WorldWideScience

Sample records for carbon-13 spin diffusion

  1. Robust control of entanglement in a Nitrogen-vacancy centre coupled to a Carbon-13 nuclear spin in diamond

    OpenAIRE

    Said, R S; Twamley, J.

    2009-01-01

    We address a problem of generating a robust entangling gate between electronic and nuclear spins in the system of a single nitrogen-vacany centre coupled to a nearest Carbon-13 atom in diamond against certain types of systematic errors such as pulse-length and off-resonance errors. We analyse the robustness of various control schemes: sequential pulses, composite pulses and numerically-optimised pulses. We find that numerically-optimised pulses, produced by the gradient ascent pulse engineeri...

  2. Spin diffusion in Fermi gases

    DEFF Research Database (Denmark)

    Bruun, Georg

    2011-01-01

    We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...

  3. Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes

    Institute of Scientific and Technical Information of China (English)

    Tian Jinping; Yin Yingwu

    2004-01-01

    A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 >MgCl2 >CaCl2 >NaCl >KCl >LiClO4 >NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate

  4. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  5. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  6. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    Science.gov (United States)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  7. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    Science.gov (United States)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  8. NQR Spin Diffusion in an Inhomogeneous Internal Field

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Goren, Shaul D. [Ben Gurion University, Physics Department (Israel)

    2004-12-15

    The theory of NQR spin diffusion is extended to the case of spin lattice relaxation and spin diffusion in an inhomogeneous field. Two coupled equations describing the mutual relaxation and the spin diffusion of the nuclear magnetization and dipolar energy were obtained by using the method of nonequilibrium state operator. The equations were solved for short and long times approximation corresponding to the direct and diffusion relaxation regimes.

  9. A novel method to evaluate spin diffusion length of Pt

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-qing; Sun, Niu-yi; Che, Wen-ru [Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Shan, Rong, E-mail: shan.rong@hotmail.com [Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhu, Zhen-gang, E-mail: zgzhu@ucas.ac.cn [School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-05-01

    Spin diffusion length of Pt is evaluated via proximity effect of spin orbit coupling (SOC) and anomalous Hall effect (AHE) in Pt/Co{sub 2}FeAl bilayers. By varying the thicknesses of Pt and Co{sub 2}FeAl layer, the thickness dependences of AHE parameters can be obtained, which are theoretically predicted to be proportional to the square of the SOC strength. According to the physical image of the SOC proximity effect, the spin diffusion length of Pt can easily be identified from these thickness dependences. This work provides a novel method to evaluate spin diffusion length in a material with a small value.

  10. Spin diffusion in anisotropic Heisenberg chains: S{>=}1/2

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.L., E-mail: huber@src.wisc.edu [Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison WI 53706 (United States)

    2012-11-01

    In this paper, we investigate spin diffusion in Heisenberg chains with uniaxial nearest-neighbor interactions. The approach followed is based on an analysis of the infinite-temperature longitudinal spin density and spin current correlation functions. For S=1/2, exact results are presented for the time-dependent correlation functions in the XY limit. Away from this limit, the second and fourth moments of the Fourier transform of the spin density correlation function provide information about spin dynamics for arbitrary values of the spin. The moments are used in an assessment of the accuracy of the Gaussian approximation for the spin diffusion constant for S=1/2. The general behavior of the Gaussian approximation when S>1/2 is discussed, and numerical results for the spin diffusion constant are presented for S=1/2, 1, 3/2, 2 and in the classical limit. A moment-based criterion for the boundary in reciprocal space between diffusive and non-diffusive dynamics that applies to arbitrary values of the spin is presented.

  11. Correction of spin diffusion during iterative automated NOE assignment.

    Science.gov (United States)

    Linge, Jens P; Habeck, Michael; Rieping, Wolfgang; Nilges, Michael

    2004-04-01

    Indirect magnetization transfer increases the observed nuclear Overhauser enhancement (NOE) between two protons in many cases, leading to an underestimation of target distances. Wider distance bounds are necessary to account for this error. However, this leads to a loss of information and may reduce the quality of the structures generated from the inter-proton distances. Although several methods for spin diffusion correction have been published, they are often not employed to derive distance restraints. This prompted us to write a user-friendly and CPU-efficient method to correct for spin diffusion that is fully integrated in our program ambiguous restraints for iterative assignment (ARIA). ARIA thus allows automated iterative NOE assignment and structure calculation with spin diffusion corrected distances. The method relies on numerical integration of the coupled differential equations which govern relaxation by matrix squaring and sparse matrix techniques. We derive a correction factor for the distance restraints from calculated NOE volumes and inter-proton distances. To evaluate the impact of our spin diffusion correction, we tested the new calibration process extensively with data from the Pleckstrin homology (PH) domain of Mus musculus beta-spectrin. By comparing structures refined with and without spin diffusion correction, we show that spin diffusion corrected distance restraints give rise to structures of higher quality (notably fewer NOE violations and a more regular Ramachandran map). Furthermore, spin diffusion correction permits the use of tighter error bounds which improves the distinction between signal and noise in an automated NOE assignment scheme.

  12. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-spin...... species. This "spin drag" effect enhances the resistivity of the system. The enhancement is stronger the lower the dimension is, and should be measurable in, for example, a two-dimensional electron gas with ferromagnetic contacts. We also include spin-flip scattering, which has two effects......: it equilibrates the spin density imbalance and, provided it has a non-s-wave component, also a current imbalance....

  13. Non-local thermal spin injection to study spin diffusion in yttrium iron garnet

    Science.gov (United States)

    Giles, Brandon; Yang, Zihao; Jamison, John; Myers, Roberto

    Understanding the generation, detection, and manipulation of spin current is critical for the development of devices that depend on spin transport for information processing and storage. Recent studies have shown that spin transport over long distances is possible in the magnetic insulator yttrium iron garnet (YIG) through the diffusion of non-equilibrium magnons. Electrically excited magnons have been shown to diffuse up to 40um at room temperature, while thermally injected magnons were detected at ranges greater than 125um at 23K. However, much work is still required to fully understand the processes responsible for magnon diffusion. Here, we present an in-depth study of the diffusion of magnons in YIG. By using the non-local thermal spin detection method, we analyze spin transport as a function of temperature. Spin diffusion maps, which can be used to experimentally determine the spin diffusion length in YIG as a function of temperature, are presented Work supported by the Army Research Office MURI W911NF-14-1-0016.

  14. Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance.

    Science.gov (United States)

    Lorenz, Klaus; Preston, Caroline M

    2002-01-01

    Condensed tannins can be found in various parts of many plants. Unlike lignin there has been little study of their fate as they enter the soil organic matter pool and their influence on nutrient cycling, especially through their protein-binding properties. We extracted and characterized tannin-rich fractions from humus collected in 1998 from a black spruce [Picea mariana (Mill.) Britton et al.] forest in Canada where a previous study (1995) showed high levels (3.8% by weight) of condensed tannins. A reference tannin purified from black spruce needles was characterized by solution 13C nuclear magnetic resonance (NMR) as a pure procyanidin with mainly cis stereochemistry and an average chain length of four to five units. The colorimetric proanthocyanidin (PA) assay, standardized against the black spruce tannin, showed that both extracted humus fractions had higher tannin contents than the original humus (2.84% and 11.17% vs. 0.08%), and accounted for 32% of humus tannin content. Consistent with the results from the chemical assay, the aqueous fraction showed higher tannin signals in the 13C cross-polarization and magic-angle spinning (CPMAS) NMR spectrum than the emulsified one. As both tannin-rich humus fractions were depleted in N and high in structures derived from lignin and cutin, they did not have properties consistent with recaldtrant tannin-protein complexes proposed as a mechanism for N sequestration in humus. Further studies are needed to establish if tannin-protein structures in humus can be detected or isolated, or if tannins contribute to forest management problems observed in these ecosystems by binding to and slowing down the activity of soil enzymes.

  15. Spin diffusion in bulk GaN measured with MnAs spin injector

    KAUST Repository

    Jahangir, Shafat

    2012-07-16

    Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.

  16. Observation of spin diffusion in zero-field magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Suter, D.; Jarvie, T.P.; Sun, B.; Pines, A.

    1987-07-06

    We report the measurement of spin diffusion at zero field, observed by two-dimensional deuterium magnetic resonance of a polycrystalline sample. This demonstrates for the first time an appealing feature of pulsed zero-field magnetic resonance, namely the potential for structure determination in solids without the need for single crystals or oriented samples.

  17. A generalized spin diffusion equation with four electrochemical potentials for channels with spin-orbit coupling

    Science.gov (United States)

    Sayed, Shehrin; Hong, Seokmin; Datta, Supriyo

    We will present a general semiclassical theory for an arbitrary channel with spin-orbit coupling (SOC), that uses four electrochemical potential (U + , D + , U - , and D -) depending on the sign of z-component of the spin (up (U) , down (D)) and the sign of the x-component of the group velocity (+ , -) . This can be considered as an extension of the standard spin diffusion equation that uses two electrochemical potentials for up and down spin states, allowing us to take into account the unique coupling between charge and spin degrees of freedom in channels with SOC. We will describe applications of this model to answer a number of interesting questions in this field such as: (1) whether topological insulators can switch magnets, (2) how the charge to spin conversion is influenced by the channel resistivity, and (3) how device structures can be designed to enhance spin injection. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  18. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas

    2016-12-17

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  19. Spin diffusive modes and thermal transport in neutron star crusts

    CERN Document Server

    Sedrakian, Armen

    2015-01-01

    In this contribution we first review a method for obtaining the collective modes of pair-correlated neutron matter as found in a neutron star inner crust. We discuss two classes of modes corresponding to density and spin perturbations with energy spectra $\\omega = \\omega_0 + \\alpha q^2$, where $\\omega_0 = 2\\Delta$ is the threshold frequency and $\\Delta$ is the gap in the neutron fluid spectrum. For characteristic values of Landau parameters in neutron star crusts the exitonic density modes have $\\alpha 0$ and they exist above $\\omega_0$ which implies that these modes are damped. As an application of these findings we compute the thermal conductivity due to spin diffusive modes and show that it scales as $T^{1/2} \\exp(-2\\omega_0/T)$ in the case where their two-by-two scattering cross-section is weakly dependent on temperature.

  20. General Solution to Gradient Induced Transverse and Longitudinal Relaxation of Spins Undergoing Restricted Diffusion

    CERN Document Server

    Zheng, W; Liu, J -G; Zhang, Y; Ye, Q; Swank, C; 10.1103/PhysRevA.84.053411

    2012-01-01

    We develop an approach, by calculating the autocorrelation function of spins, to derive the magnetic field gradient induced transverse ($T_2$) relaxation of spins undergoing restricted diffusion. This approach is an extension to the method adopted by McGregor. McGregor's approach solves the problem only in the fast diffusion limit; however, our approach yields a single analytical solution suitable in all diffusion regimes, including the intermediate regime. This establishes a direct connection between the well-known Torrey's slow diffusion result and the fast diffusion result. We also perform free induction decay measurements on spin-exchange optically polarized $^3$He gas with different diffusion constants. The transverse relaxation profiles are compared with the theory and satisfactory agreement has been found throughout all diffusion regimes. In addition to the transverse relaxation, this approach is also applicable to solving the longitudinal relaxation ($T_1$) regardless of the diffusion limits. It turns...

  1. Measuring spin diffusion of electrons in bulk n-GaAs using circularly dichromatic absorption difference spectroscopy of spin gratings

    Science.gov (United States)

    Yu, Hua-Liang; Zhang, Xiu-Min; Wang, Peng-Fei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Lai, Tianshu

    2009-05-01

    Circular dichromatic absorption difference spectroscopy is developed to measure the spin diffusion dynamics of electrons in bulk n-GaAs. This spectroscopy has higher detection sensitivity over homodyne detection of spin-grating-diffracted signal. A model to describe circular dichromatic absorption difference signal is derived and used to fit experimental signal to retrieve decaying rate of spin gratings. A spin diffusion constant of Ds=201±25 cm2/s for bulk n-GaAs has been measured at room temperature using this technique and is close to electron diffusion constant (Dc), which is much different from the case in GaAs quantum wells where Ds is markedly less than Dc.

  2. Spin Diffusion in Trapped Clouds of Cold Atoms with Resonant Interactions

    DEFF Research Database (Denmark)

    Bruun, Georg Morten; Pethick, C. J.

    2011-01-01

    We show that puzzling recent experimental results on spin diffusion in a strongly interacting atomic gas may be understood in terms of the predicted spin diffusion coefficient for a generic strongly interacting system. Three important features play a central role: (a) Fick’s law for diffusion mus...... be modified to allow for the trapping potential; (b) the diffusion coefficient is inhomogeneous, due to the density variations in the cloud; and (c) the diffusion approximation fails in the outer parts of the cloud, where the mean free path is long....

  3. Unified drift-diffusion theory for transverse spin currents in spin valves, domain walls, and other textured magnets.

    Science.gov (United States)

    Petitjean, Cyril; Luc, David; Waintal, Xavier

    2012-09-14

    Spins transverse to the magnetization of a ferromagnet only survive over a short distance. We develop a drift-diffusion approach that captures the main features of transverse spin effects in systems with arbitrary spin textures (e.g., vortices and domain walls) and generalizes the Valet-Fert theory. In addition to the standard characteristic lengths (mean free path for majority and minority electrons, and spin diffusion length), the theory introduces two length scales, the transverse spin coherence length ℓ(⊥) and the (Larmor) spin precession length ℓ(L). We show how ℓ(L) and ℓ(⊥) can be extracted from ab initio calculations or measured with giant magnetoresistance experiments. In long (adiabatic) domain walls, we provide an analytic formula that expresses the so-called "nonadiabatic" (or fieldlike) torque in terms of these length scales. However, this nonadiabatic torque is no longer a simple material parameter but depends on the actual spin texture: in thin (<10  nm) domain walls, we observe very significant deviations from the adiabatic limit.

  4. Nonlocal Spin Diffusion Driven by Giant Spin Hall Effect at Oxide Heterointerfaces.

    Science.gov (United States)

    Jin, Mi-Jin; Moon, Seon Young; Park, Jungmin; Modepalli, Vijayakumar; Jo, Junhyeon; Kim, Shin-Ik; Koo, Hyun Cheol; Min, Byoung-Chul; Lee, Hyun-Woo; Baek, Seung-Hyub; Yoo, Jung-Woo

    2017-01-11

    A two-dimensional electron gas emerged at a LaAlO3/SrTiO3 interface is an ideal system for "spin-orbitronics" as the structure itself strongly couple the spin and orbital degree of freedom through the Rashba spin-orbit interaction. One of core experiments toward this direction is the nonlocal spin transport measurement, which has remained elusive due to the low spin injection efficiency to this system. Here we bypass the problem by generating a spin current not through the spin injection from outside but instead through the inherent spin Hall effect and demonstrate the nonlocal spin transport. The analysis on the nonlocal spin voltage, confirmed by the signature of a Larmor spin precession and its length dependence, displays that both D'yakonov-Perel' and Elliott-Yafet mechanisms involve in the spin relaxation at low temperature. Our results show that the oxide heterointerface is highly efficient in spin-charge conversion with exceptionally strong spin Hall coefficient γ ∼ 0.15 ± 0.05 and could be an outstanding platform for the study of coupled charge and spin transport phenomena and their electronic applications.

  5. Optical Generation of Ballistic and Diffusive Spin Currents in Organic-Inorganic Lead Halide Perovskites

    Science.gov (United States)

    Li, Junwen; Haney, Paul

    Organic-inorganic halide perovskite solar cells have attracted enormous attention in recent years due to their remarkable photovoltaic power conversion efficiency. These materials should exhibit interesting spin-dependent properties as well, owing to the strong spin-orbit coupling and the broken inversion symmetry present at room temperature. In this work, we consider the spin-dependent optical response of CH3NH3PbI3 on two distinct time scales. We first use density functional theory to compute the ballistic spin current injected by absorption of linearly polarized light. This spin current persists on a time scale of the momentum relaxation time. We then consider diffusive transport of photogenerated charge and spin for a thin perovskite layer with a passivated surface and an Ohmic, non-selective back contact. The spin densities and spin currents are evaluated by solving the drift-diffusion equations for a 3-dimensional Rashba model. We comment on the applications of optically excited spin densities and spin currents in these materials.

  6. Optical Orientation and Inverse Spin Hall Effect as Effective Tools to Investigate Spin-Dependent Diffusion

    Directory of Open Access Journals (Sweden)

    Marco Finazzi

    2016-11-01

    Full Text Available In this work we address optical orientation, a process consisting in the excitation of spin polarized electrons across the gap of a semiconductor. We show that the combination of optical orientation with spin-dependent scattering leading to the inverse spin-Hall effect, i.e., to the conversion of a spin current into an electrical signal, represents a powerful tool to generate and detect spin currents in solids. We consider a few examples where these two phenomena together allow addressing the spin-dependent transport properties across homogeneous samples or metal/semiconductor Schottky junctions.

  7. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu

    2015-03-12

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  8. Imaging Drift and Diffusion of Accumulation from the Spin Hall Effect

    Science.gov (United States)

    Stern, N. P.; Steuerman, D. W.; Mack, S.; Gossard, A. C.; Awschalom, D. D.

    2008-03-01

    The spontaneous generation of spin polarization near sample edges by the spin Hall effect when electron currents flow in a metal or semiconductor with spin-orbit coupling has attracted recent attention due to the elegant and complex spin-orbit physics as well as the potential for all-electrical spin generation in spintronics devices. Optical techniques in semiconductors allow for spatial resolution of the electrically generated spin accumulation, a feature not present in all-electrical measurements. We use Kerr rotation microscopy to image the spatial and temporal evolution of spin accumulation produced by the extrinsic spin Hall effect in n-GaAs devices. Measurements in a variety of device geometries, including arms transverse to a channel, reveal the unambiguous contribution of longitudinal spin drift in accumulation profilesootnotetextN. P. Stern, D. W. Steuerman, S. Mack, A.C. Gossard, and D. D. Awschalom, Appl. Phys. Rev. Lett. 91, 062109 (2007). We develop one- and two- dimensional drift-diffusion modeling to explain the observed features, providing a more complete understanding of observations of spin accumulation and the spin Hall effect.

  9. STUDIES OF MAIN CHAIN DYNAMICS OF FLUORINE-CONTAINING IONOMERS BY CARBON-13 NUCLEAR MAGNETIC RELAXATION

    Institute of Scientific and Technical Information of China (English)

    YANG Yanwu; WANG Dehua; QIU Jianqing; QIAN Baogong; WANG Hongzuo

    1992-01-01

    The carbon-13 spin-spin relaxation times of fluorine-containing ionomers are measured and motional correlation times τ0 and τd are calculated by using VJGM model. The results show that the motions of polymer main chain in ionomers become more difficult with increasing of ionization degree and contents of functional group, and depend on the fine structures and stability of ionic microdomains.

  10. Diffusive Spin Dynamics in Ferromagnetic Thin Films with a Rashba Interaction

    KAUST Repository

    Wang, Xuhui

    2012-03-13

    In a ferromagnetic metal layer, the coupled charge and spin diffusion equations are obtained in the presence of both Rashba spin-orbit interaction and magnetism. The misalignment between the magnetization and the nonequilibrium spin density induced by the Rashba field gives rise to Rashba spin torque acting on the ferromagnetic order parameter. In a general form, we find that the Rashba torque consists of both in-plane and out-of-plane components, i.e., T=T Sy×m+T Sm×(y×m). Numerical simulations on a two-dimensional nanowire consider the impact of diffusion on the Rashba torque and reveal a large enhancement to the ratio T/T S for thin wires. Our theory provides an explanation for the mechanism driving the magnetization switching in a single ferromagnet as observed in the recent experiments. © 2012 American Physical Society.

  11. Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet

    Science.gov (United States)

    Cornelissen, L. J.; Shan, J.; van Wees, B. J.

    2016-11-01

    We present a systematic study of the temperature dependence of diffusive magnon spin transport using nonlocal devices fabricated on a 210-nm yttrium iron garnet film on a gadolinium gallium garnet substrate. In our measurements, we detect spin signals arising from electrical and thermal magnon generation, and we directly extract the magnon spin diffusion length λm for temperatures from 2 to 293 K. Values of λm obtained from electrical and thermal generation agree within the experimental error with λm=9.6 ±0.9 μ m at room temperature to a minimum of λm=5.5 ±0.7 μ m at 30 K. Using a two-dimensional finite element model to fit the data obtained for electrical magnon generation we extract the magnon spin conductivity σm as a function of temperature, which is reduced from σm=3.7 ±0.3 ×105S /m at room temperature to σm=0.9 ±0.6 ×104S /m at 5 K. Finally, we observe an enhancement of the signal originating from thermally generated magnons for low temperatures where a maximum is observed around T =7 K . An explanation for this low-temperature enhancement is however still missing and requires additional investigation.

  12. Elimination of spin diffusion effects in saturation transfer experiments: application to hydrogen exchange in proteins.

    Science.gov (United States)

    Jensen, Malene Ringkjøbing; Kristensen, Søren M; Led, Jens J

    2007-03-01

    The NMR saturation transfer experiment is widely used to characterize exchange processes in proteins that take place on the ms-s timescale. However, spin diffusion effects are inherently associated with the saturation transfer experiment and may overshadow the effect of the exchange processes of interest. As shown here, the effects from spin diffusion and exchange processes can be separated by varying the field strength of the saturation pulse, thereby allowing correct exchange rates to be obtained. The method is demonstrated using the hydrogen exchange process in the protein Escherichia coli thioredoxin as an example.

  13. Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics.

    Science.gov (United States)

    Veshtort, Mikhail; Griffin, Robert G

    2011-10-07

    Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R(2)). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two (13)C nuclei and about ten (1)H nuclei from their nearest environment. Spin diffusion constants computed by this

  14. Mechanism of spin diffusion in electron spin resonance spectra of trapped electrons in aqueous glasses. Electron--Electron double resonance studies. [. gamma. -rays

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D.P.; Kevan, L.

    1977-05-19

    Electron--electron double resonance (ELDOR) has been used to test the validity of the noninteracting spin packet model for inhomogeneously broadened ESR lines. For trapped electrons in 10M NaOD/D/sub 2/O glassy ice the saturation of field-swept ELDOR spectra fits the above mentioned model in contrast to earlier work on trapped electrons in protiated matrices. In the protiated matrix spin diffusion produces significant interaction between the spin packets. The difference between the protiated and deuterated matrices suggests that nuclear relaxation is the mechanism for spin diffusion. The deuterated matrices show no structure in frequency-swept ELDOR spectra due to deuteron spin--flip transitions whereas structure due to proton spin--flips is seen in protiated matrices.

  15. Possible quantum diffusion of polaronic muons in Dy(2)Ti(2)O(7) spin ice.

    Science.gov (United States)

    Quémerais, P; McClarty, P; Moessner, R

    2012-09-21

    We interpret recent measurements of the zero field muon relaxation rate in the magnetic pyrochlore Dy(2)Ti(2)O(7) as resulting from the quantum diffusion of muons in the material. In this scenario, the plateau observed at low temperature (muons through a spatially disordered spin state and not to any magnetic fluctuations persisting at low temperature. Two further regimes either side of a maximum relaxation rate at T* = 50 K correspond to a crossover between tunneling and incoherent activated hopping motion of the muon. Our fit of the experimental data is compared with the case of muonium diffusion in KCl.

  16. Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Bruun, Georg

    2012-01-01

    Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...

  17. Ferromagnetic/superconducting bilayer structure: A model system for spin diffusion length estimation

    CERN Document Server

    Soltan, S; Habermeier, H U

    2004-01-01

    We report detailed studies on ferromagnet--superconductor bilayer structures. Epitaxial bilayer structures of half metal--colossal magnetoresistive La$_{\\mathrm{2/3}}$Ca$_{\\mathrm{1/3}}$MnO$_{\\mathrm{3}}$ (HM--CMR) and high--$T_{\\mathrm{c}}$ superconducting YBa$_{\\mathrm{2}}$Cu$_{\\mathrm{3}}$O$_{\\mathrm{7-\\delta}}$(HTSC) are grown on SrTiO$_3$ (100) single--crystalline substrates using pulsed laser deposition. Magnetization $M$(T) measurements show the coexistence of ferromagnetism and superconductivity in these structures at low temperatures. Using the HM--CMR layer as an electrode for spin polarized electrons, we discuss the role of spin polarized self injection into the HTSC layer. The experimental results are in good agreement with a presented theoretical estimation, where the spin diffusion length $\\xi_{\\mathrm {FM}}$ is found to be in the range of $\\xi_{\\mathrm{FM}} \\approx$ 10 nm.

  18. Sensitizing solid state nuclear magnetic resonance of dilute nuclei by spin-diffusion assisted polarization transfers.

    Science.gov (United States)

    Lupulescu, Adonis; Frydman, Lucio

    2011-10-01

    Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice.

  19. Fourier transform infrared spectroscopic analysis of spin-on dopant layers used in proximity rapid thermal diffusion

    Science.gov (United States)

    Romero-Borja, Fernando; Grabiec, Piotr B.; Zagozdzon-Wasik, Wanda; Wood, Lowell L.

    1994-01-01

    A new rapid thermal diffusion (proximity RTD) method, utilizing spin-on dopant (SOD) layers, was reported recently. This technique is based on an evaporation-gas phase diffusion- adsorption-surface reaction-diffusion in Si scheme. In this paper we use FTIR spectroscopy to investigate a relationship between the SOD layer structure/composition and its doping efficiency, as determined by sheet resistance (RS) measurements, for a phosphorus diffusion case.

  20. Diffusion studies on permeable nitroxyl spin probes through bilayer lipid membranes: A low frequency ESR study

    Energy Technology Data Exchange (ETDEWEB)

    Meenakumari, V.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Utsumi, Hideo; Ichikawa, Kazuhiro; Yamada, Ken-ichi [Department of Bio-functional Science, Kyushu University, Fukuoka (Japan); Hyodo, Fuminori [Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka (Japan); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2015-06-24

    Electron spin resonance (ESR) studies were carried out for permeable 2mM {sup 14}N-labeled deutrated 3 Methoxy carbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water and 1mM, 2mM, 3mM, 4mM concentration of 14N-labeled deutrated MC-PROXYL in 400mM concentration of liposomal solution by using a 300 MHz ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported for these samples. The line broadening was observed for the nitroxyl spin probe in the liposomal solution. The line broadening indicates that the high viscous nature of the liposomal solution. The partition parameter and permeability values indicate the maximum diffusion of nitroxyl spin probes in the bilayer lipid membranes at 2 mM concentration of nitroxyl radical. This study illustrates that ESR can be used to differentiate between the intra and extra- membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the spin probe concentration was optimized as 2mM in liposomal solution for ESR phantom studies/imaging, invivo and invitro experiments.

  1. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  2. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher P.

    2005-12-15

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  3. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  4. Steady motion of skyrmions and domains walls under diffusive spin torques

    KAUST Repository

    Elías, Ricardo Gabriel

    2017-03-09

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).

  5. Ballistic and diffusive current spin polarization in L1{sub o}-ordered FePt and FePd

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, Klaus M.; Baltz, Vincent; Hickey, Mark C.; Marrows, Christopher H.; Hickey, Bryan J. [E.C. Stoner Laboratory, School of Physics and Astronomy, University of Leeds, Leeds (United Kingdom); MacKenzie, Maureen; Chapman, John N. [Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Miguel, Jorge; Kuch, Wolfgang [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Berlin (Germany); Kronast, Florian [BESSY, Albert-Einstein-Strasse 15, Berlin (Germany)

    2008-07-01

    We report on the discrepancy of the current spin polarization in the ballistic and diffusive electron transport regime in L1{sub o}-ordered epitaxial FePt and FePd layers. The films studied displayed a chemical long range order parameter of 0.4spin current conductivity asymmetry based on the Levy-Zhang spin mistracking model we are able to assess the diffusive spin current polarization to be 80-90. On the other hand, to study the ballistic transport regime we have performed point-contact Andreev-reflection measurements at 4.2 K. We obtained a value for the ballistic current spin polarization of 50%.

  6. Solid-state 13C and 1H spin diffusion NMR analyses of the microfibril structure for bacterial cellulose.

    Science.gov (United States)

    Masuda, Kenji; Adachi, Masayuki; Hirai, Asako; Yamamoto, Hiroyuki; Kaji, Hironori; Horii, Fumitaka

    2003-06-01

    To obtain further information about the cause for the rather large splitting of the C4 resonance line into the downfield (C4D) and upfield (C4U) lines in CP/MAS 13C NMR spectra for native cellulose, 13C and 1H spin diffusion measurements have been conducted by using different types of bacterial cellulose samples. In 13C spin diffusion measurements, the C4D resonance line is selectively inverted by the Dante pi pulse sequence and the 13C spin diffusion is allowed to proceed from the C4D carbons to other carbons including the C4U carbons with use of the 13C4-enriched bacterial cellulose sample. The analysis based on the simple spin diffusion theory for the process experimentally observed reveals that the C4U carbons may be located at distances less than about 1 nm from the C4D carbons. In 1H spin diffusion measurements, poly(vinyl alcohol) (PVA) films in which ribbon assemblies of bacterial cellulose are dispersed are employed and the 1H spin diffusion process is examined from the water-swollen PVA continuous phase to the dispersed ribbon assemblies by the 13C detection through the 1H-13C CP technique. As a result, it is found that the C4D and C4U carbons are almost equally subjected to the 1H spin diffusion from the PVA phase, indicating that the C4U carbons are not localized in some limited area, e.g. in the surfacial region, but are distributed in the whole area in the microfibrils. These experimental results suggest that the C4U carbons may exist as structural defects probably due to conformational irregularity associated with disordered hydrogen bonding of the CH(2)OH groups in the microfibrils.

  7. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    Science.gov (United States)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  8. Effects of diffusion in magnetically inhomogeneous media on rotating frame spin-lattice relaxation

    Science.gov (United States)

    Spear, John T.; Gore, John C.

    2014-12-01

    In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues.

  9. Self-diffusion imaging by spin echo in Earth's magnetic field.

    Science.gov (United States)

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging.

  10. Coexistence of energy diffusion and local thermalization in nonequilibrium XXZ spin chains with integrability breaking.

    Science.gov (United States)

    Mendoza-Arenas, J J; Clark, S R; Jaksch, D

    2015-04-01

    In this work we analyze the simultaneous emergence of diffusive energy transport and local thermalization in a nonequilibrium one-dimensional quantum system, as a result of integrability breaking. Specifically, we discuss the local properties of the steady state induced by thermal boundary driving in a XXZ spin chain with staggered magnetic field. By means of efficient large-scale matrix product simulations of the equation of motion of the system, we calculate its steady state in the long-time limit. We start by discussing the energy transport supported by the system, finding it to be ballistic in the integrable limit and diffusive when the staggered field is finite. Subsequently, we examine the reduced density operators of neighboring sites and find that for large systems they are well approximated by local thermal states of the underlying Hamiltonian in the nonintegrable regime, even for weak staggered fields. In the integrable limit, on the other hand, this behavior is lost, and the identification of local temperatures is no longer possible. Our results agree with the intuitive connection between energy diffusion and thermalization.

  11. Enhanced biosynthetically directed fractional carbon-13 enrichment of proteins for backbone NMR assignments.

    Science.gov (United States)

    Wenrich, Broc R; Sonstrom, Reilly E; Gupta, Riju A; Rovnyak, David

    2015-11-01

    Routes to carbon-13 enrichment of bacterially expressed proteins include achieving uniform or positionally selective (e.g. ILV-Me, or (13)C', etc.) enrichment. We consider the potential for biosynthetically directed fractional enrichment (e.g. carbon-13 incorporation in the protein less than 100%) for performing routine n-(D)dimensional NMR spectroscopy of proteins. First, we demonstrate an approach to fractional isotope addition where the initial growth media containing natural abundance glucose is replenished at induction with a small amount (e.g. 10%(w/w)u-(13)C-glucose) of enriched nutrient. The approach considered here is to add 10% (e.g. 200mg for a 2g/L culture) u-(13)C-glucose at the induction time (OD600=0.8), resulting in a protein with enhanced (13)C incorporation that gives almost the same NMR signal levels as an exact 20% (13)C sample. Second, whereas fractional enrichment is used for obtaining stereospecific methyl assignments, we find that (13)C incorporation levels no greater than 20%(w/w) yield (13)C and (13)C-(13)C spin pair incorporation sufficient to conduct typical 3D-bioNMR backbone experiments on moderate instrumentation (600 MHz, RT probe). Typical 3D-bioNMR experiments of a fractionally enriched protein yield expected backbone connectivities, and did not show amino acid biases in this work, with one exception. When adding 10% u-(13)C glucose to expression media at induction, there is poor preservation of (13)Cα-(13)Cβ spin pairs in the amino acids ILV, leading to the absence of Cβ signals in HNCACB spectra for ILV, a potentially useful editing effect. Enhanced fractional carbon-13 enrichment provides lower-cost routes to high throughput protein NMR studies, and makes modern protein NMR more cost-accessible.

  12. Characterization of Al2O3-Supported Manganese Oxides by Electron Spin Resonance and Diffuse Reflectance Spectroscopy

    NARCIS (Netherlands)

    Kijlstra, W.S.; Poels, E.K.; Bliek, A.; Weckhuysen, B.M.; Schoonheydt, R.A.

    2001-01-01

    Alumina-supported manganese oxides, used as catalysts for the selective catalytic reduction of NO, were characterized by combined electron spin resonance and diffuse reflectance spectroscopies. Upon impregnation of the acetate precursor solution, the [Mn(H2O)6]^2+ complex interacts strongly with sur

  13. Combined Diffusion Tensor Imaging and Arterial Spin Labeling as Markers of Early Parkinson’s disease

    Science.gov (United States)

    Wei, Xiaobo; Yan, Ronghua; Chen, Zhaoyu; Weng, Ruihui; Liu, Xu; Gao, Huimin; Xu, Xiaofeng; Kang, Zhuang; Liu, Zhexing; Guo, Yan; Liu, Zhenhua; Larsen, Jan Petter; Wang, Jin; Tang, Beisha; Hallett, Mark; Wang, Qing

    2016-01-01

    This study aimed to identify a PD-specific MRI pattern using combined diffusion tensor imaging (DTI) and arterial spin labeling (ASL) to discriminate patients with early PD from healthy subjects and evaluate disease status. Twenty-one early and 22 mid-late PD patients, and 22 healthy, age/gender-matched controls underwent 3-T MRI with apparent diffusion coefficient (ADC), fractional anisotropy (FA), fiber number (FN) and cerebral blood flow (CBF) measurements. We found that compared with healthy subjects, there was a profound reduction in FN passing through the SN in PD. FA in the SN and CBF in the caudate nucleus were inversely correlated with motor dysfunction. A negative correlation was observed between FA in the hippocampus (Hip) and the NMSS-Mood score, whereas CBF in the Hip and the prefrontal cortex(PFC) correlated with declined cognition. Stratified five-fold cross-validation identified FA in the SN(FA-SNAv), CBF in the PFC(CBF-PFCAv) and FA in the parietal white matter(FA-PWMAv), and the combination of these measurements offered relatively high accuracy (AUC 0.975, 90% sensitivity and 100% specificity) in distinguishing those with early PD from healthy subjects. We demonstrate that the decreased FNs through SN in combination with changes in FA-SNAv, CBF-PFCAv and FA-PWMAv values might serve as potential markers of early-stage PD. PMID:27646647

  14. Combined Diffusion Tensor Imaging and Arterial Spin Labeling as Markers of Early Parkinson's disease.

    Science.gov (United States)

    Wei, Xiaobo; Yan, Ronghua; Chen, Zhaoyu; Weng, Ruihui; Liu, Xu; Gao, Huimin; Xu, Xiaofeng; Kang, Zhuang; Liu, Zhexing; Guo, Yan; Liu, Zhenhua; Larsen, Jan Petter; Wang, Jin; Tang, Beisha; Hallett, Mark; Wang, Qing

    2016-09-20

    This study aimed to identify a PD-specific MRI pattern using combined diffusion tensor imaging (DTI) and arterial spin labeling (ASL) to discriminate patients with early PD from healthy subjects and evaluate disease status. Twenty-one early and 22 mid-late PD patients, and 22 healthy, age/gender-matched controls underwent 3-T MRI with apparent diffusion coefficient (ADC), fractional anisotropy (FA), fiber number (FN) and cerebral blood flow (CBF) measurements. We found that compared with healthy subjects, there was a profound reduction in FN passing through the SN in PD. FA in the SN and CBF in the caudate nucleus were inversely correlated with motor dysfunction. A negative correlation was observed between FA in the hippocampus (Hip) and the NMSS-Mood score, whereas CBF in the Hip and the prefrontal cortex(PFC) correlated with declined cognition. Stratified five-fold cross-validation identified FA in the SN(FA-SNAv), CBF in the PFC(CBF-PFCAv) and FA in the parietal white matter(FA-PWMAv), and the combination of these measurements offered relatively high accuracy (AUC 0.975, 90% sensitivity and 100% specificity) in distinguishing those with early PD from healthy subjects. We demonstrate that the decreased FNs through SN in combination with changes in FA-SNAv, CBF-PFCAv and FA-PWMAv values might serve as potential markers of early-stage PD.

  15. Ultra-diffuse galaxies: the high-spin tail of the abundant dwarf galaxy population

    CERN Document Server

    Amorisco, N C

    2016-01-01

    Recent observations have revealed the existence of an abundant population of faint, low surface brightness (SB) galaxies, which appear to be numerous and ubiquitous in nearby galaxy clusters, including the Virgo, Coma and Fornax clusters. With median stellar masses of dwarf galaxies, these ultra-diffuse galaxies (UDGs) have unexpectedly large sizes, corresponding to a mean SB of $24\\lesssim\\langle\\mu_e\\rangle_r\\ {\\rm mag}^{-1} {\\rm arcsec}^2\\lesssim27$ within the effective radius. We show that the UDG population represents the tail of galaxies formed in dwarf-sized haloes with higher-than-average angular momentum at collapse. By adopting the standard model of disk formation -- in which the size of galaxies is set by the spin of the halo -- we recover both the abundance of UDGs as a function of the host cluster mass and the distribution of sizes within the UDG population. According to this model, UDGs are not failed $L_*$ galaxies, but genuine dwarfs, and their low SB is not uniquely connected to the harsh clu...

  16. Coupling of dynamical micromagnetism and a stationary spin drift-diffusion equation: A step towards a fully self-consistent spintronics framework

    Energy Technology Data Exchange (ETDEWEB)

    Ruggeri, Michele, E-mail: michele.ruggeri@tuwien.ac.at [Institute for Analysis and Scientific Computing, TU Wien, Vienna (Austria); Abert, Claas [Christian Doppler Laboratory of Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, TU Wien, Vienna (Austria); Hrkac, Gino [College of Engineering, Mathematics and Physical Sciences, University of Exeter (United Kingdom); Institute for Analysis and Scientific Computing, TU Wien, Vienna (Austria); Suess, Dieter [Christian Doppler Laboratory of Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, TU Wien, Vienna (Austria); Praetorius, Dirk [Institute for Analysis and Scientific Computing, TU Wien, Vienna (Austria)

    2016-04-01

    We consider the coupling of the Landau–Lifshitz–Gilbert equation with a quasilinear diffusion equation to describe the interplay of magnetization and spin accumulation in magnetic-nonmagnetic multilayer structures. For this problem, we propose and analyze a convergent finite element integrator, where, in contrast to prior work, we consider the stationary limit for the spin diffusion. Numerical experiments underline that the new approach is more effective, since it leads to the same experimental results as for the model with time-dependent spin diffusion, but allows for larger time-steps of the numerical integrator.

  17. Small molecule mixture analysis by heteronuclear NMR under spin diffusion conditions in the viscous DMSO-water solvent.

    Science.gov (United States)

    Lameiras, Pedro; Patis, Solène; Jakhlal, Jouda; Castex, Stéphanie; Clivio, Pascale; Nuzillard, Jean-Marc

    2017-02-13

    Spin diffusion in NMR occurs for small and medium-sized molecules when their tumbling rate reduces in solution so that magnetization exchange by longitudinal cross relaxation becomes highly efficient. Composite DMSO-water viscous solvents were used for the first time to access the individual NMR spectra of mixture components in spin diffusion conditions. The easy handling and high dissolution power of [D6]DMSO/H2O offers a wide range of potential applications for polar and apolar mixture analysis. In addition to 2D 1H-1H NOESY and 1H-13C HSQC-NOESY, 1H-15N HSQC-NOESY, 1D and 2D 1H-19F HOESY experiments were set up to offer new ways to individualize molecules within a mixture. This article reports the analysis of a polar mixture of four dipeptides dissolved in [D6]DMSO/H2O (7:3, v/v) and of a low polarity fluorinated dinucleotide dissolved in [D6]DMSO/H2O (8:2, v/v) by means of spin diffusion in NOESY, HOESY, and HSQC-NOESY experiments.

  18. Diffusion-weighted imaging in the prostate: an apparent diffusion coefficient comparison of half-Fourier acquisition single-shot turbo spin-echo and echo planar imaging.

    Science.gov (United States)

    Babourina-Brooks, Ben; Cowin, Gary J; Wang, Deming

    2012-02-01

    Prostate cancer detection using diffusion-weighted imaging is highly affected by the accuracy of the apparent diffusion coefficient (ADC) values in an image. Echo planar imaging (EPI) is a fast sequence commonly used for diffusion imaging but has inherent magnetic susceptibility and chemical shift artefacts associated. A diffusion sequence that is less affected by these artefacts is therefore advantageous. The half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence was chosen. The diffusion sequences were compared in image quality, repeatability of the ADC value and the effect on the ADC value with varied b values. Eight volunteers underwent three scans of each sequence, on a 1.5-T Siemens system, using b values of 0, 150, 300, 450, 600, 750, 900 and 1000 s/mm(2). ADC maps were created to address the reproducibility of the ADC value when using two b values compared to eight b values. The ADC value using all b values with the HASTE sequence gave the best performance in all tested categories. Both sequences gave significantly different ADC mean values for two b values compared to when using eight b values (Perror is present when using two b values. HASTE was shown to be an improvement over EPI in terms of repeatability, signal variation within a region of interest and standard deviation over the volunteer set. The improved accuracy of the ADC value in the HASTE sequence makes it potentially a more sensitive tumor detection technique.

  19. Spatially confined electron spin diffusion in quasi-one-dimensional organic conductors

    CERN Document Server

    Wokrina, T

    2002-01-01

    After an introduction to the substances and some important properties of them the measurement principle, the time-resolved electron spin resonance is presented. Then the foundations and the technical realization of an image-shaping procedure on the base of electron spin tomography are described. The measurement of the spin dynamics for the three radical-ion salts form the main part and the conclusion of this thesis.

  20. Measurement of interlayer spin diffusion in the organic conductor {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]X, X=Cl, Br

    Energy Technology Data Exchange (ETDEWEB)

    Antal, Agnes; Feher, Titusz [Institute of Physics, Budapest University of Technology and Economics, and Condensed Matter Research Group of the Hungarian Academy of Sciences, P.O.Box 91, H-1521 Budapest (Hungary); Nafradi, Balint [Institute of Physics, Budapest University of Technology and Economics, and Condensed Matter Research Group of the Hungarian Academy of Sciences, P.O.Box 91, H-1521 Budapest (Hungary); Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Gaal, Richard; Forro, Laszlo [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Janossy, Andras, E-mail: atj@szfki.h [Institute of Physics, Budapest University of Technology and Economics, and Condensed Matter Research Group of the Hungarian Academy of Sciences, P.O.Box 91, H-1521 Budapest (Hungary)

    2010-06-01

    In organic conductors the overlap integral between layers is small, in-plane momentum scattering is rapid and transport perpendicular to the layers is expected to be blocked. We present a high frequency conduction electron spin resonance (CESR) study in the layered organic metals {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]X, X=Cl, Br, which verifies that the inter-layer spin hopping is effectively blocked. The method relies on resolving the CESR lines of adjacent layers in which the orientation of the g-factor tensors differs. We find that at ambient pressure and in the metallic phase the electron spin diffusion is two dimensional in both the X=Cl and Br compounds, i.e. electrons diffuse longer than the spin lifetime within a single molecular layer without inter-layer hopping. Application of pressure at 250 K increases rapidly the inter-layer hopping rate of spins.

  1. Hydrogenic spin quantum computing in silicon, and, Damping and diffusion in a chain-boson model

    Science.gov (United States)

    Skinner, Andrew J.

    2006-12-01

    We propose an architecture for quantum computing with spin-pair encoded qubits in silicon. Electron-nuclear spin-pairs are controlled by a DC magnetic field and electrode-switched on and off hyperfine interaction. This digital processing is insensitive to tuning errors and easy to model. Electron shuttling between donors enables multi-qubit logic. These hydrogenic spin qubits are transferable to nuclear spin-pairs, which have long coherence times, and electron spin-pairs, which are ideally suited for measurement and initialization. The architecture is scaleable to highly parallel operation. We also study the open-system dynamics of a few two-level systems coupled together and embedded in a crystal lattice. In one case, superconducting quantum interference devices, or SQUIDs, exchange their angular momenta with the lattice. Some decaying oscillations can emerge in a lower energy subspace with a longer coherence time. In another case, the exchange coupling between spins-1/2 is strained by lattice distortions. At a critical point energy level crossing, four well-spaced spins dissipate collectively. This is partially true also for the two- or three-SQUID-chain. These collective couplings can improve coherence times.

  2. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru; Lukzen, Nikita N. [International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya St. 3a, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090 (Russian Federation); Sadovsky, Vladimir M. [Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk 660036 (Russian Federation)

    2015-08-28

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting

  3. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    Science.gov (United States)

    Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.

    2015-08-01

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting

  4. Selective carbon 13 enrichment of side chain carbons of ginkgo lignin traced by carbon 13 nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y. (Nagoya Univ. (Japan). Faculty of Agriculture); Robert, D.R. (CEA Centre d' Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee); Terashima, N. (Forest Products Lab., Madison, WI (United States))

    Although carbon 13 nuclear magnetic resonance spectroscopy ([sup 13]C-NMR) is widely used in lignin structural studies, serious difficulties are encountered in the assignments of [sup 13]C signals because of their extensive overlaps resulting from the complex structure of lignin and of delicate detection of minor structures. To overcome these difficulties, specifically [sup 13]C-enriched precursors of lignin biosynthesis, coniferin-[side chain-[beta]-[sup 13]C] and coniferin-[side chain-[gamma]-[sup 13]C], were administered to growing stems of ginkgo (Ginkgo biloba). The NMR analysis of the milled wood lignins isolated from the newly formed xylem showed that selective enrichment of specific carbons of protolignin in the cell wall was achieved without seriously disturbing the lignin biosynthesis. The presence of saturated methylene side chains in the protolignin was shown for the first time by this selective enrichment technique in combination with NMR analysis. (authors). 23 refs., 3 figs., 1 tab.

  5. Shallow and diffuse spin-orbit potential for proton elastic scattering from neutron-rich helium isotopes at 71 MeV/nucleon

    CERN Document Server

    Sakaguchi, S; Aoi, N; Ichikawa, Y; Itoh, K; Itoh, M; Kawabata, T; Kawahara, T; Kondo, Y; Kuboki, H; Nakamura, T; Nakao, T; Nakayama, Y; Sakai, H; Sasamoto, Y; Sekiguchi, K; Shimamura, T; Shimizu, Y; Wakui, T

    2013-01-01

    Vector analyzing powers for proton elastic scattering from 8He at 71 MeV/nucleon have been measured using a solid polarized proton target operated in a low magnetic field of 0.1 T. The spin-orbit potential obtained from a phenomenological optical model analysis is found to be significantly shallower and more diffuse than the global systematics of stable nuclei, which is an indication that the spin-orbit potential is modified for scattering involving neutron-rich nuclei. A close similarity between the matter radius and the root-mean-square radius of the spin-orbit potential is also identified.

  6. A Model of Charge Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects

    CERN Document Server

    Lee, Chee Kong; Willard, Adam P

    2016-01-01

    In this letter we explore how the microscopic dynamics of charge transfer (CT) excitons are influenced by the presence of an external magnetic field in disordered molecular semiconductors. This influence is driven by the dynamic interplay between the spin and spatial degrees of freedom of the electron-hole pair. To account for this interplay we have developed a numerical framework that combines a traditional model of quantum spin dynamics with a coarse-grained model of stochastic charge transport. This combination provides a general and efficient methodology for simulating the effects of magnetic field on CT state dynamics, therefore providing a basis for revealing the microscopic origin of experimentally observed magnetic field effects. We demonstrate that simulations carried out on our model are capable of reproducing experimental results as well as generating theoretical predictions related to the efficiency of organic electronic materials.

  7. Diffusion studies on permeable nitroxyl spin probe through lipid bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Benial, A. Milton Franklin; Meenakumari, V. [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019 (India); Ichikawa, Kazuhiro; Yamada, Ken-ichi; Utsumi, Hideo, E-mail: hideo.utsumi.278@m.kyushu-u.ac.jp [Department of Bio-functional Science, Kyushu University, Fukuoka (Japan); Hyodo, Fuminori [Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka (Japan); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625 019 (India)

    2014-04-24

    Electron spin resonance (ESR) studies were carried out for 2mM {sup 14}N labeled deutrated permeable 3- methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water, 1 mM, 2 mM, 3 mM and 4 mM concentration of MC-PROXYL in 300 mM concentration of liposomal solution by using a L-band ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported. The partition parameter and permeability values indicate the maximum spin distribution in the lipid phase at 2 mM concentration. This study illustrates that ESR can be used to differentiate between the intra and extra-membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the radical concentration was optimized as 2 mM in liposomal solution for ESR phantom studies and experiments.

  8. Geometric Ergodicity of a Hypoelliptic Diffusion Modelling The Melt-Spinning Process of Nonwoven Materials

    CERN Document Server

    Kolb, Martin; Wubker, Achim

    2011-01-01

    We analyze the large time behavior of a stochastic model for the lay-down of fibers on a conveyor belt in the production process of nonwovens. It is shown, that under weak conditions this degenerate diffusion process is strong mixing, confirming a conjecture of Grothaus and Klar. Moreover, under some additional assumptions even geometric ergodicity is established using probabilistic tools -- described in the book of Meyn and Tweedie -- in combination with methods from stochastic analysis.

  9. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  10. Influence of Metallic Molar Ratio on the Electron Spin Resonance and Thermal Diffusivity of Zn–Al Layered Double Hydroxide

    Directory of Open Access Journals (Sweden)

    Abdullah Ahmed Ali Ahmed

    2013-01-01

    Full Text Available The coprecipitation method was used to prepare Zn–Al layered double hydroxide (Zn–Al–NO3-LDH at pH 7.5 and different Zn2+/Al3+ molar ratios of 2, 3, 4, 5, and 6. The elemental, structural, and textural properties of prepared samples were studied. The crystallinity of prepared LDH nanostructure decreases as Zn2+/Al3+ molar ratio increases. The electron spin resonance (ESR spectroscopy of different LDH samples showed new ESR spectra. These spectra were produced due to the presence of different phases with formed LDH such as ZnO phase and ZnAl2O4 spinel. At low Zn2+/Al3+ molar ratio, the ESR signals were produced from the presence of free nitrate anions in the LDH interlayer. Above Zn2+/Al3+ = 2, the ESR signals were attributed to the existence of ZnO phase and ZnAl2O4 spinel in the samples. Because the nuclear magnetic moment of 67Zn is lower than 27Al, the increasing in Zn2+/Al3+ molar ratio causes a reduction of the magnetic activity of ZnAl2O4 spinel. Thermal diffusivity versus in situ temperature showed nonlinear relation for different samples due to the changing in the water content of LDH as temperature increases. The dc conductivity of samples decreased as Zn2+/Al3+ molar ratio.

  11. Preparation and physico-chemical study of nitroxide radicals. Isotopic marking with carbon 13 and deuterium; Preparations et etudes physico-chimiques de radicaux nitroxydes. Marquage isotopique au carbone 13 et au deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Chapelet-Letourneux, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    N-t-butyl-N-phenyl nitroxide is obtained by: a) action of t-butyl-magnesium chloride on nitrobenzene, or of phenyl-magnesium bromide on nitro-t-butane, b) oxidation of N-t-butyl-N-phenylhydroxylamine, c) oxidation of N-t-butylaniline. In these latter two cases, it has been possible to isolate the pure radical and to study it using UV, IR and EPR. It decomposes to give N-t-butylaniline and the N-oxide of N-t-butyl-p-quinon-imine. The action of peracids such as p-nitro-perbenzoic or m-chloro-perbenzoic acids on amines or hydroxylamines leads to the formation of stable or unstable nitroxide radicals easily observable by EPR. Finally, with a view to obtaining definite values for the coupling between the free electron of a nitroxide and carbon 13, the preparation of such radicals marked with {sup 13}C in the {alpha} or {beta} position of the nitroxide function has been carried out. The coupling with an {alpha} carbon 13 is negative and does not appear to vary with the spin density on the nitrogen. The interaction with the p nuclei of the nitrogen depends on the nature of the substituents: the two benzyl protons have a hyperfine splitting a{sub H} which is always less than that of the ethyl. On the other hand, the {sup 13}C coupling is greater in the first case. The usually adopted conformations for the compounds having the carbonyl group cannot account for the observed values of the {beta} couplings. (author) [French] Le N-t-butyl-N-phenyl nitroxyde est obtenu par: a) action du chlorure de t-butylmagnesium sur le nitrobenzene, ou du bromure de phenylmagnesium sur le nitro-t-butane, b) oxydation de la N-t-butyl-N-phenylhydroxylamine, c) oxydation de la N-t-butylaniline. Dans ces deux derniers cas, le radical a pu etre isole pur et etudie par UV, IR et RPE. Il se decompose en N-t-butylaniline et N-oxyde de N-t-butyl-p-quinonimine. L'action de peracides (p-nitroperbenzoique ou m-chloroperbenzoique) sur des amines ou des hydroxylamines conduit a des radicaux nitroxydes

  12. Spin concentration grating and electron spin ambipolar diffusion in intrinsic GaAs multiple quantum wells%自旋密度光栅和本征 GaAs 量子阱中的电子自旋双极扩散

    Institute of Scientific and Technical Information of China (English)

    余华梁; 陈曦矅; 狄俊安

    2013-01-01

    为研究空穴对自旋极化电子扩散的影响,提出用自旋密度光栅方法来观察电子自旋扩散过程。由飞秒激光在本征GaAs多量子阱中激发产生瞬态自旋光栅和瞬态自旋密度光栅,并用于研究电子自旋扩散和电子自旋双极扩散。实验测得自旋双极扩散系数Das =25.4 cm 2/s,低于自旋扩散系数Ds =113.0 cm 2/s,表明自旋密度光栅中电子自旋扩散受到空穴的显著影响。%In order to research the effect of holes on the spin electron diffusion , a method of resonant spin am-plication called“Spin Concentration Grating(SCG)” is adopt to observe the process of electron spin diffusion . Transient spin grating and spin concentration grating excited by femtosecond laser beams are used to investigate electron spin diffusion and “electron spin ambipolar diffusion” in intrinsic GaAs multiple quantum wells .The measured coefficient of “electron spin ambipolar diffusion” Das =25.4 cm 2? s-1 is lower than that of electron spin diffusion Ds=113.0 cm 2? s-1 , which indicates that the influence of holes on electron spin diffusion in spin concentration grating is notable .

  13. Synthesis of carbon-13 and carbon-14 labelled triazolo-1,4-benzodiazepines

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W.R.; Hawi, A.A.; Digenis, G.A. (Kentucky Univ., Lexington, KY (USA). College of Pharmacy)

    1989-04-01

    An efficient two-step synthesis of 8-chloro-1-methyl-6-phenyl-(3H)-S-triazolo-(4,3-a)(1,4)-benzodiazepine (alprazolam) and 8-chloro-6-(2-chlorophenyl)-1-methyl-(3H)-S-triazolo-(4,3-a)(1,4)-benzodiazepine (triazolam) labelled with carbon-13 or carbon-14 from their corresponding hydrazines is reported. The method involved acylation of the appropriate hydrazine using the mixed carbonic anhydride of sodium ({sup 13}C) or ({sup 14}C) acetate and isobutylchloroformate under mild conditions. Thermolysis of the resulting acetylhydrazides gave the target carbon-14 and carbon-13 labelled compounds in good yields. (author).

  14. Spin-dependent scattering and the spin polarization of a diffusive current in partly disordered L1{sub 0} epitaxial FePd

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K M; Hickey, M C; Baltz, V; Hickey, B J; Marrows, C H [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)], E-mail: k.seemann@fz-juelich.de, E-mail: c.h.marrows@leeds.ac.uk

    2010-03-15

    We report magnetic domain wall (DW) resistance in epitaxial films of FePd. When equal numbers of Fe and Pd atoms are present, this material forms an ordered structure with alternating crystal planes of Fe and Pd. We prepared films enriched with Pd to varying degrees, gradually degrading this structure. As might be expected, this increased the electrical resistivity of the films by introducing extra defects that can scatter electrons. However, unexpectedly, the additional resistance arising from the {approx}10 nm thick DWs rose as a proportion of the overall resistivity, roughly doubling when halving the degree of chemical ordering-as determined from x-ray diffraction measurements-within the films. These data can be used to infer a rise in the spin polarization of the current flowing in the layers when extra Pd atoms are introduced. On the other hand, a separate measurement of spin polarization using a superconducting point contact technique that is insensitive to electron scattering revealed no changes as extra Pd was introduced. We conclude that Pd atoms scatter electrons of one spin far more strongly than the other, suggesting a possible means of producing highly spin-polarized currents for use in spintronic devices.

  15. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Katase, S.; Fujikawa, A.; Hachiya, J. [Department of Radiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, 181-8611, Tokyo (Japan); Kanazawa, H. [Toshiba Corporation, 1-1-1 Shibaura, Minato-ku, 105-8001, Tokyo (Japan); Yodo, K. [Toshiba Medical Systems, 3-26-5 Hongo, Bunkyo-ku, 113-8456, Tokyo (Japan)

    2003-02-01

    We have implemented a new diffusion-weighted MRI (DWI) sequence based on the single-shot fast spin-echo technique. We hypothesised that this would add information to conventional MRI for diagnosis of lesions of the cervical spinal cord. DWI was performed using a technique in which echo collection after the application of motion-probing gradients was done in the same manner as in the single-shot fast spin-echo technique. We first imaged six healthy volunteers to demonstrate the cervical spinal cord using the sequence. Then we applied the sequence to 12 patients with cervical myelomalacia due to chronic cord compression. The spinal cord was well seen in all subjects without the distortion associated with echo-planar DWI. In the patients, lesions appeared as areas of low- or isointense signal on DWI. Calculated apparent diffusion coefficients of the lesions (3.30{+-}0.38 x 10{sup -3} mm{sup 2}/s) were significantly higher than those of normal volunteers (2.26{+-}0.08 x 10{sup -3} mm{sup 2}/s). Increased diffusion in areas of cervical myelomalacia, suggesting irreversible damage, can be detected using this technique. (orig.)

  16. Spin accumulation in the extrinsic spin Hall effect

    Science.gov (United States)

    Tse, Wang-Kong; Fabian, J.; Žutić, I.; Das Sarma, S.

    2005-12-01

    The drift-diffusion formalism for spin-polarized carrier transport in semiconductors is generalized to include spin-orbit coupling. The theory is applied to treat the extrinsic spin Hall effect using realistic boundary conditions. It is shown that carrier and spin-diffusion lengths are modified by the presence of spin-orbit coupling and that spin accumulation due to the extrinsic spin Hall effect is strongly and qualitatively influenced by boundary conditions. Analytical formulas for the spin-dependent carrier recombination rates and inhomogeneous spin densities and currents are presented.

  17. HIGH-SPIN STATES IN EU-148

    NARCIS (Netherlands)

    JONGMAN, [No Value; BACELAR, JCS; BALANDA, A; NOORMAN, RF; STEENBERGEN, T; DEVOIGT, MJA; NYBERG, J; SLETTEN, G; DIONISIO, J; VIEU, C; LAGRANGE, JM; PAUTRAT, M; Urban, W

    1995-01-01

    High-spin states in the odd-odd nucleus Eu-148, populated by a carbon-13 induced reaction on a lanthanum target, were investigated with several different tools of in-beam nuclear spectroscopy. The low-energy levels show collective excitations, interpreted as 3- octupole-phonon couplings to multi-par

  18. Mixture diffusion of adsorbed organic compounds in metal-organic frameworks as studied by magic-angle spinning pulsed-field gradient nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gratz, Marcel; Hertel, Stefan; Wehring, Markus; Stallmach, Frank [Faculty of Physics and Earth Science, University of Leipzig, Linnestrasse 5, 04103 Leipzig (Germany); Galvosas, Petrik, E-mail: petrik.galvosas@vuw.ac.nz [MacDiarmid Institute for Advanced Materials and Nanotechnology, SCPS, Victoria University of Wellington, 6012 Wellington (New Zealand)

    2011-04-15

    The magic-angle spinning (MAS) and pulsed-field gradient nuclear magnetic resonance (PFG NMR) techniques have been combined using a commercially available microimaging system providing a gradient in the magic-angle direction of up to {+-}2.6 T m{sup -1}, together with a narrow bore MAS probe. By narrowing the spectral linewidths, detection of the single and mixed molecular species adsorbed in porous material and their respective mobilities becomes possible. Here, we report on protocols for MAS PFG NMR measurements, new methods for the indispensable sample alignment along the MAS rotational axis and gradient direction and first experimental results of diffusion studies on n-hexane and benzene adsorbed in the metal-organic framework MOF-5.

  19. A Low-Temperature Crossover in Water Dynamics in an Aqueous LiCl Solution: Diffusion Probed by Neutron Spin-Echo and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Mamontov, Eugene [ORNL; Faraone, Antonio [National Institute of Standards and Technology (NIST); Hagaman, Edward {Ed} W [ORNL; Han, Kee Sung [ORNL; Fratini, E [University of Florence

    2010-01-01

    Aqueous solutions of lithium chloride are an excellent model system for studying the dynamics of water molecules down to low temperatures without freezing. The apparent dynamic crossover observed in an aqueous solution of LiCl at about 220 to 225 K [Mamontov, JPCB 2009, 113, 14073] is located practically at the same temperature as the crossover found for pure water confined in small hydrophilic pores. This finding suggests a strong similarity of water behavior in these two types of systems. At the same time, studies of solutions allow more effective explorations of the long-range diffusion dynamics, because the water molecules are not confined inside an impenetrable matrix. In contrast to the earlier incoherent quasielastic neutron scattering results obtained for the scattering momentum transfers of 0.3 {angstrom}{sup -1} {le} Q {le} 0.9 {angstrom}{sup -1}, our present incoherent neutron spin-echo measurements at a lower Q of 0.1 {angstrom}{sup -1} exhibit no apparent crossover in the relaxation times down to 200 K. At the same time, our present nuclear magnetic resonance measurements of the diffusion coefficients clearly show a deviation at the lower temperatures from the non-Arrhenius law obtained at the higher temperatures. Our results are consistent with a scenario in which more than one relaxational component may exist below the temperature of the dynamic crossover in water.

  20. MR imaging findings of diffuse axonal injury: comparison of T2-weighted gradient images and T1- and T2-weighted spin-echo images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seo Young; Lee, Ghi Jai; Kim, Jeong Seok; Shim, Jae Chan; Kim, Ho Kyun [Inje Univ. College of Medicine, Seoul (Korea, Republic of)

    1998-10-01

    To compare T2-weighted images with spin-echo T1- and turbo spin-echo (TSE) T2-weighted images in patients with diffuse axonal injury(DAI). Using a 1.0T MR unit, SE T1-, TSE T2-, and and FLASH T2-weighted images were obtained from 69 patients with a history of head trauma. In 18MR images of 17 patients with imaging findings of DAI, T2-weighted images were retrospectively compared with SE T1- and TSE T2-weighted images. The interval between trauma and MR scan varied from 5 days to 24(mean, 11) months. Focusing on the number of lesions, and their location and signal intensity, as weel as associated findings, three images were simultaueously evaluated. In 18 MR images of 17 patients with MR imaging findings of DAI, 21 lesions were detected on T1-weighted images, 28 on TSE T2-weighted images, and 70 on T2-weighted images;the last of these revealed all lesions detected on the other two. Most lesions were hypointense on T1-weighted images(17/21), hyperintense on TSE T2-weighted (21/28), and hypointense on T2-weighted (63/70). Common locations for DAI were the frontal lobe (n=3D35) and corpus callosum (n=3D22). Associated brain injuries were cortical contusion (n=3D5), brainstem injury (n=3D3), deep gray matter injury (n=3D2), and subdural hematoma(n=3D1). In patients with DAI. T2-weighted images can detect more lesions and associated petechial hemorrhage than can TSE T2-weighted images. This modality is thus useful for the evaluation of patients with head trauma.=20.

  1. Toward microtesla MRI of hyperpolarized carbon-13 for real-time metabolic imaging

    CERN Document Server

    Zotev, V S; Savukov, I M; Matlashov, A N; Gómez, J J; Espy, M A

    2009-01-01

    Hyperpolarization of carbon-13 is a promising technique that has enabled MR angiography, perfusion mapping, and real-time metabolic imaging of C-13 labeled organic substances with unprecedented signal-to-noise levels. Because the hyperpolarization is performed outside an MRI scanner (using a special NMR-style hyperpolarizer), high magnetic fields of conventional MRI systems offer little advantage in terms of achievable C-13 polarization. Here we propose an ultimate low-field MRI scanner for imaging hyperpolarized C-13. It uses only microtesla-range magnetic fields and employs SQUID (superconducting quantum interference device) sensors for broadband reception of MRI signals. We present the first images acquired by SQUID-based microtesla MRI with dynamic nuclear polarization (Overhauser enhancement). We also report the first NMR spectra of C-13 at microtesla fields, including spectra of metabolically relevant sodium pyruvate, bicarbonate, and alanine. Our results demonstrate feasibility and potential of the pro...

  2. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hua-Feng [302 Hospital of Chinese People' s Liberation Army, Department of Radiology, Beijing (China); Chen, Zhi-Ye; Wang, Yu-Lin; Wang, Yan; Ma, Lin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); Lou, Xin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); University of California, Department of Neurology, Los Angeles, CA (United States); Gui, Qiu-Ping [People' s Liberation Army General Hospital, Department of Pathology, Beijing (China); Shi, Kai-Ning; Zhou, Zhen-Yu; Zheng, Dan-Dan [General Electric Healthcare (China) Co., Ltd., Beijing; Wang, Danny J.J. [University of California, Department of Neurology, Los Angeles, CA (United States)

    2015-12-15

    We hypothesized that three-dimensional pseudocontinuous arterial spin labelling (pCASL) may have similar efficacy in astrocytic tumour grading as dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI), and the grading accuracy may be further improved when combined with apparent diffusion coefficient (ADC) values. Forty-three patients with astrocytic tumours were studied using diffusion weighted imaging (DWI), pCASL, and DSC-PWI. Histograms of ADC and normalized tumour cerebral blood flow values (nCBF on pCASL and nrCBF on DSC-PWI) were measured and analyzed. The mean 10 % ADC value was the DWI parameter that provided the best differentiation between low-grade astrocytoma (LGA) and high-grade astrocytoma (HGA). The nCBF and nrCBF (1.810 ± 0.979 and 2.070 ± 1.048) in LGA were significantly lower than those (4.505 ± 2.270 and 5.922 ± 2.630) in HGA. For differentiation between LGA and HGA, the cutoff values of 0.764 x 10{sup -3} mm{sup 2}/s for mean 10 % ADC, 2.374 for nCBF, and 3.464 for nrCBF provided the optimal accuracy (74.4 %, 86.1 %, and 88.6 %, respectively). Combining the ADC values with nCBF or nrCBF could further improve the grading accuracy to 97.7 % or 95.3 %, respectively. pCASL is an alternative to DSC-PWI for astrocytic tumour grading. The combination of DWI and contrast-free pCASL offers a valuable choice in patients with risk factors. (orig.)

  3. The value of single-shot turbo spin-echo diffusion-weighted MR imaging in the detection of middle ear cholesteatoma

    Energy Technology Data Exchange (ETDEWEB)

    De Foer, Bert; Bernaerts, Anja; Maes, Joachim; Deckers, Filip; Pouillon, Marc [A.Z. Sint-Augustinus Hospital, Department of Radiology, Antwerp (Belgium); Vercruysse, Jean-Philippe; Somers, Thomas; Offeciers, Erwin [A.Z. Sint-Augustinus Hospital, University Department of ENT, Antwerp (Belgium); Michiels, Johan [Siemens Medical Solutions, Anderlecht (Belgium); Casselman, Jan W. [A.Z. Sint-Augustinus Hospital, Department of Radiology, Antwerp (Belgium); A.Z. Sint-Jan AV, Department of Radiology, Bruges (Belgium)

    2007-10-15

    Single-shot (SS) turbo spin-echo (TSE) diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non echo-planar imaging (EPI) technique recently reported for the evaluation of middle ear cholesteatoma. We prospectively evaluated a SS TSE DW sequence in detecting congenital or acquired middle ear cholesteatoma and evaluated the size of middle ear cholesteatoma detectable with this sequence. The aim of this study was not to differentiate between inflammatory tissue and cholesteatoma using SS TSE DW imaging. A group of 21 patients strongly suspected clinically and/or otoscopically of having a middle ear cholesteatoma without any history of prior surgery were evaluated with late post-gadolinium MRI including this SS TSE DW sequence. A total of 21 middle ear cholesteatomas (5 congenital and 16 acquired) were found at surgery with a size varying between 2 and 19 mm. Hyperintense signal on SS TSE DW imaging compatible with cholesteatoma was found in 19 patients. One patient showed no hyperintensity due to autoevacuation of the cholesteatoma sac into the external auditory canal. Another patient showed no hyperintensity because of motion artifacts. This study shows the high sensitivity of this SS TSE DW sequence in detecting small middle ear cholesteatomas, with a size limit as small as 2 mm. (orig.)

  4. Electrical spin injection and detection of spin precession in room temperature bulk GaN lateral spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Aniruddha; Baten, Md Zunaid; Bhattacharya, Pallab, E-mail: pkb@umich.edu [Center for Photonic and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-01-25

    We report the measurement of diffusive electronic spin transport characteristics in an epitaxial wurtzite GaN lateral spin valve at room temperature. Hanle spin precession and non-local spin accumulation measurements have been performed with the spin valves fabricated with FeCo/MgO spin contacts. Electron spin relaxation length and spin-flip lifetime of 176 nm and 37 ps, respectively, are derived from analysis of results obtained from four-terminal Hanle spin precession measurements at 300 K. The role of dislocations and defects in bulk GaN has also been examined in the context of electronic spin relaxation dynamics.

  5. Electrical spin injection and detection of spin precession in room temperature bulk GaN lateral spin valves

    Science.gov (United States)

    Bhattacharya, Aniruddha; Baten, Md Zunaid; Bhattacharya, Pallab

    2016-01-01

    We report the measurement of diffusive electronic spin transport characteristics in an epitaxial wurtzite GaN lateral spin valve at room temperature. Hanle spin precession and non-local spin accumulation measurements have been performed with the spin valves fabricated with FeCo/MgO spin contacts. Electron spin relaxation length and spin-flip lifetime of 176 nm and 37 ps, respectively, are derived from analysis of results obtained from four-terminal Hanle spin precession measurements at 300 K. The role of dislocations and defects in bulk GaN has also been examined in the context of electronic spin relaxation dynamics.

  6. Nonhydrodynamic spin transport in superfluid 3He

    Science.gov (United States)

    Bunkov, Yu. M.; Dmitriev, V. V.; Markelov, A. V.; Mukharskii, Yu. M.; Einzel, D.

    1990-08-01

    We report the observation of two kinds of novel nonhydrodynamic spin-transport phenomena of quasiparticles in superfluid 3B. We find a drastic low-temperature depression of the transverse quasiparticle spin-diffusion coefficient. In addition, we have done the first measurements of the Leggett-Takagi spin-relaxation time far outside the hydrodynamic regime. The observations of spin diffusion are shown to be in quantitative agreement with a kinetic-equation approach to quasiparticle spin dynamics.

  7. Relaxation-compensated difference spin diffusion NMR for detecting {sup 13}C–{sup 13}C long-range correlations in proteins and polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tuo; Williams, Jonathan K. [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus [Brandeis University, Department of Chemistry (United States); Hong, Mei, E-mail: meihong@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2015-02-15

    The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly {sup 13}C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular {sup 13}C–{sup 13}C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D {sup 1}H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for {sup 13}C T{sub 1} relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ∼200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T{sub 1} relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T{sub 1} relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter

  8. Monitoring of liver glycogen synthesis in diabetic patients using carbon-13 MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyasu, Moyoko [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba city, Chiba 263-8555 (Japan)], E-mail: moyo@fml.nirs.go.jp; Obata, Takayuki [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba city, Chiba 263-8555 (Japan); Nishi, Yukio; Nakamoto, Hiromitsu [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba city, Chiba 263-8555 (Japan); Pharmaceutical Division, Japan Tobacco Inc., Tokyo (Japan); Nonaka, Hiroi [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba city, Chiba 263-8555 (Japan); Takayama, Yukihisa [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba city, Chiba 263-8555 (Japan); Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Autio, Joonas; Ikehira, Hiroo; Kanno, Iwao [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba city, Chiba 263-8555 (Japan)

    2010-02-15

    To investigate the relationship between liver glucose, glycogen, and plasma glucose in diabetic patients, in vivo liver carbon-13 magnetic resonance spectroscopy ({sup 13}C MRS) with a clinical 3.0 T MR system was performed. Subjects were healthy male volunteers (n = 5) and male type-2 diabetic patients (n = 5). Pre- and during oral glucose tolerance tests (OGTT), {sup 13}C MR spectra without proton decoupling were acquired in a monitoring period of over 6 h, and in total seven spectra were obtained from each subject. For OGTT, 75 g of glucose, including 5 g of [1-{sup 13}C]glucose, was administered. The MR signals of liver [1-{sup 13}C]glucose and glycogen were detected and their time-course changes were assessed in comparison with the plasma data obtained at screening. The correlations between the fasting plasma glucose level and liver glycogen/glucose rate (Spearman: {rho} = -0.68, p < 0.05, n = 10) and the fasting plasma glucose level and liver glycogen peak/fasting rate (Spearman: {rho} = -0.67, p < 0.05, n = 10) indicated that {sup 13}C MRS can perform noninvasive measurement of glycogen storage/degradation ability in the liver individually and can assist in tailor-made therapy for diabetes. In conclusion, {sup 13}C MRS has a potential to become a powerful tool in diagnosing diabetes multilaterally.

  9. Solvent dynamical behavior in an organogel phase as studied by NMR relaxation and diffusion experiments.

    Science.gov (United States)

    Yemloul, Mehdi; Steiner, Emilie; Robert, Anthony; Bouguet-Bonnet, Sabine; Allix, Florent; Jamart-Grégoire, Brigitte; Canet, Daniel

    2011-03-24

    An organogelation process depends on the gelator-solvent pair. This study deals with the solvent dynamics once the gelation process is completed. The first approach used is relaxometry, i.e., the measurement of toluene proton longitudinal relaxation time T(1) as a function of the proton NMR resonance frequency (here in the 5 kHz to 400 MHz range). Pure toluene exhibits an unexpected T(1) variation, which has been identified as paramagnetic relaxation resulting from an interaction of toluene with dissolved oxygen. In the gel phase, this contribution is retrieved with, in addition, a strong decay at low frequencies assigned to toluene molecules within the gel fibers. Comparison of dispersion curves of pure toluene and toluene in the gel phase leads to an estimate of the proportion of toluene embedded within the organogel (found around 40%). The second approach is based on carbon-13 T(1) and nuclear Overhauser effect measurements, the combination of these two parameters providing direct information about the reorientation of C-H bonds. It appears clearly that reorientation of toluene is the same in pure liquid and in the gel phase. The only noticeable changes in carbon-13 longitudinal relaxation times are due to the so-called chemical shift anisotropy (csa) mechanism and reflect slight modifications of the toluene electronic distribution in the gel phase. NMR diffusion measurements by the pulse gradient spin-echo (PGSE) method allow us to determine the diffusion coefficient of toluene inside the organogel. It is roughly two-thirds of the one in pure toluene, thus indicating that self-diffusion is the only dynamical parameter to be slightly affected when the solvent is inside the gel structure. The whole set of experimental observations leads to the conclusion that, once the gel is formed, the solvent becomes essentially passive, although an important fraction is located within the gel structure.

  10. Inelastic neutron scattering study of spin excitations in the superconducting state of high temperature superconductors; Etude par diffusion inelastique de neutrons des excitations de spin dans la phase supraconductrice des supraconducteurs a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sidis, Y.; Pailhes, St.; Fauque, B.; Bourges, Ph. [CEA Saclay, Lab. Leon Brillouin, CNRS, 91 - Gif-sur-Yvette (France); Hinkov, V.; Ulrich, C.; Keimer, B. [Max-Planck-Institut fur Fertkorperforschung, Stuttgart (Germany); Capogna, L.; Ivanov, A. [Institut Laue-Langevin, 38 - Grenoble (France); Regnault, L.P. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)

    2007-09-15

    Inelastic neutron scattering is a powerful technique that can measure magnetic correlations in a large momentum and energy range. In strongly correlated electronic systems, where spin, orbital, lattice and charge degrees of freedom are entangled, it is currently used to study the magnetic properties and shed light on their role in the appearance of the exotic electronic properties, such as unconventional superconductivity. In this article, we focus on the observation by inelastic neutron scattering technique of unconventional spin triplet collective modes in the superconducting state of high temperature superconducting cuprates and its interplay with anomalies in the charge excitation spectrum. The triplet spin mode is interpreted as a spin exciton, within a spin band model. Alternative scenarios based on localized or dual (itinerant localized) models are also mentioned. (authors)

  11. Carbon-13 variations in fluids from the Cerro Prieto geothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Janik, C.J.; Nehring, N.L.; Huebner, M.A.; Truesdell, A.H.

    1982-08-10

    The carbon isotope compositions of CO/sub 2/ in steam from Cerro Prieto production well have been measured for 1977, 1979, and 1982. Variations in the delta/sup 13/C values are caused by production-related changes in the chemical and physical parameters of the geothermal system. In 1977, most CO/sub 2/ in the reservoir was isotopically light (delta/sup 13/C = -6.4 +/- 0.4). Heavier CO/sub 2/ was produced from wells in the center of the field (M5,M26,M27) due to deposition of isotopically light calcite caused by near-well boiling. In 1979 nearly all well showed relatively heavy CO/sub 2/, probably due to expansion of aquifer boiling and calcite precipitation. In 1982, many wells in the central part of the field were shut in. The amount of drawndown decreased and as temperatures and pressures near the wells increased, the boiling zones collapsed. The CO/sub 2/ in the fluid then exchanged with the precipitated calcite and became isotopically lighter. The sensitivity of carbon isotopes to calcite precipitations caused by aquifer boiling and to reequilibration with this deposited calcite upon decrease of boiling suggests use as an indicator of these aquifer processes. Surficial CO/sub 2/ of thermal origin was collected in 1981. Generally, the carbon-13 contents were close to CO/sub 2/ from production wells except for high-temperature mud pots and fumaroles containing isotopically light CO/sub 2/ derived from near surface alteration of organic matter.

  12. A method for the determination of carbon 13 content in glucose and glycerol of blood plasma; Methode pour la determination de la teneur en carbone 13 du glucose et du glycerol dans les plasmas sanguins

    Energy Technology Data Exchange (ETDEWEB)

    Koziet, J. [Centre de Recherche Pernod-Ricard, 94 - Creteil (France)

    1994-12-31

    The coupled gaseous chromatography and isotope ratio mass spectrometry approach was first validated on beet and maize glucose and glycerol aqueous solutions containing variable carbon 13 content. Then human plasma was used to prepare samples where glucose and glycerol were labelled with small amounts of (1.3-{sup 13}C{sub 2})-glycerol and D-(U{sup 13}-C{sub 6})-glucose. The samples are then de-proteinized with acetone before lyophilization and acetylation in order to be able to measure them in the form of acetates. Carbon 13 content evaluation should then take into account the exogenous carbons from the acetyl radicals. This method appears well adapted to the simultaneous metabolic monitoring of glycerol and glucose in the blood plasma. 1 fig., 3 tabs., 5 refs.

  13. Improved characterization of the botanical origin of sugar by carbon-13 SNIF-NMR applied to ethanol.

    Science.gov (United States)

    Thomas, Freddy; Randet, Celia; Gilbert, Alexis; Silvestre, Virginie; Jamin, Eric; Akoka, Serge; Remaud, Gerald; Segebarth, Nicolas; Guillou, Claude

    2010-11-24

    Until now, no analytical method, not even isotopic ones, had been able to differentiate between sugars coming from C4-metabolism plants (cane, maize, etc.) and some crassulacean acid metabolism plants (e.g., pineapple, agave) because in both cases the isotope distributions of the overall carbon-13/carbon-12 and site-specific deuterium/hydrogen isotope ratios are very similar. Following recent advances in the field of quantitative isotopic carbon-13 NMR measurements, a procedure for the analysis of the positional carbon-13/carbon-12 isotope ratios of ethanol derived from the sugars of pineapples and agave using the site-specific natural isotopic fractionation-nuclear magnetic resonance (SNIF-NMR) method is presented. It is shown that reproducible results can be obtained when appropriate analytical conditions are used. When applied to pineapple juice, this new method demonstrates a unique ability to detect cane and maize sugar, which are major potential adulterants, with a detection limit in the order of 15% of the total sugars, which provides an efficient mean of controlling the authenticity of juices made from this specific fruit. When applied to tequila products, this new method demonstrates a unique ability to unambiguously differentiate authentic 100% agave tequila, as well as misto tequila (made from at least 51% agave), from products made from a larger proportion of cane or maize sugar and therefore not complying with the legal definition of tequila.

  14. Spin foams without spins

    Science.gov (United States)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  15. Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method.

    Science.gov (United States)

    Hayamizu, Kikuko; Matsuda, Yasuaki; Matsui, Masaki; Imanishi, Nobuyuki

    2015-09-01

    The garnet-type solid conductor Li7-xLa3Zr2-xTaxO12 is known to have high ionic conductivity. We synthesized a series of compositions of this conductor and found that cubic Li6.6La3Zr1.6Ta0.4O12 (LLZO-Ta) has a high ionic conductivity of 3.7×10(-4)Scm(-1) at room temperature. The (7)Li NMR spectrum of LLZO-Ta was composed of narrow and broad components, and the linewidth of the narrow component varied from 0.69kHz (300K) to 0.32kHz (400K). We carried out lithium ion diffusion measurements using pulsed-field spin-echo (PGSE) NMR spectroscopy and found that echo signals were observed at T≥313K with reasonable sensitivity. The lithium diffusion behavior was measured by varying the observation time and pulsed-field gradient (PFG) strength between 313 and 384K. We found that lithium diffusion depended significantly on the observation time and strength of the PFG, which is quite different from lithium ion diffusion in liquids. It was shown that lithium ion migration in the solid conductor was distributed widely in both time and space.

  16. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    Science.gov (United States)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  17. Carbon-13 nuclear magnetic resonance spectroscopy of lipids: Differential line broadening due to cross-correlation effects as a probe of membrane structure

    Energy Technology Data Exchange (ETDEWEB)

    Oldfield, E.; Adebodun, F.; Chung, J.; Montez, B.; Ki Deok Park; Hongbiao Le; Phillips, B. (Univ. of Illinois, Urbana (United States))

    1991-11-19

    The authors have obtained proton-coupled carbon-13 nuclear magnetic resonance (NMR) spectra of a variety of lipid-water and lipid-drug-water systems, at 11.7 T, as a function of temperature, using the 'magic-angle' sample-spinning (MAS) NMR technique. The resulting spectra show a wide range of line shapes, due to interferences between dipole-dipole and dipole-chemical shielding anisotropy interactions. The differential line-broadening effects observed are particularly large for aromatic and olefinic (sp{sup 2}) carbon atom sites. Coupled spectra of the tricyclic antidepressants desipramine and imipramine, in 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophases, show well-resolved doublets having different line shapes for each of the four aromatic methine groups, due to selective averaging of the four C-H dipolar interactions due to rapid motion about the director (or drug C{sub 2}) axis. {sup 2}H NMR spectra of (2,4,6,8-{sup 2}H{sub 4})desipramine (and imipramine) in the same 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophase exhibit quadrupole splittings of {approximately}0-2 and {approximately}20 kHz, indicating an approximate magic-angle orientation of the C2-{sup 2}H({sup 1}H) and C8-{sup 2}H({sup 1}H) vectors with respect to an axis of motional averaging, in accord with the {sup 13}C NMR results. The good qualitative agreement between {sup 13}C and {sup 2}H NMR results suggests that useful orientational ({sup 2}H NMR like) information can be deduced from natural-abundance {sup 13}C NMR spectra of a variety of mobile solids.

  18. Spin Hall and Spin Nernst effect from first principles

    Science.gov (United States)

    Mertig, Ingrid

    2013-03-01

    Spintronics without magnetic materials is an interesting alternative to the existing spintronics applications. The spin Hall effect creates spin currents in nonmagnetic materials and avoids the problem of spin injection. Future applications of the spin Hall effect require two properties of the materials, a large spin Hall angle and a long spin diffusion length. Ab intio calculations based on density functional theory are a powerful tool to design the desired materials and to get insight into the underlying microscopic processes. We investigated the spin Hall effect in dilute alloys, in particular the intrinsic effect based on the Berry curvature as well as side-jump and the skew-scattering contributions. The results demonstrate that a large extrinsic spin Hall effect is determined by the differences between host and impurity concerning the spin-orbit interaction. It can be caused by light p scatterers as C and N in Au. A comparable large effect is observed for heavy p scatterers as Bi in Cu. An alternative way is to deposit impurities in the adatom position. Furthermore, we predict a spin current perpendicular to a temperature gradient. The phenomenon is called spin Nernst effect. The predicted spin currents can be comparably large as in the case of the spin Hall effect.

  19. Detection of Traumatic Bone Marrow Lesions after Knee Trauma: Comparison of ADC Maps Derived from Diffusion-weighted Imaging with Standard Fat-saturated Proton Density-weighted Turbo Spin-Echo Sequences.

    Science.gov (United States)

    Klengel, Alexis; Stumpp, Patrick; Klengel, Steffen; Böttger, Ina; Rönisch, Nadja; Kahn, Thomas

    2016-10-24

    Purpose To compare single-shot echo-planar diffusion-weighted imaging-derived apparent diffusion coefficient (ADC) maps with fat-saturated (FS) proton density (PD)-weighted turbo spin-echo (TSE) imaging in the detection of bone marrow lesions (BMLs) after knee trauma. Materials and Methods Institutional review board approval was obtained from Leipzig University. Written informed consent was waived. Three radiologists retrospectively re-examined 97 consecutive patients with reported knee trauma who underwent 1.5-T magnetic resonance (MR) imaging within 90 days of knee trauma. The following sequences were used: (a) sagittal T1-weighted TSE and FS PD-weighted TSE and (b) sagittal T1-weighted TSE and single-shot echo-planar diffusion-weighted imaging-derived ADC mapping. BMLs on the lateral and medial femoral condyle, lateral and medial aspect of the tibial plateau, and patella were documented. Volumetry was performed on BMLs with a thickness of at least 15 mm (major BMLs). ADC values were measured in intact bone marrow and major BMLs. A McNemar test and t tests were used as appropriate to test for significant differences between BML number and volume at an α level of .05. Results Significantly more patients showed at least one BML on ADC maps (98%, 95 of 97 patients) than on FS PD-weighted TSE images (86%, 84 of 97 patients) (P saturation, such as the patella. (©) RSNA, 2016 Online supplemental material is available for this article.

  20. Spin Foams Without Spins

    CERN Document Server

    Hnybida, Jeff

    2015-01-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. Thus the sums over spins have been carried out. We focus on the character expansion of Yang-Mills theory which is an approximate heat kernel regularization of BF theory. The boundary data of each $n$-valent node is an element of the Grassmannian Gr(2,$n$) which carries a coherent representation of U($n$) and a geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  1. A generalized Theory of Diffusion based on Kinetic Theory

    CERN Document Server

    Schaefer, Thomas

    2016-01-01

    We propose to use spin hydrodynamics, a two-fluid model of spin propagation, as a generalization of the diffusion equation. We show that in the dense limit spin hydrodynamics reduces to Fick's law and the diffusion equation. In the opposite limit spin hydrodynamics is equivalent to a collisionless Boltzmann treatment of spin propagation. Spin hydrodynamics avoids unphysical effects that arise when the diffusion equation is used to describe to a strongly interacting gas with a dilute corona. We apply spin hydrodynamics to the problem of spin diffusion in a trapped atomic gas. We find that the observed spin relaxation rate in the high temperature limit [Sommer et al., Nature 472, 201 (2011)] is consistent with the diffusion constant predicted by kinetic theory.

  2. Utilization of carbon 13-labelled stable isotopes for studying drug toxicity on cellular metabolism; Utilisation d`isotopes stables marques au carbone 13 pour etudier la toxicite de drogues au niveau du metabolisme cellulaire

    Energy Technology Data Exchange (ETDEWEB)

    Herve, M.; Wietzerbin, J.; Tran-Dinh, S. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Biologie Cellulaire et Moleculaire

    1994-12-31

    A new approach for studying the effects of two drugs, amphotericine B (AMB), an anti-fungal antibiotic, and 2-deoxy-D-glucose (DG), on the glucose metabolism in brewer yeast cells (Saccharomyces cerevisiae), is presented; AMB interacts with the membrane sterols, inducing formation of pores through which ions and small molecules can pass. DG may enter in the cytosol, where it is phosphoryled by hexokinase into deoxy-D-glucose 6-phosphate (DG6P) which disappears very slowly. DG slows down the glycolysis process and induces the formation of new substances. This paper shows the advantages of utilizing carbon 13-labelled substrates combined to the NMR-13C and NMR-1H techniques. 6 figs., 5 refs.

  3. Spin current swapping and spin hall effect in disordered metals

    Science.gov (United States)

    Saidaoui, Hamed; Pauyac, Christian; Manchon, Aurelien

    2015-03-01

    The conversion of charge currents into spin currents via the spin Hall effect has attracted intense experimental and theoretical efforts lately, providing an efficient means to generate electric signals and manipulate the magnetization of single layers. More recently, it was proposed that spin-dependent scattering induced by spin-orbit coupled impurities also produces a so-called spin swapping, i.e. an exchange between the spin angular momentum and linear momentum of itinerant electrons. In this work, we investigate the nature of spin swapping and its interplay with extrinsic spin Hall effect and spin relaxation in finite size normal metals. We use two complementary methods based on non-equilibrium Green's function technique. The first method consists in rigorously deriving the drift-diffusion equation of the spin accumulation in the presence of spin-orbit coupled impurities from quantum kinetics using Wigner expansion. The second method is the real-space tight binding modeling of a finite system in the presence of spin-orbit coupled disorder.

  4. Efficient spin transport through polyaniline

    Science.gov (United States)

    Mendes, J. B. S.; Alves Santos, O.; Gomes, J. P.; Assis, H. S.; Felix, J. F.; Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.

    2017-01-01

    By using the spin pumping process, we show that it is possible to transport a pure spin current across layers of conducting polyaniline (PANI) with several hundred nanometers sandwiched between a film of the ferrimagnetic insulator yttrium iron garnet (YIG) and a thin layer of platinum. The spin current generated by microwave-driven ferromagnetic resonance of the YIG film, injected through the YIG/PANI interface, crosses the whole PANI layer and then is injected into the Pt layer. By means of the inverse spin Hall effect in the Pt, the spin current is converted into charge current and electrically detected as a dc voltage. We measured a spin diffusion length in PANI of 590 ± 40 nm, which is very large compared with normal metals, demonstrating that PANI can be used as an efficient spin current conductor and poor charge current conductor, opening the path towards spintronics applications based in this very attractive material.

  5. Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure

    KAUST Repository

    Wang, Xuhui

    2014-02-07

    Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.

  6. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  7. Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling.

    Science.gov (United States)

    Mishchenko, E G; Shytov, A V; Halperin, B I

    2004-11-26

    We derive the transport equations for two-dimensional electron systems with Rashba spin-orbit interaction and short-range spin-independent disorder. In the limit of slow spatial variations, we obtain coupled diffusion equations for the electron density and spin. Using these equations we calculate electric-field induced spin accumulation and spin current in a finite-size sample for an arbitrary ratio between spin-orbit energy splitting Delta and elastic scattering rate tau(-1). We demonstrate that the spin-Hall conductivity vanishes in an infinite system independent of this ratio.

  8. On the tail of the overlap probability distribution in the Sherrington-Kirkpatrick model 75.50.Lk Spin glasses and other random magnets; 75.10.Nr Spin-glass and other random models; 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.);

    CERN Document Server

    Billoire, A; Marinari, E

    2003-01-01

    We investigate the large deviation behaviour of the overlap probability density in the Sherrington-Kirkpatrick (SK) model using the coupled replica scheme, and we compare with the results of a large-scale numerical simulation. In the spin glass phase we show that, generically, for any model with continuous replica symmetry breaking (RSB), 1/N log P sub N (q)approx -A(|q| - q sub E sub A) sup 3 , and we compute the first correction to the expansion of A in powers of T sub c - T for the SK model. We also study the paramagnetic phase, where results are obtained in the replica symmetric scheme that do not involve an expansion in powers of q - q sub E sub A or T sub c - T. Finally we give precise semi-analytical estimates of P(|q| = 1). The overall agreement between the various points of view is very satisfactory.

  9. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    2012-01-01

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for intrins

  10. Modeling of thermal spin transport and spin-orbit effects in ferromagnetic/nonmagnetic mesoscopic devices

    NARCIS (Netherlands)

    Slachter, Abraham; Bakker, Frank Lennart; van Wees, Bart Jan

    2011-01-01

    In this article we extend the currently established diffusion theory of spin-dependent electrical conduction by including spin-dependent thermoelectricity and thermal transport. Using this theory, we propose experiments aimed at demonstrating novel effects such as the spin-Peltier effect, the recipr

  11. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    Science.gov (United States)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  12. Magnetic field, additive and structural effects on the decay kinetics of micellized triplet radical pairs. Role of diffusion, spin-orbit coupling and paramagnetic relaxation

    Science.gov (United States)

    Levin, P. P.; Kuzmin, V. A.

    1992-05-01

    The geminate recombination kinetics of the radical pairs produced by quenching of the triplet aromatic ketones or quinones by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium alkyl sulfates in the presence of additives (ethanol, NaCl, bromo- and iodobenzenes, paramagnetic species) has been examined using the laser flash technique. The recombination rates increase as the micellar size in decreased. Application of an external magnetic field (0.45 T) results in the retardation of geminate recombination up to 25 times. The magnetic field effect is quenched by internal or even external heavy atoms as well as by paramagnetic species, including 3O 2. The magnetic field dependences and attendant regularities are considered in terms of a simple kinetic scheme, in which the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms, as well as intersystem recombination due to the spin-orbit coupling in the contact states of a pair, are included as first-order processes. The corresponding kinetic parameters of the different pathways involved are also discussed.

  13. Validation in an animal model of the carbon 13-labeled mixed triglyceride breath test for the detection of intestinal fat malabsorption

    NARCIS (Netherlands)

    Kalivianakis, M; Elstrodt, J; Havinga, R; Kuipers, F; Stellaard, F; Sauer, PJJ; Vonk, RJ; Verkade, HJ

    1999-01-01

    Objective: To determine, in a rat model of fat malabsorption, the potency of the carbon 13-labeled mixed triglyceride (C-13-MTG) breath test as a noninvasive, patient-friendly replacement for classic fat balance studies, Study design: Comparison of the percentage of Fat absorption, detected by fat b

  14. Endometrial cancer: preoperative staging using three-dimensional T2-weighted turbo spin-echo and diffusion-weighted MR imaging at 3.0 T: a prospective comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Masatoshi; Kim, Tonsok; Onishi, Hiromitsu; Nakamoto, Atsushi; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Radiology, Suita, Osaka (Japan); Imaoka, Izumi; Kagawa, Yuki; Murakami, Takamichi [Kinki University School of Medicine, Department of Radiology, Osaka (Japan); Ueguchi, Takashi; Tatsumi, Mitsuaki [Osaka University Hospital, Department of Radiology, Osaka (Japan); Enomoto, Takayuki [Osaka University Graduate School of Medicine, Department of Obstetrics and Gynecology, Osaka (Japan); Niigata University School of Medicine, Department of Obstetrics and Gynecology, Niigata (Japan); Kimura, Tadashi [Osaka University Graduate School of Medicine, Department of Obstetrics and Gynecology, Osaka (Japan)

    2013-08-15

    To prospectively assess the efficacy of 3-T magnetic resonance (MR) imaging using the three-dimensional turbo spin-echo T2-weighted and diffusion-weighted technique (3D-TSE/DW) compared with that of conventional imaging using the two-dimensional turbo spin-echo T2-weighted and dynamic contrast-enhanced technique (2D-TSE/DCE) for the preoperative staging of endometrial cancer, with pathological analysis as the reference standard. Seventy-one women with endometrial cancer underwent MR imaging using 3D-TSE/DW (b = 1,000 s/mm{sup 2}) and 2D-TSE/DCE. Two radiologists independently assessed the two imaging sets. Accuracy, sensitivity, and specificity for staging were analysed with the McNemar test; the areas under the receiver operating characteristic curve (Az) were compared with a univariate z-score test. The results for assessing deep myometrial invasion, accuracy, sensitivity, specificity and Az, respectively, were as follows: 3D-TSE/DW - observer 1, 87 %, 95 %, 85 % and 0.96; observer 2, 92 %, 84 %, 94 % and 0.95; 2D-TSE/DCE - observer 1, 80 %, 79 %, 81 % and 0.89; observer 2, 86 %, 84 %, 87 % and 0.86. Most of the values were higher with 3D-TSE/DW without significant differences (P > 0.12). For assessing cervical stromal invasion, there were no significant differences in those values for both observers (P > 0.6). Accuracy of 3D-TSE/DW was at least equivalent to that of the conventional technique for the preoperative assessment of endometrial cancer. (orig.)

  15. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    Science.gov (United States)

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs.

  16. Rotation Axis Variation Due To Spin Orbit Resonance

    CERN Document Server

    Gallavotti, G

    1993-01-01

    Abstract: rotation axis variation due to spin orbit resonance: conference report; keywords: planetary precession, rigid body, chaos, KAM, Arnold diffusion, averaging, celestial mechanics, classical mechanics, large deviations

  17. Temperature-dependent interactions and disorder in the spin-transition compound [Fe(II)(L)2][ClO4]2.C7H8 through structural, calorimetric, magnetic, photomagnetic, and diffuse reflectance investigations.

    Science.gov (United States)

    Mishra, Vibha; Mukherjee, Rabindranath; Linares, Jorge; Balde, Chérif; Desplanches, Cédric; Létard, Jean-François; Collet, Eric; Toupet, Loic; Castro, Miguel; Varret, François

    2008-09-01

    The title compound [Fe (II)(L) 2][ClO 4] 2.C 7H 8 (L = 2-[3-(2'-pyridyl)pyrazol-1-ylmethyl]pyridine) has been isolated while attempting to grow single crystals of the spin-transition (continuous-type) compound [Fe (II)(L) 2][ClO 4] 2, published earlier ( Dalton Trans. 2003, 3392-3397). Magnetic susceptibility measurements, as well as Mossbauer and calorimetric investigations on polycrystalline samples of [Fe(L) 2][ClO 4] 2.C 7H 8 revealed the occurrence of an abrupt HS ( (5) T 2) LS ( (1) A 1) transition with steep and narrow (2 K) hysteresis at approximately 232 K. The photomagnetic properties exhibit features typical for a broad distribution of activation energies, with relaxation curves in the shape of stretched exponentials. We performed a crystal structure determination of the compound at 120, 240, and 270 K. A noteworthy temperature-dependent behavior of the structural parameters was observed, in terms of disorder of both the anions and solvent molecules, leading to a strong thermal dependence of the strength and dimensionality of the interaction network. Additional data were obtained by diffuse reflectance measurements. We model and discuss the antagonistic effects of interactions and disorder by using a two-level cooperative mean-field approach which includes a distribution of barrier energies at the microscopic scale.

  18. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces.

    Science.gov (United States)

    Rojas-Sánchez, J-C; Reyren, N; Laczkowski, P; Savero, W; Attané, J-P; Deranlot, C; Jamet, M; George, J-M; Vila, L; Jaffrès, H

    2014-03-14

    Through combined ferromagnetic resonance, spin pumping, and inverse spin Hall effect experiments in Co|Pt bilayers and Co|Cu|Pt trilayers, we demonstrate consistent values of ℓsfPt=3.4±0.4  nm and θSHEPt=0.056±0.010 for the respective spin diffusion length and spin Hall angle for Pt. Our data and model emphasize the partial depolarization of the spin current at each interface due to spin-memory loss. Our model reconciles the previously published spin Hall angle values and explains the different scaling lengths for the ferromagnetic damping and the spin Hall effect induced voltage.

  19. Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT context

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2006-01-01

    Full Text Available Abstract Background Monitoring of sterile to wild insect ratios in field populations can be useful to follow the progress in genetic control programmes such as the Sterile Insect Technique (SIT. Of the numerous methods for marking insects most are not suitable for use in mass rearing and mass release. Suitable ones include dye marking, genetic marking and chemical marking. Methods The feasibility of using the stable isotope of carbon, 13C, as a potential chemical marker for Anopheles arabiensis was evaluated in the laboratory. Labeled-13C glucose was incorporated into the larval diet in a powder or liquid form. The contribution of adult sugar feeding to the total mosquito carbon pool and the metabolically active carbon pool was determined by tracing the decline of the enrichment of the adult male mosquito as it switched from a labeled larval diet to an unlabeled adult diet. This decline in the adult was monitored by destructive sampling of the whole mosquito and analyzed using isotope ratio mass spectrometry. Results A two-pool model was used to describe the decline of the 13C-enrichment of adult mosquitoes. The proportion of the total adult carbon pool derived from the adult sugar diet over the life span of mosquitoes was determined and the ratio of structural carbon, with a low turnover rate to metabolically active non-structural carbon was assessed. The uptake and turnover of sugar in the metabolically active fraction suggests that after 3 days >70% of the active fraction carbon is derived from sugar feeding (increasing to >90% by day 7, indicating the high resource demand of male mosquitoes. Conclusion It was possible to "fix" the isotopic label in adult An. arabiensis and to detect the label at an appropriate concentration up to 21 days post-emergence. The optimum labeling treatment would cost around 250 US$ per million mosquitoes. Stable isotope marking may thus aid research on the fate of released insects besides other population

  20. Towards spin injection into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dash, S.P.

    2007-08-15

    Si has been studied for the purpose of spin injection extensively in this thesis. Three different concepts for spin injection into Si have been addressed: (1) spin injection through a ferromagnet-Si Schottky contact, (2) spin injection using MgO tunnel barriers in between the ferromagnet and Si, and (3) spin injection from Mn-doped Si (DMS) as spin aligner. (1) FM-Si Schottky contact for spin injection: To be able to improve the interface qualities one needs to understand the atomic processes involved in the formation of silicide phases. In order to obtain more detailed insight into the formation of such phases the initial stages of growth of Co and Fe were studied in situ by HRBS with monolayer depth resolution.(2) MgO tunnel barrier for spin injection into Si: The fabrication and characterization of ultra-thin crystalline MgO tunnel barriers on Si (100) was presented. (3) Mn doped Si for spin injection: Si-based diluted magnetic semiconductor samples were prepared by doping Si with Mn by two different methods i) by Mn ion implantation and ii) by in-diffusion of Mn atoms (solid state growth). (orig.)

  1. Spin precession in anisotropic media

    Science.gov (United States)

    Raes, B.; Cummings, A. W.; Bonell, F.; Costache, M. V.; Sierra, J. F.; Roche, S.; Valenzuela, S. O.

    2017-02-01

    We generalize the diffusive model for spin injection and detection in nonlocal spin structures to account for spin precession under an applied magnetic field in an anisotropic medium, for which the spin lifetime is not unique and depends on the spin orientation. We demonstrate that the spin precession (Hanle) line shape is strongly dependent on the degree of anisotropy and on the orientation of the magnetic field. In particular, we show that the anisotropy of the spin lifetime can be extracted from the measured spin signal, after dephasing in an oblique magnetic field, by using an analytical formula with a single fitting parameter. Alternatively, after identifying the fingerprints associated with the anisotropy, we propose a simple scaling of the Hanle line shapes at specific magnetic field orientations that results in a universal curve only in the isotropic case. The deviation from the universal curve can be used as a complementary means of quantifying the anisotropy by direct comparison with the solution of our generalized model. Finally, we applied our model to graphene devices and find that the spin relaxation for graphene on silicon oxide is isotropic within our experimental resolution.

  2. Effect of quantum tunneling on spin Hall magnetoresistance

    Science.gov (United States)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-01

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  3. Spin currents in metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Czeschka, Franz Dominik

    2011-09-05

    A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)

  4. Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum

    OpenAIRE

    Tagliabue, A.; L. Bopp; Roche, D. M.; N. Bouttes; J.-C. Dutay; Alkama, R.; Kageyama, M.; Michel, E.; Paillard, D.

    2009-01-01

    We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton ph...

  5. Spin drift in highly doped n-type Si

    Science.gov (United States)

    Kameno, Makoto; Ando, Yuichiro; Shinjo, Teruya; Koike, Hayato; Sasaki, Tomoyuki; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-03-01

    A quantitative estimation of spin drift velocity in highly doped n-type silicon (Si) at 8 K is presented in this letter. A local two-terminal Hanle measurement enables the detection of a modulation of spin signals from the Si as a function of an external electric field, and this modulation is analyzed by using a spin drift-diffusion equation and an analytical solution of the Hanle-type spin precession. The analyses reveal that the spin drift velocity is linearly proportional to the electric field. The contribution of the spin drift effect to the spin signals is crosschecked by introducing a modified nonlocal four-terminal method.

  6. Spin drift in highly doped n-type Si

    Energy Technology Data Exchange (ETDEWEB)

    Kameno, Makoto; Ando, Yuichiro; Shinjo, Teruya [Graduate School of Engineering Science, Osaka University Osaka (Japan); Koike, Hayato; Sasaki, Tomoyuki; Oikawa, Tohru [Advanced Technology Development Center, TDK Cooperation, Chiba (Japan); Suzuki, Toshio [AIT, Akita Research Institute of Advanced Technology, Akita (Japan); Shiraishi, Masashi, E-mail: mshiraishi@kuee.kyoto-u.ac.jp [Graduate School of Engineering Science, Osaka University Osaka (Japan); Graduate School of Engineering, Kyoto University, Kyoto (Japan)

    2014-03-03

    A quantitative estimation of spin drift velocity in highly doped n-type silicon (Si) at 8 K is presented in this letter. A local two-terminal Hanle measurement enables the detection of a modulation of spin signals from the Si as a function of an external electric field, and this modulation is analyzed by using a spin drift-diffusion equation and an analytical solution of the Hanle-type spin precession. The analyses reveal that the spin drift velocity is linearly proportional to the electric field. The contribution of the spin drift effect to the spin signals is crosschecked by introducing a modified nonlocal four-terminal method.

  7. Dynamic Feedback in Ferromagnet-Spin Hall Metal Heterostructures

    Science.gov (United States)

    Cheng, Ran; Zhu, Jian-Gang; Xiao, Di

    2016-08-01

    In ferromagnet-normal-metal heterostructures, spin pumping and spin-transfer torques are two reciprocal processes that occur concomitantly. Their interplay introduces a dynamic feedback effect interconnecting energy dissipation channels of both magnetization and current. By solving the spin diffusion process in the presence of the spin Hall effect in the normal metal, we show that the dynamic feedback gives rise to (i) a nonlinear magnetic damping that is crucial to sustain uniform steady-state oscillations of a spin Hall oscillator at large angles and (ii) a frequency-dependent spin Hall magnetoimpedance that reduces to the spin Hall magnetoresistance in the dc limit.

  8. Transformation behavior in low carbon 13% chromium-3% copper stainless steel; Tei C-13%Cr-3%Cu ko no hentai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T.; Uemori, R.; Miyasaka, A. [Nippon Steel Corp., Tokyo (Japan)

    2000-10-01

    Martensitic transformation and {gamma} {yields} {alpha} transformation behavior were investigated in low carbon 13% chromium stainless steels containing 2% nickel or 3% copper. The main conclusions are as follows: (1) Hardness of 2% nickel added low carbon 13% chromium steel was independent of cooling rate after hot working at large reduction. Structure of the steel was martensitic even after being subjected to such large reduction of 75%. This result suggests that ferritic transformation was hard to occur under an usual cooling rate because austenite phase was sufficiently stablized by the addition of chromium and nickel. (2) Austenite to ferrite transformation occurred only for the low carbon 13% chromium 3% copper steel without nickel even at the small cooling rate, such as 0.01K/s. This result was mainly attributed to the unstabilization of austenite phase which caused by the precipitation of {epsilon}-Cu. Furthermore, austenite of the steel becomes easy to transform to ferrite due to heavy hot working. This phenomenon was seemed to be caused by the increase in the area of austenite grain boundary owing to recrystallization. Thus, it was considered that the nucleation of {epsilon}-Cu at the grain boundaries promoted ferrite formation. (author)

  9. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    Directory of Open Access Journals (Sweden)

    Haesung Yoon

    Full Text Available Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters.Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1 were suspicious for malignancy on mammography or ultrasound (US, 2 were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB 3 underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE and diffusion-weighted imaging (DWI and positron emission tomography-computed tomography (PET-CT, and 4 had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER, maximum standardized FDG uptake value (SUV max, apparent diffusion coefficient (ADC, and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters.In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites

  10. Spin-Mediated Consciousness Theory Possible Roles of Oxygen Unpaired Electronic Spins and Neural Membrane Nuclear Spin Ensemble in Memory and Consciousness

    CERN Document Server

    Hu, H; Hu, Huping; Wu, Maoxin

    2002-01-01

    We postulate that consciousness is connected to quantum mechanical spin since said spin is embedded in the microscopic structure of spacetime and may be more fundamental than spacetime itself. Thus, we theorize that consciousness is connected with the fabric of spacetime through spin. That is, spin is the "pixel" and "antenna" of mind. The unity of mind is achieved by non-local means within the pre-spacetime domain interfaced with spacetime. Human mind is possible because of the particular structures and dynamics of our brain postulated working as follows: The unpaired electronic spins of highly lipid-soluble and rapidly diffusing oxygen molecules extract information from the dynamical neural membranes and communicate said information through strong spin-spin couplings to the nuclear spin ensemble in the membranes for consciousness-related quantum statistical processing which survives decoherence. In turn, the dynamics of the nuclear spin ensemble has effects through spin chemistry on the classical neural act...

  11. Spin foams

    CERN Document Server

    Engle, Jonathan

    2013-01-01

    The spin foam framework provides a way to define the dynamics of canonical loop quantum gravity in a spacetime covariant way, by using a path integral over histories of quantum states which can be interpreted as `quantum space-times'. This chapter provides a basic introduction to spin foams aimed principally at beginning graduate students and, where possible, at broader audiences.

  12. Spin-accumulation-induced resistance in mesoscopic ferromagnet- superconductor junctions

    NARCIS (Netherlands)

    Jedema, F.J.; van Wees, Bart; Hoving, B.H.; Filip, A.T.; Klapwijk, T.M

    1999-01-01

    We present a description of spin-polarized transport in mesoscopic ferromagnet-superconductor (F/S) systems, where the transport is diffusive and the interfaces are transparent. It is shown that the spin reversal associated with Andreev reflection generates an excess spin density close to the F/S in

  13. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    Science.gov (United States)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  14. Transition from spin accumulation into interface states to spin injection in silicon and germanium conduction bands

    Science.gov (United States)

    Jain, Abhinav; Rojas-Sanchez, Juan-Carlos; Cubukcu, Murat; Peiro, Julian; Le Breton, Jean-Christophe; Vergnaud, Céline; Augendre, Emmanuel; Vila, Laurent; Attané, Jean-Philippe; Gambarelli, Serge; Jaffrès, Henri; George, Jean-Marie; Jamet, Matthieu

    2013-04-01

    Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the electrical spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. Here we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Si and n-Ge using a CoFeB/MgO tunnel contact. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from approximately 150 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with the standard spin diffusion model. More interestingly, in the case of germanium, we demonstrate a significant modulation of the spin signal by applying a back-gate voltage to the conduction channel. We also observe the inverse spin Hall effect in Ge by spin pumping from the CoFeB electrode. Both observations are consistent with spin accumulation in the Ge conduction band.

  15. Hanle effect near boundaries: Diffusion-induced lineshape inhomogeneity

    Science.gov (United States)

    Engel, Hans-Andreas

    2008-03-01

    The Hanle effect describes suppression of spin polarization due to precession in a magnetic field. This is a standard spintronics tool and it gives access to the spin lifetime of samples in which spins are generated homogeneously. We examine the Hanle effect when spins are generated at a boundary of a diffusive sample by the extrinsic spin Hall effect. We show that the Hanle curve is spatially dependent and that the “apparent” spin lifetime, given by its inverse half-width, is shorter near the boundary even if the spin relaxation rate is homogeneous.

  16. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    Science.gov (United States)

    Saidaoui, Hamed Ben Mohamed; Manchon, A.

    2016-07-01

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ . While the spin Hall effect dominates in the diffusive limit (d ≫λ ), spin swapping dominates in the Knudsen regime (d ≲λ ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  17. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2016-07-12

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  18. Long-range spin transport in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael J. [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)

    2012-07-01

    Recently, there has been some controversy about spin-polarized quasiparticle transport and relaxation in superconductors, with reports of both anomalously short or anomalously long relaxation times as compared to the normal state. Here, we report on non-local transport in multiterminal superconductor-ferromagnet structures. We find signatures of spin transport over distances much larger than the normal-state spin-diffusion length in the presence of a large Zeeman splitting of the quasiparticle states. The relaxation length shows a nearly linear increase with magnetic field, hinting at a freeze-out of spin relaxation by the Zeeman splitting.

  19. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  20. Spin transport in undoped InGaAs/AlGaAs multiple quantum well studied via spin photocurrent excited by circularly polarized light.

    Science.gov (United States)

    Zhu, Laipan; Liu, Yu; Huang, Wei; Qin, Xudong; Li, Yuan; Wu, Qing; Chen, Yonghai

    2016-12-01

    The spin diffusion and drift at different excitation wavelengths and different temperatures have been studied in undoped InGaAs/AlGaAs multiple quantum well (MQW). The spin polarization was created by optical spin orientation using circularly polarized light, and the reciprocal spin Hall effect was employed to measure the spin polarization current. We measured the ratio of the spin diffusion coefficient to the mobility of spin-polarized carriers. From the wavelength dependence of the ratio, we found that the spin diffusion and drift of holes became as important as electrons in this undoped MQW, and the ratio for light holes was much smaller than that for heavy holes at room temperature. From the temperature dependence of the ratio, the correction factors for the common Einstein relationship for spin-polarized electrons and heavy holes were firstly obtained to be 93 and 286, respectively.

  1. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    Science.gov (United States)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  2. Effect of Electric Field on Spin Polarized Current in Ferromagnetic/ Organic Semiconductor Systems

    Institute of Scientific and Technical Information of China (English)

    MA Yan-Ni; REN Jun-Feng; ZHANG Yu-Bin; LIU De-Sheng; XIE Shi-Jie

    2007-01-01

    Considering the special carriers in organic semiconductors, the spin polarized current under electric field in a ferromagnetic/organic semiconductor system is theoretically studied. Based on the spin-diffusion theory, the current spin polarization under the electric field is obtained. It is found that electric field can enhance the current spin polarization.

  3. Classical gravitational spin-spin interaction

    OpenAIRE

    Bonnor, W. B.

    2002-01-01

    I obtain an exact, axially symmetric, stationary solution of Einstein's equations for two massless spinning particles. The term representing the spin-spin interaction agrees with recently published approximate work. The spin-spin force appears to be proportional to the inverse fourth power of the coordinate distance between the particles.

  4. Spin-Orbit induced semiconductor spin guides

    OpenAIRE

    Valin-Rodriguez, Manuel; Puente, Antonio; Serra, Llorens

    2002-01-01

    The tunability of the Rashba spin-orbit coupling allows to build semiconductor heterostructures with space modulated coupling intensities. We show that a wire-shaped spin-orbit modulation in a quantum well can support propagating electronic states inside the wire only for a certain spin orientation and, therefore, it acts as an effective spin transmission guide for this particular spin orientation.

  5. Theory of Spin Loss at Metallic Interfaces

    Science.gov (United States)

    Belashchenko, K. D.; Kovalev, Alexey A.; van Schilfgaarde, M.

    2016-11-01

    Interfacial spin-flip scattering plays an important role in magnetoelectronic devices. Spin loss at metallic interfaces is usually quantified by matching the magnetoresistance data for multilayers to the Valet-Fert model, while treating each interface as a fictitious bulk layer whose thickness is δ times the spin-diffusion length. By employing the properly generalized circuit theory and the scattering matrix approaches, we derive the relation of the parameter δ to the spin-flip transmission and reflection probabilities at an individual interface. It is found that δ is proportional to the square root of the probability of spin-flip scattering. We calculate the spin-flip scattering probabilities for flat and rough Cu /Pd interfaces using the Landauer-Büttiker method based on the first-principles electronic structure and find δ to be in reasonable agreement with experiment.

  6. Spin correlations in Ho2Ti2O7: A dipolar spin ice system

    DEFF Research Database (Denmark)

    Bramwell, S.T.; Harris, M.J.; Hertog, B.C. den;

    2001-01-01

    The pyrochlore material Ho(2)Ti(2)O(7) has been suggested to show "spin ice" behavior. We present neutron scattering and specific heat results that establish unambiguously that Ho(2)Ti(2)O(7) exhibits spin ice correlations at low temperature. Diffuse magnetic neutron scattering is quite well...... described by a nearest neighbor spin ice model and very accurately described by a dipolar spin ice model. The heat capacity is well accounted for by the sum of a dipolar spin ice contribution and an expected nuclear spin contribution, known to exist in other Ho(3+) salts. These results settle the question...... of the nature of the low temperature spin correlations in Ho(2)Ti(2)O(7) for which contradictory claims have been made....

  7. A spin cell for spin current.

    Science.gov (United States)

    Sun, Qing-feng; Guo, Hong; Wang, Jian

    2003-06-27

    We propose and investigate a spin-cell device which provides the necessary spin-motive force to drive a spin current for future spintronic circuits. Our spin cell has four basic characteristics: (i) it has two poles so that a spin current flows in from one pole and out from the other pole, and in this way a complete spin circuit can be established; (ii) it has a source of energy to drive the spin current; (iii) it maintains spin coherence so that a sizable spin current can be delivered; (iv) it drives a spin current without a charge current. The proposed spin cell for spin current should be realizable using technologies presently available.

  8. Effect of Carrier Differences on Spin Polarized Injection into Organic and Inorganic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    REN Jun-Feng; XIU Ming-Xia

    2008-01-01

    Spin polarized injection into organic and inorganic semiconductors are studied theoretically from the spin diffusion theory and Ohm's law, and the emphases are placed on the effect of the carrier differences on the current spin polarization. The mobility and the spin-Rip time of carriers in organic and inorganic semiconductors are different. From the calculation, it is found that current spin polarization at a ferromagnetic/organic interface is higher than that at a ferromagnetic/inorganic interface because of different carriers in them. Effects of the conductivity matching, the spin dependent interfacial resistances, and the balk spin polarization of the ferromagnetic layer on the spin polarized injection are also discussed.

  9. Spin squeezing in nonlinear spin coherent states

    OpenAIRE

    Wang, Xiaoguang

    2001-01-01

    We introduce the nonlinear spin coherent state via its ladder operator formalism and propose a type of nonlinear spin coherent state by the nonlinear time evolution of spin coherent states. By a new version of spectroscopic squeezing criteria we study the spin squeezing in both the spin coherent state and nonlinear spin coherent state. The results show that the spin coherent state is not squeezed in the x, y, and z directions, and the nonlinear spin coherent state may be squeezed in the x and...

  10. Cavity spin optodynamics

    CERN Document Server

    Brahms, N

    2010-01-01

    The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.

  11. Renovação do carbono-13 em figueiras 'Roxo de Valinhos' Carbon-13 turnover in fig trees 'Roxo de Valinhos'

    Directory of Open Access Journals (Sweden)

    Andréa Carvalho da Silva

    2011-06-01

    Full Text Available O objetivo do trabalho foi determinar a taxa de renova��ão do carbono-13 ("turnover", dos diferentes órgãos da figueira 'Roxo de Valinhos'. O experimento foi conduzido no pomar da Faculdade de Ciências Agronômicas, FCA/UNESP, Câmpus de Botucatu-SP. Determinou-se previamente, através das trocas gasosas com um medidor aberto portátil de fotossíntese, IRGA, a principal folha fotossinteticamente ativa. Essa folha foi colocada em uma câmara onde ocorreu a injeção do gás enriquecido. O tempo de enriquecimento da folha foi de 30 minutos. Os tratamentos foram constituídos por sete plantas de figueira, que foram retiradas do solo após: 6; 24; 48; 72; 120; 168 e 360 horas do enriquecimento com 13C, e suas partes seccionadas em: gema apical, folha jovem, folhas adultas (fotossinteticamente ativas, brotações laterais, frutos e ramo. Os resultados obtidos permitiram o estabelecimento da sequência de metabolização do carbono-13 nas partições estudadas: Folhas novas > Frutos > Brotações > Folhas Adultas > Gema Apical > Ramo > Folha marcada. Plantas de figueira 'Roxo de Valinhos' apresentam reciclagem do 13C de 24 horas e um tempo de meia-vida de duração do carbono-13 inferior a 11 horas.The aim of this study was to assess carbon-13 turnover in different organs of the fig tree cultivar 'Roxo de Valinhos'. The experiment was carried out in an orchard at School of Agronomical Sciences, FCA/UNESP, Botucatu Campus, São Paulo State, Brazil. The main photosynthetically active leaf was previously determined based on gas exchanges by means of an open portable photosynthesis system, IRGA. That leaf was placed in a chamber where the enriched gas injection occurred. The leaf enrichment time was 30 minutes. Treatments were constituted of seven fig trees harvested of soil after: 6; 24; 48; 72; 120; 168 and 360 hours of enrichment using 13C, and their parts were sectioned into: apical bud, young leaves, adult leaves (photosynthetically active

  12. Quantum Monte Carlo with Variable Spins

    CERN Document Server

    Melton, Cody A; Mitas, Lubos

    2016-01-01

    We investigate the inclusion of variable spins in electronic structure quantum Monte Carlo, with a focus on diffusion Monte Carlo with Hamiltonians that include spin-orbit interactions. Following our previous introduction of fixed-phase spin-orbit diffusion Monte Carlo (FPSODMC), we thoroughly discuss the details of the method and elaborate upon its technicalities. We present a proof for an upper-bound property for complex nonlocal operators, which allows for the implementation of T-moves to ensure the variational property. We discuss the time step biases associated with our particular choice of spin representation. Applications of the method are also presented for atomic and molecular systems. We calculate the binding energies and geometry of the PbH and Sn$_2$ molecules, as well as the electron affinities of the 6$p$ row elements in close agreement with experiments.

  13. Spin-transfer torque in ferromagnetic bilayers generated by anomalous Hall effect and anisotropic magnetoresistance

    Science.gov (United States)

    Taniguchi, Tomohiro; Grollier, Julie; Stiles, M. D.

    2016-10-01

    We propose an experimental scheme to determine the spin-transfer torque efficiency excited by the spin-orbit interaction in ferromagnetic bilayers from the measurement of the longitudinal magnetoresistace. Solving a diffusive spin-transport theory with appropriate boundary conditions gives an analytical formula of the longitudinal charge current density. The longitudinal charge current has a term that is proportional to the square of the spin-transfer torque efficiency and that also depends on the ratio of the film thickness to the spin diffusion length of the ferromagnet. Extracting this contribution from measurements of the longitudinal resistivity as a function of the thickness can give the spin-transfer torque efficiency.

  14. Universal control and error correction in multi-qubit spin registers in diamond.

    Science.gov (United States)

    Taminiau, T H; Cramer, J; van der Sar, T; Dobrovitski, V V; Hanson, R

    2014-03-01

    Quantum registers of nuclear spins coupled to electron spins of individual solid-state defects are a promising platform for quantum information processing. Pioneering experiments selected defects with favourably located nuclear spins with particularly strong hyperfine couplings. To progress towards large-scale applications, larger and deterministically available nuclear registers are highly desirable. Here, we realize universal control over multi-qubit spin registers by harnessing abundant weakly coupled nuclear spins. We use the electron spin of a nitrogen-vacancy centre in diamond to selectively initialize, control and read out carbon-13 spins in the surrounding spin bath and construct high-fidelity single- and two-qubit gates. We exploit these new capabilities to implement a three-qubit quantum-error-correction protocol and demonstrate the robustness of the encoded state against applied errors. These results transform weakly coupled nuclear spins from a source of decoherence into a reliable resource, paving the way towards extended quantum networks and surface-code quantum computing based on multi-qubit nodes.

  15. Spin transfer torques and spin dynamics in point contacts and spin-flop tunnel junctions

    OpenAIRE

    Konovalenko, Alexander

    2008-01-01

    The first part of this thesis is an experimental study of the spin-dependent transport in magnetic point contacts. Nano-contacts are produced micromechanically, by bringing a sharpened non-magnetic (N) tip into contact with a ferromagnetic (F) film. The magnetic and magneto-transport properties of such N/F nanocontacts are studied using transport spectroscopy, spanning the ballistic, diffusive, and thermal transport regimes. Single N/F interfaces can exhibit current driven magnetic excitation...

  16. Spin Echo Studies on Cellular Water

    CERN Document Server

    Chang, D C; Nichols, B L; Rorschach, H E

    2014-01-01

    Previous studies indicated that the physical state of cellular water could be significantly different from pure liquid water. To experimentally investigate this possibility, we conducted a series of spin-echo NMR measurements on water protons in rat skeletal muscle. Our result indicated that the spin-lattice relaxation time and the spin-spin relaxation time of cellular water protons are both significantly shorter than that of pure water (by 4.3-fold and 34-fold, respectively). Furthermore, the spin diffusion coefficient of water proton is almost 1/2 of that of pure water. These data suggest that cellular water is in a more ordered state in comparison to pure water.

  17. Macroscopic diffusive transport in a microscopically integrable Hamiltonian system.

    Science.gov (United States)

    Prosen, Tomaž; Zunkovič, Bojan

    2013-07-26

    We demonstrate that a completely integrable classical mechanical model, namely the lattice Landau-Lifshitz classical spin chain, supports diffusive spin transport with a finite diffusion constant in the easy-axis regime, while in the easy-plane regime, it displays ballistic transport in the absence of any known relevant local or quasilocal constant of motion in the symmetry sector of the spin current. This surprising finding should open the way towards analytical computation of diffusion constants for integrable interacting systems and hints on the existence of new quasilocal classical conservation laws beyond the standard soliton theory.

  18. The essential role of spin-memory loss at 3d/5d metallic interfaces in spin pumping

    Science.gov (United States)

    Jaffres, Henri

    2015-03-01

    I will present a review of experiments and theory of spin-pumping in Co/(Cu)/Pt 3d/5d metallic systems in the ferromagnetic resonance (FMR) regime of spin injection. By combining i) FMR analyses of the resonance linewidth of the Co spectra in contact with the Pt (or Cu/Pt) reservoir and ii) detection of the inverse spin-hall effect signal vs. Pt thickness, we were able to evidence two different lengthscales for the spin-current profile generated or absorbed at the interfaces. The first lenghscale, extracted from FMR analyses and of the order of 2 nm, represents a typical interface length characteristic of a spin memory loss at the Co/Pt and Co/Cu/Pt interfaces. This represent a typical region of spin-current dissipation by which almost 60-70 % of the total current generated is lost before conversion in bulk Pt. The second lengthscale, roughly equal to 3.4 nm, like determined by Inverse Spin Hall Effect (ISHE) transverse voltage measurement, is more characteristic of the spin-diffusion length of the bulk Pt that governs a part of the spin-to-charge conversion efficiency by ISHE. After careful analyses, we determined a spin-hall angle of 5.6 % for Pt and an intrinsic spin hall conductivity of 3200 (Ohm.cm)-1 for our corresponding Pt resistivity. In the end, I will focus on the physical description of our experiments within a derived Valet-Fert model describing the spin transport/relaxation in a diffusive approach and using relevant boundary conditions for spin-pumping (constant spin accumulation in the ferromagnet). The origin of the spin-memory loss and spin-current discontinuity, also proposed in a very recent work, will be explained in terms of atomic intermixing at interfaces or possible Rashba-split states at Co/Pt interfaces.

  19. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    Energy Technology Data Exchange (ETDEWEB)

    Laczkowski, P.; Rojas-Sánchez, J.-C. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France); INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Savero-Torres, W.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L. [INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Jaffrès, H.; Reyren, N.; Deranlot, C.; George, J.-M.; Fert, A. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France)

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  20. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    Science.gov (United States)

    Laczkowski, P.; Rojas-Sánchez, J.-C.; Savero-Torres, W.; Jaffrès, H.; Reyren, N.; Deranlot, C.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L.; George, J.-M.; Fert, A.

    2014-04-01

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  1. Vaneless diffusers

    Science.gov (United States)

    Senoo, Y.

    The influence of vaneless diffusers on flow in centrifugal compressors, particularly on surge, is discussed. A vaneless diffuser can demonstrate stable operation in a wide flow range only if it is installed with a backward leaning blade impeller. The circumferential distortion of flow in the impeller disappears quickly in the vaneless diffuser. The axial distortion of flow at the diffuser inlet does not decay easily. In large specific speed compressors, flow out of the impeller is distorted axially. Pressure recovery of diffusers at distorted inlet flow is considerably improved by half guide vanes. The best height of the vanes is a little 1/2 diffuser width. In small specific speed compressors, flow out of the impeller is not much distorted and pressure recovery can be predicted with one-dimensional flow analysis. Wall friction loss is significant in narrow diffusers. The large pressure drop at a small flow rate can cause the positive gradient of the pressure-flow rate characteristic curve, which may cause surging.

  2. Relativistic Spin Operators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng-Fei; RUAN Tu-Nan

    2001-01-01

    A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.

  3. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  4. Spin-Up/Spin-Down models for Type Ia Supernovae

    CERN Document Server

    Di Stefano, R; Claeys, J S W

    2011-01-01

    In the single degenerate scenario for Type Ia supernova (SNeIa), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, which can increase the critical mass, $M_{crit}$, needed for explosion. When $M_{crit}$ is higher than the maximum mass achieved by the WD, the WD must spin down before it can explode. This introduces a delay between the time at which the WD has completed its epoch of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WD's mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin...

  5. Geometrical dependence of spin current absorption into a ferromagnetic nanodot

    Science.gov (United States)

    Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi

    2016-10-01

    We have investigated the absorption property of the diffusive pure spin current due to a ferromagnetic nanodot in a laterally configured ferromagnetic/nonmagnetic hybrid nanostructure. The spin absorption in a nano-pillar-based lateral-spin-valve structure was confirmed to increase with increasing the lateral dimension of the ferromagnetic dot. However, the absorption efficiency was smaller than that in a conventional lateral spin valve based on nanowire junctions because the large effective cross section of the two dimensional nonmagnetic film reduces the spin absorption selectivity. We also found that the absorption efficiency of the spin current is significantly enhanced by using a thick ferromagnetic nanodot. This can be understood by taking into account the spin absorption through the side surface of the ferromagnetic dot quantitatively.

  6. Estimating groundwater mixing and origin in an overexploited aquifer in Guanajuato, Mexico, using stable isotopes (strontium-87, carbon-13, deuterium and oxygen-18).

    Science.gov (United States)

    Horst, Axel; Mahlknecht, Jürgen; Merkel, Broder J

    2007-12-01

    Stable Isotopes (strontium-87, deuterium and oxygen-18, carbon-13) have been used to reveal different sources of groundwater and mixing processes in the aquifer of the Silao-Romita Valley in the state of Guanajuato, Mexico. Calcite dissolution appeared to be the main process of strontium release leading to relatively equal (87)Sr/(86)Sr ratios of 0.7042-0.7062 throughout the study area which could be confirmed by samples of carbonate rocks having similar Sr ratios (0.7041-0.7073). delta(13)C values (-11.91- -6.87 per thousand VPDB) of groundwaters confirmed the solution of carbonates but indicated furthermore influences of soil-CO(2). Deuterium and (18)O contents showed a relatively narrow range of-80.1- -70.0 per thousand VSMOW and -10.2- -8.8 per thousand, VSMOW, respectively but are affected by evaporation and mixing processes. The use of delta(13)C together with (87)Sr/(86)Sr revealed three possible sources: (i) carbonate-controlled waters showing generally higher Sr-concentrations, (ii) fissure waters with low-strontium contents and (iii) infiltrating water which is characterized by low delta(13)C and (87)Sr/(86)Sr ratios. The third component is affected by evaporation processes taking place before and during infiltration which might be increased by extraction and reinfiltration (irrigation return flow).

  7. Traceability of animal byproducts in quail (Coturnix coturnix japonica tissues using carbon (13C/12C and nitrogen (15N/14N stable isotopes

    Directory of Open Access Journals (Sweden)

    C Móri

    2007-12-01

    Full Text Available Consistent information on meat products consumed by the public is essential. The technique of stable isotopes is a powerful tool to recover consumers' confidence, as it allows the detection of animal byproduct residues in poultry meat, particularly in quail meat. This study aimed at checking the presence of poultry byproduct mixtures in quail diets by applying the technique of carbon (13C/12C and nitrogen (15N/14N stable isotopes in quail breast muscle, keel, and tibia. Sixty four one-day-old male quails were obtained from a commercial farm. Birds were housed in an experimental house from one to 42 days of age, and were randomly distributed into 8 experimental treatments, and fed diets containing poultry offal meal (POM, bovine meat and bone meal (MBM or poultry feather meal (PFM, or their mixtures. Four birds per treatment were slaughtered at 42 days of age, and breast (Pectoralis major, keel, and tibia were collected for analyses. The inclusion of animal byproducts in quail diets was detected by 13C e 15N analyses in the tissues of the birds; however, it was not possible to specify which byproducts were used. It was concluded that quail meat can be certified by the technique of stable isotopes.

  8. Nonequilibrium thermodynamics of the spin Seebeck and spin Peltier effects

    Science.gov (United States)

    Basso, Vittorio; Ferraro, Elena; Magni, Alessandro; Sola, Alessandro; Kuepferling, Michaela; Pasquale, Massimo

    2016-05-01

    We study the problem of magnetization and heat currents and their associated thermodynamic forces in a magnetic system by focusing on the magnetization transport in ferromagnetic insulators like YIG. The resulting theory is applied to the longitudinal spin Seebeck and spin Peltier effects. By focusing on the specific geometry with one Y3Fe5O12 (YIG) layer and one Pt layer, we obtain the optimal conditions for generating large magnetization currents into Pt or large temperature effects in YIG. The theoretical predictions are compared with experiments from the literature permitting to derive the values of the thermomagnetic coefficients of YIG: the magnetization diffusion length lM˜0.4 μ m and the absolute thermomagnetic power coefficient ɛM˜10-2TK-1 .

  9. Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene

    Science.gov (United States)

    Rameshti, Babak Zare; Moghaddam, Ali G.

    2015-04-01

    We investigate the spin-dependent thermoelectric effects in magnetic graphene in both diffusive and ballistic regimes. Employing the Boltzmann and Landauer formalisms we calculate the spin and charge Seebeck coefficients (thermopower) in magnetic graphene varying the spin splitting, temperature, and doping of the junction. It is found that while in normal graphene the temperature gradient drives a charge current, in the case of magnetic graphene a significant spin current is also established. In particular we show that in the undoped magnetic graphene in which different spin carriers belong to conduction and valence bands, a pure spin current is driven by the temperature gradient. In addition it is revealed that profound thermoelectric effects can be achieved at intermediate easily accessible temperatures when the thermal energy is comparable with Fermi energy kBT ≲μ . By further investigation of the spin-dependent Seebeck effect and a significantly large figure of merit for spin thermopower ZspT , we suggest magnetic graphene as a promising material for spin-caloritronics studies and applications.

  10. Evolution of electron spin polarization in semiconductor heterostructures

    Science.gov (United States)

    Pershin, Yuriy; Privman, Vladimir

    2004-03-01

    Last years theoretical and experimental investigations of electron spin-related effects in semiconductor heterostructures have received much consideration because of idea to create a semiconductor device based on the manipulation of electron spin. High degree of electron spin polarization is of crucial importance in operation of spintronic devices. We study possibilities to increase electron spin relaxation time by different means in systems where the D'yakonov-Perel' relaxation mechanism is dominant. Specifically, we show that the electron spin relaxation time in a two-dimensional electron gas with an antidote lattice increases exponentially with antidote radius for certain values of parameters. In another approach, we propose to use electron spin polarization having non-homogeneous direction of spin polarization vector in operation of a spintronic device. It is found that that the electron spin relaxation time essentially depends on the initial spin polarization distribution. This effect has its origin in the coherent spin precession of electrons diffusing in the same direction. We predict a long spin relaxation time of a novel structure: a spin coherence standing wave and discuss its experimental realization.

  11. Circuit Simulation of All-Spin Logic

    KAUST Repository

    Alawein, Meshal

    2016-05-01

    With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall

  12. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  13. Ferromagnetic/Nonmagnetic Nanostructures for the Electrical Measurement of the Spin Hall Effect.

    Science.gov (United States)

    Pham, Van Tuong; Vila, Laurent; Zahnd, Gilles; Marty, Alain; Savero-Torres, Williams; Jamet, Matthieu; Attané, Jean-Philippe

    2016-11-09

    Spin-orbitronics is based on the ability of spin-orbit interactions to achieve the conversion between charge currents and pure spin currents. As the precise evaluation of the conversion efficiency becomes a crucial issue, the need for straightforward ways to observe this conversion has emerged as one of the main challenges in spintronics. Here, we propose a simple device, akin to the ferromagnetic/nonmagnetic bilayers used in most spin-orbit torques experiments, and consisting of a spin Hall effect wire connected to two transverse ferromagnetic electrodes. We show that this system allows probing electrically the direct and inverse conversion in a spin Hall effect system and measuring both the spin Hall angle and the spin diffusion length. By applying this method to several spin Hall effect materials (Pt, Pd, Au, Ta, W), we show that it represents a promising tool for the metrology of spin-orbit materials.

  14. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  15. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  16. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian free-induct

  17. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  18. Observation and modelling of ferromagnetic contact-induced spin relaxation in Hanle spin precession measurements

    Science.gov (United States)

    O'Brien, L.; Spivak, D.; Krueger, N.; Peterson, T. A.; Erickson, M. J.; Bolon, B.; Geppert, C. C.; Leighton, C.; Crowell, P. A.

    2016-09-01

    In the nonlocal spin valve (NLSV) geometry, four-terminal electrical Hanle effect measurements have the potential to provide a particularly simple determination of the lifetime (τs) and diffusion length (λN) of spins injected into nonmagnetic (N) materials. Recent papers, however, have demonstrated that traditional models typically used to fit such data provide an inaccurate measurement of τs in ferromagnet (FM)/N metal devices with low interface resistance, particularly when the separation of the source and detector contacts is small. In the transparent limit, this shortcoming is due to the back diffusion and subsequent relaxation of spins within the FM contacts, which is not properly accounted for in standard models of the Hanle effect. Here we have used the separation dependence of the spin accumulation signal in NLSVs with multiple FM/N combinations, and interfaces in the diffusive limit, to determine λN in traditional spin valve measurements. We then compare these results to Hanle measurements as analyzed using models that either include or exclude spin sinking. We demonstrate that differences between the spin valve and Hanle measurements of λN can be quantitatively modelled provided that both the FM contact-induced isotropic spin sinking and the full three-dimensional geometry of the devices, which is particularly important at small contact separations, are accounted for. We find, however, that considerable difficulties persist, in particular due to the sensitivity of fitting to the contact interface resistance and the FM contact magnetization rotation, in precisely determining λN with the Hanle technique alone, particularly at small contact separations.

  19. Entangled spins and ghost-spins

    CERN Document Server

    Jatkar, Dileep P

    2016-01-01

    We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in arXiv:1602.06505 [hep-th] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the gho...

  20. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  1. Spin-polarized spin excitation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J, E-mail: lothseb@us.ibm.com, E-mail: heinrich@almaden.ibm.com [IBM Research Division, Almaden Research Center, San Jose, CA 95120 (United States)

    2010-12-15

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu{sub 2}N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  2. Double ferromagnetic metal/semiconductor schottky barrier confined quasi-ballistic transport channel as spin polarizer

    Institute of Scientific and Technical Information of China (English)

    Wen Wu

    2007-01-01

    Spin polarizer is one of the most important devices for the newly developing field of spintronics, which may revolute the popular information techniques. Here we present a phenomenal model for a novel spin polarizer, which utilizes two back to back ferromagnetic metal/semiconductor Schottky barriers to define a semiconductor transport channel whose length is less than the spin decoherence length of the host semiconductor. Along this channel, conducting electrons move diffusively in momentum space while they keep ballistic motion in spin space. Across the channel, electrons suffer a spin dependent tunneling, which establishes spin polarization along the channel.

  3. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.

    2016-03-11

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  4. Universal spin transport in a strongly interacting Fermi gas.

    Science.gov (United States)

    Sommer, Ariel; Ku, Mark; Roati, Giacomo; Zwierlein, Martin W

    2011-04-14

    Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information. Neutrino transport energizes supernova explosions following the collapse of a dying star, and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance. In this hydrodynamic regime, collective density excitations are weakly damped. Here we experimentally investigate spin excitations in a Fermi gas of (6)Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by [planck]/m, the quantum limit of diffusion, where [planck]/m is Planck's constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state.

  5. Remanent spin injection and spin relaxation in quantum dot light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, Henning; Li, Mingyuan; Gerhardt, Nils C.; Hofmann, Martin R. [Lehrstuhl fuer Photonik und Terahertztechnologie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Ludwig, Arne; Wieck, Andreas D.; Reuter, Dirk [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Stromberg, Frank; Keune, Werner; Wende, Heiko [Fakultaet fuer Physik, Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

    2011-07-01

    The study of spin-controlled optoelectronic devices has been a field of intensive research over the past few years. We investigate spin injection in remanence into InAs quantum dot (QD) light emitting diodes (LEDs). Our samples are spin LEDs with a Fe/Tb injector with out-of-plane remanent magnetization and a MgO tunnel barrier at the ferromagnetic metal/semiconductor interface to overcome the conductivity mismatch. The active region is an ensemble of InAs QDs. Intrinsic GaAs layers of variable thickness have been implemented between this active region and the spin injector to investigate the influence of transport path length on spin polarization. We have measured the circular polarization of the LED emission in remanence. By investigating the different injection path lengths for the samples we have determined the spin diffusion length in undoped GaAs along with the spin polarization at the injector interface. Additionally, the spin injection efficiency at the MgO tunnel barrier has been investigated.

  6. Molecular weight dependence of exciton diffusion in poly(3-hexylthiophene)

    DEFF Research Database (Denmark)

    Masri, Zarifi; Ruseckas, Arvydas; Emelianova, Evguenia V.

    2013-01-01

    A joint experimental and theoretical study of singlet exciton diffusion in spin-coated poly(3-hexylthiophene) (P3HT) films and its dependence on molecular weight is presented. The results show that exciton diffusion is fast along the co-facial π–π aggregates of polymer chromophores and about 100...

  7. Spin Rotation of Formalism for Spin Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Luccio,A.

    2008-02-01

    The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

  8. Optimisation of geometrical ratchets for spin-current amplification

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Ranjdar M. [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Vick, Andrew J. [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Department of Physics, University of York, York YO10 5DD (United Kingdom); Murphy, Benedict A. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Hirohata, Atsufumi, E-mail: atsufumi.hirohata@york.ac.uk [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan)

    2015-05-07

    A two-dimensional model is used to study the geometrical effects of a nonmagnetic (NM) nanowire upon a spin-polarised electron current in a lateral spin-valve structure. We found that the implemented ratchet shapes at the centre of the NM have a crucial effect on the diffusive rate for up- and down-spin electrons along the wire, which leads to the amplification of non-local spin-current signals. By using our simple model, the geometries have been optimised. The calculated spin-current signals are in good qualitative agreement with our recent experimental results [Abdullah et al., J. Phys. D: Appl. Phys. 47, 482001(FTC) (2014)]. Our model may be very useful to evaluate such a geometrical effect on spin-polarised electron transport.

  9. Creating and manipulating nonequilibrium spins in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Michael J.; Kolenda, Stefan; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Suergers, Christoph; Fischer, Gerda [Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, we find signatures of spin transport over distances of several μm, exceeding other length scales such as the coherence length, the normal-state spin-diffusion length, and the charge-imbalance length. Using a combination of ferromagnetic and normal-metal contacts, we demonstrate spin injection from a normal metal, and show a complete separation of charge and spin imbalance. An exchange splitting induced by the ferromagnetic insulator europium sulfide enables spin transport at very small applied magnetic fields, and therefore paves the way to manipulating spin currents by local exchange fields.

  10. Quantum one dimensional spin systems. Disorder and impurities; Systemes de spins quantiques unidimensionnels. Desordre et impuretes

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, V

    1999-06-29

    This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)

  11. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  12. MRI of intraosseous fistulous systems and sequesters in chronic osteomyelitis with standard spin echo sequences, highly selective chemical-shift imaging, diffusion weighted imaging, and magnetization-transfer; MRT-Darstellung intraossaerer Sequester und Fistelsysteme bei chronischer Osteomyelitis durch Standardsequenzen, hochselektive Chemical-Shift-Bildgebung, Diffusionsgewichtung und Magnetisierungstransfer

    Energy Technology Data Exchange (ETDEWEB)

    Bitzer, M.; Hartmann, J.; Geist-Barth, B.; Stern, W.; Seemann, M.; Pereira, P.; Claussen, C.D. [Abteilung fuer Radiologische Diagnostik, Klinikum der Eberhart-Karls-Universitaet Tuebingen (Germany); Schick, F. [Sektion fuer Experimentelle Radiologie, Klinikum der Eberhard-Karls-Universitaet Tuebingen (Germany); Krackhardt, T. [Berufsgenossenschaftliche Klinik, Tuebingen (Germany); Morgalla, M. [Chirurgische Klinik, Klinikum der Eberhard-Karls-Universitaet Tuebingen (Germany)

    2002-11-01

    Purpose: To study and test the impact of modern MRI techniques in diagnostic imaging in the evaluation of intra-osseous fistulous systems and sequesters. Materials and Methods: In a prospective study, nine patients with chronic osteomyelitis of the legs were examined by MRI. Patients with clinical signs of osteomyelitis requiring surgery were included in the study. T1-weighted spin echo (SE) sequences, proton density (PD) and T2-weighted fast spin echo (FSE) sequences, water- and fat-selective FSE sequences, and diffusion weighted (DW) PSIF sequences were used preoperatively. Furthermore, magnetizing transfer (MT) with gradient echo (GRE) sequences was evaluated. Results: Water selective sequences revealed the highest sensitivity for the detection of fistulas (100%), providing the best delineation of the extent of the entire fistulous systems. Fat-selective sequences (sensitivity 55.6%) and T1-weighted sequences (sensitivity 77.8%) displayed fistulas as hypointense bands, which, however, cannot be well differentiated from cortical bone in the transcortical areas. PD and T2-weighted images were found to have a poor sensitivity (55.6% and 66.7%) for fistulas in any location. The sensitivity of water-selective sequences to demonstrate intraosseous sequesters was 100%. The sensitivity was low for the other sequences. In 4 of 5 patients with surgically proven infection, DW and MT revealed an abnormal spatial distribution, with high diffusion in the central parts of the fistulas and high MT effect peripherally surrounding a weak MT effect centrally. (orig.) [German] Zielsetzung: Die vorliegende Arbeit soll die Moeglichkeiten des Einsatzes spezieller Sequenztechniken der MRT bei der Diagnostik von intraossaeren Fisteln und Sequestern pruefen und beschreiben. Material und Methode: In einer prospektiven Studie wurden 9 Patienten mit chronischen Osteomyelitiden der unteren Extremitaeten kernspintomographisch untersucht. Die MRT-Befunde wurden qualitativ anhand der Operations

  13. Theory of electron spin echoes in solids

    Energy Technology Data Exchange (ETDEWEB)

    Asadullina, N.Ya.; Asadullin, T.Ya.; Asadullin, Ya.Ya. [Kazan State Technical University, Department of General Physics, Karl Marx Street 10, Kazan (Russian Federation)

    2002-11-04

    We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published results it is deduced that the instantaneous diffusion mechanism is ineffective.

  14. Thickness dependence of spin Hall magnetoresistance in FeMn/Pt bilayers

    Directory of Open Access Journals (Sweden)

    Yumeng Yang

    2016-06-01

    Full Text Available We investigated spin Hall magnetoresistance in FeMn/Pt bilayers, which was found to be one order of magnitude larger than that of heavy metal and insulating ferromagnet or antiferromagnet bilayer systems, and comparable to that of NiFe/Pt bilayers. The spin Hall magnetoresistance shows a non-monotonic dependence on the thicknesses of both FeMn and Pt. The former can be accounted for by the thickness dependence of net magnetization in FeMn thin films, whereas the latter is mainly due to spin accumulation and diffusion in Pt. Through analysis of the Pt thickness dependence, the spin Hall angle, spin diffusion length of Pt and the real part of spin mixing conductance were determined to be 0.2, 1.1 nm, and 5.5 × 1014 Ω−1m−2, respectively. The results corroborate the spin orbit torque effect observed in this system recently.

  15. Spin Transport by Collective Spin Excitations

    Science.gov (United States)

    Hammel, P. Chris

    We report studies of angular momentum transport in insulating materials. Our measurements reveal efficient spin pumping from high wavevector k spin waves in thin film Y3Fe5O12 (YIG): spin pumping is independent of wavevector up to k ~ 20 μm-1. Optical detection of YIG FMR by NV centers in diamond reveals a role for spin waves in this insulator-to-insulator spin transfer process. Spin transport is typically suppressed by insulating barriers, but we find that fluctuating antiferromagnetic correlations enable efficient spin transport at nm-scale thicknesses in insulating antiferromagnets, even in the absence of long-range order, and that the spin decay length increases with the strength of the antiferromagnetic correlations. This research is supported by the U.S. DOE through Grants DE-FG02-03ER46054 and DE-SC0001304, by the NSF MRSEC program through Grant No. 1420451 and by the Army Research Office through Grant W911NF0910147.

  16. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  17. Arbitrary Spin Galilean Oscillator

    CERN Document Server

    Hagen, C R

    2014-01-01

    The so-called Dirac oscillator was proposed as a modification of the free Dirac equation which reproduces many of the properties of the simple harmonic oscillator but accompanied by a strong spin-orbit coupling term. It has yet to be extended successfully to the arbitrary spin S case primarily because of the unwieldiness of general spin Lorentz invariant wave equations. It is shown here using the formalism of totally symmetric multispinors that the Dirac oscillator can, however, be made to accommodate spin by incorporating it into the framework of Galilean relativity. This is done explicitly for spin zero and spin one as special cases of the arbitrary spin result. For the general case it is shown that the coefficient of the spin-orbit term has a 1/S behavior by techniques which are virtually identical to those employed in the derivation of the g-factor carried out over four decades ago.

  18. Ambient nanoscale sensing with single spins using quantum decoherence

    Science.gov (United States)

    McGuinness, L. P.; Hall, L. T.; Stacey, A.; Simpson, D. A.; Hill, C. D.; Cole, J. H.; Ganesan, K.; Gibson, B. C.; Prawer, S.; Mulvaney, P.; Jelezko, F.; Wrachtrup, J.; Scholten, R. E.; Hollenberg, L. C. L.

    2013-07-01

    Magnetic resonance detection is one of the most important tools used in life-sciences today. However, as the technique detects the magnetization of large ensembles of spins it is fundamentally limited in spatial resolution to mesoscopic scales. Here we detect the natural fluctuations of nanoscale spin ensembles at ambient temperatures by measuring the decoherence rate of a single quantum spin in response to introduced extrinsic target spins. In our experiments 45 nm nanodiamonds with single nitrogen-vacancy (NV) spins were immersed in solution containing spin 5/2 Mn2+ ions and the NV decoherence rate measured though optically detected magnetic resonance. The presence of both freely moving and accreted Mn spins in solution were detected via significant changes in measured NV decoherence rates. Analysis of the data using a quantum cluster expansion treatment of the NV-target system found the measurements to be consistent with the detection of 2500 motionally diffusing Mn spins over an effective volume of (16 nm)3 in 4.2 s, representing a reduction in target ensemble size and acquisition time of several orders of magnitude over conventional, magnetic induction approaches to electron spin resonance detection. These measurements provide the basis for the detection of nanovolume spins in solution, such as in the internal compartments of living cells, and are directly applicable to scanning probe architectures.

  19. Hereditary Diffuse Gastric Cancer

    Science.gov (United States)

    ... Hereditary Diffuse Gastric Cancer Request Permissions Hereditary Diffuse Gastric Cancer Approved by the Cancer.Net Editorial Board , 11/2015 What is hereditary diffuse gastric cancer? Hereditary diffuse gastric cancer (HDGC) is an inherited ...

  20. Spinning Eggs and Ballerinas

    Science.gov (United States)

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  1. Solvent removal during synthetic and Nephila fiber spinning.

    Science.gov (United States)

    Kojic, Nikola; Kojic, Milos; Gudlavalleti, Sauri; McKinley, Gareth

    2004-01-01

    The process by which spiders make their mechanically superior fiber involves removal of solvent (water) from a concentrated protein solution while the solution flows through a progressively narrowing spinning canal. Our aim was to determine a possible mechanism of spider water removal by using a computational model. To develop appropriate computational techniques for modeling of solvent removal during fiber spinning, a study was first performed using a synthetic solution. In particular, the effect of solvent removal during elongational flow (also exhibited in the spinning canal of the spider) on fiber mechanical properties was examined. The study establishes a model for solvent removal during dry spinning of synthetic fibers, assuming that internal diffusion governs solvent removal and that convective resistance is small. A variable internal solvent diffusion coefficient, dependent on solvent concentration, is also taken into account in the model. An experimental setup for dry (air) spinning was used to make fibers whose diameter was on the order of those made by spiders (approximately 1 microm). Two fibers of different thickness, corresponding to different spinning conditions, were numerically modeled for solvent removal and then mechanically tested. These tests showed that the thinner fiber, which lost more solvent under elongational flow, had 5-fold better mechanical properties (elastic modulus of 100 MPa and toughness of 15 MJ/m3) than the thicker fiber. Even though the mechanical properties were far from those of dragline spider silk (modulus of 10 GPa and toughness of 150 MJ/m3), the experimental methodology and numerical principles developed for the synthetic case proved to be valuable when establishing a model for the Nephila spinning process. In this model, an assumption of rapid convective water removal at the spinning canal wall was made, with internal diffusion of water through the fiber as the governing process. Then the diffusion coefficient of water

  2. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T1-exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definit......Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T1-exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows...... that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14N-nitroxyl spin labels do not accord with conventional analysis...

  3. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T1-exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1n = 1/Wn. Results are compared and contrasted with those for the two-level 15N-nitroxide system.

  4. Analysis of spin transfer torque in Co/Cu/Co pseudo-spin-valve with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Jalil, Mansoor Bin Abdul, E-mail: elembaj@nus.edu.s [Information Storage Materials Laboratory, Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Guo, Jie, E-mail: elegj@nus.edu.s [Information Storage Materials Laboratory, Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Tan, Seng Ghee, E-mail: TAN_Seng_Ghee@dsi.a-star.edu.s [Data Storage Institute, 5 Engineering Drive 1, (Off Kent Ridge Crescent), Singapore 117608 (Singapore)

    2009-05-01

    Perpendicular-magnetized pseudo-spin-valves (PSV) boast the advantages of lower aspect ratio, greater magnetic stability and thermal stability; and hence constitute a promising candidate for achieving higher integration area density. In this paper, we investigate the spin transport and spin transfer torque in a Co/Cu(1 1 1)/Co perpendicular PSV structure where the magnetization of the Co layers are oriented in the out-of-plane direction, in the presence of a spin-polarized current in the perpendicular-to-plane (CPP) geometry. Both ballistic spin-dependent transmission/reflection at the two Co-Cu interfaces and diffusive spin relaxation within the Co and Cu layers are considered in our model. The ballistic calculations predict an absorbed spin current component at the Cu-free Co interface, which constitutes the main source (approx90%) of the total spin transfer torque in the free Co layer. The remaining torque arises from the spin relaxation of transmitted spin current within the free Co layer. Our model predicts a lower range of the critical current density of less than 10{sup 7} A/cm{sup 2} for perpendicularly magnetized PSVs, while that for in-plane magnetized PSVs is of the order of several 10{sup 7} A/cm{sup 2}. Additionally, perpendicularly magnetized PSVs also possess other practical advantages which make them promising candidates for future MRAM applications.

  5. Physics of Spin Casting Dilute Solutions

    CERN Document Server

    Karpitschka, Stefan; Riegler, Hans

    2012-01-01

    We analyze the spin casting of dilute (ideal) binary mixtures of non-volatile solutes in volatile solvents as a prototype for evaporation-controlled processes that are increasingly used to deposit specifically structured (sub)monolayers ("evaporation-induced self-assembly"). The first analytical description of the thinning of a volatile liquid film simultaneously subject to spinning and evaporation is presented. It shows, that the duration of a spin casting process is linked to the process parameters via power laws. A diffusion-advection model leads analytically to the equation governing the spatio-temporal evolution of the internal film composition. Its solution reveals that the solute concentration enrichment, its gradient, and its time evolution are related to the process parameters via power laws. The physics behind the power laws is uncovered and discussed. This reveales universal insights into the interplay between the control parameters and their impact on the spatiotemporal evolution of the film compo...

  6. Diffusion coefficient in photon diffusion theory

    NARCIS (Netherlands)

    Graaff, R; Ten Bosch, JJ

    2000-01-01

    The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to

  7. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  8. Spin supplementary conditions for spinning compact binaries

    CERN Document Server

    Mikóczi, Balázs

    2016-01-01

    We consider the different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conservative quantities and the dissipative part of relative motion during the gravitational radiation of each SSCs. We give the orbital elements and observed quantities of the SO dynamics, for instance the energy and the orbital angular momentum losses and waveforms and discuss their SSC dependence.

  9. NMR Investigations of Liquid Propellant Systems Consisting of Alkyl- and Hydroxylammonium Nitrates. Part 2. Measurement of Carbon-13 Spin-Lattice Relaxation Times and Activation Energies for Molecular Motion in Model Liquid Propellant Systems.

    Science.gov (United States)

    1987-01-01

    CONTRACTOR GRANT NUMBER(&) R. L. Dudley S. Bulusu 9. PERFORMING ORGANIZATION NAME AND ADDRESS tO. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERSARDEC...SMCAR-AE, R. Bushey J. P. Picard SMCAR-AEE, J. A. Lannon Word Processing Office SMCAR-AEE-B, D. Downs SMCAR-AEE-BR, L. Harris A. Beardell B. Brodman Y

  10. Spin excitations in systems with hopping electron transport and strong position disorder in a large magnetic field

    Science.gov (United States)

    Shumilin, A. V.

    2016-10-01

    We discuss the spin excitations in systems with hopping electron conduction and strong position disorder. We focus on the problem in a strong magnetic field when the spin Hamiltonian can be reduced to the effective single-particle Hamiltonian and treated with conventional numerical technics. It is shown that in a 3D system with Heisenberg exchange interaction the spin excitations have a delocalized part of the spectrum even in the limit of strong disorder, thus leading to the possibility of the coherent spin transport. The spin transport provided by the delocalized excitations can be described by a diffusion coefficient. Non-homogenous magnetic fields lead to the Anderson localization of spin excitations while anisotropy of the exchange interaction results in the Lifshitz localization of excitations. We discuss the possible effect of the additional exchange-driven spin diffusion on the organic spin-valve devices.

  11. Kagome spin ice

    Science.gov (United States)

    Mellado, Paula

    Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.

  12. Spin-pumping and spin-Hall magnetoresistance (SMR) at transition metal interfaces: case of (Co/Pt) (Conference Presentation)

    Science.gov (United States)

    Jaffres, Henri; George, Jean-Marie; Laczowski, Piotr; Reyren, Nicolas; Vila, Laurent

    2016-10-01

    Spintronic phenomena are made possible via the diffusion of spin-currents or the generation of spin-accumulation. Spinorbitronics uses the electronic spin-orbit coupling (SOC) and emerges as a new route to create spin-currents in the transverse direction of the charge flow. This is made possible via the intrinsic spin Hall conduction (SHE) of heavy metals or extrinsic spin-Hall effect of metallic alloys. SHE borrows its concept from the anomalous Hall effect (AHE) where the relativistic spin-orbit coupling (SOC) promotes an asymmetric deflection of the spin-current. SHE is now at the base of magnetization commutation and domain wall moving via spin-orbit torque (SOT) and spin-transfer torque operations in the FMR regime. However, the exact anatomy of SOT at spin-orbit active interfaces like Co/Pt is still missing. In the case of Pt, recent studies have put forward the major role played by i) the spin-memory loss (SML) and the electronic transparency at 3d/5d interfaces and ii) the inhomogeneity of the conductivity in the current-in-plane (CIP) geometry to explain the discrepancy in the SHE. Ingredients to consider then are the profiles of both the conductivity and spin-current across the multilayers and spin-transmission. In this talk, we will present robust SMR measurements observed on NiCo/Pt multilayer stacks characterized by a perpendicular magnetic anisotropy (PMA). The SMR occurs for both in-plane magnetization rotation or from nominal out-of-plane to the in-plane direction transverse to the current flow. This clearly departs from standard AMR or pure interfacial anisotropic-AMR symmetries. We analyze in large details our SMR signals for the whole series of samples owing to two main guidelines: i) we consider the exact conductivity profile across the multilayers, in particular near the Co/Pt interface, via the Camley-Barnas approach and ii) we derive the spin current profile generated by SHE along the perpendicular direction responsible for SMR. We consider

  13. Ultrafast demagnetization, spin-dependent Seebeck effect, and thermal spin transfer torque in Pt/TbFe/Cu and Pt/TbFe/Cu/Fe thin films

    Science.gov (United States)

    Kimling, Johannes; Hebler, Birgit; Kimling, Judith; Albrecht, Manfred; Cahill, David G.

    We investigate diffusive spin currents in Pt(20nm)/TbFe(10nm)/Cu(100nm) and Pt(20 nm)/TbFe(10nm)/ Cu(100nm)/Fe(3nm) stacks using time-resolved magneto-optic Kerr effect (TRMOKE) and time-domain thermoreflectance measurements. Our experiments are based on two hypothesis: (1) fast changes of magnetization due to laser excitation are transferred into spin accumulation, e.g., via electron-magnon scattering; the generated spin accumulation drives a diffusive spin current into adjacent normal metal layers; (2) electronic thermal transport through the ferromagnetic layer injects a spin current into adjacent normal metal layers, based on the spin-dependent Seebeck effect. We excite the Pt layer with ps-laser pulses. Resulting diffusive spin currents generate nonequilibrium magnetization in the Cu layer (sample I) and induce a precession of the magnetization of the Fe layer via spin transfer torque (sample II). Both responses are probed using TRMOKE. Prior experiments used [Co(0.2nm)/Pt(0.4nm)]x5/Co(0.2nm) instead of TbFe. The ferrimagnetic TbFe layer with introduces two major modifications: (1) slow demagnetization behavior, and (2) large thermal resistance. Hence, thermal spin transfer torques can be observed on significantly longer time scales. Financial support by the German Research Foundation under DFG-Grant No. KI 1893/1-1 and DFG-Grant No. AL 618/21-1 are kindly acknowledged.

  14. Spin-current-induced magnetoresistance in trilayer structure with nonmagnetic metallic interlayer

    Science.gov (United States)

    Iguchi, Ryo; Sato, Koji; Uchida, Ken-ichi; Saitoh, Eiji

    2017-04-01

    We have theoretically investigated the spin Hall magnetoresistance (SMR) and Rashba–Edelstein magnetoresistance (REMR), mediated by spin currents, in a ferrimagnetic insulator/nonmagnetic metal/heavy metal system in the diffusive regime. The magnitude of both SMR and REMR decreases with increasing thickness of the interlayer because of the current shunting effect and the reduction in spin accumulation across the interlayer. The latter contribution is due to driving a spin current and persists even in the absence of spin relaxation, which is essential for understanding the magnetoresistance ratio in trilayer structures.

  15. Spinning particles and higher spin field equations

    CERN Document Server

    Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele

    2015-01-01

    Relativistic particles with higher spin can be described in first quantization using actions with local supersymmetry on the worldline. First, we present a brief review of these actions and their use in first quantization. In a Dirac quantization scheme the field equations emerge as Dirac constraints on the Hilbert space, and we outline how they lead to the description of higher spin fields in terms of the more standard Fronsdal-Labastida equations. Then, we describe how these actions can be extended so that the propagating particle is allowed to take different values of the spin, i.e. carry a reducible representation of the Poincar\\'e group. This way one may identify a four dimensional model that carries the same degrees of freedom of the minimal Vasiliev's interacting higher spin field theory. Extensions to massive particles and to propagation on (A)dS spaces are also briefly commented upon.

  16. Slow spin relaxation in dipolar spin ice.

    Science.gov (United States)

    Orendac, Martin; Sedlakova, Lucia; Orendacova, Alzbeta; Vrabel, Peter; Feher, Alexander; Pajerowski, Daniel M.; Cohen, Justin D.; Meisel, Mark W.; Shirai, Masae; Bramwell, Steven T.

    2009-03-01

    Spin relaxation in dipolar spin ice Dy2Ti2O7 and Ho2Ti2O7 was investigated using the magnetocaloric effect and susceptibility. The magnetocaloric behavior of Dy2Ti2O7 at temperatures where the orientation of spins is governed by ``ice rules`` (T Tice) revealed thermally activated relaxation; however, the resulting temperature dependence of the relaxation time is more complicated than anticipated by a mere extrapolation of the corresponding high temperature data [1]. A susceptibility study of Ho2Ti2O7 was performed at T > Tice and in high magnetic fields, and the results suggest a slow relaxation of spins analogous to the behavior reported in a highly polarized cooperative paramagnet [2]. [1] J. Snyder et al., Phys. Rev. Lett. 91 (2003) 107201. [2] B. G. Ueland et al., Phys. Rev. Lett. 96 (2006) 027216.

  17. Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings

    Science.gov (United States)

    Chiba, Takahiro; Bauer, Gerrit E. W.; Takahashi, Saburo

    2015-08-01

    We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e., antiferromagnetically exchange-coupled spin valves, in the presence of applied magnetic fields that enforce noncolliear magnetic configurations. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferrromagnet/normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the interlayer static and dynamic exchange interactions. We predict noncollinearity-induced additional damping that is modulated by an applied magnetic field. We compare theoretical results with published experiments.

  18. Boltzmann transport calculation of collinear spin transport on short timescales

    Science.gov (United States)

    Nenno, Dennis M.; Kaltenborn, Steffen; Schneider, Hans Christian

    2016-09-01

    A spin-dependent Boltzmann transport equation is used to describe charge and spin dynamics resulting from the excitation of hot electrons in a ferromagnet/normal metal heterostructure. As the microscopic Boltzmann equation works with k -dependent distribution functions, it can describe far-from-equilibrium excitations, which are outside the scope of drift-diffusion theories. We study different scenarios for spin-dependent carrier injection into a nonmagnetic metal using an effectively two-dimensional phase space. While the charge signal is robust for various excitation schemes, the shape of the resulting spin current/density depends critically on the interplay between transport and scattering, and on the energetic distribution of the injected carriers. Our results imply that the energy dependence of the injected hot electrons has a decisive effect on the spin dynamics.

  19. Graphene spintronics: puzzling controversies and challenges for spin manipulation

    Science.gov (United States)

    Roche, Stephan; Valenzuela, Sergio O.

    2014-03-01

    This article presents the current puzzling controversy between theory and experimental results concerning the mechanisms leading to spin relaxation in graphene-based materials. On the experimental side, it is surprising that regardless of the quality of the graphene monolayer, which is characterized by the carrier mobility, the typical Hanle precession measurements yield spin diffusion times (τs) in the order of τs ˜ 0.1-1 ns (at low temperatures), which is several orders of magnitude below the theoretical estimates based on the expected low intrinsic spin-orbit coupling in graphene. The results are weakly dependent on whether graphene is deposited onto SiO2 or boron-nitride substrates or is suspended, with the mobility spanning 3 orders of magnitude. On the other hand, extraction form two-terminal magnetoresistance measurements, accounting for contact effects results in τs ˜ 0.1 µs, and corresponding diffusion lengths of about 100 µm up to room temperature. Such discrepancy jeopardizes further progress towards spin manipulation on a lateral graphene two-dimensional platform. After a presentation of basic concepts, we here discuss state-of-the-art literature and the limits of all known approaches to describe spin transport in massless-Dirac fermions, in which the effects of strong local spin-orbit coupling ceases to be accessible with perturbative approaches. We focus on the limits of conventional views of spin transport in graphene and offer novel perspectives for further progress.

  20. Universal spin-Hall conductance fluctuations in two dimensions.

    Science.gov (United States)

    Ren, Wei; Qiao, Zhenhua; Wang, Jian; Sun, Qingfeng; Guo, Hong

    2006-08-11

    We report a theoretical investigation on spin-Hall conductance fluctuation of disordered four-terminal devices in the presence of Rashba or/and Dresselhaus spin-orbital interactions in two dimensions. As a function of disorder, the spin-Hall conductance GsH shows ballistic, diffusive, and insulating transport regimes. For given spin-orbit interactions, a universal spin-Hall conductance fluctuation (USCF) is found in the diffusive regime. The value of the USCF depends on the spin-orbit coupling tso but is independent of other system parameters. It is also independent of whether Rashba or Dresselhaus or both spin-orbital interactions are present. When tso is comparable to the hopping energy t, the USCF is a universal number approximately 0.18e/4pi. The distribution of GsH crosses over from a Gaussian distribution in the metallic regime to a non-Gaussian distribution in the insulating regime as the disorder strength is increased.

  1. Carbon-13 in the world ocean during the last interglaciation and the penultimate glacial maximum: reevaluation of the possible biosphere response to the earth's climatic changes

    Energy Technology Data Exchange (ETDEWEB)

    Duplessy, J.C.; Shackleton, N.J.

    1984-01-01

    A reconstruction of the geographic distribution of carbon-13 in benthic foraminifera that lived during the Last Interglacial period and the Penultimate glaciation provides a global budget of the oceanic delta/sup 13/C during these climatic extremes. During the penultimate glacial to interglacial transition, the mean delta/sup 13/C change of the total CO/sub 2/ dissolved in the ocean was 0.3 per thousand, about half the estimate of Shackleton (1977). This change is equivalent to a transfer of about 4 x 10/sup 17/g of carbon from the biosphere to the ocean.

  2. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  3. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  4. Unidimensional diffusion of long n-alkanes in nanoporous channels.

    Science.gov (United States)

    Jobic, Hervé; Farago, Bela

    2008-11-07

    The diffusion of long n-alkanes confined in silicalite zeolite has been studied with the neutron spin-echo technique. Since only isotropic diffusion has been measured so far with this technique, we derive the intermediate scattering functions for one-dimensional (1D) and single-file diffusion. The 1D diffusion model explains the results obtained for long n-alkanes in the intersecting channel system of silicalite. A redistribution of the molecules is observed at high temperatures, supporting the presence of internal barriers within the zeolite crystals.

  5. Quantum Spin Gyroscope

    Science.gov (United States)

    2015-07-15

    Progress Report (ONR Award No. N00014-14-1-0804) Quantum Spin Gyroscope August 2014-July 2015 Report Type: Annual Report Primary Contact E-mail... Quantum Spin Gyroscope Grant/Contract Number: N00014-14-1-0804 Principal Investigator Name: Paola Cappellaro Program Manager: Richard Tommy Willis...required large volumes. Our project aims at overcoming these drawbacks by developing a novel solid-state quantum spin gyro- scope associated with the

  6. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  7. Picosecond Spin Seebeck Effect

    Science.gov (United States)

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.

    2017-02-01

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect in normal metal /Y3Fe5 O12 bilayers driven by an interfacial temperature difference between electrons and magnons. The measured time evolution of spin accumulation induced by laser excitation indicates transfer of angular momentum across normal metal /Y3Fe5 O12 interfaces on a picosecond time scale, too short for contributions from a bulk temperature gradient in an yttrium iron garnet. The product of spin-mixing conductance and the interfacial spin Seebeck coefficient determined is of the order of 108 A m-2 K-1 .

  8. Picosecond spin Seebeck effect

    OpenAIRE

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.

    2016-01-01

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is...

  9. Low-Resistance Spin Injection into Silicon Using Graphene Tunnel Barriers

    Science.gov (United States)

    2012-11-01

    generate high local magnetoresistance. Reducing the resistance–area product also has a positive effect on the electrical properties of the spin device, as...injection through an Fe/ AlGaAs Schottky barrier. Appl. Phys. Lett. 82, 4092–4094 (2003). 14. Motsnyi, V. F. et al. Electrical spin injection in a ferromagnet...37. Sze, S. M. Physics of Semiconductor Devices 29 (Wiley, 1981). 38. Dery, H., Cywinski, L. & Sham, L. J. Lateral diffusive spin transport in

  10. Large extrinsic spin Hall effect in Au-Cu alloys by extensive atomic disorder scattering

    Science.gov (United States)

    Zou, L. K.; Wang, S. H.; Zhang, Y.; Sun, J. R.; Cai, J. W.; Kang, S. S.

    2016-01-01

    Spin Hall angle, which denotes the conversion efficiency between spin and charge current, is a key parameter in the pure spin current phenomenon. The search for materials with large spin Hall angle is indeed important for scientific interest and potential application in spintronics. Here the large enhanced spin Hall effect (SHE) of Au-Cu alloy is reported by investigating the spin Seebeck effect, spin Hall anomalous Hall effect, and spin Hall magnetoresistance of the Y3F e5O12 (YIG)/A uxC u1 -x hybrid structure over the full composition. At the near equiatomic Au-Cu composition with maximum atomic disorder scattering, the spin Hall angle of the Au-Cu alloy increases by two to three times together with a moderate spin diffusion length in comparison with Au. The longitudinal spin Seebeck voltage and the spin Hall magnetoresistance ratio also increase by two to three times. More importantly, no evidence of anomalous Hall effect is observed in all YIG/Au-Cu samples, in contrast to the cases of other giant SHE materials Pt(Pd), Ta, and W. This behavior makes Au-Cu free from any suspicion of the magnetic proximity effect involved in the hybrid structure, and thus the Au-Cu alloy can be an ideal material for pure spin current study.

  11. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor.

    Science.gov (United States)

    Jaworski, C M; Yang, J; Mack, S; Awschalom, D D; Heremans, J P; Myers, R C

    2010-11-01

    Reducing the heat generated in traditional electronics is a chief motivation for the development of spin-based electronics, called spintronics. Spin-based transistors that do not strictly rely on the raising or lowering of electrostatic barriers can overcome scaling limits in charge-based transistors. Spin transport in semiconductors might also lead to dissipation-less information transfer with pure spin currents. Despite these thermodynamic advantages, little experimental literature exists on the thermal aspects of spin transport in solids. A recent and surprising exception was the discovery of the spin-Seebeck effect, reported as a measurement of a redistribution of spins along the length of a sample of permalloy (NiFe) induced by a temperature gradient. This macroscopic spatial distribution of spins is, surprisingly, many orders of magnitude larger than the spin diffusion length, which has generated strong interest in the thermal aspects of spin transport. Here, the spin-Seebeck effect is observed in a ferromagnetic semiconductor, GaMnAs, which allows flexible design of the magnetization directions, a larger spin polarization, and measurements across the magnetic phase transition. This effect is observed even in the absence of longitudinal charge transport. The spatial distribution of spin currents is maintained across electrical breaks, highlighting the local nature of this thermally driven effect.

  12. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Luyi [Univ. of California, Berkeley, CA (United States)

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  13. Toward Ultrafast Spin Dynamics in Low Dimensional Semiconductors

    Science.gov (United States)

    Chiu, Yi-Hsin

    Since the discovery of long spin relaxation times of itinerant electrons up to 100 nanoseconds and spin diffusion lengths over 100 mum in GaAs, extraordinary advances in semiconductor spintronics have been made in the past one and half decades. Incorporating spins in semiconductors requires the following essential capabilities: (i) injection of spins into semiconductors, (ii) manipulation of spins, and (iii) sensitive detection of spin coherence. The solutions to these challenges lie in a deeper understanding of spin interactions and spin relaxation in semiconductors as well as appropriate tools to probe spin dynamics. In particular, recent experiments have suggested the important role of dimensionality in spin dynamics. For example, spin-orbit interaction, the dominant source of spin relaxation in most II-VI and III-V semiconductors, has been shown to be significantly suppressed in reduced dimensions. Low-dimensional semiconductors are therefore appealing candidates for exploring spin physics and device applications. This dissertation aims at exploring spin dynamics in low dimensional semiconductor systems using time-resolved optical techniques. The time resolution allows for a direct measurement of the equilibrium and non-equilibrium carrier spins and various spin interactions in the time domain. Optical approaches are also a natural fit for probing optically active nanostructures where electric approaches can often encounter challenges. For instance, fabricating electric contacts with nanostructures is a proven challenge because of their reduced size and modified electronic structure. This dissertation is divided into three sections targeting an ultimate goal of employing optical methods to explore spin dynamics in low dimensional semiconductors. First, the time-resolved Kerr rotation technique is employed to study spin relaxation in Fe/MgO/GaAs heterostructures. The results reveal rich interactions between the GaAs electron spins, nuclear spins, and the

  14. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  15. Operator Spin Foam Models

    CERN Document Server

    Bahr, Benjamin; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2010-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes...

  16. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  17. Antiferromagnetic Spin Seebeck Effect

    Science.gov (United States)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-01

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  18. Single spin magnetic resonance

    Science.gov (United States)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  19. Spin-dependent quantum transport in nanoscaled geometries

    Science.gov (United States)

    Heremans, Jean J.

    2011-10-01

    We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).

  20. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  1. Antiferromagnetic spin Seebeck Effect

    OpenAIRE

    Wu, SM; W. Zhang; Kc, A; Borisov, P.; Pearson, JE; Jiang, JS; Lederman, D.; Hoffmann, A.; Bhattacharya, A

    2015-01-01

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30  nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop t...

  2. Fractionalized spin-wave continuum in kagome spin liquids

    Science.gov (United States)

    Mei, Jia-Wei; Wen, Xiao-Gang

    Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.

  3. Spin transport at interfaces with spin-orbit coupling: Formalism

    Science.gov (United States)

    Amin, V. P.; Stiles, M. D.

    2016-09-01

    We generalize magnetoelectronic circuit theory to account for spin transfer to and from the atomic lattice via interfacial spin-orbit coupling. This enables a proper treatment of spin transport at interfaces between a ferromagnet and a heavy-metal nonmagnet. This generalized approach describes spin transport in terms of drops in spin and charge accumulations across the interface (as in the standard approach), but additionally includes the responses from in-plane electric fields and offsets in spin accumulations. A key finding is that in-plane electric fields give rise to spin accumulations and spin currents that can be polarized in any direction, generalizing the Rashba-Edelstein and spin Hall effects. The spin accumulations exert torques on the magnetization at the interface when they are misaligned from the magnetization. The additional out-of-plane spin currents exert torques via the spin-transfer mechanism on the ferromagnetic layer. To account for these phenomena we also describe spin torques within the generalized circuit theory. The additional effects included in this generalized circuit theory suggest modifications in the interpretations of experiments involving spin-orbit torques, spin pumping, spin memory loss, the Rashba-Edelstein effect, and the spin Hall magnetoresistance.

  4. Spin Hall and spin Nernst effects in graphene with intrinsic and Rashba spin-orbit interactions

    Institute of Scientific and Technical Information of China (English)

    Zhu Guo-Bao

    2012-01-01

    The spin Hall and spin Nernst effects in graphene are studied based on Green's function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.

  5. Local translational diffusion rates of membranous Na+,K(+)-ATPase measured by saturation transfer ESR spectroscopy.

    OpenAIRE

    Esmann, M.; Marsh, D.

    1992-01-01

    Diffusion-controlled Heisenberg spin exchange between spin-labeled Na+,K(+)-ATPase [ATP phosphohydrolase (Na+/K(+)-transporting), EC 3.6.1.37] proteins has been studied by saturation transfer ESR spectroscopy in reconstituted membranes. Na+,K(+)-ATPase from the salt gland of Squalus acanthias was solubilized in a polyoxyethylene ether detergent, octa(ethylene glycol) dodecyl monoether. Part of the solubilized enzyme was covalently spin-labeled with a nitroxide derivative of indanedione and re...

  6. To Spin or Not to Spin?

    Institute of Scientific and Technical Information of China (English)

    Tina Boikos

    2008-01-01

    @@ The alarm has just gone off. Do I really have to get up? I wonder. Originally, signing up for an early-morning spinning class seemed like a good idea; it jump-starts the day with some well-needed exercise.

  7. Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State

    Science.gov (United States)

    Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon

    2016-10-01

    Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.

  8. Diffusion imaging with stimulated echoes: signal models and experiment design

    CERN Document Server

    Alexander, Daniel C

    2013-01-01

    Purpose: Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared to $\\ttwo$. It is important therefore for biomedical diffusion imaging applications at 7T and above where $\\ttwo$ is short. However, imaging gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE, but are often ignored during post-processing. We demonstrate here that this can severely bias parameter estimates. Method: We present models for the STEAM signal for free and restricted diffusion that account for crusher and slice-select (butterfly) gradients to avoid such bias. The butterfly gradients also disrupt experiment design, typically by skewing gradient-vectors towards the slice direction. We propose a simple compensation to the diffusion gradient vector specified to the scanner that counterbalances the butterfly gradients to preserve the intended experiment design. Results: High-field data fixed monkey brain e...

  9. Explicit Spin Coordinates

    CERN Document Server

    Hunter, G; Hunter, Geoffrey; Schlifer, Ian

    2005-01-01

    The recently established existence of spherical harmonic functions, $Y_\\ell^{m}(\\theta,\\phi)$ for half-odd-integer values of $\\ell$ and $m$, allows for the introduction into quantum chemistry of explicit electron spin-coordinates; i.e. spherical polar angles $\\theta_s, \\phi_s$, that specify the orientation of the spin angular momentum vector in space. In this coordinate representation the spin angular momentum operators, $S^2, S_z$, are represented by the usual differential operators in spherical polar coordinates (commonly used for $L^2, L_z$), and their electron-spin eigenfunctions are $\\sqrt{\\sin\\theta_s} \\exp(\\pm\\phi_s/2)$. This eigenfunction representation has the pedagogical advantage over the abstract spin eigenfunctions, $\\alpha, \\beta,$ that ``integration over spin coordinates'' is a true integration (over the angles $\\theta_s, \\phi_s$). In addition they facilitate construction of many electron wavefunctions in which the electron spins are neither parallel nor antiparallel, but inclined at an interme...

  10. SPIN Tutorial: How to Become a SPIN Doctor

    NARCIS (Netherlands)

    Ruys, T.C.; Bosnacki, D.; Leue, S.

    2002-01-01

    SPIN is a model checker for the verification of software systems. SPIN uses a high level language called PROMELA to specify systems descriptions. The goal of this tutorial is to introduce novice users to both PROMELA and SPIN. The tutorial itself is divided into two parts. The BASIC SPIN part is tar

  11. Representation of Spin Group Spin(p, q)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The representation (&)(p, q) of spin group Spin(p, q) in any dimensional space is given by induction, and the relation between two representations, which are obtained in two kinds of inductions from Spin(p, q) to Spin(p + 1, q + 1)are studied.

  12. Theory of Intrinsic Spin Torque Due to Interface Spin-Orbit Coupling

    Science.gov (United States)

    Kalitsov, Alan; Chshiev, Mairbek; Butler, William; Mryasov, Oleg

    2014-03-01

    The effect of intrinsic spin torque due to spin-orbit coupling (SOC) at the interface between thin ferromagnetic film and non-magnetic metal has attracted significant fundamental and applied research interest. We report quantum theory of SOC driven spin torque (SOT) within the Rashba model of SOC and two-band tight binding (TB) Hamiltonian including s-d exchange interactions (J). We employ the non-equilibrium Green Function formalism and find that SOT to the first order in SOC has symmetry consistent with the earlier quasi-classical diffusive theory. An obvious benefit of the proposed approach is the expression for the SOT given in terms of TB parameters which enables a physically transparent analysis of the dependencies of SOT on material specific parameters such as Rashba SOC constant, hopping integral, Fermi level and J. On the basis of analytical and numerical results we discuss trends in strength of SOT and its correlation with the Spin Hall conductivity. This work was supported in part by C-SPIN, STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  13. Spin transition in [Fe

    Science.gov (United States)

    Garcia, Y.; Ksenofontov, V.; Campbell, S. J.; Lord, J. S.; Boland, Y.; Gütlich, P.

    2004-12-01

    The reversible thermal spin transition which occurs in [Fe(phen)2(NCS)2] around T1/2 177 K has been investigated by muon spin relaxation (μSR) (10-280 K). The depolarisation curves are well described by two Lorentzian lines represent fast and slow components in the decay curves, with the initial asymmetry parameter of the fast component found to track the spin transition in [Fe(phen)2(NCS)2]. Comparison of zero-field and transverse field (20 Oe) μSR measurements shows that diamagnetic muonic species occur over the entire temperature range.

  14. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  15. Quantum Spin Hall Effect

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  16. Correlation Functions and Spin

    CERN Document Server

    Tyc, T

    2000-01-01

    The k-electron correlation function of a free chaotic electron beam is derived with the spin degree of freedom taken into account. It is shown that it can be expressed with the help of correlation functions for a polarized electron beam of all orders up to k and the degree of spin polarization. The form of the correlation function suggests that if the electron beam is not highly polarized, observing multi-particle correlations should be difficult. The result can be applied also to chaotic photon beams, the degree of spin polarization being replaced by the degree of polarization.

  17. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  18. Method for estimating spin-spin interactions from magnetization curves

    Science.gov (United States)

    Tamura, Ryo; Hukushima, Koji

    2017-02-01

    We develop a method to estimate the spin-spin interactions in the Hamiltonian from the observed magnetization curve by machine learning based on Bayesian inference. In our method, plausible spin-spin interactions are determined by maximizing the posterior distribution, which is the conditional probability of the spin-spin interactions in the Hamiltonian for a given magnetization curve with observation noise. The conditional probability is obtained with the Markov chain Monte Carlo simulations combined with an exchange Monte Carlo method. The efficiency of our method is tested using synthetic magnetization curve data, and the results show that spin-spin interactions are estimated with a high accuracy. In particular, the relevant terms of the spin-spin interactions are successfully selected from the redundant interaction candidates by the l1 regularization in the prior distribution.

  19. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: zwei@anl.gov; Jungfleisch, Matthias B.; Jiang, Wanjun; Fradin, Frank Y.; Pearson, John E.; Hoffmann, Axel, E-mail: hoffmann@anl.gov [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Sklenar, Joseph; Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-05-07

    Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts as a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. We apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We quantify the spin Hall effects in Ir and W using the conventional bilayer structures and discuss the self-induced voltage in a single layer of ferromagnetic permalloy. Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.

  20. Resolving and measuring diffusion in complex interfaces: Exploring new capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This exploratory LDRD targeted the use of a new high resolution spectroscopic diffusion capabilities developed at Sandia to resolve transport processes at interfaces in heterogeneous polymer materials. In particular, the combination of high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy with pulsed field gradient (PFG) diffusion experiments were used to directly explore interface diffusion within heterogeneous polymer composites, including measuring diffusion for individual chemical species in multi-component mixtures. Several different types of heterogeneous polymer systems were studied using these HRMAS NMR diffusion capabilities to probe the resolution limitations, determine the spatial length scales involved, and explore the general applicability to specific heterogeneous systems. The investigations pursued included a) the direct measurement of the diffusion for poly(dimethyl siloxane) polymer (PDMS) on nano-porous materials, b) measurement of penetrant diffusion in additive manufactures (3D printed) processed PDMS composites, and c) the measurement of diffusion in swollen polymers/penetrant mixtures within nano-confined aluminum oxide membranes. The NMR diffusion results obtained were encouraging and allowed for an improved understanding of diffusion and transport processes at the molecular level, while at the same time demonstrating that the spatial heterogeneity that can be resolved using HRMAS NMR PFG diffusion experiment must be larger than ~μm length scales, expect for polymer transport within nanoporous carbons where additional chemical resolution improves the resolvable heterogeneous length scale to hundreds of nm.

  1. ANALYSIS ON THE SPINNING FORCES IN FLEXIBLE SPINNING OF CONES

    Institute of Scientific and Technical Information of China (English)

    Xia Qinxiang; Susumu Shima

    2003-01-01

    Flexible spinning is a new type of spinning process where spin-forming is performed without using a mandrel. Combining shearing and rolling processes, the calculation formulas of thespinning forces in flexible spinning of cones is presented. The effects of the main processing parameters, such as gripping force G applied to the blank by the inner roller, the feed rate of rollersfand the roundness radius of outer roller ro, on the spinning forces are analyzed experimentally and theoretically.

  2. International Spin Physics 2014 Summary

    CERN Document Server

    Milner, Richard G

    2015-01-01

    The Stern-Gerlach experiment and the origin of electron spin are described in historical context. SPIN 2014 occurs on the fortieth anniversary of the first International High Energy Spin Physics Symposium at Argonne in 1974. A brief history of the international spin conference series is presented.

  3. On Nonlinear Higher Spin Curvature

    OpenAIRE

    Manvelyan, Ruben(Yerevan Physics Institute, Alikhanian Br. St. 2, Yerevan, 0036, Armenia); Mkrtchyan, Karapet; Rühl, Werner; Tovmasyan, Murad

    2011-01-01

    We present the first nonlinear term of the higher spin curvature which is covariant with respect to deformed gauge transformations that are linear in the field. We consider in detail the case of spin 3 after presenting spin 2 as an example, and then construct the general spin s quadratic term of the deWit-Freedman curvature.

  4. On nonlinear higher spin curvature

    Energy Technology Data Exchange (ETDEWEB)

    Manvelyan, Ruben, E-mail: manvel@physik.uni-kl.d [Department of Physics, Erwin Schroedinger Strasse, Technical University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern (Germany); Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036 Yerevan (Armenia); Mkrtchyan, Karapet, E-mail: karapet@yerphi.a [Department of Physics, Erwin Schroedinger Strasse, Technical University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern (Germany); Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036 Yerevan (Armenia); Ruehl, Werner, E-mail: ruehl@physik.uni-kl.d [Department of Physics, Erwin Schroedinger Strasse, Technical University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern (Germany); Tovmasyan, Murad, E-mail: mtovmasyan@ysu.a [Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036 Yerevan (Armenia)

    2011-05-09

    We present the first nonlinear term of the higher spin curvature which is covariant with respect to deformed gauge transformations that are linear in the field. We consider the case of spin 3 after presenting spin 2 as an example, and then construct the general spin s quadratic term of the de Wit-Freedman curvature.

  5. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  6. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  7. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance.

    Science.gov (United States)

    Lopes, Thiago I B; Ribeiro, Marilene D M M; Ming, Chiu C; Grimaldi, Renato; Gonçalves, Lireny A G; Marsaioli, Anita J

    2016-12-01

    The nutritional and organoleptic attributes of oils can proceed via interesterification of oils blends catalyzed by enzymes or chemicals. Enzymatic interesterification processes are preferred due the regiospecific outcome. Traditionally, monitoring of distribution of fatty acids (FA) in glycerol backbone is performed by enzymatic and chromatographic methods that are time-consuming, involving a series of chemical manipulations employing large volumes of organic solvents. Alternatively, carbon-13 nuclear magnetic resonance ((13)C NMR) is a fast and reliable technique that could be applied to determine the saturated and unsaturated FA distribution of the triacylglycerols (TAGs) present in high oleic sunflower oil (SO) and fully hydrogenated high oleic sunflower oil (HSO) blends and their interesterification products. The enzymatic interesterification was conducted employing the immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM), the results show that the process was not completely regiospecific at sn-1,3 positions, due to the spontaneous acyl migration from position sn-2 to sn-1,3.

  8. A Generalized Kawasaki-Type Dynamics with Spin-Pair Redistribution Mechanism

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 朱涵

    2002-01-01

    We generalize Kawasaki's dynamics, spin-pair exchange mechanism, to a spin-pair redistribution mechanism,and we present a normalized redistribution probability. As an application, we treat the one-dimensional kinetic Gaussian model and obtain the exact diffusion equation and the temperature-dependent diffusion coefficient. We find that the diffusion process can slow down infinitely near the critical point and obtain the critical dynamic exponent z = 2 that is independent of the assumed mechanism, either Glauber-type or Kawasaki-type.

  9. Spin Hall effects in mesoscopic Pt films with high resistivity

    Science.gov (United States)

    Qin, Chuan; Luo, Yongming; Zhou, Chao; Cai, Yunjiao; Jia, Mengwen; Chen, Shuhan; Wu, Yizheng; Ji, Yi

    2016-10-01

    The energy efficiency of the spin Hall effects (SHE) can be enhanced if the electrical conductivity is decreased without sacrificing the spin Hall conductivity. The resistivity of Pt films can be increased to 150-300 µΩ · cm by mesoscopic lateral confinement, thereby decreasing the conductivity. The SHE and inverse spin Hall effects (ISHE) in these mesoscopic Pt films are explored at 10 K by using the nonlocal spin injection/detection method. All relevant physical quantities are determined in situ on the same substrate, and a quantitative approach is developed to characterize all processes effectively. Extensive measurements with various Pt thickness values reveal an upper limit for the Pt spin diffusion length: {λ\\text{pt}}   ⩽  0.8 nm. The average product of {λ\\text{pt}} and the Pt spin Hall angle {α\\text{H}} is substantial: {α\\text{H}}{λ\\text{pt}}   =  (0.142  ±  0.040) nm for 4 nm thick Pt, though a gradual decrease is observed at larger Pt thickness. The results suggest enhanced spin Hall effects in resistive mesoscopic Pt films.

  10. Diffusion Weighted and Trace Images

    Directory of Open Access Journals (Sweden)

    Helen Nayeri

    2009-01-01

    Full Text Available   "nThe signal intensity in MRI depends on the proton density, T1, T2, and T2* relaxation processes of any ensemble of the spins within each imaging element. Another important contrast mechanism in MRI is signal loss caused by proton dephasing in the presence of coherent and incoherent flow. Diffusion refers to the dispersion of molecules from a region of high concentration to one of low concentration by random molecular or “Brownian” motion. "nDWI is based on the microscopic movement (Brownian motion of water molecules. The motion of water molecules, under the influence of diffusion-sensitizing gradient pulses, causes irreversible signal attenuation (hypointensity on DWI. In restricted diffusion (like acute infarction the signal attenuation is decreased (hyperintensity on DWI. "nIn biological tissues, water diffusion is not truly random. Structural barriers such as membranes and cellular elements, as well as chemical interactions, restrict Brownian motion in 3-D space. Additionally, disturbances associated with tissue perfusion and respiration can alter the biological environment. So it is termed “apparent” because the measured value does not indicate pure diffusion, but reflects capillary perfusion and other processes.  ADC (Apparent Diffusion Coefficient maps are typically created by combining at least two DWIs that are differently sensitized to diffusion (different b-values but which remain identical with respect to the other imaging parameters (TR and TE. Diffusion-weighted images are a combination of diffusion information and T2 signal intensity. In order to avoid the hyperintensity effect of T2 signal intensity (T2 shine-through, DW images should be compared with ADC images. ADC maps demonstrate contrast based purely on diffusion differences.   "nThe apparent diffusion in tissue is slowed if the protons are “hindered” or slowed in their random motion by the presence of cell membranes, walls, and macromolecules but are not

  11. Litter-Spinning Retarders

    Science.gov (United States)

    Wilson, John C.

    1995-01-01

    Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.

  12. Spin polarizability of hyperons

    Indian Academy of Sciences (India)

    K B Vijaya Kumar

    2014-11-01

    We review the recent progress of the theoretical understanding of spin polarizabilities of the hyperon in the framework of (3) heavy baryon chiral perturbation theory (HBChPT). We present the results of a systematic leading-order calculation of hyperon Compton scattering and extract the forward spin polarizability (0) of hyperons. The results obtained for $_0$ in the case of nucleons agree with the known results of (2) HBChPT when kaon loops are not considered.

  13. Anomalous chain diffusion in unentangled model polymer nanocomposites

    NARCIS (Netherlands)

    Schneider, G.; Nusser, K.; Neueder, S.; Brodeck, M.; Willner, L.; Farago, B.; Holderer, O.; Briels, W.J.; Richter, D.

    2013-01-01

    We studied unentangled poly(ethylene-alt-propylene) (PEP) in a composite with hydrophobic silica particles as a function of the filler concentration. Our neutron spin echo (NSE) experiments cover both the internal dynamics as well as the center of mass diffusion beyond the Rouse time. The key experi

  14. Spin transport in nanoscale spin valves and magnetic tunnel junctions

    Science.gov (United States)

    Patibandla, Sridhar

    Spintronics or electronics that utilizes the spin degree of freedom of a single charge carrier (or an ensemble of charge carriers) to store, process, sense or communicate data and information is a rapidly burgeoning field in electronics. In spintronic devices, information is encoded in the spin polarization of a single carrier (or multiple carriers) and the spin(s) of these carrier(s) are manipulated for device operation. This strategy could lead to devices with low power consumption. This dissertation investigates spin transport in one dimensional and two dimensional semiconductors, with a view to applications in spintronic devices. This dissertation is arranged as follows: Chapter 1 gives a detailed introduction and necessary background to understand aspects of spin injection into a semiconductor from a spin polarized source such as a ferromagnet, and spin polarized electron transport in the semiconductor. Chapter 2 discusses the nanoporous alumina technique that is employed to fabricate nanowires and nanowire spin valves for the investigation of spin transport in 1D semiconductors. Chapter 3 investigates the spin transport in quasi one-dimensional spin valves with germanium spacer layer. These spin valves with 50nm in diameter and 1 mum length were fabricated using the porous alumina technique. Spin transport in nanoscale germanium spin valves was demonstrated and the spin relaxation lengths and the spin relaxation times were calculated. Chapter 4 discusses spin transport studies conducted in bulk high purity germanium with a view to comparing spin relaxation mechanisms in low mobility nanowires and high mobility bulk structures. Lateral spin valve with tunnel injectors were employed in this study and the spin transport measurements were conducted at various temperatures. The spin relaxation rates were measured as a function of temperature which allowed us to distinguish between two different mechanisms---D'yakonov-Perel' and Elliott-Yafet---that dominate spin

  15. Observation of spin-wave Doppler shift in Co90Fe10/Ru micro-strips for evaluating spin polarization

    Science.gov (United States)

    Sugimoto, Satoshi; Rosamond, Mark C.; Linfield, Edmund H.; Marrows, Christopher H.

    2016-09-01

    The current-induced spin-wave Doppler shift has been investigated for Co90Fe10 films, with and without under- and overlayers of Ru, aiming to obtain quantitative insights into the value of spin polarization of the diffusive electrical currents flowing in this material. This extends the use of spin-wave Doppler shift spectroscopy beyond the study of permalloy to other soft magnetic materials suitable for use in spintronic applications such as racetrack memories. The Damon-Eshbach spin-wave mode was employed, and a control experiment of permalloy yielded a value of spin polarization of P = 0.44 ± 0.03 for that material. An extended method to properly evaluate spin-wave Doppler shifts is developed that takes account of the non-negligible Oersted fields that are generated by the current density asymmetry caused by conducting under- or overlayers. The values of spin polarization for various Co90Fe10-based structures are found to lie in the range of 0.3-0.35, only slightly less than in permalloy.

  16. Spin Hall effect induced spin transfer through an insulator

    Science.gov (United States)

    Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2016-09-01

    When charge current passes through a normal metal that exhibits the spin Hall effect, spin accumulates at the edge of the sample in the transverse direction. We predict that this spin accumulation, or spin voltage, enables quantum tunneling of spin through an insulator or vacuum to reach a ferromagnet without transferring charge. In a normal metal/insulator/ferromagnetic insulator trilayer (such as Pt/oxide/YIG), the quantum tunneling explains the spin-transfer torque and spin pumping that exponentially decay with the thickness of the insulator. In a normal metal/insulator/ferromagnetic metal trilayer (such as Pt/oxide/Co), the spin transfer in general does not decay monotonically with the thickness of the insulator. Combining with the spin Hall magnetoresistance, this tunneling mechanism points to the possibility of a tunneling spectroscopy that can probe the magnon density of states of a ferromagnetic insulator in an all-electrical and noninvasive manner.

  17. Spin photonics and spin-photonic devices with dielectric metasurfaces

    CERN Document Server

    Liu, Yachao; Ke, Yougang; Zhou, Xinxing; Luo, Hailu; Wen, Shuangchun

    2015-01-01

    Dielectric metasurfaces with spatially varying birefringence and high transmission efficiency can exhibit exceptional abilities for controlling the photonic spin states. We present here some of our works on spin photonics and spin-photonic devices with metasurfaces. We develop a hybrid-order Poincare sphere to describe the evolution of spin states of wave propagation in the metasurface. Both the Berry curvature and the Pancharatnam-Berry phase on the hybrid-order Poincare sphere are demonstrated to be proportional to the variation of total angular momentum. Based on the spin-dependent property of Pancharatnam-Berry phase, we find that the photonic spin Hall effect can be observed when breaking the rotational symmetry of metasurfaces. Moreover, we show that the dielectric metasurfaces can provide great flexibility in the design of novel spin-photonic devices such as spin filter and spin-dependent beam splitter.

  18. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  19. In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J;

    1992-01-01

    Measurement of water self-diffusion in the brain in 25 patients with multiple sclerosis was performed by magnetic resonance imaging. Quantitative diffusion measurements were obtained using single spin-echo pulse sequences with pulsed magnetic field gradients of different magnitude. Twenty...

  20. Electrical detection of spin transport in Si two-dimensional electron gas systems

    Science.gov (United States)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  1. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Adelnia, Fatemeh; Lascialfari, Alessandro [Dipartimento di Fisica, Università degli Studi di Milano and INSTM, Milano (Italy); Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Ammannato, Luca; Caneschi, Andrea; Rovai, Donella [Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, Firenze (Italy); Winpenny, Richard; Timco, Grigore [School of Chemistry, The University of Manchester, Manchester (United Kingdom); Corti, Maurizio, E-mail: maurizio.corti@unipv.it; Borsa, Ferdinando [Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia (Italy)

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  2. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    Science.gov (United States)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.

  3. Direct X-Ray Imaging of Transient Spin Accumulation near a Ferromagnet/Nonmagnet Interface

    Science.gov (United States)

    Chen, Zhao; Kukreja, Roopali; Bonetti, Stefano; Backes, Dirk; Kent, Andrew; Katine, Jordan; Durr, Hermann; Ohldag, Hendrik; Stohr, Joachim

    2015-03-01

    The physics of spin transport across a ferromagnet/nonmagnet interface is not well understood, even though such interfaces are common in spintronic devices. We use time-resolved x-ray spectro-microscopy to directly image transient spin accumulation in a Cu film caused by an injected spin current from an adjacent Co film. The measurement uses element-specific, circularly polarized x-rays detected via a scanning transmission x-ray microscope (STXM) in conjunction with 1.28MHz temporal modulation for remarkably increased x-ray sensitivity to spin signals. The transient moments per atom within the spin diffusion length from the interface were measured to be 8 x 10-5μB per Cu atom and 1.5 x 10-4μB per Co atom. The transient spin signal in Cu is found to be confined to states at the Fermi level, as expected, but we also observe a second peak of the same spin polarization in the spin accumulation signal that is 0.7eV higher than Fermi. The transient moments in the 28nm thick Cu layer exhibit the same spin sign as both the hybridization-induced static spins in Cu at the Cu/Co interface and the spins in the Co film. In contrast, the transient moments in the Co layer have the opposite sign, consistent with magnetization depleting from the Co polarizing layer.

  4. Magnetocaloric effect in quantum spin-s chains

    Directory of Open Access Journals (Sweden)

    A. Honecker

    2009-01-01

    Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.

  5. A Student Diffusion Activity

    Science.gov (United States)

    Kutzner, Mickey; Pearson, Bryan

    2017-02-01

    Diffusion is a truly interdisciplinary topic bridging all areas of STEM education. When biomolecules are not being moved through the body by fluid flow through the circulatory system or by molecular motors, diffusion is the primary mode of transport over short distances. The direction of the diffusive flow of particles is from high concentration toward low concentration.

  6. Angular dependence and symmetry of Rashba spin torque in ferromagnetic heterostructures

    KAUST Repository

    Ortiz Pauyac, Christian

    2013-06-26

    In a ferromagnetic heterostructure, the interplay between Rashba spin-orbit coupling and exchange splitting gives rise to a current-driven spin torque. In a realistic device setup, we investigate the Rashba spin torque in the diffusive regime and report two major findings: (i) a nonvanishing torque exists at the edges of the device even when the magnetization and effective Rashba field are aligned; (ii) anisotropic spin relaxation rates driven by the Rashba spin-orbit coupling assign the spin torque a general expression T = T y (θ) m × (y × m) + T y (θ) y × m + T z (θ) m × (z × m) + T z (θ) z × m, where the coefficients T, y, z depend on the magnetization direction. Our results agree with recent experiments. © 2013 AIP Publishing LLC.

  7. Spin- and valley-polarized transport in a monolayer of MoS2

    Science.gov (United States)

    Krstajić, P. M.; Vasilopoulos, P.; Tahir, M.

    2016-08-01

    We investigate dc and ac transport in a monolayer of MoS2 in the presence of an effective mass asymmetry, a momentum-dependent term, and an out-of plane or in-plane Zeeman term. Analytical results are presented for both dc and ac conductivities in the framework of linear response theory. We show that the spin-Hall conductivity exhibits a strong dependence on the strength of the spin-orbit interaction while both spin- and valley-Hall conductivities show a very weak dependence on the temperature. The sum of the well separated spin-up and spin-down components of the diffusive dc longitudinal conductivity is linear in the electron concentration though the Fermi level is a nonmonotonic function of it. Further, we evaluate the power absorption spectrum and assess its dependence on the spin and valley degrees of freedom as well as on the scattering which is essential at low frequencies.

  8. Low-temperature Spin-Ice State of Quantum Heisenberg Magnets on Pyrochlore Lattice

    Science.gov (United States)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    We establish that the isotropic spin-1/2 Heisenberg antiferromagnet on pyrochlore lattice enters a spin-ice state at low, but finite, temperature. Our conclusions are based on results of the bold diagrammatic Monte Carlo simulations that demonstrate good convergence of the skeleton series down to temperature T = J/6. The ``smoking gun'' identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for static spin-spin correlation function between the quantum Heisenberg and classical Heisenberg/Ising models at all accessible temperatures. In particular, at T/J = 1/6, the momentum dependence shows a characteristic bow-tie pattern with pinch points. By numerical analytical continuation method, we also obtain the dynamic structure factor at real frequencies, showing a diffusive spinon dynamics at pinch points and spin wave continuum along the nodal lines.?

  9. Tuning carrier mobility without spin transport degrading in copper-phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, S. W.; Wang, P.; Chen, B. B.; Zhou, Y. [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Ding, H. F., E-mail: hfding@nju.edu.cn, E-mail: dwu@nju.edu.cn; Wu, D., E-mail: hfding@nju.edu.cn, E-mail: dwu@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2015-07-27

    We demonstrate more than one order of magnitude of carrier mobility tuning for the copper-phthalocyanine (CuPc) without spin transport degrading in organic spin valve devices. Depending on the preparation conditions, organic spin valves with the CuPc film mobility of 5.78 × 10{sup −3} and 1.11 × 10{sup −4} cm{sup 2}/V s are obtained for polycrystalline and amorphous CuPc, respectively. Strikingly, the spin diffusion lengths are almost the same regardless of their mobilities that are ∼50 times different, which is in sharp contrast with previous prediction. These findings directly support that the spin relaxation in CuPc is dominated by the spin-orbit coupling.

  10. From Spin Glass to Spin Liquid Ground States in Pyrochlore Molybdates

    Science.gov (United States)

    Clark, Lucy

    Magnetic pyrochlores continue to generate intense interest due to the wealth of interesting behaviours that they can display as a result of their highly frustrated nature. Here we will present our study of the molybdate pyrochlore Lu2Mo2O7, which contains non-magnetic Lu3+ and an antiferromagnetic network of corner-sharing tetrahedra of Mo4+ 4d2 S = 1 ions. Magnetic susceptibility data show that Lu2Mo2O7 enters an unconventional spin glass state at Tf ~ 16 K that displays a quadratic dependence of the low temperature magnetic heat capacity, akin to that observed for its well-studied sister compound Y2Mo2O7. This spin glass transition is also clearly marked in our inelastic (CNCS, SNS) and diffuse elastic magnetic (D7, ILL) neutron scattering data. Furthermore, we will show that it is possible to topochemically substitute the oxide, O2-, ions within Lu2Mo2O7 for nitride, N3-, to produce an oxynitride molybdate pyrochlore of composition Lu2Mo2O5N2. Magnetic susceptibility measurements confirm that strong antiferromagnetic correlations persist within the oxynitride, which contains Mo5+ 4d1 S =1/2 ions and is thus a prime candidate to host exotic quantum spin liquid behavior. We will discuss how the enhanced quantum spin fluctuations in Lu2Mo2O5N2 appear to suppress the spin freezing transition observed in its parent oxide and instead support the formation of a gapless spin liquid phase that displays a linear dependence of the low temperature magnetic heat capacity.

  11. Fredkin Spin Chain

    CERN Document Server

    Salberger, Olof

    2016-01-01

    We introduce a new model of interacting spin 1/2. It describes interaction of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the CSWAP gate) is a computational circuit suitable for reversible computing. Our construction generalizes the work of Ramis Movassagh and Peter Shor. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half of a square lattice [Dyck walks]. Each Dyck path can be mapped to a wave function of the spins. The ground state is an equally weighted superposition of Dyck walks [instead of Motzkin walks]. We can also express it as a matrix product state. We further construct the model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct SU(k) symmetric model [here k is the number of colors]. The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice ...

  12. Comparative analysis of isotropic diffusion weighted imaging sequences

    Science.gov (United States)

    Vellmer, Sebastian; Stirnberg, Rüdiger; Edelhoff, Daniel; Suter, Dieter; Stöcker, Tony; Maximov, Ivan I.

    2017-02-01

    Visualisation of living tissue structure and function is a challenging problem of modern imaging techniques. Diffusion MRI allows one to probe in vivo structures on a micrometer scale. However, conventional diffusion measurements are time-consuming procedures, because they require several measurements with different gradient directions. Considerable time savings are therefore possible by measurement schemes that generate an isotropic diffusion weighting in a single shot. Multiple approaches for generating isotropic diffusion weighting are known and have become very popular as useful tools in clinical research. Thus, there is a strong need for a comprehensive comparison of different isotropic weighting approaches. In the present work we introduce two new sequences based on simple (co)sine modulations and compare their performance to established q-space magic-angle spinning sequences and conventional DTI, using a diffusion phantom assembled from microcapillaries and in vivo experiments at 7 T. The advantages and disadvantages of all compared schemes are demonstrated and discussed.

  13. Spectroscopy of phonons and spin torques in magnetic point contacts.

    Science.gov (United States)

    Yanson, I K; Naidyuk, Yu G; Bashlakov, D L; Fisun, V V; Balkashin, O P; Korenivski, V; Konovalenko, A; Shekhter, R I

    2005-10-28

    Phonon spectroscopy is used to investigate the mechanism of current-induced spin torques in nonmagnetic/ferromagnetic (N/F) point contacts. Magnetization excitations observed in the magneto-conductance of the point contacts are pronounced for diffusive and thermal contacts, where the electrons experience significant scattering in the contact region. We find no magnetic excitations in highly ballistic contacts. Our results show that impurity scattering at the N/F interface is the origin of the new single-interface spin torque effect.

  14. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    Science.gov (United States)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  15. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-10-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

  16. Semiclassical spin transport in spin-orbit-coupled bands.

    Science.gov (United States)

    Culcer, Dimitrie; Sinova, Jairo; Sinitsyn, N A; Jungwirth, T; MacDonald, A H; Niu, Q

    2004-07-23

    Motivated by recent interest in novel spintronics effects, we develop a semiclassical theory of spin transport that is valid for spin-orbit coupled bands. Aside from the obvious convective term in which the average spin is transported at the wave packet group velocity, the spin current has additional contributions from the wave packet's spin and torque dipole moments. Electric field corrections to the group velocity and carrier spin contribute to the convective term. Summing all terms we obtain an expression for the intrinsic spin-Hall conductivity of a hole-doped semiconductor, which agrees with the Kubo formula prediction for the same quantity. We discuss the calculation of spin accumulation, which illustrates the importance of the torque dipole near the boundary of the system.

  17. Spin filter and spin valve in ferromagnetic graphene

    Science.gov (United States)

    Song, Yu; Dai, Gang

    2015-06-01

    We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spin filter can operate at higher temperature than the spin valve.

  18. Spin rectification induced by spin Hall magnetoresistance at room temperature

    Science.gov (United States)

    Wang, P.; Jiang, S. W.; Luan, Z. Z.; Zhou, L. F.; Ding, H. F.; Zhou, Y.; Tao, X. D.; Wu, D.

    2016-09-01

    We have experimentally and theoretically investigated the dc voltage generation in the heterostructure of Pt and yttrium iron garnet under the ferromagnetic resonance. Besides a symmetric Lorenz line shape dc voltage, an antisymmetric Lorenz line shape dc voltage is observed in field scan, which can solely originate from the spin rectification effect due to the spin Hall magnetoresistance. The angular dependence of the dc voltage is theoretically analyzed by taking into account both the spin pumping and the spin rectification effects. We find that the experimental results are in excellent agreement with the theoretical model, further identifying the spin Hall magnetoresistance origin of the spin rectification effect. Moreover, the spin pumping and the spin rectification effects are quantitatively separated by their different angular dependence at particular experimental geometry.

  19. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  20. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  1. Higher-spin correlators

    CERN Document Server

    Alday, Luis F

    2013-01-01

    We analyze the properly normalized three-point correlator of two protected scalar operators and one higher spin twist-two operator in N=4 super Yang-Mills, in the limit of large spin j. The relevant structure constant can be extracted from the OPE of the four-point correlator of protected scalar operators. We show that crossing symmetry of the four point correlator plus a judicious guess for the perturbative structure of the three-point correlator, allow to make a prediction for the structure constant at all loops in perturbation theory, up to terms that remain finite as the spin becomes large. Furthermore, the expression for the structure constant allows to propose an expression for the all loops four-point correlator G(u,v), in the limit u,v -> 0. Our predictions are in perfect agreement with the large j expansion of results available in the literature.

  2. SPIN-selling

    CERN Document Server

    Rackham, Neil

    1995-01-01

    True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.

  3. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...

  4. Paramagnetic Spin Seebeck Effect

    Science.gov (United States)

    Wu, Stephen M.; Pearson, John E.; Bhattacharya, Anand

    2015-05-01

    We report the observation of the longitudinal spin Seebeck effect in paramagnetic insulators. By using a microscale on-chip local heater, we generate a large thermal gradient confined to the chip surface without a large increase in the total sample temperature. Using this technique at low temperatures (<20 K ), we resolve the paramagnetic spin Seebeck effect in the insulating paramagnets Gd3Ga5O12 (gadolinium gallium garnet) and DyScO3 (DSO), using either W or Pt as the spin detector layer. By taking advantage of the strong magnetocrystalline anisotropy of DSO, we eliminate contributions from the Nernst effect in W or Pt, which produces a phenomenologically similar signal.

  5. Perspectives on spin glasses

    CERN Document Server

    Contucci, Pierluigi

    2013-01-01

    Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.

  6. Zero-bias spin separation

    Science.gov (United States)

    Ganichev, Sergey D.; Bel'Kov, Vasily V.; Tarasenko, Sergey A.; Danilov, Sergey N.; Giglberger, Stephan; Hoffmann, Christoph; Ivchenko, Eougenious L.; Weiss, Dieter; Wegscheider, Werner; Gerl, Christian; Schuh, Dieter; Stahl, Joachim; de Boeck, Jo; Borghs, Gustaaf; Prettl, Wilhelm

    2006-09-01

    The generation, manipulation and detection of spin-polarized electrons in low-dimensional semiconductors are at the heart of spintronics. Pure spin currents, that is, fluxes of magnetization without charge current, are quite attractive in this respect. A paradigmatic example is the spin Hall effect, where an electrical current drives a transverse spin current and causes a non-equilibrium spin accumulation observed near the sample boundary. Here we provide evidence for an another effect causing spin currents which is fundamentally different from the spin Hall effect. In contrast to the spin Hall effect, it does not require an electric current to flow: without bias the spin separation is achieved by spin-dependent scattering of electrons in media with suitable symmetry. We show, by free-carrier absorption of terahertz (THz) radiation, that spin currents flow in a wide range of temperatures. Moreover, the experimental results provide evidence that simple electron gas heating by any means is already sufficient to yield spin separation due to spin-dependent energy-relaxation processes.

  7. Spin echo in synchrotrons

    Science.gov (United States)

    Chao, Alexander W.; Courant, Ernest D.

    2007-01-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis

  8. Spin Echo in Synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alexander W.; /SLAC; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving

  9. Spin wave confinement

    CERN Document Server

    2008-01-01

    This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role in the description of very small magnetic systems ranging from microelements, which form the basis of magnetic sensors, to magnetic nano-contacts. The spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, and

  10. Spin, gravity, and inertia.

    Science.gov (United States)

    Obukhov, Y N

    2001-01-08

    The gravitational effects in the relativistic quantum mechanics are investigated. The exact Foldy-Wouthuysen transformation is constructed for the Dirac particle coupled to the static spacetime metric. As a direct application, we analyze the nonrelativistic limit of the theory. The new term describing the specific spin (gravitational moment) interaction effect is recovered in the Hamiltonian. The comparison of the true gravitational coupling with the purely inertial case demonstrates that the spin relativistic effects do not violate the equivalence principle for the Dirac fermions.

  11. The Transverse Spin

    CERN Document Server

    Artru, X

    2002-01-01

    Contents : 1. Pre-history 2. Transversity versus helicity 3. The massless limit. "Cardan" and "see-saw" transformations 4. Transversity distribution delta q(x). The diquark spectator model 5. Soffer inequality 6. Tensor charge sum rule 7. t-channel analysis 8. Selection rules for delta q(x) measurements 9. Evolution with Q squared 10. Quark polarimetry. The sheared-jet (Collins) effect 11. Single-spin asymmetries in inclusive experiments 12. Quark distribution dependent on both spin and transverse momentum 13. First evidence of quark transversity

  12. Coherent spin mixing dynamics in thermal $^{87}$Rb spin-1 and spin-2 gases

    CERN Document Server

    He, Xiaodong; Li, Xiaoke; Wang, Fudong; Xu, Zhifang; Wang, Dajun

    2015-01-01

    We study the non-equilibrium coherent spin mixing dynamics in ferromagnetic spin-1 and antiferromagnetic spin-2 thermal gases of ultracold $^{87}$Rb atoms. Long lasting spin population oscillations with magnetic field dependent resonances are observed in both cases. Our observations are well reproduced by Boltzmann equations of the Wigner distribution function. Compared to the equation of motion of spinor Bose-Einstein condensates, the only difference here is a factor of two increase in the spin-dependent interaction, which is confirmed directly in the spin-2 case by measuring the relation between the oscillation amplitude and the sample's density.

  13. Spin Caloritronic Phenomena Driven by Spin-orbit Coupling

    NARCIS (Netherlands)

    Chen, Y.-T.

    2014-01-01

    In this thesis, we report several effects in spintronics and spin caloritronics related to relativistic spin-orbit coupling. In Chapter 2, we discuss the relativistic spin caloritronicHall effects in terms of a semiclassical theory for anomalous thermoelectric effects in ferromagnetic metals due to

  14. RESPECT: Neutron Resonance Spin-Echo Spectrometer for Extreme Studies

    CERN Document Server

    Georgii, Robert; Pfleiderer, Christian; Böni, Peter

    2016-01-01

    We propose the design of a Resonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 microsecond can be reached if the divergence and the correction elemen...

  15. Spin Injection, Transport, and Detection at Room Temperature in a Lateral Spin Transport Device with Co2FeAl0.5Si0.5/n-GaAs Schottky Tunnel Junctions

    Science.gov (United States)

    Saito, Tatsuya; Tezuka, Nobuki; Matsuura, Masashi; Sugimoto, Satoshi

    2013-10-01

    We observed spin-valve signals and Hanle signals in four-terminal nonlocal measurements on a lateral spin transport device with Co2FeAl0.5Si0.5(CFAS)/n-GaAs Schottky tunnel junctions. The estimated spin injection/detection efficiency was 0.06 at 4.2 K, which is larger than those of the devices with Fe and CoFe electrodes [Nature Physics 3 (2007) 197 and Appl. Phys. Lett. 99 (2011) 082108]. The spin diffusion length estimated from Hanle signals was consistent with the gap length dependency of the spin-valve signals. Furthermore, the spin-valve signals were observed at up to 290 K. This is the first demonstration of detecting spin accumulation in semiconductor with full-Heusler alloys electrodes at room temperature.

  16. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate.

    Science.gov (United States)

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H C; Steffens, P; Boehm, M; Hao, Yiqing; Quintero-Castro, D L; Harriger, L W; Frontzek, M D; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    2016-12-05

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinons'). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

  17. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

    Science.gov (United States)

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H. C.; Steffens, P.; Boehm, M.; Hao, Yiqing; Quintero-Castro, D. L.; Harriger, L. W.; Frontzek, M. D.; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    2016-12-01

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

  18. Temperature dependence of spin Hall magnetoresistance in thin YIG/Pt films

    Science.gov (United States)

    Marmion, S. R.; Ali, M.; McLaren, M.; Williams, D. A.; Hickey, B. J.

    2014-06-01

    We report on the temperature dependence of the recently discovered spin Hall magnetoresistance in a yttrium iron garnet (YIG)/platinum (Pt) thin film. The YIG/Pt layers are an ideal choice as the combination of an insulating magnetic material and the high spin-orbit interaction in Pt gives a relatively large magnetoresistance and no electrical conduction occurs in the YIG. The temperature dependence of the magnetoresistance was measured between 1.4 K and 280 K from which the temperature dependence of the spin diffusion length in Pt has been extracted. We found that the best agreement between our data and the recently published [Chen et al., Phys. Rev. B 87, 144411 (2013), 10.1103/PhysRevB.87.144411] theory of the spin Hall magnetoresistance is given by an assumed Elliot-Yafet mechanism of spin relaxation with temperature-independent spin Hall angle and spin mixing conductance. The best estimate for the spin diffusion length returns values between 0.57 and 3.85 nm.

  19. Current-induced magnetic switching of a single molecule magnet on a spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zheng-Chuan, E-mail: wangzc@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zheng, Qing-Rong [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Zheng-Gang [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); School of Electronics, Electric and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Su, Gang, E-mail: gsu@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-04-17

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs.

  20. Estimation of Bounded and Unbounded Trajectories in Diffusion MRI.

    Science.gov (United States)

    Ning, Lipeng; Westin, Carl-Fredrik; Rathi, Yogesh

    2016-01-01

    Disentangling the tissue microstructural information from the diffusion magnetic resonance imaging (dMRI) measurements is quite important for extracting brain tissue specific measures. The autocorrelation function of diffusing spins is key for understanding the relation between dMRI signals and the acquisition gradient sequences. In this paper, we demonstrate that the autocorrelation of diffusion in restricted or bounded spaces can be well approximated by exponential functions. To this end, we propose to use the multivariate Ornstein-Uhlenbeck (OU) process to model the matrix-valued exponential autocorrelation function of three-dimensional diffusion processes with bounded trajectories. We present detailed analysis on the relation between the model parameters and the time-dependent apparent axon radius and provide a general model for dMRI signals from the frequency domain perspective. For our experimental setup, we model the diffusion signal as a mixture of two compartments that correspond to diffusing spins with bounded and unbounded trajectories, and analyze the corpus-callosum in an ex-vivo data set of a monkey brain.

  1. Estimation of bounded and unbounded trajectories in diffusion MRI

    Directory of Open Access Journals (Sweden)

    Lipeng eNing

    2016-03-01

    Full Text Available Disentangling the tissue microstructural information from the diffusion magnetic resonance imaging (dMRI measurements is quite important for extracting brain tissue specific measures. The autocorrelation function of diffusing spins is key for understanding the relation between dMRI signals and the acquisition gradient sequences. In this paper, we demonstrate that the autocorrelation of diffusion in restricted or bounded spaces can be well approximated by exponential functions. To this end, we propose to use the multivariate Ornstein-Uhlenbeck (OU process to model the matrix-valued exponential autocorrelation function of three-dimensional diffusion processes with bounded trajectories. We present detailed analysis on the relation between the model parameters and the time-dependent apparent axon radius and provide a general model for dMRI signals from the frequency domain perspective. For our experimental setup, we model the diffusion signal as a mixture of two compartments that correspond to diffusing spins with bounded and unbounded trajectories, and analyze the corpus-callosum in an ex-vivo data set of a monkey brain.

  2. Microporosity of Bicontinuous Polymer Composites: Diffusion of Water and Surfactant

    Science.gov (United States)

    Kuta, K.; Challa, V.; Cheung, M.; Lopina, S.; von Meerwall, E.

    2000-10-01

    We have used the proton NMR pulsed-gradient spin-echo method to study the self-diffusion of water and surfactant in bicontinuous microcomposites formed with methyl methacrylate and hydroxy ethyl methacrylate, crosslinked with ethylene glycol dimethacrylate, in the presence of water containing 10 wt. percent sodium dodecyl sulfate as surfactant. Measurements were made over the full bicontinuous range of water content, (30 to 96 wt. percent) at 50 deg. C at a diffusion time of 12-15 ms. At spin-echo times greater than a few ms the echo of the glassy open-cell network phase was unobservable. The diffusivity spectrum of the mobile fraction is cleanly separable into two components differing by a factor of at least 30, attributable to water and surfactant. We find that the diffusivity of water increases with increasing water content, but that of the surfactant decreases. Measurements of restricted diffusion (non-adherence to Fick's second law) can reveal the size of the diffusionally accessible pores and its distribution, and their degree of interconnection. Corresponding measurements of time-resolved apparent diffusion are in progress.

  3. Spin, mass, and symmetry

    CERN Document Server

    Peskin, Michael E

    1994-01-01

    This is a broad-brush introduction to the theory of spin in quantum field theory, presented at the 1993 SLAC Summer Institute. It may be useful for beginning students. (text only; complete paper with figures available by anonymous ftp from preprint.slac.stanford.edu, in the directory pub/preprints/hep-ph/9405)

  4. Supramolecular spin valves

    Science.gov (United States)

    Urdampilleta, M.; Klyatskaya, S.; Cleuziou, J.-P.; Ruben, M.; Wernsdorfer, W.

    2011-07-01

    Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc2 single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.

  5. Layered kagome spin ice

    Science.gov (United States)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  6. TRANSVERSITY SINGLE SPIN ASYMMETRIES.

    Energy Technology Data Exchange (ETDEWEB)

    BOER,D.

    2001-04-27

    The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.

  7. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  8. Polyoxometalates as spin qubits

    Science.gov (United States)

    Gaita-Ariño, A.; Aldamen, M.; Clemente-Juan, J.-M.; Coronado, E.; Lehmann, J.; Loss, D.; Stamp, P.

    2008-03-01

    Polyoxometalates (POMs) are discrete fragments of metal oxides, clusters of regular MOn polyhedra. POMs show a remarkable flexibility in composition, structure and charge state, and thus can be designed according to specific electric and magnetic needs. The two localized spins with S = 1/2 on the V atoms in [PMo12O40(VO)2]^q- can be coupled through the delocalized electrons of the central core. This system was recently used for a theoretical scheme involving two-qubit gates and readout: the electrical manipulation of the molecular redox potential changes the charge of the core and thus the effective magnetic exchange between the qubits. Polyoxometalates can encapsulate magnetic ions, protecting them by a diamagnetic shell of controlled geometry. A great potential of POMs as spin qubits is that they can be constructed using only even elements, such as O, W, Mo and/or Si. Thus, there is a high abundance of polyoxometalate molecules without any nuclear spin, which could result in unusually low decoherence rates. There is currently an effort involving highly anisotropic, high magnetic moment, lanthanide@polyoxometalate molecules acting as spin qubits.

  9. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  10. Spin Transport in Semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  11. Mechanical generation of spin current

    Directory of Open Access Journals (Sweden)

    Mamoru eMatsuo

    2015-07-01

    Full Text Available We focus the recent results on spin-current generation from mechanical motion such as rigid rotation and elastic deformations. Spin transport theory in accelerating frames is constructed by using the low energy expansion of the generally covariant Dirac equation. Related issues on spin-manipulation by mechanical rotation are also discussed.

  12. Spin transport in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.

    2014-01-01

    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the spi

  13. Magnetoresistance generated from charge-spin conversion by anomalous Hall effect in metallic ferromagnetic/nonmagnetic bilayers

    Science.gov (United States)

    Taniguchi, Tomohiro

    2016-11-01

    A theoretical formulation of magnetoresistance effect in a metallic ferromagnetic/nonmagnetic bilayer originated from the charge-spin conversion by the anomalous Hall effect is presented. Analytical expressions of the longitudinal and transverse resistivities in both nonmagnet and ferromagnet are obtained by solving the spin diffusion equation. The magnetoresistance generated from charge-spin conversion purely caused by the anomalous Hall effect in the ferromagnet is found to be proportional to the square of the spin polarizations in the ferromagnet and has fixed sign. We also find additional magnetoresistances in both nonmagnet and ferromagnet arising from the mixing of the spin Hall and anomalous Hall effects. The sign of this mixing resistance depends on those of the spin Hall angle in the nonmagnet and the spin polarizations of the ferromagnet.

  14. Spin-sensitive atom mirror via spin-orbit interaction

    Science.gov (United States)

    Zhou, Lu; Zheng, Ren-Fei; Zhang, Weiping

    2016-11-01

    Based on the spin-orbit coupling recently implemented in a neutral cold-atom gas, we propose a scheme to realize spin-dependent scattering of cold atoms. In particular we consider a matter wave packet of cold-atom gas impinging upon a step potential created by the optical light field, inside of which the atoms are subject to spin-orbit interaction. We show that the proposed system can act as a spin polarizer or spin-selective atom mirror for the incident atomic beam. The principle and the operating parameter regime of the system are carefully discussed.

  15. Inertial effect on spin-orbit coupling and spin transport

    Science.gov (United States)

    Basu, B.; Chowdhury, Debashree

    2013-08-01

    We theoretically study the renormalization of inertial effects on the spin dependent transport of conduction electrons in a semiconductor by taking into account the interband mixing on the basis of k→ṡp→ perturbation theory. In our analysis, for the generation of spin current we have used the extended Drude model where the spin-orbit coupling plays an important role. We predict enhancement of the spin current resulting from the renormalized spin-orbit coupling effective in our model in cubic and non-cubic crystals. Attention has been paid to clarify the importance of gauge fields in the spin transport of this inertial system. A theoretical proposition of a perfect spin filter has been done through the Aharonov-Casher like phase corresponding to this inertial system. For a time dependent acceleration, effect of k→ ṡp→ perturbation on the spin current and spin polarization has also been addressed. Furthermore, achievement of a tunable source of polarized spin current through the non uniformity of the inertial spin-orbit coupling strength has also been discussed.

  16. Thermal creation of a spin current by Seebeck spin tunneling

    Science.gov (United States)

    Jansen, R.; Le Breton, J. C.; Deac, A. M.; Saito, H.; Yuasa, S.

    2013-09-01

    The thermoelectric analog of spin-polarized tunneling, namely Seebeck spin tunneling, is a recently discovered phenomenon that arises from the spin-dependent Seebeck coefficient of a magnetic tunnel contact. In a tunnel junction with one ferromagnetic electrode and one non-magnetic electrode, a temperature difference between the two electrodes creates a spin current across the contact. Here, the basic principle and the observation of Seebeck spin tunneling are described. It is shown how it can be used to create a spin accumulation in silicon driven by a heat flow across a magnetic tunnel contact, without a charge tunnel current. The sign of the spin current depends on the direction of the heat flow, whereas its magnitude is anisotropic, i.e., dependent on the absolute orientation of the magnetization of the ferromagnet. The connection between Seebeck spin tunneling and the tunnel magneto-Seebeck effect, observed in metal magnetic tunnel junctions, is also clarified. Seebeck spin tunneling may be used to convert waste heat into useful thermal spin currents that aid or replace electrical spin current, and thereby improve the energy efficiency of spintronic devices and technologies.

  17. Spin anisotropy and slow dynamics in spin glasses.

    Science.gov (United States)

    Bert, F; Dupuis, V; Vincent, E; Hammann, J; Bouchaud, J-P

    2004-04-23

    We report on an extensive study of the influence of spin anisotropy on spin glass aging dynamics. New temperature cycle experiments allow us to compare quantitatively the memory effect in four Heisenberg spin glasses with various degrees of random anisotropy and one Ising spin glass. The sharpness of the memory effect appears to decrease continuously with the spin anisotropy. Besides, the spin glass coherence length is determined by magnetic field change experiments for the first time in the Ising sample. For three representative samples, from Heisenberg to Ising spin glasses, we can consistently account for both sets of experiments (temperature cycle and magnetic field change) using a single expression for the growth of the coherence length with time.

  18. Spin-transfer torque induced spin waves in antiferromagnetic insulators

    Science.gov (United States)

    Daniels, Matthew; Guo, Wei; Stocks, G. Malcolm; Xiao, Di; Xiao, Jiang

    2015-03-01

    We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations. Supported by NSF EFRI-1433496 (M.W.D), U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering (D.X. & G.M.S.), Major State Basic Research Project of China and National Natural Science Foundation of China (W.G. and J.X.).

  19. Spin-optical metamaterial route to spin-controlled photonics.

    Science.gov (United States)

    Shitrit, Nir; Yulevich, Igor; Maguid, Elhanan; Ozeri, Dror; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2013-05-10

    Spin optics provides a route to control light, whereby the photon helicity (spin angular momentum) degeneracy is removed due to a geometric gradient onto a metasurface. The alliance of spin optics and metamaterials offers the dispersion engineering of a structured matter in a polarization helicity-dependent manner. We show that polarization-controlled optical modes of metamaterials arise where the spatial inversion symmetry is violated. The emerged spin-split dispersion of spontaneous emission originates from the spin-orbit interaction of light, generating a selection rule based on symmetry restrictions in a spin-optical metamaterial. The inversion asymmetric metasurface is obtained via anisotropic optical antenna patterns. This type of metamaterial provides a route for spin-controlled nanophotonic applications based on the design of the metasurface symmetry properties.

  20. Spin-Currents and Spin-Pumping Forces for Spintronics

    Directory of Open Access Journals (Sweden)

    Henri-Jean Drouhin

    2011-01-01

    Full Text Available A general definition of the Spintronics concept of spin-pumping is proposed as generalized forces conjugated to the spin degrees of freedom in the framework of the theory of mesoscopic non-equilibrium thermodynamics. It is shown that at least three different kinds of spin-pumping forces and associated spin-currents can be defined in the most simple spintronics system: the Ferromagnetic/Non-Ferromagnetic metal interface. Furthermore, the generalized force associated with the ferromagnetic collective variable is also introduced on an equal footing to describe the coexistence of the spin of the conduction electrons (paramagnetic spins attached to s-band electrons and the ferromagnetic-order parameter. The dynamical coupling between these two kinds of magnetic degrees of freedom is presented and interpreted in terms of spin-transfer effects.

  1. Unconventional spin Hall effect and axial current generation in a Dirac semimetal

    Science.gov (United States)

    Okuma, Nobuyuki; Ogata, Masao

    2016-04-01

    We investigate electrical transport in a three-dimensional massless Dirac fermion model that describes a Dirac semimetal state realized in topological materials. We derive a set of interdependent diffusion equations with eight local degrees of freedom, including the electric charge density and the spin density, that respond to an external electric field. By solving the diffusion equations for a system with a boundary, we demonstrate that a spin Hall effect with spin accumulation occurs even though the conventional spin current operator is zero. The Noether current associated with chiral symmetry, known as the axial current, is also discussed. We demonstrate that the axial current flows near the boundary and that it is perpendicular to the electric current.

  2. Continuity, the Bloch-Torrey equation, and Diffusion MRI

    CERN Document Server

    Hall, Matt G

    2016-01-01

    The Bloch equation describes the evolution of classical particles tagged with a magnetisation vector in a strong magnetic field and is fundamental to many NMR and MRI contrast methods. The equation can be generalised to include the effects of spin motion by including a spin flux, which typically contains a Fickian diffusive term and/or a coherent velocity term. This form is known as the Bloch-Torrey equation, and is fundamental to MR modalities which are sensitive to spin dynamics such as diffusion MRI. Such modalities have received a great deal of interest in the research literature over the last few years, resulting in a huge range of models and methods. In this work we make make use of a more general Bloch-Torrey equation with a generalised flux term. We show that many commonly employed approaches in Diffusion MRI may be viewed as different choices for the flux terms in this equation. This viewpoint, although obvious theoretically, is not usually emphasised in the diffusion MR literature and points to inte...

  3. Spin-disordered superfluid state for spin-1 bosons with fractional spin and statistics

    OpenAIRE

    2002-01-01

    We study a strongly correlated spin-1 Bose gas in 2D space by using the projective construction. A spin-disordered superfluid state is constructed and proposed as a candidate competing with the conventional polar condensate when interaction is antiferromagnetic. This novel state has a non-trivial topological order whose low energy excitations carry fractional spin, charge, and statistics. The spin excitations become gapless only at the edge and are described by level-1 SU(2) Kac-Moody algebra...

  4. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: nitroxide radicals in solution.

    Science.gov (United States)

    Kruk, D; Korpała, A; Kubica, A; Meier, R; Rössler, E A; Moscicki, J

    2013-01-14

    For nitroxide radicals in solution one can identify three frequency regimes in which (1)H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the (1)H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)] with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for (14)N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to (15)N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)]). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of (1)H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data-(1)H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of (14)N and (15)N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in (1)H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  5. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    Science.gov (United States)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  6. Far-from-equilibrium spin transport in Heisenberg quantum magnets.

    Science.gov (United States)

    Hild, Sebastian; Fukuhara, Takeshi; Schauß, Peter; Zeiher, Johannes; Knap, Michael; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2014-10-03

    We study experimentally the far-from-equilibrium dynamics in ferromagnetic Heisenberg quantum magnets realized with ultracold atoms in an optical lattice. After controlled imprinting of a spin spiral pattern with an adjustable wave vector, we measure the decay of the initial spin correlations through single-site resolved detection. On the experimentally accessible time scale of several exchange times, we find a profound dependence of the decay rate on the wave vector. In one-dimensional systems, we observe diffusionlike spin transport with a dimensionless diffusion coefficient of 0.22(1). We show how this behavior emerges from the microscopic properties of the closed quantum system. In contrast to the one-dimensional case, our transport measurements for two-dimensional Heisenberg systems indicate anomalous superdiffusion.

  7. Diffusion formalism and applications

    CERN Document Server

    Dattagupta, Sushanta

    2013-01-01

    Within a unifying framework, Diffusion: Formalism and Applications covers both classical and quantum domains, along with numerous applications. The author explores the more than two centuries-old history of diffusion, expertly weaving together a variety of topics from physics, mathematics, chemistry, and biology. The book examines the two distinct paradigms of diffusion-physical and stochastic-introduced by Fourier and Laplace and later unified by Einstein in his groundbreaking work on Brownian motion. The author describes the role of diffusion in probability theory and stochastic calculus and

  8. Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results

    Science.gov (United States)

    Kurz, F. T.; Buschle, L. R.; Kampf, T.; Zhang, K.; Schlemmer, H. P.; Heiland, S.; Bendszus, M.; Ziener, C. H.

    2016-12-01

    We present an analytical solution of the Bloch-Torrey equation for local spin dephasing in the magnetic dipole field around a capillary and for ensembles of capillaries, and adapt this solution for the study of spin dephasing around large capillaries. In addition, we provide a rigorous mathematical derivation of the slow diffusion approximation for the spin-bearing particles that is used in this regime. We further show that, in analogy to the local magnetization, the transverse magnetization of one MR imaging voxel in the regime of static dephasing (where diffusion effects are not considered) is merely the first term of a series expansion that constitutes the signal in the slow diffusion approximation. Theoretical results are in agreement with experimental data for capillaries in rat muscle at 7 T.

  9. Spin injection and spin accumulation in all-metal mesoscopic spin valves

    NARCIS (Netherlands)

    Jedema, FJ; Nijboer, MS; Filip, AT; van Wees, BJ

    2003-01-01

    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic-metal-nonmagnetic-metal-ferromagnetic-metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, Permalloy (Py), cobalt (Co), and nickel (Ni), are used as electrical spin

  10. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  11. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation......Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...

  12. Thermodynamic equivalence of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Beltman, J.M. (Katholieke Universiteit Nijmegen (Netherlands))

    1975-01-01

    The thermodynamic equilibrium properties of systems composed of classical spin /sup 1///sub 2/ particles (Ising spins) are studied. Given an interaction pattern between the Ising spins the main problem is to calculate the equilibrium state(s) of the system. The point put forward here is the existence of many thermodynamical equivalent spin coordinate systems. As a consequence of this phenomenon the interaction pattern of a system may be very intricate when described with respect to one spin coordinate system whereas it may become simple with respect to another one and vice versa. A systematic investigation of this phenomenon is made. (FR)

  13. Modeling of the magnetic free energy of self-diffusion in bcc Fe

    Science.gov (United States)

    Sandberg, N.; Chang, Z.; Messina, L.; Olsson, P.; Korzhavyi, P.

    2015-11-01

    A first-principles based approach to calculating self-diffusion rates in bcc Fe is discussed with particular focus on the magnetic free energy associated with diffusion activation. First, the enthalpies and entropies of vacancy formation and migration in ferromagnetic bcc Fe are calculated from standard density functional theory methods in combination with transition state theory. Next, the shift in diffusion activation energy when going from the ferromagnetic to the paramagnetic state is estimated by averaging over random spin states. Classical and quantum mechanical Monte Carlo simulations within the Heisenberg model are used to study the effect of spin disordering on the vacancy formation and migration free energy. Finally, a quasiempirical model of the magnetic contribution to the diffusion activation free energy is applied in order to connect the current first-principles results to experimental data. The importance of the zero-point magnon energy in modeling of diffusion in bcc Fe is stressed.

  14. Magnetic correlation, excitation and slow dynamics in concentrated spin-glass alloys

    Indian Academy of Sciences (India)

    Kiyoichiro Motoya

    2004-07-01

    Three kinds of neutron scattering experiments have been performed to clarify the role of magnetic clusters on the various properties of re-entrant spin-glasses. The presence of two kinds of spin-wave excitations, the limitations of magnetic phase diagrams and the mechanism of slow dynamics have been discussed based on the results of in-elastic scattering, diffuse scattering and time-resolved small-angle scattering experiments, respectively.

  15. Quark spin-orbit correlations

    CERN Document Server

    Lorcé, Cédric

    2014-01-01

    The proton spin puzzle issue focused the attention on the parton spin and orbital angular momentum contributions to the proton spin. However, a complete characterization of the proton spin structure requires also the knowledge of the parton spin-orbit correlation. We showed that this quantity can be expressed in terms of moments of measurable parton distributions. Using the available phenomenological information about the valence quarks, we concluded that this correlation is negative, meaning that the valence quark spin and kinetic orbital angular momentum are, in average, opposite. The quark spin-orbit correlation can also be expressed more intuitively in terms of relativistic phase-space distributions, which can be seen as the mother distributions of the standard generalized and transverse-momentum dependent parton distributions. We present here for the first time some examples of the general multipole decomposition of these phase-space distributions.

  16. Spin coating of an evaporating polymer solution

    KAUST Repository

    Münch, Andreas

    2011-01-01

    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of a thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent mass fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system. The main practical interest is in controlling the appearance and development of a "skin" on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. In practice, a fast and uniform drying of the film is required. The critical parameters controlling this behaviour are found to be the ratio of the diffusion to advection time scales ε, the ratio of the evaporation to advection time scales δ and the ratio of the diffusivity of the pure polymer and the initial mixture exp(-1/γ). In particular, our analysis shows that for very small evaporation with δ

  17. Damping and spin mixing conductance in Ni80Fe20/CuIr structures: effect of Ir doping

    Science.gov (United States)

    Belmeguenai, M.; Gabor, M. S.; Zighem, F.; Tiusan, C.

    2017-04-01

    Ni80Fe20(Py) thin films of different thicknesses have been sputtered on thermally oxidized Si substrates and capped with Pt or Cu doped with 6 % , 3 % and 1 % of Ir. Vibrating sample magnetometery has been used to measure the magnetization at saturation. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate the Py and capping layer thickness dependence of the damping parameter enhancement due to the spin pumping. The experimental data have been analyzed using a model for spin pumping that includes the effective spin mixing conductance at the Py/HM (HM  =  Pt and CuIr) interface and the spin-diffusion length of HM. The spin mixing conductance (spin diffusion length) increases (decreases) as Ir doping increases. For samples capped with Pt (CuIr(6%)), the obtained values of spin mixing conductance and the spin diffusion length have been estimated to be 25 nm‑2 (9.87 nm‑2) and 1.05 nm (2.8 nm), respectively. MS-FMR measurements revealed that the effective magnetization varies linearly with the effective Py thickness due to the perpendicular surface anisotropy.

  18. Thickness dependence of spin torque ferromagnetic resonance in Co{sub 75}Fe{sub 25}/Pt bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, A.; Barman, A., E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sec III, Salt Lake, Kolkata 700 098 (India); Kondou, K., E-mail: kkondou@riken.jp [RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sukegawa, H.; Mitani, S. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan); Kasai, S. [RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan); Niimi, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Otani, Y. [RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan)

    2014-02-17

    The spin Hall angle of Pt in Co{sub 75}Fe{sub 25}/Pt bilayer films was experimentally investigated by means of the spin-torque ferromagnetic resonance and the modulation of damping measurements. By comparing the present results with the Ni{sub 80}Fe{sub 20}/Pt system, we found that the ferromagnetic layer underneath the Pt one greatly affects the estimation of the spin Hall angle. We also discuss the spin diffusion length of Pt and the ferromagnetic thickness dependence of the Gilbert damping coefficient.

  19. Higher Spins in Hyperspace

    CERN Document Server

    Florakis, Ioannis; Tsulaia, Mirian

    2014-01-01

    We consider the Sp(2n) invariant formulation of higher spin fields on flat and curved backgrounds of constant curvature.In this formulation an infinite number of higher spin fields are packed into single scalar and spinor master fields (hyperfields) propagating on extended spaces, to be called hyperspaces, parametrized by tensorial coordinates.We show that the free field equations on flat and AdS-like hyperspaces are related to each other by a generalized conformal transformation of the scalar and spinor master fields. We compute the four--point functions on a flat hyperspace for both scalar and spinor master fields, thus extending the two-- and three--point function results of arXiv:hep-th/0312244. Then using the generalized conformal transformation we derive two--, three-- and four--point functions on AdS--like hyperspace from the corresponding correlators on the flat hyperspace.

  20. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D

    2012-01-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  1. Spin Physics at COMPASS

    CERN Document Server

    Friedrich, Jan Michael

    2006-01-01

    Results for the spin structure of the nucleon from the COMPASS data taking periods 2002 to 2004 are presented. The quark contribution to the nucleon spin, following from a QCD fit to the new data, turns out to be significantly larger than it was derived from the previous world data. The new data favour, on the other side, a comparatively small gluon polarisation in the range $x_{g} \\approx$ 0.1. In the data taken with the deuteron target polarised transversely, the related asymmetries are found to be small on the level of accuracy reached so far, indicating a cancellation of the proton and neutron contributions. This is in agreement, for both the Collins and the Sivers asymmetry, with recent theoretical calculations. Also, a step towards the understanding of angular momentum contributions with COMPASS is taken by the evaluation of asymmetries in exclusive vector meson production.

  2. Large Spin Perturbation Theory

    CERN Document Server

    Alday, Luis F

    2016-01-01

    We consider conformal field theories around points of large twist degeneracy. Examples of this are theories with weakly broken higher spin symmetry and perturbations around generalised free fields. At the degenerate point we introduce twist conformal blocks. These are eigenfunctions of certain quartic operators and encode the contribution, to a given four-point correlator, of the whole tower of intermediate operators with a given twist. As we perturb around the degenerate point, the twist degeneracy is lifted. In many situations this breaking is controlled by inverse powers of the spin. In such cases the twist conformal blocks can be decomposed into a sequence of functions which we systematically construct. Decomposing the four-point correlator in this basis turns crossing symmetry into an algebraic problem. Our method can be applied to a wide spectrum of conformal field theories in any number of dimensions and at any order in the breaking parameter. As an example, we compute the spectrum of various theories ...

  3. Diffusion-weighted MRI of maple syrup urine disease encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, F.; Mavilla, L. [Servizio di Neuroradiologia, Azienda Ospedaliera Policlinico, Modena (Italy); Berardi, A.; Ferrari, F. [Servizio di Neonatologia, Azienda Ospedaliera Policlinico, Modena (Italy); Burlina, A.B. [Dipartimento di Pediatria, Azienda Ospedaliera, Universita di Padova, Padua (Italy)

    2002-06-01

    We report the case of a newborn child with maple syrup urine disease (MSUD), diagnosed at 10 days of life. Diffusion-weighted echoplanar MRI showed marked hyperintensity of the cerebellar white matter, the brainstem, the cerebral peduncles, the thalami, the dorsal limb of the internal capsule and the centrum semiovale, while conventional dual-echo sequence evidenced only a weak diffuse T2 hyperintensity in the cerebellar white matter and in the dorsal brainstem. The apparent diffusion coefficient (ADC) of these regions was markedly (>80%) decreased. Therefore, in agreement with current hypotheses on MSUD pathogenesis, MSUD oedema proves to be a cytotoxic oedema. Diffusion-weighted MRI may be a valuable tool, more sensitive than conventional spin-echo techniques, to assess the extent and progression of cytotoxicity in MSUD, as well as the effectiveness of the therapeutic interventions. (orig.)

  4. Direct observation of atomic diffusion in warm rubidium ensembles

    CERN Document Server

    Parniak, Michal

    2013-01-01

    We present a robust method for measuring the diffusion coefficients of warm atoms in buffer gases. Using optical pumping, we manipulate the atomic spin in a thin cylinder inside the cell. Then we observe the spatial spread of optically pumped atoms in time using a camera, which allows us to determine the diffusion coefficient. As an example, we demonstrate measurements of diffusion coefficients of rubidium in neon, krypton and xenon acting as buffer gases. We have determined the normalized (273 K, 760 Torr) diffusion coefficients to be 0.18\\pm0.03 cm^2/s for neon, 0.07\\pm0.01 cm^2/s for krypton, and 0.052\\pm0.006 cm^2/s for xenon.

  5. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  6. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  7. Causal spin foams

    CERN Document Server

    Immirzi, Giorgio

    2016-01-01

    I discuss how to impose causality on spin-foam models, separating forward and backward propagation, turning a given triangulation to a 'causal set', and giving asymptotically the exponential of the Regge action, not a cosine. I show the equivalence of the prescriptions which have been proposed to achieve this. Essential to the argument is the closure condition for the 4-simplices, all made of space-like tetrahedra.

  8. MU-SPIN Update

    Science.gov (United States)

    Harrington, James, Jr.

    2000-01-01

    Current goals are to: (1) Strengthen the science and engineering capabilities of MU-SPIN institutions in research and education via computer networks; (2) Involve and prepare minority institutions and principal investigators to successfully participate in competitive research and education processes via computer networks; and (3) Develop training and education mechanisms to support, sustain and evolve the institutional network infrastructure, thereby generating a better, prepared pool of candidates to contribute to NASA's missions.

  9. Supersymmetric Spin Glass

    CERN Document Server

    Gukov, S G

    1997-01-01

    The evidently supersymmetric four-dimensional Wess-Zumino model with quenched disorder is considered at the one-loop level. The infrared fixed points of a beta-function form the moduli space $M = RP^2$ where two types of phases were found: with and without replica symmetry. While the former phase possesses only a trivial fixed point, this point become unstable in the latter phase which may be interpreted as a spin glass phase.

  10. Spinning out a star.

    Science.gov (United States)

    Lord, Michael D; Mandel, Stanley W; Wager, Jeffrey D

    2002-06-01

    Spinouts rarely take off; most, in fact, fall into one or more of four traps that doom them from the start. Some companies spin out ventures that are too close to the core of their businesses, in effect selling off their crown jewels. Sometimes, a parent company uses the spinout primarily to pawn off debt or expenses or to quickly raise external capital for itself. Other times, a company may try to spin out an area of its business that lacks one or more of the critical legs of a successful company--a coherent business model, say, or a solid financial base. And in many cases, parent companies can't bring themselves to sever their ownership ties and give up control of their spinouts. R.J. Reynolds, the tobacco giant, managed to avoid these traps when it successfully spun out a most unlikely venture, the pharmaceutical company Targacept. As the story illustrates, the problem with spinouts is similar to the problem of rich children. Their parents have the wherewithal to spoil them or shelter them or cling to them, but what they need is tough love and discipline--much the same discipline that characterizes successful start-ups. R.J. Reynolds recognized that it didn't know that much about the pharmaceutical business and couldn't merely try to spin out a small clone of itself. It had to treat the venture as if it were essentially starting from scratch, with a passionate entrepreneurial leader, a solid business plan, help from outside partners in the industry, and ultimately substantial venture backing. That these lessons are less obvious to executives contemplating spinning out ventures closer to their core businesses may be why so many spinouts fail.

  11. One-dimensional spinon spin currents

    Science.gov (United States)

    Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji

    2017-01-01

    Quantum spin fluctuation in a low-dimensional or frustrated magnet breaks magnetic ordering while keeping spin correlation. Such fluctuation has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing such spin states has been quite difficult. In a one-dimensional spin-1/2 chain, a particle-like excitation called a spinon is known to be responsible for spin fluctuation in a paramagnetic state. Spinons behave as a Tomonaga-Luttinger liquid at low energy, and the spin system is often called a quantum spin chain. Here we show that a quantum spin chain generates and carries spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing to long-range spin fluctuation.

  12. Effects of interface electric field on the magnetoresistance in spin devices

    Energy Technology Data Exchange (ETDEWEB)

    Tanamoto, T., E-mail: tetsufumi.tanamoto@toshiba.co.jp; Ishikawa, M.; Inokuchi, T.; Sugiyama, H.; Saito, Y. [Advanced LSI Technology Laboratory Corporate Research and Development Center, Toshiba Corporation 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582 (Japan)

    2014-04-28

    An extension of the standard spin diffusion theory is presented by using a quantum diffusion theory via a density-gradient (DG) term that is suitable for describing interface quantum tunneling phenomena. The magnetoresistance (MR) ratio is greatly modified by the DG term through an interface electric field. We have also carried out spin injection and detection measurements using four-terminal Si devices. The local measurement shows that the MR ratio changes depending on the current direction. We show that the change of the MR ratio depending on the current direction comes from the DG term regarding the asymmetry of the two interface electronic structures.

  13. Effects of interface electric field on the magnetoresistance in spin devices

    Science.gov (United States)

    Tanamoto, T.; Ishikawa, M.; Inokuchi, T.; Sugiyama, H.; Saito, Y.

    2014-04-01

    An extension of the standard spin diffusion theory is presented by using a quantum diffusion theory via a density-gradient (DG) term that is suitable for describing interface quantum tunneling phenomena. The magnetoresistance (MR) ratio is greatly modified by the DG term through an interface electric field. We have also carried out spin injection and detection measurements using four-terminal Si devices. The local measurement shows that the MR ratio changes depending on the current direction. We show that the change of the MR ratio depending on the current direction comes from the DG term regarding the asymmetry of the two interface electronic structures.

  14. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  15. The role of isotropic diffusion MRI in children under 2 years of age

    Energy Technology Data Exchange (ETDEWEB)

    Gelal, F.M.; Grant, P.E.; Fischbein, N.J.; Henry, R.G.; Vigneron, D.B.; Barkovich, A.J. [Dept. of Radiology, University of California, San Francisco, CA (United States)

    2001-06-01

    Our objective was to determine the contribution of diffusion MR imaging to standard MR imaging in the neuroradiological evaluation of children less than 2 years of age. Echo-planar diffusion MR imaging was added to standard MR exams in 75 consecutive patients under the age of 2 years. Single-shot echo-planar spin-echo T2 weighted images (EPSE-T2) were acquired. Isotropic diffusion-weighted images (DWI), attenuation coefficient maps (ACM), and apparent diffusion coefficient (ADC) maps were calculated offline from images obtained with diffusion gradients (b=1000 s/mm{sup 2}) in three orthogonal directions. Two neuroradiologists determined if EPSE-T2, DWI, or ACM contributed new information to spin-echo proton density (SE PD) and T2 studies. In 15 of 18 abnormalities detected in 8 patients with symptoms less than 1 week in duration, DWI and/or ACM added information to SE PD and T2. Diffusion sequences detected five new lesions, showed six lesions with greater conspicuity, and identified four lesions with different diffusion character. In patients with symptoms of more than 7 days duration, diffusion studies added no information. Isotropic diffusion MR contributed to lesion detection and characterization in infants when symptoms were less than 1 week in duration. Diffusion MR is useful in patients with leukodystrophies, metabolic disorders, and patients with acute ischemic lesions. (orig.)

  16. Minimal Model of Spin-Transfer Torque and Spin Pumping Caused by the Spin Hall Effect.

    Science.gov (United States)

    Chen, Wei; Sigrist, Manfred; Sinova, Jairo; Manske, Dirk

    2015-11-20

    In the normal-metal-ferromagnetic-insulator bilayer (such as Pt/Y_{3}Fe_{5}O_{12}) and the normal-metal-ferromagnetic-metal-oxide trilayer (such as Pt/Co/AlO_{x}) where spin injection and ejection are achieved by the spin Hall effect in the normal metal, we propose a minimal model based on quantum tunneling of spins to explain the spin-transfer torque and spin pumping caused by the spin Hall effect. The ratio of their dampinglike to fieldlike component depends on the tunneling wave function that is strongly influenced by generic material properties such as interface s-d coupling, insulating gap, and layer thickness, yet the spin relaxation plays a minor role. The quantified result renders our minimal model an inexpensive tool for searching for appropriate materials.

  17. Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging

    Science.gov (United States)

    Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie

    2016-08-01

    Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch-Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients.

  18. Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2013-01-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia...... per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave...

  19. Spin-Selective Electron Quantum Transport in Nonmagnetic MgZnO/ZnO Heterostructures.

    Science.gov (United States)

    Maryenko, D; Falson, J; Bahramy, M S; Dmitriev, I A; Kozuka, Y; Tsukazaki, A; Kawasaki, M

    2015-11-06

    We report magnetotransport measurements on a high-mobility two-dimensional electron system at the nonmagnetic MgZnO/ZnO heterointerface showing distinct behavior for electrons with spin-up and spin-down orientations. The low-field Shubnikov-de Haas oscillations manifest alternating resistance peak heights which can be attributed to distinct scattering rates for different spin orientations. The tilt-field measurements at a half-integer filling factor reveal that the majority spins show usual diffusive behavior, i.e., peaks with the magnitude proportional to the index of the Landau level at the Fermi energy. By contrast, the minority spins develop "plateaus" with the magnitude of dissipative resistivity that is fairly independent of the Landau level index and is of the order of the zero-field resistivity.

  20. Bell's inequality for n spin-s particles

    CERN Document Server

    Cabello, A

    2002-01-01

    Mermin's inequality for n spin-1/2 particles and two dichotomic observables [Phys. Rev. Lett. 65, 1838 (1990)] is generalized to n spin-s particles and two maximal observables. It is shown that some multiparty multilevel Greenberger-Horne-Zeilinger states [A. Cabello, Phys. Rev. A 63, 022104 (2001)] maximally violate this inequality for any s. For a fixed n, the magnitude of violation is constant for any s, which provides a simple demonstration of the conclusion reached by Gisin and Peres for two spin-s particles in the singlet state [Phys. Lett. A 162, 15 (1992)]. For a fixed s, the violation grows exponentially with n, which provides a generalization to any s of Mermin's conclusion for n spin-1/2 particles.

  1. Graphene spin diode: Strain-modulated spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunhua; Wang, B., E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering and Technology, School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yulan, E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-08-04

    Strain effects on spin transport in a ferromagnetic/strained/normal graphene junction are explored theoretically. It is shown that the spin-resolved Fermi energy range can be controlled by the armchair direction strain because the strain-induced pseudomagnetic field suppresses the current. The spin rectification effect for the bias reversal occurs because of a combination of ferromagnetic exchange splitting and the broken spatial symmetry of the junction. In addition, the spin rectification performance can be tuned remarkably by manipulation of the strains. In view of this strain-modulated spin rectification effect, we propose that the graphene-based ferromagnetic/strained/normal junction can be used as a tunable spin diode.

  2. Spinning particle approach to higher spin field theory

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Olindo, E-mail: Olindo.Corradini@bo.infn.it [Centro de Estudios en Fisica y Matematicas Basicas y Aplicadas Universidad Autonoma de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Dipartimento di Fisica, Universita di Bologna via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna via Irnerio 46, I-40126 Bologna (Italy)

    2011-04-01

    We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.

  3. Low-spin models for higher-spin Lagrangians

    CERN Document Server

    Francia, Dario

    2011-01-01

    Higher-spin theories are most commonly modelled on the example of spin 2. While this is appropriate for the description of free irreducible spin-s particles, alternative options could be equally interesting. In particular Maxwell's equations provide the effective model for maximally reducible theories of higher spins inspired by the tensionless limit of the open string. For both options, as well as for their fermionic counterparts, one can extend the analogy beyond the equations for the gauge potentials, formulating the corresponding Lagrangians in terms of higher-spin curvatures. The associated non-localities are effectively due to the elimination of auxiliary fields and do not modify the spectrum. Massive deformations of these theories are also possible, and in particular in this contribution we propose a generalisation of the Proca Lagrangian for the Maxwell-inspired geometric theories.

  4. Quantum annealing with manufactured spins.

    Science.gov (United States)

    Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G

    2011-05-12

    Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.

  5. Helium diffusion in carbonates

    Science.gov (United States)

    Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.

    2013-12-01

    The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion

  6. Spin-flip noise in a multiterminal spin valve

    OpenAIRE

    Belzig, Wolfgang; Zareyan, Malek

    2004-01-01

    We study shot noise and cross-correlations in a four terminal spin-valve geometry using a Boltzmann-Langevin approach. The Fano factor (shot noise to current ratio) depends on the magnetic configuration of the leads and the spin-flip processes in the normal metal. In a four-terminal geometry, spin-flip processes are particularly prominent in the cross-correlations between terminals with opposite magnetization.

  7. CP observables with spin spin correlations in chargino production

    Science.gov (United States)

    Bartl, A.; Hohenwarter-Sodek, K.; Kernreiter, T.; Kittel, O.; Terwort, M.

    2008-10-01

    We study the CP-violating terms of the spin-spin correlations in chargino production ee→χ˜1±χ˜2∓, and their subsequent two-body decays into sneutrinos plus leptons. We propose novel CP-sensitive observables with the help of T-odd products of the spin-spin terms. These terms depend on the polarizations of both charginos, with one polarization perpendicular to the production plane. We identify two classes of CP-sensitive observables; one requires the reconstruction of the production plane, the other not. Our framework is the Minimal Supersymmetric Standard Model with complex parameters.

  8. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.;

    2000-01-01

    The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...... present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  9. Spin-seebeck effect: a phonon driven spin distribution.

    Science.gov (United States)

    Jaworski, C M; Yang, J; Mack, S; Awschalom, D D; Myers, R C; Heremans, J P

    2011-05-06

    Here we report on measurements of the spin-Seebeck effect in GaMnAs over an extended temperature range alongside the thermal conductivity, specific heat, magnetization, and thermoelectric power. The amplitude of the spin-Seebeck effect in GaMnAs scales with the thermal conductivity of the GaAs substrate and the phonon-drag contribution to the thermoelectric power of the GaMnAs, demonstrating that phonons drive the spin redistribution. A phenomenological model involving phonon-magnon drag explains the spatial and temperature dependence of the measured spin distribution.

  10. Ultra-rapid targeted analysis of 40 drugs of abuse in oral fluid by LC-MS/MS using carbon-13 isotopes of methamphetamine and MDMA to reduce detector saturation.

    Science.gov (United States)

    Di Rago, Matthew; Chu, Mark; Rodda, Luke N; Jenkins, Elizabeth; Kotsos, Alex; Gerostamoulos, Dimitri

    2016-05-01

    The number of oral fluid samples collected by the road policing authority in Victoria, Australia, requiring confirmatory laboratory analysis for drugs proscribed under Victorian legislation (methamphetamine, MDMA and Δ9-tetrahydrocannabinol) has greatly increased in recent years, driving the need for improved analysis techniques to enable expedient results. The aim of this study was to develop an LC-MS/MS-based targeted oral fluid screening technique that covers a broad range of basic and neutral drugs of abuse that can satisfy increased caseload while monitoring other compounds of interest for epidemiological purposes. By combining small sample volume, simple extraction procedure, rapid LC-MS/MS analysis and automated data processing, 40 drugs of abuse including amphetamines, benzodiazepines, cocaine and major metabolites, opioids, cannabinoids and some designer stimulants were separated over 5 min (with an additional 0.5 min re-equilibration time). The analytes were detected using a Sciex® API 4500 Q-Trap LC-MS/MS system with positive ESI in MRM mode monitoring three transitions per analyte. The method was fully validated in accordance with international guidelines and also monitored carbon-13 isotopes of MDMA and MA to reduce detector saturation effects, allowing for confirmation of large concentrations of these compounds without the need for dilution or re-analysis. The described assay has been successfully used for analysis of oral fluid collected as part of law enforcement procedures at the roadside in Victoria, providing forensic results as well as epidemiological prevalence in the population tested. The fast and reliable detection of a broad range of drugs and subsequent automated data processing gives the opportunity for high throughput and fast turnaround times for forensic toxicology.

  11. Optical Nuclear Polarization in the Excited State Through Cross-Relaxation and Its Use in the Study of the Carbon-13 Hyperfine Coupling in the Lowest Triplet State of 1-13C-p-Benzoquinone

    NARCIS (Netherlands)

    Lichtenbelt, Jan H.; Fremeijer, Jan G.F.M.; Wiersma, Douwe A.

    1976-01-01

    In this paper the phenomenon of optical nuclear polarization in the excited state through cross-relaxation is described. It is shown that when the populating and depopulating rates of the triplet spin sublevels are known the absolute nuclear polarizations can be calculated and that optical detection

  12. Tungsten diffusion in olivine

    Science.gov (United States)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 °C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.0×10-8exp(-365±28 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  13. Cosmology with matter diffusion

    CERN Document Server

    Calogero, Simone

    2013-01-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field $\\phi$ which we identify with the dark energy component of the Universe. The model is characterized by only one new degree of freedom, the diffusion parameter $\\sigma$. The standard $\\Lambda$CDM model can be recovered by setting $\\sigma=0$. If diffusion takes place ($\\sigma >0$) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the Universe can serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the Universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integr...

  14. Quantum Cryptography in Spin Networks

    Institute of Scientific and Technical Information of China (English)

    DENG Hong-Liang; FANG Xi-Ming

    2007-01-01

    In this paper we propose a new scheme of long-distance quantum cryptography based on spin networks with qubits stored in electron spins of quantum dots. By conditional Faraday rotation, single photon polarization measurement, and quantum state transfer, maximal-entangled Bell states for quantum cryptography between two long-distance parties are created. Meanwhile, efficient quantum state transfer over arbitrary distances is obtained in a spin chain by a proper choice of coupling strengths and using spin memory technique improved. We also analyse the security of the scheme against the cloning-based attack which can be also implemented in spin network and discover that this spin network cloning coincides with the optimal fidelity achieved by an eavesdropper for entanglement-based cryptography.

  15. Accurate ab initio spin densities

    CERN Document Server

    Boguslawski, Katharina; Legeza, Örs; Reiher, Markus

    2012-01-01

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CA...

  16. BRST theory for continuous spin

    Science.gov (United States)

    Bengtsson, Anders K. H.

    2013-10-01

    Some puzzling aspects of higher spin field theory in Minkowski space-time, such as the tracelessness constraints and the search for an underlying physical principle, are discussed. A connecting idea might be provided by the recently much researched continuous spin representations of the Poincaré group. The Wigner equations, treated as first class constraints, yields to a four-constraint BRST formulation. The resulting field theory, generalizing free higher spin field theory, is one among a set of higher spin theories that can be related to previous work on unconstrained formulations. In particular, it is conjectured that the unconstrained higher spin theory of Francia and Sagnotti is a limit of a continuous spin theory. Furthermore, a simple analysis of the constraint structure reveals a hint of a physical rationale behind the trace constraints.

  17. BRST Theory for Continuous Spin

    CERN Document Server

    Bengtsson, Anders K H

    2013-01-01

    Some puzzling aspects of higher spin field theory in Minkowski space-time, such as the tracelessness constraints and the search for an underlying physical principle, are discussed. A connecting idea might be provided by the recently much researched continuous spin representations of the Poincar\\'e group. The Wigner equations, treated as first class constraints, yields to a four-constraint BRST formulation. The resulting field theory, generalizing free higher spin field theory, is one among a set of higher spin theories that can be related to previous work on unconstrained formulations. In particular, it is conjectured that the unconstrained higher spin theory of Francia and Sagnotti is a limit of a continuous spin theory. Furthermore, a simple analysis of the constraint structure reveals a hint of a physical rationale behind the trace constraints.

  18. PHENIX Spin Program, Recent Results

    CERN Document Server

    Bazilevsky, A; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, Alberto; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Yu A; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S R; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Büsching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; D'Enterria, D G; Dávid, G; Delagrange, H; Denisov, A; Deshpande, Abhay A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; Drees, K A; Du Rietz, R; Durum, A; Dutta, D; Efremenko, Yu V; El-Chenawi, K F; Enokizono, A; Enyo, H; Esumi, S; Ewell, L A; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Zeev; Frantz, J E; Franz, A; Frawley, A D; Fung, S Y; Garpman, S; Ghosh, K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse-Perdekamp, M; Guryn, W; Gustafsson, Hans Åke; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G B; Kim, H J; Kistenev, E P; Kiyomichi, A; Kiyoyama, K; Klein-Bösing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V P; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A G; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Man'ko, V I; Mao, Y; Martínez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E A; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Muhlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V A; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saitô, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sørensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarjan, P; Tepe, J D; Thomas, T L; Tojo, J; Torie, H A; Towell, R S; Tserruya, Itzhak; Tsuruoka, H; Tuli, S K; Tydesjo, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszpremi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E A; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L S; Adler, S S; Bazilevsky, Alexander

    2005-01-01

    Acceleration of polarized protons in Relativistic Heavy Ion Collider (RHIC) provides unique tool to study the spin structure of the nucleon. We give a brief overview of the PHENIX program to investigate poorly known gluon and flavor decomposed see quark polarization in the proton, utilizing polarized proton collisions at RHIC. We report PHENIX first results on transverse single-spin asymmetry in pi0 and charged hadron production and longitudinal double-spin asymmetry in pi0 production at mid-rapidity.

  19. Exploring the proton spin structure

    CERN Document Server

    Lorcé, Cédric

    2015-01-01

    Understanding the spin structure of the proton is one of the main challenges in hadronic physics. While the concepts of spin and orbital angular momentum are pretty clear in the context of non-relativistic quantum mechanics, the generalization of these concepts to quantum field theory encounters serious difficulties. It is however possible to define meaningful decompositions of the proton spin that are (in principle) measurable. We propose a summary of the present situation including recent developments and prospects of future developments.

  20. 14 CFR 23.221 - Spinning.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spinning. 23.221 Section 23.221 Aeronautics... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Spinning § 23.221 Spinning. (a...-turn spin or a three-second spin, whichever takes longer, in not more than one additional turn...

  1. Isoscalar spin transition in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi-Gustafsson, E. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Morlet, M.; Willis, A.; Marty, N. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Baker, F.T. [Georgia Univ., Athens, GA (United States); Beatty, D.; Edwards, G.W.R.; Glashausser, C. [Rutgers--the State Univ., Piscataway, NJ (United States); Djalali, C. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy; Duchazeaubeneix, J.C. [Laboratoire National Saturne - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1992-12-31

    The study of the nuclear spin response gives a very deep insight in the magnetic properties of a nucleus. The spin-flip probability measured in inelastic scattering is a robust variable rich of information on the spin response. A study of the inelastic deuteron scattering is presented, where the isoscalar spin component of the nuclear response has been isolated for the first time. This has been possible with the 400 MeV polarized deuteron beam of Saturne and the measurement of the polarization of the outgoing deuteron with the polarimeter POMME. (author) 6 refs.; 7 figs.

  2. The straintronic spin-neuron.

    Science.gov (United States)

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  3. Surface spin-valve effect.

    Science.gov (United States)

    Yanson, I K; Naidyuk, Yu G; Fisun, V V; Konovalenko, A; Balkashin, O P; Triputen, L Yu; Korenivski, V

    2007-04-01

    We report an observation of spin-valve-like hysteresis within a few atomic layers at a ferromagnetic interface. We use phonon spectroscopy of nanometer-sized point contacts as an in situ probe to study the mechanism of the effect. Distinctive energy phonon peaks for contacts with dissimilar nonmagnetic outer electrodes allow localizing the observed spin switching to the top or bottom interfaces for nanometer thin ferromagnetic layers. The mechanism consistent with our data is energetically distinct atomically thin surface spin layers that can form current- or field-driven surface spin-valves within a single ferromagnetic film.

  4. Spin manipulation in nanoscale superconductors.

    Science.gov (United States)

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  5. Spinning particles coupled to gravity

    CERN Document Server

    Hojman, Sergio A

    2016-01-01

    Recent experimental work has determined that free falling $^{87}$Rb atoms on Earth, with vertically aligned spins, follow geodesics, thus apparently ruling out spin--gravitation interactions. It is showed that while some spinning matter models coupled to gravitation referenced to in that work seem to be ruled out by the experiment, those same experimental results confirm theoretical results derived from a Lagrangian description of spinning particles coupled to gravity constructed over forty years ago. A proposal to carry out (similar but) different experiments which will help to test the validity of the Universality of Free Fall as opposed to the correctness of the aforementioned Lagrangian theory, is presented.

  6. Spin-Hall effect and spin-Coulomb drag in doped semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hankiewicz, E M [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany); Vignale, G [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2009-06-24

    In this review, we describe in detail two important spin-transport phenomena: the extrinsic spin-Hall effect (coming from spin-orbit interactions between electrons and impurities) and the spin-Coulomb drag. The interplay of these two phenomena is analyzed. In particular, we discuss the influence of scattering between electrons with opposite spins on the spin current and the spin accumulation produced by the spin-Hall effect. Future challenges and open questions are briefly discussed. (topical review)

  7. Theories on diffusion of technology

    DEFF Research Database (Denmark)

    Munch, Birgitte

    Tracing the body of the diffusion proces by analysing the diffusion process from historical, sociological, economic and technical approaches. Discussing central characteristics of the proces of diffusion og CAD/CAM in Denmark.......Tracing the body of the diffusion proces by analysing the diffusion process from historical, sociological, economic and technical approaches. Discussing central characteristics of the proces of diffusion og CAD/CAM in Denmark....

  8. Electrical Measurements of the Extrinsic Spin Hall Effect in Fe/ In x Ga 1-xAs Heterostructures

    Science.gov (United States)

    Geppert, Chad; Garlid, Eric; Chan, Mun; Crowell, Paul; Hu, Qi; Palmstrøm, Chris

    2011-03-01

    We report on all-electrical measurements of the extrinsic spin Hall effect in Fe/ In x Ga 1-x As heterostructures with n -type channel doping (Si) and highly doped Schottky tunnel barriers. The spin Hall effect refers to the transverse spin current generated by application of a longitudinal unpolarized charge current. Complementary spin accumulation at opposing edges of the channel is detected via a Hanle effect in the voltage measured by pairs of ferromagnetic Hall contacts. The spin Hall conductivity is extracted by fitting the data to a drift-diffusion model incorporating spin precession and relaxation. Tuning the channel conductivity with applied bias allows the skew and side-jump contributions to be determined independently. The resulting magnitude is in agreement with models based on ionized impurity scattering. Further quantitative comparison to theoretical models is achieved by increasing the In concentration beyond previously reported values. Supported by ONR and NSF.

  9. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    Science.gov (United States)

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  10. Diffusing Best Practices

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Baskerville, Richard

    2014-01-01

    Both the practice and the research literature on information systems attach great value to the identification and dissemination of information on “best practices”. In the philosophy of science, this type of knowledge is regarded as technological knowledge because it becomes manifest...... in the successful techniques in one context. While the value for other contexts is unproven, knowledge of best practices circulates under an assumption that the practices will usefully self-diffuse through innovation and adoption in other contexts. We study diffusion of best practices using a design science...... approach. The study context is a design case in which an organization desires to diffuse its best practices across different groups. The design goal is embodied in organizational mechanisms to achieve this diffusion. The study used Theory of Planned Behavior (TPB) as a kernel theory. The artifacts...

  11. Hereditary diffuse gastric cancer

    DEFF Research Database (Denmark)

    van der Post, Rachel S; Vogelaar, Ingrid P; Carneiro, Fátima

    2015-01-01

    Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects...

  12. Seismic Fault Preserving Diffusion

    CERN Document Server

    Lavialle, Olivier; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick

    2007-01-01

    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  13. Seismic fault preserving diffusion

    Science.gov (United States)

    Lavialle, Olivier; Pop, Sorin; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick

    2007-02-01

    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non-linear diffusion filtering leading to a better detection of seismic faults. The non-linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  14. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    with conventional ventilation systems (mixing or displacement ventilation), diffuse ceiling ventilation can significantly reduce or even eliminate draught risk in the occupied zone. Moreover, this ventilation system presents a promising opportunity for energy saving, because of the low pressure loss, extended free......Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as an air diffuser to supply fresh air into the room. Due to the large opening area, air is delivered to the room with very low velocity and no fixed direction, therefore the name ‘diffuse’. Compared......-cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...

  15. On Diffusion and Permeation

    KAUST Repository

    Peppin, Stephen S. L.

    2009-01-01

    Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.

  16. Diffusion of Wilson Loops

    CERN Document Server

    Brzoska, A M; Negele, J W; Thies, M

    2004-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory.

  17. Spin Resonance Strength Calculations

    Science.gov (United States)

    Courant, E. D.

    2009-08-01

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  18. Spin resonance strength calculations

    Energy Technology Data Exchange (ETDEWEB)

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  19. Solvation dynamics monitored by combined X-ray spectroscopies and scattering: photoinduced spin transition in aqueous [Fe(bpy)3]2+

    DEFF Research Database (Denmark)

    Bressler, C.; Gawelda, W.; Galler, A.;

    2014-01-01

    We have studied the photoinduced low spin (LS) to high spin (HS) conversion of aqueous Fe(bpy)3 with pulse-limited time resolution. In a combined setup permitting simultaneous X-ray diffuse scattering (XDS) and spectroscopic measurements at a MHz repetition rate we have unraveled the interplay be...

  20. Coherent manipulation of nuclear spins using spin injection from a half-metallic spin source

    Science.gov (United States)

    Uemura, Tetsuya; Akiho, Takafumi; Ebina, Yuya; Yamamoto, Masafumi

    2016-10-01

    We have developed a novel nuclear magnetic resonance (NMR) system that uses spin injection from a highly polarized spin source. Efficient spin injection into GaAs from a half-metallic spin source of Mn-rich Co2MnSi enabled an efficient dynamic nuclear polarization of Ga and As nuclei in GaAs and a sensitive detection of NMR signals. Moreover, coherent control of nuclear spins, or the Rabi oscillation between two quantum levels formed at Ga nuclei, induced by a pulsed NMR has been demonstrated at a relatively low magnetic field of ˜0.1 T. This provides a novel all-electrical solid-state NMR system with the high spatial resolution and high sensitivity needed to implement scalable nuclear-spin based qubits.

  1. CO diffusion capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, U.

    1979-01-01

    We measured in 287 persons the pulmonary CO diffusion capacity with the steady-state and the single breath methods, applying apnoeic periods of 4 and 10 seconds duration. The aspects methodical significance, polyclinical applicability and pathognostic relevance with respect to other approved pulmonary functional tests are discussed. Differing pulmonary diffusion capacity values found in normal persons or in patients suffering from silicosis, pulmonary fibrosis, Boeck's disease or rheumatoid arthritis, were investigated and critically evaluated.

  2. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  3. Diffusion in nanocrystalline solids

    OpenAIRE

    Chadwick, Alan V.

    2016-01-01

    Enhanced atomic migration was an early observation from experimental studies into nanocrystalline solids. This contribution presents an overview of the available diffusion data for simple metals and ionic materials in nanocrystalline form. It will be shown that enhanced diffusion can be interpreted in terms of atomic transport along the interfaces, which are comparable to grain boundaries in coarse-grained analogues. However, the method of sample preparation is seen to play a major role in...

  4. Diffuse neutron scattering of interesting phases in Dy2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Jonathan; Rule, Kirrily; Klemke, Bastian [Helmholtz-Zentrum Berlin for Materials and Energy, Berlin (Germany); Tennant, Alan [Helmholtz-Zentrum Berlin for Materials and Energy, Berlin (Germany); Institut fur Festkoerperphysik, Technische Universitaet Berlin (Germany); Grigera, Santiago [St. Andrew' s University, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, La Plata (Argentina)

    2009-07-01

    The prospect of observing emergent magnetic monopoles in spin-ice has recently increased the interest in these systems. Dy{sub 2}Ti{sub 2}O{sub 7} is a effective spin-1/2 pyrochlore which is a clean model frustrated system where interesting physics may be observed and compared with theory. Here we present new neutron measurements from E2 at the Helmholtz-Zentrum Berlin which show an agreement with spin-ice correlation functions at 0.7 K and 0 T, and a complex Q-dependent diffuse scattering at fields below the saturation field along[100]. These are being understood in the context of spin-strings, or spin-random-walks, which are the prerequisite for monopoles. The scattering allows us to follow the development of these strings with field and provides new insight into the Kastelyn physics within this pyrochlore.

  5. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung

    2015-04-06

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  6. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is bas...

  7. Spin-SILC: CMB polarisation component separation with spin wavelets

    Science.gov (United States)

    Rogers, Keir K.; Peiris, Hiranya V.; Leistedt, Boris; McEwen, Jason D.; Pontzen, Andrew

    2016-08-01

    We present Spin-SILC, a new foreground component separation method that accurately extracts the cosmic microwave background (CMB) polarisation E and B modes from raw multifrequency Stokes Q and U measurements of the microwave sky. Spin-SILC is an internal linear combination method that uses spin wavelets to analyse the spin-2 polarisation signal P = Q + iU. The wavelets are additionally directional (non-axisymmetric). This allows different morphologies of signals to be separated and therefore the cleaning algorithm is localised using an additional domain of information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously and self-consistently probe scales and directions in the polarisation signal P = Q + iU and in the underlying E and B modes, therefore providing the ability to perform component separation and E-B decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck simulations and data and show the capacity to correctly recover the underlying cosmological E and B modes. We also demonstrate a strong consistency of our CMB maps with those derived from existing component separation methods. Spin-SILC can be combined with the pseudo- and pure E-B spin wavelet estimators presented in a companion paper to reliably extract the cosmological signal in the presence of complicated sky cuts and noise. Therefore, it will provide a computationally-efficient method to accurately extract the CMB E and B modes for future polarisation experiments.

  8. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  9. Diffusion in natural ilmenite

    Science.gov (United States)

    Stenhouse, Iona; O'Neill, Hugh; Lister, Gordon

    2010-05-01

    Diffusion rates in natural ilmenite of composition Fe0.842+ Fe0.163+Mn0.07Mg0.01Ti 0.92O3 from the Vishnevye Mountains (Urals, Russia) have been measured at 1000° C. Experiments were carried out in a one atmosphere furnace with oxygen fugacity controlled by flow of a CO-CO2 gas mixture, over a period of four hours. The diffusant source was a synthetic ilmenite (FeTiO3) powder doped with trace amounts of Mg, Co, Ni, Zr, Hf, V, Nb, Ta, Al, Cr, Ga and Y. Since, the natural ilmenite crystal contained Mn it was also possible to study diffusion of Mn from the ilmenite crystal. The experiments were analysed using the electron microprobe and scanning laser ablation ICP-MS. Diffusion profiles were measured for Al, Mg, Mn, Co, Ni, Ga, and Y. Diffusion of Cr, Hf, Zr, V, Nb and Ta was too slow to allow diffusion profiles to be accurately measured for the times and temperatures studied so far. The preliminary results show that diffusion in ilmenite is fast, with the diffusivity determined in this study on the order of 10-13 to 10-16 m2s-1. For comparison, Chakraborty (1997) found interdiffusion of Fe and Mg in olivine at 1000° C on the order of 10-17 to 10-18m2s-1 and Dieckmann (1998) found diffusivity of Fe, Mg, Co in magnetite at 1200° C to be on the order of 10-13 to 10-14 m2s-1. The order in which the diffusivity of the elements decreases is Mn > Co > Mg ≥ Ni > Al ≥ Y ≥ Ga, that is to say that Mn diffuses the fastest and Ga the slowest. Overall, this study intends to determine diffusion parameters such as frequency factor, activation energy and activation volume as a function of temperature and oxygen fugacity. This research is taking place in the context of a larger study focusing on the use of the garnet-ilmenite system as a geospeedometer. Examination of the consequences of simultaneous diffusion of multiple elements is a necessity if we are to develop an understanding of the crystal-chemical controls on diffusion (cf Spandler & O'Neill, in press). Chakraborty

  10. Unconventional spin texture in a noncentrosymmetric quantum spin Hall insulator

    Science.gov (United States)

    Mera Acosta, C.; Babilonia, O.; Abdalla, L.; Fazzio, A.

    2016-07-01

    We propose that the simultaneous presence of both Rashba and band inversion can lead to a Rashba-like spin splitting formed by two bands with the same in-plane helical spin texture. Because of this unconventional spin texture, the backscattering is forbidden in edge and bulk conductivity channels. We propose a noncentrosymmetric honeycomb-lattice quantum spin Hall (QSH) insulator family formed by the IV, V, and VII elements with this property. The system formed by Bi, Pb, and I atoms is mechanically stable and has both a large Rashba spin splitting of 60 meV and a large nontrivial band gap of 0.14 eV. Since the edge and the bulk states are protected by the time-reversal (TR) symmetry, contrary to what happens in most doped QSH insulators, the bulk states do not contribute to the backscattering in the electronic transport, allowing the construction of a spintronic device with less energy loss.

  11. Magnetar Spin-Down.

    Science.gov (United States)

    Harding; Contopoulos; Kazanas

    1999-11-10

    We examine the effects of a relativistic wind on the spin-down of a neutron star and apply our results to the study of soft gamma repeaters (SGRs), which are thought to be neutron stars with magnetic fields greater than 1014 G. We derive a spin-down formula that includes torques from both dipole radiation and episodic or continuous particle winds. We find that if SGR 1806-20 puts out a continuous particle wind of 1037 ergs s-1, then the pulsar age is consistent with that of the supernova remnant, but the derived surface dipole magnetic field is only 3x1013 G, in the range of normal radio pulsars. If instead the particle wind flows are episodic with small duty cycle, then the observed period derivatives imply magnetar-strength fields, while still allowing characteristic ages within a factor of 2 of the estimated supernova remnant age. Close monitoring of the periods of SGRs will allow us to establish or place limits on the wind duty cycle and thus the magnetic field and age of the neutron star.

  12. Magnetar Spin-Down

    CERN Document Server

    Harding, A K; Kazanas, D; Harding, Alice K.; Contopoulos, Ioannis; Kazanas, Demosthenes

    1999-01-01

    We examine the effects of a relativistic wind on the spin down of a neutron star and apply our results to the study of Soft Gamma Repeaters (SGRs), thought to be neutron stars with magnetic fields > 10^{14} G. We derive a spin-down formula that includes torques from both dipole radiation and episodic or continuous particle winds. We find that if a continuous particle wind powers the plerionic nebula surrounding SGR1806-20, then the pulsar age is consistent with that of the supernova remnant, but the derived surface dipole magnetic field is only 3 \\times 10^{13} G, in the range of normal radio pulsars. If instead, the particle wind flows are episodic with small duty cycle, then the observed period derivatives imply magnetar-strength fields, while still allowing characteristic ages within a factor of two of the estimated supernova remnant age. Close monitoring of the periods of SGRs will be able to establish or place limits on the wind duty cycle and thus the magnetic field and age of the neutron star.

  13. Snakes and spin rotators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1990-06-18

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10{sup {minus}4} will be significant. 2 refs., 5 figs.

  14. Spin-noise correlations and spin-noise exchange driven by low-field spin-exchange collisions

    Science.gov (United States)

    Dellis, A. T.; Loulakis, M.; Kominis, I. K.

    2014-09-01

    The physics of spin-exchange collisions have fueled several discoveries in fundamental physics and numerous applications in medical imaging and nuclear magnetic resonance. We report on the experimental observation and theoretical justification of spin-noise exchange, the transfer of spin noise from one atomic species to another. The signature of spin-noise exchange is an increase of the total spin-noise power at low magnetic fields, on the order of 1 mG, where the two-species spin-noise resonances overlap. The underlying physical mechanism is the two-species spin-noise correlation induced by spin-exchange collisions.

  15. Spin transport in p-type germanium.

    Science.gov (United States)

    Rortais, F; Oyarzún, S; Bottegoni, F; Rojas-Sánchez, J-C; Laczkowski, P; Ferrari, A; Vergnaud, C; Ducruet, C; Beigné, C; Reyren, N; Marty, A; Attané, J-P; Vila, L; Gambarelli, S; Widiez, J; Ciccacci, F; Jaffrès, H; George, J-M; Jamet, M

    2016-04-27

    We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

  16. Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation

    Science.gov (United States)

    Koopmans, Bert

    A hot topic in the field of ultrafast laser-induced manipulation of the magnetic state is that of the role and exploitation of laser-induced spin currents. Intense debate has been triggered by claims that such a spin-transfer, e.g. in the form of super-diffusive spin currents over tens of nanometers, might be a main contributor to the demagnetization process in ferromagnetic thin films after femtosecond laser excitation. In this presentation the underlying concepts will be introduced and recent developments reviewed. Particularly we demonstrate the possibility to apply a laser-induced spin transfer torque on a free magnetic layer, using a non-collinear multilayer configuration consisting of a free in-plane layer on top of a perpendicularly magnetized injection layer, as separated by a nonmagnetic spacer. Interestingly, this approach allows for a quantitative measurement of the amount of spin transfer. Moreover, it might provide access to novel device architectures in which the magnetic state is controlled by fs laser pulses. Careful analysis of the resulting precession of the free layer allows us to quantify the applied torque, and distinguish between driving mechanisms based on laser-induced transfer of hot electrons versus a spin Seebeck effect due to the large thermal gradients. Further engineering of the layered structures in order to gain fundamental understanding and optimize efficiencies will be reported. A simple model that treats local non-equilibrium magnetization dynamics to spin transport effects via a spin-dependent chemical potential will be introduced.

  17. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.;

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of t...

  18. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis, stro

  19. Decoherence in quantum spin systems

    NARCIS (Netherlands)

    De Raedt, H; Dobrovitski, VV; Landau, DP; Lewis, SP; Schuttler, HB

    2003-01-01

    Computer simulations of decoherence in quantum spin systems require the solution of the time-dependent Schrodinger equation for interacting quantum spin systems over extended periods of time. We use exact diagonalization, the Chebyshev polynomial technique, four Suzuki-formula algorithms, and the sh

  20. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    A P Young

    2005-06-01

    I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length of the spins and chiralities shows that there is a single, finite-temperature transition at which both spins and chiralities order.

  1. Modulated spin polarization in nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, Sebastian; Oka, Hirofumi; Rodary, Guillemin; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2009-07-01

    Deposition of 0.7 ML Co onto the clean Cu(111) surface at room temperature leads to the formation of triangular two atomic layers high Co islands. We study the electronic properties of these nano islands by scanning tunneling microscopy (STM) and spectroscopy (STS) at 7 K. We observe pronounced spatial modulation patterns in the local density of states (LDOS) within the islands due to electron confinement. We explore the magnetic properties of the very same islands by spin-polarized STM and STS in a magnetic field of up to 4 T. Our spin-polarized measurements in field clearly identify the parallel and anti-parallel spin orientation states of tip and sample. This enables us to measure the spatial distribution of the spin polarization within single Co islands. We find that the spin polarization is spatially modulated. Our results are discussed in view of recent theoretical predictions.

  2. Spin Foams and Canonical Quantization

    CERN Document Server

    Alexandrov, Sergei; Noui, Karim

    2011-01-01

    This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization \\`a la Witten of Riemannian gravity with a positive cosmological constant is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related to the physical scalar product of Riemannian loop quantum gravity without cosmological constant. In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity using projected spin networks, compare it with the new spin foam models, and identify interesting relations and their pitfalls. Finally, we discuss the properties which a spin foam model is expected to possess in order to be consistent with the canonical quantization, and suggest a new model illustrating these results.

  3. Transverse spin with coupled plasmons

    CERN Document Server

    Mukherjee, Samyobrata

    2016-01-01

    We study theoretically the transverse spin associated with the eigenmodes of a thin metal film embedded in a dielectric. We show that the transverse spin has a direct dependence on the nature and strength of the coupling leading to two distinct branches for the long- and short- range modes. We show that the short-range mode exhibits larger extraordinary spin because of its more 'structured' nature due to higher decay in propagation. In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the coupled plasmon structures.

  4. Measurement of the spin asymmetry of the beam in the polarized virtual Compton scattering on the proton. Study of the nucleon's energy spectra through the QCD-type potential model; Mesure de l'asymetrie de spin de faisceau en diffusion compton virtuelle polarisee sur le proton. Etude du spectre d'energie du nucleon par le modele de potentiel de type QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bensafa, I.K

    2006-05-15

    The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q{sup 2} = 0.35 GeV{sup 2}) to measure the beam asymmetry in the ep {yields} ep{gamma} and ep {yields} ep{pi}{sup 0} reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for {pi}{sup 0}) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles ({gamma}{sup *}N {yields} {pi}N). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the {delta}(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)

  5. Stern-Gerlach Experiment with Higher Spins

    CERN Document Server

    Tekin, Bayram

    2015-01-01

    We analyze idealized sequential Stern-Gerlach experiments with higher spin particles. This analysis serves at least two purposes: The widely discussed spin-1/2 case leads to some misunderstandings which hopefully is removed by the higher spin discussion. Secondly, Wigner rotation matrices for generic spins become conceptually more transparent with this physical example. We also give compact formulas for the probabilities in terms of the angle between the sequential SG apparatuses for generic spins. We work out the spin-$1/2$, spin-$1$ and spin-$2$ cases explicitly. Since there are some confusing issues regarding the actual experiment, we also compile a "facts and fiction" section on the SG experiments.

  6. Theory of the spin Seebeck effect.

    Science.gov (United States)

    Adachi, Hiroto; Uchida, Ken-ichi; Saitoh, Eiji; Maekawa, Sadamichi

    2013-03-01

    The spin Seebeck effect refers to the generation of a spin voltage caused by a temperature gradient in a ferromagnet, which enables the thermal injection of spin currents from the ferromagnet into an attached nonmagnetic metal over a macroscopic scale of several millimeters. The inverse spin Hall effect converts the injected spin current into a transverse charge voltage, thereby producing electromotive force as in the conventional charge Seebeck device. Recent theoretical and experimental efforts have shown that the magnon and phonon degrees of freedom play crucial roles in the spin Seebeck effect. In this paper, we present the theoretical basis for understanding the spin Seebeck effect and briefly discuss other thermal spin effects.

  7. Negative g-Force Ocular Trauma Caused by a Rapidly Spinning Carousel

    Directory of Open Access Journals (Sweden)

    Elad Moisseiev

    2013-10-01

    Full Text Available We present a case of a 10-year-old boy who presented with bilateral diffuse subconjunctival hemorrhages after spinning rapidly on a carousel attached to an electrical scooter. We present his clinical course and discuss the physics and pathophysiology of this unique mechanism of ocular trauma.

  8. Microporosity of Bicontinuous Polymer Composites, Studied with Restricted Diffusion

    Science.gov (United States)

    von Meerwall, E. D.; Kuta, K.; Challa, V.; Lopina, S.; Cheung, M.

    2001-03-01

    We have used the proton pulsed-gradient spin-echo method to study the self-diffusion D of the mobile fractions in bicontinuous microemulsions formed with methyl methacrylate and hydroxy-ethyl methacrylate, crosslinked with ethylene glycol dimethacrylate in the presence of water containing 10 percent sodium dodecyl sulfate as surfactant. Measurements were made at 50 deg. C over the full two-phase range (30 to 96 wt. percent water) at diffusion times between 12 and 1000 ms. A spin-echo of the glassy open-cell network phase was not detected. Two distinct components are observed differing in D by two orders of magnitude, with an intensity ratio monotonic in water content. Both D depend only weakly on diffusion time, but D of the free water increases with water content. Assuming free diffusion of water in the open pores we extract from the data the reduced permeabilities (i. e., detour and tortuosity), discuss the origin of the slow component as network-associated, and derive an upper limit on the pore size on the order of 1 micrometer, in keeping with SEM evidence.

  9. Primary diffuse leptomeningeal gliosarcomatosis.

    Science.gov (United States)

    Moon, Ju Hyung; Kim, Se Hoon; Kim, Eui Hyun; Kang, Seok-Gu; Chang, Jong Hee

    2015-04-01

    Primary diffuse leptomeningeal gliomatosis (PDLG) is a rare condition with a fatal outcome, characterized by diffuse infiltration of the leptomeninges by neoplastic glial cells without evidence of primary tumor in the brain or spinal cord parenchyma. In particular, PDLG histologically diagnosed as gliosarcoma is extremely rare, with only 2 cases reported to date. We report a case of primary diffuse leptomeningeal gliosarcomatosis. A 68-year-old man presented with fever, chilling, headache, and a brief episode of mental deterioration. Initial T1-weighted post-contrast brain magnetic resonance imaging (MRI) showed diffuse leptomeningeal enhancement without a definite intraparenchymal lesion. Based on clinical and imaging findings, antiviral treatment was initiated. Despite the treatment, the patient's neurologic symptoms and mental status progressively deteriorated and follow-up MRI showed rapid progression of the disease. A meningeal biopsy revealed gliosarcoma and was conclusive for the diagnosis of primary diffuse leptomeningeal gliosarcomatosis. We suggest the inclusion of PDLG in the potential differential diagnosis of patients who present with nonspecific neurologic symptoms in the presence of leptomeningeal involvement on MRI.

  10. Multidimensional diffusion MRI

    Science.gov (United States)

    Topgaard, Daniel

    2017-02-01

    Principles from multidimensional NMR spectroscopy, and in particular solid-state NMR, have recently been transferred to the field of diffusion MRI, offering non-invasive characterization of heterogeneous anisotropic materials, such as the human brain, at an unprecedented level of detail. Here we revisit the basic physics of solid-state NMR and diffusion MRI to pinpoint the origin of the somewhat unexpected analogy between the two fields, and provide an overview of current diffusion MRI acquisition protocols and data analysis methods to quantify the composition of heterogeneous materials in terms of diffusion tensor distributions with size, shape, and orientation dimensions. While the most advanced methods allow estimation of the complete multidimensional distributions, simpler methods focus on various projections onto lower-dimensional spaces as well as determination of means and variances rather than actual distributions. Even the less advanced methods provide simple and intuitive scalar parameters that are directly related to microstructural features that can be observed in optical microscopy images, e.g. average cell eccentricity, variance of cell density, and orientational order - properties that are inextricably entangled in conventional diffusion MRI. Key to disentangling all these microstructural features is MRI signal acquisition combining isotropic and directional dimensions, just as in the field of multidimensional solid-state NMR from which most of the ideas for the new methods are derived.

  11. Sailing On Diffusion

    Science.gov (United States)

    Allshouse, Michael; Barad, Mike; Peacock, Thomas

    2009-11-01

    When a density-stratified fluid encounters a sloping boundary, diffusion alters the fluid density adjacent to the boundary, producing spontaneous along-slope flow. Since stratified fluids are ubiquitous in nature, this phenomenon plays a vital role in environmental transport processes, including salt transport in rock fissures and ocean-boundary mixing. Here we show that diffusion-driven flow can be harnessed as a remarkable means of propulsion, acting as a diffusion-engine that extracts energy from microscale diffusive processes to propel macroscale objects. Like a sailboat tacking into the wind, forward motion results from fluid flow around an object, creating a region of low pressure at the front relative to the rear. In this case, however, the flow is driven by molecular diffusion and the pressure variations arise due to the resulting small changes in the fluid density. This mechanism has implications for a number of important systems, including environmental and biological transport processes at locations of strong stratification, such as pycnoclines in oceans and lakes. There is also a strong connection with other prevalent buoyancy-driven flows, such as valley and glacier winds, significantly broadening the scope of these results and opening up a new avenue for propulsion research.

  12. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    Science.gov (United States)

    Georgii, R.; Kindervater, J.; Pfleiderer, C.; Böni, P.

    2016-11-01

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  13. SPIN-TORQUE IN SYSTEMS WITH INHOMOGENEOUS MAGETIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Zangwill, Andrew [Georgia Institute of Technology

    2013-04-23

    The work performed during the grant period focused on the phenomenon of spin-transfer torque. This is a quantum mechanical effect whereby the angular momentum of conduction electrons is transferred to the magnetization of ferromagnetic structures. Our work on this subject began with phenomenological drift-diffusion and Landau-Lifshitz-Gilbert equations to demonstrate unambiguously that unpolarized current flow from a nonmagnet into a ferromagnet can produce a precession-type instability of the magnetization. We then used Boltzmann calculations appropriate to spin-valve type magnetic heterostructures composed of a non-magnetic thin film sandwiched between two thin film layers with uniform magnetization. Perhaps our most important paper dealt with quantum and semi-classical calculations of spin-transfer torque in systems with domain walls and other inhomogeneous distributions of magnetization. The latter work caused us to suggest that the Landau-Lifshitz approach to magnetic damping provided a clearer picture of the physics than the more popular (but formally equivalent) Gilbert approach to damping. Finally, we returned to our Boltzmann calculations and made a serious effort to analyze experimental data on current-induced magnetization in switching in magnetic spin-valve structures. Our work was part of a world-wide effort to study and harness the transport of the electron's spin and was one of the first sustained theoretical efforts in this direction in the United States. The payoff is just now being seen. In November of 2012, the Everspin Corporation announced the release of the first commercial spin-torque magnetoresistive random access memory.

  14. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  15. SpinS: Extending LTSmin with Promela through SpinJa

    NARCIS (Netherlands)

    Berg, van der Freark; Laarman, Alfons; Heljanko, K.; Knottenbelt, W.J.

    2012-01-01

    We show how PROMELA can be supported by the high-performance generic model checking tools of LTSMIN. The success of the SPIN model checker has made PROMELA an important modeling language. SPINJA was created as a Java implementation of SPIN, in an effort to make the model checker easily extendible an

  16. Spin Injection and Spin Accumulation in Permalloy–Copper Mesoscopic Spin Valves

    NARCIS (Netherlands)

    Jedema, F.J.; Filip, A.T.; Wees, B.J. van

    2002-01-01

    We study the electrical injection and detection of spin currents in a lateral spin valve device, using permalloy (Py) as ferromagnetic injecting and detecting electrodes and copper (Cu) as nonmagnetic metal. Our multiterminal geometry allows us to experimentally distinguish different magnetoresistan

  17. Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect

    NARCIS (Netherlands)

    Jiao, H.; Bauer, G.E.W.

    2013-01-01

    The spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant polarization component parallel to the precession axis and a rotating one normal to the magnetization. The former is now routinely detected as a dc voltage induced by the inverse spin Hall effect (ISHE).

  18. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  19. Decoherence of spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Prosen, Tomaz [Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia)]. E-mail: prosen@fiz.uni-lj.si; Seligman, Thomas H. [Centro de Ciencias Fisicas, University of Mexico (UNAM), Cuernavaca (Mexico)]. E-mail: seligman@fis.unam.mx

    2002-06-07

    We define a quantity, the so-called purity fidelity, which measures the rate of dynamical irreversibility due to decoherence, observed e.g. in echo experiments, in the presence of an arbitrary small perturbation of the total (system + environment) Hamiltonian. We derive a linear response formula for the purity fidelity in terms of integrated time correlation functions of the perturbation. Our relation predicts, similar to the case of fidelity decay, that the faster the decay of purity fidelity the slower is the decay of time correlations. In particular, we find exponential decay in quantum mixing regime and faster, initially quadratic and later typically Gaussian decay in the regime of non-ergodic, e.g. integrable quantum dynamics. We illustrate our approach by an analytical calculation and numerical experiments in the Ising spin 1/2 chain kicked with tilted homogeneous magnetic field where part of the chain is interpreted as a system under observation and part as an environment. (author)

  20. Sorbate Transport in Carbon Molecular Sieve Membranes and FAU/EMT Intergrowth by Diffusion NMR

    Directory of Open Access Journals (Sweden)

    John J. Low

    2012-02-01

    Full Text Available In this paper we present and discuss selected results of our recent studies of sorbate self-diffusion in microporous materials. The main focus is given to transport properties of carbon molecular sieve (CMS membranes as well as of the intergrowth of FAU-type and EMT-type zeolites. CMS membranes show promise for applications in separations of mixtures of small gas molecules, while FAU/EMT intergrowth can be used as an active and selective cracking catalyst. For both types of applications diffusion of guest molecules in the micropore networks of these materials is expected to play an important role. Diffusion studies were performed by a pulsed field gradient (PFG NMR technique that combines advantages of high field (17.6 T NMR and high magnetic field gradients (up to 30 T/m. This technique has been recently introduced at the University of Florida in collaboration with the National Magnet Lab. In addition to a more conventional proton PFG NMR, also carbon-13 PFG NMR was used.

  1. Distributed Control Diffusion

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh

    2007-01-01

    . Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular....... This approach allows the programmer to dynamically distribute behaviors throughout a robot and moreover provides a partial abstraction over the concrete physical shape of the robot. We have implemented a prototype of a distributed control diffusion system for the ATRON modular, self-reconfigurable robot......, self-reconfigurable robots, we present the concept of distributed control diffusion: distributed queries are used to identify modules that play a specific role in the robot, and behaviors that implement specific control strategies are diffused throughout the robot based on these role assignments...

  2. Diffusion and mass transfer

    CERN Document Server

    Vrentas, James S

    2013-01-01

    The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...

  3. Cesium diffusion in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  4. Topologically Massive Spin-1 Particles and Spin-Dependent Potentials

    CERN Document Server

    Ferreira, F A Gomes; Ospedal, L P R; Helayël-Neto, J A

    2014-01-01

    We investigate the role played by particular representations of an intermediate massive spin-1 boson in the context of spin-dependent potentials between fermionic sources in the limit of low momentum transfer. A comparison between the well-known Proca case and that of a rank-2 tensor gauge potential coupled to a 4-vector gauge field is investigated in order to extract spin- as well as velocity-dependent profiles of the interparticle potentials. Bounds on some of the coupling parameters are derived and we discuss possible applications.

  5. Spin waves and spin instabilities in quantum plasmas

    CERN Document Server

    Andreev, P A

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Instabilities appearing due to interaction of magnetic moments of neutrons with plasma are described.

  6. Confined spin wave spectra of Kagome artificial spin ice arrays

    Science.gov (United States)

    Panagiotopoulos, I.

    2017-01-01

    The spin wave modes of elongated magnetic islands arranged in Kagome artificial spin-ice arrays are micromagnetically simulated in the frequency regime between 3 and 16 GHz. The edge modes are more suitable in order to detect the signatures of various types of local order of the spin-ice lattice as they are much more sensitive to the magnetic configurations of neighboring elements. The spectra of arrays consisting up to 30 elements can be decomposed to those originating from local magnetic states of their vertices.

  7. The continuous spin limit of higher spin field equations

    Energy Technology Data Exchange (ETDEWEB)

    Bekaert, Xavier [Institut des Hautes Etudes Scientifiques, Le Bois-Marie, 35 route de Chartres, 91440 Bures-sur-Yvette (France); Mourad, Jihad [APC, Universite Paris VII, 2 place Jussieu, 75251 Paris Cedex 05 (France); LPT, Bat. 210, Universite Paris XI, 91405 Orsay Cedex (France)

    2006-01-15

    We show that the Wigner equations describing the continuous spin representations can be obtained as a limit of massive higher-spin field equations. The limit involves a suitable scaling of the wave function, the mass going to zero and the spin to infinity with their product being fixed. The result allows to transform the Wigner equations to a gauge invariant Fronsdal-like form. We also give the generalisation of the Wigner equations to higher dimensions with fields belonging to arbitrary representations of the massless little group.

  8. Coarse graining methods for spin net and spin foam models

    CERN Document Server

    Dittrich, Bianca; Martin-Benito, Mercedes

    2011-01-01

    We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large scale analysis by numerical and computational methods. In particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin net and spin foam models based on finite Abelian groups and introduce `cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the Tensor Network Renormalization analysis, a new Gauss constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish an equivalence of certain models.

  9. Explorations into quantum state diffusion beyond the Markov approximation

    Science.gov (United States)

    Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.

    2011-05-01

    The non-Markovian quantum state diffusion equation is rapidly becoming a powerful tool for both theoretical and numerical investigations into non-trivial problems in quantum optical QED. It has been used to rederive the exact master equation for quantum Brownian motion, as well as an optical cavity or a two-level atom which is either damped or dephased under the rotating wave approximation. The exact quantum state diffusion equations for the spin-1 system have also been found, and general theorems have now been derived for solving the N-cavity, N-qubit, and N-level systems. Here, we build upon the results of Ref. to explore other problems from quantum optical QED using the non-Markovian quantum state diffusion equation.

  10. Kondo Physics at Interfaces in Metallic Non-Local Spin Transport Devices

    Science.gov (United States)

    Leighton, Chris

    2015-03-01

    Despite the maturity of metallic spintronics there remain large gaps in our understanding of spin transport in metals, particularly with injection of spins across ferromagnetic/non-magnetic (FM/NM) interfaces, and their subsequent diffusion and relaxation. Unresolved issues include the limits of applicability of Elliott-Yafet spin relaxation, quantification of the influence of defects, surfaces, and interfaces on spin relaxation at nanoscopic dimensions, and the importance of magnetic and spin-orbit scattering. The non-local spin-valve is an enabling device in this context as, in addition to offering potentially disruptive applications, it allows for the separation of charge and spin currents. One particularly perplexing issue in metallic non-local spin valves is the widely observed non-monotonicity in the T-dependent spin accumulation, where the spin signal actually decreases at low T, in contrast to simple expectations. In this work, by studying an expanded range of FM/NM combinations (encompassing Ni80Fe20, Ni, Fe, Co, Cu, and Al), we demonstrate that this effect is not a property of a given FM or NM, but rather of the FM/NM pair. The non-monotonicity is in fact strongly correlated with the ability of the FM to form a dilute local magnetic moment in the NM. We show that local moments, resulting in this case from the ppm-level tail of the FM/NM interdiffusion profile, suppress the injected spin polarization and diffusion length via a novel manifestation of the Kondo effect, explaining all observations associated with the low T downturn in spin accumulation. We further show: (a) that this effect can be promoted by thermal annealing, at which point the conventional charge transport Kondo effect is simultaneously detected in the NM, and (b) that this suppression in spin accumulation can be quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer. Important implications for room temperature

  11. GRAI N-BOUNDARY DIFFUSION

    OpenAIRE

    Peterson, N.

    1982-01-01

    The more useful experimental techniques for determining grain-boundary diffusion are briefly described followed by a presentation of results that shed light on the models and mechanisms of grain-boundary and dislocation diffusion. Studies of the following grain-boundary diffusion phenomena will be considered ; anisotropy in grain-boundary diffusion, effect of orientation relationship on grain-boundary diffusion, effect of boundary type and dislocation dissociation, lattice structure, correlat...

  12. Dynamics of Diffusion Flames in von Karman Swirling Flows Studied

    Science.gov (United States)

    Nayagam, Vedha; Williams, Forman A.

    2002-01-01

    Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.

  13. Drift in Diffusion Gradients

    Directory of Open Access Journals (Sweden)

    Fabio Marchesoni

    2013-08-01

    Full Text Available The longstanding problem of Brownian transport in a heterogeneous quasi one-dimensional medium with space-dependent self-diffusion coefficient is addressed in the overdamped (zero mass limit. A satisfactory mesoscopic description is obtained in the Langevin equation formalism by introducing an appropriate drift term, which depends on the system macroscopic observables, namely the diffuser concentration and current. The drift term is related to the microscopic properties of the medium. The paradoxical existence of a finite drift at zero current suggests the possibility of designing a Maxwell demon operating between two equilibrium reservoirs at the same temperature.

  14. Diffusion in advanced materials

    CERN Document Server

    Murch, Graeme; Belova, Irina

    2014-01-01

    In the first chapter Prof. Kozubski and colleagues present atomisticsimulations of superstructure transformations of intermetallic nanolayers.In Chapter 2, Prof. Danielewski and colleagues discuss a formalism for themorphology of the diffusion zone in ternary alloys. In Chapter 3, ProfessorsSprengel and Koiwa discuss the classical contributions of Boltzmann andMatano for the analysis of concentration-dependent diffusion. This isfollowed by Chapter 4 by Professor Cserháti and colleagues on the use of Kirkendall porosity for fabricating hollow hemispheres. In Chapter 5,Professor Morton-Blake rep

  15. The Trouble with Diffusion

    Directory of Open Access Journals (Sweden)

    R.T. DeHoff

    2002-09-01

    Full Text Available The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete

  16. Phase transformation and diffusion

    CERN Document Server

    Kale, G B; Dey, G K

    2008-01-01

    Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g

  17. Nonlocal electrical diffusion equation

    Science.gov (United States)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.

    2016-07-01

    In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.

  18. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  19. Hydrogen diffusion in Zircon

    Science.gov (United States)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  20. Skyrmions and Single Spin-Flips in higher Landau levels

    Science.gov (United States)

    Melik-Alaverdian, V.; Bonesteel, N. E.; Ortiz, G.

    1998-03-01

    Skyrmions and single spin-flips in the integer and fractional quantum Hall states are studied numerically in the spherical geometry, including the effects of Landau Level Mixing (LLM) and Finite Thickness (FT). LLM is included by using a generalized Fixed-Phase Diffusion Monte Carlo (FPDMC) technique,(V. Melik-Alaverdian et al., Phys. Rev. Lett. 79) xxx (1997). and FT is included by modifying the short range part of the Coulomb potential. For trial phases in the FPDMC simulation of skyrmions we use the phases of hard-core skyrmion wave functions.(A.H. MacDonald et al., Phys. Rev. Lett. 76) 2153 (1996). We find that both, LLM and FT favor quasiparticles with reduced spins. For the ν=1 state our results for the crossover fields between quasiparticles with different spin polarization are consistent with experiment.(A. Schmeller et al., Phys. Rev. Lett. 75) 4290 (1995). For the ν=1/3 state we predict the range of fields when the skyrmions and single spin-flips become stable. Supported by DOE grant DE-FG0297ER45639. NEB acknowledges the support of an A.P. Sloan Fellowship.

  1. Electronic structure of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha-Dasgupta, Tanusri

    2016-04-15

    Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.

  2. Quantum spin liquids: a review

    Science.gov (United States)

    Savary, Lucile; Balents, Leon

    2017-01-01

    Quantum spin liquids may be considered ‘quantum disordered’ ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.

  3. Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities

    CERN Document Server

    Chechkin, A V; Metzler, R; Sokolov, I M

    2016-01-01

    A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity we here establish and analyse a complete minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process in the short time limit with a superstatistical approach based on a distribution of diffusivities. Moreover, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, that can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations.

  4. Topologically massive spin-1 particles and spin-dependent potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.A.G.; Malta, P.C.; Ospedal, L.P.R.; Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro (Brazil)

    2015-05-15

    We investigate the role played by particular field representations of an intermediate massive spin-1 boson in the context of spin-dependent interparticle potentials between fermionic sources in the limit of low momentum transfer. The comparison between the well-known case of the Proca field and that of an exchanged spin-1 boson (with gauge-invariant mass) described by a 2-form potential mixed with a 4-vector gauge field is established in order to pursue an analysis of spin- as well as velocity-dependent profiles of the interparticle potentials. We discuss possible applications and derive an upper bound on the product of vector and pseudo-tensor coupling constants. (orig.)

  5. CP observables with spin-spin correlations in chargino production

    Energy Technology Data Exchange (ETDEWEB)

    Bartl, A. [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Wien (Austria); AHEP Group, Institut de Fisica Corpuscular-C.S.I.C., Universitat de Valencia, Edifici Instituts d' Investigacio, Apt. 22085, E-46071 Valencia (Spain); Hohenwarter-Sodek, K. [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Wien (Austria); Kernreiter, T. [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Wien (Austria)], E-mail: tkern@hephy.oeaw.ac.at; Kittel, O. [Physikalisches Institut der Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Terwort, M. [Institut fuer Experimentalphysik, Universitaet Hamburg, Notkestrasse 85, D-22607 Hamburg (Germany)

    2008-10-11

    We study the CP-violating terms of the spin-spin correlations in chargino production e{sup +}e{sup -}{yields}{chi}-tilde{sub 1}{sup {+-}}{chi}-tilde{sub 2}{sup {+-}}, and their subsequent two-body decays into sneutrinos plus leptons. We propose novel CP-sensitive observables with the help of T-odd products of the spin-spin terms. These terms depend on the polarizations of both charginos, with one polarization perpendicular to the production plane. We identify two classes of CP-sensitive observables; one requires the reconstruction of the production plane, the other not. Our framework is the Minimal Supersymmetric Standard Model with complex parameters.

  6. CP observables with spin-spin correlations in chargino production

    CERN Document Server

    Bartl, Alfred; Kernreiter, T; Kittel, O; Terwort, M

    2008-01-01

    We study the CP-violating terms of the spin-spin correlations in chargino production e+e- -> chi^+/-_1 chi^-/+_2, and their subsequent two-body decays into sneutrinos plus leptons. We propose novel CP-sensitive observables with the help of T-odd products of the spin-spin terms. These terms depend on the polarizations of both charginos, with one polarization perpendicular to the production plane. We identify two classes of CP-sensitive observables; one requires the reconstruction of the production plane, the other not. Our framework is the Minimal Supersymmetric Standard Model with complex parameters. We also calculate the statistical significances to which our CP-sensitive observables can be determined to be non-zero.

  7. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  8. Spin precession in anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)

    2016-05-15

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)

  9. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    K S Mallesh; Swarnamala Sirsi; Mahmoud A A Sbaih; P N Deepak; G Ramachandran

    2002-08-01

    We discuss the notion of spin squeezing considering two mutually exclusive classes of spin- states, namely, oriented and non-oriented states. Our analysis shows that the oriented states are not squeezed while non-oriented states exhibit squeezing. We also present a new scheme for construction of spin- states using 2 spinors oriented along different axes. Taking the case of = 1, we show that the `non-oriented’ nature and hence squeezing arise from the intrinsic quantum correlations that exist among the spinors in the coupled state.

  10. Spinning fluids in general relativity

    Science.gov (United States)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  11. Pairing Correlations at High Spins

    Science.gov (United States)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  12. Nonlocal spin-transport measurement of superconductor-ferromagnet nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kolenda, Stefan; Wolf, Michael J.; Huebler, Florian; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We present measurements of the nonlocal conductance of nanostructures with several ferromagnetic electrodes lying perpendicular on a superconducting wire. In these structures nonlocal conductance is mostly given by diffusion of quasiparticles, which are injected by one of the electrodes and detected by an other one. Applying a magnetic field induces a Zeeman splitting in the quasiparticles density of states, which suppresses the relaxation of injected spin imbalance, thus spin transport over distances of several micrometers is found. While in the previous experiments the magnetic field was aligned parallel to the ferromagnetic electrodes, we also show measurements applying the magnetic field noncollinear with the magnetization of the ferromagnetic electrodes. We compare our results to the previous case.

  13. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mamone, Salvatore, E-mail: s.mamone@soton.ac.uk; Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H., E-mail: mhl@soton.ac.uk [School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom); Lei, Xuegong; Li, Yongjun [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Goh, Kelvin; Horsewill, Anthony J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-05-21

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  14. Spin supercurrent and phase-tunable triplet Cooper pairs via magnetic insulators

    Science.gov (United States)

    Gomperud, Ingvild; Linder, Jacob

    2015-07-01

    We demonstrate theoretically that a dissipationless spin current can flow a long distance through a diffusive normal metal by using superconductors interfaced with magnetic insulators. The magnitude of this spin supercurrent is controlled via the magnetization orientation of the magnetic insulators. The spin supercurrent obtained in this way is conserved in the normal metal just like the charge current and interestingly has a term that is independent of the superconducting phase difference. The quantum state of the system can be switched between 0 and π by reversing the insulators from a parallel to antiparallel configuration with an external field. We show that the spin current is carried through the normal metal by superconducting triplet (odd-frequency) correlations and that the superconducting phase difference can be used to enhance these, leaving clear spectroscopic fingerprints in the density of states.

  15. Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

    KAUST Repository

    Haney, Paul M.

    2013-05-07

    In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.

  16. Theory of unidirectional spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers

    Science.gov (United States)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-10-01

    Recent experiments have revealed nonlinear features of the magnetoresistance in metallic bilayers consisting of a heavy metal (HM) and a ferromagnetic metal (FM). A small change in the longitudinal resistance of the bilayer has been observed when reversing the direction of either the applied in-plane current or the magnetization. We attribute such nonlinear transport behavior to the spin-polarization dependence of the electron mobility in the FM layer acting in concert with the spin accumulation induced in that layer by the spin Hall current originating in the bulk of the HM layer. An explicit expression for the nonlinear magnetoresistance is derived based on a simple drift-diffusion model, which shows that the nonlinear magnetoresistance appears at the first order of the spin Hall angle, and changes sign when the current is reversed, in agreement with the experimental observations. We also discuss possible ways to control sign of the nonlinear magnetoresistance and to enhance the magnitude of the effect.

  17. Proximity induced room temperature ferromagnetism in graphene probed with spin currents

    Science.gov (United States)

    Leutenantsmeyer, Johannes Christian; Kaverzin, Alexey A.; Wojtaszek, Magdalena; van Wees, Bart J.

    2017-03-01

    We present a direct measurement of the exchange interaction in room temperature ferromagnetic graphene. We study the spin transport in exfoliated graphene on an yttrium-iron-garnet substrate where the observed spin precession clearly indicates the presence and strength of an exchange field that is an unambiguous evidence of induced ferromagnetism. We describe the results with a modified Bloch diffusion equation and extract an average exchange field of the order of 0.2 T. Further, we demonstrate that a proximity induced 2D ferromagnet can efficiently modulate a spin current by controlling the direction of the exchange field. These findings can create a building block for magnetic-gate tuneable spin transport in one-atom-thick spintronic devices.

  18. Heteronuclear dipolar coupling in spin-1 NQR pulsed spin locking

    Science.gov (United States)

    Malone, M. W.; Sauer, K. L.

    2014-01-01

    We investigate theoretically and experimentally the role of broadening due to heteronuclear dipolar coupling in spin-1 nuclear quadrupole resonance pulsed spin locking. We find the experimental conditions where heteronuclear dipolar coupling is refocused by a standard multipulse sequence. This experimental condition allows us to extend our previously reported ability to measure the homonuclear dipolar coupling of powder samples to include substances that have heteronuclear coupling. These results are useful for designing substance detection algorithms, and for performing sample characterization.

  19. Electrical Spin-Injection into Silicon and Spin FET

    Science.gov (United States)

    2010-02-18

    MgO/silicon tunneling emitter NPN bipolar transistors . Device simulations revealed that the NDTC was the consequence of an inversion layer at...2009. He is now a research engineer at Intel Semiconductor Company. The aim of the project was to explore a tunneling emitter bipolar transistor as a...possible spin injector into silicon, and we have succeeded in that goal. The transistor has a metallic emitter that as a spin-injector will be a 1

  20. Spin flips and quantum information for anti-parallel spins

    CERN Document Server

    Gisin, Nicolas

    1999-01-01

    We consider two different ways to encode quantum information, by parallel or anti-parallel pairs of spins. We find that there is more information in the anti-parallel ones. This purely quantum mechanical effect is due to entanglement, not of the states but occuring in the course of the measuring process. We also introduce a range of quantum information processing machines, such as spin-flip and anti-cloning.