WorldWideScience

Sample records for carbon thin films

  1. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  2. Carbon Nanotube Thin-Film Antennas.

    Science.gov (United States)

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  3. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong, E-mail: xzzhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People' s Republic of China and Beijing National Center for Electron Microscopy, Beijing 100084 (China)

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  4. Studies to Enhance Superconductivity in Thin Film Carbon

    Science.gov (United States)

    Pierce, Benjamin; Brunke, Lyle; Burke, Jack; Vier, David; Steckl, Andrew; Haugan, Timothy

    2012-02-01

    With research in the area of superconductivity growing, it is no surprise that new efforts are being made to induce superconductivity or increase transition temperatures (Tc) in carbon given its many allotropic forms. Promising results have been published for boron doping in diamond films, and phosphorus doping in highly oriented pyrolytic graphite (HOPG) films show hints of superconductivity.. Following these examples in the literature, we have begun studies to explore superconductivity in thin film carbon samples doped with different elements. Carbon thin films are prepared by pulsed laser deposition (PLD) on amorphous SiO2/Si and single-crystal substrates. Doping is achieved by depositing from (C1-xMx) single-targets with M = B4C and BN, and also by ion implantation into pure-carbon films. Previous research had indicated that Boron in HOPG did not elicit superconducting properties, but we aim to explore that also in thin film carbon and see if there needs to be a higher doping in the sample if trends were able to be seen in diamond films. Higher onset temperatures, Tc , and current densities, Jc, are hoped to be achieved with doping of the thin film carbon with different elements.

  5. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  6. Assembly and Applications of Carbon Nanotube Thin Films

    Institute of Scientific and Technical Information of China (English)

    Hongwei ZHU; Bingqing WEI

    2008-01-01

    The ultimate goal of current research on carbon nanotubes (CNTs) is to make breakthroughs that advance nanotechnological applications of bulk CNT materials. Especially, there has been growing interest in CNT thin films because of their unique and usually enhanced properties and tremendous potential as components for use in nano-electronic and nano-mechanical device applications or as structural elements in various devices. If a synthetic or a post processing method can produce high yield of nanotube thin films, these structures will provide tremendous potential for fundamental research on these devices. This review will address the synthesis, the post processing and the device applications of self-assembled nanotube thin films.

  7. Carbon Nanotubes for Thin Film Transistor: Fabrication, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Yucui Wu

    2013-01-01

    Full Text Available We review the present status of single-walled carbon nanotubes (SWCNTs for their production and purification technologies, as well as the fabrication and properties of single-walled carbon nanotube thin film transistors (SWCNT-TFTs. The most popular SWCNT growth method is chemical vapor deposition (CVD, including plasma-enhanced chemical vapor deposition (PECVD, floating catalyst chemical vapor deposition (FCCVD, and thermal CVD. Carbon nanotubes (CNTs used to fabricate thin film transistors are sorted by electrical breakdown, density gradient ultracentrifugation, or gel-based separation. The technologies of applying CNT random networks to work as the channels of SWCNT-TFTs are also reviewed. Excellent work from global researchers has been benchmarked and analyzed. The unique properties of SWCNT-TFTs have been reviewed. Besides, the promising applications of SWCNT-TFTs have been explored. Finally, the key issues to be solved in future have been summarized.

  8. Preparation of thin carbon films (1963)

    International Nuclear Information System (INIS)

    Carbon deposits have been prepared on silica glass supports in order to determine more accurately than by weighing the losses liable to occur during oxidation, for example under irradiation in the presence of CO2. Several processes have been studied with a view to obtaining deposits for which the variation in optical density as a function of carbon departure shall be reproducible for each sample. Among the methods used, the most satisfactory is that in which the pyrolytic carbon deposited on a carbon filament is evaporated; however only the samples prepared simultaneously exhibit the required identical behaviour. The carbonaceous deposits have been studied by micro-electronic diffraction. An examination of the photographs shows the presence of graphite monocrystals of about (30 μ)2. (author)

  9. Hydorgen sputtering of carbon thin films deposited on platinum

    International Nuclear Information System (INIS)

    Carbon has been suggested as a suitable low Z element for the lining of the first walls of controlled thermonuclear reactors in order to reduce radiative plasma losses due to sputtering. In this paper the measurement of sputtering of carbon thin films by protons in the energy range 0.6-10.0 keV, is described. H2+ or H3+ ions were used as bombarding ions to obtain equivalent H+ sputtering yields at energies below that at which the ion source provides sufficient proton current. The sputter yield was found to range from 7x10-3-1.5x10-2 atoms/proton with a broad maximum in the 2.0 keV region with the carbon film kept near ambient temperature. (B.D.)

  10. Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes

    KAUST Repository

    Kaempgen, Martti

    2009-05-13

    Thin film supercapacitors were fabricated using printable materials to make flexible devices on plastic. The active electrodes were made from sprayed networks of single-walled carbon nanotubes (SWCNTs) serving as both electrodes and charge collectors. Using a printable aqueous gel electrolyte as well as an organic liquid electrolyte, the performances of the devices show very high energy and power densities (6 W h/kg for both electrolytes and 23 and 70 kW/kg for aqueous gel electrolyte and organic electrolyte, respectively) which is comparable to performance in other SWCNT-based supercapacitor devices fabricated using different methods. The results underline the potential of printable thin film supercapacitors. The simplified architecture and the sole use of printable materials may lead to a new class of entirely printable charge storage devices allowing for full integration with the emerging field of printed electronics. © 2009 American Chemical Society.

  11. Synthesis and Characterization of Magnetite/Carbon Nanocomposite Thin Films for Electrochemical Applications

    Institute of Scientific and Technical Information of China (English)

    Suh Cem Pang; Wai Hwa Khoh; Suk Fun Chin

    2011-01-01

    Stable colloidal suspension of magnetite/starch nanocomposite was prepared by a facile and aqueous-based chemical precipitation method, Magnetite/carbon nanocomposite thin films were subsequently formed upon carbonization of the starch component by heat treatment under controlled conditions. The initial content of native sago starch as the carbon source was found to affect the microstructure and electrochemical properties of the resulted magnetite/carbon nanocomposite thin films, A specific capacitance of 124 F/g was achieved for the magnetite/carbon nanocomposite thin films as compared to that of 82 F/g for pure magnetite thin films in Na2SO4 aqueous electrolyte.

  12. Preparation of self-supporting carbon thin films

    CERN Document Server

    Lommel, B; Kindler, B; Klemm, J; Steiner, J

    2002-01-01

    For heavy-ion beam experiments, self-supporting carbon thin films are needed as targets, stripper foils and as backings (Nucl. Instr. and Meth. A 334 (1993) 69) for materials which cannot be produced self-supporting. Using resistance evaporation under high vacuum, self-supporting carbon foils with a thickness of 5 mu g/cm sup 2 and a diameter of 10 mm, a thickness of 10 mu g/cm sup 2 and a diameter of 50 mm up to a thickness of 50 mu g/cm sup 2 and a diameter of 300 mm can be obtained. Due to the energy impact of the heavy-ion beam, the amorphous carbon is restructured into textured graphite, as was found already by Dollinger et al. (Nucl. Instr. and Meth. A 303 (1991) 79). The discuss the production process as well as the change of the layer structure caused by the energy deposit.

  13. Applications of thin carbon coatings and films in injection molding

    Science.gov (United States)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (EMI shielding of plastic parts was proven using in mold coated nanoparticle thin films or nanopapers to create a

  14. Carbon nanotube thin film transistors based on aerosol methods

    International Nuclear Information System (INIS)

    We demonstrate a fabrication method for high-performance field-effect transistors (FETs) based on dry-processed random single-walled carbon nanotube networks (CNTNs) deposited at room temperature. This method is an advantageous alternative to solution-processed and direct CVD grown CNTN FETs, which allows using various substrate materials, including heat-intolerant plastic substrates, and enables an efficient, density-controlled, scalable deposition of as-produced single-walled CNTNs on the substrate directly from the aerosol (floating catalyst) synthesis reactor. Two types of thin film transistor (TFT) structures were fabricated to evaluate the FET performance of dry-processed CNTNs: bottom-gate transistors on Si/SiO2 substrates and top-gate transistors on polymer substrates. Devices exhibited on/off ratios up to 105 and field-effect mobilities up to 4 cm2 V-1 s-1. The suppression of hysteresis in the bottom-gate device transfer characteristics by means of thermal treatment in vacuum and passivation by an atomic layer deposited Al2O3 film was investigated. A 32 nm thick Al2O3 layer was found to be able to eliminate the hysteresis.

  15. Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers

    NARCIS (Netherlands)

    Tiggelaar, R.M.; Thakur, D.B.; Nair, H.; Lefferts, L.; Seshan, K.; Gardeniers, J.G.E.

    2013-01-01

    Nickel and other metal nanoparticles are known to be active as catalysts in the synthesis of carbon nanofibers. In this paper we investigate how dewetting and break-up of nickel thin films depends on film thickness, film–substrate interaction and pretreatment conditions. This is evaluated for films

  16. Anomalous electrostatic potential properties in carbon nanotube thin films under a weak external electric field

    OpenAIRE

    Ishiyama, U; Cuong, Nguyen Thanh; Okada, Susumu

    2016-01-01

    Using density functional theory, we studied the electronic properties of carbon nanotube (CNT) thin films under an electric field. The carrier accumulation due to the electric field depends strongly on the CNT species forming the thin films. Under a low electron concentration, the injected electrons are distributed throughout the CNTs, leading to an unusual electric field between CNTs, the direction of which is opposite to that of the applied field. This unusual field response of CNT thin fil...

  17. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yung-Hsiang; Brahma, Sanjaya [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Tzeng, Y.H. [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Ting, Jyh-Ming, E-mail: jting@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-10-15

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film.

  18. Remarkable enhancement of the electrical conductivity of carbon nanostructured thin films after compression.

    Science.gov (United States)

    Georgakilas, Vasilios; Koutsioukis, Apostolos; Petr, Martin; Tucek, Jiri; Zboril, Radek

    2016-06-01

    In this work, we demonstrate a significant improvement in the electrical conductivity of carbon nanostructured thin films, composed of graphene nanosheets and multiwalled carbon nanotubes, by compression/polishing. It is shown that the sheet resistance of compressed thin films of carbon nanostructures and hybrids is remarkably decreased in comparison with that of as-deposited films. The number of the interconnections, the distance between the nanostructures as well as their orientation are highly altered by the compression favoring the electrical conductivity of the compressed samples.

  19. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  20. Visible photoluminescence from ZnO/diamond-like carbon thin films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-chun; LI Qing-shan; DONG Yan-feng; MA Zi-xia

    2012-01-01

    ZnO/diamond-like carbon (DLC) thin films are deposited by pulsed laser deposition (PLD) on Si (111) wafer.Visible room-temperature photoluminescence (PL) is observed from ZnO/DLC thin films by fluorescence spectrophotometer.The Gaussian curve fitting of PL spectra reveals that the broadband visible emission contains three components with λ=508 nm,554 nm and 698 nm.The origin and possible mechanism of the visible PL are discussed,and they can be attributed to the PL recombination of ZnO and DLC thin films.

  1. Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates.

    Science.gov (United States)

    Hur, Seung-Hyun; Yoon, Myung-Han; Gaur, Anshu; Shim, Moonsub; Facchetti, Antonio; Marks, Tobin J; Rogers, John A

    2005-10-12

    We report the implementation of three dimensionally cross-linked, organic nanodielectric multilayers as ultrathin gate dielectrics for a type of thin film transistor device that uses networks of single-walled carbon nanotubes as effective semiconductor thin films. Unipolar n- and p-channel devices are demonstrated by use of polymer coatings to control the behavior of the networks. Monolithically integrating these devices yields complementary logic gates. The organic multilayers provide exceptionally good gate dielectrics for these systems and allow for low voltage, low hysteresis operation. The excellent performance characteristics suggest that organic dielectrics of this general type could provide a promising path to SWNT-based thin film electronics.

  2. Dense Z-pinches by carbon fiber pinch and by conductive thin film linear compression

    International Nuclear Information System (INIS)

    Dense Z-pinch plasmas are created by two different ways and are examined experimentally. A stable plasma column existing for about 20 ns has been created in the carbon fiber pinch driven by a pulsed power generator. Any significant differences in emitted soft X-ray intensity from the plasma are not observed between fiber pinches of carbon fiber with nickel or copper coating and without any coating material. Techninal difficulties in handling thin foil metal liner for linear compression experiments are overcome by proposing a conductive thin film deposited on the surface of discharge tube wall as a compression liner. Uniform cyclindrical compression of the thin film liner has been confirmed

  3. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films

    OpenAIRE

    Cao, C. L.; Hu, C. G.; Fang, L.; Wang, S. X.; Y. S. TIAN; Pan, C. Y.

    2011-01-01

    The properties of the humidity sensors made of chemically treated and untreated multi-walled carbon nanotube (MWCNT) thin films are investigated systematically. It shows that both the chemically treated and untreated MWCNT thin films demonstrate humidity sensitive properties, but the former have stronger sensitivity than the latter. In the range of 11%–98% relative humidity (RH), the resistances of the chemically treated and untreated MWCNT humidity sensors increase 120% and 28%, respectively...

  4. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  5. Synthesis and characterization of carbon nanotube reinforced copper thin films

    OpenAIRE

    Otto, Cornelia

    2006-01-01

    Two model composites of copper and carbon nanotubes were fabricated by very different deposition methods. Copper electrodeposition in a plating bath containing nanotubes created a 3D matrix of randomly oriented CNTs within a thick, 20 micron Cu film. In contrast, sandwiching a layer of well-separated nanotubes between two sub-micron sputtered Cu layers produced a 2D-composite with nanotubes lying parallel to the substrate surface. These composites, which were mechanically tested using var...

  6. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    EijiIwamura; MasanoriYamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process, graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  7. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    Eiji Iwamura; Masanori Yamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process,graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  8. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation

    International Nuclear Information System (INIS)

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp2 and sp3 bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  9. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    Science.gov (United States)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the

  10. Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.

    2016-07-19

    In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.

  11. Implementation of Carbon Thin Film Coatings in the Super Proton Synchrotron (SPS) for Electron Cloud Mitigation

    CERN Document Server

    Costa Pinto, P; Basso, T; Edwards, P; Mensi, M; Sublet, A; Taborelli, M

    2014-01-01

    Low Secondary Electron Yield (SEY) carbon thin films eradicate electron multipacting in accelerator beam pipes. Two magnetic cells of the SPS were coated with such material and installed. In total more than forty vacuum vessels and magnet interconnections were treated. The feasibility of the coating process was validated. The performance of the carbon thin film will be tested with LHC nominal beams after the end of the long shutdown 1. Particular attention will be drawn to the long term behaviour. This paper presents the sputtering techniques used to coat the different components; their characterization (SEY measurements on coupons, RF multipacting tests and pump down curves); and the technology to etch the carbon film in case of a faulty coating. The strategy to coat the entire SPS will also be described.

  12. A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bao-Yu; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Zhu, Jiadeng; Zhang, Xiangwu [Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-01-12

    The photoacoustic effect has been broadly applied to generate high frequency and broadband acoustic waves using lasers. However, the efficient conversion from laser energy to acoustic power is required to generate acoustic waves with high intensity acoustic pressure (>10 MPa). In this study, we demonstrated laser generated high intensity acoustic waves using carbon nanofibers–polydimethylsiloxane (CNFs-PDMS) thin films. The average diameter of the CNFs is 132.7 ± 11.2 nm. The thickness of the CNFs film and the CNFs-PDMS composite film is 24.4 ± 1.43 μm and 57.9 ± 2.80 μm, respectively. The maximum acoustic pressure is 12.15 ± 1.35 MPa using a 4.2 mJ, 532 nm Nd:YAG pulsed laser. The maximum acoustic pressure using the CNFs-PDMS composite was found to be 7.6-fold (17.62 dB) higher than using carbon black PDMS films. Furthermore, the calculated optoacoustic energy conversion efficiency K of the prepared CNFs-PDMS composite thin films is 15.6 × 10{sup −3 }Pa/(W/m{sup 2}), which is significantly higher than carbon black-PDMS thin films and other reported carbon nanomaterials, carbon nanostructures, and metal thin films. The demonstrated laser generated high intensity ultrasound source can be useful in ultrasound imaging and therapy.

  13. Flexible diamond-like carbon thin film coated on rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Yutao

    2015-01-01

    Dynamic rubber seals are the major source of friction in lubrication systems and bearings, which may take up to 70% of the total friction. Our solution is to coat rubbers with flexible diamond-like carbon (DLC) thin film by which the coefficient of friction is reduced from above 1.5 to below 0.15. C

  14. Thin sulfonated poly(ether ether ketone) films for the dehydration of compressed carbon dioxide

    NARCIS (Netherlands)

    Koziara, B.T.

    2015-01-01

    In this thesis, the properties of thin films from highly sulfonated poly(ether ether ketone) (SPEEK) have been investigated within the context of their application as membranes for the dehydration of compressed carbon dioxide. Spectroscopic ellipsometry has been used as the predominant measurement t

  15. Modification of rubber surface with hydrogenated diamond-like carbon thin films

    NARCIS (Netherlands)

    Pei, Y. T.; Bui, X. L.; De Hosson, J. Th. M.; Laudon, M; Romanowicz, B

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals, by sputtering graphite targets in C(2)H(2)/Ar plasma. The wax removal and pre-deposition plas

  16. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  17. Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid

    Science.gov (United States)

    Giacomo Bettini, Luca; Della Foglia, Flavio; Piseri, Paolo; Milani, Paolo

    2016-03-01

    Nanostructured carbon sp2 (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The so-prepared carbyne-rich electrodes showed superior electric double layer (EDL) capacitance and electric conductivity compared to ns-C electrodes containing only sp2 carbon, showing the substantial influence of carbynes on the electrochemical properties of nanostructured carbon electrodes.

  18. Monitoring structural defects and crystallinity of carbon nanotubes in thin films

    Indian Academy of Sciences (India)

    S S Mahajan; M D Bambole; S P Gokhale; A B Gaikwad

    2010-03-01

    We report the influence of catalyst formulation and reaction temperature on the formation of carbon nanotube (CNT) thin films by the chemical vapour deposition (CVD) method. Thin films of CNTs were grown on Fe–Mo/Al2O3-coated silicon wafer by thermal decomposition of methane at different temperatures ranging from 800 to 1000°C. The electron microscopic investigations, SEM as well as HRTEM, of the as-grown CNT thin films revealed the growth of uniform multi-walled CNTs in abundance. The intensity ratio of D-band to G-band and FWHM of G-band through Raman measurements clearly indicated the dependency of structural defects and crystallinity of CNTs in thin films on the catalyst formulation and CVD growth temperature. The results suggest that thin films of multi-walled CNTs with negligible amount of defects in the nanotube structure and very high crystallinity can be obtained by thermal CVD process at 925°C.

  19. [FTIR spectroscopic studies of inner stress on boron carbon nitride thin films].

    Science.gov (United States)

    Wang, Yu-Xin; Zheng, Ya-Ru; Song, Zhe; Feng, Ke-Cheng; Zhao, Yong-Nian

    2008-07-01

    Boron carbon nitride thin films were deposited by radio frequency (RF) magnetron sputtering technique using a 50 mm-diameter composite target consisting of h-BN and graphite in an Ar-N2 gas mixture. The composite target was composed of two semi disks: one of h-BN and the other one of graphite. The distance between the target and the substrate was kept at 50 mm. The chamber base pressure was below 5 x 10(-4) Pa. During the deposition, the mixture of Ar (80%) and N2 (20%) was injected into the vacuum chamber and the total pressure was 1.3 Pa. The films were grown on silicon substrates at different deposition parameters, including sputtering power of 80-130 W, deposition temperature of 300-500 degrees C and deposition time of 1-4 h. The chemical bonding state of the samples was characterized by Fourier transform infrared absorption spectroscopy (FTIR). The results suggested that all of the films deposited at these deposition parameters are atomic-level hybrids composed of B, C and N atoms. Besides BN and carbons bonds, the boron carbide and carbon nitride bonds were formed in the BCN thin films. And the deposition parameters have important influences on the growth and inner stress of BCN thin films. That is the higher the sputtering power, the larger the inner stress; the higher or lower the deposition temperature, the larger the inner stress; the longer the deposition time, the larger the inner stress. So changing deposition parameters properly is a feasible method to relax the inner stress between the films and substrate. In the conditions of changing one parameter each time, the optimum deposition parameters to prepare BCN thin films with lower inner stress were obtained: sputtering power of 80 W, deposition temperature of 400 degrees C and deposition time of 2 h.

  20. Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Costas A. Charitidis

    2013-04-01

    Full Text Available The use of materials with very attractive friction and wear properties has raised much attention in research and industrial sectors. A wide range of tribological applications, including rolling and sliding bearings, machining, mechanical seals, biomedical implants and microelectromechanical systems (MEMS, require thin films with high mechanical strength, chemical inertness, broad optical transparency, high refractive index, wide bandgap excellent thermal conductivity and extremely low thermal expansion. Carbon based thin films like diamond, diamond-like carbon, carbon nitride and cubic boron nitride known as “super-hard” material have been studied thoroughly as the ideal candidate for tribological applications. In this study, the results of experimental and simulation works on the nanotribological behavior of carbon films and fundamental mechanisms of friction and lubricity at the nano-scale are reviewed. The study is focused on the nanomechanical properties and analysis of the nanoscratching processes at low loads to obtain quantitative analysis, the comparison obtain quantitative analysis, the comparison of their elastic/plastic deformation response, and nanotribological behavior of the a-C, ta-C, a-C:H, CNx, and a-C:M films. For ta-C and a-C:M films new data are presented and discussed.

  1. Chemical sensing employingpH sensitive emeraldine base thin film for carbon dioxide detection

    Science.gov (United States)

    Irimia-Vladu, Mihai

    Respiration, or CO2 evolution, is a universal indicator for all the biological activities. Among many potential applications, the measurement of CO2 evolution has been found to be a rapid and nondestructive means for examining microbial contamination of food. The sensor developed in this work consists of a thin emeraldine base-polyaniline (EB-PAni) film. In the first half of the project the effect of carbon dioxide over the conductivity of a composite film of emeraldine base polyaniline and poly(vinyl alcohol) in N-methyl pyrrolidone (NMP) respectively was tested. Argon gas or mixture of argon and 5% CO2 were circulated through the glass cell containing the polymer film deposited on interdigitated electrode and exposed to specific humidity levels fixed by aqueous supersaturated salt solutions. In the second half of the project, a thin emeraldine base film in NMP was directly deposited on interdigitated electrode and the respective sensor inserted in water. Carbonic acid solutions of various pHs were generated by bubbling specific mixtures of carbon dioxide and argon. Conductivity measurements were performed by impedance spectroscopy throughout the project. The sensing mechanism is based on intermediate stages of the transformation of the emeraldine base polyaniline to a conductive salt type (ES-PAni). This EB-ES transformation is the consequence of the exposure of EB-PAni to a protonic acid and is accompanied by a change in the conductivity of the polymer film. Carbonic acid, unfortunately, is a very weak acid and is unable to induce a conductivity change, but the intermediate steps that predetermine this transformation are detected by impedance spectroscopy even when the overall conductivity of the film is unchanged. The composite thin film developed in the first part of the project showed poor sensing characteristics: limited dynamic range, drift, instability and slow time response. However, the sensor design employed in the second half of this work, coupled with

  2. Raman shift on n-doped amorphous carbon thin films grown by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P., B. [Departamento de Fisica, Pontificia Universidad Catolica de Rio de Janeiro (Brazil); Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla (Mexico); Freire L., F. Jr. [Departamento de Fisica, Pontificia Universidad Catolica de Rio de Janeiro (Brazil); Lozada M., R.; Palomino M., R. [Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla (Mexico); Jimenez S., S. [Centro de Investigacion y de Estudios Avanzados del IPN, Laboratorio de Investigacion en Materiales, Queretaro (Mexico); Zelaya A., O. [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, CINVESTAV-IPN, P.O. Box 14-740, Mexico 07360 D.F. (Mexico)

    2007-04-15

    The structural properties of carbon thin films synthesized under an atmosphere of nitrogen by means of electron beam evaporation were studied by Raman scattering spectroscopy. The electron beam evaporation technique is an important alternative to grown layers of this material with interesting structural properties. The observed shift of the Raman G band shows that the structure of the films tends to become more graphitic upon the increase of the deposition time. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Fabrication of Carbon Nanotube Thin Films by Evaporation-Induced Self-Assembly

    OpenAIRE

    Li, Han

    2015-01-01

    In summary, we have prepared single-wall carbon nanotube (SWNT) thin films by the method of evaporation-induced self-assembly (EISA). Using the scalable two-plate or lens setups, sorts of different film types or patterns of SWNTs has been successfully fabricated directly from the evaporation of solvents and could be precisely controlled by the concentrations of SWNT in ambient conditions. The special geometry of meniscus as the capillary bridge has not only given rise to a much higher efficie...

  4. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  5. Preparation and investigation of diamond-like carbon nanocomposite thin films for nanophotonics

    Science.gov (United States)

    Panosyan, Zh.; Gharibyan, A.; Sargsyan, A.; Panosyan, H.; Hayrapetyan, D.; Yengibaryan, Y.

    2010-08-01

    Flexible Plasma Enhanced Chemical Vapor Deposition (PECVD) technology of Diamond Like Carbon (DLC) thin film preparation on the surface of Si and organic glasses has been elaborated. Modification of PECVD equipment has been implemented by integrating ion and magnetron sources. In this paper toluene (C7H8) has been used as a nanocmposite film forming hydrocarbon which decomposition yields to the multi component plasma in vacuum chamber. Nitrogen has been used as a dopand. Investigation of plasma composition influence to the optical and mechanical properties of DLC films has been observed. The presence of sp3 and sp2 hybridization states have been proven by Raman spectroscopy and their ratios have been estimated with the help of ID, IG characteristic lines for different technological conditions. High precision refractive index and thickness measurements of DLC films have been implemented by means of laser ellipsometer. Refractive indices of prepared films have been varied in the region 1.5-3.1 and thicknesses have been varied in the region 50-250 nm. Extraordinary change in refractive index has been explained with the help of formation of differently sized sp2 carbon based clusters in the sp3 matrix. Different types of carbon and hydrogen bonds have been observed in the obtained structures by means of FTIR. Obvious prospectives of DLC nanocomposite film as a promissing nanophotonic material has been discussed.

  6. Synthesis and characterization of magnetic carbon nanotubes/silsesquioxane nanocomposite thin films

    Science.gov (United States)

    Osorio, Alice Gonçalves; Machado, Geraldo Beyer; Pereira, Marcelo Barbalho; Benvenutti, Edilson Valmir; Pereira, Luis Gustavo; Bergmann, Carlos Perez; Oliveira, Artur Harres de; Costa, Tania Maria Haas

    2016-05-01

    In the present study, magnetic carbon nanotubes (CNTs)/silsesquioxane nanocomposites were produced by sol-gel method and deposited as thin film by dip-coating process. Blank films and films with CNTs were characterized in order to evaluate their chemical composition and morphology. Profilometry technique showed the formation of films with 305 ± 22 nm of thickness for blank samples (without CNTs) and 173 ± 05 nm thickness for samples with CNTs. Microscopy techniques indicated the presence of CNTs well dispersed in the films and, with the aid of Raman and Fourier Transform Infrared spectroscopy, chemical composition of silsesquioxane matrix was evidenced and the presence of CNTs was confirmed in the films. Finally, the magnetic response of the deposited films was analyzed by Alternating Gradient-Field Magnetometer and results indicated that films reinforced with CNTs showed a hysteresis loop that indicates a coercivity of 103 Oe and the blank film did not show any significant response to the field applied. Hence, the authors suggest that this hybrid organic-inorganic material has potential to be applied as a new material for magnetic storage.

  7. Structural and nanomechanical properties of nanocrystalline carbon thin films for photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Ishpal [Department of Physics, Kirorimal College, University of Delhi, Delhi 110007 (India); Panwar, Omvir Singh, E-mail: ospanwar@mail.nplindia.ernet.in; Tripathi, Ravi Kant; Chockalingam, Sreekumar [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, Avanish Kumar [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Kumar, Mahesh [Ultrafast Optoelectronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2015-05-15

    This paper reports the effect of helium gas pressure upon the structural, nanomechanical, and photoconductive properties of nanocrystalline carbon thin (NCT) films deposited by the filtered cathodic jet carbon arc technique. High-resolution transmission electron microscopy images confirm the nanocrystalline nature of the deposited films with different crystallite sizes (3–7 nm). The chemical structure of the deposited films is further analyzed by x-ray photoelectron spectroscopy and Raman spectroscopy, which suggest that the deposited films change from graphitelike to diamondlike, increasing in sp{sup 3} content, with a minor change in the dilution of the inert gas (helium). The graphitic character is regained upon higher dilution of the helium gas, whereupon the films exhibit an increase in sp{sup 2} content. The nanomechanical measurements show that the film deposited at a helium partial pressure of 2.2 × 10{sup −4} has the highest value of hardness (37.39 GPa) and elastic modulus (320.50 GPa). At a light intensity of 100 mW/cm{sup 2}, the NCT films deposited at 2.2 × 10{sup −4} and 0.1 mbar partial pressures of helium gas exhibit good photoresponses of 2.2% and 3.6%, respectively.

  8. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates

    International Nuclear Information System (INIS)

    Optically transparent and electrically conductive single-walled carbon nanotube (SWNT) thin films were fabricated at room temperature using a dip-coating technique. The film transparency and sheet resistance can be easily tailored by controlling the number of coatings. Aminopropyltriethoxysilane (APTS) was used as an adhesion promoter and, together with surfactant Triton X-100, greatly improved the SWNTs coating. Only five coats were required to obtain a sheet resistance of 2.05 Ω□ and film transparency of 84 %T. The dip-coated film after post-deposition treatment with nitric acid has a sheet resistance as low as 130 Ω□ at 69 %T. This technique is suitable for large-scale SWNT coating at room temperature and can be used on different types of substrates such as glass and plastics. This paper will discuss the role of the adhesion promoter and surfactant in the coating process

  9. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  10. Carbon-doped Sb{sub 2}S{sub 3} thin films: Structural, optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Emma; Arato, A.; Das Roy, T.K.; Alan Castillo, G.; Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Perez-Tijerina, E. [Facultad de Ciencias Fisico y Matematica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2009-01-15

    We report the modification of electrical properties of chemical-bath-deposited antimony sulphide (Sb{sub 2}S{sub 3}) thin films by thermal diffusion of carbon. Sb{sub 2}S{sub 3} thin films were obtained from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3} salts at room temperature (27 C) on glass substrates. A carbon thin film was deposited on Sb{sub 2}S{sub 3} film by arc vacuum evaporation and the Sb{sub 2}S{sub 3}-C layer was subjected to heating at 300 C in nitrogen atmosphere or in low vacuum for 30 min. The value of resistivity of Sb{sub 2}S{sub 3} thin films was substantially reduced from 10{sup 8} {omega} cm for undoped condition to 10{sup 2} {omega} cm for doped thin films. The doped films, Sb{sub 2}S{sub 3}:C, retained the orthogonal stibnite structure and the optical band gap energy in comparison with that of undoped Sb{sub 2}S{sub 3} thin films. By varying the carbon content (wt%) the electrical resistivity of Sb{sub 2}S{sub 3} can be controlled in order to make it suitable for various opto-electronic applications. (author)

  11. Characterization of hydrogenated and deuterated thin carbon films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, D., E-mail: pantel@nipne.ro [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), P.O.B. MG-6, 30 Reactorului St., RO 077125 Magurele (Romania); Ionescu, P.; Petrascu, H. [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), P.O.B. MG-6, 30 Reactorului St., RO 077125 Magurele (Romania); Nita, C.R. [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), P.O.B. MG-6, 30 Reactorului St., RO 077125 Magurele (Romania); University Politehnica of Bucharest, RO 060042 Bucharest (Romania); Matei, E.; Rasoga, O. [National Institute for Materials Physics, 105 Atomistilor Str., RO 077125 Magurele-Bucharest (Romania); Acsente, T.; Dinescu, G. [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., RO 077125 Magurele-Bucharest (Romania)

    2014-07-15

    Thin films of C layers were deposited by radiofrequency magnetron sputtering on silicon substrates using three gaseous atmospheres: pure Ar, Ar + H{sub 2} and Ar + D{sub 2} mixtures. Scanning Electron Microscopy investigations showed that addition of D{sub 2} or H{sub 2} to main sputtering gas (Ar) leads to the enhancement of the deposition rate while the layer morphology remained columnar. Fourier Transform Infrared Spectroscopy measurements revealed the presence of D–C or H–C chemical bonds in the samples. Ion beam analysis measurements performed by simultaneous recording of the recoiled H and D ions, and of backscattered {sup 4}He confirmed the incorporation of hydrogen and deuterium in the deposited carbon thin films.

  12. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices.

    Science.gov (United States)

    Wei, Lu; Nitta, Naoki; Yushin, Gleb

    2013-08-27

    Continuous, smooth, visibly defect-free, lithographically patterned activated carbon films (ACFs) are prepared on the surface of silicon wafers. Depending on the synthesis conditions, porous ACFs can either remain attached to the initial substrate or be separated and transferred to another dense or porous substrate of interest. Tuning the activation conditions allows one to change the surface area and porosity of the produced carbon films. Here we utilize the developed thin ACF technology to produce prototypes of functional electrical double-layer capacitor devices. The synthesized thin carbon film electrodes demonstrated very high capacitance in excess of 510 F g(-1) (>390 F cm(-3)) at a slow cyclic voltammetry scan rate of 1 mV s(-1) and in excess of 325 F g(-1) (>250 F cm(-3)) in charge-discharge tests at an ultrahigh current density of 45,000 mA g(-1). Good stability was demonstrated after 10,000 galvanostatic charge-discharge cycles. The high values of the specific and volumetric capacitances of the selected ACF electrodes as well as the capacity retention at high current densities demonstrated great potential of the proposed technology for the fabrication of various on-chip devices, such as micro-electrochemical capacitors. PMID:23815346

  13. Thin graphite films formation by carbon precipitation in metals: diffusion approach

    Science.gov (United States)

    Shvets, Petr V.; Obraztsov, Alexander N.

    2016-03-01

    Thin graphite films attract significant interest due to their unique physical properties and potential applications. Chemical vapor deposition in the presence of metal catalysts is one of the most promising and widely used techniques to produce these films. There are many experimental works devoted to the material synthesis; however, the results are usually obtained by the trial-and-error method without a proper understanding of the processes behind the experiment. We theoretically analyze the carbon diffusion processes inside a metal substrate during the deposition. The theory allows interconnection of the deposition parameters with the thickness of produced graphite films. Numerically solving the diffusion equations for the real systems, we obtained a good correlation between simulations and experimental data. Based on our simulations, we made some conclusions about the formation of graphite films by the precipitation process. The numerical simulations were mostly done for the popular nickel substrates, but we also made some calculations for iron, showing that it also could be used to form thin graphite films under certain conditions.

  14. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B., E-mail: pandey.beauty@yahoo.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Das, D. [UGC-DAE CSR, Sector III/LB-8, Bidhan Nagar, Kolkata 700098 (India); Kar, A.K. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

    2015-05-15

    Highlights: • Electrical and magnetic properties of DLC and Ni-DLC thin films are studied. • The ohmicity and conductivity of DLC films rise with nickel addition. • The ohmicity of Ni-DLC is enhanced with increase in dilution of electrolyte. • Dielectric loss is high for Ni-DLC and decreases with frequency till 100 kHz. • (m–H) and (m–T) curves of Ni-DLC indicate superparamagnetic behavior. - Abstract: Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current–voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp{sup 2} content in DLC matrix. The magnetic moment vs. magnetic field (m–H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  15. High-precision micropipette thermal sensor for measurement of thermal conductivity of carbon nanotubes thin film

    Science.gov (United States)

    Shrestha, Ramesh

    The thesis describes novel glass micropipette thermal sensor fabricated in cost-effective manner and thermal conductivity measurement of carbon nanotubes (CNT) thin film using the developed sensor. Various micrometer-sized sensors, which range from 2 microm to 30 microm, were produced and tested. The capability of the sensor in measuring thermal fluctuation at micro level with an estimated resolution of +/-0.002°C is demonstrated. The sensitivity of sensors was recorded from 3.34 to 8.86 microV/°C, which is independent of tip size and dependent on the coating of Nickel. The detailed experimental setup for thermal conductivity measurement of CNT film is discussed and 73.418 W/m°C was determined as the thermal conductivity of the CNT film at room temperature.

  16. CRYSTALLINE CARBON NITRIDE THIN FILMS DEPOSITED BY MICROWAVE PLASMA CHEMICAL VAPOR DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong-ping; Gu You-song; Chang Xiang-rong; Tian Zhong-zhuo; Shi Dong-xia; Zhang Xiu-fang; Yuan lei

    2000-01-01

    The crystalline carbon nitride thin films have beenprepared on Si (100) substrates using microwave plasma chemical vapordeposition technique. The experimental X-ray diffractionpattern of the films prepared contain all the strongpeaks of -C3N4 and -C3N4, but most of thepeaks are overlapped.The films are composed of -C3N4 and -C3N4.The N/C atomic ratio isclose to the stoichiometric value 1.33. X-ray photoelectronspectroscopic analysis indicated that thebinding energies of C 1s and N 1s are 286.43eV and 399.08 eV respectively.The shifts are attributed to the polarization of C-N bond. Bothobserved Raman and Fourier transform infrared spectra werecompared with the theoretical calculations. The results support theexistence of C-N covalent bond in - and -C3N4 mixture.

  17. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Farzana Aktar [Experimental Physics Division, Atomic Energy Centre, 4, Kazi Nazrul Islam Avenue, Dhaka-1000 (Bangladesh); Hossain, Mohammad Abul [Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Mohiuddin, Tariq [Department of Physics, College of Science, Sultan Qaboos University, Muscat (Oman); Boby, Monny Akter [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Alam, Mohammad Sahabul, E-mail: msalam@ksu.edu.sa [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Department of Chemical Engineering, College of Engineering & King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-10-15

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW{sup −1}. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  18. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Science.gov (United States)

    Chowdhury, Farzana Aktar; Hossain, Mohammad Abul; Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe; Mohiuddin, Tariq; Boby, Monny Akter; Alam, Mohammad Sahabul

    2015-10-01

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW-1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  19. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Directory of Open Access Journals (Sweden)

    Farzana Aktar Chowdhury

    2015-10-01

    Full Text Available This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP adorned graphene oxide (GO nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  20. The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Doorn, Stephen [Los Alamos National Laboratory; Atwater, Mark [UNM MECH.ENG.; Leseman, Zayd [UNM MECH.ENG.; Luhrs, Claudia C [UNM ENG.MECH; Diez, Yolanda F [SPAIN; Diaz, Angel M [SPAIN

    2009-01-01

    The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

  1. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: zeuzmontiel@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)

    2011-07-01

    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  2. Hydrophobic and high transparent honeycomb diamond-like carbon thin film fabricated by facile self-assembled nanosphere lithography

    Science.gov (United States)

    Peng, Kai-Yu; Wei, Da-Hua; Lin, Chii-Ruey; Yu, Yueh-Chung; Yao, Yeong-Der; Lin, Hong-Ming

    2014-01-01

    In this paper, we take advantage of a facile fabrication technique called self-assembled nanosphere lithography (SANSL) combining with proper two-step reactive ion etching (RIE) method and radio frequency (RF) sputtering deposition process for manufacturing honeycomb diamond-like carbon (DLC) thin film structures with hydrophobic and high transparent properties. It is found that the DLC thin films deposited on clean glass substrates at the RF power of 100 W with the surface roughness (Ra) of 2.08 nm and the ID/IG ratio of 1.96 are realized. With a fill-factor of 0.691, the honeycomb DLC patterned thin film shows the best transmittance performance of 87% in the wavelength of visible light, and the optimized contact angle measurement is ˜108°. Compared with the pure DLC thin film and original glass substrate, the hydrophobic property of the patterned DLC films is significantly improved by 80 and 160%, respectively.

  3. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong; Lee, Cheol Jin, E-mail: cjlee@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Shim, Joon Hyung [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-03-09

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  4. Carbon Nanotube Thin Film Biosensors for Sensitive and Reproducible Whole Virus Detection

    Directory of Open Access Journals (Sweden)

    Himadri S. Mandal, Zhengding Su, Andrew Ward, Xiaowu (Shirley Tang

    2012-01-01

    Full Text Available Here, we report the label-free, sensitive, and real-time electrical detection of whole viruses using carbon nanotube thin film (CNT-TF field effect devices. Selective detection of approximately 550 model viruses, M13-bacteriophage, is demonstrated using a simple two-terminal (no gate electrode configuration. Chemical gating through specific antibody-virus binding on CNT surface is proposed to be the sensing mechanism. Compared to electrical impedance sensors with identical microelectrode dimensions (no CNT, the CNT-TF sensors exhibit sensitivity 5 orders higher. We believe the reported approach could lead to a reproducible and cost-effective solution for rapid viral identification.

  5. Amorphous Hydrogenated Carbon-Nitrogen Alloy Thin Films for Solar Cell Application

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-Bin; DING Zheng-Ming; PANG Qian-Jun; CUI Rong-Qiang

    2001-01-01

    Amorphous hydrogenated carbon-nitrogen alloy (a-CNx :H) thin films have been deposited on silicon substratesby improved dc magnetron sputtering from a graphite target in nitrogen and hydrogen gas discharging. Thefilms are investigated by using Raman spectroscopy, x-ray photoelectron spectroscopy, spectral ellipsometer and electron spin resonance techniques. The optimized process condition for solar cell application is discussed. Thephotovoltaic property of a-CNx:H/silicon heterojunctions can be improved by the adjustment of the pressureratio of hydrogen to nitrogen and unbalanced magnetic field intensity. Open-circuit voltage and short-circuitcurrent reach 300mV and 5.52 Ma/cm2, respectively.

  6. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications.

    Science.gov (United States)

    Janas, D; Koziol, K K

    2014-03-21

    Electrothermal materials transform electric energy into heat due to the Joule effect. To date, resistive wires made of heavy metal alloys have primarily been used as the heat source in many appliances surrounding us. Recent discoveries in the field of carbon nanostructures revealed that they can offer a spectrum of advantages over the traditional materials. We review the production methods of thin films composed of carbon nanotubes or graphene and depict how they can be used as conductive coatings for electrothermal applications. We screen all reports from the field up to now and highlight the features of designed nanoheaters. A particular focus is placed on the analysis of general findings of how to tune their electrothermal properties, why carbon nanostructure devices operate the way they do and in what aspects they are superior to the currently available materials on the market. PMID:24519536

  7. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  8. Novel applications of piezoresistive thin film systems based on hydrogenated carbon

    Science.gov (United States)

    Biehl, Saskia; Rumposch, Christian; Recknagel, Christian

    2013-05-01

    Thin film sensor systems based on hydrogenated carbon have the advantage to combine two very important characteristics. They show a piezoresistive behaviour and also a tribological stability caused by a high hardness and wear resistance. Therefore they can be applied on the surface of machine parts or used for building up universal insertable sensor systems like sensory washers. A real challenge is the deposition of a whole sensory layer system on technical components like a spindle, which have a length of 480 mm and an outer diameter of about 90 mm. The functions of the layer system directly applied in the contact zone between spindle shaft and tool holder are the measurement of the clamping force of the tool holder, the imbalance of the used tool and the process forces during machining. For this application a self-contained thin film sensor system is investigated. Directly in the spindle shaft an insulating alumina layer is deposited in a thickness of about 4 μm followed by electrode structures out of 200 nm thin chromium coating. On top of this the piezoresistive hydrogenated carbon layer in a thickness of about 1 μm is deposited, covered by a wear resistant and insulating top coating. Therefore a silicon and oxygen modified carbon layer in a thickness of about 2 μm is used. The piezoresistive sensor layer and also the top layer are part of the diamond like carbon layer family [1,2,3,4]. Another very important application is the sensory washer. The thin film sensor system, consisting out of the piezoresistive sensor layer deposited directly on the washer surface, the electrode structures out of chromium for the local detection of the load distribution in the washer system and the insulating layer as top layer out of the silicon and oxygen modified carbon layer, has a thickness in the range of 9 μm. In the latest investigations this layer system is connected with a RFID-chip for contactless data transmission.

  9. Electron-beam assisted selective growth of graphenic carbon thin films on SiO2/Si and quartz substrates

    OpenAIRE

    Knyazev, Maxim; Sedlovets, Daria; Trofimov, Oleg; Redkin, Arkady

    2015-01-01

    The first selective growth of graphenic carbon thin films on silicon dioxide is reported. A preliminary e-beam exposure of the substrate is found to strongly affect the process of such films growth. The emphasis is placed on the influence of substrate exposure on the rate of carbon deposition. The explanation of this effect is proposed. The data of electrical and optical measurements and the results of atomic force and scanning electron microscopy and Raman spectroscopy studies are reported. ...

  10. A study of the chemical, mechanical, and surface properties of thin films of hydrogenated amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Vandentop, G.J.

    1990-07-01

    Amorphous hydrogenated carbon (a-C:H) films were studied with the objective of elucidating the nucleation and growth mechanisms, and the origin of their unique physical properties. The films were deposited onto Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from methane in an rf plasma (13.56 MHz) at 65 mTorr and 300 to 370 K. The films produced at the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. The effect of varying ion energy flux on the properties of a-C:H films was investigated using a novel pulsed biasing technique. It was demonstrated that ions were not the dominant deposition species as the total ion flux measured was insufficient to account for the observed deposition rate. The interface between thin films of a-C:H and silicon substrates was investigated using angle resolved x-ray photoelectron spectroscopy. A silicon carbide layer was detected at the interface of a hard a-C:H film formed at the powered electrode. At the grounded electrode, where the kinetic energy is low, no interfacial carbide layer was observed. Scanning tunneling microscopy and high energy electron energy loss spectroscopy was used to investigate the initial stages of growth of a-C:H films. On graphite substrates, films formed at the powered electrode were observed to nucleate in clusters approximately 50 {Angstrom} in diameter, while at the grounded electrode no cluster formation was observed. 58 figs.

  11. Effect of ZnO Addition on Structural Properties of ZnO-PANi/ Carbon Black Thin Films

    International Nuclear Information System (INIS)

    The aim of this project was to investigate the effect of ZnO addition on the structural properties of ZnO-PANi/ carbon black thin films. The sol gel method was employed for the preparation of ZnO sol. The sol was dried for 24 h at 100 degree Celsius and then annealed at 600 degree Celsius for 5 h. XRD characterization of the ZnO powder showed the formation of wurtzite type ZnO crystals. The ZnO powder were mixed into PANi/ carbon black solution which was dissolved into M-Pyrol, N-Methyl-2-Pyrrolidinone (NMP) to produce a composite solution of ZnO-PANi/ carbon black. The weight ratio of ZnO were 4 wt %, 6 wt % and 8 wt %. The composite solutions were deposited onto glass substrates using a spin-coating technique to fabricate ZnO-PANi/ carbon black thin films. AFM characterization showed the decreasing of average roughness from 7.98 nm to 2.23 nm with the increment of ZnO addition in PANi/ carbon black films. The thickness of the films also decreased from 59.5 nm to 28.3 nm. FESEM image revealed that ZnO-PANi/ carbon black thin films have changed into agglomerated surface morphology resulting in the increment of porosity of the films. (author)

  12. Field Emission Properties of Ball-Like Nano-Carbon Thin Films Deposited on Mo Films with Accidented Topography

    International Nuclear Information System (INIS)

    Ball-like nano-carhon thin films (BNCTs) are grown on Mo layers by microwave plasma chemical vapour deposition (MPCVD) system. The Mo layers are deposited on ceramic substrates by electron beam deposition method and are pretreated by ultrasonically scratching. The optimization effects of ultrasonically scratching pretreat-ment on the surface micro-structures of carbon films are studied. It is found from field-emission scanning electron microscope (FE-SEM) images and Raman spectra that the surface structures of the carbon films deposited on Mo pretreated are improved, which are composed of highly uniform nano-structured carbon balls with considerable disorder structures. Field emission (FE) measurements are carried out using a diode structure. The experimental results indicate that the BNCTs exhibit good FE properties, which have the turn on field of 1.56 V/μm, and the current density of 1.0mA/cm2 at electric field of 4.0 V/μm, the uniformly distributed emission site density from a broad well-proportioned emission area of 4 cm2 are also obtained. Linearity is observed in Fowler–Nordheim (F–N) plots in higher Geld region, and the possible emission mechanism of BNCTs is discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Structural and magnetic properties of strongly carbon doped Fe–Co thin films

    Energy Technology Data Exchange (ETDEWEB)

    Giannopoulos, G., E-mail: g.giannopoulos@inn.demokritos.gr [INN, NCSR Demokritos, Athens 15310 (Greece); Reichel, L. [IFW Dresden, PO Box 270116, 01171 Dresden (Germany); TU Dresden, Institute for Materials Science, 01062 Dresden (Germany); Markou, A. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Wallisch, W. [Vienna University of Technology, Institute Solid State Physics, Vienna 1040 (Austria); Stöger-Pollach, M. [Vienna University of Technology, University Service Center for Transmission Electron Microscopy, 1040 Vienna (Austria); Panagiotopoulos, I. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Psycharis, V. [INN, NCSR Demokritos, Athens 15310 (Greece); Fähler, S. [IFW Dresden, PO Box 270116, 01171 Dresden (Germany); Fidler, J. [Vienna University of Technology, Institute Solid State Physics, Vienna 1040 (Austria); Niarchos, D. [INN, NCSR Demokritos, Athens 15310 (Greece)

    2015-11-01

    In the framework of the ongoing research for novel rare earth free permanent magnet materials, the alloy Fe–Co–C has attracted interest from theorists, since carbon could induce a magneto-crystalline anisotropy. In this work structural and magnetic properties of strongly doped magnetron sputtered thin films were investigated. Au–Cu buffers on MgO (100) substrates were used in order to promote epitaxial FeCo with 001 orientation. By adding carbon as a third element a tetragonal distortion was observed, according to structural measurements. An anisotropic behavior was induced in the magnetic properties of the system, where the magneto-crystalline anisotropy constant K{sub u} value was estimated in the order of 0.8×10{sup 6} J/m{sup 3}f or 3 nm thick Fe–Co(C) magnetic layer. - Highlights: • Stain induction in FeCo films was verified when appropriate buffer is used. • Carbon may stabilize a tetragonal strain up to higher thicknesses. • An anisotropic behavior was induced in the magnetic properties of the system. • High carbon content leads to the formation of separated Fe–Co grains.

  14. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  15. Percolation of Carbon Nanoparticles in Poly(3-Hexylthiophene Enhancing Carrier Mobility in Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Chang-Hung Lee

    2014-01-01

    Full Text Available To improve the field-effect mobility of all-inkjet-printed organic thin film transistors (OTFTs, a composite material consisted of carbon nanoparticles (CNPs and poly(3-hexylthiophene (P3HT was reported by using homemade inkjet-printing system. These all-inkjet-printed composite OTFTs represented superior characteristics compared to the all-inkjet-printed pristine P3HT OTFTs. To investigate the enhancement mechanism of the blended materials, the percolation model was established and experimentally verified to illustrate the enhancement of the electrical properties with different blending concentrations. In addition, experimental results of OTFT contact resistances showed that both contact resistance and channel resistance were halved. At the same time, X-ray diffraction measurements, Fourier transform infrared spectra, ultraviolet-visible light, and photoluminescence spectra were also accomplished to clarify the material blending effects. Therefore, this study demonstrates the potential and guideline of carbon-based nanocomposite materials in all-inkjet-printed organic electronics.

  16. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described

  17. Carbon diffusion and reactivity in Mn{sub 5}Ge{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Matthieu; Michez, Lisa; Thanh, Vinh Le; Glachant, Alain [CINaM-CNRS UPR3118, campus de Luminy case 913, 13288 Marseille cedex 9 (France); Aix-Marseille Universite, campus de Luminy case 925, 13288 Marseille cedex 9 (France); Dau, Minh Tuan; Barre, Xavier; Spiesser, Aurelie; Coudreau, Cyril [CINaM-CNRS UPR3118, campus de Luminy case 913, 13288 Marseille cedex 9 (France); Monier, Guillaume; Bideux, Luc; Robert-Goumet, Christine [Clermont Universite, Universite Blaise Pascal, 24 avenue des Landais, 63000 Clermont-Ferrand (France); LASMEA, CNRS UMR6602, 63177 Aubiere (France)

    2012-06-15

    The Curie temperature of Mn{sub 5}Ge{sub 3} has been successfully enhanced by carbon doping. In this context the diffusion of a carbon thin film in Mn{sub 5}Ge{sub 3} has been studied at room temperature. A value of the diffusivity of about D = 2.4 x 10{sup -23}{+-} 0.5 x 10{sup -23} m{sup 2} s{sup -1} is reported. This value is in the typical range of interstitial diffusion coefficients. Moreover Auger Ge and Mn peaks shifts and Ge{sub 3d} core level have been investigated to get some details on the reactivity of carbon atoms in Mn{sub 5}Ge{sub 3}. Mn Auger transitions display a shift of 4 eV whereas Ge transitions do not. Similarly Ge{sub 3d} core level does not contain C related contribution but presents a Mn one. These observations confirmed the fact that carbon atoms are not inert species for Mn. It suggests that a ternary Ge-Mn-C alloy could occur and should be taken into account when doping the Mn{sub 5}Ge{sub 3} with carbon. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Investigation of Physical Properties and Electrochemical Behavior of Nitrogen-Doped Diamond-Like Carbon Thin Films

    Directory of Open Access Journals (Sweden)

    Rattanakorn Saensak

    2014-03-01

    Full Text Available This work reports characterizations of diamond-like carbon (DLC films used as electrodes for electrochemical applications. DLC thin films are prepared on glass slides and silicon substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD using a gas mixture of methane and hydrogen. In addition, the DLC films are doped with nitrogen in order to reduce electrical resistivity. Compared to the undoped DLC films, the electrical resistivity of nitrogen-doped (N-doped DLC films is decreased by three orders of magnitude. Raman spectroscopy and UV/Vis spectroscopy analyses show the structural transformation in N-doped DLC films that causes the reduction of band gap energy. Contact angle measurement at N-doped DLC films indicates increased hydrophobicity. The results obtained from the cyclic voltammetry measurements with Fe(CN63-/Fe(CN64- redox species exhibit the correlation between the physical properties and electrochemical behavior of DLC films.

  19. Breakthrough curves of oil adsorption on novel amorphous carbon thin film.

    Science.gov (United States)

    El-Sayed, M; Ramzi, M; Hosny, R; Fathy, M; Abdel Moghny, Th

    2016-01-01

    A novel amorphous carbon thin film (ACTF) was prepared by hydrolyzing wood sawdust and delignificating the residue to obtain cellulose mass that was subjected to react with cobalt silicate nanoparticle as a catalyst under the influence of sudden concentrated sulfuric acid addition at 23 °C. The novel ACTF was obtained in the form of thin films like graphene sheets having winding surface. The prepared ACTF was characterized by Fourier-transform infrared spectrometer, transmission electron microscope (TEM), and Brunauer-Emmett-Teller (BET). The adsorption capacity of ACTF to remove oil from synthetic produced water was evaluated using the incorporation of Thomas and Yoon-Nelson models. The performance study is described through the breakthrough curves concept under relevant operating conditions such as column bed heights (3.8, 5 and 11 mm) and flow rate (0.5, 1 and 1.5 mL.min(-1)). It was found that the oil uptake mechanism is favoring higher bed height. Also, the highest bed capacity of 700 mg oil/g ACTF was achieved at 5 mm bed height, and 0.5 mL.min(-1) flow rate. The results of breakthrough curve for oil adsorption was best described using the Yoon-Nelson model. Finally, the results illustrate that ACTF could be utilized effectively for oil removal from synthetic produced water in a fixed-bed column system. PMID:27191556

  20. Inprovement of Field Emission Properties of PBS Thin Films by Amorphous Carbon Coating

    Directory of Open Access Journals (Sweden)

    S. Jana

    2011-01-01

    Full Text Available Lead sulfide (PbS nanocrystalline thin films were synthesized at room temperature via chemical bath deposition on both silicon and glass substrates and coated with amorphous carbon of different thickness by varying deposition time in plasma enhanced chemical vapor deposition technique. The as prepared samples were characterized by X-ray diffraction (XRD, field emission scanning electron microscope (FESEM and atomic force microscope (AFM. XRD study reveals that coating of amorphous carbon does not change the crystal structure of PbS. From FESEM images it is seen that the average size of PbS nanoparticle does not exceed 100 nm, though sometomes small cubic particles agglomerated to form bigger particles. The coating of amorphous carbon can be clearly visible by the FESEM as well as from AFM micrographs. Field emission study show a significant betterment for the carbon coated sample as compared to the pure PbS. The effect of inter-electrode distance on the field emission characteristics of best field emitting sample has been studied for three different inter-electrode distances.

  1. Preparation and structural properties of thin carbon films by very-high-frequency magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    高明伟; 叶超; 王响英; 何一松; 郭佳敏; 杨培芳

    2016-01-01

    Growth and structural properties of thin a-C films prepared by the 60 MHz very-high-frequency (VHF) magnetron sputtering were investigated. The energy and flux of ions impinging the substrate were also analyzed. It is found that the thin a-C films prepared by the 60 MHz sputtering have a lower growth rate, a smooth surface, and more sp3 contents. These features are related to the higher ion energy and the lower ions flux onto the substrate. Therefore, the 60 MHz VHF sputtering is more suitable for the preparation of thin a-C film with more sp3 contents.

  2. Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery.

    Science.gov (United States)

    Nossol, Edson; Souza, Victor H R; Zarbin, Aldo J G

    2016-09-15

    Thin films of either unpurified single-walled carbon nanotubes (SWCNT) or iron-filled multi-walled carbon nanotubes (MWCNT) were deposited through the liquid-liquid interfacial route over plastic substrates, yielding transparent, flexible and ITO-free electrodes. The iron species presented in both electrodes (inside of the MWCNT cavities or outside of the SWCNT bundles, related to the catalyst remaining of the growth process) were employed as reactant to the electrosynthesis of Prussian blue (PB), yielding carbon nanotubes/Prussian blue nanocomposite thin films, which were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, cyclic voltammetry and galvanostatic charge/discharge measurements. The nanocomposite films were employed as cathodes for flexible, transparent and ITO-free potassium batteries, showing reversible charge/discharge behavior and specific capacitance of 8.3mAhcm(-3) and 2.7mAhcm(-3) for SWCNT/PB and MWCNT/PB, respectively. PMID:27288576

  3. Cementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance

    Science.gov (United States)

    Loh, Kenneth J.; Gonzalez, Jesus

    2015-07-01

    Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious composites with capabilities of self-sensing or detecting damage. The approach was to enhance the damage sensitivity of cementitious composites by incorporating multi-walled carbon nanotubes (MWNT) as part of the mix design and during casting. However, as opposed to directly dispersing MWNTs in the cement matrix, which is the current state-of-art, MWNT-based thin films were airbrushed and coated onto sand particles. The film-coated sand was then used as part of the mix design for casting mortar specimens. Mortar specimens were subjected to compressive cyclic loading tests while their electrical properties were recorded simultaneously. The results showed that the electrical properties of these cementitious composites designed with film-coated sand exhibited extremely high strain sensitivities. The electrical response was also stable and consistent between specimens.

  4. Novel preparation of NaA/carbon nanocomposite thin films with high permeance for CO2/CH4 separation

    Institute of Scientific and Technical Information of China (English)

    Zhi Hui Zhou; Jian Hua Yang; Li Feng Chang; Yan Zhang; Wei Guo Sun; Jin Qu Wang

    2007-01-01

    Novel NaA/carbon nanocomposite thin films were successfully prepared on a porous α-Al2O3 substrate by incorporating nanosized NaA zeolite into novolak-type phenolic resin. The prepared films were characterized by XRD, SEM and single gas permeation tests. The NaA zeolite/carbon nanocomposite thin films exhibited that the ideal separation factor of CO2/CH4 was 28.4and the carbon dioxide flux was 3.39 × 10-7 mol/(Pa m2 s) at room temperature and under a pressure difference of 100 kPa, which was two orders of magnitude higher than that of pure carbon membrane prepared at the same procedures and conditions as those of composite films. From the SEM images, the films were continuous and highly intergrown. Compared with carbon membranes, the thickness of nanocomposite films was drastically decreased, which was helpful to reduce the diffusion resistance and increase the flux of gas permeance.

  5. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    Science.gov (United States)

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-05-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V‑1 sec‑1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process.

  6. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, B., E-mail: aissab@emt.inrs.ca [Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Centre Energie, Matériaux et Télécommunications, INRS, 1650, Boulevard Lionel-Boulet Varennes, Quebec J3X 1S2 (Canada); Nedil, M. [Telebec Wireless Underground Communication Laboratory, UQAT, 675, 1ère Avenue, Val d' Or, Quebec J9P 1Y3 (Canada); Kroeger, J. [NanoIntegris & Raymor Nanotech, Raymor Industries Inc., 3765 La Vérendrye, Boisbriand, Quebec J7H 1R8 (Canada); Haddad, T. [Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 0B8 (Canada); Rosei, F. [Centre Energie, Matériaux et Télécommunications, INRS, 1650, Boulevard Lionel-Boulet Varennes, Quebec J3X 1S2 (Canada)

    2015-09-28

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 10{sup 4} and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 10{sup 4} s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices.

  7. All-printed and transparent single walled carbon nanotube thin film transistor devices

    Science.gov (United States)

    Sajed, Farzam; Rutherglen, Christopher

    2013-09-01

    We present fully transparent single-walled all-carbon nanotube thin film transistors (SWCNT TFT) fabricated using low-cost inkjet printing methods. Such a demonstration provides a platform towards low cost fully printed transparent electronics. The SWCNT TFTs were printed with metallic and semiconducting SWCNT using a room temperature printing process, without the requirement of expensive cleanroom facilities. The unoptimized SWCNT TFTs fabricated exhibited an Ion/off ratio of 92 and mobility of 2.27 cm2V-1s-1 and transmissivity of 82%. The combination of both high electrical performance and high transparency make all-SWCNT TFTs desirable for next generation transparent display backplanes and products such as Google Glass.

  8. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    International Nuclear Information System (INIS)

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 104 and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 104 s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices

  9. Dry-Transfer of Aligned Multiwalled Carbon Nanotubes for Flexible Transparent Thin Films

    Directory of Open Access Journals (Sweden)

    Matthew Cole

    2012-01-01

    Full Text Available Herein we present an inexpensive facile wet-chemistry-free approach to the transfer of chemical vapour-deposited multiwalled carbon nanotubes to flexible transparent polymer substrates in a single-step process. By controlling the nanotube length, we demonstrate accurate control over the electrical conductivity and optical transparency of the transferred thin films. Uniaxial strains of up to 140% induced only minor reductions in sample conductivity, opening up a number of applications in stretchable electronics. Nanotube alignment offers enhanced functionality for applications such as polarisation selective electrodes and flexible supercapacitor substrates. A capacitance of 17 F/g was determined for supercapacitors fabricated from the reported dry-transferred MWCNTs with the corresponding cyclic voltagrams showing a clear dependence on nanotube length.

  10. Adhesion improvement of hydrogenated diamond-like carbon thin films by pre-deposition plasma treatment of rubber substrate

    NARCIS (Netherlands)

    Bui, X.L.; Pei, Y.T.; Mulder, E.D.G.; Hosson, J.Th.M. De

    2009-01-01

    For reduction of friction and enhancement of wear resistance of dynamic rubber seals, thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) via magnetron-enhanced plasma chemical vapor deposition (ME-PCVD). Pre-deposition plasma trea

  11. Thin film solid-state reactions forming carbides as contact materials for carbon-containing semiconductors

    Science.gov (United States)

    Leroy, W. P.; Detavernier, C.; Van Meirhaeghe, R. L.; Lavoie, C.

    2007-03-01

    Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin films. The solid-state reaction was examined between 11 transition metals (W, Mo, Fe, Cr, V, Nb, Mn, Ti, Ta, Zr, and Hf) and an amorphous carbon layer. Capping layers (C or TiN) of different thicknesses were applied to prevent oxidation. Carbide formation is evidenced for nine metals and the phases formed have been identified (for a temperature ranging from 100to1100°C). W first forms W2C and then WC; Mo forms Mo2C; Fe forms Fe3C; Cr first forms metastable phases Cr2C and Cr3C2-x, and finally forms Cr3C2; V forms VCx; Nb transforms into Nb2C followed by NbC; Ti forms TiC; Ta first forms Ta2C and then TaC; and Hf transforms into HfC. The activation energy for the formation of the various carbide phases has been obtained by in situ x-ray diffraction.

  12. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  13. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  14. Corrosion behavior of aluminum doped diamond-like carbon thin films in NaCl aqueous solution.

    Science.gov (United States)

    Khun, N W; Liu, E

    2010-07-01

    Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films. PMID:21128496

  15. Thin films on cantilevers

    NARCIS (Netherlands)

    Nazeer, Hammad

    2012-01-01

    The main goal of the work compiled in this thesis is to investigate thin films for integration in micro electromechanical systems (MEMS). The miniaturization of MEMS actuators and sensors without compromising their performance requires thin films of different active materials with specific propertie

  16. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor

    OpenAIRE

    R. Shrestha; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G H; Choi, T. Y.

    2013-01-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady he...

  17. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors

    Science.gov (United States)

    Xia, Jiye; Dong, Guodong; Tian, Boyuan; Yan, Qiuping; Zhang, Han; Liang, Xuelei; Peng, Lianmao

    2016-05-01

    Metal-tube contact is known to play an important role in carbon nanotube field-effect transistors (CNT-FETs) which are fabricated on individual CNTs. Less attention has been paid to the contact effect in network type carbon nanotube thin film transistors (CNT-TFTs). In this study, we demonstrate that contact plays an even more important role in CNT-TFTs than in CNT-FETs. Although the Schottky barrier height at the metal-tube contact can be tuned by the work function of the metal, similar to the case in CNT-FETs, the contact resistance (Rc) forms a much higher proportion of the total resistance in CNT-TFTs. Interestingly, the contact resistivity was found to increase with channel length, which is a consequence of the percolating nature of the transport in CNT films, and this behavior does not exist in CNT-FETs and normal 2D Ohmic conductors. Electrical transport in CNT-TFTs has been predicted to scale with channel length by stick percolation theory. However, the scaling behavior is also impacted, or even covered up by the effect of Rc. Once the contact effect is excluded, the covered scaling behavior can be revealed correctly. A possible way of reducing Rc in CNT-TFTs was proposed. We believe the findings in this paper will strengthen our understanding of CNT-TFTs, and even accelerate the commercialization of CNT-TFT technology.Metal-tube contact is known to play an important role in carbon nanotube field-effect transistors (CNT-FETs) which are fabricated on individual CNTs. Less attention has been paid to the contact effect in network type carbon nanotube thin film transistors (CNT-TFTs). In this study, we demonstrate that contact plays an even more important role in CNT-TFTs than in CNT-FETs. Although the Schottky barrier height at the metal-tube contact can be tuned by the work function of the metal, similar to the case in CNT-FETs, the contact resistance (Rc) forms a much higher proportion of the total resistance in CNT-TFTs. Interestingly, the contact

  18. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Tsukasa, E-mail: akasaka@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan); Yokoyama, Atsuro; Matsuoka, Makoto [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan); Hashimoto, Takeshi [Meijo Nano Carbon Co., Ltd., Otsubashi Bldg. 4F, 3-4-10, Marunouchi, Naka-ku, Nagoya, 460-0002 (Japan); Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan)

    2010-04-06

    One strategy used for the regeneration of bone is the development of cell culture substrates and scaffolds that can control osteoblast proliferation and differentiation. In recent investigations, carbon nanotubes (CNTs) have been utilized as scaffolds for osteoblastic cell cultures; however, there are only a few reports describing the proliferation of osteoblastic cells on thin CNT films; in particular, the effects of serum concentration on cell proliferation have not been studied. In the present study, we prepared culture dishes with homogeneous thin or thick films of non-modified CNTs and examined the effect of serum concentrations on human osteoblastic cells (Saos-2) proliferation in these culture dishes. We demonstrated that the ratio of cell proliferation was strongly affected by the concentration of serum. Interestingly, single-walled carbon nanotube (SWNT) thin films were found to be the most effective substrate for the proliferation of Saos-2 cells in low concentrations of serum. Thus, thin SWNT films may be used as an effective biomaterial for the culture of Saos-2 cells in low serum concentrations.

  19. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor

    Science.gov (United States)

    Shrestha, R.; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G. H.; Choi, T. Y.

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m-1 K-1 at room temperature.

  20. Low contact resistance carbon thin film modified current collectors for lithium Ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shi-Kun; Chiu, Kuo-Feng, E-mail: kfchiu@fcu.edu.tw; Su, Shih-Hsuan; Liu, Shih-Hsien; Hou, Kai Hsiang; Leu, Hoang-Jyh; Hsiao, Chung-Chun

    2014-12-01

    Carbon films have been synthesized by chemical vapor deposition (CVD) on AISI 304 stainless steel (304SS) sheets with various C{sub 2}H{sub 2}/H{sub 2} flow ratios at 810 °C. The films exhibit three different morphologies and structures: filament, sphere and transition types at different C{sub 2}H{sub 2}/H{sub 2} flow ratios, as characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. It was found that the degree of graphitization increased with decreasing C{sub 2}H{sub 2}/H{sub 2} flow ratios. The carbon film modified 304SS sheets were used as cathode current collectors and coated with an active layer containing LiMn{sub 2}O{sub 4} active materials, conducting additives and binders for lithium ion batteries. The electrochemical properties of these LiMn{sub 2}O{sub 4} cells with bare and carbon film modified current collectors were investigated. Under high current operation, such as 3000 mA/g, the capacity of the LiMn{sub 2}O{sub 4} cell with transition type carbon film modified current collector is 55% higher than the cell with bare current collector. The enhanced performances of high current density charge–discharge cycles can be attributed to the reduced contact resistance and improved charge transfer efficiency provided by the transition type carbon film modified current collectors. - Highlights: • Carbon films were synthesized by CVD on 304SS sheets. • The carbon film modified 304SS sheets were used as cathode current collectors. • The carbon film modified current collectors improved charge transfer efficiency.

  1. Recent trends in preparation and application of carbon nanotube-graphene hybrid thin films

    Science.gov (United States)

    Thanh Dang, Van; Dung Nguyen, Duc; Thanh Cao, Thi; Le, Phuoc Huu; Tran, Dai Lam; Phan, Ngoc Minh; Chuc Nguyen, Van

    2016-09-01

    The combination of one-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) graphene materials to generate three-dimensional (3D) carbon nanotube-graphene hybrid thin films (CNGHTFs) has attracted great attention owing to their intriguing properties via the synergistic effects of these two materials on their electrical, optical, and electrochemical properties in comparison with their individual components. This review aims to provide a brief introduction of recent trends in preparation methodologies and some outstanding applications of CNGHTFs. It contains two main scientific subjects. The first of these is the research on preparation techniques of CNGHTFs, including reduction agent-assisted mechanical blending of reduced graphene oxide (rGO) and CNTs, hybridization methods for layer-by-layer (LBL) assembly of CNTs and rGO sheets, multi-step methods using combinations of a solution and chemical vapor deposition (CVD) processing, one-step growth of CNGHTFs by the CVD method, and modified CVD methods via thermal deposition of carbon source on catalyst surfaces. The advantages and disadvantages of the preparation methods of CNGHTFs are presented and discussed in detail. The second scientific subject of the review is the research on some outstanding applications of CNGHTFs in various research fields, including transparent conductors, electron field emitters, field-effect transistors, biosensors and supercapacitors. In most cases, the CNGHTFs showed superior performances than those of the pristine GO/graphene or CNT materials. Therefore, the CNGHTFs exhibit as high-potential materials for various practical applications. Opportunites and challenges in the fields are also presented.

  2. Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films

    Science.gov (United States)

    Thanh Dang, Van; Dung Nguyen, Duc; Thanh Cao, Thi; Le, Phuoc Huu; Tran, Dai Lam; Phan, Ngoc Minh; Chuc Nguyen, Van

    2016-09-01

    The combination of one-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) graphene materials to generate three-dimensional (3D) carbon nanotube–graphene hybrid thin films (CNGHTFs) has attracted great attention owing to their intriguing properties via the synergistic effects of these two materials on their electrical, optical, and electrochemical properties in comparison with their individual components. This review aims to provide a brief introduction of recent trends in preparation methodologies and some outstanding applications of CNGHTFs. It contains two main scientific subjects. The first of these is the research on preparation techniques of CNGHTFs, including reduction agent-assisted mechanical blending of reduced graphene oxide (rGO) and CNTs, hybridization methods for layer-by-layer (LBL) assembly of CNTs and rGO sheets, multi-step methods using combinations of a solution and chemical vapor deposition (CVD) processing, one-step growth of CNGHTFs by the CVD method, and modified CVD methods via thermal deposition of carbon source on catalyst surfaces. The advantages and disadvantages of the preparation methods of CNGHTFs are presented and discussed in detail. The second scientific subject of the review is the research on some outstanding applications of CNGHTFs in various research fields, including transparent conductors, electron field emitters, field-effect transistors, biosensors and supercapacitors. In most cases, the CNGHTFs showed superior performances than those of the pristine GO/graphene or CNT materials. Therefore, the CNGHTFs exhibit as high-potential materials for various practical applications. Opportunites and challenges in the fields are also presented.

  3. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jin-chai; Guo Huai-xi; Lu Xian-feng; Zhang Zhi-hong; Ye Ming-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In order to test the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent characteristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  4. Investigation on single walled carbon nanotube thin films deposited by Langmuir Blodgett method

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh (India); Kaur, Ramneek; Raina, K. K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala (India)

    2015-05-15

    Langmuir Blodgett is a technique to deposit a homogeneous film with a fine control over thickness and molecular organization. Thin films of functionalized SWCNTs have been prepared by Langmuir Blodgett method. The good surface spreading properties of SWCNTs at air/water interface are indicated by surface pressure-area isotherm and the monolayer formed on water surface is transferred onto the quartz substrate by vertical dipping. A multilayer film is thus obtained in a layer by layer manner. The film is characterized by Atomic Force Microscope (AFM), UV-Vis-NIR spectroscopy and FTIR.AFM shows the surface morphology of the deposited film. UV-Vis-NIR spectroscopy shows the characteristic peaks of semiconducting SWCNTs. The uniformity of LB film can be used further in understanding the optical and electrical behavior of these materials.

  5. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  6. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    International Nuclear Information System (INIS)

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz

  7. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Masaki, E-mail: m-nakaya@kirin.co.jp [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Shimizu, Mari [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-08-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz.

  8. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    Science.gov (United States)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  9. Evaluation of interface trap densities and quantum capacitance in carbon nanotube network thin-film transistors

    Science.gov (United States)

    Yoon, J.; Choi, B.; Choi, S.; Lee, J.; Lee, J.; Jeon, M.; Lee, Y.; Han, J.; Lee, J.; Kim, D. M.; Kim, D. H.; Kim, S.; Choi, S.-J.

    2016-07-01

    The interface trap density in single-walled carbon nanotube (SWNT) network thin-film transistors (TFTs) is a fundamental and important parameter for assessing the electronic performance of TFTs. However, the number of studies on the extraction of interface trap densities, particularly in SWNT TFTs, has been insufficient. In this work, we propose an efficient technique for extracting the energy-dependent interface traps in SWNT TFTs. From the measured dispersive, frequency-dependent capacitance–voltage (C–V) characteristics, the dispersive-free, frequency-independent C–V curve was obtained, thus enabling the extraction and analysis of the interface trap density, which was found to be approximately 8.2 × 1011 eV‑1 cm‑2 at the valence band edge. The frequency-independent C–V curve also allows further extraction of the quantum capacitance in the SWNT network without introducing any additional fitting process or parameters. We found that the extracted value of the quantum capacitance in SWNT networks is lower than the theoretical value in aligned SWNTs due to the cross point of SWNTs on the SWNT network. Therefore, the method proposed in this work indicates that the C–V measurement is a powerful tool for obtaining deep physical insights regarding the electrical performance of SWNT TFTs.

  10. Wafer scale fabrication of carbon nanotube thin film transistors with high yield

    Science.gov (United States)

    Tian, Boyuan; Liang, Xuelei; Yan, Qiuping; Zhang, Han; Xia, Jiye; Dong, Guodong; Peng, Lianmao; Xie, Sishen

    2016-07-01

    Carbon nanotube thin film transistors (CNT-TFTs) are promising candidates for future high performance and low cost macro-electronics. However, most of the reported CNT-TFTs are fabricated in small quantities on a relatively small size substrate. The yield of large scale fabrication and the performance uniformity of devices on large size substrates should be improved before the CNT-TFTs reach real products. In this paper, 25 200 devices, with various geometries (channel width and channel length), were fabricated on 4-in. size ridged and flexible substrates. Almost 100% device yield were obtained on a rigid substrate with high out-put current (>8 μA/μm), high on/off current ratio (>105), and high mobility (>30 cm2/V.s). More importantly, uniform performance in 4-in. area was achieved, and the fabrication process can be scaled up. The results give us more confidence for the real application of the CNT-TFT technology in the near future.

  11. Multifunctional carbon nanotube thin film composites by layer-by-layer assembly technique

    Science.gov (United States)

    Shim, Bong Sup

    Polymeric layer-by-layer (LBL) assembly offers a pathway for multifunctional/multicomponent materials with molecular-scale control of stratified structures. Among the wide variety nanoscale building blocks such as nanowires and nanodots, single-walled carbon nanotubes (SWNTs) are regarded as one of the most versatile because of their superior mechanical and electrical properties as well as geometrical perfection. In this thesis, LBL assembled SWNT thin film nanocomposites with high mechanical strength/toughness and with high electrical/optical properties are presented. Exceptional exfoliation state of SWNTs and controlled nm-thick layered structures are the basis for achieving tunable physical properties. Highly anisotropic features of SWNTs are translated into 2 dimensional alignments by meniscus combing technique during LBL assemblies. Advanced LBL assemblies by dewetting methods are also introduced, which significantly accelerate the process with improved lateral organization of nanowires. Furthermore, SWNT composite coating on commodity cotton yarns produced intelligent electronic textiles (e-textiles) with intrinsic humidity sensibility. This e-textile has been further combined with antigen/antibody sensing capability in order to develop a selective albumin biosensor which provides a direct route for the application of these materials as wearable biomonitoring and telemedicine sensors.

  12. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  13. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  14. Effect of helium gas pressure on dc conduction mechanism and EMI shielding properties of nanocrystalline carbon thin films

    International Nuclear Information System (INIS)

    This paper reports the effect of helium partial pressures ∼1.2 × 10−5 (base pressure), 1.4 × 10−4, 8.6 × 10−3 and 0.1 mbar on the variable range hopping conduction in nanocrystalline carbon thin films deposited by filtered cathodic jet carbon arc technique. High resolution transmission electron microscopy studies suggest the random distribution of nanocrystallites (∼3–7 nm) in the amorphous matrix. The DC conduction behavior of the deposited nanocrystalline films has been studied in the light of Mott's variable range hopping (VRH) model and found to obey three dimensional VRH conduction. The randomly distributed nanocrystallites in amorphous matrix may lead to change in the distribution of density of states near Fermi level and hence, the conduction behavior. The enhanced electrical conductivity of the deposited films due to the helium environment makes them suitable for electromagnetic interference shielding applications. The sample deposited at a helium partial pressure of 0.1 mbar has a value of shielding effectiveness ∼7.84 dB at 18 GHz frequency. - Highlights: • Nanocrystalline carbon thin films (NCTF) has been deposited by FCJCA technique. • Effect of helium gas pressure has been studied on the properties of NCTF. • Investigation of EMI shielding properties of NCTF has been carried out

  15. Effect of helium gas pressure on dc conduction mechanism and EMI shielding properties of nanocrystalline carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Ishpal, E-mail: rawalishpal@gmail.com [Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Singh, Avanish Pratap; Dhawan, S.K. [Polymeric and Soft Materials Group, Physics Engineering of Carbon, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2015-05-05

    This paper reports the effect of helium partial pressures ∼1.2 × 10{sup −5} (base pressure), 1.4 × 10{sup −4}, 8.6 × 10{sup −3} and 0.1 mbar on the variable range hopping conduction in nanocrystalline carbon thin films deposited by filtered cathodic jet carbon arc technique. High resolution transmission electron microscopy studies suggest the random distribution of nanocrystallites (∼3–7 nm) in the amorphous matrix. The DC conduction behavior of the deposited nanocrystalline films has been studied in the light of Mott's variable range hopping (VRH) model and found to obey three dimensional VRH conduction. The randomly distributed nanocrystallites in amorphous matrix may lead to change in the distribution of density of states near Fermi level and hence, the conduction behavior. The enhanced electrical conductivity of the deposited films due to the helium environment makes them suitable for electromagnetic interference shielding applications. The sample deposited at a helium partial pressure of 0.1 mbar has a value of shielding effectiveness ∼7.84 dB at 18 GHz frequency. - Highlights: • Nanocrystalline carbon thin films (NCTF) has been deposited by FCJCA technique. • Effect of helium gas pressure has been studied on the properties of NCTF. • Investigation of EMI shielding properties of NCTF has been carried out.

  16. Pulsed laser deposition of thin carbon films in a neutral gas background

    International Nuclear Information System (INIS)

    We studied carbon film deposition using a laser-produced plasma, in argon and helium background gas, at pressures between 0.5 and 700 mTorr. A Nd : YAG, 370 mJ, 3.5 ns, at 1.06 µm, operating at 10 Hz, with a fluence of 6.7 J cm−2 was used. The laser plasma was characterized using space resolved OES and a fast response Faraday cup. The resulting carbon films were analysed using AFM, Raman spectroscopy, XPS and SIMS. The structural properties of the carbon films were found to be strongly correlated with the laser carbon plasma composition. Films with a relatively high content of sp3, characteristic of DLC, were obtained at pressures below 200 mTorr. For these conditions the characteristic carbon ion energies in the expanding laser plasma were of the order of 100 eV. At higher pressures sp2 bonds, associated with amorphous carbon, were dominant, which coincides with a high content of C2 molecules in the laser plasma, and a characteristic carbon ion energy around 20 eV. (paper)

  17. Complexes of carbon nanotubes with oligonucleotides in thin Langmuir-Blodgett films to detect electrochemically hybridization

    Science.gov (United States)

    Egorov, A. S.; Egorova, V. P.; Krylova, H. V.; Lipnevich, I. V.; Orekhovskaya, T. I.; Veligura, A. A.; Govorov, M. I.; Shulitsky, B. G.

    2014-10-01

    Self-assembled complexes consisting of thin multi-walled carbon nanotubes (MWCNTs) and DNA-oligonucleotides which are able to a cooperative binding to complementary oligonucleotides have been investigated. It was establised a high-performance charge transport in nanostructured Langmuir-Blodgett complexes thin MWCNTs/DNA. A method to electrochemically detect DNA hybridization on the self-organized structures has been proposed.

  18. Evaporated VOx Thin Films

    Science.gov (United States)

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  19. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Directory of Open Access Journals (Sweden)

    Wanshun Zhao

    2013-04-01

    Full Text Available We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD. The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM. Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films.

  20. An Effective Method for Improvement of Field Electron Emission Site Density and Uniformity of Amorphous Carbon Thin Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Ping; WANG Li-Jun; ZHANG Bing-Lin; YAO Ning; ZANG Qi-Ren; CHEN Jun; DUAN Xin-Chao

    2006-01-01

    @@ Amorphous carbon films are deposited on the Mo film/ceramic substrates, which are pretreated by a laser spat-tering chiselling technique (2 line/mm), by using the microwave chemical vapour deposition technique. The films are characterized by x-ray diffraction, Raman spectrum, optical microscopy, and scanning electron microscopy.The experimental result indicates that the laser spattering chiselling pretreated techniques can essentially improve the field emission uniformity and the emission site density of the amorphous carbon thin film devices so that its emission site density can reach the level of actual application (undistinguishable by naked eye) from a broad well-proportioned emission area of 50mm × 50mm. This kind of device can show various digits and words clearly. The lowest turn-on field below 1 V/m, the emission current density over 5.0 ±0.1 mA/cm2, and the highest luminance 1.0 × 103 cd/m2 are obtained. Meanwhile, the role of the laser spattering chiselling techniques in improving the field emission properties of the amorphous carbon film are explained.

  1. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  2. Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Greg M. Swain, PI

    2009-03-10

    The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

  3. Analysis of variance on thickness and electrical conductivity measurements of carbon nanotube thin films

    Science.gov (United States)

    Li, Min-Yang; Yang, Mingchia; Vargas, Emily; Neff, Kyle; Vanli, Arda; Liang, Richard

    2016-09-01

    One of the major challenges towards controlling the transfer of electrical and mechanical properties of nanotubes into nanocomposites is the lack of adequate measurement systems to quantify the variations in bulk properties while the nanotubes were used as the reinforcement material. In this study, we conducted one-way analysis of variance (ANOVA) on thickness and conductivity measurements. By analyzing the data collected from both experienced and inexperienced operators, we found some operation details users might overlook that resulted in variations, since conductivity measurements of CNT thin films are very sensitive to thickness measurements. In addition, we demonstrated how issues in measurements damaged samples and limited the number of replications resulting in large variations in the electrical conductivity measurement results. Based on this study, we proposed a faster, more reliable approach to measure the thickness of CNT thin films that operators can follow to make these measurement processes less dependent on operator skills.

  4. Heterogeneity in Polymer Thin Films

    OpenAIRE

    Kanaya, Toshiji; Inoue, Rintaro; Nishida, Koji

    2011-01-01

    In the last two decades very extensive studies have been performed on polymer thin films to reveal very interesting but unusual properties. One of the most interesting findings is the decrease in glass transition temperature Tg with film thickness in polystyrene (PS) thin film supported on Si substrate. Another interesting finding is apparent negative thermal expansivity in glassy state for thin films below ∼25 nm. In order to understand the unusual properties of polymer thin films we have st...

  5. Erosion of thin hydrogenated carbon films in oxygen, oxygen/hydrogen and water plasmas

    International Nuclear Information System (INIS)

    The erosion of amorphous hydrogenated carbon films in oxygen, oxygen/hydrogen and water electron cyclotron resonance plasmas was investigated by in situ ellipsometry. The erosion was measured as a function of the energy of the impinging ions and the substrate temperature. Erosion is most effective in pure oxygen plasmas. The erosion rate rises with increasing ion energy and substrate temperature, in the latter case however only at low ion energies. The reaction layer at the surface of the eroded film is further analyzed by X-ray photoelectron spectroscopy (XPS). The C ls peak of the XPS spectra shows, that oxygen is implanted in the films and forms double and single bonds to the carbon atoms. This modification, however, is limited to a few atomic layers. (orig.)

  6. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  7. Highly Sensitive Thin Film Sensor Based on Worm-like Carbon Nanofibers for Detection of Ammonia in Workplace

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-zhi; CHEN Xing; LI Min-Qiang; LIU Jin-Huai

    2008-01-01

    A thin film sensor was fabricated using the mixture of worm-like carbon nanofibers (WCNF), which were synthesized using aluminium supported iron catalysts via chemical vapour deposition, and glass dust in proportion of 3 : 2, combined by drops of terpineol. The morphology of the catalyst, the worm-like carbon nanofibers and the film surface were investigated with the help of TEM and SEM. Low single-potential signal was employed to investigate gas sensitivity of the sensor to the deleterious ammonia, in atmospheric pressure at room temperature. The results suggest that the sensor has high sensitivity at low concentration (0.175-0.35 mg/m3), perfect reproducibility,and a fast response time (0.05 s) and restoration time (1 min).

  8. Mn(OH){sub 2}/multi-walled carbon nanotube composite thin films prepared by spray coating for flexible supercapacitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiun-Shing [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China); Hu, Yi, E-mail: huyi@ttu.edu.tw [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China); Chuang, Tao-Liang; Huang, Chien-Lung [Metal Industries Research and Development Centre, Kaohsiung, 1001 Kaonan Highway, Kaohsiung 81160, Taiwan, ROC (China)

    2013-10-01

    Mn(OH){sub 2}/multi-walled carbon nanotube (MWCNT) composite thin films were obtained by spray coating on flexible indium tin oxide/polyethylene terephthalate substrate. The precursors for thin film deposition were prepared by completely mixing MWCNTs and KMnO{sub 4} in deionized water. The morphological characteristics of the films were examined by field emission scanning electronic microscopy and transmission electron microscopy. Phase evolution of the thin films was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. As a result of the deposition process, Mn(OH){sub 2} did not only cover the surface of MWCNTs uniformly but also embed in MWCNTs. The capacitive properties of the thin films were investigated by electrochemical measurements and the capacitance increased as the weight ratio of KMnO{sub 4}/MWCNTs increased up to 1.6. The highest specific capacitance obtained at a scan rate of 20 mV s{sup −1} was 297.5 F/g for the composite thin film with the weight ratio of KMnO{sub 4}/MWCNTs of 1.2. - Highlights: • Mn(OH){sub 2}/carbon nanotube films on flexible substrate were obtained by spray coating. • Mn(OH){sub 2} uniformly covers on or embeds in the carbon nanotube. • The highest capacitance is 297.5 F/g with weight ratio of KMnO{sub 4}/carbon nanotube = 1.2.

  9. Thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  10. Thin film temperature sensor

    Science.gov (United States)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  11. Analysis of Osteoblast Differentiation on Polymer Thin Films Embedded with Carbon Nanotubes.

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    Full Text Available Osteoblast differentiation can be modulated by variations in order of nanoscale topography. Biopolymers embedded with carbon nanotubes can cause various orders of roughness at the nanoscale and can be used to investigate the dynamics of extracellular matrix interaction with cells. In this study, clear relationship between the response of osteoblasts to integrin receptor activation, their phenotype, and transcription of certain genes on polymer composites embedded with carbon nanotubes was demonstrated. We generated an ultrathin nanocomposite film embedded with carbon nanotubes and observed improved adhesion of pre-osteoblasts, with a subsequent increase in their proliferation. The expression of genes encoding integrin subunits α5, αv, β1, and β3 was significantly upregulated at the early of time-point when cells initially attached to the carbon nanotube/polymer composite. The advantage of ultrathin nanocomposite film for pre-osteoblasts was demonstrated by staining for the cytoskeletal protein vinculin and cell nuclei. The expression of essential transcription factors for osteoblastogenesis, such as Runx2 and Sp7 transcription factor 7 (known as osterix, was upregulated after 7 days. Consequently, the expression of genes that determine osteoblast phenotype, such as alkaline phosphatase, type I collagen, and osteocalcin, was accelerated on carbon nanotube embedded polymer matrix after 14 days. In conclusion, the ultrathin nanocomposite film generated various orders of nanoscale topography that triggered processes related to osteoblast bone formation.

  12. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm2. For very small battery areas, 2, microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li+ ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  13. Role of surface-electrical properties on the cell-viability of carbon thin films grown in nanodomain morphology

    Science.gov (United States)

    Javid, Amjed; Kumar, Manish; Yoon, Seokyoung; Lee, Jung Heon; Tajima, Satomi; Hori, Masaru; Geon Han, Jeon

    2016-07-01

    Carbon thin films, having a combination of unique physical and chemical properties, exhibit an interesting biocompatibility and biological response to living entities. Here, the carbon films are developed in the morphology form of nano-domains with nanoscale inter-domain separations, tuned by plasma conditions in the facing target magnetron sputtering process. The wettability and surface energy are found to have a close relation to the inter-domain separations. The chemical structure of carbon films exhibited the relative enhancement of sp3 in comparison to sp2 with the increase of domain separations. The cell-viability of these films shows promising results for L929 mouse fibroblast and Saos-2 bone cells, when inter-domain separation is increased. Electrical conductivity and surface energy are identified to play the key role in different time-scales during the cell-proliferation process. The contribution from electrical conductivity is dominant in the beginning of the cultivation, whereas with the passage of time (~3–5 d) the surface energy takes control over conductivity to enhance the cell proliferation.

  14. A comparison between powders and thin films of single-walled carbon nanotubes for the adsorption behaviors of phenylalanine and glycine by XANES study

    Institute of Scientific and Technical Information of China (English)

    IBRAHIM; Kurash

    2010-01-01

    We have compared the adsorption behaviors between single-walled carbon nanotube (SWCNT) powders and thin films with amino acids such as phenylalanine and glycine by using the X-ray absorption near edge structure (XANES) spectroscopy. On SWCNT powders very weak adsorption occurs as confirmed also by studies at high solution concentrations. The comparison of the adsorption behaviors with previous reports for thin films of SWCNTs shows that, due to their compact structure, thin films favor the adsorption of amino acids and represent themselves good candidate for a reliable evaluation of the interaction among amino acids and SWCNTs.

  15. Thin film superfluid optomechanics

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sachkou, Yauhen; He, Xin; Bowen, Warwick P

    2016-01-01

    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid $^4$He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates $g_0>2\\pi \\times 100$ kHz and single photon cooperativities $C_0>10$ are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as $g_0>\\Omega_M$ and opens the prospect of laser cooling a liquid into its quantum ground state.

  16. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  17. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  18. The formation of carbon nanostructures by in situ TEM mechanical nanoscale fatigue and fracture of carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J J; Lockwood, A J; Peng, Y; Xu, X; Inkson, B J [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom); Bobji, M S, E-mail: beverley.inkson@sheffield.ac.u [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2009-07-29

    A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of <10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.

  19. Low temperature plasma processing for cell growth inspired carbon thin films fabrication.

    Science.gov (United States)

    Kumar, Manish; Piao, Jin Xiang; Jin, Su Bong; Lee, Jung Heon; Tajima, Satomi; Hori, Masaru; Han, Jeon Geon

    2016-09-01

    The recent bio-applications (i.e. bio-sensing, tissue engineering and cell proliferation etc.) are driving the fundamental research in carbon based materials with functional perspectives. High stability in carbon based coatings usually demands the high density deposition. However, the standard techniques, used for the large area and high throughput deposition of crystalline carbon films, often require very high temperature processing (typically >800 °C in inert atmosphere). Here, we present a low temperature (thermal treatments. It is found that the control over plasma power density and pulsed frequency governs the density and kinetic energy of carbon ions participating during the film growth. Subsequently, it controls the contents of sp(3) and sp(2) hybridizations via conversion of sp(2) to sp(3) hybridization by ion's energy relaxation. The role of plasma parameters on the chemical and surface properties are presented and correlated to the bio-activity. Bioactivity tests, carried out in mouse fibroblast L-929 and Sarcoma osteogenic (Saos-2) bone cell lines, demonstrate promising cell-proliferation in these films. PMID:27036854

  20. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  1. Thin films for material engineering

    Science.gov (United States)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  2. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  3. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  4. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique; Deposito de peliculas delgadas de carbono amorfo nitrurado utilizando la tecnica de ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo, P.B.; Escobar A, L.; Camps C, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Salazar, Estado de Mexico (Mexico); Haro P, E.; Camacho L, M.A. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa (Mexico); Muhl S, S. [Instituto de Investigacion en Materiales, UNAM (Mexico)

    2000-07-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 {sup -4} Torr until 7.5 x 10 {sup -2} Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  5. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  6. Protein Thin Film Machines

    OpenAIRE

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-01-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fuelled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  7. Effect of acetic acid on electrochemical deposition of carbon-nitride thin film

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Electrochemical deposition method was employed to prepare CNx thin film from methanol-urea solution,and it was shown that adding a little acetic acid in the solution significantly affected the deposition process.After optimizing the experiment conditions,we obtained polycrystalline grains with sizes of about 3―7μm on the faces of single crystal silicon.X-ray diffraction spectrua indicate that the grains are mainly composed of cubic phase mixed with a small amount of β and α phases.

  8. Fabrication, characterization and modeling of microcrystalline silicon-carbon alloys thin films

    OpenAIRE

    Gaiaschi, Sofia,

    2014-01-01

    Despite continuous effort, thin-film silicon multi-junction solar cells are still limited by the light-induced degradation of amorphous materials that they employ − hydrogenated amorphous silicon layers (a-Si:H) or amorphous silicon-germanium (a-SiGe:H) layers. To survive, this technology must fully benefit from the ease with which it allows multi-band gap photovoltaic (PV) devices to be assembled. To this end, materials that are stable under light soaking and have an electronic band gap betw...

  9. Electrospray deposition of carbon nanotube thin films for flexible transparent electrodes.

    Science.gov (United States)

    Meng, Yinan; Xin, Guoqing; Nam, Jaewook; Cho, Sung Min; Chae, Heeyeop

    2013-09-01

    Flexible transparent carbon nanotube (CNT) electrodes were fabricated by electrospray deposition, a large-area scalable and cost-effective process. The carbon nanotubes were dispersed in N,N-dimethylformamide (DMF) and deposited on polyethylene terephthalate (PET) substrates by electrospray deposition process at room temperature and atmospheric pressure. Major process variables were characterized and optimized for the electrospray process development such as electric field between nozzle and substrates, CNT solution flowrate, gap between nozzle and substrates, solution concentration, solvent properties and surface temperature. The sheet resistance of the electrospray deposited CNT films were reduced by HNO3 doping process. 169 Omega/sq sheet resistance and 86% optical transmittance was achieved with low surface roughness of 1.2 nm. The films showed high flexibility and transparency, making them potential replacements of ITO or ZnO in such as solid state lighting, touch panels, and solar cells. Electrospray process is a scalable process and we believe that this process can be applied for large area carbon nanotube film formation. PMID:24205613

  10. [Spectral emissivity of thin films].

    Science.gov (United States)

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  11. Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine

    Science.gov (United States)

    Detsri, Ekarat; Rujipornsakul, Sirilak; Treetasayoot, Tanapong; Siriwattanamethanon, Pawarit

    2016-10-01

    In the present study, multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), and glutathione (GSH) were used to fabricate multilayer nanoscale thin films. The composite thin films were fabricated by layer-by-layer technique as the films were constructed by the alternate deposition of cationic and anionic polyelectrolytes. The MWCNTs were modified via a noncovalent surface modification method using poly(diallydimethylammonium chloride) to form a cationic polyelectrolyte. An anionic polyelectrolyte was prepared by the chemical reduction of HAuCl4 using sodium citrate as both the stabilizing and reducing agent to form anionic AuNPs. GSH was used as an electrocatalyst toward the electro-oxidation of dopamine. The constructed composite electrode exhibits excellent electrocatalytic activity toward dopamine with a short response time and a wide linear range from 1 to 100 μmol/L. The limits of detection and quantitation of dopamine are (0.316 ± 0.081) μmol/L and (1.054 ± 0.081) μmol/L, respectively. The method is satisfactorily applied for the determination of dopamine in plasma and urine samples to obtain the recovery in the range from 97.90% to 105.00%.

  12. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics.

    Science.gov (United States)

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-11-14

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors. PMID:26451806

  13. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation; Sintesis y caracterizacion de peliculas delgadas de carbono amorfo nitrurado, depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P, B

    2001-07-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp{sup 2} and sp{sup 3} bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  14. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  15. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  16. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  17. All-Printed Thin-Film Transistor Based on Purified Single-Walled Carbon Nanotubes with Linear Response

    Directory of Open Access Journals (Sweden)

    Guiru Gu

    2011-01-01

    Full Text Available We report an all-printed thin-film transistor (TFT on a polyimide substrate with linear transconductance response. The TFT is based on our purified single-walled carbon nanotube (SWCNT solution that is primarily consists of semiconducting carbon nanotubes (CNTs with low metal impurities. The all-printed TFT exhibits a high ON/OFF ratio of around 103 and bias-independent transconductance over a certain gate bias range. Such bias-independent transconductance property is different from that of conventional metal-oxide-semiconductor field-effect transistors (MOSFETs due to the special band structure and the one-dimensional (1D quantum confined density of state (DOS of CNTs. The bias-independent transconductance promises modulation linearity for analog electronics.

  18. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    International Nuclear Information System (INIS)

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range

  19. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  20. Study of nanometric thin pyrolytic carbon films for explosive electron emission cathode in high-voltage planar diode

    Energy Technology Data Exchange (ETDEWEB)

    Baryshevsky, Vladimir; Belous, Nikolai; Gurinovich, Alexandra; Gurnevich, Evgeny [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Kuzhir, Polina, E-mail: polina.kuzhir@gmail.com [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Maksimenko, Sergey [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Molchanov, Pavel; Shuba, Mikhail [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Roddatis, Vladimir [CIC energiGUNE, Albert Einstein 48, 01510 Minano, Alava (Spain); Institut für Materialphysik of Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Kaplas, Tommi; Svirko, Yuri [Institute of Photonics, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101 (Finland)

    2015-04-30

    We report on an experimental study of explosive electron emission properties of cathode made by nanometric thin pyrolytic carbon (PyC) films (2–150 nm) deposited on Cu substrate via methane-based chemical vapor deposition. High current density at level of 300 A/cm{sup 2} in 5 · 10{sup −5} Pa vacuum has been observed together with very stable explosive emission from the planar cathode. The Raman spectroscopy investigation proves that the PyC films remain the same after seven shots. According to the optical image analysis of the cathode before and after one and seven shots, we conclude that the most unusual and interesting feature of using the PyC films/Cu cathode for explosive emission is that the PyC layer on the top of the copper target prevents its evaporation and oxidation, which leads to higher emission stability compared to conventional graphitic/Cu cathodes, and therefore results in longer working life. - Highlights: • Explosive electron emission from pyrolytic carbon (PyC) cathode is reported. • We observe high current density, 300 A/cm{sup 2}, and stable emission parameters. • PyC integrity ensures a high application potential for high current electronics.

  1. Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition

    CERN Document Server

    Tsui, Y Y; Vick, D; Fedosejevs, R

    2002-01-01

    The effectiveness of debris reduction using magnetically guided pulsed laser deposition (MGPLD) is reported here. KrF laser pulses (248 nm) of 100 mJ energy were focused to intensities of 6x10 sup 9 W/cm sup 2 onto the surface of a copper or a carbon source target and a magnetic field of 0.3 T as used to steer the plasma around a curved arc of 0.5 m length to the deposition substrate. Debris counts were compared for films produced by the MGPLD and conventional PLD (nonguided) techniques. A significant reduction in particulates of size greater than 0.1 mu m was achieved using MGPLD. For the copper films, particulate count was reduced from 150 000 particles/cm sup 2 /nm to 50 particulates/cm sup 2 /nm and for diamond-like carbon thin films particulate count was reduced from 25 000 particles/cm sup 2 /nm to 1200 particles/cm sup 2 /nm.

  2. Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Das, Sushanta K; Sengupta, Sanghamitra; Velarde, Luis

    2016-01-21

    The molecular self-assembly of surfactants on the surface of single-walled carbon nanotubes (SWCNT) is currently a common strategy for the tuning of nanotube properties and the stabilization of carbon nanotube dispersions. Here, we report direct measurements of the degree of interfacial ordering for sodium dodecyl sulfate (SDS) surfactants adsorbed on colloidal, single-chirality enriched, SWCNTs within a solid film and investigate the dependence of surface alkyl chain order on the surfactant concentration in the precursor solution. The degree of order for the SWCNT-bound SDS molecules, is probed by vibrational sum frequency generation (VSFG) spectroscopy. We find concrete evidence for the presence of highly ordered surface structures at sufficiently high SDS concentrations, attributed here to cylindrical-like micelle assemblies with the SWCNT at the core. As the SDS concentration decreases, the interfacial order is found to decrease as well, generating a more disordered or random adsorption of surfactants on the nanotube surfaces. PMID:26730991

  3. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  4. Strain-induced photoconductivity in thin films of Co doped amorphous carbon.

    Science.gov (United States)

    Jiang, Y C; Gao, J

    2014-01-01

    Traditionally, strain effect was mainly considered in the materials with periodic lattice structure, and was thought to be very weak in amorphous semiconductors. Here, we investigate the effects of strain in films of cobalt-doped amorphous carbon (Co-C) grown on 0.7PbMg(1/3)Nb(2/3)O3-0.3PbTiO3 (PMN-PT) substrates. The electric transport properties of the Co-C films were effectively modulated by the piezoelectric substrates. Moreover, we observed, for the first time, strain-induced photoconductivity in such an amorphous semiconductor. Without strain, no photoconductivity was observed. When subjected to strain, the Co-C films exhibited significant photoconductivity under illumination by a 532-nm monochromatic light. A strain-modified photoconductivity theory was developed to elucidate the possible mechanism of this remarkable phenomenon. The good agreement between the theoretical and experimental results indicates that strain-induced photoconductivity may derive from modulation of the band structure via the strain effect. PMID:25338641

  5. Thin film interconnect processes

    Science.gov (United States)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  6. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  7. Thin film mechanics

    Science.gov (United States)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  8. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Field Emission Properties of Ball-Like Nano-Carbon Thin Films Deposited on Mo Films with Accidented Topography

    Science.gov (United States)

    Wang, Long-Yang; Wang, Xiao-Ping; Wang, Li-Jun; Zhang, Lei

    2008-11-01

    Ball-like nano-carhon thin films (BNCTs) are grown on Mo layers by microwave plasma chemical vapour deposition (MPCVD) system. The Mo layers are deposited on ceramic substrates by electron beam deposition method and are pretreated by ultrasonically scratching. The optimization effects of ultrasonically scratching pretreat-ment on the surface micro-structures of carbon films are studied. It is found from field-emission scanning electron microscope (FE-SEM) images and Raman spectra that the surface structures of the carbon films deposited on Mo pretreated are improved, which are composed of highly uniform nano-structured carbon balls with considerable disorder structures. Field emission (FE) measurements are carried out using a diode structure. The experimental results indicate that the BNCTs exhibit good FE properties, which have the turn on field of 1.56 V/μm, and the current density of 1.0mA/cm2 at electric field of 4.0 V/μm, the uniformly distributed emission site density from a broad well-proportioned emission area of 4 cm2 are also obtained. Linearity is observed in Fowler-Nordheim (F-N) plots in higher Geld region, and the possible emission mechanism of BNCTs is discussed.

  9. Modelling of Indirect Laser-induced Thin-film Ablation of Epoxy for Local Exposing of Carbon Fibers

    Science.gov (United States)

    Emonts, Michael; Fischer, Kai; Schmitt, Stefan; Schares, Richard Ludwig

    Laser radiation is used as enabling technology for intrinsic joining of high-strength CFRP laminates and fiber-reinforced thermoplastic injection moulding compounds by exposure of surface-near carbon fibers. Short-pulsed NIR laser sources represent an acceptable compromise with respect to ablation performance, remote process capability by use of compact 3D scanner and the capability for closed-loop process control. However, using such a laser source means also minimizing heat-affected zones (HAZ). Based on literature research about laser ablation of thin metal films, heat flow at CFRP and thermo-mechanical behavior in FRP by pyrolysis, an analytical model was generated for thin-film ablation of cured epoxy resins at the surface of CFRP laminates by lift-off of resin chips. A comparison between simulation and experimental results confirms the capability of the model to predict the exposure area and the HAZ with deviations below 15%. Threshold fluences for the HAZ (>1 J/cm2) and the resin ablation (>3 J/cm2) have been confirmed.

  10. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth

    Science.gov (United States)

    Tang, M.; Hong, M. H.; Choo, Y. S.; Tang, Z.; Chua, Daniel H. C.

    2010-11-01

    In this work, super-hydrophobic surfaces were fabricated by femtosecond laser micro-machining and chemical vapor deposition to constitute hybrid scale micro/nano-structures formed by carbon nanotube (CNT) clusters. Nickel thin-film microstructures, functioning as CNT growth catalyst, precisely control the distribution of the CNT clusters. To obtain minimal heat-affected zones, femtosecond laser was used to trim the nickel thin-film coating. Plasma treatment was subsequently carried out to enhance the lotus-leaf effect. The wetting property of the CNT surface is improved from hydrophilicity to super-hydrophobicity at an advancing contact angle of 161 degrees. The dynamic water drop impacting test further confirms its enhanced water-repellent property. Meanwhile, this super-hydrophobic surface exhibits excellent transparency with quartz as the substrate. This hybrid fabrication technique can achieve super-hydrophobic surfaces over a large area, which has potential applications as self-cleaning windows for vehicles, solar cells and high-rise buildings.

  11. Enhanced Photocatalytic Activity of C-TiO2 Thin Films Prepared by Magnetron Sputtering and Post-carbon Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    LUO Shengyun; YAN Bingxi; CAO Minjian; SHEN Jie

    2015-01-01

    TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflection spectroscopy. Photoelectric property was evaluated under visible light using a xenon lamp as illuminant. The experimental results indicate that the implanting carbon concentration has a significant influence on film’s micro structure and element valence states. The dominant valence states of carbon vary as carbon content increases. Carbon ion implantation remarkably enhances the current density and photocatalytic capability of TiO2 thin films. The optimized implanting content is 9.83×1017 ion/cm2, which gives rise to a 150%increased photocurrent and degradation rate.

  12. Amorphous Interface Layer in Thin Graphite Films Grown on the Carbon Face of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Colby, R.; Stach, E.; Bolen, M.L.; Capano, M.A.

    2011-09-05

    Cross-sectional transmission electron microscopy (TEM) is used to characterize an amorphous layer observed at the interface in graphite and graphene films grown via thermal decomposition of C-face 4H-SiC. The amorphous layer does not cover the entire interface, but uniform contiguous regions span microns of cross-sectional interface. Scanning transmission electron microscopy (STEM) images and electron energy loss spectroscopy (EELS) demonstrate that the amorphous layer is a carbon-rich composition of Si/C. The amorphous layer is clearly observed in samples grown at 1600 C for a range of growth pressures in argon, but not at 1500 C, suggesting a temperature-dependent formation mechanism.

  13. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin- film transistors

    Institute of Scientific and Technical Information of China (English)

    Zhao Li; Jianfu Ding; Paul Finnie; Jacques Lefebvre; Fuyong Cheng; ChristopherT. Kingston; Patrick R. L. Malenfant

    2015-01-01

    With recent improvements in carbon nanotube separation methods, the accurate determination of residual metallic carbon nanotubes in a purified nanotube sample is important, particularly for those interested in using semiconducting single-walled carbon nanotubes (SWCNTs) in electronic device applications such as thin-film transistors (TFTs). This work demonstrates that Raman microscopy mapping is a powerful characterization tool for quantifying residual metallic carbon nanotubes present in highly enriched semiconducting nanotube networks. Raman mapping correlates well with absorption spectroscopy, yet it provides greater differentiation in purity. Electrical data from TFTs with channel lengths of 2.5 and 5μ m demonstrate the utility of the method. By comparing samples with nominal purities of 99.0% and 99.8%, a clear differentiation can be made when evaluating the current on/off ratio as a function of channel length, and thus the Raman mapping method provides a means to guide device fabrication by correlating SWCNT network density and purity with TFT channel scaling.

  14. Polycrystalline thin film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  15. Inkjet printing of multi-walled carbon nanotube/polymer composite thin film for interconnection.

    Science.gov (United States)

    Lok, Boon Keng; Ng, You Min; Liang, Yen Nan; Hu, Xiao

    2010-07-01

    In this paper, multi-walled carbon nanotube (MWCNT) ink was selectively patterned by inkjet printing on substrates to form conductive traces and electrodes for interconnection application. MWCNT was firstly functionalized using concentrated acid and dispersed in deionized water to form a colloidal solution. Various concentrations of MWCNT were formulated to test the stability of the solution. The printability of the MWCNT ink was examined against printing temperature, ink concentration and ink droplet pitch. Rheological properties of the ink were determined by rheometer and sessile drop method. The electrical conductivity of the MWCNT pattern was measured against multiple printing of MWCNT on the same pattern (up to 10 layers). While single layer printing pattern exhibited highest resistance, the CNT entangled together and formed a random network with more printed layers has higher conductivity. The electrical properties of the printed film was compared to a composite ink of CNT and conducting polymer (CNT ink was mixed with conductive polymer solution, Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (PEDOT:PSS)). Scanning electron microscopy (SEM) was used to observe the surface structure and atomic force microscopy (AFM) was used to study the morphology of the printed film under different conditions.

  16. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  17. Thin Film Deposition of Conducting Polymers and Carbon Allotropes via Interfacial Solution Processing and Evaporative Vapor Phase Polymerization

    OpenAIRE

    D'Arcy, Julio Marcelo

    2012-01-01

    A new solution processing technique is developed for depositing continuously conductive transparent thin films comprised of conducting polymer nanostructures. The deposition mechanism is driven by interfacial surface tension gradients leading to rapid directional fluid flow known as the Marangoni effect. This technique is a universal solution to thin film deposition for coating any type of substrate at ambient conditions within seconds. The versatility of this method of deposition is further ...

  18. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  19. Erbium-Doped Amorphous Carbon-Based Thin Films: A Photonic Material Prepared by Low-Temperature RF-PEMOCVD

    Directory of Open Access Journals (Sweden)

    Hui-Lin Hsu

    2014-02-01

    Full Text Available The integration of photonic materials into CMOS processing involves the use of new materials. A simple one-step metal-organic radio frequency plasma enhanced chemical vapor deposition system (RF-PEMOCVD was deployed to grow erbium-doped amorphous carbon thin films (a-C:(Er on Si substrates at low temperatures (<200 °C. A partially fluorinated metal-organic compound, tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5- octanedionate Erbium(+III or abbreviated Er(fod3, was incorporated in situ into a-C based host. Six-fold enhancement of Er room-temperature photoluminescence at 1.54 µm was demonstrated by deuteration of the a-C host. Furthermore, the effect of RF power and substrate temperature on the photoluminescence of a-C:D(Er films was investigated and analyzed in terms of the film structure. Photoluminescence signal increases with increasing RF power, which is the result of an increase in [O]/[Er] ratio and the respective erbium-oxygen coordination number. Moreover, photoluminescence intensity decreases with increasing substrate temperature, which is attributed to an increased desorption rate or a lower sticking coefficient of the fluorinated fragments during film growth and hence [Er] decreases. In addition, it is observed that Er concentration quenching begins at ~2.2 at% and continues to increase until 5.5 at% in the studied a-C:D(Er matrix. This technique provides the capability of doping Er in a vertically uniform profile.

  20. Effects of diamond-like carbon thin film in organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Seong-Shan; Yong, Thian-Khok [Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia); Tou, Teck-Yong, E-mail: tytou@mmu.edu.m [Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia)

    2009-07-01

    Ultrathin diamond-like carbon (DLC) was deposited by pulsed Nd:YAG laserablation of graphite target on the indium tin oxide (ITO) surface that functioned as the buffered anode for single-layer organic light emitting devices (OLEDs). Deposited by 355 nm Nd:YAG laser, DLC films were characterized by the Raman spectroscopy and the bulk resistivity measurement. Insertion of DLC in the hole-transport ITO/DLC/TPD/Al device slightly increased the injection current density and reduced the turn-on voltage. But DLC insertion in the electron-transport ITO/DLC/Alq{sub 3}/Al device greatly decreased the injection current density and increased the turn-on voltage. For the ITO/DLC/(TPD + Alq{sub 3} + PVK)/Al device, that was doped with Alq{sub 3} and TPD, improved performance with a higher current density and brightness were consistently obtained. Possible mechanisms for the DLC effect in these single-layer devices were discussed.

  1. Design of a Prussian Blue Analogue/Carbon Nanotube Thin-Film Nanocomposite: Tailored Precursor Preparation, Synthesis, Characterization, and Application.

    Science.gov (United States)

    Husmann, Samantha; Zarbin, Aldo J G

    2016-05-01

    Multi-walled carbon nanotubes (MWCNTs) filled with different species of cobalt (metallic cobalt, cobalt oxide) were synthesized by a chemical vapor deposition method through cobaltocene pyrolysis. A systematic study was performed to correlate different experimental conditions with the structure and characteristics of the obtained material. Thin films of Co-filled CNTs were deposited over conductive substrates through a liquid-liquid interfacial method and were used for cobalt hexacyanoferrate (CoHCFe) electrodeposition by an innovative route in which the Co species encapsulated in the CNTs were employed as reactants. The CNT/CoHCFe films were characterized by different spectroscopic, microscopic, and electrochemical techniques and presented high electrochemical stability in different media. The nanocomposites were applied as both an electrochemical sensor to H2 O2 and a cathode for ion batteries and showed limits of detection at approximately 3.7 nmol L(-1) and a capacity of 130 mAh g(-1) at a current density of 5 A g(-1) . PMID:27010671

  2. Polycrystalline thin films

    Science.gov (United States)

    Zweibel, K.; Mitchell, R.; Ullal, H.

    1987-02-01

    This annual report for fiscal year 1986 summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Subcontracted work in this area has concentrated on the development of CuInSe2 and CdTe technologies. During FY 1986, major progress was achieved by subcontractors in (1) achieving 10.5% (SERI-verified) efficiency with CdTe, (2) improving the efficiency of selenized CuInSe2 solar cells to nearly 8%, and (3) developing a transparent contact to CdTe cells for potential use in the top cells of tandem structures.

  3. Polyimide Aerogel Thin Films

    Science.gov (United States)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  4. Solid phase extraction of chromium(VI) using Aliquat336 immobilized on a thin film of multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    We report on a novel and selective method for the preconcentration and determination of Cr(VI) in aqueous samples. Cr(VI) is adsorbed - in a 'batch mode' - on multiwalled carbon nanotubes covered with Aliquat 336 and then determined directly, i.e., on the solid, by X-ray fluorescence spectrometry. This reduces the number of reagents and minimizes sample handling. The method combines the advantages of solid-phase extraction with the benefits of the XRF method in that the large areas required by the carbon nanotubes make them a promising solid sorbent for preconcentration. The enrichment factor was calculated after considering that the thin film obtained from the 10 mL solution of 1 mg L-1 of Cr(VI) has a real thickness of 0.04 mm and a final diameter of 16.7 mm, so that the volume deposited on the pellet is 0.0088 cm3 and the preconcentration factor is 1000. (author)

  5. Evolution of gold thin films to nanoparticles using plasma ion bombardment and their use as a catalyst for carbon nanotube growth

    International Nuclear Information System (INIS)

    We investigate the evolution of Au thin films to nanoparticles caused by plasma ion bombardment and report their validity as a catalyst on the growth of carbon nanotubes (CNTs). The Au thin films having 1–50 Å thickness ranges were precisely prepared by electron beam deposition. The plasma ion bombardments with the plasma power from 5 to 15 W were performed at 500 °C for 10 min under 1.33 × 102 Pa of Ar to investigate the effects of plasma power on the surface structures. It is interesting that the mean size of Au nanoparticles increased as plasma power gets high in the thinner film cases, which might be the results of sputtering and surface diffusion-related aggregation. On the contrary, the mean particle size of the thicker films decreased at lower plasma power regime due to the sputtering, then, increased again at the highest plasma power, which might be caused by the diffusion-induced aggregation of the films. Finally, to investigate the catalytic ability of the thin film-induced Au nanoparticles, we grew CNTs by a thermal chemical vapor deposition with a methane source. It was found that the Au nanoparticles obtained from the plasma-treated 5 Å thick films act as an efficient catalyst for the growth of single-walled CNTs. - Highlights: • We report the evolution of Au thin films to nanoparticles by plasma treatment. • The mean size of Au nanoparticles increased with increasing plasma power. • The nanoparticle size increases by sputtering and diffusion-induced aggregation. • The plasma-treated 5 Å thick films act as an efficient catalyst for SWNTs growth

  6. Synthesis of Crystalline Carbon Nitride Thin Films by Pulsed Arc Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    SHI Changyong; MA Zhibin

    2007-01-01

    The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure.The X-ray diffraction(XRD)patterns of the films prepared at a substrate temperature of 450℃ suggested that the film was composed of α-C3N4 and β-C3N4 crystallites.Raman spectra exhibited distinct peaks which are in good agreement with those predicted theoretically for C3N4 crystallites.

  7. Thin functional conducting polymer films

    OpenAIRE

    Tian, S.

    2005-01-01

    In the present study, thin functional conducting polyaniline (PANI) films, either doped or undoped, patterned or unpatterned, were prepared by different approaches. The properties of the obtained PANI films were investigated in detail by a combination of electrochemistry with several other techniques, such as SPR, QCM, SPFS, diffraction, etc. The sensing applications (especially biosensing applications) of the prepared PANI films were explored. Firstly, the pure PANI films were prepar...

  8. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  9. Characterization of carbon thin films prepared by the thermal decomposition of spin coated polyacrylonitrile layers containing metal acetates

    Energy Technology Data Exchange (ETDEWEB)

    Daranyi, Maria [Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1. (Hungary); Sarusi, Istvan [Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Aradi vertanuk tere 1. (Hungary); Sapi, Andras [Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1. (Hungary); Kukovecz, Akos, E-mail: kakos@chem.u-szeged.hu [Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1. (Hungary); Konya, Zoltan [Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1. (Hungary); Erdohelyi, Andras [Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Aradi vertanuk tere 1. (Hungary)

    2011-10-31

    Polyacrylonitrile (PAN) layers were cast from dimethyl-formamide solutions onto quartz substrates by spin coating and subsequently annealed at up to 1000 {sup o}C in N{sub 2} atmosphere. Carbonization was catalyzed by nickel or cobalt added to the solution as acetate salts. The synthesized films were approx. 970 nm thick and were characterized by Raman and infrared spectroscopy as well as thermogravimetric and electrical conductance measurements. We discuss the effects of carbonization temperature and metal concentration on the morphology, composition and electrical properties of the formed carbon layer. Increasing the amount of catalyst and the pyrolysis temperature was beneficial for the process and resulted in carbonaceous films with a higher degree of structural order as evidenced by the decreasing Raman I{sub D}/I{sub G} ratio and the increasing electrical conductivity of the films. Cobalt is a better catalyst for PAN carbonization than nickel as far as the structure of the product film is concerned.

  10. Investiagtion of Nanoscale Carbon Nitride Thin Films Grown Using DC HCD Hollow Cathode Discharge%用直流中空阴极放电方法(DC HCD)生长的纳米级碳的氮化物薄膜研究

    Institute of Scientific and Technical Information of China (English)

    YAN Y.H.; SHI Y.C.; YANG P.; TANG X.L.; FENG P.X.

    2005-01-01

    There is growing interest in the underlying physical processes in optoelectronic devices based on thin-film multilayer structures. Recently, many investigators have made great efforts on synthesizing the ultra - hard nanoscale carbon nitride thin films. Considering low cost and simple configuration, we used DC hollow cathode discharge (HCD) for deposition of nanoscale carbon nitride thin films.

  11. Amorphous MoSx thin-film-coated carbon fiber paper as a 3D electrode for long cycle life symmetric supercapacitors

    Science.gov (United States)

    Balasingam, Suresh Kannan; Thirumurugan, Arun; Lee, Jae Sung; Jun, Yongseok

    2016-06-01

    Amorphous MoSx thin-film-coated carbon fiber paper as a binder-free 3D electrode was synthesized by a facile hydrothermal method. The maximum specific capacitance of a single electrode was 83.9 mF cm-2, while it was 41.9 mF cm-2 for the symmetric device. Up to 600% capacitance retention was observed for 4750 cycles.Amorphous MoSx thin-film-coated carbon fiber paper as a binder-free 3D electrode was synthesized by a facile hydrothermal method. The maximum specific capacitance of a single electrode was 83.9 mF cm-2, while it was 41.9 mF cm-2 for the symmetric device. Up to 600% capacitance retention was observed for 4750 cycles. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR01200K

  12. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film

    Science.gov (United States)

    Gao, Pingqi; Zhang, Qing

    2014-02-01

    Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm2 V-1 s-1, a subthreshold slope as low as 150 mV dec-1, operating gate voltages less than 2 V, on/off ratios larger than 104 and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.

  13. Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han-Shen; Endrino, Jose L.; Anders, Andre

    2008-07-10

    In this study we have deposited silver-containing hydrogenated and hydrogen-free diamond-like carbon (DLC) nanocomposite thin films by plasma immersion ion implantation-deposition methods. The surface and nano-tribological characteristics were studied by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and nano-scratching experiments. The silver doping was found to have no measurable effect on sp2-sp3 hybridization of the hydrogenated DLC matrix and only a slight effect on the hydrogen-free DLC matrix. The surface topography was analyzed by surface imaging. High- and low-order roughness determined by AFM characterization was correlated to the DLC growth mechanism and revealed the smoothing effect of silver. The nano-tribological characteristics were explained in terms of friction mechanisms and mechanical properties in correlation to the surface characteristics. It was discovered that the adhesion friction was the dominant friction mechanism; the adhesion force between the scratching tip and DLC surface was decreased by hydrogenation and increased by silver doping.

  14. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  15. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  16. Study of Fluorine Addition Influence in the Dielectric Constant of Diamond-Like Carbon Thin Film Deposited by Reactive Sputtering

    Science.gov (United States)

    Trippe, S. C.; Mansano, R. D.

    The hydrogenated amorphous carbon films (a-C:H) or DLC (Diamond-Like Carbon) films are well known for exhibiting high electrical resistivity, low dielectric constant, high mechanical hardness, low friction coefficient, low superficial roughness and also for being inert. In this paper, we produced fluorinated DLC films (a-C:F), and studied the effect of adding CF4 on the above-mentioned properties of DLC films. These films were produced by a reactive RF magnetron sputtering system using a target of pure carbon in stable graphite allotrope. We performed measurements of electrical characteristic curves of capacitance as a function of applied tension (C-V) and current as a function of the applied tension (I-V). We showed the dielectric constant (k) and the resistivity (ρ) as functions of the CF4 concentration. On films with 65% CF4, we found that k = 2.7, and on films with 70% CF4, ρ = 12.3 × 1011 Ω cm. The value of the electrical breakdown field to films with 70% CF4 is 5.3 × 106 V/cm.

  17. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid PVD–PECVD deposition process

    Indian Academy of Sciences (India)

    Majji Venkatesh; Sukru Taktak; Efstathios I Meletis

    2014-12-01

    Silver-doped hydrogenated amorphous carbon (Ag-DLC) films were deposited on Si substrates using a hybrid plasma vapour deposition–plasma enhanced chemical vapour deposition (PVD–PECVD) process combining Ag target magnetron sputtering and PECVD in an Ar–CH4 plasma. Processing parameters (working pressure, CH4/Ar ratio and magnetron current) were varied to obtain good deposition rate and a wide variety of Ag films. Structure and bonding environment of the films were obtained from transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy studies. Variation of processing parameters was found to produce Ag-doped amorphous carbon or diamond-like carbon (DLC) films with a range of characteristics with CH4/Ar ratio exercising a dominant effect. It was pointed out that Ag concentration and deposition rate of the film increased with the increase in d.c. magnetron current. At higher Ar concentration in plasma, Ag content increased whereas deposition rate of the film decreased. FTIR study showed that the films contained a significant amount of hydrogen and, as a result of an increase in the Ag content in the hydrogenated DLC film, $sp^{2}$ bond content also increased. The TEM cross sectional studies revealed that crystalline Ag particles were formed with a size in the range of 2–4 nm throughout an amorphous DLC matrix.

  18. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    Science.gov (United States)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of

  19. Selective absorption of carbon nanotube thin films for solar energy applications

    OpenAIRE

    Abendroth, Thomas; Althues, Holger; Mäder, Gerrit; Kaskel, Stefan; Beyer, Eckhard

    2015-01-01

    A new spectrally selective coating based on carbon nanotubes (CNTs) for solar thermal applications is demonstrated. For optimized coatings solar absorptance coefficients α>0.92 and thermal emittance coefficients ε

  20. Method for making thin carbon foam electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

    1999-08-03

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  1. Method for making thin carbon foam electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, Richard W. (Pleasant Hill, CA); Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Morrison, Robert L. (Modesto, CA)

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  2. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  3. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  4. Nanotemplated lead telluride thin films

    OpenAIRE

    Li, Xiaohong; Nandhakumar, Iris S.; Attard, George S.; Markham, Matthew L.; Smith, David C.; Baumberg, Jeremy J.

    2009-01-01

    Direct lyotropic liquid crystalline templating has been successfully applied to produce nanostructured IV–VI semiconductor PbTe thin films by electrodeposition both on gold and n-type (100) silicon substrates. The PbTe films were characterized by transmission electron microscopy, X-ray diffraction and polarized optical microscopy and the results show that the films have a regular hexagonal nanoarchitecture with a high crystalline rock salt structure and exhibit strong birefringenc...

  5. Thin films and froth flotation

    International Nuclear Information System (INIS)

    The properties of thin, aqueous films on solid surfaces and their central role in the froth flotation process are discussed. The stability of these films can generally be described in terms of electrostatic and van der Waals forces. Significant experimental and theoretical advances are required in many areas (e.g. short range forces, film drainage) before a clear picture of the collision of, adhesion between and detachment of bubbles and particles will emerge. (orig.)

  6. Raman spectroscopic studies of thin film carbon nanostructures deposited using electro deposition technique

    Science.gov (United States)

    Dayal, Saurabh; Sasi, Arshali; Jhariya, Sapna; Sasikumar, C.

    2016-05-01

    In the present work our focus is to synthesize carbon nanostructures (CNS) by electro deposition technique without using any surface pretreatment or catalyst preparation before CNS formation. The process were carried out at significantly low voltage and at low temperature as reported elsewhere. Further the samples were characterized using different characterization tools such as SEM and Raman spectroscopy. The SEM results showed the fibres or tubular like morphology. Raman spectra shows strong finger print at 1600 cm-1 (G peak), 1350 cm-1 (D peak) along with the radial breathing mode (RBM) between 150cm-1 to 300 cm-1. This confirms the formation of tubular carbon nanostructures.

  7. Thin-film ternary superconductors

    International Nuclear Information System (INIS)

    Physical properties and preparation methods of thin film ternary superconductors, (mainly molybdenum chalcogenides) are reviewed. Properties discussed include the superconducting critical fields and critical currents, resistivity and the Hall effect. Experimental results at low temperatures, together with electron microscopy data are used to determine magnetic flux pinning mechanisms in films. Flux pinning results, together with an empirical model for pinning, are used to get estimates for possible applications of thin film ternary superconductors where high current densities are needed in the presence of high magnetic fields. The normal state experimental data is used to derive several Fermi surface parameters, e.g. the Fermi velocity and the effective Fermi surface area. (orig.)

  8. Highly Flexible Wrinkled Carbon Nanotube Thin Film Strain Sensor to Monitor Human Movement

    OpenAIRE

    Park, S-J; Kim, J; Chu, M.; Khine, M

    2016-01-01

    Carbon nanotubes (CNTs) on shape memory polymers result in densified, nano- to microscale wrinkles upon heat-induced shrinkage. These wrinkled CNT bundles can be transferred into soft materials similar to the human epidermis for extremely highly stretchable skin mountable strain sensors with a dynamic range of over 700%.

  9. Certain properties of thin-film niobium carbide coatings on carbon steels obtained in molten salts

    International Nuclear Information System (INIS)

    Niobium carbide coatings have been deposited by means of a currentless transfer of electronegative niobium metal to a more electropositive substratum made of carbon steel in molten salts containing niobium compounds. Corrosion resistance of niobium carbide coated products is studied, wear resistance and tribological characteristics of the coatings are determined

  10. Protolytic carbon film technology

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  11. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  12. The Effect of Increasing Carbon Concentration Increasing on the Mechanical Properties of TiCx Thin Films

    Directory of Open Access Journals (Sweden)

    2013-01-01

    Full Text Available Carbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E of combinatorial magnetron sputtered TiCx (34%x?65% has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.

  13. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    Energy Technology Data Exchange (ETDEWEB)

    Zanoni, R., E-mail: robertino.zanoni@uniroma1.it [Dipartimento di Chimica, Università di Roma ‘La Sapienza’ p.le Aldo Moro 5, 00185 Rome (Italy); Ioannidu, C.A.; Mazzola, L.; Politi, L. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy); Misiano, C. [Romana Film Sottili, Anzio, Rome (Italy); Longo, G. [Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Ecole Polytechnique Fédérale de Lausanne, SB IPSB LPMV, BSP 409 (Cubotron UNIL), R.te de la Sorge, CH-1015 Lausanne (Switzerland); Falconieri, M. [ENEA, Unità Tecnica Applicazioni delle Radiazioni, via Anguillarese 301, 00123 Rome (Italy); Scandurra, R. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy)

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides.

  14. Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films.

    Science.gov (United States)

    Mustonen, Kimmo; Susi, Toma; Kaskela, Antti; Laiho, Patrik; Tian, Ying; Nasibulin, Albert G; Kauppinen, Esko I

    2012-01-01

    The optoelectronic performance of thin films of single-walled carbon nanotubes (SWCNTs) was studied with respect to the properties of both individual nanotubes and their bundles. The SWCNTs were synthesized in a hot wire generator aerosol reactor, collected by gas filtration and dry-transferred onto various substrates. By thus completely avoiding liquid dispersion steps, we were able to avoid any artifacts from residual surfactants or sonication. We found that bundle lengths determined the thin-film performance, as would be expected for highly resistive bundle-bundle junctions. However, we found no evidence that contact resistances were affected by the bundle diameters, although they did play a secondary role by simply affecting the absorption. The individual SWCNT diameters and their graphitization level as gauged by the Raman D band intensity did not show any clear correlation with the overall performance.

  15. Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films

    Directory of Open Access Journals (Sweden)

    Kimmo Mustonen

    2012-10-01

    Full Text Available The optoelectronic performance of thin films of single-walled carbon nanotubes (SWCNTs was studied with respect to the properties of both individual nanotubes and their bundles. The SWCNTs were synthesized in a hot wire generator aerosol reactor, collected by gas filtration and dry-transferred onto various substrates. By thus completely avoiding liquid dispersion steps, we were able to avoid any artifacts from residual surfactants or sonication. We found that bundle lengths determined the thin-film performance, as would be expected for highly resistive bundle–bundle junctions. However, we found no evidence that contact resistances were affected by the bundle diameters, although they did play a secondary role by simply affecting the absorption. The individual SWCNT diameters and their graphitization level as gauged by the Raman D band intensity did not show any clear correlation with the overall performance.

  16. Carbon Nitride Thin Films Deposited by Plasma Assisted Nd∶YAG Laser Ablation of Graphite in N2+H2 Atmosphere

    Institute of Scientific and Technical Information of China (English)

    YU Wei; WANG Shufang; ZHANG Lianshui; LI Xiaowei; FU Guangsheng

    2001-01-01

    Carbon nitride thin films are deposited on silicon wafers by 532 nm Nd∶YAG laser ablation of graphite in the N2+H2 atmosphere assisted by a dc glow discharge plasma at a higher gas pressure of about 4.0 kPa. The properties of the thin films are investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and X-ray diffraction (XRD). The results show that the deposited films are composed of α-C3N4, β-C3N4 phase and have the N/C atomic ratio of 2.01. The optical emission spectroscopy (OES) studies indicate that the introduction of a dc glow discharge and the adoption of a higher gas pressure during the film deposition are favorable to the net generation of the atomic N, CN radicals and N+2 in B2Σ+u excited state in the plasma, which are considered to play a major role in the synthesis of carbon nitride.

  17. Tailoring electronic structure of polyazomethines thin films

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2010-09-01

    Full Text Available Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic devices.Findings: The method used allow for pure pristine polymer thin films to be prtepared without any unintentional doping taking place during prepoaration methods. This is a method based on polycondensation process, where polymer chain developing is running directly due to chemical reaction between molecules of bifunctional monomers. The method applied to prepare thin films of polyazomethines takes advantage of monomer transporting by mreans of neutral transport agent as pure argon is.Research limitations/implications: The main disadvantage of alternately conjugated polymers seems to be quite low mobility of charge carrier that is expected to be a consequence of their backbone being built up of sp2 hybridized carbon and nitrogen atoms. Varying technological conditions towards increasing reagents mass transport to the substrate is expected to give such polyazomethine thin films organization that phenylene rin stacking can result in special π electron systems rather than linear ones as it is the case.Originality/value: Our results supply with original possibilities which can be useful in ooking for good polymer materials for optoelectronic and photovoltaic applications. These results have been gained on polyazomethine thin films but their being isoelectronic counterpart to widely used poly p-phenylene vinylene may be very convenient to develop high efficiency polymer solar cells

  18. Experimental quantification of the true efficiency of carbon nanotube thin-film thermophones.

    Science.gov (United States)

    Bouman, Troy M; Barnard, Andrew R; Asgarisabet, Mahsa

    2016-03-01

    Carbon nanotube thermophones can create acoustic waves from 1 Hz to 100 kHz. The thermoacoustic effect that allows for this non-vibrating sound source is naturally inefficient. Prior efforts have not explored their true efficiency (i.e., the ratio of the total acoustic power to the electrical input power). All previous works have used the ratio of sound pressure to input electrical power. A method for true power efficiency measurement is shown using a fully anechoic technique. True efficiency data are presented for three different drive signal processing techniques: standard alternating current (AC), direct current added to alternating current (DCAC), and amplitude modulation of an alternating current (AMAC) signal. These signal processing techniques are needed to limit the frequency doubling non-linear effects inherent to carbon nanotube thermophones. Each type of processing affects the true efficiency differently. Using a 72 W(rms) input signal, the measured efficiency ranges were 4.3 × 10(-6) - 319 × 10(-6), 1.7 × 10(-6) - 308 × 10(-6), and 1.2 × 10(-6) - 228 × 10(-6)% for AC, DCAC, and AMAC, respectively. These data were measured in the frequency range of 100 Hz to 10 kHz. In addition, the effects of these processing techniques relative to sound quality are presented in terms of total harmonic distortion. PMID:27036272

  19. Birefringent non-polarizing thin film design

    Institute of Scientific and Technical Information of China (English)

    QI; Hongji; HONG; Ruijin; HE; Hongbo; SHAO; Jianda; FAN; Zh

    2005-01-01

    In this paper, 2×2 characteristic matrices of uniaxially anisotropic thin film for extraordinary and ordinary wave are deduced at oblique incidence. Furthermore, the reflectance and transmittance of thin films are calculated separately for two polarizations, which provide a new concept for designing non-polarizing thin films at oblique incidence. Besides, using the multilayer birefringent thin films, non-polarizing designs, such as beam splitter thin film at single wavelength, edge filter and antireflection thin film over visible spectral region are obtained at oblique incidence.

  20. Thin-film forces in pseudoemulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, V.; Radke, C.J. [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  1. The effect of electrochemical phenomena on the deposition of carbon containing inorganic thin films from supersonic expansion of aqueous supercritical solutions

    Science.gov (United States)

    Sezer, Ali Osman

    The supersonic expansion of dilute aqueous solutions for the synthesis of new materials is a complex flow system. Flow prediction and modeling are, therefore, quite challenging. Electrokinetic streaming potentials generated during the supersonic nozzle expansion further complicate the nature of these flow processes. Flow-generated potentials are believed to significantly affect the electrochemical environment of the flow, and therefore, may influence the properties of the product. This dissertation research was an attempt to experimentally and theoretically investigate the significance of flow-generated electrochemical phenomena and their possible effect on the deposited thin carbon films. Brand's computer model was used to predict the physical properties of the expanding jet at the nozzle. The sensitivity of the predicted flow parameters to operating conditions was then analyzed. The results of this parametric flow modeling were used to identify deposition regions of flow space that have less sensitivity to fluctuations in process temperatures and pressures. Streaming currents were predicted from measured nozzle currents. The first high-temperature-pressure Pourbaix diagrams were constructed for the carbon-water system. Equilibrium Pourbaix diagrams together with predicted streaming currents suggested a possible CVD-like mechanism for the deposition of thin carbon films. Deposited carbon films were analyzed for morphology, composition and structure by vibrational spectroscopy and electron microscopy. IR and Raman analysis of carbon samples were not conclusive in revealing any measurable differences in samples. Although Raman spectra showed considerable shifts in peak positions, the lack of internal standard in the spectra made it difficult to draw any reliable conclusions. Significant variations in surface morphology were found for samples grown under different substrate bias. Electron diffraction analysis conclusively showed the presence of a cubic diamond and

  2. Thin films under chemical stress

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  3. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bakoglidis, Konstantinos D., E-mail: konba@ifm.liu.se; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2015-09-15

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2

  4. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers; Filmes finos de carbono depositados por meio da tecnica de magnetron sputtering usando cobalto, cobre e niquel como buffer-layers

    Energy Technology Data Exchange (ETDEWEB)

    Costa e Silva, Danilo Lopes

    2015-11-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  5. Preface: Advanced Thin Film Developments and Nano Structures

    Institute of Scientific and Technical Information of China (English)

    Ray Y.Lin

    2005-01-01

    @@ In this special issue, we invited a few leading materials researchers to present topics in thin films, coatings, and nano structures. Readers will find most recent developments in topics, including recent advances in hard, tough, and low friction nanocomposite coatings; thin films for coating nanomaterials; electroless plating of silver thin films on porous Al2O3 substrate; CrN/Nano Cr interlayer coatings; nano-structured carbide derived carbon (CDC) films and their tribology; predicting interdiffusion in high-temperature coatings; gallium-catalyzed silica nanowire growth; and corrosion protection properties of organofunctional silanes. Authors are from both national laboratories and academia.

  6. Magnetron sputtering process of carbon-doped α-Fe{sub 2}O{sub 3} thin films for photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Jhongli 32001, Taiwan (China); Chang, Wen-Sheng [Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Lin, Jing-Chie [Institute of Materials Science and Engineering, National Central University, Jhongli 32001, Taiwan (China); Chang, Yu-Hsu, E-mail: yhchang@ntut.edu.tw [Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Wu, Ching-Chen, E-mail: ccwu@itri.org.tw [Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China)

    2015-07-05

    Highlights: • Carbon-doped α-Fe{sub 2}O{sub 3} films were synthesized by sputtering process. • The parameter of C-doped α-Fe{sub 2}O{sub 3} was RF power of graphite target. • The photoelectrochemical characteristics of C-doped α-Fe{sub 2}O{sub 3} films were investigated. - Abstract: Thin films of α-Fe{sub 2}O{sub 3} doped with carbon have been fabricated on F-doped SnO{sub 2} glass substrate by magnetron sputtering process via DC power on the pure Fe target (99.99%) combined with RF power on the pure graphite target (99.99%). The influences of RF power (0, 40, 80 and 120 W) on optical, structural and photoelectrochemical (PEC) characteristics have been investigated. The as-obtained samples after annealing in Ar ambient were analyzed by scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, UV–visible spectra and electrochemical analysis. After annealing, all samples revealed only hematite characteristics in XRD pattern and Raman spectra. Thickness of annealed thin films was ∼350 nm measured via SEM cross-section image. The optical band gap and carrier concentration of samples were in the range of 2.13–2.16 eV and 6.28 × 10{sup 17} to 3.11 × 10{sup 18} cm{sup −3}, respectively. Based upon our observations, the 4.56 at.% carbon-doped α-Fe{sub 2}O{sub 3} thin film deposited via 80 W RF power has a better PEC response with photocurrent density of ∼1.18 mA/cm{sup 2} at 0.6 V vs. SCE. This value was about three times higher than the un-doped film (0 W of RF power, reference sample). Observed higher photocurrent density was likely due to a suitable carbon-doping concentration causing a higher carrier concentration.

  7. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  8. Preparation of thin vyns films

    International Nuclear Information System (INIS)

    The fabrication of thin films of VYNS resin (copolymer of chloride and vinyl acetate) of superficial density from 3 to 50 μg/cm2 with solutions in cyclohexanone is presented. Study and discussion of some properties compared with formvar film (polyvinyl formals). It appears that both can be used as source supports but formvar films are prepared more easily and more quickly, in addition they withstand higher temperatures. The main quality of VYNS is that they can be easily separated even several days after their preparation

  9. Very high temperature chemical vapor deposition of new carbon thin films using organic semiconductor molecular beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Takuya [Department of Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Shimada, Toshihiro, E-mail: shimada@chem.s.u-tokyo.ac.j [Department of Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Hanzawa, Akinori; Hasegawa, Tetsuya [Department of Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2009-11-30

    We carried out the preparation and characterization of new carbon films deposited using an organic molecular beam deposition apparatus with very high substrate temperature (from room temperature to 2670 K), which we newly developed. When we irradiated molecular beam of organic semiconductor perylene tetracarboxylic acid dianhydride (PTCDA) on Y{sub 0.07}Zr{sub 0.93}O{sub 2} (111) at 2170 K, a new carbon material was formed via decomposition and fusing of the molecules. The films were characterized with an atomic force microscope (AFM), Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Zirconium carbide (ZrC) films were identified beneath the topmost carbon layer by XRD and XPS analyses, which results from chemical reactions of the substrate and the molecules. Partially graphitized aromatic rings of PTCDA were observed from Raman spectroscopy. The present technique - very high temperature chemical vapor deposition using organic semiconductor sources - will be useful to study a vast unexplored field of covalent carbon solids.

  10. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  11. Thin Film Solid Lubricant Development

    Science.gov (United States)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  12. Thin film polymeric gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  13. Mode-locked soliton erbium-doped fiber laser using a single-walled carbon nanotubes embedded in polyethylene oxide thin film saturable absorber

    Science.gov (United States)

    Ahmad, F.; Harun, S. W.; Nor, R. M.; Zulkepely, N. R.; Muhammad, F. D.; Arof, H.; Ahmad, H.

    2014-03-01

    We demonstrate a simple, compact, and low cost mode-locked erbium-doped fiber laser (EDFL) using a single-walled carbon nanotubes (SWCNTs) embedded in polyethylene oxide (PEO) thin film as a passive saturable absorber (SA). The film with a thickness of 50 μm was fabricated using a prepared homogeneous SWCNT solution with 0.1% loading percentage, which was mixed with a diluted PEO solution and casted onto a glass Petri dish to form a thin film by evaporation technique. The film is sandwiched between two fiber connectors to construct a SA, which is then integrated in an EDFL cavity to generate a self-started stable soliton pulses operating at 1558 nm. The soliton pulse starts to lase at pump power threshold of 17.6 mW with a repetition rate of 50 MHz, pulse width of 0.67 ps, average output power of 0.158 mW, pulse energy of 3.16 pJ, and peak power of 4.43 W.

  14. Chemically Functionalized, Well-Dispersed Carbon Nanotubes in Lithium-Doped Zinc Oxide for Low-Cost, High-Performance Thin-Film Transistors.

    Science.gov (United States)

    Son, Gi-Cheol; Chee, Sang-Soo; Jun, Ji-Hyun; Son, Myungwoo; Lee, Sun Sook; Choi, Youngmin; Jeong, Sunho; Ham, Moon-Ho

    2016-04-13

    Surface-functionalized carbon nanotubes (CNTs) are introduced into lithium-doped ZnO thin-film transistors (TFTs) as an alternative to the conventional incorporation of an expensive element, indium. The crucial role of surface functionalization of CNTs is clarified with the demonstration of indium-free ZnO-based TFTs with a field-effect mobility of 28.6 cm(2) V(-1) s(-1) and an on/off current ratio of 9 × 10(6) for low-cost, high-performance electronics. PMID:26856958

  15. Phase Coarsening in Thin Films

    Science.gov (United States)

    Wang, K. G.; Glicksman, M. E.

    2015-08-01

    Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a `screened' phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.

  16. Superfast Thinning of a Nanoscale Thin Liquid Film

    OpenAIRE

    Winkler, Michael; Kofod, Guggi; Krastev, Rumen; Abel, Markus

    2011-01-01

    This fluid dynamics video demonstrates an experiment on superfast thinning of a freestanding thin aqueous film. The production of such films is of fundamental interest for interfacial sciences and the applications in nanoscience. The stable phase of the film is of the order $5-50\\,nm$; nevertheless thermal convection can be established which changes qualitatively the thinning behavior from linear to exponentially fast. The film is thermally driven on one spot by a very cold needle, establishi...

  17. Optical characterization of sputtered carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Ager, J.W. III.

    1992-05-01

    Spattered carbon films are widely used as protective overcoats for thin film disk media. Raman spectroscopy is nondestructive and relatively rapid and is well suited for the characterization of carbon films. Specific features in the Raman spectra are empirically correlated with the rates of specific types of mechanical wear for both hydrogenated and unhydrogenated films. This observation is interpreted in terms of a random covalent network, in which the mechanical performance of the film is determined by the nature of the bonding that links sp{sup 2}-bonded domains.

  18. Effect of molecular coverage on the electric conductance of a multi-walled carbon nanotube thin film

    Science.gov (United States)

    Kokabu, Takuya; Inoue, Shuhei; Matsumura, Yukihiko

    2016-06-01

    We investigated the influence of water adsorption on a CNT thin film. When we assumed that the magnitude of the change in electrical resistance was correlated with the surface coverage of the adsorbed molecules, this phenomenon could be explained by two-layer adsorption. The first layer was expressed by Langmuir adsorption and that on the second layer was expressed by Fowler-Guggenheim adsorption, which was derived by Bragg-Williams approximation and involved a lateral molecular interaction. The adsorption energy estimated by this assumption was on the same order as derived by DFT calculation.

  19. Thin films stress modeling : a novel approach

    OpenAIRE

    Bhattacharyya, A. S.; Ramgiri, Praveen Kumar

    2015-01-01

    A novel approach to estimate the thin film stress was discussed based on surface tension. The effect of temperature and film thickness was studies. The effect of stress on the film mechanical properties was observed.

  20. Growth of carbon nanofiber coatings on nickel thin films on fused silica by catalytic thermal chemical vapor deposition: On the use of titanium, titanium–tungsten and tantalum as adhesion layers

    NARCIS (Netherlands)

    Thakur, D.B.; Tiggelaar, R.M.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2009-01-01

    Coatings of carbon nanofiber (CNF) layers were synthesized on fused silica substrates using a catalytic thermal chemical vapor deposition process (C-TCVD). The effects of various adhesion layers–titanium, titanium–tungsten and tantalum–under the nickel thin film on the attachment of carbon nanofiber

  1. Plasma polymerized hydrogel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamirisa, Prabhakar A. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Koskinen, Jere [Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Hess, Dennis W. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)]. E-mail: dennis.hess@chbe.gatech.edu

    2006-12-05

    Plasma polymerization was used to produce thermoresponsive hydrogel films of N-isopropylacrylamide (NIPAAm) in a single deposition step. Solvent free processing to produce laterally confined intelligent hydrogel films offers the potential for high volume production of micro-sensors/actuators. Through variation of reactor conditions such as deposition pressure and substrate temperature, it is possible to tailor and control chemical properties of the films such as crosslink density and thus swelling. Fabrication of hydrogel thin films with adequate crosslinks is critical to ensuring adhesion to substrates and stability in aqueous environments. Chemical bonding structures in plasma polymerized NIPAAm were studied using Fourier transform infrared spectroscopy and the thermoresponsive nature of plasma polymerized NIPAAm was confirmed through contact angle goniometry. A reversible temperature dependent contact angle change was observed.

  2. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  3. Utilizing thin-film solid-phase extraction to assess the effect of organic carbon amendments on the bioavailability of DDT and dieldrin to earthworms

    International Nuclear Information System (INIS)

    Improved approaches are needed to assess bioavailability of hydrophobic organic compounds in contaminated soils. Performance of thin-film solid-phase extraction (TF-SPE) using vials coated with ethylene vinyl acetate was compared to earthworm bioassay (Lumbricus terrestris). A DDT and dieldrin contaminated soil was amended with four organic carbon materials to assess the change in bioavailability. Addition of organic carbon significantly lowered bioavailability for all compounds except for 4,4′-DDT. Equilibrium concentrations of compounds in the polymer were correlated with uptake by earthworms after 48d exposure (R2 = 0.97; p 40yr of aging. Results show that TF-SPE can be useful in examining potential risks associated with contaminated soils and to test effectiveness of remediation efforts. -- Highlights: • Bioavailability of pesticides in soil were assessed using TF-SPE and earthworms. • Soil from a historical orchard was used to examine aged residues of dieldrin and DDT. • TF-SPE results were strongly correlated with earthworm bioaccumulation factors. • Ethylene vinyl acetate polymer has sorptive capacity similar to earthworm lipid. • TF-SPE useful to estimate bioavailability of hydrophobic organic pesticides in soil. -- Capsule A thin-film polymer sampler proved to be efficient in estimating the differences in bioavailability to earthworms in a soil treated with organic amendments

  4. Thin film thickness measurements using Scanning White Light Interferometry

    International Nuclear Information System (INIS)

    Scanning White Light Interferometry is a well-established technique for providing accurate surface roughness measurements and three dimensional topographical images. Here we report on the use of a variant of Scanning White Light Interferometry called coherence correlation interferometry which is now capable of providing accurate thickness measurements from transparent and semi-transparent thin films with thickness below 1 μm. This capability will have many important applications which include measurements on optical coatings, displays, semiconductor devices, transparent conducting oxides and thin film photovoltaics. In this paper we report measurements of thin film thickness made using coherence correlation interferometry on a variety of materials including metal-oxides (Nb2O5 and ZrO2), a metal-nitride (SiNx:H), a carbon-nitride (SiCxNy:H) and indium tin oxide, a transparent conducting oxide. The measurements are compared with those obtained using spectroscopic ellipsometry and in all cases excellent correlation is obtained between the techniques. A key advantage of this capability is the combination of thin film thickness and surface roughness and other three-dimensional metrology measurements from the same sample area. - Highlights: • Capability to make thin film measurements with sub-nanometre accuracy • Measurements of thin film thickness made on metal-oxides, nitrides and carbon-nitrides • Excellent correlation with thickness measurements using spectroscopic ellipsometry • Thin film measurement and nanometrology from the same sample area

  5. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  6. Thin film thickness measurements using Scanning White Light Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, B.; Kaminski, P.M.; Walls, J.M., E-mail: J.M.Walls@lboro.ac.uk

    2014-01-01

    Scanning White Light Interferometry is a well-established technique for providing accurate surface roughness measurements and three dimensional topographical images. Here we report on the use of a variant of Scanning White Light Interferometry called coherence correlation interferometry which is now capable of providing accurate thickness measurements from transparent and semi-transparent thin films with thickness below 1 μm. This capability will have many important applications which include measurements on optical coatings, displays, semiconductor devices, transparent conducting oxides and thin film photovoltaics. In this paper we report measurements of thin film thickness made using coherence correlation interferometry on a variety of materials including metal-oxides (Nb{sub 2}O{sub 5} and ZrO{sub 2}), a metal-nitride (SiN{sub x}:H), a carbon-nitride (SiC{sub x}N{sub y}:H) and indium tin oxide, a transparent conducting oxide. The measurements are compared with those obtained using spectroscopic ellipsometry and in all cases excellent correlation is obtained between the techniques. A key advantage of this capability is the combination of thin film thickness and surface roughness and other three-dimensional metrology measurements from the same sample area. - Highlights: • Capability to make thin film measurements with sub-nanometre accuracy • Measurements of thin film thickness made on metal-oxides, nitrides and carbon-nitrides • Excellent correlation with thickness measurements using spectroscopic ellipsometry • Thin film measurement and nanometrology from the same sample area.

  7. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  8. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  9. Organic thin-film photovoltaics

    OpenAIRE

    Liu, Miaoyin

    2010-01-01

    Zusammenfassung Zur Verbesserung der Leistungsumwandlung in organischen Solarzellen sind neue Materialien von zentraler Bedeutung, die sämtliche Erfordernisse für organische Photovoltaik-Elemente erfüllen. In der vorliegenden Arbeit „Organic thin-film photovoltaics“ wurden im Hinblick auf ein besseres Verständnis der Zusammenhänge zwischen molekularer Struktur und der Leistungsfähigkeit neue Materialien in „bulk-heterojunction“ Solarzellen und in Festphasen-Farbstoffsensibilisierten ...

  10. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    Science.gov (United States)

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  11. Utilizing thin-film solid-phase extraction to assess the effect of organic carbon amendments on the bioavailability of DDT and dieldrin to earthworms

    Science.gov (United States)

    Andrade, Natasha A.; Centofanti, Tiziana; McConnell, Laura L.; Hapeman, Cathleen J.; Torrents, Alba; Anh, Nguyen; Beyer, W. Nelson; Chaney, Rufus L.; Novak, Jeffrey M.; Anderson, Marya O.; Cantrell, Keri B.

    2014-01-01

    Improved approaches are needed to assess bioavailability of hydrophobic organic compounds in contaminated soils. Performance of thin-film solid-phase extraction (TF-SPE) using vials coated with ethylene vinyl acetate was compared to earthworm bioassay (Lumbricus terrestris). A DDT and dieldrin contaminated soil was amended with four organic carbon materials to assess the change in bioavailability. Addition of organic carbon significantly lowered bioavailability for all compounds except for 4,4′-DDT. Equilibrium concentrations of compounds in the polymer were correlated with uptake by earthworms after 48d exposure (R2 = 0.97; p 40yr of aging. Results show that TF-SPE can be useful in examining potential risks associated with contaminated soils and to test effectiveness of remediation efforts.

  12. Photoconductivity of thin organic films

    International Nuclear Information System (INIS)

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene (PHT), fullerene (C60), pyrelene tetracarboxylic diimide (PTCDI) and copper phthalocyanine (CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 x 103 Ω m and 3 x 104 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 x 108 Ω m in dark to 3.1 x 106 Ω m under the light.

  13. Plasma Polymerized Thin Films of Maleic Anhydride and 1,2-methylenedioxybenzene for Improving Adhesion to Carbon Surfaces

    DEFF Research Database (Denmark)

    Drews, Joanna Maria; Goutianos, Stergios; Kingshott, Peter;

    2007-01-01

    Low power 2-phase AC plasma polymerization has been used to surface modify glassy carbon substrates that are used as an experimental model for carbon fibers in reinforced composites. In order to probe the role of carboxylic acid density on the interfacial adhesion strength a combination...... acid are present on the MDOB surface as a result of the fragmentation processes in the plasma. Chemical and physical changes were investigated as a function of plasma power at constant polymerization time. Surface chemistry analysis was perfonned with x-ray photoelectron spectroscopy and attenuated...... total veflectanc~ Fourier transform infrared spectroscopy. Atomic force microscopy was used to measure the thickness of the plasma films and to monitor the surface roughness for the different polymerization conditions. Finally, preliminary results of fracture energy measurements of the plasma modified...

  14. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  15. Electrochromic properties of nanocrystalline MoO3 thin films

    International Nuclear Information System (INIS)

    Electrochromic MoO3 thin films were prepared by a sol-gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO3 thin films. The effects of annealing temperatures ranging from 100 oC to 500 oC were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO4/propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO3 thin films heat-treated at 350 oC varied from 80% to 35% at λ = 550 nm (ΔT = ∼ 45%) and from 86% to 21% at λ ≥ 700 nm (ΔT = ∼ 65%) after coloration. Films heat-treated at 350 deg. C exhibited the best electrochromic properties in the present study

  16. Studies of pure and nitrogen-incorporated hydrogenated amorphous carbon thin films and their possible application for amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Hydrogenated amorphous carbon (a-C:H) and nitrogen-incorporated a-C:H (a-C:N:H) thin films were deposited using radio frequency-plasma-enhanced chemical vapor deposition technique and studied for their electrical, optical, and nano-mechanical properties. Introduction of nitrogen and increase of self bias enhanced the conductivity of a-C:H and a-C:N:H films, whereas current-voltage measurement reveals heterojunction formation due to their rectifying behavior. The bandgap of these films was changed over wide range from 1.9 eV to 3.45 eV by varying self bias and the nitrogen incorporation. Further, activation energy was correlated with the electronic structure of a-C:H and a-C:N:H films, and conductivity was discussed as a function of bandgap. Moreover, a-C:N:H films exhibited high hardness and elastic modulus, with maximum values as 42 GPa and 430 GPa, respectively, at -100 V. Observed fascinating electrical, optical, and nano-mechanical properties made it a material of great utility in the development of optoelectronic devices, such as solar cells. In addition, we also performed simulation study for an a-Si:H solar cell, considering a-C:H and C:N:H as window layers, and compared their performance with the a-Si:H solar cell having a-SiC:H as window layer. We also proposed several structures for the development of a near full-spectrum solar cell. Moreover, due to high hardness, a-C:N:H films can be used as a protective and encapsulate layer on solar cells, especially in n-i-p configuration on metal substrate. Nevertheless, a-C:H and a-C:N:H as a window layer can avoid the use of additional hard and protective coating and, hence, minimize the cost of the product.

  17. High-performance thin-film-transistors based on semiconducting-enriched single-walled carbon nanotubes processed by electrical-breakdown strategy

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, B., E-mail: aissab@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Nedil, M. [Telebec Wireless Underground Communication Laboratory, UQAT, 675, 1" è" r" e Avenue, Val d’Or, Québec J9P 1Y3 (Canada); Habib, M.A. [Computer Sciences and Engineering Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Abdul-Hafidh, E.H. [High Energy Physics Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Rosei, F. [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2015-02-15

    Highlights: • We selectively burn metallic single wall carbon nanotubes (SWCNT) by electrical breakdown. • We successfully achieve a semiconducting enriched-SWCNT in TFT configuration. • High performance, like On/Off of 10{sup 5} and a subthreshold swing of 165 mV/decades were obtained. • After PMMA coating, the SWCNT–TFTs were found stables for more than 4 months. - Abstract: Over the past two decades, among remarkable variety of nanomaterials, single-walled carbon nanotubes (SWCNTs) remain the most intriguing and uniquely well suited materials for applications in high-performance electronics. The most advanced technologies require the ability to form purely semiconducting SWCNTs. Here, we report on our strategy based on the well known progressive electrical breakdown process that offer this capability and serves as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous random networks, deposited on silicon substrates in a thin film transistor (TFT) configuration. We demonstrate the successful achievement of semiconducting enriched-SWCNT networks in TFT scheme that reach On/Off switching ratios of ∼100,000, on-conductance of 20 μS, and a subthreshold swing of less than 165 mV/decades. The obtained TFT devices were then protected with thin film poly(methyl methacrylate) (PMMA) to keep the percolation level of the SWCNTs network spatially and temporally stable, while protecting it from atmosphere exchanges. TFT devices were found to be air-stable and maintained their excellent characteristics in ambient atmosphere for more than 4 months. This approach could work as a platform for future nanotube-based nanoelectronics.

  18. High-performance thin-film-transistors based on semiconducting-enriched single-walled carbon nanotubes processed by electrical-breakdown strategy

    International Nuclear Information System (INIS)

    Highlights: • We selectively burn metallic single wall carbon nanotubes (SWCNT) by electrical breakdown. • We successfully achieve a semiconducting enriched-SWCNT in TFT configuration. • High performance, like On/Off of 105 and a subthreshold swing of 165 mV/decades were obtained. • After PMMA coating, the SWCNT–TFTs were found stables for more than 4 months. - Abstract: Over the past two decades, among remarkable variety of nanomaterials, single-walled carbon nanotubes (SWCNTs) remain the most intriguing and uniquely well suited materials for applications in high-performance electronics. The most advanced technologies require the ability to form purely semiconducting SWCNTs. Here, we report on our strategy based on the well known progressive electrical breakdown process that offer this capability and serves as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous random networks, deposited on silicon substrates in a thin film transistor (TFT) configuration. We demonstrate the successful achievement of semiconducting enriched-SWCNT networks in TFT scheme that reach On/Off switching ratios of ∼100,000, on-conductance of 20 μS, and a subthreshold swing of less than 165 mV/decades. The obtained TFT devices were then protected with thin film poly(methyl methacrylate) (PMMA) to keep the percolation level of the SWCNTs network spatially and temporally stable, while protecting it from atmosphere exchanges. TFT devices were found to be air-stable and maintained their excellent characteristics in ambient atmosphere for more than 4 months. This approach could work as a platform for future nanotube-based nanoelectronics

  19. Flexible Tactile Sensor Using Polyurethane Thin Film

    OpenAIRE

    Seiji Aoyagi; Tomokazu Takahashi; Masato Suzuki

    2012-01-01

    A novel capacitive tactile sensor using a polyurethane thin film is proposed in this paper. In previous studies, capacitive tactile sensors generally had an air gap between two electrodes in order to enhance the sensitivity. In this study, there is only polyurethane thin film and no air gap between the electrodes. The sensitivity of this sensor is higher than the previous capacitive tactile sensors because the polyurethane is a fairly flexible elastomer and the film is very thin (about 1 µm)....

  20. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  1. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  2. Influence of Increasing Deposition Temperature on Electrical Properties of Amorphous Carbon Thin Film Prepared by Aerosol-Assisted Thermal CVD

    International Nuclear Information System (INIS)

    This paper reports on the successful deposition of p-type semiconducting amorphous carbon (paC) films fabricated onto the glass substrate by Aerosol-Assisted Thermal Chemical Vapor Deposition (CVD) using natural source of camphor oil as the precursor material. The analyze reveal that conductivity and resistivity shows some changes at different deposition temperature, that is the conductivity increase as temperature increase from 350 to 550 degree Celsius, but drop slightly at 550 degree Celsius. Other than that, optical and structural properties were also characterized by using UV-VIS-NIR system and Atomic Force Microscopy. The same trend of optical and electrical can be seen when the measurement from the Taucs plot expose a decreasing value of optical band gap as temperature increase, but slightly increase when temperature increase to 550 degree Celsius. (author)

  3. Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg4I5 thin film composite nanostructures

    Science.gov (United States)

    Sun, Jia-Lin; Zhang, Wei; Wei, Jinquan; Gu, Bingfu

    2014-01-01

    We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg4I5 films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I-V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg4I5 and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.

  4. Minerals deposited as thin films

    International Nuclear Information System (INIS)

    Free matrix effects are due to thin film deposits. Thus, it was decided to investigate this technique as a possibility to use pure oxide of the desired element, extrapolating its concentration from analytical curves made with avoiding, at the same time, mathematical corrections. The proposed method was employed to determine iron and titanium concentrations in geological samples. The range studied was 0.1-5%m/m for titanium and 5-20%m/m for iron. For both elements the reproducibility was about 7% and differences between this method and other chemical determinations were 15% for titanium and 7% for iron. (Author)

  5. Interactions in thin aqueous films

    OpenAIRE

    Hänni-Ciunel, Katarzyna

    2006-01-01

    In der Arbeit werden die Wechselwirkungen in dünnen flüssigen Filmen untersucht und modifiziert. Schaum- (gas/flüssig/gas) und Benetzungsfilme (gas/flüssig/fest) werden mittels Thin Film Pressure Balance (TFPB) untersucht. Die Apparatur wurde im Rahmen der Arbeit für die Studien an asymmetrischen Filmen aufgebaut und modifiziert. Die Ladungen an den Filmgrenzflächen werden gezielt modifiziert. Die Adsoprtion von Tensiden bestimmt die Oberflächenladung an der gas/flüssig Grenzfläche. Die Oberf...

  6. The role of thin films in wetting

    OpenAIRE

    Marmur, Abraham

    1988-01-01

    The role of thin films in wetting is reviewed. Three modes of spontaneous spreading are discussed : incomplete spreading, complete spreading and mixed-mode spreading. A thin film can be either molecular or colloidal in thickness. Molecularly adsorbed films are mainly associated with incomplete spreading. Colloidal films usually extend from the bulk of the liquid in dynamic situations of complete spreading. Their existence at equilibriuim with the bulk depends on the orientation in the gravita...

  7. Microstructural evolution of tungsten oxide thin films

    International Nuclear Information System (INIS)

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 deg. were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a 'instability wheel' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  8. The effect of local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin film on a carbon nanotube field-effect transistor

    International Nuclear Information System (INIS)

    We produced local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin films on a carbon nanotube field-effect transistor (CN-FET) channel by atomic force microscopy (AFM). The drain current versus gate voltage (Id-Vg) curves measured after forming the local polarized domains showed a shift in the threshold voltages. We also found that the amount of the shifts in the threshold voltages gradually decreased during the measurement of this characteristic over 100 h after forming the polarized domains. The mechanisms of the shifts in the threshold voltages and their decreasing behaviour were explained in terms of the excessive charges that were induced upon the formation of the polarized domains

  9. The effect of local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin film on a carbon nanotube field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Taichi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Miyato, Yuji [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Kobayashi, Kei [Innovative Collaboration Centre, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan); Ishida, Kenji [Department of Chemical Science and Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Matsushige, Kazumi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Yamada, Hirofumi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan)

    2008-01-23

    We produced local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin films on a carbon nanotube field-effect transistor (CN-FET) channel by atomic force microscopy (AFM). The drain current versus gate voltage (I{sub d}-V{sub g}) curves measured after forming the local polarized domains showed a shift in the threshold voltages. We also found that the amount of the shifts in the threshold voltages gradually decreased during the measurement of this characteristic over 100 h after forming the polarized domains. The mechanisms of the shifts in the threshold voltages and their decreasing behaviour were explained in terms of the excessive charges that were induced upon the formation of the polarized domains.

  10. The effect of local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin film on a carbon nanotube field-effect transistor.

    Science.gov (United States)

    Nishio, Taichi; Miyato, Yuji; Kobayashi, Kei; Ishida, Kenji; Matsushige, Kazumi; Yamada, Hirofumi

    2008-01-23

    We produced local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin films on a carbon nanotube field-effect transistor (CN-FET) channel by atomic force microscopy (AFM). The drain current versus gate voltage (I(d)-V(g)) curves measured after forming the local polarized domains showed a shift in the threshold voltages. We also found that the amount of the shifts in the threshold voltages gradually decreased during the measurement of this characteristic over 100 h after forming the polarized domains. The mechanisms of the shifts in the threshold voltages and their decreasing behaviour were explained in terms of the excessive charges that were induced upon the formation of the polarized domains. PMID:21817562

  11. A facile and low-cost length sorting of single-wall carbon nanotubes by precipitation and applications for thin-film transistors

    Science.gov (United States)

    Gui, Hui; Chen, Haitian; Khripin, Constantine Y.; Liu, Bilu; Fagan, Jeffrey A.; Zhou, Chongwu; Zheng, Ming

    2016-02-01

    Semiconducting single-wall carbon nanotubes (SWCNTs) with long lengths are highly desirable for many applications such as thin-film transistors and circuits. Previously reported length sorting techniques usually require sophisticated instrumentation and are hard to scale up. In this paper, we report for the first time a general phenomenon of a length-dependent precipitation of surfactant-dispersed carbon nanotubes by polymers, salts, and their combinations. Polyelectrolytes such as polymethacrylate (PMAA) and polystyrene sulfonate (PSS) are found to be especially effective on cholate and deoxycholate dispersed SWCNTs. By adding PMAA to these nanotube dispersions in a stepwise fashion, we have achieved nanotube precipitation in a length-dependent order: first nanotubes with an average length of 650 nm, and then successively of 450 nm, 350 nm, and 250 nm. A similar effect of nanotube length sorting has also been observed for PSS. To demonstrate the utility of the length fractionation, the 650 nm-long nanotube fraction was subjected to an aqueous two-phase separation to obtain semiconducting enriched nanotubes. Thin-film transistors fabricated with the resulting semiconducting SWCNTs showed a carrier mobility up to 18 cm2 (V s)-1 and an on/off ratio up to 107. Our result sheds new light on the phase behavior of aqueous nanotube dispersions under high concentrations of polymers and salts, and offers a facile, low-cost, and scalable method to produce length sorted semiconducting nanotubes for macroelectronics applications.Semiconducting single-wall carbon nanotubes (SWCNTs) with long lengths are highly desirable for many applications such as thin-film transistors and circuits. Previously reported length sorting techniques usually require sophisticated instrumentation and are hard to scale up. In this paper, we report for the first time a general phenomenon of a length-dependent precipitation of surfactant-dispersed carbon nanotubes by polymers, salts, and their

  12. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO 2 capture

    KAUST Repository

    Yave, Wilfredo

    2010-09-01

    Miniaturization and manipulation of materials at nanometer scale are key challenges in nanoscience and nanotechnology. In membrane science and technology, the fabrication of ultra-thin polymer films (defect-free) on square meter scale with uniform thickness (<100 nm) is crucial. By using a tailor-made polymer and by controlling the nanofabrication conditions, we developed and manufactured defect-free ultra-thin film membranes with unmatched carbon dioxide permeances, i.e. >5 m3 (STP) m-2 h -1 bar-1. The permeances are extremely high, because the membranes are made from a CO2 philic polymer material and they are only a few tens of nanometers thin. Thus, these thin film membranes have potential application in the treatment of large gas streams under low pressure like, e.g., carbon dioxide separation from flue gas. © 2010 IOP Publishing Ltd.

  13. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  14. Diamond-like carbon (DLC) thin film bioelectrodes: Effect of thermal post-treatments and the use of Ti adhesion layer

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, Tomi, E-mail: tomi.laurila@aalto.fi [Department of Electronics, School of Electrical Engineering, Aalto University, Espoo (Finland); Rautiainen, Antti [Department of Electronics, School of Electrical Engineering, Aalto University, Espoo (Finland); Sintonen, Sakari [Department of Micro- and Nanotechnology, School of Electrical Engineering, Aalto University, Espoo (Finland); Jiang, Hua [Department of Applied Physics, School of Science, Aalto University, Espoo (Finland); Kaivosoja, Emilia [Department of Electronics, School of Electrical Engineering, Aalto University, Espoo (Finland); Helsinki University Central Hospital, Institute of Clinical Medicine (Finland); Koskinen, Jari [Department of Materials Science, School of Chemical Technology, Aalto University, Espoo (Finland)

    2014-01-01

    The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiO{sub x} and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. - Highlights: • Crucial effect of Ti adhesion layer on the performance of DLC bioelectrodes is shown. • Amorphous SiOx and Ti[C,O]x are shown to form at the Si/Ti and Ti/DLC interfaces. • Thermal annealing can be used to oxidize the surface of DLC films. • However, there is no change in the sensitivity of the electrodes towards dopamine. • DLC/Pt composite electrodes have improved sensitivity.

  15. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  16. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  17. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  18. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Directory of Open Access Journals (Sweden)

    Tadas Juknius

    2016-05-01

    Full Text Available In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique. The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile.

  19. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  20. Thermal Expansion Coefficients of Thin Crystal Films

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.

  1. Slip-controlled thin film dynamics

    OpenAIRE

    Fetzer, R.; Rauscher, M; Münch, A.; Wagner, B. A.; Jacobs, K.

    2006-01-01

    In this study, we present a novel method to assess the slip length and the viscosity of thin films of highly viscous Newtonian liquids. We quantitatively analyse dewetting fronts of low molecular weight polystyrene melts on Octadecyl- (OTS) and Dodecyltrichlorosilane (DTS) polymer brushes. Using a thin film (lubrication) model derived in the limit of large slip lengths, we can extract slip length and viscosity. We study polymer films with thicknesses between 50 nm and 230 nm and various tempe...

  2. BDS thin film damage competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  3. Thin-film optical shutter

    Science.gov (United States)

    Matlow, S. L.

    1981-02-01

    The ideal solution to the excessive solar gain problem is an optical shutter, a device which switches from being highly transmissive to solar radiation to being highly reflective to solar radiation when a critical temperature is reached in the enclosure. The switching occurs because one or more materials in the device undergo a phase transition at the critical temperature. A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, was chosen as the one most likely to meet all of the requirements of the thin film optical shutter project (TFOS). The reason for this choice is explored. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a quantum mechanical method, the equilibrium bond length (EBL) theory, was developed. Some results of EBL theory are included.

  4. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  5. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    Rachana Gupta; Mukul Gupta; Thomas Gutberlet

    2008-11-01

    Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The film prepared with only Ar gas shows reflections corresponding to the permalloy phase in X-ray diffraction (XRD) pattern. The addition of nitrogen during sputtering results in broadening of the peaks in XRD pattern, which finally leads to an amorphous phase. The - loop for the sample prepared with only Ar gas is matching well with the values obtained for the permalloy. For the samples prepared with increased nitrogen partial pressure the magnetic moment decreased rapidly and the values of coercivity increased. The polarized neutron reflectivity measurements (PNR) were performed in the sample prepared with only Ar gas and with nitrogen partial pressure of 5 and 10%. It was found that the spin-up and spin-down reflectivities show exactly similar reflectivity for the sample prepared with Ar gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity.

  6. TiO2 thin film photocatalyst

    Institute of Scientific and Technical Information of China (English)

    YU Jiaguo

    2004-01-01

    It is well known that the photocatalytic activity of TiO2 thin films strongly depends on the preparing methods and post-treatment conditions, since they have a decisive influence on the chemical and physical properties of TiO2 thin films.Therefore, it is necessary to elucidate the influence of the preparation process and post-treatment conditions on the photocatalytic activity and surface microstructures of the films. This review deals with the preparation of TiO2 thin film photocatalysts by wet-chemical methods (such as sol-gel, reverse micellar and liquid phase deposition) and the comparison of various preparation methods as well as their advantage and disadvantage. Furthermore, it is discussed that the advancement of photocatalytic activity, super-hydrophilicity and bactericidal activity of TiO2 thin film photocatalyst in recent years.

  7. Thin Films for Coating Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    S.M.Mukhopadhyay; P.Joshi; R.V.Pulikollu

    2005-01-01

    For nano-structured solids (those with one or more dimensions in the 1-100 nm range), attempts of surface modification can pose significant and new challenges. In traditional materials, the surface coating could be several hundreds nanometers in thickness, or even microns and millimeters. In a nano-structured material, such as particle or nanofibers, the coating thickness has to be substantially smaller than the bulk dimensions (100 nm or less), yet be durable and effective. In this paper, some aspects of effective nanometer scale coatings have been discussed. These films have been deposited by a non-line of sight (plasma)techniques; and therefore, they are capable of modifying nanofibers, near net shape cellular foams, and other high porosity materials. Two types of coatings will be focused upon: (a) those that make the surface inert and (b) those designed to enhance surface reactivity and bonding. The former has been achieved by forming 1-2 nm layer of -CF2- (and/or CF3) groups on the surface, and the latter by creating a nanolayer of SiO2-type compound. Nucleation and growth studies of the plasma-generated film indicate that they start forming as 2-3 nm high islands that grow laterally, and eventually completely cover the surface with 2-3nm film. Contact angle measurements indicate that these nano-coatings are fully functional even before they have achieved complete coverage of 2-3 nm. They should therefore be applicable to nano-structural solids.This is corroborated by application of these films on vapor grown nanofibers of carbon, and on graphitic foams. Coated and uncoated materials are infiltrated with epoxy matrix to form composites and their microstructure, as well as mechanical behaviors are compared. The results show that the nano-oxide coating can significantly enhance bond formation between carbon and organic phases, thereby enhancing wettability,dispersion, and composite behavior. The fluorocarbon coating, as expected, reduces bond formation, and

  8. Alumina Thin Film Growth: Experiments and Modeling

    OpenAIRE

    Wallin, Erik

    2007-01-01

    The work presented in this thesis deals with experimental and theoretical studies related to the growth of crystalline alumina thin films. Alumina, Al2O3, is a polymorphic material utilized in a variety of applications, e.g., in the form of thin films. Many of the possibilities of alumina, and the problems associated with thin film synthesis of the material, are due to the existence of a range of different crystalline phases. Controlling the formation of the desired phase and the transformati...

  9. Electrochromism of amorphous ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se-Hee; Liu, Ping; Tracy, C. Edwin; Deb, Satyen K. [National Renewable Energy Laboratory, Center for Basic Sciences, 1617 Cole Boulevard, Golden, CO 80401 (United States); Cheong, Hyeonsik M. [Sogang University, Shinsoo-Dong, Seoul 121-742 (Korea, Republic of)

    2003-12-01

    We report on the electrochromic behavior of amorphous ruthenium oxide thin films and their electrochemical characteristics for use as counterelectrodes for electrochromic devices. Hydrous ruthenium oxide thin films were prepared by cyclic voltammetry on ITO coated glass substrates from an aqueous ruthenium chloride solution. The cyclic voltammograms of this material show the capacitive behavior including two redox reaction peaks in each cathodic and anodic scan. The ruthenium oxide thin film electrode exhibits a 50% modulation of optical transmittance at 670 nm wavelength with capacitor charge/discharge.

  10. Controlled nanostructuration of polycrystalline tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d' Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  11. Deposition of carbon nitride films for space application

    Institute of Scientific and Technical Information of China (English)

    Feng Yu-Dong; Xu Chao; Wang Yi; Zhang Fu-Jia

    2006-01-01

    Carbon nitride thin films were prepared by electron-beam evaporation assisted with nitrogen ion bombardment and TiN/CNx composite films were by unbalanced dc magnetron sputtering, respectively. It was found that the sputtered films were better than the evaporated films in hardness and adhesion. The experiments of atomic oxygen action, cold welding, friction and wearing were emphasized, and the results proved that the sputtered TiN/CNx composite films were suitable for space application.

  12. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  13. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  14. Pyrolyzed carbon film diodes.

    Science.gov (United States)

    Morton, Kirstin C; Tokuhisa, Hideo; Baker, Lane A

    2013-11-13

    We have previously reported pyrolyzed parylene C (PPC) as a conductive carbon electrode material for use with micropipets, atomic force microscopy probes, and planar electrodes. Advantages of carbon electrode fabrication from PPC include conformal coating of high-aspect ratio micro/nanoscale features and the benefits afforded by chemical vapor deposition of carbon polymers. In this work, we demonstrate chemical surface doping of PPC through the use of previously reported methods. Chemically treated PPC films are characterized by multiple spectroscopic and electronic measurements. Pyrolyzed parylene C and doped PPC are used to construct diodes that are examined as both p-n heterojunction and Schottky barrier diodes. Half-wave rectification is achieved with PPC diodes and demonstrates the applicability of PPC as a conductive and semiconductive material in device fabrication. PMID:24090451

  15. Insect thin films as solar collectors.

    Science.gov (United States)

    Heilman, B D; Miaoulis, L N

    1994-10-01

    A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 µm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

  16. Depth profiling of fluorine-doped diamond-like carbon (F-DLC) film: Localized fluorine in the top-most thin layer can enhance the non-thrombogenic properties of F-DLC

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Terumitsu [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Department of Radiology, Tachikawa Hospital, 4-2-22, Nishiki-cho, Tachikawa, Tokyo 190-8531 (Japan)], E-mail: teru_hasebe@hotmail.com; Nagashima, So [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Kamijo, Aki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Yoshimura, Taichi; Ishimaru, Tetsuya; Yoshimoto, Yukihiro; Yohena, Satoshi; Kodama, Hideyuki; Hotta, Atsushi [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Takahashi, Koki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Suzuki, Tetsuya [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan)

    2007-12-03

    Fluorine-doped diamond-like carbon (F-DLC) has recently drawn a great deal of attention as a more non-thrombogenic coating than conventional DLC for blood-contacting medical devices. We conducted quantitative depth profiling of F-DLC film by X-ray photoelectron spectroscopy (XPS) in order to elucidate the effects of fluorine and fluorine distribution in F-DLC film in connection with the prevention of surface blood adhesion. F-DLC films were prepared on silicon substrates using the radio frequency plasma enhanced chemical vapor deposition method, and the thickness of films was {approx} 50 nm. 50-nm-thick F-DLC film samples were etched at 10-nm thickness intervals using argon plasma, and each surface was examined by XPS. Thereafter, each etched film layer was incubated with platelet-rich plasma isolated from human whole blood, and the platelet-covered area per unit area was evaluated for each surface. XPS spectra showed the localization of doped fluorine in the top-most thin layer of the film. Platelet-covered areas represented progressively larger portions of the surfaces of deeper etched layers, corresponding to the decreasing fluorine content in such sample surfaces. These results indicate that the localized fluorine in the top-most thin layer is one of the key factors in the promotion of the non-thrombogenicity of F-DLC film.

  17. NEXAFS Study of Air Oxidation for Mg Nanoparticle Thin Film

    Science.gov (United States)

    Ogawa, S.; Murakami, S.; Shirai, K.; Nakanishi, K.; Ohta, T.; Yagi, S.

    2013-03-01

    The air oxidation reaction of Mg nanoparticle thin film has been investigated by Mg K-edge NEXAFS technique. It is revealed that MgO is formed on the Mg nanoparticle surfaces at the early stage of the air oxidation for Mg nanoparticle thin film. The simulation of NEXAFS spectrum using standard spectra indicates the existence of complex magnesium carbonates (x(MgCO3).yMg(OH2).z(H2O)) in addition to MgO at the early stage of the air oxidation.

  18. Highly stretchable wrinkled gold thin film wires

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Chu, Michael [Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States); Pegan, Jonathan D. [Department of Materials and Manufacturing Technology, University of California, Irvine, California 92697 (United States); Khine, Michelle, E-mail: mkhine@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States)

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  19. Thin films for geothermal sensing: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  20. Electroless plating of thin gold films directly onto silicon nitride thin films and into micropores.

    Science.gov (United States)

    Whelan, Julie C; Karawdeniya, Buddini Iroshika; Bandara, Y M Nuwan D Y; Velleco, Brian D; Masterson, Caitlin M; Dwyer, Jason R

    2014-07-23

    A method to directly electrolessly plate silicon-rich silicon nitride with thin gold films was developed and characterized. Films with thicknesses coating planar, curved, and line-of-sight-obscured silicon nitride surfaces. PMID:24999923

  1. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  2. Superconducting thin-film gradiometer

    International Nuclear Information System (INIS)

    We describe the design, fabrication, and performance of planar thin-film dc SQUID's and planar gradiometers in which a dc SQUID is incorporated as a null detector. Each gradiometer was fabricated on a planar substrate and measured an off-diagonal component of changes in the magnetic field gradient. The gradiometer with the highest sensitivity had 127 x 33-mm loops that could be connected in parallel or in series: The sensitivities were 2.1 x 10-13 and 3.7 x 10-13 T m-1 Hz/sup -1/2/, respectively. The intrinsic balance of the gradiometers was about 100 ppm for fields parallel to their plane, and a balance of about 1 ppm could be achieved for fields perpendicular to their plane. When the series-loop gradiometer was rotated through 3600 in the earth's field, the output returned to its initial value to within an amount corresponding to a balance of 1 ppm. Possible improvements in sensitivity are discussed

  3. Thin solid-lubricant films in space

    Science.gov (United States)

    Roberts, E. W.

    Low-friction films of thickness as low as 1 micron, created through sputter-deposition of low shear strength materials, are required in spacecraft applications requiring low power dissipation, such as cryogenic devices, and low torque noise, such as precision-pointing mechanisms. Due to their thinness, these coatings can be applied to high precision-machined tribological components without compromising their functional accuracy. Attention is here given to the cases of thin solid films for ball bearings, gears, and journal bearings.

  4. Laser-annealing of thin semiconductor films

    OpenAIRE

    Boneberg, Johannes; Nedelcu, Johann; Bucher, Ernst; Leiderer, Paul

    1994-01-01

    Optical reflectivity and transmissivity measurements have been used to investigate the dynamics of melting and recrystallisation of thin films of Si and Ge after laser-annealing with a ns Nd:YAG-laser pulse. We report on temperature dependent changes of the reflectivity of the liquid phase above and below the melting point and on various nucleation and solidification scenarios in thin film, depending on the energy density of the amding laser.

  5. Advances in CZTS thin films and nanostructured

    Science.gov (United States)

    Ali, N.; Ahmed, R.; Bakhtiar-Ul-Haq; Shaari, A.

    2015-06-01

    Already published data for the optical band gap (Eg) of thin films and nanostructured copper zinc tin sulphide (CZTS) have been reviewed and combined. The vacuum (physical) and non-vacuum (chemical) processes are focused in the study for band gap comparison. The results are accumulated for thin films and nanostructured in different tables. It is inferred from the re- view that the nanostructured material has plenty of worth by engineering the band gap for capturing the maximum photons from solar spectrum.

  6. Characteristics and durability of fluoropolymer thin films

    OpenAIRE

    Cheneler, David; Bowen, James; Evans, Stephen D.; Górzny, Marcin; Adams, Michael J; Ward, Michael C.L.

    2011-01-01

    The use of plasma-polymerised fluoropolymer (CFxOy) thin films in the manufacture of microelectromechanical systems (MEMS) devices is well-established, being employed in the passivation step of the deep reactive ion etching (DRIE) process, for example. This paper presents an investigation of the effect of exposure to organic and aqueous liquid media on plasma polymerised CFxOy thin films. Atomic force microscopy (AFM), scanning electron microscopy (SEM), ellipsometry, X-ray photoelectron spec...

  7. Microstructural evolution of tungsten oxide thin films

    Science.gov (United States)

    Hembram, K. P. S. S.; Thomas, Rajesh; Rao, G. Mohan

    2009-10-01

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 °C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a "instability wheel" model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  8. Microstructural evolution of tungsten oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, K.P.S.S., E-mail: hembram@isu.iisc.ernet.in [Department of Instrumentation, Indian Institute of Science, Bangalore - 560 012 (India); Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore - 560064 (India); Thomas, Rajesh; Rao, G. Mohan [Department of Instrumentation, Indian Institute of Science, Bangalore - 560 012 (India)

    2009-10-30

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 deg. were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a 'instability wheel' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  9. Ultra-thin Graphitic Film: Synthesis and Physical Properties

    Science.gov (United States)

    Kaplas, Tommi; Kuzhir, Polina

    2016-02-01

    A scalable technique of chemical vapor deposition (CVD) growth of ultra-thin graphitic film is proposed. Ultra-thin graphitic films grown by a one-step CVD process on catalytic copper substrate have higher crystallinity than pyrolytic carbon grown on a non-catalytic surface and appear to be more robust than a graphene monolayer. The obtained graphitic material, not thicker than 8 nm, survives during the transfer process from a Cu substrate without a template polymer layer, typically used in the graphene transfer process to protect graphene. This makes the transfer process much more simple and cost-effective. Having electrical and optical properties compatible with what was observed for a few layers of CVD graphene, the proposed ultra-thin graphitic film offers new avenues for implementing 2D materials in real-world devices.

  10. Ultra-thin Graphitic Film: Synthesis and Physical Properties.

    Science.gov (United States)

    Kaplas, Tommi; Kuzhir, Polina

    2016-12-01

    A scalable technique of chemical vapor deposition (CVD) growth of ultra-thin graphitic film is proposed. Ultra-thin graphitic films grown by a one-step CVD process on catalytic copper substrate have higher crystallinity than pyrolytic carbon grown on a non-catalytic surface and appear to be more robust than a graphene monolayer. The obtained graphitic material, not thicker than 8 nm, survives during the transfer process from a Cu substrate without a template polymer layer, typically used in the graphene transfer process to protect graphene. This makes the transfer process much more simple and cost-effective. Having electrical and optical properties compatible with what was observed for a few layers of CVD graphene, the proposed ultra-thin graphitic film offers new avenues for implementing 2D materials in real-world devices. PMID:26831692

  11. Scalability of carbon-nanotube-based thin film transistors for flexible electronic devices manufactured using an all roll-to-roll gravure printing system

    Science.gov (United States)

    Koo, Hyunmo; Lee, Wookyu; Choi, Younchang; Sun, Junfeng; Bak, Jina; Noh, Jinsoo; Subramanian, Vivek; Azuma, Yasuo; Majima, Yutaka; Cho, Gyoujin

    2015-09-01

    To demonstrate that roll-to-roll (R2R) gravure printing is a suitable advanced manufacturing method for flexible thin film transistor (TFT)-based electronic circuits, three different nanomaterial-based inks (silver nanoparticles, BaTiO3 nanoparticles and single-walled carbon nanotubes (SWNTs)) were selected and optimized to enable the realization of fully printed SWNT-based TFTs (SWNT-TFTs) on 150-m-long rolls of 0.25-m-wide poly(ethylene terephthalate) (PET). SWNT-TFTs with 5 different channel lengths, namely, 30, 80, 130, 180, and 230 μm, were fabricated using a printing speed of 8 m/min. These SWNT-TFTs were characterized, and the obtained electrical parameters were related to major mechanical factors such as web tension, registration accuracy, impression roll pressure and printing speed to determine whether these mechanical factors were the sources of the observed device-to-device variations. By utilizing the electrical parameters from the SWNT-TFTs, a Monte Carlo simulation for a 1-bit adder circuit, as a reference, was conducted to demonstrate that functional circuits with reasonable complexity can indeed be manufactured using R2R gravure printing. The simulation results suggest that circuits with complexity, similar to the full adder circuit, can be printed with a 76% circuit yield if threshold voltage (Vth) variations of less than 30% can be maintained.

  12. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-05-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm-2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

  13. Thin-film crystalline silicon solar cells

    CERN Document Server

    Brendel, Rolf

    2011-01-01

    This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

  14. Bimodal swelling responses in microgel thin films.

    Science.gov (United States)

    Sorrell, Courtney D; Lyon, L Andrew

    2007-04-26

    A series of studies on microgel thin films is described, wherein quartz crystal microgravimetry (QCM), surface plasmon resonance (SPR), and atomic force microscopy (AFM) have been used to probe the properties of microstructured polymer thin films as a function of film architecture and solution pH. Thin films composed of pNIPAm-co-AAc microgels were constructed by using spin-coating layer-by-layer (scLbL) assembly with poly(allylamine hydrochloride) (PAH) as a polycationic "glue". Our findings suggest that the interaction between the negatively charged microgels and the positively charged PAH has a significant impact on the pH responsivity of the film. These effects are observable in both the optical and mechanical behaviors of the films. The most significant changes in behavior are observed when the motional resistance of a quartz oscillator is monitored via QCM experiments. Slight changes to the film architecture and alternating the pH of the environment significantly changes the QCM and SPR responses, suggesting a pH-dependent swelling that is dependent on both particle swelling and polyelectrolyte de-complexation. Together, these studies allow for a deeper understanding of the morphological changes that take place in environmentally responsive microgel-based thin films. PMID:17407344

  15. Post deposition purification of PTCDA thin films

    International Nuclear Information System (INIS)

    The decomposition of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules during evaporation of unpurified raw material in ultra high vacuum was studied. The fragments were identified by mass spectrometry and the influence of these fragments and further contaminations of the raw material on the electronic structure of PTCDA thin films was measured by photoemission spectroscopy. Annealing of contaminated PTCDA films was tested as cheap and easy to perform method for (partial) post deposition purification of the contaminated films

  16. Microcrystalline organic thin-film solar cells.

    Science.gov (United States)

    Verreet, Bregt; Heremans, Paul; Stesmans, Andre; Rand, Barry P

    2013-10-11

    Microcrystalline organic films with tunable thickness are produced directly on an indium-tin-oxide substrate, by crystallizing a thin amorphous rubrene film followed by its use as a template for subsequent homoepitaxial growth. These films, with exciton diffusion lengths exceeding 200 nm, produce solar cells with increasing photocurrents at thicknesses up to 400 nm with a fill factor >65%, demonstrating significant potential for microcrystalline organic electronic devices. PMID:23939936

  17. Utilizing thin-film solid-phase extraction to assess the effect of organic carbon amendments on the bioavailability of DDT and dieldrin to earthworms

    Science.gov (United States)

    Improved approaches are needed to rapidly and accurately assess the bioavailability of persistent, hydrophobic organic compounds in soils at contaminated sites. The performance of a thin-film solid-phase extraction (TF-SPE) assay using vials coated with ethylene vinyl acetate polymer was compared to...

  18. Pulsed laser deposition of anatase thin films on textile substrates

    Science.gov (United States)

    Krämer, André; Kunz, Clemens; Gräf, Stephan; Müller, Frank A.

    2015-10-01

    Pulsed laser deposition (PLD) is a highly versatile tool to prepare functional thin film coatings. In our study we utilised a Q-switched CO2 laser with a pulse duration τ ≈ 300 ns, a laser wavelength λ = 10.59 μm, a repetition frequency frep = 800 Hz and a peak power Ppeak = 15 kW to deposit crystalline anatase thin films on carbon fibre fabrics. For this purpose, preparatory experiments were performed on silicon substrates to optimise the anatase deposition conditions including the influence of different substrate temperatures and oxygen partial pressures. Processing parameters were then transferred to deposit anatase on carbon fibres. Scanning electron microscopy, X-ray diffraction analyses, Raman spectroscopy and tactile profilometry were used to characterise the samples and to reveal the formation of phase pure anatase without the occurrence of a secondary rutile phase. Methanol conversion test were used to prove the photocatalytic activity of the coated carbon fibres.

  19. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    Energy Technology Data Exchange (ETDEWEB)

    Thubsuang, Uthen [Materials Science and Engineering, School of Engineering and Resources, Walailak University, Nakhon Si Thammarat 80160 (Thailand); Sukanan, Darunee [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Sahasithiwat, Somboon [National Metal and Materials Technology Center, Thailand Science Park (TSP), Khlong Luang, Pathum Thani 12120 (Thailand); Wongkasemjit, Sujitra [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Chaisuwan, Thanyalak, E-mail: thanyalak.c@chula.ac.th [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand)

    2015-10-15

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm{sup 3}/g and surface area of 917 m{sup 2}/g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10{sup 2} ppm{sup −1} to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm{sup −1} and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm{sup −1} to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas.

  20. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  1. Thin-film Rechargeable Lithium Batteries

    Science.gov (United States)

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  2. Rupture Limit of Thin Moving Films

    Science.gov (United States)

    Padrino, Juan C.; Joseph, Daniel D.; Kim, Hyungjun

    2010-11-01

    The rupture of a thin film in another fluid is studied including the effects of disjoining pressure. The study considers the linear stability of a moving viscous film in a motionless inviscid fluid and of a stagnant viscous film in a motionless viscous fluid. These are analyzed by means of the Navier--Stokes equations and the dissipation approximation based on potential flow. Results reveal that the dissipation method provides a good approximation for the case of a moving film, whereas its predictions are off the mark for the stagnant film case. The thickness of the gap at the trough of Kelvin-Helmholtz waves locates the formation of holes. The wavelength at final collapse is determined by the length of waves at the trough of the corrugated film. The disjoining pressure effects cause very fast break-up for very thin films. These effects influence the cutoff wavenumber. In the limit of small gaps on this corrugated film, the Reynolds and Weber numbers tend to zero with the gap size, the Ohnesorge number increases like the reciprocal of the square root and the Hamaker number like the reciprocal of the square of the gap. The motion of the film does not enter at the point of formation of holes. Moreover, for the most unstable wave, the ratio of the wavelength to film thickness is found to decrease with decreasing film thickness.

  3. Thin Ice Films at Mineral Surfaces.

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood. PMID:27377606

  4. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  5. Magnetoelectric thin film composites with interdigital electrodes

    Science.gov (United States)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.

    2013-07-01

    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  6. Nanostructured thin films as functional coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Manoj A; Tadvani, Jalil K; Tung, Wing Sze; Lopez, Lorena; Daoud, Walid A, E-mail: Walid.Daoud@sci.monash.edu.au [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia)

    2010-06-15

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  7. Nanostructured thin films as functional coatings

    International Nuclear Information System (INIS)

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  8. Study of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.

  9. Niobium Thin Film Characterization for Thin Film Technology Used in Superconducting Radiofrequency Cavities

    Science.gov (United States)

    Dai, Yishu; Valente-Feliciano, Anne-Marie

    2015-10-01

    Superconducting RadioFrequency (SRF) penetrates about 40-100 nm of the top surface, making thin film technology possible in producing superconducting cavities. Thin film is based on the deposition of a thin Nb layer on top of a good thermal conducting material such as Al or Cu. Thin film allows for better control of the surface and has negligible response to the Earth's magnetic field, eliminating the need for magnetic shielding of the cavities. Thin film superconductivity depends heavily on coating process conditions, involving controllable parameters such as crystal plane orientation, coating temperature, and ion energy. MgO and Al2O3 substrates are used because they offer very smooth surfaces, ideal for studying film growth. Atomic Force Microscopy is used to characterize surface's morphology. It is evident that a lower nucleation energy and a long coating time increases the film quality in the r-plane sapphire crystal orientation. The quality of the film increases with thickness. Nb films coated on r-plane, grow along the (001) plane and yield a much higher RRR compared to the films grown on a- and c-planes. This information allows for further improvement on the research process for thin film technology used in superconducting cavities for the particle accelerators. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  10. Superconductive niobium films coating carbon nanotube fibers

    Science.gov (United States)

    Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Vecchione, A.; Fittipaldi, R.; Corato, V.

    2014-11-01

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm-2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm.

  11. Superconductive niobium films coating carbon nanotube fibers

    International Nuclear Information System (INIS)

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm−2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm. (paper)

  12. Electrochemical Analysis of Conducting Polymer Thin Films

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2010-04-01

    Full Text Available Polyelectrolyte multilayers built via the layer-by-layer (LbL method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting polymer, poly(p-phenylene vinylene (PPV, in the preparation of a stable thin film via the LbL method. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize the ionic conductivity of the PPV multilayer films. The ionic conductivity of the films has been found to be dependent on the polymerization temperature. The film conductivity can be fitted to a modified Randle’s circuit. The circuit equivalent calculations are performed to provide the diffusion coefficient values.

  13. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue

    2005-01-01

    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  14. Surface morphology of thin films polyoxadiazoles

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2011-12-01

    Full Text Available urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used. Photos have been taken in noncontact mode while observing an area of 10 x 10 microns.Findings: The analysis of images has confirmed that the quality of thin films depends upon the used polymers. It was also observed that the parameters of the spin coating method have significant effect on the morphology and the surface roughness. The speed of the spin has got a strong impact on the topography of the thin films obtained.Research limitations/implications: The morphology of polyoxadiazoles thin films has been described. This paper include description how the spin speed influences the morphology of polymer thin films. In order to use a polymer thin film in photovoltaics or optoelectronics it must have a uniform thickness and a low surface roughness. Further research, in which the optical properties of thin films are investigated, is strongly recommended.Practical implications: Conductive polymers may find applications in photovoltaics or optoelectronics. It is important to study this group of material engineering and to find a new use for them. Materials from which thin films are made of will have an impact on the properties and characteristics of electronics devices in which they are be applied.Originality/value: The value of this paper is defining the optimal parameters of spin-coating technology for six polyoxadiazoles. The results allow the choosing optimal parameters of the deposition process. Spin coating is a very good method to obtain thin films which

  15. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  16. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    OpenAIRE

    Tadas Juknius; Modestas Ružauskas; Tomas Tamulevičius; Rita Šiugždinienė; Indrė Juknienė; Andrius Vasiliauskas; Aušrinė Jurkevičiūtė; Sigitas Tamulevičius

    2016-01-01

    In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using micro...

  17. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    K Shalini; S A Shivashankar

    2005-02-01

    Thin films of Sm2O3 have been grown on Si(100) and fused quartz by low-pressure chemical vapour deposition using an adducted -diketonate precursor. The films on quartz are cubic, with no preferred orientation at lower growth temperatures (∼ 550°C), while they grow with a strong (111) orientation as the temperature is raised (to 625°C). On Si(100), highly oriented films of cubic Sm2O3 at 625°C, and a mixture of monoclinic and cubic polymorphs of Sm2O3 at higher temperatures, are formed. Films grown on either substrate are very smooth and fine-grained. Infrared spectroscopic study reveals that films grown above 600°C are free of carbon.

  18. Thin film calorimetry of polymer films

    Science.gov (United States)

    Zhang, Wenhua; Rafailovich, Miriam; Sokolov, Jonathan; Salamon, William

    2000-03-01

    Polystryene and polymethylmethacrylate films for thicknesses ranging from 50nm to 500nm using a direct calorimetric technique (Lai et al, App. Phys. Lett. 67, p9(1995)). Samples were deposited on Ni foils(2-2.5um) and placed in a high vacuum oven. Calibrated heat pulses were input to the polymer films by current pulses to the Ni substrate and temperature changes were determined from the change in Ni resistance. Pulses producing temperature jumps of 3-8K were used and signal averaging over pulses reduced noise levels enough to identify glass transitions down to 50nm. Molecular weight dependence of thick films Tg was used as a temperature calibration.

  19. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  20. Crystallization of zirconia based thin films.

    Science.gov (United States)

    Stender, D; Frison, R; Conder, K; Rupp, J L M; Scherrer, B; Martynczuk, J M; Gauckler, L J; Schneider, C W; Lippert, T; Wokaun, A

    2015-07-28

    The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours. Above 325 °C these films transform nearly instantaneously with a high degree of micro-strain when crystallized below 500 °C. In these films the t'' phase crystallizes which transforms at T > 600 °C to the t' phase upon relaxation of the micro-strain. Furthermore, the crystallization of 8YSZ thin films grown by PLD, spray pyrolysis and dc-sputtering are characterized by in situ XRD measurements. At a constant heating rate of 2.4 K min(-1) crystallization is accomplished after reaching 800 °C, while PLD grown thin films were completely crystallized already at ca. 300 °C. PMID:26119755

  1. Electromagnetic interference shielding effectiveness of nanoreinforced polymer composites deposited with conductive metallic thin films

    International Nuclear Information System (INIS)

    The effect of using conductive metallic thin films deposited on high density polyethylene (HDPE) and styrene butadiene copolymer (SBC) in conjunction with carbon nanofiber (CNF) reinforcement of HDPE and SBC was investigated in order to improve the electromagnetic interference shielding effectiveness (EMI SE) of the structures. Thin films of copper, silver and aluminum were deposited by thermal evaporation onto the polymeric matrices and its composites (0–20 wt.% of CNFs). Results show a synergistic effect of the two approaches (metallic coating and CNF reinforcement) toward improving the EMI SE. The chemical composition, surface morphology, carbon nanofiber distribution, thickness and microstructure of metallic coated polymers are examined using X-Ray Diffraction and Scanning Electron Microscopy. - Highlights: ► Metallic thin films were evaporated on carbon nanofiber reinforced polymers. ► The electromagnetic shielding effectiveness of the structures was evaluated. ► Thin films and carbon nanofibers synergistically improved the shielding effectiveness.

  2. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  3. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  4. Thin-film solar cells. Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Bloss, W.H.; Pfisterer, F.; Schock, H.W. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Physikalische Elektronik)

    1990-01-01

    The authors present the state of the art in research and development, technology, production and marketing, and of the prospects of thin-film solar cells. Thin-film solar cells most used at present are based on amorphous silicon and on the compound semiconductors CuInSe{sub 2} and CdTe. Efficiencies in excess 12% have been achieved (14.1% with CuInSe{sub 2}). Stability is the main problem with amorphous silicon. Thin-film solar cells made from compound semiconductors do not have this problem, though their cost-effective series production needs to be shown still. The development potential of the three types mentioned will be ca. 30% in terms of efficiency: in terms of production cost, it is estimated with some certainty to be able to reach the baseline of 1 DM/Watt peak output (W{sub p}). (orig.).

  5. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  6. Method for synthesizing thin film electrodes

    Science.gov (United States)

    Boyle, Timothy J.

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  7. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  8. MICROSTRUCTURE AND PROPERTIES OF C-Cu NANOSTRUCTURE THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.N. Sun; K.X. Zhang; X. Gao; D.Q. Yang; Z.D. Lin; Y. Guo

    2002-01-01

    Nanostructured C-Cu thin films were deposited by reactive sputtering method and co-sputtering method. The relationships between microstructures, properties, and depo-sition parameters were studied and the results obtained from TEM, AFM, and XPS.indicate that the thin films are nanostructural, and have good in-depth uniformity. Theselected area electron diffraction (SAED) found that the nanosize Cu particles havethe fcc structure and the others are amorphous carbon or nanocrystallized graphiticcarbon. The peak positions of the Cu and C in XPS indicate them to be at the ele-mental state. In the IR transmission spectrum, diamond two-phonon absorption andgraphite Raman peaks were observed, which suggests microcrystal diamond particlesand graphite components exist in the C-Cu film. The higher electrical resistivity wasobtained.

  9. Laser-assisted deposition of thin C60 films

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Fæster, Søren

    Metal and metal oxide films with controlled thickness from a fraction of a monolayer up more than 1000 nm and known stoichiometry can be produced by pulsed laser deposition (PLD) relatively easily, and (PLD) is now a standard technique in all major research laboratories within materials science....... However, organic materials are usually not well suited for direct laser irradiation, since the organic molecules may suffer from fragmentation by the laser light. We have, therefore, explored the possible fragmentation of organic molecules by attempting to produce thin films of C60 which is a strongly...... bound carbon molecule with a well-defined mass (M = 720 amu) and therefore a good, organic test molecule. C60 fullerene thin films of average thickness of more than 100 nm was produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target...

  10. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Umananda M Bhatta; Deepa Khushalani; P V Satyam

    2011-07-01

    Low-temperature transmission electron microscopy (TEM) studies were performed on polystyrene (PS, w = 234 K) – Au nanoparticle composite thin films that were annealed up to 350°C under reduced pressure conditions. The composite thin films were prepared by wet chemical approach and the samples were then subsequently spin-coated on a carbon-coated copper grid for TEM measurements. TEM measurements were performed at liquid nitrogen temperatures to reduce the electron–beam-induced radiation damage. The results showed a marginal increase in Au nanoparticle diameter (2.3 nm–3.6 nm) and more importantly, an improved thermal stability of the polystyrene (PS) composite film much above its glass transition temperature

  11. Capillary instabilities in thin films. I. Energetics

    Energy Technology Data Exchange (ETDEWEB)

    Srolovitz, D.J.; Safran, S.A.

    1986-07-01

    A stability theory is presented which describes the conditions under which thin films rupture. It is found that holes in the film will either grow or shrink, depending on whether their initial radius is larger or smaller than a critical value. If the holes grow large enough, they impinge to form islands; the size of which are determined by the surface energies. The formation of grooves where the grain boundary meets the free surface is a potential source of holes which can lead to film rupture. Equilibrium grain boundary groove depths are calculated for finite grain sizes. Comparison of groove depth and film thickness yields microstructural conditions for film rupture. In addition, pits which form at grain boundary vertices, where three grains meet, are another source of film instability.

  12. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  13. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.;

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...... and strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer based MEMS-devices. (C) 2007 Elsevier B.V. All rights reserved....

  14. Thin Films Made Fast and Modified Fast

    International Nuclear Information System (INIS)

    Thin films are playing a more and more important role for technological applications and there are many aspects of materials surface processing and thin film production, ranging from simple heat treatments to ion implantation or laser surface treatments. These methods are often very complicated, involving many basic processes and they have to be optimized for the desired application. Nuclear methods, especially Moessbauer spectroscopy, can be successfully applied for this task and some examples will be presented for laser-beam and ion-beam based processes.

  15. Feasibility Study of Thin Film Thermocouple Piles

    Science.gov (United States)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  16. Electrical analysis of niobium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Graça, M.P.F., E-mail: mpfg@ua.pt [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Saraiva, M. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Freire, F.N.A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Valente, M.A.; Costa, L.C. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-06-30

    In this work, a series of niobium oxide thin films was deposited by reactive magnetron sputtering. The total pressure of Ar/O{sub 2} was kept constant at 1 Pa, while the O{sub 2} partial pressure was varied up to 0.2 Pa. The depositions were performed in a grounded and non-intentionally heated substrate, resulting in as-deposited amorphous thin films. Raman spectroscopy confirmed the absence of crystallinity. Dielectric measurements as a function of frequency (40 Hz–110 MHz) and temperature (100 K–360 K) were performed. The dielectric constant for the film samples with thickness (d) lower than 650 nm decreases with the decrease of d. The same behaviour was observed for the conductivity. These results show a dependence of the dielectric permittivity with the thin film thickness. The electrical behaviour was also related with the oxygen partial pressure, whose increment promotes an increase of the Nb{sub 2}O{sub 5} stoichiometry units. - Highlights: • Niobium oxide thin films were deposited by reactive magnetron sputtering. • XRD showed a phase change with the increase of the P(O{sub 2}). • Raman showed that increasing P(O{sub 2}), Nb{sub 2}O{sub 5} amorphous increases. • Conductivity tends to decrease with the increase of P(O{sub 2}). • Dielectric analysis indicates the inexistence of preferential grow direction.

  17. Electrical analysis of niobium oxide thin films

    International Nuclear Information System (INIS)

    In this work, a series of niobium oxide thin films was deposited by reactive magnetron sputtering. The total pressure of Ar/O2 was kept constant at 1 Pa, while the O2 partial pressure was varied up to 0.2 Pa. The depositions were performed in a grounded and non-intentionally heated substrate, resulting in as-deposited amorphous thin films. Raman spectroscopy confirmed the absence of crystallinity. Dielectric measurements as a function of frequency (40 Hz–110 MHz) and temperature (100 K–360 K) were performed. The dielectric constant for the film samples with thickness (d) lower than 650 nm decreases with the decrease of d. The same behaviour was observed for the conductivity. These results show a dependence of the dielectric permittivity with the thin film thickness. The electrical behaviour was also related with the oxygen partial pressure, whose increment promotes an increase of the Nb2O5 stoichiometry units. - Highlights: • Niobium oxide thin films were deposited by reactive magnetron sputtering. • XRD showed a phase change with the increase of the P(O2). • Raman showed that increasing P(O2), Nb2O5 amorphous increases. • Conductivity tends to decrease with the increase of P(O2). • Dielectric analysis indicates the inexistence of preferential grow direction

  18. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Science.gov (United States)

    Rodenbücher, C.; Hildebrandt, E.; Szot, K.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Breuer, U.; Waser, R.; Alff, L.

    2016-06-01

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2-x) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2 thin films prepared and measured under identical conditions, the formation of HfCx was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  19. Dynamics of liquid films and thin jets

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The theory of liquid films and thin jets as one- and two-dimensional continuums is examined. The equations of motion have led to solutions for the characteristic speeds of wave propagation for the parameters characterizing the shape. The formal analogy with a compressible fluid indicates the possibility of shock wave generation in films and jets and the formal analogy to the theory of threads and membranes leads to the discovery of some new dynamic effects. The theory is illustrated by examples.

  20. Viscous fingering in volatile thin films

    OpenAIRE

    Agam, Oded

    2008-01-01

    A thin water film on a cleaved mica substrate undergoes a first order phase transition between two values of film thickness. By inducing a finite evaporation rate of the water, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. We draw the connection between the two problems, and construct solutions describing the dynamics of evaporation in this system.

  1. Thin film dynamics with surfactant phase transition

    OpenAIRE

    Köpf, M. H.; Gurevich, S. V.; Friedrich, R.

    2009-01-01

    A thin liquid film covered with an insoluble surfactant in the vicinity of a first-order phase transition is discussed. Within the lubrication approximation we derive two coupled equations to describe the height profile of the film and the surfactant density. Thermodynamics of the surfactant is incorporated via a Cahn-Hilliard type free-energy functional which can be chosen to describe a transition between two stable phases of different surfactant density. Within this model, a linear stabilit...

  2. Perovskite thin films via atomic layer deposition.

    Science.gov (United States)

    Sutherland, Brandon R; Hoogland, Sjoerd; Adachi, Michael M; Kanjanaboos, Pongsakorn; Wong, Chris T O; McDowell, Jeffrey J; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J; Sargent, Edward H

    2015-01-01

    A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

  3. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  4. Stretchable transistors with buckled carbon nanotube films as conducting channels

    Science.gov (United States)

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  5. Microstructure and surface properties of chromium-doped diamond-like carbon thin films fabricated by high power pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    High power pulsed magnetron sputtering (HPPMS) has attracted much interest due to the large plasma density and high ionization rate of sputtered materials. It is expected to produce a highly ionized C flux from a graphite target but unfortunately, the ionization rate of carbon is still very small and the discharge on a solid carbon target is unstable as well. In this work, a stable discharged chromium target is used in the preparation of chromium-doped diamond-like carbon (Cr-DLC) films in HPPMS in reactive C2H2 gas, but the unstable graphite. The chromium concentration in the Cr-DLC films is limited by surface poisoning due to reactive gas. Less than 2% of Cr is incorporated into the DLC films at C2H2 flow rate of 5 sccm or higher. However, as a result of the high ionization rate of the reactive gas in HPPMS, intense ion bombardment of the substrate is realized. The films show a smooth surface and a dense structure with a large sp3 concentration. As the C2H2 flow increase, the sp3 fraction increase and the sp3 to sp2 ratio increase to 0.75 at a C2H2 flow rate of 10 sccm. Compared to the substrate, the Cr-DLC films have lower friction and exhibit excellent corrosion resistance.

  6. Fracture of nanoporous organosilicate thin films

    Science.gov (United States)

    Gage, David Maxwell

    Nanoporous organosilicate thin films are attractive candidates for a number of emerging technologies, ranging from biotechnology to optics and microelectronics. However, integration of these materials is challenged by their fragile nature and susceptibility to mechanical failure. Debonding and cohesive cracking of the organosilicate film are principal concerns that threaten the reliability and yield of device structures. Despite the intense interest in these materials, there is currently a need for greater understanding of the relationship between glass structure and thermomechanical integrity. The objective of this research was to investigate strategies for improving mechanical performance through variations in film chemistry, process conditions, and pore morphology. Several approaches to effecting improvements in elastic and fracture properties were examined in depth, including post-deposition curing, molecular reinforcement using hydrocarbon network groups, and manipulation of pore size and architecture. Detailed structural characterization was employed along with quantitative fracture mechanics based testing methods. It was shown that ultra-violet irradiation and electron bombardment post-deposition treatments can significantly impact glass structure in ways that cannot be achieved through thermal activation alone. Both techniques demonstrated high porogen removal efficiency and enhanced the glass matrix through increased network connectivity and local bond rearrangements. The increases in network connectivity were achieved predominantly through the replacement of terminal groups, particularly methyl and silanol groups, with Si-O network bonds. Nuclear magnetic resonance spectroscopy was shown to be a powerful and quantitative method for gaining new insight into the underlying cure reactions and mechanisms. It was demonstrated that curing leads to significant progressive enhancement of elastic modulus and adhesive fracture energies due to increased network bond

  7. YBCO thin films in ac and dc films

    CERN Document Server

    Shahzada, S

    2001-01-01

    We report studies on the dc magnetization of YBCO thin films in simultaneously applied dc and ac fields. The effect of the ac fields is to decrease the irreversible magnetization drastically leading to complete collapse of the hysteresis loops for relatively small ac fields (250e). The magnitude of the decrease depends on the component of the ac field parallel to the c-axis. The decrease is non-linear with ac amplitude and is explained in the framework of the critical state response of ultra thin films in perpendicular geometry. The ac fields increase the relaxation rapidly at short times while the long time response appears unaffected. (author)

  8. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    Chen Min-gan; Chen Ming-an; Li Jin-chai; Li Jin-chai; Liu Chuan-sheng; Liu Chuan-sheng; Ma You-peng; Ma You-peng; Lu Xian-feng; Lu Xian-feng; Ye Ming-sheng; Ye Ming-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  9. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    ChertMing-an; LiJin-chai; LiuChuan-sheng; MaYou-peng; LuXlan-feng; YeMing-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12. 6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3. 2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  10. Deposition techniques for the preparation of thin film nuclear targets

    International Nuclear Information System (INIS)

    This review commences with a brief description of the basic principles that regulate vacuum evaporation and the physical processes involved in thin film formation, followed by a description of the experimental methods used. The principle methods of heating the evaporant are detailed and the means of measuring and controlling the film thickness are elucidated. Types of thin film nuclear targets are considered and various film release agents are listed. Thin film nuclear target behaviour under ion-bombardment is described and the dependence of nuclear experimental results upon target thickness and uniformity is outlined. Special problems associated with preparing suitable targets for lifetime measurements are discussed. The causes of stripper-foil thickening and breaking under heavy-ion bombardment are considered. A comparison is made between foils manufactured by a glow discharge process and those produced by vacuum sublimation. Consideration is given to the methods of carbon stripper-foil manufacture and to the characteristics of stripper-foil lifetimes are considered. Techniques are described that have been developed for the fabrication of special targets, both from natural and isotopically enriched material, and also of elements that are either chemically unstable, or thermally unstable under irradiation. The reduction of metal oxides by the use of hydrogen or by utilising a metallothermic technique, and the simultaneous evaporation of reduced rare earth elements is described. A comprehensive list of the common targets is presented

  11. Magnetic and electric properties of C-Co thin films prepared by vaccum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Tembre, A.; Clin, M.; Picot, J.-C. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Dellis, J.-L., E-mail: jean-luc.dellis@u-picardie.fr [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Henocque, J. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Bouzerar, R. [Laboratoire de Physique des Systemes Complexes, Universite de Picardie Jules Verne, 33 rue Saint leu, 80039 Amiens (France); Djellab, K. [Plate-forme de Microscopie Electronique, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France)

    2011-09-15

    Highlights: > Cobalt doped carbon thin films have been deposited by pulsed anodic electric arc technique. > The films are composed of well-crystallized cobalt layers and complex graphitic microstructure. > An insulating to a metallic state transition at 60 K is observed. > The magnetic susceptibility measurements show anomalous behaviour around 60 K. - Abstract: Cobalt doped carbon thin films have been deposited by a pulsed anodic electric arc technique. The films were characterized by high resolution transmission electron microscopy, electric measurements under dc magnetic fields, and ac magnetic susceptibility measurements within a temperature range 15-300 K. An insulating to a metallic state transition at a critical temperature around 60 K was observed.

  12. Energetic Deposition of Niobium Thin Film in Vacuum

    OpenAIRE

    Wu, Genfa

    2002-01-01

    Niobium thin films are expected to be free of solid inclusions commonly seen in solid niobium. For particle accelerators, niobium thin film has the potential to replace the solid niobium in the making of the accelerating structures. In order to understand and improve the superconducting performance of niobium thin films at cryogenic temperature, an energetic vacuum deposition system has been developed to study deposition energy effects on the properties of niobium thin films on various substr...

  13. Correlated dewetting patterns in thin polystyrene films

    International Nuclear Information System (INIS)

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes

  14. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  15. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    G V Kunte; S A Shivashankar; A M Umarji

    2008-11-01

    Thin films of the hydrated phase of tungsten oxide, hydrotungstite (H2WO4.H2O), have been grown on glass substrates using a dip-coating technique. The -axis oriented films have been characterized by X-ray diffraction and scanning electron microscopy. The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations and on conductivity measurements, a novel sensing mechanism based on protonic conduction within the surface layers adsorbed onto the hydrotungstite film is proposed.

  16. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and prem

  17. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  18. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  19. US Polycrystalline Thin Film Solar Cells Program

    Science.gov (United States)

    Ullal, Harin S.; Zweibel, Kenneth; Mitchell, Richard L.

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R and D on copper indium diselenide and cadmium telluride thin films. The objective of the program is to support research to develop cells and modules that meet the U.S. Department of Energy's long-term goals by achieving high efficiencies (15 to 20 percent), low-cost ($50/m(sup 2)), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe2 and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The U.S. Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe2 and CdTe with subcontracts to start in spring 1990.

  20. US polycrystalline thin film solar cells program

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H S; Zweibel, K; Mitchell, R L [Solar Energy Research Inst., Golden, CO (USA)

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  1. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic inst

  2. Rechargeable Thin-film Lithium Batteries

    Science.gov (United States)

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  3. A ferroelectric transparent thin-film transistor

    NARCIS (Netherlands)

    Prins, MWJ; GrosseHolz, KO; Muller, G; Cillessen, JFM; Giesbers, JB; Weening, RP; Wolf, RM

    1996-01-01

    Operation is demonstrated of a field-effect transistor made of transparant oxidic thin films, showing an intrinsic memory function due to the usage of a ferroelectric insulator. The device consists of a high mobility Sb-doped n-type SnO2 semiconductor layer, PbZr0.2Ti0.8Os3 as a ferroelectric insula

  4. Electrical characterization of thin film ferroelectric capacitors

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D.; Keur, W.; Schmitz, J.; Hueting, R.J.E.

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon offe

  5. Resistance contact thin-film resistor

    Directory of Open Access Journals (Sweden)

    Spirin V. G.

    2008-10-01

    Full Text Available The analytical model of the calculation of the contact resistance of the thin-film resistor is Offered. The Explored dependency of the contact resistance from wedge of the pickling. The Considered influence adhesive layer on warm-up stability of the resistor. They Are Received formulas of the calculation systematic and casual inaccuracy contributed by contact resistance.

  6. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c. depos...

  7. Electrostatic Discharge Effects in Thin Film Transistors

    NARCIS (Netherlands)

    Golo, Natasa

    2002-01-01

    Although amorphous silicon thin film transistors (α-Si:H TFT’s) have a very low electron mobility and pronounced instabilities of their electrical characteristics, they are still very useful and they have found their place in the semiconductors industry, as they possess some very good properties: th

  8. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  9. Polarization Fatigue in Ferroelectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    王忆; K.H.WONG; 吴文彬

    2002-01-01

    The fatigue problem in ferroelectric thin films is investigated based on the switched charge per unit area versus switching cycles. The temperature, dielectric permittivity, voltage bias, frequency and defect valence dependent switching polarization properties are calculated quantitatively with an extended Dawber-Scott model. The results are in agreement with the recent experiments.

  10. Surface roughness evolution of nanocomposite thin films

    NARCIS (Netherlands)

    Turkin, A; Pei, Y.T.; Shaha, K.P.; Chen, C.Q.; Vainchtein, David; Hosson, J.Th.M. De

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growin

  11. Monte Carlo simulation of magnetic nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu

    2004-01-01

    @@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.

  12. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  13. Thin Films Characterization by Ultra Trace Metrology

    International Nuclear Information System (INIS)

    Sensitive and accurate characterization of thin films used in nanoelectronics, thinner than a few nm, represents a challenge for many conventional methods, especially when considering in-line control. With capabilities in the E10 at/cm2 (2O3 tunnel oxide deposited on a magnetic stack. On the other hand, composition analysis by TXRF, and especially the detection of minor elements into thin films, requires the use of a specific incident angle to optimize sensitivity. Under the best conditions, determination of the composition of Co -based self aligned barriers (CoWP and CoWMoPB films with Co concentration >80%) is done with a precision of 6% on P, 8% on Mo and 13% on W (standard deviation)

  14. Hematite thin films: growth and characterization

    Science.gov (United States)

    Uribe, J. D.; Osorio, J.; Barrero, C. A.; Giratá, D.; Morales, A. L.; Devia, A.; Gómez, M. E.; Ramirez, J. G.; Gancedo, J. R.

    We have grown hematite (α - Fe 2 O 3) thin films on stainless steel and (001)-silicon single-crystal substrates by RF magnetron sputtering process in argon atmosphere at substrate temperatures from 400 to 800°C. Conversion Electron Mössbauer (CEM) spectra of the sample grown on stainless steel at 400°C exhibit values for hyperfine parameter characteristic of bulk hematite phase in the weak ferromagnetic state. Also, the relative line intensity ratio suggests that the magnetization vector of the polycrystalline film is aligned preferentially parallel to the surface. The X-ray diffraction (XRD) pattern of the polycrystalline thin film grown on steel substrates also corresponds to α - Fe 2O3. The samples were also analyzed by Atomic Force Microscopy (AFM), those grown on stainless steel reveal a morphology consisting of columnar grains with random orientation, given the inhomogeneity of the substrate surface.

  15. The study of structural properties of carbon nanotubes decorated with NiFe2O4 nanoparticles and application of nano-composite thin film as H2S gas sensor

    International Nuclear Information System (INIS)

    Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4–MWCNT), was synthesized using the sol–gel method. NiFe2O4–MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4–MWCNTs are obtained as 15 emu g−1, 21 Oe and 5 emu g−1, respectively. In this research, NiFe2O4–MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4–MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300 °C. - Highlights: • Nano-composite the average size of the crystallites is 23.93 nm. • NiFe2O4 thin films were prepared with spin-coating method. • These thin films were used as the H2s gas sensor. • The sensor shows appropriate response towards 100 ppm of H2S at 300 °C

  16. Thin blend films of cellulose and polyacrylonitrile

    Science.gov (United States)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  17. Experimental Study on the Surface Modification of Ultra Thin DLC Films

    Institute of Scientific and Technical Information of China (English)

    ZHU Shou-xing; ZHU Shi-gen

    2005-01-01

    School of Mechanical Engineering, Donghua University, Shanghai 200051Surface modification of Diamond-like carbon (DLC) films was carried out in order to estimate the reliability of the ultra thin DLC films. The wear resistance, conductivity and mechatronic reliability of the films were studied by contact atomic force microscope (AFM), electric force microscope (EFM) and conductive AFM. The failure mechanism of pits formed and the reason for conductivity changed of DLC films were examined.

  18. Lithium cobalt oxide thin film and its electrochromism

    Science.gov (United States)

    Wei, Guang; Haas, Terry E.; Goldner, Ronald B.

    1989-06-01

    Thin films of lithium cobalt oxide have been prepared by RF-sputtering from powdered LiCoO2. These films permit reversible electrolytic removal of lithium ions upon application of an anodic voltage in a propylene carbonate-lithium perchlorate electrolyte, the films changing in color from a pale amber transparent state to a dark brown. A polycrystalline columnar film structure was revealed with SEM and TEM. X ray examination of the films suggests that the layered rhombohedral LiCoO2 structure is the major crystalline phase present. Oxidation-reduction titration and atomic absorption were used for the determination of the film stoichiometry. The results show that the as deposited-films on glass slides are lithium deficient (relative to the starting material) and show a high average cobalt oxidation state near +3.5. The measurements of dc conductivity suggest a band to band conduction at high temperature (300 to 430 K) and hopping conduction in localized states at low temperature (4 to 270 K). The thermoelectric power data show that the films behave as p-type semiconductors. Transmission and reflectance measurements from 400 nm to 2500 nm show significant near-IR reflectivity.

  19. Development of a Carbon Mesh Supported Thin Film Microextraction Membrane As a Means to Lower the Detection Limits of Benchtop and Portable GC/MS Instrumentation.

    Science.gov (United States)

    Grandy, Jonathan J; Boyacı, Ezel; Pawliszyn, Janusz

    2016-02-01

    In this work, a durable and easy to handle thin film microextraction (TFME) device is reported. The membrane is comprised of poly(divinylbenzene) (DVB) resin particles suspended in a high-density polydimethylsiloxane (PDMS) glue, which is spread onto a carbon fiber mesh. The currently presented membrane was shown to exhibit a substantially lesser amount of siloxane bleed during thermal desorption, while providing a statistically similar extraction efficiency toward a broad spectrum of analytes varying in polarity when compared to an unsupported DVB/PDMS membrane of similar shape and size which was prepared with previously published methods. With the use of hand-portable GC-TMS instrumentation, membranes cut with dimensions 40 mm long by 4.85 mm wide and 40 ± 5 μm thick (per side) were shown to extract 21.2, 19.8, 18.5, 18,4, 26.8, and 23.7 times the amount of 2,4 dichlorophenol, 2,4,6 trichlorophenol, phorate D10, fonofos, chloropyrifos, and parathion, respectively, within 15 min from a 10 ppb aqueous solution as compared to a 65 μm DVB/PDMS solid phase microextraction (SPME) fiber. A portable high volume desorption module prototype was also evaluated and shown to be appropriate for the desorption of analytes with a volatility equal to or lesser than benzene when employed in conjunction with TFME membranes. Indeed, the coupling of these TFME devices to hand-portable gas chromatography toroidial ion trap mass spectrometry (GC-TMS) instrumentation was shown to push detection limits for these pesticides down to the hundreds of ppt levels, nearing that which can be achieved with benchtop instrumentation. Where these membranes can also be coupled to benchtop instrumentation it is reasonable to assume that detection limits could be pushed down even further. As a final proof of the concept, the first ever, entirely on-site TFME-GC-TMS analysis was performed at a construction impacted lake. Results had indicated the presence of contaminants such as toluene, ethylbenzene

  20. Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite based thin films for Schottky diode application

    International Nuclear Information System (INIS)

    Transparent, conductive films of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite were synthesized by in-situ oxidative polymerization and investigated for their Schottky diode property. The prepared films were characterized by UV–Vis spectroscopy, thermal gravimetric analysis (TGA), surface resistivity, cyclic voltametery, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). SEM reveals the formation of homogeneous and adhesive polymer films while HRTEM confirms the uniform wrapping of polymer chains around the nanotube walls for PEDOT-FWCNT film. Improved thermal stability, conductivity and charge storage property of PEDOT in the presence of FWCNT is observed. Among different compositions, 5 wt. % of FWCNT is found to be optimum with sheet resistance and transmittance of 500 Ω sq−1 and 77%, respectively. Moreover, the electronic and junction properties of polymer films were studied and compared by fabricating sandwich type devices with a configuration of Al/PEDOT or PEDOT-FWCNT nanocomposite/indium tin oxide (ITO) coated glass. The measured current density-voltage characteristics show typical rectifying behavior for both configurations. However, enhanced rectification ratio and higher forward current density is observed in case of PEDOT-FWCNT based Schottky diode. Furthermore, reliability test depicts smaller hysteresis effect and better performance of PEDOT-FWCNT based diodes. - Highlights: • Single step synthesis of PEDOT and PEDOT-FWCNT nanocomposites films via in-situ oxidative polymerization. • Thermal, electrical and electrochemical properties of films show positive effect of FWCNT on PEDOT films. • Schottky diodes based on metal Al/PEDOT or PEDOT-FWCNT composites/ITO glass are fabricated. • Improved electrical characteristics with better reliability is achieved for PEDOT-FWCNT based diodes

  1. Thin film bismuth iron oxides useful for piezoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  2. Polycrystalline thin film materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  3. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  4. Multicoloured electrochromic thin films of NiO/PANI

    Energy Technology Data Exchange (ETDEWEB)

    Sonavane, A C; Patil, P S [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416 004 (India); Inamdar, A I [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Deshmukh, H P, E-mail: patilps_2000@yahoo.co [Department of Physics, Y. M. College, Bharati Vidyapeeth, Erandwane, Pune (India)

    2010-08-11

    NiO/polyaniline (PANI) thin films have been prepared by a two-step process. NiO thin films were electrodeposited from an aqueous solution of NiCl{sub 2} {center_dot} 6H{sub 2}O at pH 7.5 on fluorine-doped tin oxide coated glass substrates and a layer of PANI was formed on NiO thin films by chemical bath deposition. The films were characterized for their structural, optical, morphological and electrochromic properties. X-ray diffraction and Fourier-transform infrared spectroscopy indicated the formation of NiO and PANI, in which NiO is of cubic structure. Scanning electron micrographs represent porous granular NiO, which get uniformly carpeted with PANI, leading to a matty morphology of NiO/PANI samples. The electrochromic performance of NiO/PANI films has been studied using cyclic voltammetry and chronoamperometry over the -1.2 to +2.2 V (versus saturated calomel electrode (SCE)) potential window in 1M LiClO{sub 4} + propylene carbonate. The NiO/PANI films exhibit electrochromism with colour that changes from pale yellow (leucoemeraldine base at -0.7 V versus SCE) to dark green (emeraldine salt at 0.4 V versus SCE) to purple (pernigraniline at 0.8 V versus SCE) in the reduced states and dark blue (nigraniline at 0.5 V versus SCE) to dark green (emeraldine salt at 0.1 V versus SCE) to light green (photoemeraldine at -0.3 V versus SCE) in its oxidized states. These colours, though akin to pure PANI, have higher contrast, high speed of operation and high stability, owing to the properties of NiO. The colouration efficiency of the NiO/PANI film was estimated to be 85 cm{sup 2} C{sup -1}.

  5. Multicoloured electrochromic thin films of NiO/PANI

    Science.gov (United States)

    Sonavane, A. C.; Inamdar, A. I.; Deshmukh, H. P.; Patil, P. S.

    2010-08-01

    NiO/polyaniline (PANI) thin films have been prepared by a two-step process. NiO thin films were electrodeposited from an aqueous solution of NiCl2 · 6H2O at pH 7.5 on fluorine-doped tin oxide coated glass substrates and a layer of PANI was formed on NiO thin films by chemical bath deposition. The films were characterized for their structural, optical, morphological and electrochromic properties. X-ray diffraction and Fourier-transform infrared spectroscopy indicated the formation of NiO and PANI, in which NiO is of cubic structure. Scanning electron micrographs represent porous granular NiO, which get uniformly carpeted with PANI, leading to a matty morphology of NiO/PANI samples. The electrochromic performance of NiO/PANI films has been studied using cyclic voltammetry and chronoamperometry over the -1.2 to +2.2 V (versus saturated calomel electrode (SCE)) potential window in 1M LiClO4 + propylene carbonate. The NiO/PANI films exhibit electrochromism with colour that changes from pale yellow (leucoemeraldine base at -0.7 V versus SCE) to dark green (emeraldine salt at 0.4 V versus SCE) to purple (pernigraniline at 0.8 V versus SCE) in the reduced states and dark blue (nigraniline at 0.5 V versus SCE) to dark green (emeraldine salt at 0.1 V versus SCE) to light green (photoemeraldine at -0.3 V versus SCE) in its oxidized states. These colours, though akin to pure PANI, have higher contrast, high speed of operation and high stability, owing to the properties of NiO. The colouration efficiency of the NiO/PANI film was estimated to be 85 cm2 C-1.

  6. Multicoloured electrochromic thin films of NiO/PANI

    International Nuclear Information System (INIS)

    NiO/polyaniline (PANI) thin films have been prepared by a two-step process. NiO thin films were electrodeposited from an aqueous solution of NiCl2 · 6H2O at pH 7.5 on fluorine-doped tin oxide coated glass substrates and a layer of PANI was formed on NiO thin films by chemical bath deposition. The films were characterized for their structural, optical, morphological and electrochromic properties. X-ray diffraction and Fourier-transform infrared spectroscopy indicated the formation of NiO and PANI, in which NiO is of cubic structure. Scanning electron micrographs represent porous granular NiO, which get uniformly carpeted with PANI, leading to a matty morphology of NiO/PANI samples. The electrochromic performance of NiO/PANI films has been studied using cyclic voltammetry and chronoamperometry over the -1.2 to +2.2 V (versus saturated calomel electrode (SCE)) potential window in 1M LiClO4 + propylene carbonate. The NiO/PANI films exhibit electrochromism with colour that changes from pale yellow (leucoemeraldine base at -0.7 V versus SCE) to dark green (emeraldine salt at 0.4 V versus SCE) to purple (pernigraniline at 0.8 V versus SCE) in the reduced states and dark blue (nigraniline at 0.5 V versus SCE) to dark green (emeraldine salt at 0.1 V versus SCE) to light green (photoemeraldine at -0.3 V versus SCE) in its oxidized states. These colours, though akin to pure PANI, have higher contrast, high speed of operation and high stability, owing to the properties of NiO. The colouration efficiency of the NiO/PANI film was estimated to be 85 cm2 C-1.

  7. Transparent megahertz circuits from solution-processed composite thin films

    Science.gov (United States)

    Liu, Xingqiang; Wan, Da; Wu, Yun; Xiao, Xiangheng; Guo, Shishang; Jiang, Changzhong; Li, Jinchai; Chen, Tangsheng; Duan, Xiangfeng; Fan, Zhiyong; Liao, Lei

    2016-04-01

    Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (~10 cm2 V-1 s-1), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm2 V-1 s-1. On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (fT = 102 MHz) and a maximum oscillation frequency (fmax = 122 MHz). Ring oscillators further demonstrated an oscillation frequency of 4.13 MHz, for the first time, realizing megahertz circuit operation from solution-processed semiconductors. Our studies represent an important step toward high-speed solution-processed thin film electronics.Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (~10 cm2 V-1 s-1), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm2 V-1 s-1. On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (f

  8. When are thin films of metals metallic?

    Science.gov (United States)

    Plummer, E. W.; Dowben, P. A.

    1993-04-01

    There is an increasing body of experimental information suggesting that very thin films of materials, normally considered to be metals, exhibit behavior characteristic of a nonmetal. In almost all cases, there is a nonmetal-to-metal transition as a function of film density or thickness, frequently accompanied by a structural transition. Amazingly, this behavior seems to occur for metal films on metal substrates, as well as for metals on semiconductors. The identification of this phenomena and the subsequent explanation has been slow in developing, due to the inability to directly measure the conductivity of a submonolayer film. This paper will discuss the evidence accumulated from variety of spectroscopic experimental techniques for three systems: a Mott-Hubbard transition, a Peierls-like distortion, and a Wilson transition.

  9. Energetic deposition of thin metal films

    CERN Document Server

    Al-Busaidy, M S K

    2001-01-01

    deposited films. The primary aim of this thesis was to study the physical effect of energetic deposition metal thin films. The secondary aim is to enhance the quality of the films produced to a desired quality. Grazing incidence X-ray reflectivity (GIXR) measurements from a high-energy synchrotron radiation source were carried out to study and characterise the samples. Optical Profilers Interferometery, Atomic Force Microscope (AFM), Auger electron spectroscopy (AES), Medium energy ion spectroscopy (MEIS), and the Electron microscope studies were the other main structural characterisation tools used. AI/Fe trilayers, as well as multilayers were deposited using a Nordico planar D.C. magnetron deposition system at different voltage biases and pressures. The films were calibrated and investigated. The relation between energetic deposition variation and structural properties was intensely researched. Energetic deposition refers to the method in which the deposited species possess higher kinetic energy and impact ...

  10. Basic thin film processing for high-Tc superconductors

    International Nuclear Information System (INIS)

    Much attention has been paid for the thin films of perovskite-type oxides especially for the thin films of the high-Tc superconducting ceramics. Historically the thin films of the perovskite-type oxides have been studied as a basic research for ferroelectric materials. Thin films of BaTiO3 and PbTiO3 were tried to deposited and there ferroelectricity was evaluated. Recently this kind of perovskite thin films, including PZT (PbTiO3-PbZrO3) and PLZT [(Pb, La) (Zr, T)O3] have been studied in relation to the synthesis of thin film dielectrics, pyroelectrics, piezoelectrics, electro-optic materials, and acousto-optic materials. Thin films of BPB (BaPbO3- BaBiO3) were studied as oxide superconductors. At present the thin films of the rare-earth high-Tc superconductors of LSC (La1-xSrxCuO4) and YBC (YBa2Cu3O7-δ) have been successfully synthesized owing to the previous studies on the ferroelectric thin films of the perovskite- type oxides. Similar to the rare-earth high-Tc superconductors thin films of the rare-earth-free high-Tc superconductors of BSCC (Bi-Sr-Ca-Cu-O)9 and TBCC (Tl- Ba-Ca-Cu-O)10 system have been synthesized. In this section the basic processes for the fabrication of the high- Tc perovskite superconducting thin films are described

  11. Tantalum-based thin film coatings for wear resistant arthroprostheses.

    Science.gov (United States)

    Balagna, C; Faga, M G; Spriano, S

    2011-10-01

    Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo. PMID:22400292

  12. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  13. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  14. Properties of electrophoretically deposited single wall carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Junyoung; Jalali, Maryam; Campbell, Stephen A., E-mail: campb001@umn.edu

    2015-08-31

    This paper describes techniques for rapidly producing a carbon nanotube thin film by electrophoretic deposition at room temperature and determines the film mass density and electrical/mechanical properties of such films. The mechanism of electrophoretic deposition of thin layers is explained with experimental data. Also, film thickness is measured as a function of time, electrical field and suspension concentration. We use Rutherford backscattering spectroscopy to determine the film mass density. Films created in this manner have a resistivity of 2.14 × 10{sup −3} Ω·cm, a mass density that varies with thickness from 0.12 to 0.54 g/cm{sup 3}, and a Young's modulus between 4.72 and 5.67 GPa. The latter was found to be independent of thickness from 77 to 134 nm. We also report on fabricating free-standing films by removing the metal seed layer under the CNT film, and selectively etching a sacrificial layer. This method could be extended to flexible photovoltaic devices or high frequency RF MEMS devices. - Highlights: • We explain the electrophoretic deposition process and mechanism of thin SWCNT film deposition. • Characterization of the SWCNT film properties including density, resistivity, transmittance, and Young's modulus. • The film density and resistivity are found to be a function of the film thickness. • Techniques developed to create free standing layers of SW-CNTs for flexible electronics and mechanical actuators.

  15. INVESTIGATION OF PHOTOELECTROCHROMIC THIN FILM AND DEVICE

    Institute of Scientific and Technical Information of China (English)

    M.J. Chen; H. Shen

    2005-01-01

    Photoelectrochromic device is a combination of dye-sensitized solar cells and electrochromic WO3 layers. Ectrochroelmic WO3 layer and TiO2 layer had been prepared by the sol-gel process, then be assembled to pohotoelectrochromic device. The effects of heating temperature on photoelectrochromic were investigated. The results showed that thin films prepared by dip-coating and spin-coating had good film quality and the device made by the method mentioned in the paper had good photoelectrochromie properties.

  16. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...... is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally...

  17. Thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  18. Nitrogen doped zinc oxide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  19. Field Emission from Nanostructured Carbon Films on Si Tips

    Institute of Scientific and Technical Information of China (English)

    王万录; 廖克俊; 胡成果; 方亮

    2001-01-01

    Nanostructured carbon thin films on Si tips were prepared by hot filament chemical vapour deposition at different substrate temperatures. The Si tips and films were obtained under various deposition conditions in the same reaction chamber. It was found that the field emission properties from graphite-like nanostructured carbon on Si tips were greatly improved, compared with those of nanodiamond films on Si tips. A turn-on field of 1.2 V. cm-1was observed for high sp2 content thin films on Si tips. The analysis showed that the field emission enhancement effect was caused by the tip geometry, tunnel effect and sp2 content in the films. However, the geometrical enhancement was greater than that of the tunnel and sp2 content effects.

  20. Field Emission Properties of Nitrogen-doped Amorphous Carbon Films

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nitrogen-doped amorphous carbon thin films are deposited on the ceramic substrates coated with Ti film by using direct current magnetron sputtering technique at N2 and Ar gas mixture atmosphere during deposition. The field emission properties of the deposited films have been investigated. The threshold field as low as 5.93V/μm is obtained and the maximum current density increases from 4μA/cm2 to 20.67μA/cm2 at 10.67V/μm comparing with undoped amorphous film. The results show that nitrogen doping plays an important role in field emission of amorphous carbon thin films.

  1. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [ed.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  2. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. (ed.)

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  3. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  4. Multiferroic oxide thin films and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chengliang, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Hu, Weijin; Wu, Tom, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Tian, Yufeng [School of Physics, Shandong University, Jinan 250100 (China)

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  5. EBSD analysis of electroplated magnetite thin films

    Science.gov (United States)

    Koblischka-Veneva, A.; Koblischka, M. R.; Teng, C. L.; Ryan, M. P.; Hartmann, U.; Mücklich, F.

    2010-05-01

    By means of electron backscatter diffraction (EBSD), we analyse the crystallographic orientation of electroplated magnetite thin films on Si/copper substrates. Varying the voltage during the electroplating procedure, the resulting surface properties are differing considerably. While a high voltage produces larger but individual grains on the surface, the surfaces become smoother on decreasing voltage. Good quality Kikuchi patterns could be obtained from all samples; even on individual grains, where the surface and the edges could be measured. The spatial resolution of the EBSD measurement could be increased to about 10 nm; thus enabling a detailed analysis of single magnetite grains. The thin film samples are polycrystalline and do not exhibit a preferred orientation. EBSD reveals that the grain size changes depending on the processing conditions, while the detected misorientation angles stay similar.

  6. Generalized Ellipsometry on Ferromagnetic Sculptured Thin Films.

    Science.gov (United States)

    Schmidt, Daniel; Hofmann, Tino; Mok, Kah; Schmidt, Heidemarie; Skomski, Ralf; Schubert, Eva; Schubert, Mathias

    2011-03-01

    We present and discuss generalized ellipsometry and generalized vector-magneto-optic ellipsometry investigations on cobalt nanostructured thin films with slanted, highly-spatially coherent, columnar arrangement. The samples were prepared by glancing angle deposition. The thin films are highly transparent and reveal strong form-induced birefringence. We observe giant Kerr rotation in the visible spectral region, tunable by choice of the nanostructure geometry. Spatial magnetization orientation hysteresis and magnetization magnitude hysteresis properties are studied using a 3-dimensional Helmholtz coil arrangement allowing for arbitrary magnetic field direction at the sample position for field strengths up to 0.4 Tesla. Analysis of data obtained within this novel vector-magneto-optic setup reveals magnetization anisotropy of the Co slanted nanocolumns supported by mean-field theory modeling.

  7. Nanocomposite C-Pd thin films – a new material with specific spectral properties

    Directory of Open Access Journals (Sweden)

    Małgorzata Suchańska

    2013-02-01

    Full Text Available In this paper, the results of optical investigations for thin films of carbon-palladium (C-Pd nanocomposites are presented. This films were prepared using two steps method (PVD/ CVD. The optical and Raman spectroscopy has been used to characterize the material. The multinanolayer model was used to explain the specific spectral properties.

  8. Thin film sensors for measuring small forces

    OpenAIRE

    F. Schmaljohann; Hagedorn, D.; LÖffler, F.

    2015-01-01

    Especially in the case of measuring small forces, the use of conventional foil strain gauges is limited. The measurement uncertainty rises by force shunts and is due to the polymer foils used, as they are susceptible to moisture. Strain gauges in thin film technology present a potential solution to overcome these effects because of their direct and atomic contact with the measuring body, omitting an adhesive layer and the polymer foil. For force measurements up to 1 N, a...

  9. Surface morphology of thin films polyoxadiazoles

    OpenAIRE

    J. Weszka; M.M. Szindler; M. Chwastek-Ogierman; M. Bruma; P. Jarka; Tomiczek, B.

    2011-01-01

    urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used....

  10. Recent developments in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, N.G. (Inst. Militar de Engenharia, Rio de Janeiro, RJ (Brazil))

    1990-12-15

    In recent years, remarkable progress has been made in improving the photovoltaic (PV) conversion efficiencies of thin film solar cells. The best active-area efficiencies (air mass 1.5) of thin film solar cells reported are as follows: polycrystalline CuInSe{sub 2}, 14.1%; CuIn(Ga)Se{sub 2}, 12.9%; CdTe, 12.3%, total area; single-junction hydrogenated amorphous silicon (a-Si:H), 12.0%; multiple-junction a-Si:H, 13.3%; cleaved epitaxial GaAs-Ga{sub 1-x}Al{sub x}As, 21.5%, total area. Laboratory methods for preparing small thin film solar cells are evaporation, closed-space sublimation, closed-space vapor transport, vapor phase epitaxy and metallo-organic chemical vapor deposition, while economic large-area deposition techniques such as sputtering, glow discharge reduction, electrodeposition, spraying and screen printing are being used for module fabrication. The following aperture-area efficiencies have been measured, at the Solar Energy Research Inst., for thin film modules: a-Si:H, 9.8%, 933 cm{sup 2}; CuIn(Ga)Se{sub 2}, 11.1%, 938 cm{sup 2}; CdTe, 7.3%, 838 cm{sup 2}. The instability issue of a-Si:H continues to be a high priority area. It is necessary to improve the open-circuit voltage of CuIn(Ga)Se{sub 2} cells, which do not seem to exhibit any intrinsic degradation mechanisms. With continued progress and increased production, PV modules are likely to become competitive for medium-scale power requirements in the mid-1990s. (orig.).

  11. Amorphous silicon for thin-film transistors

    OpenAIRE

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and addressable image sensor arrays, due to a new technology of low-cost, Iow-temperature processing overlarge areas. ... Zie: Abstract

  12. Quantized Nanocrystalline CdTe Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline CdTe thin films were prepared by asymmetric rectangular pulse electrodeposition in organic solution at 110°C. STM image shows a porous network morphology constructed by interconnected spherical CdTe crystallites with a mean diameter of 4.2 nm. A pronounced size quantization was indicated in the action and absorption spectra. Potentials dependence dual conductive behavior was revealed in the photocurrent-potential (I-V) curves.

  13. Ferromagnetic Liquid Thin Films Under Applied Field

    OpenAIRE

    Banerjee, S.; Widom, M.

    1999-01-01

    Theoretical calculations, computer simulations and experiments indicate the possible existence of a ferromagnetic liquid state, although definitive experimental evidence is lacking. Should such a state exist, demagnetization effects would force a nontrivial magnetization texture. Since liquid droplets are deformable, the droplet shape is coupled with the magnetization texture. In a thin-film geometry in zero applied field, the droplet has a circular shape and a rotating magnetization texture ...

  14. Electrochemical Analysis of Conducting Polymer Thin Films

    OpenAIRE

    Bin Wang; Vyas, Ritesh N.

    2010-01-01

    Polyelectrolyte multilayers built via the layer-by-layer (LbL) method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting...

  15. Structures for dense, crack free thin films

    Science.gov (United States)

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  16. Electrical characterization of thin film ferroelectric capacitors

    OpenAIRE

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D; Keur, W.; J. Schmitz; Hueting, R.J.E.

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon offer a re-use of electronic circuitry, low tuning voltages, a high capacitance density, a low cost, a presence of bulk acoustic wave resonance(s) and decoupling functionality. The basic operation and ...

  17. Thin-film silicon solar cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.V.; Meier, J.; Kroll, U.; Droz, C.; Bailat, J. [University of Neuchatel (Switzerland). Inst. of Microtechnology; Schade, H. [RWE Schott Solar GmbH, Putzbrunn (Germany); Vanecek, M. [Academy of Sciences, Prague (Czech Republic). Inst. of Physics; Vallat Sauvain, E.; Wyrsch, N. [University of Neuchatel (Switzerland). Inst. of Microtechnology; Unaxis SPTec S A, Neuchatel (Switzerland)

    2004-07-01

    This paper describes the use, within p-i-n- and n-i-p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon ({mu}c-Si:H) thin films (layers), both deposited at low temperatures (200{sup o}C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. These properties are linked to the microstructure and hence to the i-layer deposition rate, that in turn, affects throughput in production. The importance of contact and reflection layers in achieving low electrical and optical losses is explained, particularly for the superstrate case. Especially the required properties for the transparent conductive oxide (TCO) need to be well balanced in order to provide, at the same time, for high electrical conductivity (preferably by high electron mobility), low optical absorption and surface texture (for low optical losses and pronounced light trapping). Single-junction amorphous and microcrystalline p-i-n-type solar cells, as fabricated so far, are compared in their key parameters (J{sub sc},FF,V{sub oc}) with the [theoretical] limiting values. Tandem and multijunction cells are introduced; the {mu}c-Si: H/a-Si: H or [micromorph] tandem solar cell concept is explained in detail, and recent results obtained here are listed and commented. Factors governing the mass-production of thin-film silicon modules are determined both by inherent technical reasons, described in detail, and by economic considerations. The cumulative effect of these factors results in distinct efficiency reductions from values of record laboratory cells to statistical averages of production modules. Finally, applications of thin-film silicon PV modules, especially in building-integrated PV (BIPV) are shown. In this context, the energy yields of thin-film silicon modules emerge as a valuable gauge for module performance, and compare very favourably with those of

  18. Fluxoid dynamics in superconducting thin film rings

    OpenAIRE

    Kirtley, J. R.; Tsuei, C. C.; Kogan, V. G.; Clem, J. R.; Raffy, H.; Li, Z. Z.

    2003-01-01

    We have measured the dynamics of individual magnetic fluxoids entering and leaving photolithographically patterned thin film rings of the underdoped high-temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+\\delta}$, using a variable sample temperature scanning SQUID microscope. These results can be qualitatively described using a model in which the fluxoid number changes by thermally activated nucleation of a Pearl vortex in, and transport of the Pearl vortex across, the ring wall.

  19. Stoichiometric controlling of boroncarbonitride thin films with using BN-C dual-targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Song; Wu, Jun; Yang, Qiong; Tu, Rong; Wang, Chuanbin, E-mail: superkobe0104@gmail.com; Shen, Qiang; Zhang, Lianmeng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2015-04-15

    High carbon-rich boroncarbonitride thin films have been grown by pulsed laser deposition (PLD) technique with using BN-C dual-targets. Fourier-transform infrared (FTIR) spectroscopy results presented B-N, B-C and C-N bonds, indicating the as-deposited thin films were new ternary compounds. B-N, B-C and C-N bonding structures were also detected by X-ray photoelectron spectroscopy (XPS), and carbon content fell into a large range of 45.8 to 85.9%. The films exhibited good thermalstability in vacuum, whereas were oxidized at 600 {sup o}C in air.

  20. Stoichiometric controlling of boroncarbonitride thin films with using BN-C dual-targets

    Directory of Open Access Journals (Sweden)

    Song Zhang

    2015-04-01

    Full Text Available High carbon-rich boroncarbonitride thin films have been grown by pulsed laser deposition (PLD technique with using BN-C dual-targets. Fourier-transform infrared (FTIR spectroscopy results presented B-N, B-C and C-N bonds, indicating the as-deposited thin films were new ternary compounds. B-N, B-C and C-N bonding structures were also detected by X-ray photoelectron spectroscopy (XPS, and carbon content fell into a large range of 45.8 to 85.9%. The films exhibited good thermalstability in vacuum, whereas were oxidized at 600 oC in air.

  1. Superconducting properties of iron chalcogenide thin films

    Directory of Open Access Journals (Sweden)

    Paolo Mele

    2012-01-01

    Full Text Available Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i easy fabrication and epitaxial growth on common single-crystal substrates; (ii strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate; (iii high critical current density (Jc ~ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition with a weak dependence on magnetic field; (iv high upper critical field (~50 T for FeTe0.5Se0.5, Bc2(0, with a low anisotropy, γ ~ 2. These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T and low temperatures (2–10 K.

  2. Thin film cadmium telluride photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bohn, R. (Toledo Univ., OH (United States))

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  3. Supramolecular structure of electroactive polymer thin films

    Science.gov (United States)

    Kornilov, V. M.; Lachinov, A. N.; Karamov, D. D.; Nabiullin, I. R.; Kul'velis, Yu. V.

    2016-05-01

    This paper presents the results of an experimental investigation of the supramolecular structure of polydiphenylenephthalide thin films that exhibit effects of resistive switching. The supramolecular structure of the polymer has been investigated using small-angle neutron scattering in conjunction with atomic force microscopy. It has been found that the internal structure of polymer films consists of structural elements in the form of spheroids. The sizes of the structural elements, which were obtained from the neutron scattering data and analysis of the atomic force microscopy images, correlate well with each other. A model of the formation of polymer layers has been proposed. The observed structural elements in polymer films are formed due to the association of macromolecules in the initial polymer solution.

  4. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  5. Irradiation effects in YBCO thin films

    International Nuclear Information System (INIS)

    Oxide superconductors are very sensitive to electron or ion beam irradiation/implantation. In the past 19 years after high-Tc (HTc) superconductivity was discovered in these materials, many aspects of interactions of accelerated particles with HTc thin films were investigated. In this paper short review of most significant phenomena is given, especially of those important for electronic applications (controllable reduction of critical temperature and critical current density) and their applications for HTc film patterning, fabrication of HTc Josephson junctions and SQUIDs. Some new results in creating 3-d inhomogeneous regions in YBCO superconductors by ion irradiation/implantation and investigation of high harmonic generation in YBCO film modified by 100 keV oxygen ions are presented. (author)

  6. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  7. Magnetization relaxation in sputtered thin permalloy films

    Science.gov (United States)

    Oliveira, R. C.; Rodríguez-Suárez, R. L.; Aguiar, F. M. De; Rezende, S. M.; Fermin, J. R.; Azevedo, A.

    2004-05-01

    In order to understand the underlying phenomena of magnetization damping in metallic thin films, samples of permalloy films were grown by magnetron sputtering, and their 8.6-GHz ferromagnetic resonance linewidth ΔH has been measured as a function of the Permalloy (Py) film thickness t, at room temperature. We made samples of Py(t)/Si(001) and X/Py(t)/X/Si(001), with X=Pd (40Å), and Cr (25Å), with 20Å < t < 200Å. While ΔH scales with t-2 in the bare Py/Si series, it is shown that the damping behavior strongly depends on X in the sandwich samples.

  8. Nanocrystalline silicon based thin film solar cells

    Science.gov (United States)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  9. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  10. Preface: Thin films of molecular organic materials

    Science.gov (United States)

    Fraxedas, J.

    2008-03-01

    This special issue is devoted to thin films of molecular organic materials and its aim is to assemble numerous different aspects of this topic in order to reach a wide scientific audience. Under the term 'thin films', structures with thicknesses spanning from one monolayer or less up to several micrometers are included. In order to narrow down this relaxed definition (how thin is thin?) I suggest joining the stream that makes a distinction according to the length scale involved, separating nanometer-thick films from micrometer-thick films. While the physical properties of micrometer-thick films tend to mimic those of bulk materials, in the low nanometer regime new structures (e.g., crystallographic and substrate-induced phases) and properties are found. However, one has to bear in mind that some properties of micrometer-thick films are really confined to the film/substrate interface (e.g. charge injection), and are thus of nanometer nature. Supported in this dimensionality framework, this issue covers the most ideal and model 0D case, a single molecule on a surface, through to the more application-oriented 3D case, placing special emphasis on the fascinating 2D domain that is monolayer assembly. Thus, many aspects will be reviewed, such as single molecules, self-organization, monolayer regime, chirality, growth, physical properties and applications. This issue has been intentionally restricted to small molecules, thus leaving out polymers and biomolecules, because for small molecules it is easier to establish structure--property relationships. Traditionally, the preparation of thin films of molecular organic materials has been considered as a secondary, lower-ranked part of the more general field of this class of materials. The coating of diverse surfaces such as silicon, inorganic and organic single crystals, chemically modified substrates, polymers, etc., with interesting molecules was driven by the potential applications of such molecular materials

  11. Fluorination of silicon carbide thin films using pure F{sub 2} gas or XeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Batisse, Nicolas [Laboratoire des Materiaux Inorganiques UMR UBP-CNRS 6002, Clermont Universite, Universite Blaise Pascal, Clermont-Ferrand (France); Guerin, Katia, E-mail: Katia.guerin@univ-bpclermont.f [Laboratoire des Materiaux Inorganiques UMR UBP-CNRS 6002, Clermont Universite, Universite Blaise Pascal, Clermont-Ferrand (France); Dubois, Marc; Hamwi, Andre; Spinelle, Laurent; Tomasella, Eric [Laboratoire des Materiaux Inorganiques UMR UBP-CNRS 6002, Clermont Universite, Universite Blaise Pascal, Clermont-Ferrand (France)

    2010-09-30

    Two fluorination methods: direct fluorination using F{sub 2} gas and fluorination by the decomposition of fluorinating agent XeF{sub 2} have been applied to silicon carbide SiC thin films in order to form a composite of carbide derived carbon film together with residual silicon carbide. Before and after fluorination, the thin films have been characterized by Scanning Electron Microscopy, Rutherford Backscattering spectroscopy, Fourier Transformed InfraRed and Raman spectroscopies. Whereas direct fluorination leads to irreversible damages into the thin films, XeF{sub 2} method allows a progressive etching of the silicon atoms and the formation of non-fluorinated carbon.

  12. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  13. Electrochromic properties of nanocrystalline MoO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.-S. [Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan 40724 (China); Chan, C.-C. [Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan 40724 (China)], E-mail: ccchan@fcu.edu.tw; Huang, H.-T.; Peng, C.-H.; Hsu, W.-C. [Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan 40724 (China)

    2008-06-02

    Electrochromic MoO{sub 3} thin films were prepared by a sol-gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO{sub 3} thin films. The effects of annealing temperatures ranging from 100 {sup o}C to 500 {sup o}C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO{sub 4}/propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO{sub 3} thin films heat-treated at 350 {sup o}C varied from 80% to 35% at {lambda} = 550 nm ({delta}T = {approx} 45%) and from 86% to 21% at {lambda} {>=} 700 nm ({delta}T = {approx} 65%) after coloration. Films heat-treated at 350 deg. C exhibited the best electrochromic properties in the present study.

  14. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a 60 Co source, beta radiation of a 90 Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  15. Cerium Dioxide Thin Films Using Spin Coating

    Directory of Open Access Journals (Sweden)

    D. Channei

    2013-01-01

    Full Text Available Cerium dioxide (CeO2 thin films with varying Ce concentrations (0.1 to 0.9 M, metal basis were deposited on soda-lime-silica glass substrates using spin coating. It was found that all films exhibited the cubic fluorite structure after annealing at 500°C for 5 h. The laser Raman microspectroscopy and GAXRD analyses revealed that increasing concentrations of Ce resulted in an increase in the degree of crystallinity. FIB and FESEM images confirmed the laser Raman and GAXRD analyses results owing to the predicted increase in film thickness with increasing Ce concentration. However, porosity and shrinkage (drying cracking of the films also increased significantly with increasing Ce concentrations. UV-VIS spectrophotometry data showed that the transmission of the films decreased with increasing Ce concentrations due to the increasing crack formation. Furthermore, a red shift was observed with increasing Ce concentrations, which resulted in a decrease in the optical indirect band gap.

  16. Beam-Induced Deposition of Thin Metallic Films.

    Science.gov (United States)

    Funsten, Herbert Oliver, III

    1990-01-01

    Ion and electron beam induced deposition (BID) of thin (1 μm), conductive films is accomplished by dissociating and removing the nonmetallic components of an adsorbed, metal-based, molecular gas. Current research has focused primarily on room temperature (monolayer adsorption) BID using electrons and slow, heavy ions. This study investigates low temperature (50 to 200 K) BID in which the condensation of the precursor gases (SnCl _4 and (CH_3) _4Sn) maximizes the efficiency of the incident radiation which can create and remove nonmetallic fragments located several monolayers below the film surface. The desired properties of the residual metallic films are produced by using as incident radiation either nuclear (35 keV Ar ^+) or electronic (2 keV electrons, 25 keV H^+, or 50 keV H ^+) energy loss mechanisms. Residual films are analyzed ex situ by Scanning Electron Microscopy (SEM), thickness measurements, resistivity measurements, Rutherford Backscattering Spectroscopy (RBS), and infrared spectroscopy. Low temperature BID film growth models, which are derived from both a computer simulation and a mathematical analysis, closely agree. Both the fragmentation and sputtering cross sections for a particular ion and energy are derived for films created from (CH_3) _4Sn. The fragmentation cross section, which corresponds to film growth, is roughly related to the electronic stopping power by the 1.9 power. The loss of carbon in films which were created from (CH_3) _4Sn is strongly dependent on the nuclear stopping power. Film growth rates for low temperature BID have been found to be 10 times those of room temperature BID.

  17. Investigating the interfacial dynamics of thin films

    Science.gov (United States)

    Rosenbaum, Aaron W.

    This thesis probes the interfacial dynamics and associated phenomena of thin films. Surface specific tools were used to study the self-assembly of alkanethiols, the mono- and bilayer dynamics of SF6, and the surface motion of poly(methyl methacrylate). Non-pertubative helium atom scattering was the principal technique used to investigate these systems. A variety of other complementary tools, including scanning tunneling microscopy, electron diffraction, Auger spectroscopy, atomic force microscopy, and ellipsometry were used in tandem with the neutral atom scattering studies. Controlling the spontaneous assembly of alkanethiols on Au(111) requires a better fundamental understanding of the adsorbate-adsorbate and substrate-adsorbate interactions. Our characterization focused on two key components, the surface structure and adsorbate vibrations. The study indicates that the Au(111) reconstruction plays a larger role than anticipated in the low-density phase of alkanethiol monolayers. A new structure is proposed for the 1-decanethiol monolayer that impacts the low-energy vibrational mode. Varying the alkane chain lengths imparts insight into the assembly process via characterization of a dispersionless phonon mode. Studies of SF6 physisorbed on Au(111) bridge surface research on rare gas adsorbates with complicated dynamical organic thin films. Mono- and bilayer coverages of SF6/Au(111) were studied at cryogenic temperatures. Our experiments probed the surface properties of SF6 yielding insights into substrate and coverage effects. The study discovered a dispersionless Einstein oscillation with multiple harmonic overtones. A second layer of SF6 softened the mode, but did not show any indications of bulk or cooperative interactions. The vibrational properties of SF 6 showed both striking similarities and differences when compared with physisorbed rare gases. Lastly, this thesis will discuss studies of thin film poly(methyl methacrylate) on Si. The non-pertubative and

  18. Theoretical investigation of the thermodynamic properties of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Vu Van [Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi (Viet Nam); Phuong, Duong Dai [Hanoi National University of Education, 136 Xuan Thuy, Hanoi (Viet Nam); Hoa, Nguyen Thi [University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2015-05-29

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks.

  19. Theoretical investigation of the thermodynamic properties of metallic thin films

    International Nuclear Information System (INIS)

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks

  20. Thin-liquid-film evaporation at contact line

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Zhenai PAN; Zhao CHEN

    2009-01-01

    When a liquid wets a solid wall, the extended meniscus near the contact line may be divided into three regions: a nonevaporating region, where the liquid is adsorbed on the wall; a transition region or thin-film region, where effects of long-range molecular forces (disjoining pressure) are felt; and an intrinsic meniscus region, where capillary forces dominate. The thin liquid film, with thickness from nanometers up to micrometers, covering the transition region and part of intrinsic meniscus, is gaining interest due to its high heat transfer rates. In this paper, a review was made of the researches on thin-liquid-film evaporation. The major characteristics of thin film, thin-film modeling based on continuum theory, simulations based on molecular dynamics, and thin-film profile and temperature measurements were summarized.

  1. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  2. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  3. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    Science.gov (United States)

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  4. Nanomechanics of Ferroelectric Thin Films and Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.

    2016-08-31

    The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined. These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.

  5. Stripe glasses in ferromagnetic thin films

    Science.gov (United States)

    Principi, Alessandro; Katsnelson, Mikhail I.

    2016-02-01

    Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. For example, the magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film plane, thanks to the strong out-of-plane anisotropy, but its direction changes periodically, forming an alternating spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied. It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane magnetic anisotropy of the film is found to be beneficial for the formation of both stripe-ordered and glassy phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures. An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a moderate in-plane magnetic field of the order of 50 mT can lead to the formation of defects in the stripe pattern, which sets the onset of the glass transition.

  6. Memristive switching in vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, Danilo; John, Varun; Kovacs, Gyoergy; Skorupa, Ilona; Helm, Manfred; Schmidt, Heidemarie [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)

    2011-07-01

    Memristive devices exhibit an improved performance at ultra-small scales. The microscopic model for memristive behavior in oxide nanostructures often depends on the distribution of oxygen vacancies and is determined by the cation species. In 2008 HP presented the first bipolar TiO2-based memristor for resistive applications, where the drift of oxygen vacancies causes a change in the resistance of ultrathin TiO2 films which can be locally modified by ion implantation. We prepared vanadium dioxide (VO2) thin films with the reversible metal-insulator phase transition at the thermochromic switching temperature of around 340 K by pulsed laser deposition on (0001)-sapphire substrates and analyzed the electric-pulse-induced thermochromic switching in the VO2 gap region at room temperature due to local heating. As a result, we find the typical pinched hysteresis loop of a memristor, a repeatable switching behavior for billions of voltage pulses and switching times shorter than 50 ns in VO2 thin films.

  7. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  8. Characterization of hafnium oxide thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kuhaili, M F [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Durrani, S M A [Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khawaja, E E [Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2004-04-21

    Thin films of hafnium oxide were deposited by electron beam evaporation. The effects of the substrate temperature and the oxygen partial pressure on the refractive index and carbon monoxide sensing properties of the films were studied. The films were characterized using x-ray diffraction and x-ray photoelectron spectroscopy techniques. Films deposited on unheated substrates were amorphous, whereas those deposited on heated substrates showed a mixture of amorphous and polycrystalline structure. All the films were found to be optically inhomogeneous. The inhomogeneity of the films was taken into account in the determination of their refractive indices. It was found that the porosity (as reflected by the refractive indices) of the films was the main factor that affected the sensitivity of the films in relation to their detection of carbon monoxide.

  9. Characterization of hafnium oxide thin films prepared by electron beam evaporation

    International Nuclear Information System (INIS)

    Thin films of hafnium oxide were deposited by electron beam evaporation. The effects of the substrate temperature and the oxygen partial pressure on the refractive index and carbon monoxide sensing properties of the films were studied. The films were characterized using x-ray diffraction and x-ray photoelectron spectroscopy techniques. Films deposited on unheated substrates were amorphous, whereas those deposited on heated substrates showed a mixture of amorphous and polycrystalline structure. All the films were found to be optically inhomogeneous. The inhomogeneity of the films was taken into account in the determination of their refractive indices. It was found that the porosity (as reflected by the refractive indices) of the films was the main factor that affected the sensitivity of the films in relation to their detection of carbon monoxide

  10. Characterization of polycyclic aromatic hydrocarbon bioavailability in estuarine sediments using thin-film extraction.

    Science.gov (United States)

    Golding, Christopher J; Gobas, Frank A P C; Birch, Gavin E

    2007-05-01

    It is well documented that the bioavailability of hydrophobic organic chemicals (HOCs) can vary substantially among sediments. This makes risk assessments based on total sediment concentrations problematic. The present study investigates the application of thin-film solid-phase extraction to measure bioavailable concentrations of phenanthrene in estuarine sediment by comparing concentrations of phenanthrene in the amphipod Corophium colo and in thin ethylene/vinyl acetate films at different concentrations in three geochemically different sediments. For all sediment types, concentrations of phenanthrene in sediments and thin films followed linear relationships, indicating first-order exchange kinetics. Organism/thin-film concentration ratios did not vary systematically among sediment types but dropped significantly with increasing phenanthrene concentration in the sediments. While at low phenanthrene concentrations in the sediment fugacities of phenanthrene in the amphipods approached the fugacities in the thin films, they were significantly lower than those in the sediments at higher concentrations. While phenanthrene concentrations in the three sediment types were identical, biota sediment accumulation factors and concentrations in amphipods and thin films were consistently lower in sediments enriched with black carbon than in sediments with sedimentary organic matter bearing a more diagenetic organic signature. It is concluded that, for the range of concentrations tested, thin-film solid-phase extraction can be a useful tool in the characterization of differences in bioavailability of HOCs among sediment types.

  11. Overview and Challenges of Thin Film Solar Electric Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  12. Networking Behavior in Thin Film and Nanostructure Growth Dynamics

    OpenAIRE

    Yuksel, Murat; Karabacak, Tansel; Guclu, Hasan

    2007-01-01

    Thin film coatings have been essential in development of several micro and nano-scale devices. To realize thin film coatings various deposition techniques are employed, each yielding surface morphologies with different characteristics of interest. Therefore, understanding and control of the surface growth is of great interest. In this paper, we devise a novel network-based modeling of the growth dynamics of such thin films and nano-structures. We specifically map dynamic steps taking place du...

  13. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  14. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  15. Applications of thin-film photovoltaics for space

    Science.gov (United States)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The authors discuss the potential applications of thin-film polycrystalline and amorphous cells for space. There have been great advances in thin-film solar cells for terrestrial applications. Transfer of this technology to space applications could result in ultra low-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper indium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon arrays. The possibility of using thin-film multi-bandgap cascade solar cells is discussed.

  16. Thin-Film Photovoltaics: Status and Applications to Space Power

    Science.gov (United States)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.

  17. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  18. Growth and Characterization of Epitaxial Oxide Thin Films

    OpenAIRE

    Garg, Ashish

    2001-01-01

    Epitaxial oxide thin films are used in many technologically important device applications. This work deals with the deposition and characterization of epitaxial WO3 and SrBi2Ta2O9 (SBT) thin films on single crystal oxide substrates. WO3 thin films were chosen as a subject of study because of recent findings of superconductivity at surfaces and twin boundaries in the bulk form of this oxide. Highly epitaxial thin films would be desirable in order to be able to create a device withi...

  19. Design and Simulation of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calculated. The main properties of the thin film transformer including the size,parallel inductance, Q value and turn ratio have been simulated and optimized. Simulation results show that the thin film transformer can be fairly operated in a frequency range of 0. 001~20 MHz.

  20. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  1. Role of asphaltenes in stabilizing thin liquid emulsion films.

    Science.gov (United States)

    Tchoukov, Plamen; Yang, Fan; Xu, Zhenghe; Dabros, Tadeusz; Czarnecki, Jan; Sjöblom, Johan

    2014-03-25

    Drainage kinetics, thickness, and stability of water-in-oil thin liquid emulsion films obtained from asphaltenes, heavy oil (bitumen), and deasphalted heavy oil (maltenes) diluted in toluene are studied. The results show that asphaltenes stabilize thin organic liquid films at much lower concentrations than maltenes and bitumen. The drainage of thin organic liquid films containing asphaltenes is significantly slower than the drainage of the films containing maltenes and bitumen. The films stabilized by asphaltenes are much thicker (40-90 nm) than those stabilized by maltenes (∼10 nm). Such significant variation in the film properties points to different stabilization mechanisms of thin organic liquid films. Apparent aging effects, including gradual increase of film thickness, rigidity of oil/water interface, and formation of submicrometer size aggregates, were observed for thin organic liquid films containing asphaltenes. No aging effects were observed for films containing maltenes and bitumen in toluene. The increasing stability and lower drainage dynamics of asphaltene-containing thin liquid films are attributed to specific ability of asphaltenes to self-assemble and form 3D network in the film. The characteristic length of stable films is well beyond the size of single asphaltene molecules, nanoaggregates, or even clusters of nanoaggregates reported in the literature. Buildup of such 3D structure modifies the rheological properties of the liquid film to be non-Newtonian with yield stress (gel like). Formation of such network structure appears to be responsible for the slower drainage of thin asphaltenes in toluene liquid films. The yield stress of liquid film as small as ∼10(-2) Pa is sufficient to stop the drainage before the film reaches the critical thickness at which film rupture occurs. PMID:24564447

  2. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  3. Electrical Resistance Tomography of Conductive Thin Films

    CERN Document Server

    Cultrera, Alessandro

    2016-01-01

    The Electrical Resistance Tomography (ERT) technique is applied to the measurement of sheet conductance maps of both uniform and patterned conductive thin films. Images of the sheet conductance spatial distribution, and local conductivity values are obtained. Test samples are tin oxide films on glass substrates, with electrical contacts on the sample boundary, some samples are deliberately patterned in order to induce null conductivity zones of known geometry while others contain higher conductivity inclusions. Four-terminal resistance measurements among the contacts are performed with a scanning setup. The ERT reconstruction is performed by a numerical algorithm based on the total variation regularization and the L-curve method. ERT correctly images the sheet conductance spatial distribution of the samples. The reconstructed conductance values are in good quantitative agreement with independent measurements performed with the van der Pauw and the four-point probe methods.

  4. Levan nanostructured thin films by MAPLE assembling.

    Science.gov (United States)

    Sima, Felix; Mutlu, Esra Cansever; Eroglu, Mehmet S; Sima, Livia E; Serban, Natalia; Ristoscu, Carmen; Petrescu, Stefana M; Oner, Ebru Toksoy; Mihailescu, Ion N

    2011-06-13

    Synthesis of nanostructured thin films of pure and oxidized levan exopolysaccharide by matrix-assisted pulsed laser evaporation is reported. Solutions of pure exopolysaccharides in dimethyl sulfoxide were frozen in liquid nitrogen to obtain solid cryogenic pellets that have been used as targets in pulsed laser evaporation experiments with a KrF* excimer source. The expulsed material was collected and assembled onto glass slides and Si wafers. The contact angle studies evidenced a higher hydrophilic behavior in the case of oxidized levan structures because of the presence of acidic aldehyde-hydrogen bonds of the coating formed after oxidation. The obtained films preserved the base material composition as confirmed by Fourier transform infrared spectroscopy. They were compact with high specific surface areas, as demonstrated by scanning electron and atomic force microscopy investigations. In vitro colorimetric assays revealed a high potential for cell proliferation for all coatings with certain predominance for oxidized levan. PMID:21520921

  5. Separation Efficiency of Thin-film Evaporators

    Institute of Scientific and Technical Information of China (English)

    R.Billet

    2004-01-01

    The recovery of contaminants and useful substances from liquid wastes, the purification of production effluents and the separation of thermally instable mixtures are some of the multivarious applications of thin-film distillors in many processes of the chemical and allied industries and of the food industries. In a study carried out in pilot plants with distillation test systems there was found a good agreement between the experimental separation results and those obtained by computing with a theorectical model; the latter is based on the assumption of phase equilibrium between the vapour formed on an infinitely small element of area in a liquid film of any given concentric periphery of the vertically arranged evaporator. These tests were perfomed under various phase loads.

  6. Modelling the tribology of thin film interfaces

    CERN Document Server

    Zugic, R

    2000-01-01

    substrate). Within each group of simulations, three lubricant film thicknesses are studied to examine the effect of varying lubricant thickness. Statistical data are collected from each simulation and presented in this work. Via these data, together with the evolution, of atomic and molecular configurations, a very detailed picture of the properties of this thin film interface is presented. In particular, we conclude that perfluoropolyether lubricant forms distinct molecular layers when confined between two substrates, the rate of heat generation under shearing conditions typical of those in a head-disk interface is insufficient for thermal mechanisms to result directly in lubricant degradation, and mechanical stresses attained in the head-disk interface are unlikely to result in any significant degree of lubricant degradation. This thesis examines the tribology of a head-disk interface in an operating hard disk drive via non-equilibrium molecular dynamics computer simulations. The aim of this work is to deri...

  7. Analysis on mechanism of thin film lubrication

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chaohui; LUO Jianbin; HUANG Zhiqiang

    2005-01-01

    It is an important concern to explore the properties and principles of lubrication at nano or molecularscale. For a long time, measurement apparatus for filmthickness of thin film lubrication (TFL) at nano scale havebeen devised on the basis of superthin interferometry technique. Many experiments were carried out to study the lubrication principles of TFL by taking advantages of aforementioned techniques, in an attempt to unveil the mechanism of TFL. Comprehensive experiments were conducted to explore the distinctive characteristics of TFL. Results show that TFL is a distinctive lubrication state other than any known lubrication ones, and serves as a bridge between elastohydrodynamic lubrication (EHL) and boundary lubrication (BL). Two main influence factors of TFL are the solid surface effects and the molecular properties of the lubricant, whose combination effects result in alignment of liquid molecules near the solid surfaces and subsequently lubrication with ordered film emerged. Results of theoretical analysis considering microstructure are consistent with experimental outcomes, thus validating the proposed mechanism.

  8. Thin-film optical shutter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  9. Fabrication of Optical Tunable Helical Thin Films

    Institute of Scientific and Technical Information of China (English)

    Linxin Hu; Peng Wang; Xingyang Wan; Shaoji Jiang

    2012-01-01

    Circular polarization selection of light is an important property of helical micro-nanostructure. The helical thin films fabricated by glancing angle deposition can provide both circular polarization selection and wavelength tuning in this work. Their selective transmissions were depicted in calculations and experiments. The wave- length tuning mechanism was revealed as the relationship between peak wavelength and deposition parameters. Therefore, tunable circular polarization components can be designed according to the mechanism mentioned above and fabricated by glancing angle deposition techniques. Potential applications include tunable optical filters, optical pulse-shapers, biosensors etc.

  10. Stable localized patterns in thin liquid films

    Science.gov (United States)

    Deissler, Robert J.; Oron, Alexander

    1992-01-01

    A two-dimensional nonlinear evolution equation is studied which describes the three-dimensional spatiotemporal behavior of the air-liquid interface of a thin liquid film lying on the underside of a cooled horizontal plate. It is shown that the equation has a Liapunov functional, and this fact is exploited to demonstrate that the Marangoni effect can stabilize the destabilizing effect of gravity (the Rayleigh-Taylor instability), allowing for the existence of stable localized axisymmetric solutions for a wide range of parameter values. Various properties of these structures are discussed.

  11. Thin Film Photovoltaics: Markets and Industry

    OpenAIRE

    Arnulf Jäger-Waldau

    2012-01-01

    Since 2000, total PV production increased almost by two orders of magnitude, with a compound annual growth rate of over 52%. The most rapid growth in annual cell and module production over the last five years could be observed in Asia, where China and Taiwan together now account for about 60% of worldwide production. Between 2005 and 2009, thin film production capacity and volume increased more than the overall industry but did not keep up in 2010 and 2011 due to the rapid price decline for s...

  12. Optical and Nonlinear Optical Response of Light Sensor Thin Films

    OpenAIRE

    Weisz, S.Z.; O. Resto; Fonseca, F; Fernandez, L. F.E.; Vikhnin, V. S.; O. Vasquez; A. J. Rua; H. Liu

    2005-01-01

    For potential ultrafast optical sensor application, both VO2 thin films and nanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates were successfully prepared using pulsed laser deposition (PLD) and RF co-sputtering techniques. In photoluminescence (PL) measurement c-Si/SiO2 film contains nanoparticles of crystal Si exhibits strong red emission with the band maximum ranging from 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremely intense ...

  13. Capillary instabilities in thin films. II. Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Srolovitz, D.J.; Safran, S.A.

    1986-07-01

    We consider the kinetic evolution of perturbations to thin films. Since all small (nonsubstrate intersecting) perturbations to the film surface decay, we consider the evolution of large perturbations, in the form of a single hole which exposes the substrate. For large holes, the hole radius increases at a constant rate under the assumption of evaporation/condensation kinetics. When the dominant transport mode is surface diffusion, large holes grow with a rate proportional to t/sup -3/4/ (log/sup 3/(t/ rho/sup 4//sub c/)). Small holes with a radii less than rho/sub c/ shrink, where rho/sub c/ is the film thickness divided by the tangent of the equilibrium wetting angle. The growth of these holes eventually leads to hole impingement which ruptures the film, creating a set of disconnected islands. The relaxation time for these islands to go to their equilibrium shape and size (rho/sub eq/) scales as rho/sup 2//sub eq/ or rho/sup 4//sub eq/ for evaporation/condensation or surface diffusion kinetics, respectively.

  14. High Tc thin film and device development

    Energy Technology Data Exchange (ETDEWEB)

    Betts, K.; Burbank, M.B.; Cragg, A.; Fife, A.A.; Kubik, P.R.; Lee, S.; Chaklader, A.C.D.; Roemer, G.; Heinrich, B.; Chrzanowski, J.

    1989-03-01

    Thin films of the high Tc superconductor YBa/sub 2/Cu/sub 3/O/sub y/ have been deposited on various substrates by diode and magnetron sputtering using bulk sintered targets. These films have been analyzed by a variety of methods - SEM, X-rays, Electron Beam Microprobe, Mass Spectrometry and Raman Spectroscopy. The stoichiometries of the films have been measured as a function of the radial position from the centre of the sputtered beam at a fixed target-substrate distance. Patterning of the films has been carried out to form planar structures such as strip lines, microbridges and RF SQUIDs. DC current-voltage characteristics of the microbridges were measured as a function of temperature. RF SQUID behaviour has been observed for single loop devices and their properties established at 4.2 K and higher temperatures. Flux locked noise spectra with a 1/f noise power response were recorded in the frequency range 0.01 to approx.100 Hz. RF SQUID signals have been observed for temperatures up to 55 K.

  15. Phase transitions in pure and dilute thin ferromagnetic films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1983-10-01

    The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.

  16. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  17. Thin metal film-polymer composite for efficient optoacoustic generation (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Guo, L. Jay

    2016-03-01

    Photoacoustic (PA) conversion of metal film absorbers is known to be inefficient because of their low thermal expansion and high light reflectance, as compared to polymeric materials containing light absorbing fillers. Specifically, the PA signal for metal films is typically an order of magnitude lower than those for PDMS-based composites consisting of carbon materials such as carbon blacks, carbon nanotubes, and carbon fibers. However, the carbon-PDMS composites have several disadvantages, e.g., difficulty in controlling film thickness, aggregation of the carbon fillers, and poor patternablility. To overcome these issues and achieve comparable PA amplitudes, a polymer-metal film composite was developed consisting of a thin metal absorber and adjacent transparent polymer layers. The proposed structure shows efficient PA conversion. The measured PA amplitude of the metal film composite is an order of magnitude higher than that of metal-only samples, and comparable to those of the carbon-PDMS composites. The enhanced PA conversion is accomplished by using metal film of a few tens of nanometers, which greatly facilitates heat transfer from the metal film to the surrounding polymers. Moreover, integrating the metal film composite with a photonic cavity can compensate light absorption loss of the thinner metal film. Theoretical and experimental analysis is conducted for understanding the mechanism behind such improvement. This strategy could be implemented for spatial PA signal patterns, especially for deep tissue PA imaging of implants or image-guiding tools. Furthermore, this approach also provides a guideline for designing photoacoustic transmitters and contrast agents.

  18. Carbon nanofiber growth on thin rhodium layers

    NARCIS (Netherlands)

    Chinthaginjala, J.K.; Unnikrishnan, S.; Smithers, M.A.; Kip, G.A.M.; Lefferts, L.

    2012-01-01

    A thinlayer of carbon nanofibers (CNFs) was synthesized on a thin polycrystalline rhodium (Rh) metal layer by decomposing ethylene in the presence of hydrogen. Interaction of Rh crystals with carbon results in fragmentation and formation of Rh-nanoparticles, facilitating CNF growth. CNFs are immobil

  19. Calculation of Specific Heat for Aluminium Thin Films

    Institute of Scientific and Technical Information of China (English)

    LU Yao; SONG Qing-Lin; XIA Shan-Hong

    2005-01-01

    @@ We employ Prasher's non-dimensional form to analyse the size effects on specific heat of Al thin films. Compared the calculation results of pure aluminium film with the experimental data, it is found that the reduction of phonon states is not the main reason of the size effect on the specific heat Al thin films with thickness from 10hm to 370nm. However, the Al thin film in air usually has an oxidation layer and the specific heat of the layer is smaller than Al. By including the contribution of the oxidation layer to the thin-film specific heat, the calculation results are much closer to the experimental data. This may be a possible reason of the size effects on specific heat of Al thin films.

  20. Plasma treatment of thin film coated with graphene flakes for the reduction of sheet resistance.

    Science.gov (United States)

    Kim, Sung Hee; Oh, Jong Sik; Kim, Kyong Nam; Seo, Jin Seok; Jeon, Min Hwan; Yang, Kyung Chae; Yeom, Geun Young

    2013-12-01

    We investigated the effects of plasma treatment on the sheet resistance of thin films spray-coated with graphene flakes on polyethylene terephthalate (PET) substrates. Thin films coated with graphene flakes show high sheet resistance due to defects within graphene edges, domains, and residual oxygen content. Cl2 plasma treatment led to decreased sheet resistance when treatment time was increased, but when thin films were treated for too long the sheet resistance increased again. Optimum treatment time was related to film thickness. The reduction of sheet resistance may be explained by the donation of holes due to forming pi-type covalent bonds of Cl with carbon atoms on graphene surfaces, or by C--Cl bonding at the sites of graphene defects. However, due to radiation damage caused by plasma treatment, sheet resistance increased with increased treatment time. We found that the sheet resistance of PET film coated with graphene flakes could be decreased by 50% under optimum conditions. PMID:24266197