of Open Access Journals (Sweden)

    Daeryeong Bae

    2018-05-01

    Full Text Available A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry.

  3. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry

    Science.gov (United States)

    Bae, Daeryeong; Kim, Shino; Lee, Wonoh; Yi, Jin Woo; Um, Moon Kwang; Seong, Dong Gi

    2018-01-01

    A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup) to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry. PMID:29883413

  4. In-situ Elevated Temperature Mechanical Performance of MWCNT/epoxy Nanocomposite

    Directory of Open Access Journals (Sweden)

    Bhanu Pratap Singh

    2017-03-01

    Full Text Available The present investigation has been focused on the effects of multi-walled carbon nanotube (MWCNT addition on the mechanical performance of epoxy under different in-service elevated temperature environments. Room temperature flexural test results revealed that addition of 0.1 wt. % MWCNT into epoxy resin resulted in modulus and strength enhancement of 21 % and 9 % respectively. With increase in service temperature, significant decrement in both modulus and strength was noticed for both materials (neat epoxy and MWCNT/epoxy nanocomposite, but the rate of degradation was found to be quite drastic for the nanocomposite. At 90 °C temperature, the CNT/epoxy nanocomposite exhibited inferior modulus and strength, which are 41 % and 59 % lower than neat epoxy respectively. The variation trend in elastic modulus with temperature obtained from both flexural testing and DMA for both these materials was also analyzed. It was found that addition of 0.1 % CNT in the epoxy reduced the glass transition temperature by about 16°C.

  5. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites

    Science.gov (United States)

    2016-01-01

    the preforms. It is a low- viscosity 2-phased toughened epoxy resin system consisting of part A (resin mixture of diglycidylether epoxy toughener...Delamination resistant laminates by Z-fiber pinning. Composites: Part A. 2005;36:55–64. 6. Clay S, Pommer A. Z-pin stubble technology advanced research...characterization of montmorillonite clay -filled SC-15 epoxy. Materials Letters. 2006;60:869–873. Approved for public release; distribution is

  6. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    Science.gov (United States)

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.

    Science.gov (United States)

    Cui, Peng; Wang, Xinnan; Tangpong, X W

    2012-11-01

    In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.

  8. Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials

    Science.gov (United States)

    Nettles, Alan T.; Biss, Emily J.

    1996-01-01

    The use of cryogenic fuels (liquid oxygen and liquid hydrogen) in current space transportation vehicles, in combination with the proposed use of composite materials in such applications, requires an understanding of how such materials behave at cryogenic temperatures. In this investigation, tensile intralaminar shear tests were performed at room, dry ice, and liquid nitrogen temperatures to evaluate the effect of temperature on the mechanical response of the IM7/8551-7 carbon-fiber/epoxy-resin system. Quasi-isotropic lay-ups were also tested to represent a more realistic lay-up. It was found that the matrix became both increasingly resistant to microcracking and stiffer with decreasing temperature. A marginal increase in matrix shear strength with decreasing temperature was also observed. Temperature did not appear to affect the integrity of the fiber-matrix bond.

  9. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties.

    Science.gov (United States)

    De, Bibekananda; Gupta, Kuldeep; Mandal, Manabendra; Karak, Niranjan

    2015-11-01

    The present work demonstrated a transparent thermosetting nanocomposite with antimicrobial and photoluminescence attributes. The nanocomposites are fabricated by incorporation of different wt.% (1, 2 and 3) of a biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid (MITH-NH) in the hyperbranched epoxy matrix. MITH-NH is obtained by immobilization of 2-methyl-4-isothiazolin-3-one hydrochloride (MITH) at room temperature using sonication on OMMT-carbon dot reduced Cu2O nanohybid. The nanohybrid is prepared by reduction of cupric acetate using carbon dot as the reducing agent in the presence of OMMT at 70°C. The significant improvements in tensile strength (~2 fold), elongation at break (3 fold), toughness (4 fold) and initial thermal degradation temperature (30°C) of the pristine hyperbranched epoxy system are achieved by incorporation of 3wt.% of MITH-NH in it. The nanocomposites exhibit strong antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas aeruginosa bacteria and Candida albicans, a fungus. The nanocomposite also shows significant activity against biofilm formation compared to the pristine thermoset. Further, the nanocomposite films emit different colors on exposure of different wavelengths of UV light. The properties of these nanocomposites are also compared with the same nanohybrid without OMMT. Copyright © 2015. Published by Elsevier B.V.

  10. Engineering properties of a filament-wound Kevlar 49/epoxy composite

    International Nuclear Information System (INIS)

    Hahn, H.T.; Chin, W.K.

    1981-01-01

    The effect of a flywheel service environment on transverse tension and compression, and longitudinal compression and shear properties of a filament-wound Kevlar/epoxy composite are evaluated. Shear strength and modulus were reduced by moisture desorption during preconditioning in a vacuum at 75 C, although room temperature strength and modulus increased for longitudinal compression. The desorption induced cracking of the laminate plies through increased residual stresses, which at 25 C were 15 MPa, higher than the transverse strength. The 75 C temperature caused lower strength and moduli except for longitudinal tension, and the complete test results are listed

  11. Evolution of carbon nanotube dispersion in preparation of epoxy-based composites: From a masterbatch to a nanocomposite

    OpenAIRE

    Aravand, Mohammadali; Lomov, Stepan Vladimirovitch; Verpoest, Ignace; Gorbatikh, Larissa

    2014-01-01

    The state of carbon nanotube (CNT) dispersion in epoxy is likely to change in the process of composite production. In the present work CNT dispersion is characterized at different stages of nanocomposite preparation: in the original masterbatch with high CNT concentration, after masterbatch dilution, in the process of curing and in the final nanocomposite. The evaluation techniques included dynamic rheological analysis of the liquid phases, optical, environmental and charge contrast scanning ...

  12. Response of fiber Bragg gratings bonded on a glass/epoxy laminate subjected to static loadings

    KAUST Repository

    Mulle, Matthieu; Moussawi, Ali; Lubineau, Gilles; Durand, Samuel; Falandry, Didier; Olivier, Philippe

    2015-01-01

    measurements. Here, two adhesives were investigated, one with low viscosity and the other with high viscosity for bonding FBGs on glass/epoxy sandwich skins. First, instrumented elementary specimens were tested under tension. FBG strain results were analyzed

  13. Evaluation of Carbon Composite Overwrap Pressure Vessels Fabricated Using Ionic Liquid Epoxies

    Data.gov (United States)

    National Aeronautics and Space Administration — In terms of "Innovation" this is a unique epoxy with unique properties, and NASA co-holds the patent. This epoxy is being exclusively formulated for cryogenic use....

  14. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  15. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    International Nuclear Information System (INIS)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-01-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments. (paper)

  16. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  17. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 1 summary report: Shear web design development

    Science.gov (United States)

    Laakso, J. H.; Zimmerman, D. K.

    1972-01-01

    An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.

  18. A DFT study on the effect of supporting titania on silica graphene epoxy graphene and carbon nanotubes - Interfacial properties and optical response

    CSIR Research Space (South Africa)

    Kiarii, EM

    2017-08-01

    Full Text Available A first principles study of the Titania is done as used in photo-catalysis to generate charge carries. Models of titania, silica, graphene, epoxy graphene monoxide, single wall Carbon nanotubes and their respective layer were studied in order...

  19. Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate

    Science.gov (United States)

    Xue, Jia; Wang, Wen-Xue; Zhang, Jia-Zhen; Wu, Su-Jun; Li, Hang

    2015-10-01

    A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.

  20. Carbon nanotube modification using gum arabic and its effect on the dispersion and tensile properties of carbon nanotubes/epoxy nanocomposites.

    Science.gov (United States)

    Kim, Man Tae; Park, Ho Seok; Hui, David; Rhee, Kyong Yop

    2011-08-01

    In this study, the effects of a MWCNT treatment on the dispersion of MWCNTs in aqueous solution and the tensile properties of MWCNT/epoxy nanocomposites were investigated. MWCNTs were treated using acid and gum arabic, and MWCNT/epoxy nanocomposites were fabricated with 0.3 wt.% unmodified, oxidized and gum-treated MWCNTs. The dispersion states of the unmodified, oxidized, and Gum-treated MWCNTs were characterized in distilled water. The tensile strengths and elastic modulus of the three nanocomposites were determined and compared. The results indicated that the gum treatment produced better dispersion of the MWCNTs in distilled water and that gum-treated MWCNT/epoxy nanocomposites had a better tensile strength and elastic modulus than did the unmodified and acid-treated MWCNT/epoxy nanocomposites. Scanning electron microscope examination of the fracture surface showed that the improved tensile properties of the gum-treated MWCNT/epoxy nanocomposites were attributed to the improved dispersion of MWCNTs in the epoxy and to interfacial bonding between nanotubes and the epoxy matrix.

  1. 1D and 2D oxidized carbon nanomaterials on epoxy matrix: performance of composites over the same processing conditions

    Science.gov (United States)

    Ramos-Galicia, Lourdes; Martinez-Hernandez, Ana Laura; Fuentes-Ramirez, Rosalba; Velasco-Santos, Carlos

    2017-11-01

    Oxidized multi-walled carbon nanotubes and graphene oxide were evaluated as reinforcements of an epoxy resin. The composites were synthesized at concentrations of 0.1, 0.5, and 1.0 wt% under the same processing conditions. Nanocomposites with graphene oxide at 0.5 wt% present the highest mechanical properties, reaching up to ~180%, and ~760% of improvement in tensile strength and tensile toughness with respect to neat epoxy. Nevertheless, composites with oxidized nanotubes exhibit a tendency to improve mechanical properties as load increases. Storage moduli diminish due to cross-linking density reduction in all nanocomposites. Difference in thermal degradation are not observed in composites in comparison with matrix. Dimension play an important role in mechanical properties, because each nanoreinforcement has different performance with the concentration.

  2. The Effect of Multi Wall Carbon Nanotubes on Some Physical Properties of Epoxy Matrix

    Science.gov (United States)

    Al-Saadi, Tagreed M.; hammed Aleabi, Suad; Al-Obodi, Entisar E.; Abdul-Jabbar Abbas, Hadeel

    2018-05-01

    This research involves using epoxy resin as a matrix for making a composite material, while the multi wall carbon nanotubes (MWNCTs) is used as a reinforcing material with different fractions (0.0,0.02, 0.04, 0.06) of the matrix weight. The mechanical ( hardness ), electrical ( dielectric constant, dielectric loss factor, dielectric strength, electrical conductivity ), and thermal properties (thermal conductivity ) were studied. The results showed the increase of hardness, thermal conductivity, electrical conductivity and break down strength with the increase of MWCNT concentration, but the behavior of dielectric loss factor and dielectric constant is opposite that.

  3. Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes

    International Nuclear Information System (INIS)

    Hollertz, R; Chatterjee, S; Geiger, T; Nueesch, F A; Chu, B T T; Gutmann, H

    2011-01-01

    The addition of carbon nanotubes (CNTs) to polymeric matrices or master batches has the potential to provide composites with novel properties. However, composites with a uniform dispersion of CNTs have proved to be difficult to manufacture, especially at an industrial scale. This paper reports on processing methods that overcome problems related to the control and reproducibility of dispersions. By using a high pressure homogenizer and a three-roll calendaring mill in combination, CNT reinforced epoxies were fabricated by mould casting with a well dispersed nanofiller content from 0.1 to 2 wt%. The influence of the nano-carbon reinforcements on toughness and electrical properties of the CNT/epoxies was studied. A substantial increase of all mechanical properties already appeared at the lowest CNT content of 0.1 wt%, but further raising the nanofiller concentration only led to moderate further changes. The most significant enhancement was obtained for fracture toughness, reaching up to 82%. The low percolation thresholds were confirmed by electrical conductivity measurements on the same composites yielding a threshold value of only about 0.01 wt%. As corroborated by a thorough microscopic analysis of the composites, mechanical and electrical enhancement points to the formation of an interconnected network of agglomerated CNTs.

  4. Laminates

    Science.gov (United States)

    Lepedat, Karin; Wagner, Robert; Lang, Jürgen

    The use of phenolic resin for the impregnation of a carrier material such as paper or fabric based on either organic or inorganic fibers was and still is one of the most important application areas for liquid phenolic resins. Substrates like paper, cotton, or glass fabric impregnated with phenolic resins are used as core layers for decorative and technical laminates and for many other different industrial applications. Nowadays, phenolic resins for decorative laminates used for furniture, flooring, or in the construction and transportation industry have gained significant market share. The Laminates chapter mainly describes the manufacture of decorative laminates especially the impregnation and pressing process with special emphasis to new technological developments and recent trends. Moreover, the different types of laminates are introduced, combined with some brief comments as they relate to the market for decorative surfaces.

  5. The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy/basalt-glass fibres

    Science.gov (United States)

    Abdollahi Azghan, Mehdi; Eslami-Farsani, Reza

    2018-02-01

    The current study aimed at investigating the effects of different stacking sequences and thermal cycling on the flexural properties of fibre metal laminates (FMLs). FMLs were composed of two aluminium alloy 2024-T3 sheets and epoxy polymer-matrix composites that have four layers of basalt and/or glass fibres with five different stacking sequences. For FML samples the thermal cycle time was about 6 min for temperature cycles from 25 °C to 115 °C. Flexural properties of samples evaluated after 55 thermal cycles and compared to non-exposed samples. Surface modification of aluminium performed by electrochemical treatment (anodizing) method and aluminium surfaces have been examined by scanning electron microscopy (SEM). Also, the flexural failure mechanisms investigated by the optical microscope study of fractured surfaces. SEM images indicated that the porosity of the aluminium surface increased after anodizing process. The findings of the present study showed that flexural modulus were maximum for basalt fibres based FML, minimum for glass fibres based FML while basalt/glass fibres based FML lies between them. Due to change in the failure mechanism of basalt/glass fibres based FMLs that have glass fibres at outer layer of the polymer composite, the flexural strength of this FML is lower than glass and basalt fibres based FML. After thermal cycling, due to the good thermal properties of basalt fibres, flexural properties of basalt fibres based FML structures decreased less than other composites.

  6. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Smiley, A. J.

    1987-01-01

    In this paper the mode I fracture behavior of graphite/epoxy and graphite/PEEK composites is examined over four decades of crosshead rates (0.25-250 mm/min). Straight-sided double-cantilever-beam specimens consisting of unidirectional laminates were tested at room temperature. For graphite/epoxy the load-deflection response was linear to fracture, and stable slow crack growth initiating at the highest load level was observed for all rates tested. In contrast, mode I crack growth in the graphite/PEEK material was often unstable and showed stick-slip behavior. Subcritical crack growth occurring prior to the onset of fracture was observed at intermediate displacement rates. A mechanism for the fracture behavior of the graphite/PEEK material (based on viscoelastic, plastic, and microcrack coalescence in the process zone) is proposed and related to the observed rate-dependent phenomena.

  7. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  8. Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces.

    Science.gov (United States)

    Yang, Yi; Wang, Zhongwu; Xu, Zeyang; Wu, Kunjie; Yu, Xiaoqin; Chen, Xiaosong; Meng, Yancheng; Li, Hongwei; Qiu, Song; Jin, Hehua; Li, Liqiang; Li, Qingwen

    2017-04-26

    Electrical hysteresis in carbon nanotube thin-film transistor (CNTTFT) due to surface adsorption of H 2 O/O 2 is a severe obstacle for practical applications. The conventional encapsulation methods based on vacuum-deposited inorganic materials or wet-coated organic materials have some limitations. In this work, we develop a general and highly efficient dry-laminating encapsulation method to reduce the hysteresis of CNTTFTs, which may simultaneously realize the construction and encapsulation of CNTTFT. Furthermore, by virtue of dry procedure and wide compatibility of PMMA, this method is suitable for the construction of CNTTFT on diverse surface including both inorganic and organic dielectric materials. Significantly, the dry-encapsulated CNTTFT exhibits very low or even negligible hysteresis with good repeatability and air stability, which is greatly superior to the nonencapsulated and wet-encapsulated CNTTFT with spin-coated PMMA. The dry-laminating encapsulation strategy, a kind of technological innovation, resolves a significant problem of CNTTFT and therefore will be promising in facile transferring and packaging the CNT films for high-performance optoelectronic devices.

  9. No-Oven, No-Autoclave Composite Processing

    Science.gov (United States)

    Rauscher, Michael D.

    2015-01-01

    Very large composite structures, such as those used in NASA's Space Launch System, push the boundaries imposed by current autoclaves. New technology is needed to maintain composite performance and free manufacturing engineers from the restraints of curing equipment size limitations. Recent efforts on a Phase II project by Cornerstone Research Group, Inc. (CRG), have advanced the technology and manufacturing readiness levels of a unique two-part epoxy resin system. Designed for room-temperature infusion of a dry carbon preform, the system includes a no-heat-added cure that delivers 350 F composite performance in a matter of hours. This no-oven, no-autoclave (NONA) composite processing eliminates part-size constraints imposed by infrastructure and lowers costs by increasing throughput and reducing capital-specific, process-flow bottlenecks. As a result of the Phase II activity, NONA materials and processes were used to make high-temperature composite tooling suitable for further production of carbon-epoxy laminates and honeycomb/ sandwich-structure composites with an aluminum core. The technology platform involves tooling design, resin infusion processing, composite part design, and resin chemistry. The various technology elements are combined to achieve a fully cured part. The individual elements are not unusual, but they are combined in such a way that enables proper management of the heat generated by the epoxy resin during cure. The result is a self-cured carbon/ epoxy composite part that is mechanically and chemically stable at temperatures up to 350 F. As a result of the successful SBIR effort, CRG has launched NONA Composites as a spinoff subsidiary. The company sells resin to end users, fabricates finished goods for customers, and sells composite tooling made with NONA materials and processes to composite manufacturers.

  10. Evolution of carbon nanotube dispersion in preparation of epoxy-based composites: From a masterbatch to a nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Aravand

    2014-08-01

    Full Text Available The state of carbon nanotube (CNT dispersion in epoxy is likely to change in the process of composite production. In the present work CNT dispersion is characterized at different stages of nanocomposite preparation: in the original masterbatch with high CNT concentration, after masterbatch dilution, in the process of curing and in the final nanocomposite. The evaluation techniques included dynamic rheological analysis of the liquid phases, optical, environmental and charge contrast scanning electron microscopy, electrochemical impedance spectroscopy and dynamic mechanical analysis. The evolution of the CNT dispersion was assessed for two CNT/epoxy systems with distinctly different dispersion states induced by different storage time. Strong interactions between CNT clusters were revealed in the masterbatch with a longer storage time. Upon curing CNT clusters in this material formed a network-like structure. This network enhanced the elastic behaviour and specific conductivity of the resulting nanocomposite, leading to a partial electrical percolation after curing.

  11. Optimisation des proprietes physiques d'un composite carbone epoxy fabrique par le procede RFI

    Science.gov (United States)

    Koanda, Mahamat Mamadou Lamine

    The RFI (Resin Film Infusion) process is a composite materials manufacturing process. Especially known for the small investment it requires, RFI processes are more and more widely used in the aeronautical industry. However a number of aspects of this process are still not well controlled. The quality of the final part depends on which process is used. In the case of RFI, controlling physical characteristics such as thickness, fiber volume fraction or void content remains a major challenge. This dissertation deals with the optimization of the physical properties of a carbon composite manufactured with RFI processes. The ASTMD3171 and ASTMD792 standards were used to measure the void content and fiber volume fraction. First, we introduced different layup sequences in the RFI process and evaluate their impact on the physical properties of the final product. The experiments show the primary mode A, with the resin film at the bottom, resulting in much better quality with controlled fiber volume fraction and void content. Mode B (film in the symmetrical plane) yields results identical to mode A except more irregular thicknesses. Mode C (symmetrical film in the laminate) produces locally unacceptable void contents. Mode D (resin film on the top of the laminate) yields much better results than mode A with the exception of the more irregular thicknesses. Making gaps and overlaps with the resin film has negative effects beyond 2.54cm (one inch) and should be avoided. Several C-scan observations of the manufactured samples showed a large accumulation of porosity in the resin rich areas, as well as surface defects. Ultimately we analyzed the cure cycle in light of the thermodynamic porosity models. It is evident that the diffusion phenomenon is essential in this process. Therefore a better conditioning of the resin film made by Cytec is required. An optimal design with a cycle stop and pressure lag yields the optimal cure cycle for the RFI process.

  12. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  13. Functionalizing CNTs for Making Epoxy/CNT Composites

    Science.gov (United States)

    Chen, Jian; Rajagopal, Ramasubramaniam

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) with linear molecular side chains of polyphenylene ether (PPE) has been shown to be effective in solubilizing the CNTs in the solvent components of solutions that are cast to make epoxy/CNT composite films. (In the absence of solubilization, the CNTs tend to clump together instead of becoming dispersed in solution as needed to impart, to the films, the desired CNT properties of electrical conductivity and mechanical strength.) Because the PPE functionalizes the CNTs in a noncovalent manner, the functionalization does not damage the CNTs. The functionalization can also be exploited to improve the interactions between CNTs and epoxy matrices to enhance the properties of the resulting composite films. In addition to the CNTs, solvent, epoxy resin, epoxy hardener, and PPE, a properly formulated solution also includes a small amount of polycarbonate, which serves to fill voids that, if allowed to remain, would degrade the performance of the film. To form the film, the solution is drop-cast or spin-cast, then the solvent is allowed to evaporate.

  14. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions.

    Science.gov (United States)

    Khare, Ketan S; Khabaz, Fardin; Khare, Rajesh

    2014-05-14

    We have used amido-amine functionalized carbon nanotubes (CNTs) that form covalent bonds with cross-linked epoxy matrices to elucidate the role of the matrix-filler interphase in the enhancement of mechanical and thermal properties in these nanocomposites. For the base case of nanocomposites of cross-linked epoxy and pristine single-walled CNTs, our previous work (Khare, K. S.; Khare, R. J. Phys. Chem. B 2013, 117, 7444-7454) has shown that weak matrix-filler interactions cause the interphase region in the nanocomposite to be more compressible. Furthermore, because of the weak matrix-filler interactions, the nanocomposite containing dispersed pristine CNTs has a glass transition temperature (Tg) that is ∼66 K lower than the neat polymer. In this work, we demonstrate that in spite of the presence of stiff CNTs in the nanocomposite, the Young's modulus of the nanocomposite containing dispersed pristine CNTs is virtually unchanged compared to the neat cross-linked epoxy. This observation suggests that the compressibility of the matrix-filler interphase interferes with the ability of the CNTs to reinforce the matrix. Furthermore, when the compressibility of the interphase is reduced by the use of amido-amine functionalized CNTs, the mechanical reinforcement due to the filler is more effective, resulting in a ∼50% increase in the Young's modulus compared to the neat cross-linked epoxy. Correspondingly, the functionalization of the CNTs also led to a recovery in the Tg making it effectively the same as the neat polymer and also resulted in a ∼12% increase in the thermal conductivity of the nanocomposite containing functionalized CNTs compared to that containing pristine CNTs. These results demonstrate that the functionalization of the CNTs facilitates the transfer of both mechanical load and thermal energy across the matrix-filler interface.

  15. Effect of Electrospun Nanofibers on the Short Beam Strength of Laminated Fiberglass Composite

    Science.gov (United States)

    Shinde, Dattaji K.

    High specific modulus and strength are the most desirable properties for the material used in structural applications. Composite materials exhibit these properties and over the last decade, their usage has increased significantly, particularly in automotive, defense, and aerospace applications. The major cause of failures in composite laminates is due to delaminations. Delamination in composite laminates can occur due to fatigue, low velocity impact and other loadings modes. Conventional methods like "through-the-thickness stitching" or "Z-Pinning" have limitations for improving flexural and interlaminar properties in woven composites due to the fact that while improving interlaminar properties, the presence of stitches or Z pins affects in-plane properties. This study investigates the flexural behavior of fiberglass composites interleaved with non-woven Tetra Ethyl Orthosilicate (TEOS) electrsopsun nanofibers (ENFs). TEOS ENFs were manufactured using an electrospinning technique and then sintered. Nanoengineered beams were fabricated by interleaving TEOS ENFs between the laminated fiberglass composites to improve the flexural properties. TEOS ENFs, resin film, and failed fiberglass laminated composites with and without nanofibers were characterized using SEM Imaging and ASTM standard testing methods. A hybrid composite was made by interleaving a non-woven sheet of TEOS ENFs between the fiberglass laminates with additional epoxy resin film and fabricated using the out of autoclave vacuum bagging method. Four commonly used stacking sequences of fiberglass laminates with and without nanofibers were used to study the progressive failure and deformation mechanics under flexural loadings. The experimental study has shown significant improvements in short beam strength and strain energy absorption in the nanoengineered laminated fiberglass composites before complete failure. The modes were investigated by performing detailed fractographic examination of failed specimens

  16. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy and Implications for Composite Structures

    Science.gov (United States)

    Waller, J. M.; Nichols, C. T.; Wentzel, D. J.; Saulsberry R. L.

    2010-01-01

    Broad-band modal acoustic emission (AE) data was used to characterize micromechanical damage progression in uniaxial IM7 and T1000 carbon fiber-epoxy tows and an IM7 composite overwrapped pressure vessel (COPV) subjected to an intermittent load hold tensile stress profile known to activate the Felicity ratio (FR). Damage progression was followed by inspecting the Fast Fourier Transforms (FFTs) associated with acoustic emission events. FFT analysis revealed the occurrence of cooperative micromechanical damage events in a frequency range between 100 kHz and 1 MHz. Evidence was found for the existence of a universal damage parameter, referred to here as the critical Felicity ratio, or Felicity ratio at rupture (FR*), which had a value close to 0.96 for the tows and the COPV tested. The implications of using FR* to predict failure in carbon/epoxy composite materials and related composite components such as COPVs are discussed. Trends in the FFT data are also discussed; namely, the difference between the low and high energy events, the difference between early and late-life events, comparison of IM7 and T1000 damage progression, and lastly, the similarity of events occurring at the onset of significant acoustic emission used to calculate the FR.

  17. Fracture Energy Estimation of DCB Specimens Made of Glass/Epoxy: An Experimental Study

    Directory of Open Access Journals (Sweden)

    V. Alfred Franklin

    2013-01-01

    Full Text Available This paper examines critical load and corresponding displacement of double cantilever beam (DCB composite specimens made of glass/epoxy of three different layups. Experiments were conducted on these laminates, and the fracture energy, GIc, was evaluated considering the root rotation at the crack tip. The present model requires the applied load-displacement history and crack extension to estimate fracture energy. Reduction schemes based on cubic and power law are also proposed to determine Young’s modulus and energy release rate and found good agreement with the published and test results.

  18. Feasibility on fiber orientation detection on unidirectional CFRP composite laminates using nondestructive evaluation techniques

    Science.gov (United States)

    Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee

    2007-07-01

    In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.

  19. Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes

    Science.gov (United States)

    Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao

    2018-01-01

    Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.

  20. Mechanical properties of carbon fibre-reinforced polymer/magnesium alloy hybrid laminates

    Science.gov (United States)

    Zhou, Pengpeng; Wu, Xuan; Pan, Yingcai; Tao, Ye; Wu, Guoqing; Huang, Zheng

    2018-04-01

    In this study, we prepared fibre metal laminates (FMLs) consisting of high-modulus carbon fibre-reinforced polymer (CFRP) prepregs and thin AZ31 alloy sheets by using hot-pressing technology. Tensile and low-velocity impact tests were performed to evaluate the mechanical properties and fracture behaviour of the magnesium alloy-based FMLs (Mg-FMLs) and to investigate the differences in the fracture behaviour between the Mg-FMLs and traditional Mg-FMLs. Results show that the Mg-FMLs exhibit higher specific tensile strength and specific tensile modulus than traditional Mg-FMLs and that the tensile behaviour of the Mg-FMLs is mainly governed by the CFRP because of the combination of high interlaminar shear properties and thin magnesium alloy layers. The Mg-FMLs exhibit excellent bending stiffness. Hence, no significant difference between the residual displacement d r and indentation depth d i , and the permanent deformation is mainly limited to a small zone surrounding the impact location after the impact tests.

  1. Characterization of Hybrid Epoxy Nanocomposites

    Science.gov (United States)

    Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna

    2012-01-01

    This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313

  2. Epoxy – the hub for the most versatile polymer with exceptional combination of superlative features

    OpenAIRE

    Inam, Fawad

    2014-01-01

    Epoxy resins and epoxy based materials have experienced significant advancement since their beginning in 1936, when Dr. Castan of Switzerland and Dr. Greenlee of USA succeeded in synthesizing the very first bisphenol-A-based epoxy resins. Whether it is the new carbon fiber composite of Boeing’s Dreamliner or the thin set terrazzo flooring, epoxy has always been the ideal choice because of its superlative properties and unique chemical composition. Belonging to thermoset family, it is certainl...

  3. Evaluation of Behaviours of Laminated Glass

    Science.gov (United States)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  4. LAMINATES

    Directory of Open Access Journals (Sweden)

    Gökay Nemli

    2004-04-01

    Full Text Available Wood based panel producers afford to present their products either in sized semi-finished form or as covered in general by the in additional investments realized. The fact that the laminated material has a certain market share as well as the increase in demand for furniture types finished in various profiles have put the laminated sheets which provide very comprehensive design facilities at the top place and caused such boards to spread over the market rather more quickly. In line with this development, great developments have also been recorded during recent years in laminate utilization in furniture factoring sector and fast steps taken towards a more rational working environment. In this study, laminates types and manufacturing technologies were investigated.

  5. Epoxy Nanocomposites - Curing Rheokinetics, Wetting and Adhesion to Fibers

    International Nuclear Information System (INIS)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-01-01

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  6. Fabrication and Testing of Carbon Fiber, Graphite-Epoxy Panels for Submillimeter Telescope Use

    Science.gov (United States)

    Rieger, H.; Helwig, G.; Parks, R. E.; Ulich, B. L.

    1983-12-01

    An experimental carbon-fiber, graphite-epoxy, aluminum Flexcore sandwich panel roughly 1-m square was made by Dornier System, Friedrichshafen, West Germany. The panel was a pre-prototype of the panels to be used in the dish of the 10-m diameter Sub-Millimeter Telescope, a joint project of the Max-Planck-Institute fur Radioastronomie, Bonn, West Germany, and Steward Observatory, the University of Arizona in Tucson. This paper outlines the fabrication process for the panel and indicates the surface accuracy of the panel replication process. To predict the behavior of the panel under various environmental loads, the panel was modeled structurally using anisotropic elements for the core material. Results of this analysis along with experimental verification of these predictions are also given.

  7. Quantifying voids effecting delamination in carbon/epoxy composites: static and fatigue fracture behavior

    Science.gov (United States)

    Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.

    2016-04-01

    On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.

  8. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    Science.gov (United States)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  9. Motorcycle Parts

    Science.gov (United States)

    1993-01-01

    An article in NASA Tech Briefs describing a vacuum bagging process for forming composite parts helped a small Oklahoma Company to improve its manufacturing process. President of Performance Extremes, Larry Ortega, and his partners make motorcycle parts from carbon/epoxy to reduce weight. Using vacuum bags, parts have a better surface and fewer voids inside. When heat used in the vacuum bag process caused deformation upon cooling, a solution found in another tech brief solved the problem. A metal plate inside the vacuum bag made for more even heat transfer. A third article described a simple procedure for repairing loose connector pins, which the company has also utilized.

  10. Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Felisberto, M. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Arias-Duran, A. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Ramos, J.A.; Mondragon, I. [Dep. Ingenieria Quimica y M. Ambiente. Esc. Politecnica. UPV/EHU, Pza. Europa 1, Donostia-San Sebastian 20018 (Spain); Candal, R. [INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Escuela de Ciencia y Tecnologia-UNSAM, San Martin, Prov. De Buenos Aires (Argentina); Goyanes, S. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Rubiolo, G.H., E-mail: rubiolo@cnea.gov.ar [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Dep. Materiales, Comision Nacional de Energia Atomica (CNEA-CAC), Avda Gral Paz 1499, B1650KNA San Martin (Argentina)

    2012-08-15

    In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4 Multiplication-Sign 10{sup -5} Sm{sup -1}. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.

  11. IMPROVING AIRCRAFT PARTS DUE TO USING NANO-COMPOSITE AND MICRO-COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Hassany Merhdad Boer

    2017-01-01

    Full Text Available In this paper it is investigated how to make composite carbon nanofiber/ epoxy resin and carbon micro-fiber / epoxy resin. Also, these materials' features are compared and it is shown how effective and benefitial are the received products containing carbon nano- and micro-fibers.In this study, epoxy composites were prepared in order to improve their mechanical and electrical properties. Ergo, carbon nanofibers and carbon microfibers were used as fillers. On the one hand, purchased microfibers were incorporatedinto the epoxy resin to produce epoxy/carbon microfiber composites via mechanical mixing at 1800 rpm in different concentrations (0.0125, 0.0225, 0.05, and 0.1.On the other hand, carbon nanofibers were prepared via electrospining method at room temperature, then epoxy/carbon nanofiber nanocomposites were prepared at mixing temperature of 60 °C at 1200 rpm at different concentrations (0.0125, 0.05, and 0.1.Morphology of samples was investigated via Field Emission Scanning Electron Microscopy (FESEM. Mechanical properties of samples were investigated via tensile and bending tests. Tensile test results revealed that incorporation of 0.0125 wt% carbon naofibers increased the epoxy resins modulus about 200%. Bending strength of sample containing 0.1wt% carbon microfibers had the most increment (from 20 to 100 MPa.

  12. Effects of ultraviolet and electron radiations on graphite-reinforced polysulfone and epoxy resins

    International Nuclear Information System (INIS)

    Giori, C.; Yamauchi, T.

    1984-01-01

    Degradation mechanisms have been investigated for graphite/polysulfone and graphite/epoxy laminates exposed to ultraviolet and high-energy electron radiations in vacuum up to 960 equivalent sun hours and 10 9 rads, respectively. Based on GC and combined GC/MS analysis of volatile by-products evolved during irradiation, several free radical mechanisms of composite degradation have been identified. All the composite materials evaluated have shown high electron radiation stability and relatively low ultraviolet stability as indicated by low G values and high quantum yields for gas formation. Mechanical property measurements of irradiated samples did not reveal significant changes, with the possible exception of UV exposed polysulfone laminates. Hydrogen and methane have been identified as the main byproducts of irradiation, along with unexpectedly high levels of CO and CO 2 . Initial G values for methane relative to hydrogen formation are higher in the presence of isopropylidene linkages, which occur in bisphenol-A resins

  13. Role of interfacial effects in carbon nanotube/epoxy nanocomposite behavior.

    Science.gov (United States)

    Pécastaings, G; Delhaès, P; Derré, A; Saadaoui, H; Carmona, F; Cui, S

    2004-09-01

    The interfacial effects are critical to understand the nanocomposite behavior based on polymer matrices. These effects are dependent upon the morphology of carbon nanotubes, the type of used polymer and the processing technique. Indeed, we show that the different parameters, as the eventual surfactant use, the ultrasonic treatment and shear mixing have to be carefully examined, in particular, for nanotube dispersion and their possible alignment. A series of multiwalled nanotubes (MWNT) have been mixed with a regular epoxy resin under a controlled way to prepare nanocomposites. The influence of nanotube content is examined through helium bulk density, glass transition temperature of the matrix and direct current electrical conductivity measurements. These results, including the value of the percolation threshold, are analyzed in relationship with the mesostructural organization of these nanotubes, which is observed by standard and conductive probe atomic force microscopy (AFM) measurements. The wrapping effect of the organic matrix along the nanotubes is evidenced and analyzed to get a better understanding of the final composite characteristics, in particular, for eventually reinforcing the matrix without covalent bonding.

  14. Photochemical studies on aromatic γ,δ-epoxy ketones: efficient synthesis of benzocyclobutanones and indanones.

    Science.gov (United States)

    Shao, Yutian; Yang, Chao; Gui, Weijun; Liu, Yang; Xia, Wujiong

    2012-04-11

    Irradiation of terminal aromatic γ,δ-epoxy ketones with a 450 W UV lamp led to Norrish type II cyclization/semi-pinacol rearrangement cascade reaction which formed the benzocyclobutanones containing a full-carbon quaternary center, whereas irradiation of substituted aromatic γ,δ-epoxy ketones led to the indanones through a photochemical epoxy rearrangement and 1,5-biradicals cyclization tandem reaction. This journal is © The Royal Society of Chemistry 2012

  15. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2018-06-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  16. Los cambios de temperatura en los revestimientos epoxi II

    Directory of Open Access Journals (Sweden)

    Fernández Cánovas, M.

    1970-04-01

    Full Text Available This article is the second part of a previous paper published by the author in no. 189 of this magazine. It describes the tests carried out to check the theoretical results published in the earlier article. The tests have consisted in submitting concrete slabs covered with a layer of epoxi mortar to certain thermal conditions, to check the behaviour of the covering in the face of thermal changes. In all the tests, described in detail in the article, the epoxi layer has behaved extremely well, and no bonding failure has been observed, nor failures in the concrete base or in the epoxi layer.Este artículo es la segunda parte de un trabajo publicado por el autor en el número 189 de esta revista, y en él se realiza una descripción de los ensayos prácticos llevados a cabo para complementar el estudio teórico publicado en aquella primera parte. Los ensayos han consistido en someter a placas de hormigón revestidas de una Kipa de mor tero epoxi a determinadas condiciones térmicas, con el fin de poder comprobar el comportamiento del revestimiento frente a los cambios de temperatura. En todos los ensayos realizados y que, con detalle, están descritos en este artículo, el comportamiento de los revestimientos de mortero epoxi ha sido excelente, no habiéndose notado ningún fallo de adherencia, ni roturas en la base de hormigón, ni en la capa de mortero epoxi.

  17. Laminated articles

    International Nuclear Information System (INIS)

    Ridgway, P.C.; Case, D.F.

    1979-01-01

    In a method of bonding laminations of a magnetic core, photo-resist material consisting of a co-polymer is applied as a film to a sheet of magnetic material to define lamination shapes to enable the laminations to be formed by etching. The film of photo-resist material on the laminations is then utilised to bond the laminations together in a stack. In order to permit the core to operate at temperatures higher than the softening temperature of the photo-resist material, the bonded stack is irradiated with 1 - 2 Mer gamma radiation to a dose of 1 - 5 Mrads in 2 - 10 hrs to cause changes to the bonding material such that the material does not soften at the operating temperature of the core. (U.K.)

  18. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

    Directory of Open Access Journals (Sweden)

    Qingyue Yu

    2016-01-01

    Full Text Available Individual Carbon Nanotubes (CNTs have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively. Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline.

  19. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  1. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  2. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Braga, R.A., E-mail: roney.braga@fiat.com.br [FIAT Automóveis S.A., Teardown, CEP 32530-000 Betim, MG (Brazil); Magalhaes, P.A.A., E-mail: pamerico@pucminas.br [PUC—MINAS, Instituto Politécnico, CEP 30535-610 Belo Horizonte, MG (Brazil)

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. - Highlights: • The work is the study of the mechanical of raw jute and glass fiber with epoxy resin. • The mechanical properties increased with more proportions of glass fibers. • The density of E69-J31-V0 was the lower. • The flexural strength did not have a significant increase. • The water absorption of E69-J31-V0 was the best.

  3. Relation between interlaminar fracture toughness and pressure condition in autoclave molding process of GFRP composite laminates; GFRP sekisoban no autoclave seikei ni okeru atsuryoku joken to sokan hakai jinseichi tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J. [Osaka City University, Osaka (Japan); Motogi, S.; Fukuda, T. [Osaka City University, Osaka (Japan). Faculty of Engineering

    1998-06-15

    Relation between fracture toughness and pressure condition in autoclave molding of GF composite laminates is investigated. Glass/epoxy prepregs are molded under different curing pressures, and UD laminates of [O{sub 8}]T and [O{sub 16}]T are fabricated. The results of the double cantilever beam (DCB) test show that the curing pressure has certain influences on the interlaminar fracture toughness via the change in morphology of matrix resin and fibers between laminae, and via the change in interfacial strength of fiber and matrix. It is also found that the fiber/matrix interfacial strength increases as the curing pressure increases by SEM photographs of the fracture surface in GF UD laminates. 13 refs., 12 figs.

  4. Study of the Formability of Laminated Lightweight Metallic Materials

    Directory of Open Access Journals (Sweden)

    Girjob Claudia

    2017-01-01

    Full Text Available The main objective of this work was to test the formability of laminated materials. Laminated materials are considered a good choice when parts with reduced weight are considered. Thus, a laminated material, aluminum - polypropylene - aluminum (Al-PP-Al, as sheet 1.2 mm and 1.4 mm thickness was used. Before processing the material by means of unconventional plastic deformation, its formability was determined by running the Nakajima test. After obtaining the forming limit curves, the material was machined by means of incremental forming.

  5. Sound Insulation Property Study on Nylon 66 Scrim Reinforced PVF Laminated Membranes and their Composite Sound Proof Structure

    Science.gov (United States)

    Chen, Lihe; Chen, Zhaofeng; Zhang, Xinyang; Wang, Weiwei

    2018-01-01

    In this paper, we investigated the sound insulation property of nylon 66 scrim reinforced PVF laminated membranes and their corresponding composite structures with glass fiber felt and carbon fiber board. Sound transmission loss (STL) was measured by standing wave tube method. The results show that, with the decrease of nylon 66 gridlines spacing, STL of nylon 66 scrim reinforced PVF laminated membranes was improved. The sound insulation performance of laminated membranes with gridlines spacing of 3mm is the best, whose STL was up to 10dB at 6.3 kHz. Besides, STL was improved effectively as air layers were embedded into the composite sound proof construction consist of laminated membrane, glass fiber felt and carbon fiber board.

  6. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    Science.gov (United States)

    Liu, P. F.; Li, X. K.

    2018-06-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  7. Fatigue damage characterization in plain-wave carbon-carbon fabric reinforced plastic composites

    International Nuclear Information System (INIS)

    Khan, Z.; Al-sulaiman, F.S.; Farooqi, J.K.

    1997-01-01

    In this paper fatigue damage mechanisms in 8 ply Carbon-Carbon Fabric reinforced Plastic Laminates obtained from polyester resin-prepreg plain weave carbon-carbon fabric layers have been investigated. Enhanced dye penetrant, X-ray radiography, optical microscopy, edge replication, and scanning electron fractography have been employed to examine the fatigue damage in three classes of laminates having the unidirectional (O)/sub delta/, the angle-plied (0,0,45,-45)/sub s/ fiber orientations. It is shown the laminates that have off axis plies, i.e.,0,0,45,-45), and (45,-45,0,0) /sub s/, the fatigue damage is initiated through matrix cracking. This matrix cracking induces fiber fracture in adjacent plies near the matrix crack tip. This event is followed by the man damage event of delamination of the stacked plies. It is shown that the delamination was the major damage mode, which caused the eventual fatigue failure in the angle-plied composites. The unidirectional composite (O)/sub delta/ laminates failed predominantly by lateral fracture instead of delamination. Fiber fracture was observed in the prime damage mode in unidirectional (O)/sub delta/ composite laminates. (author)

  8. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    Science.gov (United States)

    McDonald, Erin E.; Wallace, Landon F.; Hickman, Gregory J. S.; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination. PMID:24688435

  9. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    Directory of Open Access Journals (Sweden)

    Erin E. McDonald

    2014-01-01

    Full Text Available The interlaminar shear response is studied for carbon nanofiber (CNF modified out-of-autoclave-vacuum-bag-only (OOA-VBO carbon fiber reinforced plastic (CFRP. Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  10. Manufacturing and shear response characterization of carbon nanofiber modified CFRP using the out-of-autoclave-vacuum-bag-only cure process.

    Science.gov (United States)

    McDonald, Erin E; Wallace, Landon F; Hickman, Gregory J S; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testing was used to study the in-plane shear performance of [± 45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  11. Specific contribution of lamin A and lamin C in the development of laminopathies

    International Nuclear Information System (INIS)

    Sylvius, Nicolas; Hathaway, Andrea; Boudreau, Emilie; Gupta, Pallavi; Labib, Sarah; Bolongo, Pierrette M.; Rippstein, Peter; McBride, Heidi; Bilinska, Zofia T.; Tesson, Frederique

    2008-01-01

    Mutations in the lamin A/C gene are involved in multiple human disorders for which the pathophysiological mechanisms are partially understood. Conflicting results prevail regarding the organization of lamin A and C mutants within the nuclear envelope (NE) and on the interactions of each lamin to its counterpart. We over-expressed various lamin A and C mutants both independently and together in COS7 cells. When expressed alone, lamin A with cardiac/muscular disorder mutations forms abnormal aggregates inside the NE and not inside the nucleoplasm. Conversely, the equivalent lamin C organizes as intranucleoplasmic aggregates that never connect to the NE as opposed to wild type lamin C. Interestingly, the lamin C molecules present within these aggregates exhibit an abnormal increased mobility. When co-expressed, the complex formed by lamin A/C aggregates in the NE. Lamin A and C mutants for lipodystrophy behave similarly to the wild type. These findings reveal that lamins A and C may be differentially affected depending on the mutation. This results in multiple possible physiological consequences which likely contribute in the phenotypic variability of laminopathies. The inability of lamin C mutants to join the nuclear rim in the absence of lamin A is a potential pathophysiological mechanism for laminopathies

  12. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes

    KAUST Repository

    Almuhammadi, Khaled; Alfano, Marco; Yang, Yang; Lubineau, Gilles

    2014-01-01

    The present work is focused on the nanoreinforcement of prepreg based carbon fiber composite laminates to improve delamination resistance. Functionalized multi-walled carbon nanotubes (MWCNTs) were dispersed over the interface between prepreg layers through solvent spraying and the resulting mode I interlaminar fracture toughness was determined. For comparison, baseline samples with neat prepregs were also prepared. Results indicate that the introduction of functionalized MWCNTs can favorably affect the interlaminar fracture toughness, and the associated mechanisms of failure have been investigated. The manufacturing procedures and the interfacial reinforcing mechanism were explored by analyzing (i) the wettability between CNTs-solvent solution and prepreg surface, (ii) CNTs dispersion and (iii) the fractured surfaces through high resolution scanning electron microscopy and Raman mapping. © 2013 Elsevier Ltd.

  13. The effect of electrostatic and electrohydrodynamic forces on the chaining of carbon nanofibres in liquid epoxy

    International Nuclear Information System (INIS)

    Sharma, A; Bakis, C E; Wang, K W

    2010-01-01

    The formation of chains of aligned carbon nanofibres (CNFs) in polymers is a subject of great interest in the field of multifunctional nanocomposites. The mechanism of CNF chain assembly and growth in a low viscosity epoxy is investigated by developing a finite element model of a chain attached to an electrode. The model examines the combined effects of electrostatic and electrohydrodynamic forces on chain morphology. The electrohydrodynamic forces are modelled using the theory of ac electro-osmosis. The predictions of the model are supported by experimental results. The experiments were conducted on a CNF/epoxy/amine mixture by applying an ac field at frequencies ranging from 100 to 100 000 Hz. The predictions of the model qualitatively capture the variations of chain morphology and growth rate as functions of ac frequency. Higher frequencies promote a more uniform and denser network of chains. The rate of growth of chains is highest at an intermediate frequency. A uniform network of chains was observed at frequencies of 1 kHz and greater in the experiments. The rate of growth of chains was maximized at a frequency of 1 kHz for a liquid viscosity of 0.03 Pa s.

  14. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    Science.gov (United States)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  15. Repeated self-healing of microvascular carbon fibre reinforced polymer composites

    International Nuclear Information System (INIS)

    Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2014-01-01

    A self-healing, high performance, carbon fibre reinforced polymer (CFRP) composite is demonstrated by embedding a Lewis-acid catalytic curing agent within a laminate, manufactured using out of autoclave (OOA) composite manufacturing methods. Two configurations of healing agent delivery, pre-mixed and autonomous mixing, are investigated via injection of a healing agent through bio-inspired microvascular channels exposed on Mode I fractured crack planes. Healing is effected when an epoxy resin-solvent healing agent mixture reaches the boundary of embedded solid-state scandium(III) triflate (Sc(OTf) 3 ) catalyst, located on the crack plane, to initiate the ring-opening polymerisation (ROP) of epoxides. Tailored self-healing agents confer high healing efficiency values after multiple healing cycles (69–108%) to successfully mitigate against crack propagation within the composite microstructure. (paper)

  16. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene.

    Science.gov (United States)

    Naveh, Naum; Shepelev, Olga; Kenig, Samuel

    2017-01-01

    Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called "stacked" graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles. The hydrophilic/hydrophobic nature of the SAA dictates the surface energy balance. More hydrophilic SAAs promoted localization of the SG at the Kevlar/epoxy interface, and morphology seems to be driven by thermodynamics, rather than the kinetic effect of viscosity. This effect was less obvious with carbon or glass fibers, due to the lower surface energy of the carbon fibers or some incompatibility with the glass-fiber sizing. Proper choice of the surfactant and fine-tuning of the crosslink density at the interphase may provide further enhancements in thermo-mechanical behavior.

  17. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene

    Directory of Open Access Journals (Sweden)

    Naum Naveh

    2017-09-01

    Full Text Available Impregnation of expandable graphite (EG after thermal treatment with an epoxy resin containing surface-active agents (SAAs enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called “stacked” graphene (SG. This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles. The hydrophilic/hydrophobic nature of the SAA dictates the surface energy balance. More hydrophilic SAAs promoted localization of the SG at the Kevlar/epoxy interface, and morphology seems to be driven by thermodynamics, rather than the kinetic effect of viscosity. This effect was less obvious with carbon or glass fibers, due to the lower surface energy of the carbon fibers or some incompatibility with the glass-fiber sizing. Proper choice of the surfactant and fine-tuning of the crosslink density at the interphase may provide further enhancements in thermo-mechanical behavior.

  18. Tribological properties of three-dimensional braided carbon/Kevlar/epoxy hybrid composites under dry and lubricated conditions

    International Nuclear Information System (INIS)

    Wan, Y.Z.; Huang, Y.; He, F.; Li, Q.Y.; Lian, J.J.

    2007-01-01

    This paper presents a study of the tribological properties of three-dimensional (3-D) braided carbon/Kevlar/epoxy hybrid composites. Their specific wear rate and the coefficient of friction were examined as a function of operating conditions (load and sliding distance) under dry and lubricated conditions. In addition, the 3-D braided hybrid composites with varying carbon to Kevlar fiber volume ratio were tested to assess hybrid effects. It was found that the friction and wear rate decreased with sliding distance and then leveled off under dry and lubricated conditions. Different changing patterns with normal load were observed under two different sliding conditions. Furthermore, it was noted that negative hybrid effects on the wear resistance and the friction coefficient were identified for the current 3-D braided hybrid system. The composite with a carbon to Kevlar ratio of 3:2 was found to have the least wear and friction among all 3-D braided hybrid composites studied. Worn surfaces were observed by scanning electron microscope (SEM) and wear mechanisms were discussed in this study

  19. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber–epoxy composite laminate

    International Nuclear Information System (INIS)

    Konka, Hari P; Wahab, M A; Lian, K

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber–epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension–tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT

  20. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate

    Science.gov (United States)

    Konka, Hari P.; Wahab, M. A.; Lian, K.

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors

  1. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    Science.gov (United States)

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  2. Steel Protective Coating Based on Plasticized Epoxy Acrylate Formulation Cured by Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Ibrahim, M.S.; Said, H.M.; Mohamed, I.M.; Mohamed, H.A.; Kandile, N.G.

    2011-01-01

    Electron beam (EB) was used to cure coatings based on epoxy acrylate oligomer (EA) and different plasticizers such as epoxidized soybean oil, glycerol and castor oil. The effect of irradiation doses (10, 25, 50 kGy) on the curing epoxy acrylate formulations containing plasticizers was studied. In the addition, the effect of the different plasticizers on the end use performance properties of epoxy acrylate coatings such as hardness, bending, adhesion, acid and alkali resistance tests were investigated. It was observed that the incorporation of castor oil in epoxy acrylate, diluted by 1,6 hexandiol diacrylate monomer (HD) with a ratio (EA 70%, HD 20%, castor oil 10%) under the dose 10 kGy improved the physical, chemical and mechanical properties of cured films than the other plasticizers. On the other hand, sunflower free fatty acids were epoxidized in-situ under well established conditions and then was subjected to react with aniline in sealed ampoules under inert atmosphere at 140 degree C. The produced adduct was added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was observed that the formula containing 0.4 gm of aniline adduct / 100 gm epoxy acrylate resin gave the best corrosion protection for carbon steel

  3. Spring-back simulation of unidirectional carbon/epoxy L- shaped laminate composites manufactured through autoclave processing

    International Nuclear Information System (INIS)

    Nasir, M N M; Mezeix, L; Aminanda, Y; Seman, M A; Rivai, A; Ali, K M

    2016-01-01

    This paper presents an original method in predicting the spring-back for composite aircraft structures using non-linear Finite Element Analysis (FEA) and is an extension of the previous accompanying study on flat geometry samples. Firstly, unidirectional prepreg lay-up samples are fabricated on moulds with different corner angles (30°, 45° and 90°) and the effect on spring-back deformation are observed. Then, the FEA model that was developed in the previous study on flat samples is utilized. The model maintains the physical mechanisms of spring-back such as ply stretching and tool-part interface properties with the additional mechanism in the corner effect and geometrical changes in the tool, part and the tool-part interface components. The comparative study between the experimental data and FEA results show that the FEA model predicts adequately the spring-back deformation within the range of corner angle tested. (paper)

  4. Spring-back simulation of unidirectional carbon/epoxy L- shaped laminate composites manufactured through autoclave processing

    Science.gov (United States)

    Nasir, M. N. M.; Mezeix, L.; Aminanda, Y.; Seman, M. A.; Rivai, A.; Ali, K. M.

    2016-02-01

    This paper presents an original method in predicting the spring-back for composite aircraft structures using non-linear Finite Element Analysis (FEA) and is an extension of the previous accompanying study on flat geometry samples. Firstly, unidirectional prepreg lay-up samples are fabricated on moulds with different corner angles (30°, 45° and 90°) and the effect on spring-back deformation are observed. Then, the FEA model that was developed in the previous study on flat samples is utilized. The model maintains the physical mechanisms of spring-back such as ply stretching and tool-part interface properties with the additional mechanism in the corner effect and geometrical changes in the tool, part and the tool-part interface components. The comparative study between the experimental data and FEA results show that the FEA model predicts adequately the spring-back deformation within the range of corner angle tested.

  5. The Effects of Thermophysical Properties and Environmental Conditions on Fire Performance of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites.

    Science.gov (United States)

    Kandola, Baljinder K; Luangtriratana, Piyanuch; Duquesne, Sophie; Bourbigot, Serge

    2015-08-11

    Intumescent coatings are commonly used as passive fire protection systems for steel structures. The purpose of this work is to explore whether these can also be used effectively on glass fibre-reinforced epoxy (GRE) composites, considering the flammability of the composites compared to non-flammable steel substrate. The thermal barrier and reaction-to-fire properties of three commercial intumescent coatings on GRE composites have been studied using a cone calorimeter. Their thermophysical properties in terms of heating rate and/or temperature dependent char expansion ratios and thermal conductivities have been measured and correlated. It has been suggested that these two parameters can be used to design coatings to protect composite laminates of defined thicknesses for specified periods of time. The durability of the coatings to water absorption, peeling, impact, and flexural loading were also studied. A strong adhesion between all types of coatings and the substrate was observed. Water soaking had a little effect on the fire performance of epoxy based coatings. All types of 1 mm thick coatings on GRE helped in retaining ~90% of the flexural property after 2 min exposure to 50 kW/m² heat flux whereas the uncoated laminate underwent severe delamination and loss in structural integrity after 1 min.

  6. The Effects of Thermophysical Properties and Environmental Conditions on Fire Performance of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Baljinder K. Kandola

    2015-08-01

    Full Text Available Intumescent coatings are commonly used as passive fire protection systems for steel structures. The purpose of this work is to explore whether these can also be used effectively on glass fibre-reinforced epoxy (GRE composites, considering the flammability of the composites compared to non-flammable steel substrate. The thermal barrier and reaction-to-fire properties of three commercial intumescent coatings on GRE composites have been studied using a cone calorimeter. Their thermophysical properties in terms of heating rate and/or temperature dependent char expansion ratios and thermal conductivities have been measured and correlated. It has been suggested that these two parameters can be used to design coatings to protect composite laminates of defined thicknesses for specified periods of time. The durability of the coatings to water absorption, peeling, impact, and flexural loading were also studied. A strong adhesion between all types of coatings and the substrate was observed. Water soaking had a little effect on the fire performance of epoxy based coatings. All types of 1 mm thick coatings on GRE helped in retaining ~90% of the flexural property after 2 min exposure to 50 kW/m2 heat flux whereas the uncoated laminate underwent severe delamination and loss in structural integrity after 1 min.

  7. Damage evolution under cyclic multiaxial stress state: A comparative analysis between glass/epoxy laminates and tubes

    DEFF Research Database (Denmark)

    Quaresimin, M.; Carraro, P.A.; Mikkelsen, Lars Pilgaard

    2014-01-01

    In this work an experimental investigation on damage initiation and evolution in laminates under cyclic loading is presented. The stacking sequence [0/θ2/0/-θ2]s has been adopted in order to investigate the influence of the local multiaxial stress state in the off-axis plies and the possible effect...

  8. Embedding of MEMS pressure and temperature sensors in carbon fiber composites: a manufacturing approach

    Science.gov (United States)

    Javidinejad, Amir; Joshi, Shiv P.

    2000-06-01

    In this paper embedding of surface mount pressure and temperature sensors in the Carbon fiber composites are described. A commercially available surface mount pressure and temperature sensor are used for embedding in a composite lay- up of IM6/HST-7, IM6/3501 and AS4/E7T1-2 prepregs. The fabrication techniques developed here are the focus of this paper and provide for a successful embedding procedure of pressure sensors in fibrous composites. The techniques for positioning and insulating, the sensor and the lead wires, from the conductive carbon prepregs are described and illustrated. Procedural techniques are developed and discussed for isolating the sensor's flow-opening, from the exposure to the prepreg epoxy flow and exposure to the fibrous particles, during the autoclave curing of the composite laminate. The effects of the autoclave cycle (if any) on the operation of the embedded pressure sensor are discussed.

  9. Influence of the reaction stoichiometry on the mechanical and thermal properties of SWCNT-modified epoxy composites

    International Nuclear Information System (INIS)

    Ashrafi, Behnam; Johnston, Andrew; Martinez-Rubi, Yadienka; Kingston, Christopher T; Simard, Benoit; Khoun, Lolei; Yourdkhani, Mostafa; Hubert, Pascal

    2013-01-01

    Previous studies suggest that carbon nanotubes (CNTs) have a considerable influence on the curing behavior and crosslink density of epoxy resins. This invariably has an important effect on different thermal and mechanical properties of the epoxy network. This work focuses on the important role of the epoxy/hardener mixing ratio on the mechanical and thermal properties of a high temperature aerospace-grade epoxy (MY0510 Araldite as an epoxy and 4,4′-diaminodiphenylsulfone as an aromatic hardener) modified with single-walled carbon nanotubes (SWCNTs). The effects of three different stoichiometries (stoichiometric and off-stoichiometric) on various mechanical and thermal properties (fracture toughness, tensile properties, glass transition temperature) of the epoxy resin and its SWCNT-modified composites were obtained. The results were also supported by Raman spectroscopy and scanning electron microscopy (SEM). For the neat resin, it was found that an epoxy/hardener molar ratio of 1:0.8 provides the best overall properties. In contrast, the pattern in property changes with the reaction stoichiometry was considerably different for composites reinforced with unfunctionalized SWCNTs and reduced SWCNTs. A comparison among composites suggests that a 1:1 molar ratio considerably outperforms the other two ratios examined in this work (1:0.8 and 1:1.1). This composition at 0.2 wt% SWCNT loading provides the highest overall mechanical properties by improving fracture toughness, ultimate tensile strength and ultimate tensile strain of the epoxy resin by 40%, 34%, 54%, respectively. (paper)

  10. Invertebrate lamins

    International Nuclear Information System (INIS)

    Melcer, Shai; Gruenbaum, Yosef; Krohne, Georg

    2007-01-01

    Lamins are the main component of the nuclear lamina and considered to be the ancestors of all intermediate filament proteins. They are localized mainly at the nuclear periphery where they form protein complexes with integral proteins of the nuclear inner membrane, transcriptional regulators, histones and chromatin modifiers. Studying lamins in invertebrate species has unique advantages including the smaller number of lamin genes in the invertebrate genomes and powerful genetic analyses in Caenorhabditis elegans and Drosophila melanogaster. These simpler nuclear lamina systems allow direct analyses of their structure and functions. Here we give an overview of recent advances in the field of invertebrate nuclear lamins with special emphasis on their evolution, assembly and functions

  11. Service tough composite structures using the Z-direction reinforcement process

    Science.gov (United States)

    Freitas, Glenn; Magee, Constance; Boyce, Joseph; Bott, Richard

    1992-01-01

    Foster-Miller has developed a new process to provide through thickness reinforcement of composite structures. The process reinforces laminates locally or globally on-tool during standard autoclave processing cycles. Initial test results indicate that the method has the potential to significantly reduce delamination in carbon-epoxy. Laminates reinforced with the z-fiber process have demonstrated significant improvements in mode 1 fracture toughness and compression strength after impact. Unlike alternative methods, in-plane properties are not adversely affected.

  12. The effect of particle addition and fibrous reinforcement on epoxy-matrix composites for severe sliding conditions

    DEFF Research Database (Denmark)

    Larsen, Thomas Ricco Ølholm; Løgstrup Andersen, Tom; Thorning, Bent

    2008-01-01

    This paper reports production and tribological testing of epoxy-matrix composites for dry-sliding conditions. The examined composites are produced using the following components: epoxy resin (EP), glass fiber weave (G), carbon/aramid hybrid weave (CA), PTFE particles and nano-scale CuO particles...... are seen when the fibers are parallel and anti-parallel (P-AP) to the sliding direction compared to normal and parallel (N-P). Experiments with incorporating micro-scale PTFE particles and nano-scale CuO particles, respectively, into the epoxy resin along with the carbon/aramid weave shows no difference...... in friction but minor improvements in wear. When micro-scale PTFE particles are incorporated into the neat epoxy resin, i.e. without fibers, an increase in and a decrease in A are measured. When the same is done with nano-CuO a deterioration of both friction and wear properties are seen. At the three roughest...

  13. Packaging of active fiber composites for improved sensor performance

    International Nuclear Information System (INIS)

    Melnykowycz, M; Barbezat, M; Koller, R; Brunner, A J

    2010-01-01

    Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers embedded in an epoxy matrix and sandwiched between two interdigitated electrodes provide a thin and flexible smart material device which can act as a sensor or actuator. The thin profiles of AFC make them ideal for integration in glass or carbon fiber composite laminates. However, due to the low tensile limit of the PZT fibers, AFC can fail at strains below the tensile limit of many composites. This makes their use as a component in an active laminate design somewhat undesirable. In the current work, tensile testing of smart laminates composed of AFC integrated in glass fiber laminates was conducted to assess the effectiveness of different packaging strategies for improving AFC sensor performance at high strains relative to the tensile limit of the AFC. AFC were encased in carbon fiber, silicon, and pre-stressed carbon fiber to improve the tensile limit of the AFC when integrated in glass fiber laminates. By laminating AFC with pre-stressed carbon fiber, the tensile limit and strain sensor ability of the AFC were significantly improved. Acoustic emission monitoring was used and the results show that PZT fiber breakage was reduced due to the pre-stressed packaging process

  14. A contribution from dielectric analysis to the study of the formation of multi-wall carbon nanotubes percolated networks in epoxy resin under an electric field

    International Nuclear Information System (INIS)

    Risi, Celso L.S.; Hattenhauer, Irineu; Ramos, Airton; Coelho, Luiz A.F.; Pezzin, Sérgio H.

    2015-01-01

    The formation of percolation networks in epoxy matrix nanocomposites reinforced with multi-wall carbon nanotubes (MWNT) during the curing process, at different MWNT contents, was studied by using a parallel plate cell subjected to a 300 V/cm AC electric field at 1 kHz. The percolation was verified by the electrical current output measured during and after the resin curing. The behavior of electric dipoles was characterized by impedance spectroscopy and followed the Debye first order dispersion model, by which an average relaxation time of 6.0 × 10 −4 s and a cut-off frequency of 1.7 kHz were experimentally found. By applying the theory of percolation, a critical probability, p c , equal to 0.038 vol% and an exponent of conductivity of 2.0 were found. Both aligned and random samples showed dipole relaxation times typical of interfacial and/or charge-hopping polarization, while the permittivity exhibited an exponential decrease with frequency. This behavior can be related to the increased ability to trap electrical charges due to the formation of the carbon nanotubes network. Optical and electron microscopies confirm the theoretical prediction that the application of an electric field during cure helps the process of MWNT debundling in epoxy resin. - Highlights: • We report the formation of percolating networks of MWNTs under AC electric field. • MWNT/epoxy dielectric properties were measured by impedance spectroscopy. • Lower percolation thresholds were obtained for composites with aligned CNTs. • Application of AC electric field helps the debundling of CNTs. • CNT/Epoxy with percolated networks presents interfacial and hopping polarizations

  15. Silane coupling agent for attaching fusion-bonded epoxy to steel.

    Science.gov (United States)

    Tchoquessi Diodjo, Madeleine R; Belec, Lénaïk; Aragon, Emmanuel; Joliff, Yoann; Lanarde, Lise; Perrin, François-Xavier

    2013-07-24

    We describe the possibility of using γ-aminopropyltriethoxysilane (γ-APS) to increase the durability of epoxy powder coating/steel joints. The curing temperature of epoxy powder coatings is frequently above 200 °C, which is seen so far as a major limitation for the use of the heat-sensitive aminosilane coupling agent. Despite this limitation, we demonstrate that aminosilane is a competitive alternative to traditional chromate conversion to enhance the durability of epoxy powder coatings/steel joints. Fourier-transform reflection-absorption infrared spectroscopy (FT-RAIRS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were used to identify the silane deposition conditions that influence the adhesion of epoxy powder coatings on steel. We show that AFM analysis provides highly sensitive measurements of mechanical property development and, as such, the degree of condensation of the silane. The joint durability in water at 60 °C was lower when the pH of the γ-APS solution was controlled at 4.6 using formic acid, rather than that at natural pH (10.6). At the curing temperature of 220 °C, oxidation of the carbon adjacent to the amine headgroup of γ-APS gives amide species by a pseudofirst-order kinetics. However, a few amino functionalities remain to react with oxirane groups of epoxy resin and, thus, strengthen the epoxy/silane interphase. The formation of ammonium formate in the acidic silane inhibits the reaction between silane and epoxy, which consequently decreases the epoxy/silane interphase cohesion. We find that the nanoroughness of silane deposits increases with the cure temperature which is beneficial to the wet stability of the epoxy/steel joints, due to increased mechanical interlocking.

  16. Integration of Microchip Electrophoresis with Electrochemical Detection Using an Epoxy-Based Molding Method to Embed Multiple Electrode Materials

    Science.gov (United States)

    Johnson, Alicia S.; Selimovic, Asmira; Martin, R. Scott

    2012-01-01

    This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified in a similar fashion to electrochemical flow cells used in liquid chromatography. PMID:22038707

  17. The effect of 25 years of oil field flow line service on epoxy fiberglass pipe

    International Nuclear Information System (INIS)

    Oswald, K.J.

    1988-01-01

    Glass fiber reinforced epoxy and vinyl ester piping systems have been used for over 35 years to control corrosion problems in oil fields and chemical and industrial plants and many case histories have been reported to document the successful performances of fiberglass reinforced thermosetting plastics in a wide range of corrosive services. This information is reinforced by laboratory test data from flat laminates and pipe exposed to numerous chemicals and mixtures of chemicals, but little has been published to document the effect of long-term, in-service exposure on fiberglass equipment. The purpose of this paper is to help to fill this void by comparing data from physical testing of pipe removed from successful corrosive service applications with data obtained from the same type of pipe at the time of manufacture. The information supplied in these papers represents only a few of the successful applications of filament wound epoxy and vinyl ester pipe as it is difficult to obtain permission to remove pipe from an operating line

  18. MECHANICAL PROPERTIES AND CORROSION PROTECTION OF CARBON STEEL COATED WITH AN EPOXY BASED POWDER COATING CONTAINING MONTMORILONITE FUNCTIONALIZED WITH SILANE

    OpenAIRE

    Paula Tibola Bertuoli; Veronica Perozzo Frizzo; Diego Piazza; Lisete Cristine Scienza; Ademir José Zattera

    2014-01-01

    In the present work the MMT-Na+ clay was functionalized with 3-aminopropyltriethoxysilane (γ-APS) and incorporated in a commercial formulation epoxy-based powder coating in a proportion of 8 wt% and applied on 1008 carbon steel panels by electrostatic spray. Adhesion, flexibility, impact and corrosion performance in salt spray chamber tests were performed to evaluate the coatings. The presence of clay did not affect the mechanical properties of the film, however greater subcutaneo...

  19. Armored garment for protecting

    Science.gov (United States)

    Purvis, James W [Albuquerque, NM; Jones, II, Jack F.; Whinery, Larry D [Albuquerque, NM; Brazfield, Richard [Albuquerque, NM; Lawrie, Catherine [Tijeras, NM; Lawrie, David [Tijeras, NM; Preece, Dale S [Watkins, CO

    2009-08-11

    A lightweight, armored protective garment for protecting an arm or leg from blast superheated gases, blast overpressure shock, shrapnel, and spall from a explosive device, such as a Rocket Propelled Grenade (RPG) or a roadside Improvised Explosive Device (IED). The garment has a ballistic sleeve made of a ballistic fabric, such as an aramid fiber (e.g., KEVLAR.RTM.) cloth, that prevents thermal burns from the blast superheated gases, while providing some protection from fragments. Additionally, the garment has two or more rigid armor inserts that cover the upper and lower arm and protect against high-velocity projectiles, shrapnel and spall. The rigid inserts can be made of multiple plies of a carbon/epoxy composite laminate. The combination of 6 layers of KEVLAR.RTM. fabric and 28 plies of carbon/epoxy laminate inserts (with the inserts being sandwiched in-between the KEVLAR.RTM. layers), can meet the level IIIA fragmentation minimum V.sub.50 requirements for the US Interceptor Outer Tactical Vest.

  20. Hybrid welding of carbon-fiber reinforced epoxy based composites

    NARCIS (Netherlands)

    Lionetto, Francesca; De Nicolas Morillas, M.; Pappadà, Silvio; Buccoliero, Giuseppe; Fernandez Villegas, I.; Maffezzoli, Alfonso

    2018-01-01

    The approach for joining thermosetting matrix composites (TSCs) proposed in this study is based on the use of a low melting co-cured thermoplastic film, added as a last ply in the stacking sequence of the composite laminate. During curing, the thermoplastic film partially penetrates in the first

  1. Assessment of damage in composite laminates through dynamic, full-spectral interrogation of fiber Bragg grating sensors

    International Nuclear Information System (INIS)

    Propst, A; Peters, K; Zikry, M A; Schultz, S; Kunzler, W; Zhu, Z; Wirthlin, M; Selfridge, R

    2010-01-01

    In this study, we demonstrate the full-spectral interrogation of a fiber Bragg grating (FBG) sensor at 535 Hz. The sensor is embedded in a woven, graphite fiber–epoxy composite laminate subjected to multiple low-velocity impacts. The measurement of unique, time dependent spectral features from the FBG sensor permits classification of the laminate lifetime into five regimes. These damage regimes compare well with previous analysis of the same material system using combined global and local FBG sensor information. Observed transient spectral features include peak splitting, wide spectral broadening and a strong single peak at the end of the impact event. Such features could not be measured through peak wavelength interrogation of the FBG sensor. Cross-correlation of the measured spectra with the original embedded FBG spectrum permitted rapid visualization of average strains and the presence of transverse compressive strain on the optical fiber, but smeared out the details of the spectral profile

  2. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    Science.gov (United States)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  3. Effect of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites

    Science.gov (United States)

    Ridzuan, M. J. M.; Majid, M. S. Abdul; Afendi, M.; Firdaus, A. Z. Ahmad; Azduwin, K.

    2017-11-01

    The effects of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites and its morphology of fractured surfaces are discussed. Napier/glass-epoxy hybrid reinforced composites were fabricated by using vacuum infusion method by arranging Napier fibres in between sheets of woven glass fibres. Napier and glass fibres were laminated with estimated volume ratios were 24 and 6 vol. %, respectively. The epoxy resin was used as matrix estimated to 70 vol. %. Specimens were tested to failure under tension at a cross-head speed of 1 mm/min using Universal Testing Machine (Instron) with a load cell 100 kN at four different temperatures of RT, 40°C, 60°C and 80°C. The morphology of fractured surface of hybrid composites was investigated by field emission scanning electron microscopy. The result shows reduction in tensile strength at elevated temperatures. The increase in the temperature activates the process of diffusion, and generates critical stresses which cause the damage at first-ply or at the centre of the hybrid plate, as a result lower the tensile strength. The observation of FESEM images indicates that the fracture mode is of evolution of localized damage, from fibre/matrix debonding, matric cracking, delamination and fibre breakage.

  4. Blast response of curved carbon/epoxy composite panels: Experimental study and finite-element analysis

    International Nuclear Information System (INIS)

    Phadnis, V A; Roy, A; Silberschmidt, V V; Kumar, P; Shukla, A

    2013-01-01

    Experimental and numerical studies were conducted to understand the effect of plate curvature on blast response of carbon/epoxy composite panels. A shock-tube system was utilized to impart controlled shock loading to quasi-isotropic composite panels with differing range of radii of curvatures. A 3D Digital Image Correlation (DIC) technique coupled with high-speed photography was used to obtain out-of-plane deflection and velocity, as well as in-plane strain on the back face of the panels. Macroscopic post-mortem analysis was performed to compare yielding and deformation in these panels. A dynamic computational simulation that integrates fluid-structure interaction was conducted to evaluate the panel response in general purpose finite-element software ABAQUS/Explicit. The obtained numerical results were compared to the experimental data and showed a good correlation

  5. Low velocity instrumented impact testing of four new damage tolerant carbon/epoxy composite systems

    Science.gov (United States)

    Lance, D. G.; Nettles, A. T.

    1990-01-01

    Low velocity drop weight instrumented impact testing was utilized to examine the damage resistance of four recently developed carbon fiber/epoxy resin systems. A fifth material, T300/934, for which a large data base exists, was also tested for comparison purposes. A 16-ply quasi-isotropic lay-up configuration was used for all the specimens. Force/absorbed energy-time plots were generated for each impact test. The specimens were cross-sectionally analyzed to record the damage corresponding to each impact energy level. Maximum force of impact versus impact energy plots were constructed to compare the various systems for impact damage resistance. Results show that the four new damage tolerant fiber/resin systems far outclassed the T300/934 material. The most damage tolerant material tested was the IM7/1962 fiber/resin system.

  6. Bovine laminitis: clinical aspects, pathology and pathogenesis with reference to acute equine laminitis.

    Science.gov (United States)

    Boosman, R; Németh, F; Gruys, E

    1991-07-01

    This review deals with the features of clinical and subclinical laminitis in cattle. Prominent clinical signs of acute laminitis are a tender gait and arched back. The sole horn reveals red and yellowish discolourations within five days. In subacute and chronic cases clinical signs are less severe. In chronic laminitis the shape of the claws is altered. Laminitis is frequently followed by sole ulceration and white zone lesions. Blood tests showed no significant changes for laminitic animals. Arteriographic studies of claws affected by laminitis indicated that blood vessels had narrowed lumens. Gross pathology revealed congestion of the corium and rotation of the distal phalanx. Histopathologic studies indicate that laminitis is associated with changes of the vasculature. Peripartum management and nutrition are important factors in its aetiology. It is hypothesised that laminitis is evoked by disturbed digital circulation. In the pathogenesis of acute laminitis three factors are considered important: the occurrence of thrombosis, haemodynamic aspects of the corium, and endotoxins which trigger these pathologic events.

  7. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-08-01

    Full Text Available Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is vulnerable to fracture. However, it is well established that when reinforced—especially by nano-fillers, such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials—its ability to withstand crack propagation is propitiously improved. Among various nano-fillers, graphene has recently been employed as reinforcement in epoxy to enhance the fracture related properties of the produced epoxy–graphene nanocomposites. In this review, mechanical, thermal, and electrical properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of graphene. The factors in which contrasting results were reported in the literature are highlighted, such as the influence of graphene on the mechanical properties of epoxy nanocomposites. Furthermore, the challenges to achieving the desired performance of polymer nanocomposites are also suggested throughout the article.

  8. Experimental Determination of Ballistic Performance of Composite Material Kevlar 29 and Alumina Powder/ Epoxy by Spherical Projectile

    Directory of Open Access Journals (Sweden)

    Luay Hashem Abbud

    2016-12-01

    Full Text Available In this study, a response of hybrid composite laminate woven fiber Kevlar29 – Al2O3 Powder/ Epoxy subjected to high velocity impact loading is presented. The energy absorbed due to impact of small rigid projectile on composite materials targets is determined experimentally. The energy absorbed due to impact of hemispherical projectiles on the developed composite laminates is investigated. The results revealed the maximum ballistic limit at impact velocity is found to be 390.87 ± 6 m/s for an the 18 mm target thickness. The ballistic limit velocity predictions are based on the theoretical method presented from another article. The initial velocity and residual velocity results showed good is agreement compared with the predicted results of Ipson and Recht equations. With 5.4 % of accuracy based on the experimental value for the theoretical model for ballistic limit velocity.

  9. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    Science.gov (United States)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  10. Improvement of Mechanical and Dielectric Properties of Epoxy Resin Using CNTs/ZnO Nanocomposite.

    Science.gov (United States)

    Vu, Pham Gia; Truc, Trinh Anh; Chinh, Nguyen Thuy; Tham, Do Quang; Trung, Tran Huu; Oanh, Vu Ke; Hang, To Thi Xuan; Olivier, Marjorie; Hoang, Thai

    2018-04-01

    In this study, carbon nanotubes (CNTs)/ZnO composites had been prepared using the sol-gel method and then incorporated into an epoxy resin for reinforcement of mechanical and electrical properties. Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) Field Emission Scanning Electron Microscope (FE-SEM) analyses show that the ZnO nanoparticles deposited on CNTs were crystallized in a hexagonal wurtzite structure. Average particle size of ZnO deposited on the CNT was about 8 nm. The mechanical and dielectric properties of epoxy containing CNTs/ZnO were investigated in comparison to epoxy resin and epoxy resin containing only CNT or ZnO nanoparticles. The results indicated that tensile strength and elongation at break of the nanocomposite were substantially improved with the presence of CNTs/ZnO at the equal volume. The DSC analysis associate with the dielectric results shows that the behavior of epoxy/CNTs/ZnO is identical to epoxy/ZnO composite, and the CNTs is essential to the distributed arrangement of ZnO in the epoxy resin.

  11. Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Alstrup, J.; Spanggaard, H.

    2004-01-01

    The possibility of making large area (100 cm(2)) polymer solar cells based on the conjugated polymer poly 1,4-(2-methoxy-5-ethylhexyloxy)phenylenevinylene (MEH-PPV) was demonstrated. Devices were prepared by etching an electrode pattern on ITO covered polyethyleneterephthalate (PET) substrates....... A pattern of conducting silver epoxy allowing for electrical contacts to the device was silk screen printed and hardened. Subsequently a pattern of MEH-PPV was silk screen printed in registry with the ITO electrode pattern on top of the substrate. Final evaporation of an aluminum electrode or sublimation......). The half-life based on I-sc in air for the devices were 63 h. The cells were laminated in a 125 mum PET encasement. Lamination had a negative effect on the lifetime. We demonstrate the feasibility of industrial production of large area solar cells (1 m(2)) by silk screen printing and envisage...

  12. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); School of Mechanical and Electronic Engineering, Ningbo Dahongying University, Ningbo 315175 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Haibing, E-mail: xuhaibing@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Liu, Dong; Yan, Chun [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhu, Yingdan, E-mail: y.zhu@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China)

    2017-07-15

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  13. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    International Nuclear Information System (INIS)

    Chen, Xiang; Xu, Haibing; Liu, Dong; Yan, Chun; Zhu, Yingdan

    2017-01-01

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  14. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    PENG Fan; FU YiMing; CHEN YaoJun

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated. The viscoelastic behavior of laminas is modeled by Schapery's integral constitutive equation with growing ma-trix cracks. The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from meso-mechanics approach, and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress. The gov-erning equations for pre-buckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Karman-Donnell geometrically nonlinear relationship. Corresponding solution strategy is constructed by inte-grating finite-difference technique, trigonometric series expansion method and Taylor's numerical recursive scheme for convolution integration. The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parame-ters and parameters of damage evolution as well as boundary conditions. The nu-merical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads, and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells, also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  15. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated.The viscoelastic behavior of laminas is modeled by Schapery’s integral constitutive equation with growing matrix cracks.The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from mesomechanics approach,and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress.The governing equations for prebuckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Kármán-Donnell geometrically nonlinear relationship.Corresponding solution strategy is constructed by integrating finite-difference technique,trigonometric series expansion method and Taylor’s numerical recursive scheme for convolution integration.The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parameters and parameters of damage evolution as well as boundary conditions.The numerical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads,and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells,also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  16. The used epoxy matrix in immobilization sludge process of alpha emitter radioactive waste

    International Nuclear Information System (INIS)

    Walman, E.; Salimin, Z.; Johan, B.

    1998-01-01

    Immobilization of alpha emitter radioactive waste containing of ion complex of uranyl carbonate on uranium concentration ≤ 50 mg/l has been carried out using epoxy matrix. The first step of process is the coagulation of uranium with 1.3 mole/l of Ca(OH) 2 coagulant concentration on pH 8 to precipitate the calcium uranyl carbonate on uranium concentration ≤ g/l. The immobilization of calcium uranyl carbonate with epoxy matrix was done on variation of the ratio of resin epoxy and hardener of 1 : 1 (giving the maximum value of density and compressive strength), the increasing of precipitate loading capacity give the decreasing of compressive strength of embedded waste. The test of compressive strength and leaching was done for the embedded waste after its curing time using Paul Weber equipment and 7 days immersion of samples in normal water. On the precipitate loading capacity of 70%, the quality of embedded waste still conform to the standard quality value i.e. density 1.2 g/cm 3 , compressive strength 10 kN/cm 2 and there is not any release of radionuclide during leaching test (undetectable).. (author)

  17. Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS.

    Science.gov (United States)

    Liu, Yu; Hamon, Ann-Lenaig; Haghi-Ashtiani, Paul; Reiss, Thomas; Fan, Benhui; He, Delong; Bai, Jinbo

    2016-12-14

    A quantitative study of the interphase and interface of graphene nanoplatelets (GNPs)/epoxy and graphene oxide (GO)/epoxy was carried out by combining scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The interphase regions between GNPs and epoxy matrix were clearly identified by the discrepancy of the plasmon peak positions in the low energy-loss spectra due to different valence electron densities. The spectrum acquisitions were carried out along lines across the interface. An interphase thickness of 13 and 12.5 nm was measured for GNPs/epoxy and GO/epoxy, respectively. The density of the GNPs/epoxy interphase was 2.89% higher than that of the epoxy matrix. However, the density of the GO/epoxy interphase was 1.37% lower than that of the epoxy matrix. The interphase layer thickness measured in this work is in good agreement with the transition layer theory, which proposed an area with modulus linearly varying across a finite width. The results provide an insight into the interphase for carbon-based polymer composites that can help to design the functionalization of nanofillers to improve the composite properties.

  18. A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.

  19. Modeling of fracture and durability of paste-bonded composite joints subjected to hygro-thermal-mechanical loading

    Science.gov (United States)

    Harris, David Lee

    The objective of the research is to characterize the behavior of composite/composite joints with paste adhesive using both experimental testing and analytical modeling. In comparison with the conventional tape adhesive, joining composites using paste adhesive provides several advantages. The carbon fiber laminate material systems employed in this study included IM7 carbon fibers and 977-3 epoxy matrix assembled in prepreg tape, and AS4 carbon fibers and 977-3 epoxy matrix as a five-harness satin weave. The adhesive employed was EA 9394 epoxy. All laminates and test specimens were fabricated and inspected by Boeing using their standard propriety procedures. Three types of test specimens were used in the program. They were bonded double-lap shear (DLS), bonded double cantilever beam (DCB) and bonded interlaminar tension (ILT) specimens. A group of specimens were conditioned at elevated temperature and humidity in an environmental chamber at Boeing's facility and their moisture absorption recorded with time. Specimens were tested at room temperature dry and elevated temperatures. DCB and DLS specimens were tested in fatigue as well as static conditions. Two-dimensional finite element models of the three configurations were developed for determining stresses and strains using the ABAQUS finite element package code. Due to symmetry, only the one-half of the specimen needed to be considered thus reducing computational time. The effect of the test fixture is not taken into account instead equivalent distributed stresses are applied directly on the composite laminates. For each of the specimen, the distribution of Mises stress and the first strain invariant J1 are obtained to identify potential failure locations within a specimen.

  20. Scarf Repair of Composite Laminates

    Directory of Open Access Journals (Sweden)

    Xie Zonghong

    2016-01-01

    Full Text Available The use of composite materials, such as carbon-fiber reinforced plastic (CFRP composites, aero-structures has led to an increased need of advanced assembly joining and repair technologies. Adhesive bonded repairs as an alternative to recover full or part of initial strength were investigated. Tests were conducted with the objective of evaluating the effectiveness of techniques used for repairing damage fiber reinforced laminated composites. Failure loads and failure modes were generated and compared with the following parameters: scarf angles, roughness of grind tool and number of external plies. Results showed that scarf angle was the critical parameter and the largest tensile strength was observed with the smallest scarf angle. Besides, the use of external plies at the outer surface could not increase the repairs efficiency for large scarf angle. Preparing the repair surfaces by sanding them with a sander ranging from 60 to 100 grit number had significant effect on the failure load. These results allowed the proposal of design principles for repairing CFRP structures.