Sample records for carbon tetrafluoride mixtures

  1. A Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride (SF6) (United States)


    A Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur...Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride (SF6) Samuel G...Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride

  2. High-pressure neutron diffraction on fluid carbon tetrafluoride and interpretation by reverse Monte Carlo simulations (United States)

    Waldner, I.; Bassen, A.; Bertagnolli, H.; Tödheide, K.; Strauss, G.; Soper, A. K.


    Neutron scattering experiments on carbon tetrafluoride (CF4) at high pressure were performed along the 370 K isotherm at three supercritical densities, covering a density range from ρ=1.07 to 1.26 g cm-3. The structure factors of the investigated thermodynamic states and the weighted sums of the atom pair correlation functions are presented. The variation of the density has only a weak effect on the structure factors. The experimentally obtained total atom pair correlation functions are interpreted with reverse Monte Carlo simulations. The atom pair correlation functions and angular distribution functions indicate a completely disordered arrangement of the molecules in fluid CF4 with no significant short-range orientational order, except for very close distances.

  3. Slope and amplitude asymmetry effects on low frequency capacitively coupled carbon tetrafluoride plasmas (United States)

    Bruneau, B.; Korolov, I.; Lafleur, T.; Gans, T.; O'Connell, D.; Greb, A.; Derzsi, A.; Donkó, Z.; Brandt, S.; Schüngel, E.; Schulze, J.; Johnson, E.; Booth, J.-P.


    We report investigations of capacitively coupled carbon tetrafluoride (CF4) plasmas excited with tailored voltage waveforms containing up to five harmonics of a base frequency of 5.5 MHz. The impact of both the slope asymmetry, and the amplitude asymmetry, of these waveforms on the discharge is examined by combining experiments with particle-in-cell simulations. For all conditions studied herein, the discharge is shown to operate in the drift-ambipolar mode, where a comparatively large electric field in the plasma bulk (outside the sheaths) is the main mechanism for electron power absorption leading to ionization. We show that both types of waveform asymmetries strongly influence the ion energy at the electrodes, with the particularity of having the highest ion flux on the electrode where the lowest ion energy is observed. Even at the comparatively high pressure (600 mTorr) and low fundamental frequency of 5.5 MHz used here, tailoring the voltage waveforms is shown to efficiently create an asymmetry of both the ion energy and the ion flux in geometrically symmetric reactors.


    Tolley, W.B.; Smith, R.C.


    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  5. Silicon Tetrafluoride on Io

    CERN Document Server

    Schaefer, L; Schaefer, Laura


    Silicon tetrafluoride (SiF4) is observed in terrestrial volcanic gases and is predicted to be the major F - bearing species in low temperature volcanic gases on Io (Schaefer and Fegley, 2005b). SiF4 gas is also a potential indicator of silica-rich crust on Io. We used F/S ratios in terrestrial and extraterrestrial basalts, and gas/lava enrichment factors for F and S measured at terrestrial volcanoes to calculate equilibrium SiF4/SO2 ratios in volcanic gases on Io. We conclude that SiF4 can be produced at levels comparable to the observed NaCl/SO2 gas ratio. We also considered potential loss processes for SiF4 in volcanic plumes and in Io's atmosphere including ion-molecule reactions, electron chemistry, photochemistry, reactions with the major atmospheric constituents, and condensation. Photochemical destruction (tchem ~ 266 days) and/or condensation as Na2SiF6 (s) appear to be the major sinks for SiF4. We recommend searching for SiF4 with infrared spectroscopy using its 9.7 micron band as done on Earth.

  6. Multiphase carbon and its properties in complex mixtures

    Energy Technology Data Exchange (ETDEWEB)

    van Thiel, M.; Ree, F.H.


    We describe some key features of a carbon three-phase equation of state and a high-pressure high temperature mixture model in which it is used. Electronic terms in the carbon model have been investigated with INFERNO (atom in a cell model). The Lindeman criterion for melting is rederived for the anisotropic structure of the graphite lattice. The curvature of the graphite melting line is constrained by the evidence for the positive slope of the diamond melting line. The importance of carbon is apparent from various experiments on shock generated mixtures. The model allows us to estimate the energy of carbon clusters produced in a detonating mixture. A cluster model with specific surface structure is used to predict this energy. 41 refs., 7 figs., 4 tabs.

  7. Compactibility of agglomerated mixtures of calcium carbonate and microcrystalline cellulose. (United States)

    Garzón Serra, María de Lourdes; Villafuerte Robles, Leopoldo


    The tablet tensile strength (T) of agglomerated mixtures of microcrystalline cellulose-Avicel PH 102 (MC), calcium carbonate (CC) and polyvinylpyrrolidone (Povidone, PVP), lubricated with magnesium stearate (MS), and formed under a compaction pressure (P(c)) ranging up to 618MPa has been determined. The compactibility was defined through: ln(-ln(1-T/T(max)))=Slope x lnP(c)+Intercept. MC/CC mixtures added of an agglutinant, before and after lubrication, show an important positive effect on their tablet tensile strength compared to a lineal relationship. This positive effect becomes smaller with decreasing compaction pressures. By different mixing methods, the higher the mixing efficiency the higher the compactibility, following the order: spray-dried>wet massing>tumble mixing. The compactibility of MC/CC/PVP spray-dried mixtures with calcium carbonate content from 20 to 60% was equal to or greater than that of pure microcrystalline cellulose. After lubrication with 2% MS the compactibility decreased, only the mixture with the maximal tablet tensile strength attained the tensile strength of pure microcrystalline cellulose. The presence of the binder, the lubricant and higher compaction pressures allow the accommodation of higher calcium carbonate proportions in the mixtures, at the maximal tablet tensile strength of the series. The lubricant decreases in a greater extent the compactibility of mixtures with a continuous phase of MC/PVP than that of CC/PVP. This is attributed to the plastic behavior of the MC/PVP continuous phase compared to a calcium carbonate continuous phase able to disrupt the Povidone and the possible lubricant coatings allowing a stronger interparticle interaction.

  8. Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal

    Energy Technology Data Exchange (ETDEWEB)

    West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.


    Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO{sub 2}) laser is used to initiate the reaction between uranium tetrafluoride (UF{sub 4}) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I{sub 2}) as a chemical booster. The results of five reductions of UF{sub 4}, spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area.

  9. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian


    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  10. In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon (United States)

    Alam, Todd M.; Osborn Popp, Thomas M.


    High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.

  11. Compactibility of mixtures of calcium carbonate and microcrystalline cellulose. (United States)

    Garzón, M de Lourdes; Villafuerte, Leopoldo


    A patented coprocessed mixture of microcrystalline cellulose (MC) and calcium carbonate (CC) is claimed to perform, as a pharmaceutical excipient, equal or better than pure MC. To investigate it, the tensile strength (T) of tablets made of mixtures of MC type 102, CC, magnesium stearate (MS) and polyvinylpyrrolidone (PVP) and formed under a compaction pressure (P(c)) ranging up to 618 MPa has been determined. The compactibility of the mixtures was defined through regression parameters obtained with ln(-ln(1-T/T(max)))=slope x lnP(c) + intercept. MC/CC mixtures, P(c)=618 MPa, show a small decrease in tablet tensile strength with CC proportions up to about 20%, falling considerably thereafter. Lower compaction pressures, P(c)tablet tensile strength due to 2%-MS, P(c)=487 MPa, was recovered to 35% of its original value admixing about 25% CC. This maximal value of recovery showed a shift to lower proportions of CC, up to 10%, as compaction pressure decreased. This was attributed to lower CC-particles fragmentation or agglomerates spreading at lower compaction pressures. Mixtures with increased plasticity (MC/CC/PVP and MC/CC/PVP/MS) showed an increased compactibility, which was more evident at higher compaction pressures and higher CC proportions, presumably due to higher deformation and erosion of PVP particles. Inclusion of about 40% CC in a MC/PVP/MS mixture showed 60% recovery of the original MC tablet tensile strength. Lower MS proportions are expected to allow a higher recovery.

  12. Cerium Tetrafluoride: Sublimation, Thermolysis, and Atomic Fluorine Migration. (United States)

    Chilingarov, N S; Knot'ko, A V; Shlyapnikov, I M; Mazej, Z; Kristl, M; Sidorov, L N


    Saturated vapor pressure p° and enthalpy of sublimation (ΔsH°) of cerium tetrafluoride CeF4 were determined by means of Knudsen effusion mass spectrometry in the range of 750-920 K. It was discovered that sublimation of cerium tetrafluoride from a platinum effusion cell competes with thermal decomposition to CeF3 in the solid phase, but no accompanying release of fluorine to the gas phase occurs. Thus, fluorine atoms migrate within the surface layer of CeF4(s) to the regions of their irreversible drain. We used scanning electron microscopy to study the distribution of the residual CeF3(s) across the inner surface of the effusion cell after complete evaporation of CeF4(s). It was observed that CeF3 accumulates near the edge of the effusion orifice and near the junction of the lid and the body of the cell, that is, in those regions where the fluorine atoms can migrate to a free platinum surface and thus be depleted from the system. Distribution of CeF3(s) solid particles indicates the ways of fluorine atoms migration providing CeF3(s) formation inside the CeF4(s) surface layer.

  13. Phase transition of carbonate solvent mixture solutions at low temperatures (United States)

    Okumura, Takefumi; Horiba, Tatsuo


    The phase transition of carbonate solvent mixture solutions consisting of ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and LiPF6 salt have been studied for improving the low temperature performance of lithium-ion batteries. The Li ion conductivity at 25 °C was maximum at x = 0.3 in a series of 1 M LiPF6 mixed carbonate solvents compositions consisting of ECxDMC0.5-0.5xEMC0.5-0.5x (x = 0 to 0.6), while the maximum tended to shift to x = 0.2 as the temperature lowered. The differential scanning calorimetry results showed that the freezing temperature depressions of EC in the 1 M LiPF6 solution were larger than those of the DMC or EMC. The chemical shift of 7Li nuclear magnetic resonance changed from a constant to increasing at around x = 0.3, which could be reasonably understood by focusing on the change in solvation energy calculated using Born equation. However, in the region of a high EC concentration of over x = 0.3 (EC/LiPF6 > 4) in the 1 M LiPF6 solution, the free EC from the solvation to the lithium ions seems to reduce the freezing temperature depression of the EC, and thus, decreases the ionic conductivity of the solution at low temperatures, due to the EC freezing.

  14. Crystallization of Carbon Oxygen Mixtures in White Dwarf Stars

    CERN Document Server

    Horowitz, C J; Berry, D K


    We determine the phase diagram for dense carbon/ oxygen mixtures in White Dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the $^{12}$C($\\alpha,\\gamma$)$^{16}$O reaction to S_{300} <= 170 keV barns.

  15. Catalytic Formation of Propylene Carbonate from Supercritical Carbon Dioxide/Propylene Oxide Mixture

    Institute of Scientific and Technical Information of China (English)


    Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylammon-ium bromide (n-Bu4NBr) as catalyst. The high rate of reaction was attributed to rapid diffusion and the high miscibility of propylene oxide in SC-CO2 under employed conditions. Various reaction periods present different formation rate of propylene carbonate, mainly due to the existence of phase change during the reaction. The experimental results demonstrate that SC-CO2 could be used as not only an environmentally benign solvent but also a carbon precursor in synthesis.

  16. Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane (United States)

    Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.


    Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.

  17. Effect of some organic solvent-water mixtures composition on precipitated calcium carbonate in carbonation process (United States)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub


    Precipitated calcium carbonate particles were obtained during carbonation of calcium hydroxide slurry with carbon dioxide. Aqueous solutions of isopropyl alcohol, n-butanol and glycerol were used as solvents. Concentration of organic additives in the reactive mixture was from 0% to 20% (vol). Precipitation process were performed in a stirred tank reactor equipped with gas distributor. Multimodal courses of particles size distribution were determined for produced CaCO3 particles. Calcium carbonate as calcite was precipitated in all experiments. The mean Sauter diameter of CaCO3 particles decreased when the concentration of all used organic additives increased. The amount of small particle fraction in the product increased with the increasing concentration of organic solvents. Similar physical properties of used liquid phase resulted in the similar characteristics of obtained particles.

  18. Critical temperatures and pressures of reacting mixture in synthesis of dimethyl carbonate with methanol and carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Xing Cui Guo; Zhang Feng Qin; Guo Fu Wang; Jian Guo Wang


    Critical temperatures and pressures of nominal reacting mixture in synthesis of dimethyl carbonate (DMC)from methanol and carbon dioxide(quaternary mixture of carbon dioxide+methanol+water+DMC)were measured using a high-pressure view cell.The results suggested that the critical properties of the reacting mixture depended on the reaction extent as well as its initial composition(initial ratio of carbon dioxide to methanol).Such information is essential for determining the reaction conditions when one intends to carry out the synthesis of DMC with CO2 and methanol under supercritical conditions.

  19. Mixture

    Directory of Open Access Journals (Sweden)

    Silva-Aguilar Martín


    Full Text Available Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  20. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures (United States)

    Aines, Roger D.


    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  1. Erosion-inhibiting effect of sodium fluoride and titanium tetrafluoride treatment in vitro

    NARCIS (Netherlands)

    Rijkom, Hans van; Ruben, J.; Vieira, A.; Huysmans, M.C.; Truin, G-J.; Mulder, J.


    The prevention of dental erosion with fluoride is still largely unknown territory. It was the aim of this study to determine the erosion-inhibiting effect of topical neutral 1% sodium fluoride (NaF) application and an application of a 4% titanium tetrafluoride (TiF4) solution compared with no treatm

  2. Effect of titanium tetrafluoride, amine fluoride and fluoride varnish on enamel erosion in vitro

    NARCIS (Netherlands)

    Vieira, A; Ruben, JL; Huysmans, MCDNJM


    This study aimed at evaluating the effect of 1 and 4% titanium tetrafluoride (TiF4) gels, amine fluoride (AmF) 1 and 0.25% and a fluoride varnish (FP) on the prevention of dental erosion. Two experimental groups served as controls, one with no pretreatment and another one pre-treated with a fluoride

  3. Monte-Carlo simulations of methane/carbon dioxide and ethane/carbon dioxide mixture adsorption in zeolites and comparison with matrix treatment of statistical mechanical lattice model (United States)

    Dunne, Lawrence J.; Furgani, Akrem; Jalili, Sayed; Manos, George


    Adsorption isotherms have been computed by Monte-Carlo simulation for methane/carbon dioxide and ethane/carbon dioxide mixtures adsorbed in the zeolite silicalite. These isotherms show remarkable differences with the ethane/carbon dioxide mixtures displaying strong adsorption preference reversal at high coverage. To explain the differences in the Monte-Carlo mixture isotherms an exact matrix calculation of the statistical mechanics of a lattice model of mixture adsorption in zeolites has been made. The lattice model reproduces the essential features of the Monte-Carlo isotherms, enabling us to understand the differing adsorption behaviour of methane/carbon dioxide and ethane/carbon dioxide mixtures in zeolites.

  4. Therapeutic effect of carbonate buffer mixture on gastrointestinal atony in cattle

    Institute of Scientific and Technical Information of China (English)

    Yu Yi Li; Nai Sheng Zhang; Ze Wang; Zi Jun Yang


    AIM To substantiate the therapeutic effects of carbonate buffer mixture on naturally occurringgastrointestinal atony in cattle.METHODS Therapeutic effects of carbonate buffer mixture (Na2CO350 g, NaHCO3420 g, KCI 20 g, NaC1100 g, water 10 L) were observed in 120 cases of gastrointestinal atony including forestomach atony, rumenimpaction, rumen acidosis, omasum impaction and intestinal constipation. Judgement of curative effects ascure: after treated, the cases become clinically normal in general conditions, appetite, rumination, ruminalperistalsis and defecation; uncure: after giving two doses, the gasto-intestinal atony has not been eliminated.RESULTS Average cure rate of carbonate buffer mixture on above-mentioned diseases were 95%, andaverage dose was 1.4±0.5.CONCLUSION Being a new approach for treatment of gastrointestinal atony in ruminants, the carbonatebuffer mixture can eliminate the gastrointestinal atony originated from the over acidity in gastrointestinalcanal.

  5. Enhanced selective extraction of hexane from hexane/soybean oil mixture using binary gas mixtures of carbon dioxide. (United States)

    Eller, Fred J; Taylor, S L; Palmquist, Debra E


    Carbon dioxide (CO2) can effectively separate hexane from a mixture of soybean oil (SBO) and hexane with a slight coextraction of SBO. Previous research demonstrated that CO2 entrained with helium significantly reduced SBO solubility in CO2. In this study, CO2 was mixed with three gases (He, N2, or Ar) (0.5-30 vol %) to decrease SBO solubility while attempting to maintain hexane solubility. The binary gas mixtures (at 25 degrees C and 9.31 MPa) were passed through a 25 wt % hexane/SBO mixture inside a 2.5 m fractionation column. Coextracted SBO was inversely proportional to binary gas concentration, whereas residual hexane in the raffinate was proportional to binary gas concentration. The 10% binary mixture of N2 or Ar was the best compromise to obtain both low residual hexane levels (i.e., 26 ppm) and low SBO coextraction (i.e., only 40 mg). This carry-over of SBO represents a 95% reduction in SBO carry-over compared to neat CO2.

  6. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data]. (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong


    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  7. Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States); Prairie, M.R.; Chavez, J.M. [Sandia National Labs., Albuquerque, NM (United States)


    Corrosion behavior of two stainless steels and carbon steel in mixtures of NaNO{sub 3} and KNO{sub 3} was evaluated to determine if impurities found in commodity grades of alkali nitrates aggravate corrosivity as applicable to an advanced solar thermal energy system. Corrosion tests were conducted for 7000 hours with Types 304 and 316 stainless steels at 570C and A36 carbon steel at 316C in seven mixtures of NaNO{sub 3} and KNO{sub 3} containing variations in impurity concentrations. Corrosion tests were also conducted in a ternary mixture of NaNO{sub 3}, KNO{sub 3}, and Ca(NO{sub 3}){sub 2}. Corrosion rates were determined by descaled weight losses while oxidation products were examined by scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The nitrate mixtures were periodically analyzed for changes in impurity concentrations and for soluble corrosion products.

  8. A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature : As an Anode Media of SO-DCFC

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jun Ho; Kang, Kyungtae; Hwang, Jun Young [Korea Institute of Industrial Technoloy, Cheonan (Korea, Republic of)


    A direct carbon fuel cell (DCFC) generates electricity directly by converting the chemical energy in coal. In particular, a DCFC system with a solid oxide electrolyte and molten carbonate anode media has been proposed by SRI. In this system, however, there are conflicting effects of temperature, which enhances the ion conductivity of the solid electrolyte and reactivity at the electrodes while causing a stability problem for the anode media. In this study, the effect of temperature on the stability of a carbon-carbonate mixture was investigated experimentally. TGA analysis was conducted under either nitrogen or carbon dioxide ambient for Li{sub 2} CO{sub 3}, K{sub 2} CO{sub 3}, and their mixtures with carbon black. The composition of the exit gas was also monitored during temperature elevation. A simplified reaction model was suggested by considering the decomposition of carbonates and the catalyzed Boudouard reactions. The suggested model could well explain both the measured weight loss of the mixture and the gas formation from it.

  9. Equilibrium adsorption of methane, ethane, ethylene, and propylene and their mixtures on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Costa, E.; Calleja, G.; Marron, C.; Jimenez, A.; Pau, J. (Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (ES))


    The authors discuss pure gas adsorption isotherms of methane, ethane, ethylene, and propylene on activated carbon determined at 323{Kappa} and pressures in the range 0-100 kPa. Binary and ternary adsorption isotherms were also determined at the same temperature and pressures for all the mixtures of these adsorbates, with the exception of methane-propylene mixtures due to their difference in adsorption capacity. Two models have been applied for correlation and prediction of mixture adsorption equilibria-the ideal adsorbed solution (IAS) and the real adsorbed solution (RAS). This second model provides better results for all the systems.

  10. Increased plant carbon translocation linked to overyielding in grassland species mixtures.

    Directory of Open Access Journals (Sweden)

    Gerlinde B De Deyn

    Full Text Available Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C- translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a (13C-CO(2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived (13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts of the recently assimilated (13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of (13C enrichment in 6-species mixtures, while (13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of (13C in the respired CO(2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of (13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased

  11. Role of titanium tetrafluoride (TiF(4)) in conservative dentistry: A systematic review. (United States)

    Wahengbam, Pragya; Tikku, A P; Lee, Wahengbam Bruce


    The role of fluoride to reduce demineralization and enhance remineralization of dental hard tissue has been well documented. Different forms of fluoride solutions have been topically used in dentistry as prophylactic agents against tooth decay. In the recent past, metal fluorides, especially titanium tetrafluoride, have become popular in the fraternity of dental research due to their unique interaction with dental hard tissue. Many studies on titanium tetrafluoride, with positive and negative conclusions, have been published in many research journals. This gives the reader a plethora of inconclusive results with one study neutralizing the outcome of other, which confuses us regarding the present status of titanium tetrafluoride in the field of dentistry. This is an endeavor to organize and present the various studies of this unique compound, to provide us with a lucid overall review of its versatile potential application in dentistry, along with its fallacy/drawbacks. We have discussed its role as a cariostatic agent, pit and fissure sealant, tooth desensitizer, against dental erosion, as a root canal irrigant and others.

  12. Role of titanium tetrafluoride (TiF 4 in conservative dentistry: A systematic review

    Directory of Open Access Journals (Sweden)

    Pragya Wahengbam


    Full Text Available The role of fluoride to reduce demineralization and enhance remineralization of dental hard tissue has been well documented. Different forms of fluoride solutions have been topically used in dentistry as prophylactic agents against tooth decay. In the recent past, metal fluorides, especially titanium tetrafluoride, have become popular in the fraternity of dental research due to their unique interaction with dental hard tissue. Many studies on titanium tetrafluoride, with positive and negative conclusions, have been published in many research journals. This gives the reader a plethora of inconclusive results with one study neutralizing the outcome of other, which confuses us regarding the present status of titanium tetrafluoride in the field of dentistry. This is an endeavor to organize and present the various studies of this unique compound, to provide us with a lucid overall review of its versatile potential application in dentistry, along with its fallacy/drawbacks. We have discussed its role as a cariostatic agent, pit and fissure sealant, tooth desensitizer, against dental erosion, as a root canal irrigant and others.

  13. Fuels by Waste Plastics Using Activated Carbon, MCM-41, HZSM-5 and Their Mixture

    Directory of Open Access Journals (Sweden)

    Miskolczi Norbert


    Full Text Available Waste material was pyrolyzed in a horizontal tubular reactor at 530-540°C using different catalysts, such as activated carbon, MCM-41, HZSM-5 and their mixtures. Products were investigated by gas-chromatography, EDXRFS and standardized methods. Catalysts significantly affected the yields of volatiles; e.g. HZSM-5 catalyst increased especially the yield of gaseous hydrocarbons, while MCM-41 catalyst was responsible for increasing the pyrolysis oil yield. Synergistic effects were found using mixtures of different catalysts. Furthermore the catalysts modified the main carbon frame of the products. Pyrolysis oil obtained over HZSM-5 catalyst contained large amounts of aromatics, while MCM-41 catalyst mainly isomerized the carbon frame. Regarding contaminants it was concluded, that the sulphur content could be significantly decreased by activated carbon, however it had only a slight effect to the other properties of the products.

  14. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Cuiqin [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Julin, E-mail: [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Tao [Beijing Institute of Ancient Architecture, Beijing 100050 (China)


    Graphical abstract: - Highlights: • COOH-CNTs can react with sizing agent, and the optimum reaction ratio was 1:20. • Carbon fibers were dipped into the mixture bath of CNTs and sizing agent. • SEM results indicate that fibers surfaces were coated with CNTs and sizing agent. • ILSS was increased by 67.01% for the composites after the mixture coating process. • Single fibers tensile strength was maintained after the deposited process. - Abstract: The effects of deposition to carbon fibers surfaces with mixture of functionalized multi-walled carbon fibers (MWCNTs) and sizing agent were investigated. Relationships between CNTs and sizing agent were studied with Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS) and Ubbelohde viscometer. The results revealed that CNTs could react with sizing agent at 120 °C, and optimal reaction occurs when mass ratio was about 1:20. Then, carbon fibers were immersed in mixed aqueous suspension of CNTs and sizing agent with the above ratio dispersed by ultrasonication. According to scanning electron microscope (SEM) observations, fibers surfaces were coated with CNTs and sizing agent. The static contact angle tests indicated wetting performance between fibers and epoxy resin were improved after deposited procedures. Interlaminar shear strength was increased by 67.01% for fibers/epoxy resin composites after mixture deposited process. Moreover, the tensile strength of single fibers after depositing showed a slightly increase compared with that of fibers without depositing layer.

  15. Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina (United States)

    Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.


    A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.

  16. Extended XG Equation for the Prediction of Adsorption Equilibrium of Vapor Mixture on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    谢自立; 敦坤敏; 吴菊芳; 袁存禾


    The XG equation, which is developed by us previously for describing the adsorption equilibrium of pure vapor on activated carbon, is extended to multi-component system. Verified by experimental data, the extended XG equation was found to be more successful in predicting the adsorption equilibrium of vapor mixture on activated carbon than the extended Langmuir equation, the extended BET equation and the ideal adsorbed solution theory (IAST).

  17. Quantitative carbon detector (QCD) for calibration-free, high-resolution characterization of complex mixtures. (United States)

    Maduskar, Saurabh; Teixeira, Andrew R; Paulsen, Alex D; Krumm, Christoph; Mountziaris, T J; Fan, Wei; Dauenhauer, Paul J


    Current research of complex chemical systems, including biomass pyrolysis, petroleum refining, and wastewater remediation requires analysis of large analyte mixtures (>100 compounds). Quantification of each carbon-containing analyte by existing methods (flame ionization detection) requires extensive identification and calibration. In this work, we describe an integrated microreactor system called the Quantitative Carbon Detector (QCD) for use with current gas chromatography techniques for calibration-free quantitation of analyte mixtures. Combined heating, catalytic combustion, methanation and gas co-reactant mixing within a single modular reactor fully converts all analytes to methane (>99.9%) within a thermodynamic operable regime. Residence time distribution of the QCD reveals negligible loss in chromatographic resolution consistent with fine separation of complex mixtures including cellulose pyrolysis products.

  18. (-)/(+)-Sparteine induced chirally-active carbon nanoparticles for enantioselective separation of racemic mixtures. (United States)

    Vulugundam, Gururaja; Misra, Santosh K; Ostadhossein, Fatemeh; Schwartz-Duval, Aaron S; Daza, Enrique A; Pan, Dipanjan


    Chiral carbon nanoparticles (CCNPs) were developed by surface passivation using the chiral ligand (-)-sparteine or (+)-sparteine (denoted (-)-SP/CNP and (+)-SP/CNP, respectively). The chirality of the prepared CCNPs was demonstrated by circular dichroism and polarimetry and employed as an enantioselective separation platform for representative racemic mixtures.

  19. Dispersion of single-walled carbon nanotubes in alcohol-cholic acid mixtures (United States)

    Dyshin, A. A.; Eliseeva, O. V.; Bondarenko, G. V.; Kolker, A. M.; Zakharov, A. G.; Fedorov, M. V.; Kiselev, M. G.


    A procedure for dispersing single-walled carbon nanotubes (SWNTs) for the preparation of suspensions with high concentrations of individual nanotubes in various solvents was described. The most stable suspensions were obtained from a mixture of ethanol with cholic acid at an acid concentration of 0.018 mol/kg.

  20. Increased plant carbon translocation linked to overyielding in grassland species mixtures

    NARCIS (Netherlands)

    Deyn, de G.B.; Quirk, H.; Oakley, S.; Ostle, N.J.; Bardgett, R.D.


    Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and det

  1. Viscosity prediction of carbon dioxide plus hydrocarbon mixtures using the friction theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan


    The general one-parameter f-theory model has been used in conjunction with the SRK and the PR EOS to predict the viscosity of well-defined carbon dioxide + hydrocarbon mixtures. The predicted viscosities are within the uncertainty appropriate for most industrial applications. Although the studied...

  2. Thermodynamic promotion of carbon dioxide-clathrate hydrate formation by tetrahydrofuran, cyclopentane and their mixtures

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens


    Gas clathrate hydrate dissociation pressures are reported for mixtures of carbon dioxide, water and thermodynamic promoters forming structure II hydrates.Hydrate (H)-aqueous liquid (Lw)-vapour (V) equilibrium pressures for the ternary system composed of water, tetrahydrofuran (THF), and carbon....... It is shown that upon adding THF to the pure aqueous phase to form a 4mass percent solution, the equilibrium pressure of the formed hydrates may be lowered compared to the ternary system of water, cyclopentane and carbon dioxide. © 2013 Elsevier Ltd....

  3. Carbon nanofibers synthesized by pyrolysis of chloroform and ethanol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wang-Hua [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China); Li, Yuan-Yao, E-mail: [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China); Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China); Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China)


    Platelet graphite nanofibers (PGNFs) and turbostratic carbon nanofibers (TSCNFs) were synthesized by the pyrolysis of 3 and 10 vol% chloroform in ethanol, respectively, in the presence of Ni catalyst at 700 °C. Auger electron spectrometry analysis reveals that the participation of chloroform in the synthesis led to Ni–Cl bonding on the surface of the catalysts, resulting in a relatively poor crystalline layer and a coarse surface. Furthermore, the Ni–Cl compound affected the melting point and mobility of Ni, changing the morphology and geometrical shape of Ni particles. A low amount of chlorine in the catalyst led to the formation of smaller catalyst particles with a flat surface, resulting in graphene nanosheets stacked perpendicular to the fiber axis, which became PGNFs. In contrast, a high amount of chlorine in the catalyst led to the aggregation of the catalyst and thus the formation of large catalyst particles with a rough surface, resulting in the random stacking of graphene nanosheets, which became TSCNFs. The participation of chlorine was found to be important in the synthesis of the PGNFs and TSCNFs. - Graphical abstract: Display Omitted - Highlights: • The morphology of CNFs changed while different amount of CHCl{sub 3} presented. • The interaction of Ni and Cl changed the geometry and morphology of catalysts. • The structure of CNFs formed attributed to the surface morphology of catalysts. • PGNFs and TSCNFs were perpendicular and random stacking of graphene.

  4. Reduction of uranium hexafluoride to tetrafluoride by using the hydrogen atoms (United States)

    Aleksandrov, B. P.; Gordon, E. B.; Ivanov, A. V.; Kotov, A. A.; Smirnov, V. E.


    We consider the reduction of UF6 to UF4 by chemical reaction with hydrogen atoms originated in the powerful chemical generator. The principal design of such a chemical convertor is described. The results of the mathematical modeling of the thermodynamics and kinetics of the UF6 to UF4 reduction process are analyzed. The few options for the hydrogen atom generator design are proposed. A layout of the experimental setup with the chemical reactor is presented. The high efficiency together with the ability of the process scaling without loss of its efficiency makes this approach to the uranium hexafluoride depletion into tetrafluoride promising for its application in the industry.

  5. Adsorption behavior of ternary mixtures of noble gases inside single-walled carbon nanotube bundles (United States)

    Foroutan, Masumeh; Nasrabadi, Amir Taghavi


    In order to study the gas-storage and gas-filtering capability of carbon nanotube (CNT) bundles simultaneously, we considered the adsorption behavior of a ternary mixture of noble gases, including Argon (Ar), Krypton (Kr), and Xenon (Xe), i.e., Ar-Kr-Xe mixture, on (10, 10) single-walled carbon nanotube (SWCNT) bundles. Molecular dynamics (MD) simulations at different temperatures of (75, 100, 150, 200, 250, and 300) K were performed, and adsorption energies, self-diffusion coefficients, activation energies, and radial distribution functions (RDFs) were computed to analyze the thermodynamics, transport and structural properties of the adsorption systems. It is observed that the SWCNT bundles have larger contents of heavier noble gases compared to the lighter ones. This interesting behavior of SWCNT bundles makes them proper candidates for gas-storage and gas molecular-sieving processes.

  6. New amines for the reversible absorption of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Michele Aresta; Angela Dibenedetto [University of Bari, Bari (Italy). Department of Chemistry and METEA Research Center


    This paper discusses the use of new amines as a medium for the capture of CO{sub 2} from a gas mixture. The study was carried out comparing the absorption of carbon dioxide by two alkyl-di-amines with that of amines used so far at industrial level, namely mono-ethanolamine (MEA). A known mono silyl-alkyl-amine was also studied for comparison. The absorption of carbon dioxide was studied at different temperatures, in water solution, in organic solvents and using the neat amine. Several cycles of absorption/desorption were carried out. Xerogel solidified amines were also used. 12 refs., 6 figs.

  7. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures (United States)

    Aines, Roger D.; Bourcier, William L.


    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  8. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.


    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  9. Formation and composition of adsorbates on hydrophobic carbon surfaces from aqueous laccase-maltodextrin mixture suspension

    Energy Technology Data Exchange (ETDEWEB)

    Corrales Ureña, Yendry Regina, E-mail: [UNESP São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, São Paulo (Brazil); Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Lisboa-Filho, Paulo Noronha [UNESP São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, São Paulo (Brazil); Szardenings, Michael [Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103 Leipzig (Germany); Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus [Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen (Germany)


    Highlights: • Less than 10 nm layer formed on carbon based materials composed by laccase and maltodextrin. • Improvement of the wettability of carbon based materials. • A protein-polysaccharide biofilm layer formation at solid liquid interface. • Stable layers formed under buffer and water rinsing. - Abstract: A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings

  10. Ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotube mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, Alexander A., E-mail:; Vorozhtsov, Sergey A., E-mail:; Kulkov, Sergey S.; Kulkov, Sergey N. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Teipel, U. [Georg Simon Ohm University of Applied Sciences, Nuremberg (Germany)


    Comprehensive investigations of aluminum nanopowders, multi-walled carbon nanotubes, and aluminum mixtures with multi-walled carbon nanotubes subjected to ultrasonic deagglomeration in a liquid medium were performed, using microstructural, X-ray diffraction, thermogravimetric, and calorimetric analyses, and specific surface area measurements. The regime of ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotubes in a liquid medium is described, during which the division of large agglomerates and creation of homogeneous distribution of mixtures components in the volume takes place. It was determined that ultrasonic treatment influences the morphology and crystalline structure of investigated mixtures, contributes to the appearance of X-ray amorphous phase, decreases the specific surface area of the aluminum nanopowder from 13 to 12 m{sup 2}/g, and increases the pore volume and average size from 0.04 to 0.06 cm{sup 3}/g and from 12 to 19 nm, respectively. The size of coherently-diffracting domain was determined by the X-ray diffraction analysis is close to that estimated from the specific surface area and corresponds to average crystallites size in the materials under study.

  11. Measurements of mixtures with carbon dioxide under supercritical conditions using commercial high pressure equipment

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luciana L.P.R. de; Rutledge, Luis Augusto Medeiros; Moreno, Eesteban L.; Hovell, Ian; Rajagopal, Krishnaswamy [Universidade Federal do Rio de Janeiro (LATCA-EQ-UFRJ), RJ (Brazil). Escola de Quimica. Lab. de Termodinamica e Cinetica Aplicada


    There is a growing interest in studying physical properties of binary and multicomponent fluid mixtures with supercritical carbon dioxide (CO{sub 2}) over an extended range of temperature and pressure. The estimation of properties such as density, viscosity, saturation pressure, compressibility, solubility and surface tension of mixtures is important in design, operation and control as well as optimization of chemical processes especially in extractions, separations, catalytic and enzymatic reactions. The phase behaviour of binary and multicomponent mixtures with supercritical CO{sub 2} is also important in the production and refining of petroleum where mixtures of paraffin, naphthene and aromatics with supercritical fluids are often encountered. Petroleum fluids can present a complex phase behaviour in the presence of CO{sub 2}, where two-phase (VLE and LLE) and three phase regions (VLLE) might occur within ranges of supercritical conditions of temperature and pressure. The objective of this study is to develop an experimental methodology for measuring the phase behaviour of mixtures containing CO{sub 2} in supercritical regions, using commercial high-pressure equipment. (author)

  12. Mixtures of Steel-Making Slag and Carbons as Catalyst for Microwave-Assisted Dry Reforming of CH4

    Institute of Scientific and Technical Information of China (English)



    The use of steel-making slag as catalysts for microwave-assisted dry reforming of CH4 was studied.Two carbon materials (an activated carbon and a metallurgical coke),mixtures of the carbon materials and Fe-rich slag,and mixtures of the carbon materials and Ni/Al2O3 were tested as catalysts.The mixtures of slag with carbons gave rise to higher and steadier conversions than those achieved over the carbon materials alone.In addition,the use of the metallurgical coke mixed with metal-rich catalysts gave rise to remarkable results.Thus,no CH4 and CO2 conversions were achieved when coke was used alone,whereas high conversions were obtained when it was mixed with the metal-rich catalysts.

  13. Thermal diffusion factor for carbon tetrachloride-cyclohexane and benzene-n-heptane mixtures from thermogravitational column separation

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, J.L.; Madariaga, J.A.; Santamaria, C.M.; Saviron, J.M.; Carrion, J.A.


    Measurements of the separation of liquid mixtures of n-heptane/benzene and carbon tetrachloride/cyclohexane in a thermogravitational column are reported. The results show that thermal diffusion columns of little mechanical precision can furnish suitable thermal diffusion factors when the diffusion coefficient, viscosity, density, and compressibility factor for the mixture are known. 23 references, 3 figures, 1 table.

  14. Formation and composition of adsorbates on hydrophobic carbon surfaces from aqueous laccase-maltodextrin mixture suspension (United States)

    Corrales Ureña, Yendry Regina; Lisboa-Filho, Paulo Noronha; Szardenings, Michael; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus


    A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings or adhesives, but also their adhesion in contact with hardened polymers.

  15. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent (United States)

    Fang, Cuiqin; Wang, Julin; Zhang, Tao


    The effects of deposition to carbon fibers surfaces with mixture of functionalized multi-walled carbon fibers (MWCNTs) and sizing agent were investigated. Relationships between CNTs and sizing agent were studied with Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS) and Ubbelohde viscometer. The results revealed that CNTs could react with sizing agent at 120 °C, and optimal reaction occurs when mass ratio was about 1:20. Then, carbon fibers were immersed in mixed aqueous suspension of CNTs and sizing agent with the above ratio dispersed by ultrasonication. According to scanning electron microscope (SEM) observations, fibers surfaces were coated with CNTs and sizing agent. The static contact angle tests indicated wetting performance between fibers and epoxy resin were improved after deposited procedures. Interlaminar shear strength was increased by 67.01% for fibers/epoxy resin composites after mixture deposited process. Moreover, the tensile strength of single fibers after depositing showed a slightly increase compared with that of fibers without depositing layer.

  16. Excess Molar Volumes and Viscosities of Binary Mixture of Diethyl Carbonate+Ethanol at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    MA Peisheng; LI Nannan


    The purpose of this work was to report excess molar volumes and dynamic viscosities of the binary mixture of diethyl carbonate (DEC)+ethanol. Densities and viscosities of the binary mixture of DEC+ethanol at temperatures 293.15 K-343.15 K and atmospheric pressure were determined over the entire composition range. Densities of the binary mixture of DEC+ethanol were measured by using a vibrating U-shaped sample tube densimeter. Viscosities were determined by using Ubbelohde suspended-level viscometer. Densities are accurate to 1.0×10-5 g·cm-3, and viscosities are reproducible within ±0.003 mPa·s. From these data, excess molar volumes and deviations in viscosity were calculated. Positive excess molar volumes and negative deviations in viscosity for DEC+ethanol system are due to the strong specific interactions.All excess molar vo-lumes and deviations in viscosity fit to the Redlich-Kister polynomial equation.The fitting parameters were presented,and the average deviations and standard deviations were also calculated.The errors of correlation are very small.It proves that it is valuable for estimating densities and viscosities of the binary mixture by the correlated equation.

  17. An experimental study of adsorption interference in binary mixtures flowing through activated carbon (United States)

    Madey, R.; Photinos, P. J.


    The isothermal transmission through activated carbon adsorber beds at 25 C of acetaldehyde-propane and acetylene-ethane mixtures in a helium carrier gas was measured. The inlet concentration of each component was in the range between 10 ppm and 500 ppm. The constant inlet volumetric flow rate was controlled at 200 cc (STP)/min in the acetaldehyde-propane experiments and at 50 cc (STP)/min in the acetaldehyde-ethane experiments. Comparison of experimental results with the corresponding single-component experiments under similar conditions reveals interference phenomena between the components of the mixtures as evidenced by changes in both the adsorption capacity and the dispersion number. Propane was found to displace acetaldehyde from the adsorbed state. The outlet concentration profiles of propane in the binary mixtures tend to become more diffuse than the corresponding concentration profiles of the one-component experiments. Similar features were observed with mixtures of acetylene and ethane; however, the displacement of acetylene by ethane is less pronounced.

  18. Spray Formation of a Liquid Carbon Dioxide-Water Mixture at Elevated Pressures

    Directory of Open Access Journals (Sweden)

    Hakduck Kim


    Full Text Available Liquid carbon dioxide-assisted (LCO2-assisted atomization can be used in coal-water slurry gasification plants to prevent the agglomeration of coal particles. It is essential to understand the atomization behavior of the water-LCO2 mixture leaving the injector nozzle under various conditions, including the CO2 blending ratio, injection pressure, and chamber pressure. In this study, the flash-atomization behavior of a water-LCO2 mixture was evaluated with regard to the spray angle and penetration length during a throttling process. The injector nozzle was mounted downstream of a high-pressure spray-visualization system. Based on the results, the optimal condition for the effective transport of coal particles was proposed.

  19. Adsorption interference in mixtures of trace contaminants flowing through activated carbon adsorber beds (United States)

    Madey, R.; Photinos, P. J.


    Adsorption interference in binary and ternary mixtures of trace contaminants in a helium carrier gas flowing through activated carbon adsorber beds are studied. The isothermal transmission, which is the ratio of the outlet to the inlet concentration, of each component is measured. Interference between co-adsorbing gases occurs when the components are adsorbed strongly. Displacement of one component by another is manifested by a transmission greater than unity for the displaced component over some range of eluted volume. Interference is evidenced not only by a reduction of the adsorption capacity of each component in the mixture in comparison with the value obtained in a single-component experiment, but also by a change in the slope of the transmission curve of each component experiment.

  20. Solubility of Paclitaxel in Mixtures of Dichloromethane and Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    LUO Nin; LU Yingmei; JIANG Yanbin


    Phase behavior of paclitaxel in solvent mixtures of dichloromethane and supercritical carbon dioxide was investigated using a supercritical phase monitor.Cloud point pressures were determined as a function of temperature,pressure and paclitaxel content from 313.1 to 343.1K and pressures up to 33.52 MPa.The ternary mixtures exhibit a typical lower critical solution temperature behavior.When paclitaxel content increases,the single-phase region shrinks in size.Three cubic equations of state(Redlich-Kworng,Soave-Redlich-Kwong and Peng-Robinson equation of state) coupled with the van der Waals one-fluid mixing rules were selected to correlate the experimental data.The results indicate that SRK EOS coupled with two binary interaction parameters kij and lij can predict paclitaxel solubility for the best fit of experimental data.

  1. New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution

    CERN Document Server

    Althaus, Leandro G; Isern, Jordi; Córsico, Alejandro H; Bertolami, Marcelo M Miller


    Cool white dwarfs are reliable and independent stellar chronometers. The most common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling ages of very cool white dwarfs sensitively depend on the adopted phase diagram of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen mixtures appropriate for white dwarf interiors has been recently obtained using direct molecular dynamics simulations. In this paper, we explore the consequences of this phase diagram in the evolution of cool white dwarfs. To do this we employ a detailed stellar evolutionary code and accurate initial white dwarf configurations, derived from the full evolution of progenitor stars. We use two different phase diagrams, that of Horowitz et al. (2010), which presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993), which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun white dwarf models during the crystallization phase, and we found that the energy released...

  2. Decay rate of critical fluctuations in ethane + carbon dioxide mixtures near the critical line including the critical azeotrope (United States)

    Chang, R. F.; Doiron, T.; Pegg, I. L.


    Using the technique of photon correlation spectroscopy we have measured the decay rate of critical fluctuations in mixtures of ethane and carbon dioxide of various compositions including a near-azeotropic mixture. Our experimental data indicate that there is only one dominant mode of fluctuations and the decay rate is well described by the predictions of the mode-coupling theory with the exponent v=0.63 for all compositions. The decay rate, its background contributions, the shear viscosity, and the correlation length for the mixtures appear to interpolate simply between those of ethane and carbon dioxide.

  3. Decay rate of critical fluctuations in ethane+carbon dioxide mixtures near the critical line including the critical azeotrope

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.F.; Doiron, T.; Pegg, I.L.; Hanley, H.J.M.; Cezairliyan, A.


    Using the technique of photon correlation spectroscopy we have measured the decay rate of critical fluctuations in mixtures of ethane and carbon dioxide of various compositions including a near-azeotropic mixture. Our experimental data indicate that there is only one dominant mode of fluctuations and the decay rate is well described by the predictions of the mode-coupling theory with the exponent v=0.63 for all compositions. The decay rate, its background contributions, the shear viscosity, and the correlation length for the mixtures appear to interpolate simply between those of ethane and carbon dioxide.

  4. Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production. (United States)

    Zainol, Muzakkir Mohammad; Amin, Nor Aishah Saidina; Asmadi, Mohd


    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel.

  5. Integrated Data Collection Analysis (IDCA) Program - KClO4/Carbon Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of KClO4 and activated carbon—KClO4/C mixture. This material was selected because of the challenge of performing SSST testing of a mixture of two solids. The mixture was found to be insensitive to impact, friction, and thermal stimulus, and somewhat sensitive to spark discharge. This effort, funded by the Department of Homeland Security (DHS), ultimately will put the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study has the potential to suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. Note, however, the test procedures differ among the laboratories. The results are compared among the laboratories and then compared to historical data from various sources. The testing performers involved for the KClO4/carbon mixture are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to understand how to compare results when these testing variables cannot be made consistent.

  6. Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides

    DEFF Research Database (Denmark)

    Gainaru, Catalin; Hecksher, Tina; Olsen, Niels Boye


    to calculate the dielectric from the mechanical response and vice versa. Using a single parameter for a given system, good agreement between model calculations and experimental data is achieved for the entire relaxation spectra, including secondary relaxations and the Debye-like dielectric peak......Propylene carbonate and a mixture of two secondary amides, N-ethylformamide and Nethylacetamide, are investigated by means of broadband dielectric and mechanical shear spectroscopy. The similarities between the rheological and the dielectric responses of these liquids and of the previously...... in the secondary amides. In addition, the predictions of the shoving model are confirmed for the investigated liquids...

  7. Killing wild geese with carbon dioxide or a mixture of carbon dioxide and argon

    NARCIS (Netherlands)

    Gerritzen, M.A.; Reimert, H.G.M.; Lourens, A.; Bracke, M.B.M.; Verhoeven, M.T.W.


    The killing of animals is the subject of societal and political debate. Wild geese are caught and killed on a regular basis for fauna conservation and damage control. Killing geese with carbon dioxide (CO2) is commonly practiced, but not listed in legislation on the protection of flora and fauna, an

  8. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures (United States)

    Pekala, Richard W.


    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  9. Spectrographic determination of impurities in uranium tetrafluoride; Determinacion espectrografica de impurezas en tetrafluoruro de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila Perez, C.; Roca Adell, M.; Alvarez Gonzalez, F.


    A carrier distillation method for the determination of Ag, Al, As, B, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Si in uranium tetrafluoride was develop ped. the previous addition of 25% Y{sub 2}3 prevents the excitation of uranium by conversion of the volatile UF{sub 4} into U{sub 3}0{sub 8} during the arc discharge. NaCl or Ga{sub 2}0{sub 3}, containing Ge and V as internal standards, are used as carriers, and samples are arced in 10 Amp. d.c. arc in a graphite anode cup. 7 mm diameter, 10 mm deep, being the weight of charge 300 mg. (Author) 14 refs.

  10. Carbon nanostructures and graphite-coated metal nanostructures obtained by pyrolysis of ruthenocene and ruthenocene–ferrocene mixtures

    Indian Academy of Sciences (India)

    L S Panchakarla; A Govindaraj


    Pyrolysis of ruthenocene carried out in an atmosphere of argon or hydrogen is found to give rise to spherical nanoparticles of carbon with diameters in the 10–200 nm range. Pyrolysis of ruthenocene as well as mixtures of ruthenocene and ethylene in hydrogen gives rise to spherical nanoparticles, which contain a high proportion of 3 carbon. Under certain conditions, pyrolysis of ruthenocene gives rise to graphite coated ruthenium nanoparticles as well as worm-like carbon structures. Pyrolysis of mixtures of ruthenocene and ferrocene gives rise to nanoparticles or nanorods of FeRu alloys, the composition depending upon the composition of the original mixture. Nanorods of the Ru and FeRu alloys encapsulated in the carbon nanotubes are also formed in the pyrolysis reaction.

  11. Simulation and reference interaction site model theory of methanol and carbon tetrachloride mixtures. (United States)

    Munaò, G; Costa, D; Saija, F; Caccamo, C


    We report molecular dynamics and reference interaction site model (RISM) theory of methanol and carbon tetrachloride mixtures. Our study encompasses the whole concentration range, by including the pure component limits. We majorly focus on an analysis of partial, total, and concentration-concentration structure factors, and examine in detail the k-->0 limits of these functions. Simulation results confirm the tendency of methanol to self-associate with the formation of ring structures in the high dilution regime of this species, in agreement with experimental studies and with previous simulations by other authors. This behavior emerges as strongly related to the high nonideality of the mixture, a quantitative estimate of which is provided in terms of concentration fluctuation correlations, through the structure factors examined. The interaggregate correlation distance is also thereby estimated. Finally, the compressibility of the mixture is found in good agreement with experimental data. The RISM predictions are throughout assessed against simulation; the theory describes better the apolar solvent than the alcohol properties. Self-association of methanol is qualitatively reproduced, though this trend is much less marked in comparison with simulation results.

  12. Transport Properties of Amine/Carbon Dioxide Reactive Mixtures and Implications to Carbon Capture Technologies. (United States)

    Turgman-Cohen, Salomon; Giannelis, Emmanuel P; Escobedo, Fernando A


    The structure and transport properties of physisorbed and chemisorbed CO2 in model polyamine liquids (hexamethylenediamine and diethylenetriamine) are studied via molecular dynamics simulations. Such systems are relevant to CO2 absorption processes where nonaqueous amines are used as absorbents (e.g., when impregnated or grafted onto mesoporous media or misted in the gas phase). It is shown that accounting for the ionic speciation resulting from CO2 chemisorption enabled us to capture the qualitative changes in extent of absorption and fluidity with time that are observed in thermogravimetric experiments. Simulations reveal that high enough concentration of reacted CO2 leads to strong intermolecular ionic interactions and the arrest of molecular translations. The transport properties obtained from the simulations of the ionic speciated mixtures are also used to construct an approximate continuum-level model for the CO2 absorption process that mimics thermogravimetric experiments.

  13. The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Doorn, Stephen [Los Alamos National Laboratory; Atwater, Mark [UNM MECH.ENG.; Leseman, Zayd [UNM MECH.ENG.; Luhrs, Claudia C [UNM ENG.MECH; Diez, Yolanda F [SPAIN; Diaz, Angel M [SPAIN


    The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

  14. Molecular Dynamics Simulations of Carbon Dioxide, Methane, and Their Mixture in Montmorillonite Clay Hydrates

    KAUST Repository

    Kadoura, Ahmad Salim


    Molecular dynamics simulations were carried out to study the structural and transport properties of carbon dioxide, methane, and their mixture at 298.15 K in Na-montmorillonite clay in the presence of water. The simulations show that, the self-diffusion coefficients of pure CO2 and CH4 molecules in the interlayers of Na-montmorillonite decrease as their loading increases, possibly because of steric hindrance. The diffusion of CO2 in the interlayers of Na-montmorillonite, at constant loading of CO2, is not significantly affected by CH4 for the investigated CO2/CH4 mixture compositions. We attribute this to the preferential adsorption of CO2 over CH4 in Na-montmorillonite. While the presence of adsorbed CO2 molecules, at constant loading of CH4, very significantly reduces the self-diffusion coefficients of CH4, and relatively larger decrease in those diffusion coefficients are obtained at higher loadings. The preferential adsorption of CO2 molecules to the clay surface screens those possible attractive surface sites for CH4. The competition between screening and steric effects leads to a very slight decrease in the diffusion coefficients of CH4 molecules at low CO2 loadings. The steric hindrance effect, however, becomes much more significant at higher CO2 loadings and the diffusion coefficients of methane molecules significantly decrease. Our simulations also indicate that, similar effects of water on both carbon dioxide and methane, increase with increasing water concentration, at constant loadings of CO2 and CH4 in the interlayers of Na-montmorillonite. Our results could be useful, because of the significance of shale gas exploitation and carbon dioxide storage.

  15. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes. (United States)

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B


    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  16. Preparation of Ammonia Adsorbent by Carbonizing and Activating Mixture of Biomass Material and Hygroscopic Salt

    Institute of Scientific and Technical Information of China (English)

    LONG Zhen; BU Xianbiao; LU Zhenneng; LI Huashan; MA Weibin


    We put forward a new and ingenious method for the preparation of a new adsorbent by soaking, carbonizing and activating the mixture of hygroscopic salt and biomass material. The new adsorbent has high porosity, uniform distribution and high content of CaCl2, and exhibits high adsorption performance. The ammonia uptake and specific cooling power (SCP) at 5 min adsorption time can reach as high as 0.19 g•g-1 and 793.9 W•kg-1, respectively. The concept of utilizing the biomass materials and hygroscopic salts as raw materials for the preparation of adsorbents is of practical interest with respect to the potential quantity of biomass materials around the world, indicating that there would be a new market for biomass materials.

  17. Efficiency of ethylene dichloride and carbon tetrachloride mixture for fumigation of important animal feeds

    Directory of Open Access Journals (Sweden)

    H. G. Khalsa


    Full Text Available It has been found that animal feeds like crushed barley, crushed gram and wheat bran can be effectively disinfested by fumigation with 3:1 mixture of ethylene dichloride and carbon tetrachloride at a dosage of 2.5 gallons per 1,000 cuft. The lowest average atmospheric temperatures, at which the fumigation for 48 hours and for 72 hours was found effective, were 28.6 and 24.15 degree celcius respectively. It was also found that the order of susceptibility of the three test insects, viz. Tribolium castaneum Herbst, Trogoderma granerium Everts and Latheticus oryzae Watrh and their various stages varied considerably. in all cases, adults and pupae were found to be more susceptible than larvae.


    Energy Technology Data Exchange (ETDEWEB)

    Ashish Gupta


    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  19. Electroadsorption of acilan blau dye from textile effluents by using activated carbon-perlite mixtures. (United States)

    Koparal, A S; Yavuz, Y; Bakir Ogütveren, U


    The feasibility of the removal of dye stuffs from textile effluents by electroadsorption has been investigated. An activated carbon-perlite mixture with a ratio of 8:1 for bipolarity has been used as the adsorbent. Conventional adsorption experiments have also been conducted for comparison. A bipolar trickle reactor has been used in the electroadsorption experiments. The model wastewater has been prepared by using acilan blau dye. Initial dye concentration, bed height between the electrodes, applied potential, flowrate, and the supporting electrolyte concentration have been examined as the parameters affecting the removal efficiency. A local textile plant effluent has been treated in the optimum values of these parameters obtained from the experimental studies. Adsorption kinetics and the amount of adsorbent required to reach the maximum removal efficiency have also been investigated and mass-transfer coefficients have been calculated for adsorption and electroadsorption. The results showed that a removal efficiency of up to 100% can be achieved with energy consumption values of 1.58 kWh/m3 of wastewater treated. However, energy consumption decreases to 0.09 kWh/m3 if an exit dye concentration of 4.65 mg/L is accepted. It can be concluded from this work that this method combines all of the advantages of the activated-carbon adsorption and electrolytic methods for the removal of dyes from wastewater.

  20. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage. (United States)

    Ke, Jie; Parrott, Andrew J; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C; Poliakoff, Martyn; George, Michael W


    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  1. Central Composite Design (CCD) applied for statistical optimization of glucose and sucrose binary carbon mixture in enhancing the denitrification process (United States)

    Lim, Jun-Wei; Beh, Hoe-Guan; Ching, Dennis Ling Chuan; Ho, Yeek-Chia; Baloo, Lavania; Bashir, Mohammed J. K.; Wee, Seng-Kew


    The present study provides an insight into the optimization of a glucose and sucrose mixture to enhance the denitrification process. Central Composite Design was applied to design the batch experiments with the factors of glucose and sucrose measured as carbon-to-nitrogen (C:N) ratio each and the response of percentage removal of nitrate-nitrogen (NO3 --N). Results showed that the polynomial regression model of NO3 --N removal had been successfully derived, capable of describing the interactive relationships of glucose and sucrose mixture that influenced the denitrification process. Furthermore, the presence of glucose was noticed to have more consequential effect on NO3 --N removal as opposed to sucrose. The optimum carbon sources mixture to achieve complete removal of NO3 --N required lesser glucose (C:N ratio of 1.0:1.0) than sucrose (C:N ratio of 2.4:1.0). At the optimum glucose and sucrose mixture, the activated sludge showed faster acclimation towards glucose used to perform the denitrification process. Later upon the acclimation with sucrose, the glucose uptake rate by the activated sludge abated. Therefore, it is vital to optimize the added carbon sources mixture to ensure the rapid and complete removal of NO3 --N via the denitrification process.

  2. Ignition delays in methane-oxygen mixture in the presence of small amount of iron or carbon nanoparticles (United States)

    Eremin, A. V.; Gurentsov, E. V.


    The influence of small additions (0.3-2 ppm) of iron or carbon nanoparticles on ignition delay times in stoichiometric mixture of 20% (methane + oxygen) diluted in argon was investigated. The experiments were performed in 50 mm diameter shock tube behind reflected shock waves. The nanoparticles were synthesized in pyrolysis of 0.5-1% Fe(CO)5 and 1-2% of C6H6 diluted in argon in the experiment before the ignition test. The residual nanoparticles were pulled into the flow behind incident and reflected shock wave from the shock tube walls and their volume fraction was measured by laser light extinction at the wavelength 633 nm. Additions of 0.3-2 ppm of iron nanoparticles to stoichiometric methane-oxygen mixture resulted in twofold decrease of ignition delays at temperatures below 1400 K relatively to calculated and experimental data for the mixture without nanoparticle addition. At additions of 0.4-1 ppm of carbon nanoparticles to stoichiometric methane-oxygen mixture a weak decrease of ignition delay relatively to the calculated data for the mixture without additives of carbon nanoparticles was observed.

  3. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, J.B.; Urano de Carvalho, E.F.; Oliveira, F.B.V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails:;;; Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)]. E-mail:


    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium silicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF{sub 6} hydrolysis solution with stannous chloride, and the hydrofluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH{sub 4}HF{sub 2} precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO{sub 2}, which comes from the U miniplates recovery, also to its conversion in a solid state reaction, to obtain UF{sub 4}. That returns to the process of metallic uranium production unity to the U{sub 3}Si{sub 2} obtention. This fuel is considered in IPEN-CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U{sub 3}O{sub 8}-Al fuel. (author)

  4. Investigation of Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonylazanide, Ethylene Carbonate and Lithium Bis(trifluoromethanesulfonylazanide

    Directory of Open Access Journals (Sweden)

    Andreas Hofmann


    Full Text Available Temperature-dependent viscosity, conductivity and density data of ternary mixtures containing 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonylazanide (EMIM-TFSA, ethylene carbonate (EC, and lithium bis(trifluoromethanesulfonylazanide (Li-TFSA were determined at atmospheric pressure in the temperature range of 20 to 80 °C. Differential scanning calorimetry (DSC measurements were performed to characterize phase conditions of the mixtures in a temperature range of −120 to +100 °C. The viscosity data were fitted according to the Vogel-Fulcher-Tammann-Hesse (VFTH equation and analyzed with the help of the fractional Walden rule. In this study, fundamental physicochemical data about the mixtures are provided and discussed as a basis for structure-property relationship calculations and for potential use of those mixtures as electrolytes for various applications.

  5. Removal of Selenium and Nitrate in Groundwater Using Organic Carbon-Based Reactive Mixtures (United States)

    An, Hyeonsil; Jeen, Sung-Wook


    Treatment of selenium and nitrate in groundwater was evaluated through column experiments. Four columns consisting of reactive mixtures, either organic carbon-limestone (OC-LS) or organic carbon-zero valent iron (OC-ZVI), were used to determine the removal efficiency of selenium with different concentrations of nitrate. The source waters were collected from a mine site in Korea or were prepared artificially based on the mine drainage water or deionized water, followed by spiking of elevated concentrations of Se (40 mg/L) and nitrate (100 or 10 mg/L as NO3-N). The results for the aqueous chemistry showed that selenium and nitrate were effectively removed both in the mine drainage water and deionized water-based artificial input solution. However, the removal of selenium was delayed when selenium and nitrate coexisted in the OC-LS columns. The removal of selenium was not significant when the influent nitrate concentration was 100 mg/L as NO3-N, while most of nitrate was gradually removed within the columns. In contrast, 94% of selenium was removed when the influent nitrate concentration was reduced to 10 mg/L as NO3-N. In the OC-ZVI column, selenium and nitrate was removed almost simultaneously and completely even with the high nitrate concentration; however, a high concentration of ammonia was produced as a by-product of abiotic reaction between ZVI and nitrate. The elemental analysis for the solid samples after the termination of the experiments showed that selenium was accumulated in the reactive materials where removal of aqueous-phase selenium mostly occurred. The X-ray absorption near-edge structure (XANES) study indicated that selenium existed in the forms of SeS2 and Se(0) in the OC-LS column, while selenium was present in the forms of FeSe, SeS2 and absorbed Se(IV) in the OC-ZVI column. This study shows that OC-based reactive mixtures have an ability to remove selenium and nitrate in groundwater. However, the removal of selenium was influenced by the high

  6. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes. (United States)

    Dong, Ki-Young; Choi, Jinnil; Lee, Yang Doo; Kang, Byung Hyun; Yu, Youn-Yeol; Choi, Hyang Hee; Ju, Byeong-Kwon


    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas.

  7. Molecular simulation and macroscopic modeling of the diffusion of hydrogen, carbon monoxide and water in heavy n-alkane mixtures. (United States)

    Makrodimitri, Zoi A; Unruh, Dominik J M; Economou, Ioannis G


    The self-diffusion coefficient of hydrogen (H(2)), carbon monoxide (CO) and water (H(2)O) in n-alkanes was studied by molecular dynamics simulation. Diffusion in a few pure n-alkanes (namely n-C(8), n-C(20), n-C(64) and n-C(96)) was examined. In addition, binary n-C(12)-n-C(96) mixtures with various compositions as well as more realistic five- and six-n-alkane component mixtures were simulated. In all cases, the TraPPE united atom force field was used for the n-alkane molecules. The force field for the mixture of n-alkanes was initially validated against experimental density values and was shown to be accurate. Moreover, macroscopic correlations for predicting diffusion coefficient of H(2), CO and H(2)O in n-alkanes and mixtures of n-alkanes were developed. The functional form of the correlation was based on the rough hard sphere theory (RHS). The correlation was applied to simulation data and an absolute average deviation (AAD) of 5.8% for pure n-alkanes and 3.4% for n-alkane mixtures was obtained. Correlation parameters vary in a systematic way with carbon number and so they can be used to provide predictions in the absence of any experimental or molecular simulation data. Finally, in order to reduce the number of adjustable parameters, for the n-alkane mixtures the "pseudo-carbon number" approach was used. This approach resulted in relatively higher deviation from MD simulation data (AAD of 18.2%); however, it provides a convenient and fast method to predict diffusion coefficients. The correlations developed here are expected to be useful for engineering calculations related to the design of the Gas-to-Liquid process.

  8. Precipitation of Hemicelluloses from DMSO/Water Mixtures Using Carbon Dioxide as an Antisolvent

    Directory of Open Access Journals (Sweden)

    Emmerich Haimer


    Full Text Available Supercritical antisolvent precipitation is a relatively recent technology which can be used for controlled preparation of polymer particles from solutions. This is done by the addition of an antisolvent to a polymer solution causing supersaturation of the polymer, especially under supercritical conditions. The particle size of the precipitates can be adjusted mainly by the rate of supersaturation. Spherical xylan or mannan particles having a narrow particle size distribution were precipitated from hemicellulose solutions in dimethyl-sulfoxide (DMSO or DMSO/water mixtures by carbon dioxide as an antisolvent. By depending on the type of hemicellulose, the DMSO/H2O ratio, and the precipitation conditions such as pressure and temperature, the resulting particle size can be adjusted within a wide range from less than 0.1 to more than 5 m. Nano- and microstructured native xylans and mannans as obtained can be used in many applications such as encapsulation of active compounds, slow release agents, or chromatographic separation materials.

  9. Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures. (United States)

    Furmaniak, Sylwester; Kowalczyk, Piotr; Terzyk, Artur P; Gauden, Piotr A; Harris, Peter J F


    We have studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry (the number of carbonyl groups) on CO2 capture from its mixtures with CH4 at typical operating conditions for industrial adsorptive separation (298 K and compressed CO2-CH4 mixtures). Although both confinement and surface oxidation have an impact on the efficiency of CO2/CH4 adsorptive separation at thermodynamics equilibrium, we show that surface functionalization is the most important factor in designing an efficient adsorbent for CO2 capture. Systematic Monte Carlo simulations revealed that adsorption of CH4 either pure or mixed with CO2 on oxidized nanoporous carbons is only slightly increased by the presence of functional groups (surface dipoles). In contrast, adsorption of CO2 is very sensitive to the number of carbonyl groups, which can be examined by a strong electric quadrupolar moment of CO2. Interestingly, the adsorbed amount of CH4 is strongly affected by the presence of the co-adsorbed CO2. In contrast, the CO2 uptake does not depend on the molar ratio of CH4 in the bulk mixture. The optimal carbonaceous porous adsorbent used for CO2 capture near ambient conditions should consist of narrow carbon nanopores with oxidized pore walls. Furthermore, the equilibrium separation factor was the greatest for CO2/CH4 mixtures with a low CO2 concentration. The maximum equilibrium separation factor of CO2 over CH4 of ~18-20 is theoretically predicted for strongly oxidized nanoporous carbons. Our findings call for a review of the standard uncharged model of carbonaceous materials used for the modeling of the adsorption separation processes of gas mixtures containing CO2 (and other molecules with strong electric quadrupolar moment or dipole moment).

  10. Modeling competitive adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated carbon. (United States)

    Tefera, Dereje Tamiru; Hashisho, Zaher; Philips, John H; Anderson, James E; Nichols, Mark


    A two-dimensional mathematical model was developed to study competitive adsorption of n-component mixtures in a fixed-bed adsorber. The model consists of an isotherm equation to predict adsorption equilibria of n-component volatile organic compounds (VOCs) mixture from single component isotherm data, and a dynamic adsorption model, the macroscopic mass, energy and momentum conservation equations, to simulate the competitive adsorption of the n-components onto a fixed-bed of adsorbent. The model was validated with experimentally measured data of competitive adsorption of binary and eight-component VOCs mixtures onto beaded activated carbon (BAC). The mean relative absolute error (MRAE) was used to compare the modeled and measured breakthrough profiles as well as the amounts of adsorbates adsorbed. For the binary and eight-component mixtures, the MRAE of the breakthrough profiles was 13 and 12%, respectively, whereas, the MRAE of the adsorbed amounts was 1 and 2%, respectively. These data show that the model provides accurate prediction of competitive adsorption of multicomponent VOCs mixtures and the competitive adsorption isotherm equation is able to accurately predict equilibrium adsorption of VOCs mixtures.

  11. An Experimental Study of Mixture Corrosion Effects of Carbonate Rocks in the Transitional Zone of Littoral Karst Areas

    Institute of Scientific and Technical Information of China (English)

    陈鸿汉; 邹胜章; 朱远峰; 陈从喜


    The mechanism for development of littoral karst differs from that of inland karst, and the mixture corrosion effects are one of the most important factors that control the development of littoral karst. Through seven groups of static experiments carried out in a closed CO2-H2O system, basic conclusions can be drawn as follows: (1) the basic law of corrosion process in a transitional zone of seawater-freshwater in littoral karst areas is identical with that in the fresh water,i.e., the lithologic characteristics and rock structure are the main factors which control the development of littoral karst; (2)the mixture corrosion rate of the carbonate rock in the above transitional zone is faster than that in fresh water or seawater;(3) the mechanism for development of carbonate rocks differs at various pressures of CO2 in a transitional zone in littoral karst areas.``

  12. Electrical Conductivity Of Carbon Pellets Prepared From Mixtures Of Pyropolymers From Oil Palm Bunches and Petroleum Green Coke (United States)

    Deraman, M.; Awitdrus, Talib, I. A.; Omar, R.; Jumali, M. H.; Ishak, M. M.; Saad, S. K. M.; Taer, E.; Saman, M. M.; Farma, R.; Yunus, R. M.


    Green pellets (GPs), prepared at different compression pressures (cs = 6, 7.5 and 12 metric tonne) from mixtures containing self-adhesive carbon grains (sacg) from the oil palm empty fruit bunch (EFB) and different percentages (pr = 0 to 90%) of a non self-adhesive powder of petroleum green coke (ppgc), were carbonized (800° C) and activated with CO2 to produce carbon pellets (CPs). The measured electrical conductivity (σ) of the CP for all cs showed a curve having a minimum value at pr around 50%, indicating that the conducting phase displays a nonlinear σ- pr relationship. A significant increase in the σ due to CO2 activation was observed. For a sufficienctly high cs, an existence of a pr range in which the σ varies linearly with the density was also observed. These results provide some new information for modifying the electrical conductivity of carbon derived from the sacg from EFB or other types of biomass.

  13. Finding a needle in a chemical haystack: tip-enhanced Raman scattering for studying carbon nanotubes mixtures (United States)

    Chan, K. L. Andrew; Kazarian, Sergei G.


    Tip-enhanced Raman scattering (TERS) has emerged as a powerful analytical tool for measuring chemical images with nanometre spatial resolution. In this paper, the application of TERS to study differentiation of single-walled carbon nanotubes (SWCNTs) with 14 nm spatial resolution is demonstrated by the measurement of a mixture of two different types of SWCNTs as the model sample. The results demonstrate that TERS is a viable tool for the detection and localization of different SWCNTs and amorphous carbon in mixed SWCNTs based on the spectral differences in the radial breathing mode and the D bands.

  14. Finding a needle in a chemical haystack: tip-enhanced Raman scattering for studying carbon nanotubes mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K L Andrew; Kazarian, Sergei G, E-mail: [Department of Chemical Engineering, Imperial College London, SW7 2AZ (United Kingdom)


    Tip-enhanced Raman scattering (TERS) has emerged as a powerful analytical tool for measuring chemical images with nanometre spatial resolution. In this paper, the application of TERS to study differentiation of single-walled carbon nanotubes (SWCNTs) with 14 nm spatial resolution is demonstrated by the measurement of a mixture of two different types of SWCNTs as the model sample. The results demonstrate that TERS is a viable tool for the detection and localization of different SWCNTs and amorphous carbon in mixed SWCNTs based on the spectral differences in the radial breathing mode and the D bands.

  15. Differentiation of Chemical Components in a Binary Solvent Vapor Mixture Using Carbon/Polymer Composite-Based Chemiresistors

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Sanjay V.; Jenkins, Mark W.; Hughes, Robert C.; Yelton, W. Graham; Ricco, Antonio J.


    We demonstrate a ''universal solvent sensor'' constructed from a small array of carbon/polymer composite chemiresistors that respond to solvents spanning a wide range of Hildebrand volubility parameters. Conductive carbon particles provide electrical continuity in these composite films. When the polymer matrix absorbs solvent vapors, the composite film swells, the average separation between carbon particles increases, and an increase in film resistance results, as some of the conduction pathways are broken. The adverse effects of contact resistance at high solvent concentrations are reported. Solvent vapors including isooctane, ethanol, dlisopropyhnethylphosphonate (DIMP), and water are correctly identified (''classified'') using three chemiresistors, their composite coatings chosen to span the full range of volubility parameters. With the same three sensors, binary mixtures of solvent vapor and water vapor are correctly classified, following classification, two sensors suffice to determine the concentrations of both vapor components. Polyethylene vinylacetate and polyvinyl alcohol (PVA) are two such polymers that are used to classify binary mixtures of DIMP with water vapor; the PVA/carbon-particle-composite films are sensitive to less than 0.25{degree}A relative humidity. The Sandia-developed VERI (Visual-Empirical Region of Influence) technique is used as a method of pattern recognition to classify the solvents and mixtures and to distinguish them from water vapor. In many cases, the response of a given composite sensing film to a binary mixture deviates significantly from the sum of the responses to the isolated vapor components at the same concentrations. While these nonlinearities pose significant difficulty for (primarily) linear methods such as principal components analysis, VERI handles both linear and nonlinear data with equal ease. In the present study the maximum speciation accuracy is achieved by an array

  16. Synthesis and Electrical Properties of Polyaniline/Polyaniline Grafted Multiwalled Carbon Nanotube Mixture via In Situ Static Interfacial Polymerization (United States)


    Banyeon, Ulsan 689-801, South Korea 2Nanostructured and Biological Materials Branch, Materials and Manufacturing Directorate, U.S. Air Force Research...Banyeon,Ulsan 689-798, South Korea , 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...Synthesis and Electrical Properties of Polyaniline/Polyaniline Grafted Multiwalled Carbon Nanotube Mixture via In Situ Static Interfacial

  17. Final report on international comparison EURO.QM-S5/1166: Carbon dioxide mixtures in nitrogen (United States)

    Dias, Florbela A.; Baptista, Gonçalo; Rakowska, Agata; Chye, Teo Chin; Beng Keat, Teo; Cieciora, Darek; Augusto, Cristiane; Lin, Tsai-Yin; Niederhauser, Bernhard; Fükö, Judit; Sinweeruthai, Ratirat; Johri, Prabha; Akcadag, Fatma; Tarhan, Tanil; van der Veen, Adriaan M. H.; van Wijk, Janneke


    This supplementary comparison is designed to test the capabilities of the participants to measure and certify carbon dioxide in nitrogen, and to provide supporting evidence for the CMCs of institutes for carbon dioxide. Indeed this comparison aims to demonstrate the capabilities of IPQ in the production of primary gas mixtures of carbon dioxide in nitrogen and for the participant laboratories to demonstrate their capabilities on certifying primary gas mixtures of percent levels of carbon dioxide in nitrogen. Moreover, a number of NMIs had already participated in the key comparison CCQM-K52, but in a lower range. This EURAMET comparison offers an opportunity to the laboratories to submit CMC in a higher range. In this comparison the laboratories analysed the gas mixtures that are gravimetrically produced and analyzed by IPQ. Each cylinder had its own reference value calculated from the gravimetric preparation. The pressure in the cylinders was approximately 10 MPa; aluminum cylinders of 5 dm3 nominal volume were used. This comparison provides evidence in support of CMCs for carbon dioxide within the range of 1.0 × 10-2 mol/mol to 20.0 × 10-2 mol/mol in a nitrogen/air balance. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Evaluation of error sources in a gravimetric technique for preparation of a reference gas mixture (carbon dioxide in synthetic air). (United States)

    Matsumoto, Nobuhiro; Shimosaka, Takuya; Watanabe, Takuro; Kato, Kenji


    One method of preparing a primary reference gas mixture is the gravimetric blending method. Uncertainty of a few mg in mass measurements is unavoidable when preparing reference gas mixtures under current laboratory conditions with our facilities, equipment, and materials. There are many sources of errors when using this method. In this study, several sources of errors were re-evaluated for our process for preparation of carbon dioxide in synthetic air. As a consequence of the re-evaluation, it was found that some sources of errors had significant effects on gravimetric concentrations of the gas mixtures. These sources are: (1) different masses of the reference cylinder and sample cylinder (an error in the readings of the electronic mass comparator), (2) leakage of the inner gas from valves of the cylinders, and (3) cooling of the gas cylinder caused by filling with high-pressure liquefied carbon dioxide gas. When the mass measurements were performed under uncontrolled conditions, the errors due to sources (1), (2), and (3) were as high as 20 mg, 24 mg, and 13 mg, respectively. In this paper, the detailed results from re-evaluation of these sources of errors are discussed.

  19. Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures

    Directory of Open Access Journals (Sweden)

    Dayun Yan


    Full Text Available In the incubation period of ultrasonic cavitation, due to the impact of microjets on the material surface, the needle-like microjet-pits are formed. Because the formation of microjet-pits relates with the evolution of cavitation erosion on engineering materials, corresponding study will promote the understanding on the mechanism of cavitation erosion. However, little study on the microjet-pits has been carried out, especially in the particles-water mixture. In this study, we firstly demonstrated the microjet-pits on the carbon steel would be significantly inhibited by Al particles in water. Such inhibition effect indicated that particular particles might not only provide growth sites for cavitation bubbles but also affect the collapse of cavitation bubbles near a solid surface. Our study deepened the understanding on the ultrasonic cavitation erosion in the particles-water mixture.

  20. Equation of state of initially liquid carbon monoxide and nitrogen mixture

    Institute of Scientific and Technical Information of China (English)


    The modified liquid perturbation variational theory and the improved vdW-1f model were applied to calculating the equation of the state of liquid CO-N2 mixture with the ratio of 1:1, 4:1 and 1:4, respectively, in the shock pressure range of 9-49 GPa. It was shown that the calculated result for CO-N2 mixture with the ratio of 1:1 is well consistent with the earlier experimental data. The thermodynamics equilibrium, chemical equilibrium and phase equilibrium were all considered in detail. It was found that Hugoniot of liquid CO-N2 mixture is moderately softened in the pressure range of 20-30 GPa and 30-49 GPa for different initial proportions, and that the Hugoniot is more softened in the latter pressure range, which means that the structural phase transition occurs near 20 GPa and 30 GPa. Since the shock pro-ductions may absorb a plenty of systematic energy, the shock temperature and pressure decline compared with the case of no chemical reaction. Pressures and temperatures increase gradually with the increase in the mole fraction of nitrogen composition. The results for the 1:1 CO-N2 mixture lie in the middle of two others. Therefore, it was shown that the modified Lorentz-Berthelor rule used in the scheme is effective to study shock-compression properties of liquid CO-N2 mixture under high temperatures and high pressures.

  1. Inductive effect produced by a mixture of carbon source in the production of gibberellic acid by Gibberella fujikuroi. (United States)

    Rios-Iribe, Erika Y; Flores-Cotera, Luis B; Chávira, Mario M González; González-Alatorre, Guillermo; Escamilla-Silva, Eleazar M


    Gibberellic acid has been known since 1954 but its effect on rice still remains very important in the agricultural world. Gibberellic acid (GA3) is the main secondary metabolite produced by the Gibberella fujikuroi fungus. This hormone is of great importance in agriculture and the brewing industry, due to its fast and strong effects at low concentrations (μg) on the processes of growth stimulation, flowering, stem elongation, and germination of seeds, among others. Plant promoters of growth production such as the gibberellins, especially the GA3 are a priority in obtaining better harvests in the agricultural area and by extension, improving the food industry. Three routes to obtaining GA3 have been reported: extraction from plants, chemical synthesis and microbial fermentation. The latter being the most common method used to produce GA3. In this investigation, glucose-corn oil mixture was used as a carbon source on the basis of 40 g of carbon in a 7 L stirred tank bioreactor. A pH of 3.5, 29°C, 600 min(-1) agitation and 1 vvm aeration were maintained and controlled with a biocontroller connected to the bioreactor, throughout the entire culture time. The carbon source mixture affected the fermentation time as well as the production of the GAs. The production of 380 mg GA3L(-1) after 288 h of fermentation was obtained when the glucose-corn oil mixture was employed contrasting the 136 mg GA3L(-1) at 264 h of culture when only glucose was used.

  2. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Brant M.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Strazzulla, Giovanni [INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy)


    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10{sup –17} cm{sup 2} molecule{sup –1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  3. Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids (United States)

    Shuba, M. V.; Paddubskaya, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Ksenevich, V. K.; Niaura, G.; Seliuta, D.; Kasalynas, I.; Valusis, G.


    To decrease single-wall carbon nanotube (SWCNT) lengths to a value of 100-200 nm, aggressive cutting methods, accompanied by a high loss of starting material, are frequently used. We propose a cutting approach based on low temperature intensive ultrasonication in a mixture of sulfuric and nitric acids. The method is nondestructive with a yield close to 100%. It was applied to cut nanotubes produced in three different ways: gas-phase catalysis, chemical vapor deposition, and electric-arc-discharge methods. Raman and Fourier transform infrared spectroscopy were used to demonstrate that the cut carbon nanotubes have a low extent of sidewall degradation and their electronic properties are close to those of the untreated tubes. It was proposed to use the spectral position of the far-infrared absorption peak as a simple criterion for the estimation of SWCNT length distribution in the samples.

  4. Equation of state of initially liquid carbon monoxide and nitrogen mixture

    Institute of Scientific and Technical Information of China (English)

    YANG JinWen; SUN Dong; SUN Yue; SHI ShangChun


    Academy of Engineering Physics,Mianyang 621900,ChinaThe modified liquid perturbation variational theory and the improved vdW-1f model were applied to calculating the equation of the state of liquid CO-N2 mixture with the ratio of 1:1,4:1 and 1:4,respectively,in the shock pressure range of 9-49 Gpa.It was shown that the calculated result for CO-N2 mixture with the ratio of 1:1 is well consistent with the earlier experimental data.The thermodynamics equilibrium,chemical equilibrium and phase equilibrium were all considered in detail.It was found that Hugoniot of liquid CO-N2 mixture is moderately softened in the pressure range of 20-30 Gpa and 30-49 Gpa for different initial proportions,and that the Hugoniot is more softened in the latter pressure range,which means that the structural phase transition occurs near 20 Gpa and 30 Gpa.Since the shock pro-ductions may absorb a plenty of systematic energy,the shock temperature and pressure decline compared with the case of no chemical reaction.Pressures and temperatures increase gradually with the increase in the mole fraction of nitrogen composition.The results for the 1:1 CO-N2 mixture lie in the middle of two others.Therefore,it was shown that the modified Lorentz-Berthelor rule used in the scheme is effective to study shock-compression properties of liquid CO-N2 mixture under high temperatures and high pressures.

  5. Novel electrolyte mixtures based on dimethyl sulfone, ethylene carbonate and LiPF6 for lithium-ion batteries (United States)

    Hofmann, Andreas; Hanemann, Thomas


    In this study, novel electrolyte mixtures for Li-ion cells are presented which are composed of ethylene carbonate/dimethyl sulfone (80:20 wt./wt.) as a solvent mixture and LiPF6, lithium bis(oxalato)borate and lithium difluoro(oxalato)borate as conducting salts. The main advantages of the solvent mixture are high flash points of >140 °C which enhance the intrinsic safety of Li-ion cells while maintaining good cell performance above 0-5 °C. The movability of the lithium ions in the electrolyte is investigated via programmed current derivative chronopotentiometry. It is found that pure electrolyte properties cannot necessarily predict the electrolyte behavior in real Li-ion cells but the complex interplay between electrolytes, electrode materials and separators has to be taken into account. Using the newly developed electrolytes, it is possible to achieve C-rates up to 1.5C with >80% of the initial specific discharge capacity (25 °C). Within 200 cycles during one month in cell tests (C||NMC) it is proven that the retention of the specific capacity is >98% of the third discharge cycle in dependence of the conducting salt.

  6. Microscopic structure and interaction analysis for supercritical carbon dioxide-ethanol mixtures: a Monte Carlo simulation study. (United States)

    Xu, Wenhao; Yang, Jichu; Hu, Yinyu


    Configurational-bias Monte Carlo simulations in the isobaric-isothermal ensemble using the TraPPE-UA force field were performed to study the microscopic structures and molecular interactions of mixtures containing supercritical carbon dioxide (scCO(2)) and ethanol (EtOH). The binary vapor-liquid coexisting curves were calculated at 298.17, 333.2, and 353.2 K and are in excellent agreement with experimental results. For the first time, three important interactions, i.e., EtOH-EtOH hydrogen bonding, EtOH-CO(2) hydrogen bonding, and EtOH-CO(2) electron donor-acceptor (EDA) bonding, in the mixtures were fully analyzed and compared. The EtOH mole fraction, temperature, and pressure effect on the three interactions was investigated and then explained by the competition of interactions between EtOH and CO(2) molecules. Analysis of the microscopic structures indicates a strong preference for the formation of EtOH-CO(2) hydrogen-bonded tetramers and pentamers at higher EtOH compositions. The distribution of aggregation sizes and types shows that a very large EtOH-EtOH hydrogen-bonded network exists in the mixtures, while only linear EtOH-CO(2) hydrogen-bonded and EDA-bonded dimers and trimers are present. Further analysis shows that EtOH-CO(2) EDA complex is more stable than the hydrogen-bonded one.

  7. The solid-liquid phase diagrams of binary mixtures of even saturated fatty acids differing by six carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Mariana C. [LPT, Department of Chemical Process, School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP (Brazil); EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, P.O. Box 6121, 13083-862, Campinas-SP (Brazil); CICECO, Departamento de Quimica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Rolemberg, Marlus P. [DETQI, Department of Chemical Technology, Federal University of Maranhao (UFMA), Sao Luis, Maranhao (Brazil); Meirelles, Antonio J.A. [EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, P.O. Box 6121, 13083-862, Campinas-SP (Brazil); Coutinho, Joao A.P. [CICECO, Departamento de Quimica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Kraehenbuehl, M.A., E-mail: [LPT, Department of Chemical Process, School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP (Brazil)


    This study was aimed at using the solid-liquid phase diagrams for three binary mixtures of saturated fatty acids, especially the phase transitions below the liquidus line. These mixtures are compounded by caprylic acid (C{sub 8:0}) + myristic acid (C{sub 14:0}), capric acid (C{sub 10:0}) + palmitic acid (C{sub 16:0}), lauric acid (C{sub 12:0}) + stearic acid (C{sub 18:0}), differing by six carbon atoms between carbon chains. The phase diagrams were obtained by differential scanning calorimetry (DSC). The polarized light microscopy was used to complement the characterization for a full grasp of the phase diagram. Not only do these phase diagrams present peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common, in fatty acids. These findings have contributed to the elucidation of the phase behavior of these important biochemical molecules with implications in various industrial production.

  8. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling. (United States)

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R


    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  9. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)


    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.

  10. Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite

    Indian Academy of Sciences (India)

    J Temuujin; M Aoyama; M Senna; T Masuko; C Ando; H Kishi; A Minjigmaa


    -type hexagonal ferrite precursor was prepared by a soft mechanochemical treatment of BaCO3 and -FeOOH mixtures. The effect of milling on its structure and thermal behaviour was examined by XRD, SEM and FTIR. Well crystallized -type hexagonal ferrite was formed from just 1 h milled precursors at 800°C. The beneficial effect of milling was explained in terms of increased homogeneity with simultaneous hetero bridging bond formation between powder constituents.

  11. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C{sub 1}-C{sub 4}) and dimethyl carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroyuki, E-mail: [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Fukano, Makoto; Kikkawa, Shinichiro [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Constantinescu, Dana [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany); Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Gmehling, Juergen [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany)


    Highlights: > The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. > VLE data for ternary and binary mixtures containing alcohol and DMC were measured. > Several activity coefficient models were used for data reduction or prediction. > Valley line, i.e., distillation boundary, was observed for the ternary mixture. > Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {l_brace}methanol + propan-1-ol + dimethyl carbonate (DMC){r_brace}, and four binary mixtures, namely an {l_brace}alcohol (C{sub 3} or C{sub 4}) + DMC{r_brace}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  12. Binary Adsorption Equilibrium of Benzene—Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    GAOHuasheng; YEYunchun; 等


    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg·m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon.A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.A modified polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculte the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  13. Dispersion of single-walled carbon nanotubes in dimethylacetamide and a dimethylacetamide-cholic acid mixture (United States)

    Dyshin, A. A.; Eliseeva, O. V.; Bondarenko, G. V.; Kolker, A. M.; Kiselev, M. G.


    A way of dispersing single-walled carbon nanotubes in preparing stable suspensions with high concentrations of individual nanotubes in amide solvents is described. The obtained suspensions are studied via Raman spectroscopy. The dependence of the degree of single-walled carbon nanotube (SWNT) dispersion in individual and mixed amide solvents on the type of solvent, the mass of nanotubes, and the concentration of cholic acid is established. A technique for processing spectral data to estimate the diameters and chiralities of individual nanotubes in suspension is described in detail.

  14. Phase Equilibria of Three Binary Mixtures: Methanethiol + Methane, Methanethiol + Nitrogen, and Methanethiol + Carbon Dioxide

    DEFF Research Database (Denmark)

    Awan, Javeed; Tsivintzelis, Ioannis; Coquelet, Christophe;


    New vapor–liquid equilibrium (VLE) data for methanethiol (MM) + methane (CH4), methanethiol (MM) + nitrogen (N2), and methanethiol (MM) + carbon dioxide (CO2) is reported for temperatures of (304, 334, and 364) K in the pressure range (1 to 8) MPa. A “static–analytic” method was used for performi...

  15. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Directory of Open Access Journals (Sweden)

    Rhonalyn V. Maulion


    Full Text Available Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capacity of activated carbon tablets derived from corncobs in the removal of oil. The properties of activated carbon produced have a pH of 7.0, bulk density of 0.26 g//cm3 , average pore size of 45nm, particle size of 18% at 60 mesh and 39% at 80 mesh, iodine number of 1370 mg/g and surface area of 1205 g/m2. The amount of bentonite clay as binder (15%,20%,30%, number of ACT (1,2,3 and time of contact(30,60,90 mins has been varied to determine the optimum condition where the activated carbon will have the best adsorption capacity in the removal of oil. Results showed that at 15% binder, 60 mins contact time and 3 tablets of activated carbon is the optimum condition which give a percentage adsorption of 22.82% of oil. Experimental data also showed that a Langmuir isotherm was the best fit isotherm for adsorption of ACT.

  16. Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on San Juan Basin Coal

    Energy Technology Data Exchange (ETDEWEB)

    K. A. M. Gasem; R. L. Robinson; S. R. Reeves


    The major objectives of this project were to (a) measure the adsorption behavior of pure methane, nitrogen, CO{sub 2} and their binary and ternary mixtures on wet Tiffany coal at 130 F and pressures to 2000 psia; (b) correlate the equilibrium adsorption isotherm data using the extended Langmuir model, the Langmuir model, the loading ratio correlation and the Zhou-Gasem-Robinson equation of state; and (c) establish sorption-time estimates for the pure components. Specific accomplishments are summarized below regarding the complementary tasks involving experimental work and data correlation. Representative coal samples from BP Amoco Tiffany Injection Wells No.1 and No.10 were prepared, as requested. The equilibrium moisture content and particle size distribution of each coal sample were determined. Compositional coal analyses for both samples were performed by Huffman Laboratories, Inc. Pure gas adsorption for methane on wet Tiffany coal samples from Injection Wells No.1 and No.10 was measured separately at 130 F (327.6 K) and pressures to 2000 psia (13.7 MPa). The average expected uncertainty in these data is about 3% (9 SCF/ton). Our measurements indicate that the adsorption isotherms of the two coal samples exhibit similar Langmuir-type behavior. For the samples from the two wells, a maximum variation of about 5% in the amount adsorbed is observed at 2000 psia. Gas adsorption isotherms were measured for pure methane, nitrogen and CO{sub 2} on a wet, mixed Tiffany coal sample. The coal sample was an equal-mass mixture of coals from Well No.1 and Well No.10. The adsorption measurements were conducted at 130 F at pressures to 2000 psia. The adsorption isotherms have average expected experimental uncertainties of 3% (9 SCF/ton), 6% (8 SCF/ton), and 7% (62 SCF/ton) for methane, nitrogen, and CO{sub 2}, respectively. Adsorption isotherms were measured for methane/nitrogen, methane/CO{sub 2} and nitrogen/CO{sub 2} binary mixtures on wet, mixed Tiffany coal at 130 F and

  17. Origin and evolution of paramagnetic states in mixtures of ZnO and carbon nanoparticles during intensive mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, Mykola, E-mail:; Vlasova, Marina [CIICAp - Universidad Autonoma del Estado de Morelos (Mexico); Juarez-Arellano, Erick A. [Universidad del Papaloapan, Instituto de Química Aplicada (Mexico)


    In this study, the microstructural evolution and reaction processes in the mixture of ZnO + xC nanoparticles during prolonged high-energy mechanical activation were explored. The formation of paramagnetic centers has been identified. It was observed that the evolution of various paramagnetic defects reveals several macroscopic flow processes that take place in the system. Some of these processes are the destruction of primary durable nanoparticle ZnO aggregates, the crushing of individual nanoparticles (250–14 nm), the development of accumulative thermal processes in the sample, the interaction of carbon atoms with oxygen from the treatment chamber and from the surface of the ZnO nanoparticles, the formation of reducing atmosphere in the grinding chamber, and the occurrence of the forming conditions of the phase transition ZnO{sub W} → ZnO{sub S} on the surface layers of ZnO{sub W} nanoparticles.

  18. Efficiency of water removal from water/ethanol mixtures using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    M. A. Rodrigues


    Full Text Available Techniques involving supercritical carbon dioxide have been successfully used for the formation of drug particles with controlled size distributions. However, these processes show some limitations, particularly in processing aqueous solutions. A diagram walking algorithm based on available experimental data was developed to evaluate the effect of ethanol on the efficiency of water removal processes under different process conditions. Ethanol feeding was the key parameter resulting in a tenfold increase in the efficiency of water extraction.

  19. Aspects regarding the tribological evaluation of sintered composites obtained from mixture of copper with carbon fibers (United States)

    Caliman, R.


    This paper presents a study of the tribological properties of sintered composite materials made from combination of copper with short carbon fibers. Sintered composite materials are more effective if refer to specific properties per unit volume compared to conventional isotropic materials. Potential advantages of copper - carbon composite materials are: high resistance to breakage and high value ratios strength/density; resistance to high temperatures; low density and high resistance to wear; low or high friction coefficient. The sintered composite materials used in this research work are obtained combining different percentages of copper with short carbon fibres with iron and lead in order to investigate the variation of the friction behaviour. Varying the percentage of copper from 92,2% to 97,6% and the percentage of short carbon fibres from 7,8% to 2,4%, five different composite materials are obtained and tested. Friction tests are carried out, at room temperature, in dry conditions, on a pin-on-disc machine. The friction coefficient was measured using abrasive discs made from steel 4340 having the average hardness of 40 HRC, and sliding velocity of 0,6 m/sec. The main objective of this research work it was to identify a combination of materials with improved friction behaviour. The experimental results revealed that the force applied on the specimen during the tests, is playing a very important role regarding friction coefficient and also the wearing speed. Graphite particles are conveyed consistently inside the net, enhancing scraped spot safety and voltage drop over normal composite material. The static tests demonstrated that this new kind of sintered composite material has preferable electrical execution over previous brush material in the same conditions, and the element tests demonstrated that the temperature climb is not enormous when the brush with this new composite material is exchanged on with huge current and the surface scraped spot is littler amid

  20. Sorption of a mixture of phenols in aqueous solution with activated carbon; Sorcion de una mezcla de fenoles en solucion acuosa con carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Mejia M, D.; Lopez M, B.E.; Iturbe G, J.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)


    The main objective of this work is the sorption of an aqueous mixture of phenol-4 chloro phenol of different concentrations in a molar relationship 1:1 in activated carbon of mineral origin of different nets (10, 20 and 30) and to diminish with it its presence in water. The experimental results show that the removal capacity depends so much of the surface properties of the sorbent like of the physical and chemical properties of the sorbate. In all the cases it was observed that in the aqueous systems of low concentration the 4-chloro phenol are removed in an approximate proportion of 1.2-4 times greater to than phenol, however to concentrations but high both they are removed approximately in the same proportion. (Author)

  1. Free Energy-Based Coarse-Grained Force Field for Binary Mixtures of Hydrocarbons, Nitrogen, Oxygen, and Carbon Dioxide. (United States)

    Cao, Fenglei; Deetz, Joshua D; Sun, Huai


    The free energy based Lennard-Jones 12-6 (FE-12-6) coarse-grained (CG) force field developed for alkanes1 has been extended to model small molecules of light hydrocarbons (methane, ethane, propane, butane, and isobutane), nitrogen, oxygen, and carbon dioxide. The adjustable parameters of the FE-12-6 potential are determined by fitting against experimental vapor-liquid equilibrium (VLE) curves and heat of vaporization (HOV) data for pure substance liquids. Simulations using the optimized FE-12-6 parameters correctly reproduced experimental measures of the VLE, HOV, density, vapor pressure, compressibility, critical point, and surface tension for pure substances over a wide range of thermodynamic states. The force field parameters optimized for pure substances were tested on methane/butane, nitrogen/decane, and carbon dioxide/decane binary mixtures to predict their vapor-liquid equilibrium phase diagrams. It is found that for nonpolar molecules represented by different sized beads, a common scaling factor (0.08) that reduces the strength of the interaction potential between unlike beads, generated using Lorentz-Berthelot (LB) combination rules, is required to predict vapor-liquid phase equilibria accurately.

  2. Analysis of an activated-carbon sorption compressor operating with gas mixtures (United States)

    Tzabar, N.; Grossman, G.


    Sorption compressors elevate the pressure of gases and can provide a more or less continuous mass flow. Unlike mechanical compressors, sorption compressors have no moving parts, and therefore do not emit vibrations and are highly reliable. There exist different sorption compressors for different operating conditions and various gases. However, there are no published reports of sorption compressors for mixed gases. Such compressors, among other applications, may drive mixed-refrigerant Joule-Thomson cryocoolers. The adsorption of mixed gases is usually investigated under steady conditions, mainly for storage and separation processes. However, the sorption process in a compressor goes through varying states and mass changes; therefore, it differs from the common mixed gases adsorption applications. In this research a numerical analysis for mixed gas sorption compressors is developed, based on pure gas adsorption characteristics and the ideal adsorbed solution theory. Two pure gas adsorption models are used for calculating the conditions of the adsorbed phase: Langmuir and Sips; and the Peng-Robinson equation of state is used to calculate the conditions of the vapor phase. Two mixtures are investigated; nitrogen-methane and nitrogen-ethane. Finally, the analysis is verified against experimental results. This research provides initiatory observation for mixed gases sorption compressor in which each component is differently adsorbed.

  3. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures

    KAUST Repository

    Choi, Byungchul


    The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process. © 2012 The Korean Society of Mechanical Engineers.

  4. High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, JungMin; Kim, Hwayong [Seoul National University, Seoul (Korea, Republic of); Shin, Hun Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Soo Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)


    The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the CO{sub 2}/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the CO{sub 2}-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

  5. Simulation of Pore Width and Pore Charge Effects on Selectivities of CO2 vs. H2 from a Syngas-like Mixture in Carbon Mesopores

    NARCIS (Netherlands)

    Trinh, T.T.; Vlugt, T.J.H.; Hägg, M.B.; Bedeaux, D.; Kjelstrup, S.


    Classical molecular dynamics simulations were performed to study the effect of pore width and surface charge in carbon mesoporous materials on adsorption and diffusion selectivities of CO2/H2 in a syngas-like mixture (mole fraction of CO2 = 0.30). The pore width of the graphite slit varied from 2.5

  6. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. (United States)

    Bergin, Shane D; Sun, Zhenyu; Rickard, David; Streich, Philip V; Hamilton, James P; Coleman, Jonathan N


    We have measured the dispersibility of single-walled carbon nanotubes in a range of solvents, observing values as high as 3.5 mg/mL. By plotting the nanotube dispersibility as a function of the Hansen solubility parameters of the solvents, we have confirmed that successful solvents occupy a well-defined range of Hansen parameter space. The level of dispersibility is more sensitive to the dispersive Hansen parameter than the polar or H-bonding Hansen parameter. We estimate the dispersion, polar, and hydrogen bonding Hansen parameter for the nanotubes to be = 17.8 MPa(1/2), = 7.5 MPa(1/2), and = 7.6 MPa(1/2). We find that the nanotube dispersibility in good solvents decays smoothly with the distance in Hansen space from solvent to nanotube solubility parameters. Finally, we propose that neither Hildebrand nor Hansen solubility parameters are fundamental quantities when it comes to nanotube-solvent interactions. We show that the previously calculated dependence of nanotube Hildebrand parameter on nanotube diameter can be reproduced by deriving a simple expression based on the nanotube surface energy. We show that solubility parameters based on surface energy give equivalent results to Hansen solubility parameters. However, we note that, contrary to solubility theory, a number of nonsolvents for nanotubes have both Hansen and surface energy solubility parameters similar to those calculated for nanotubes. The nature of the distinction between solvents and nonsolvents remains to be fully understood.

  7. Cleavage of catalytic ally grown carbon nanofibers into hydrophilic segments by oxidation in a mixture of concentrated HNO3-H2SO4 in an autoclave

    Institute of Scientific and Technical Information of China (English)

    TENG Li-hua; WANG Zhi-jiang; TANG Tian-di


    The catalytically grown carbon nanofibers were treated by a mixture of concentrated nitric aid and sulfuric aid in an autoclave at temperature 333,363 and 423 K.It was found that the samples treated at 363 K and 423 K were still well dispersed in water 15 hours later,indicating that carbon nanofibers can be made hydrophilicy.It was also found that the dispersion was destroyed when the pH value was lowered by adding acid.The results are significant when the carbon nanofibers are used as enhancing component in polymer composite material because several hundreds of nm are perfect size and the hydrophilicity controls the dispersion of CNFs in the polymer media.It is concluded that the amount of the oxygen-containing groups on the surface and the hydrophilicity of the carbon nanofibers can be controlled by the treatment temperature,and that the carbon nanofibers can be cleaved into uniform segments.

  8. Interactions of carbon nanotubes with the nitromethane-water mixture governing selective adsorption of energetic molecules from aqueous solution. (United States)

    Liu, Yingzhe; Lai, Weipeng; Yu, Tao; Kang, Ying; Ge, Zhongxue


    The structure and dynamics of the nitromethane-water (NM-WT) binary mixture surrounding single walled carbon nanotubes (SWNTs) have been investigated by molecular dynamics simulations. The simulation trajectories show that the NM molecules can be selectively adsorbed both outside the surface and inside the cavity of SWNTs mainly dominated by van der Waals attractions because SWNTs have a higher binding affinity for NM than WT. The binding energies of SWNTs with NM and WT obtained from electronic structure calculations at the M06-2X/6-31+G* level are 15.31 and 5.51 kcal mol(-1), respectively. Compared with the SWNT exterior, the selective adsorption of NM is preferentially occurred in the SWNT interior due to the hydrophobic interactions and the dipole-dipole interactions, which induces the decrease of the hydrogen-bond number of NM with WT and ordered structures of NM with preferred intermolecular orientation in the SWNT cavity. Furthermore, the selective adsorption dynamics of NM from the aqueous solution is regardless of the chirality and radius of SWNTs. The SWNT radius plays a negligible role in the mass density distributions of NM outside the SWNTs, while the mass density of NM in the SWNT interior decreases gradually as the SWNT radius increases. The structural arrangements and intermolecular orientations of NM in the SWNT cavity are greatly dependent on the SWNT radius due to the size effect.

  9. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane (United States)

    Askalany, Ahmed A.; Saha, Bidyut B.


    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  10. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.


    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  11. Synthesis of silver nanoparticle decorated multiwalled carbon nanotubes-graphene mixture and its heat transfer studies in nanofluid

    Directory of Open Access Journals (Sweden)

    Tessy Theres Baby


    Full Text Available The present study describes a novel synthesis procedure for a hybrid nanostructure consisting of multiwalled carbon nanotubes (MWNT, hydrogen exfoliated graphene (HEG and silver nanoparticles. Moreover, synthesis of nanofluids using the above hybrid material and their heat transfer properties are discussed. The hybrid structure of MWNT and HEG (MWNT-HEG has been synthesized by a simple mixing of MWNT and graphite oxide (GO followed by exfoliation of this mixture in hydrogen atmosphere. The sample has been characterized with different experimental techniques. After surface functionalization, this hybrid material is decorated with silver nanoparticles (Ag/(MWNT-HEG and dispersed in ethylene glycol (EG without any surfactant. The thermal conductivity and convective heat transfer properties are measured for different volume fractions. An enhancement of ∼8% in thermal conductivity is obtained for a volume fraction of 0.04% at 25°C. The convective heat transfer coefficient of these nanofluids is determined using an in-house fabricated setup. The enhancement in heat transfer coefficient is about 570% for 0.005% volume fraction at the entrance of the pipe for Re = 250.

  12. Effect of carbon on formation of mixed solid solutions during mechanochemical synthesis of Ni-Al-Mo-C mixtures and ordering of solutions during heating (United States)

    Portnoi, V. K.; Leonov, A. V.; Streletskii, A. N.; Logacheva, A. I.


    Solid solutions Ni(Al, Mo, C) are formed via milling the Ni2.8Al1Mo0.2 and Ni3Al0.8Mo0.2 and graphite-containing Ni2.8Al1Mo0.2C(0.25, 0.5) and Ni3Al0.8Mo0.2C(0.25, 0.5) mixtures. In this case, some amount of Mo remains beyond the solid solution. Graphite added to a starting mixture decreases the Mo solubility and favors the amorphization of solid solutions. The complete amorphization was found for the mixture with the 5 at % C and 5 at % Mo, which was added instead of Ni. The heating of mechanically synthesized (MS) powder alloys leads to the ordering of carbon-free and carbon-containing solid solutions with the formation of the L12 and E21 structure, respectively. In the course of the ordering of the Ni(Al, Mo, C) solid solutions, Mo and carbon precipitate in the form of the molybdenum carbide (Mo2C) second phase. The hardness of the MS three-phase Ni-Al-Mo-C solid solutions subjected to hot isostatic pressing is determined by the mass fraction of the formed Mo2C carbide. It is shown that the carbon content in the multicomponent antiperovskite can be estimated by analyzing the ratio of integral intensities of superlattice reflections I (100)/ I (110).

  13. Thermodynamic properties of binary mixtures containing dimethyl carbonate+2-alkanol: Experimental data, correlation and prediction by ERAS model and cubic EOS

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Mohammad, E-mail: [Department of Chemistry, Science and Research Branch, Islamic Azad University, Khouzestan (Iran, Islamic Republic of)


    Densities and viscosities for binary mixtures of dimethyl carbonate with 2-propanol up to 2-heptanol were measured at various temperatures and ambient pressure. From experimental data, excess molar volumes, V{sub m}{sup E}. were calculated and correlated by the Redlich–Kister equation to obtain the binary coefficients and the standard deviations. Excess molar volumes, V{sub m}{sup E}, are positive for all studied mixtures over the entire range of the mole fraction. The ERAS-model has been applied for describing the binary excess molar volumes and also Peng–Robinson–Stryjek–Vera (PRSV) equation of state (EOS) has been used to predict the binary excess molar volumes and viscosities. Also several semi-empirical models were used to correlate the viscosity of binary mixtures.

  14. Sorption of a phenols mixture in aqueous solution with activated carbon; Sorcion de una mezcla de fenoles en solucion acuosa con carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Mejia M, D


    The constant population growth and the quick industrialization have caused severe damages to our natural aquifer resources for a great variety of organic and inorganic pollutants. Among these they are those phenol compounds that are highly toxic, resistant (to the degradation chemistry) and poorly biodegradable. The phenolic compounds is used in a great variety of industries, like it is the production of resins, nylon, plastifiers, anti-oxidants, oil additives, drugs, pesticides, colorants, explosives, disinfectants and others. The disseminated discharges or effluents coming from the industrial processes toward lakes and rivers are causing a growing adverse effect in the environment, as well as a risk for the health. Numerous studies exist on the phenols removal and phenols substituted for very varied techniques, among them they are the adsorption in activated carbon. This finishes it has been used successfully for the treatment of residual waters municipal and industrial and of drinking waters and it is considered as the best technique available to eliminate organic compounds not biodegradable and toxic present in aqueous solution (US EPA, 1991). However a little information exists on studies carried out in aqueous systems with more of a phenolic compound. The activated carbon is broadly used as adsorbent due to its superficial properties in the so much treatment of water as of aqueous wastes, adsorbent for the removal of organic pollutants. The main objective of this work is the adsorption of a aqueous mixture of phenol-4 chloro phenol of different concentrations in activated carbon of mineral origin of different meshes and to diminish with it their presence in water. The experiments were carried out for lots, in normal conditions of temperature and pressure. The experimental results show that the removal capacity depends so much of the superficial properties of the sorbent like of the physical properties and chemical of the sorbate. The isotherms were carried

  15. Removal of two ionic dyes from water by MgO-loaded porous carbons prepared through one-step process from poly(ethylene terephthalate)/magnesium carbonate mixtures

    Indian Academy of Sciences (India)

    A Czyżewski; J Karolczyk; A Usarek; J Przepiórski


    Mixtures of poly(ethylene terephthalate) and magnesium carbonate at different weight ratios were heated up to 850°C in argon atmosphere. During heating, components of the initial mixtures underwent thermal decomposition yielding porous carbon materials loaded with different amounts of magnesium oxide. Structural characteristics of the prepared materials were determined from adsorption/desorption isotherms of nitrogen, measured at 77 K. For reference, portions of the products obtained were acid-washed to obtain MgO-free carbons. Pore structures of the prepared materials were strongly dependent on the quantitative compositions of starting mixtures. As a rule, specific surface areas determined for acid-washed materials were much higher than those for MgO-loaded carbons. The adsorption abilities of obtained materials towards cationic (Basic Red 18) and anionic (Reactive Red 198) dyes as model contaminants were examined. Surprisingly, in spite of relatively low specific surface areas, substantially high adsorption of the dyes on MgO-loaded carbons was observed. An influence of specific surface area and the role of magnesium oxide presence on the adsorption capacity of the acquired sorbents were studied.

  16. New (p, {rho}, T) data for carbon dioxide - Nitrogen mixtures from (250 to 400) K at pressures up to 20 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Mondejar, M.E.; Martin, M.C. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, Escuela de Ingenierias Industriales, Universidad de Valladolid, Paseo del Cauce, 59, E-47011 Valladolid (Spain); Span, R. [Lehrstuhl fuer Thermodynamik, Fakultaet fuer Maschinenbau Gebaeude IB, Ebene 5, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum (Germany); Chamorro, C.R., E-mail: [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, Escuela de Ingenierias Industriales, Universidad de Valladolid, Paseo del Cauce, 59, E-47011 Valladolid (Spain)


    Highlights: > Densities of two mixtures of nitrogen and carbon dioxide are reported. > Experimental data are compared with calculated densities from the equation of state. > Experimental data agree with the equation of state for low pressures above 300 K. > The equation of state shows higher deviations than expected at high pressures. - Abstract: Comprehensive (p, {rho}, T) measurements on two binary mixtures (0.10 CO{sub 2} + 0.90 N{sub 2} and 0.15 CO{sub 2} + 0.85 N{sub 2}) were carried out in the gas phase at seven isotherms between (250 and 400) K and pressures up to 20 MPa using a single sinker densimeter with magnetic suspension coupling. A total of 69 (p, {rho}, T) data for the first mixture and 69 (p, {rho}, T) data for the second are presented in this article. The uncertainty in density was estimated to be (0.02 to 0.15)%, while the uncertainty in temperature was 3.9 mK and the uncertainty in pressure was less than 0.015% (coverage factor k = 2). Experimental results were compared with densities calculated from the GERG equation of state and with data reported by other authors for similar mixtures. Results yielded that, while deviations between experimental data and values calculated from the GERG equation were lower than 0.05% in density for low pressures, the relative error at high pressures and low temperatures increased to about (0.2 to 0.3)%. The main aim of this work was to contribute to an accurate density data base for CO{sub 2}/N{sub 2} mixtures and to check or improve equations of state existing for these binary mixtures.


    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Juang, K.-J.; Qiu, J.-M.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Jiménez-Escobar, A.; Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Fung, H.-S. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Ip, W.-H. [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)


    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H{sub 2}S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H{sub 2}S and CO{sub 2}:H{sub 2}S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS{sub 2}, OCS, SO{sub 2}, etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H{sub 2}S ice mixtures is higher than that of CO{sub 2}:H{sub 2}S ice mixtures; (2) a lower concentration of H{sub 2}S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS{sub 2} differ significantly upon VUV and EUV irradiations. Furthermore, CS{sub 2} was produced only after VUV photoprocessing of CO:H{sub 2}S ices, while the VUV-induced production of SO{sub 2} occurred only in CO{sub 2}:H{sub 2}S ice mixtures. More generally, the production yields of OCS, H{sub 2}S{sub 2}, and CS{sub 2} were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H{sub 2}S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments.

  18. Synthesis of single-walled carbon nanotubes by the pyrolysis of a compression activated iron(II) phthalocyanine/phthalocyanine metal-free derivative/ferric acetate mixture

    Indian Academy of Sciences (India)

    Tawanda Mugadza; Edith Antunes; Tebello Nyokong


    This paper reports on the synthesis of single walled carbon nanotubes (SWCNTs) from an activated mixture of iron (II) phthalocyanine, its metal-free derivative and ferric acetate. The powdered mixture was activated by compression into a tablet by applying a force of 300 kN, followed by re-grinding into powder and heating it to high temperatures (1000°C). The activation by compression resulted in more than 50% debundling of SWCNTs as judged by transition electron microscopy. Acid functionalization of the SWCNTs was confirmed by the increase in the D:G ratio from 0.56 to 0.87 in the Raman spectra and the observation of an average of one carboxylic acid group per 13 carbon atoms from thermogravimetric analysis (TGA). TGA also showed that the initial decomposition temperatures for the activated and non-activated mixtures to be 205°C and 245°C, respectively. Hence, activation leads to the lowering of the pyrolysis temperature of the phthalocyanines. X-ray diffraction, electronic absorption and Fourier transform infrared spectra were also employed to characterize the SWCNT.

  19. Microporous-mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them (United States)

    Härmas, M.; Thomberg, T.; Kurig, H.; Romann, T.; Jänes, A.; Lust, E.


    Various electrochemical methods have been applied to establish the electrochemical characteristics of the electrical double layer capacitor (EDLC) consisting of the 1 M triethylmethylammonium tetrafluoroborate solution in acetonitrile and activated carbon based electrodes. Activated microporous carbon materials used for the preparation of electrodes have been synthesized from the hydrothermal carbonization product (HTC) prepared via hydrothermal carbonization process of D-(+)-glucose solution in H2O, followed by activation with ZnCl2, KOH or their mixture. Highest porosity and Brunauer-Emmett-Teller specific surface area (SBET = 2150 m2 g-1), micropore surface area (Smicro = 2140 m2 g-1) and total pore volume (Vtot = 1.01 cm3 g-1) have been achieved for HTC activated using KOH with a mass ratio of 1:4 at 700 °C. The correlations between SBET, Smicro, Vtot and electrochemical characteristics have been studied to investigate the reasons for strong dependence of electrochemical characteristics on the synthesis conditions of carbon materials studied. Wide region of ideal polarizability (ΔV ≤ 3.0 V), very short characteristic relaxation time (0.66 s), and high specific series capacitance (134 F g-1) have been calculated for the mentioned activated carbon material, demonstrating that this system can be used for completing the EDLC with high energy- and power densities.

  20. Spectrographic determination of boron and silicon in uranium tetrafluoride: Study of the chemical reactions in the electrode cavity when ZnO is used as a uranium excitation suppressor; Determinacion espectrografica de Boro y Silicio en Tetrafluoruro de Unraio: Estudio de las reacciones quimicas que tienen lugar en el crater del electrodo al autilizar ZnO como supresor de la excitacion del Uranio

    Energy Technology Data Exchange (ETDEWEB)

    Alduan, F. A.; Capdevila, C.; Rosa, M.


    A method has been developed for determining traces of boron and silicon in uranium tetrafluoride. Use is made of zinc oxide to decrease the volatilization of uranium and achieve high sensitivities. The thermochemical reactions which occur in the anode cavity during the arcing process have been investigated. UO{sub 2} and a uranium, zinc and fluorine compound, both less volatile than uranium tetrafluoride, are formed. (Author)

  1. Red-shift of the photoluminescent emission peaks of CdTe quantum dots due to the synergistic interaction with carbon quantum dot mixtures (United States)

    Pelayo, E.; Zazueta, A.; López-Delgado, R.; Saucedo, E.; Ruelas, R.; Ayón, A.


    We report the relatively large red-shift effect observed in down-shifting carbon quantum dots (CQDs) that is anticipated to have a positive impact on the power conversion efficiency of solar cells. Specifically, with an excitation wavelength of 390 nm, CQDs of different sizes, exhibited down-shifted emission peaks centered around 425 nm. However, a solution comprised of a mixture of CQDs of different sizes, was observed to have an emission peak red-shifted to 515 nm. The effect could arise when larger carbon quantum dots capture the photons emitted by their smaller counterparts followed by the subsequent re-emission at longer wavelengths. Furthermore, the red-shift effect was also observed in CdTe QDs when added to a solution with the aforementioned mixture of Carbon QDs. Thus, whereas a solution solely comprised of a collection of CdTe QDs of different sizes, exhibited a down-shifted photoluminescence centered around 555 nm, the peak was observed to be further red-shifted to 580 nm when combined with the solution of CQDs of different sizes. The quantum dot characterization included crystal structure analysis as well as photon absorption and photoluminescence wavelengths. Subsequently, the synthesized QDs were dispersed in a polymeric layer of poly-methyl-methacrylate (PMMA) and incorporated on functional and previously characterized solar cells, to quantify their influence in the electrical performance of the photovoltaic structures. We discuss the synthesis and characterization of the produced Carbon and CdTe QDs, as well as the observed improvement in the power conversion efficiency of the fabricated photovoltaic devices.

  2. Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment (United States)

    Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar


    It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.

  3. Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture (United States)

    Lee, Min-Sang; Park, Mira; Kim, Hak Yong; Park, Soo-Jin


    In this study, N-containing pitch-based activated carbons (NPCs) were prepared using petroleum pitch with a low softening point and melamine with a high nitrogen content. The major advantage of the preparation method is that it enables variations in chemical structures and textural properties by steam activation at high temperatures. The adequate micropore structures, appropriate chemical modifications, and high adsorption enthalpies of NPCs are favorable for CO2 adsorption onto carbon surfaces. Furthermore, the structure generates a considerable gas/N-containing carbon interfacial area, and provides selective access to CO2 molecules over N2 molecules by offering an increased number of active sites on the carbon surfaces. The highest CO2/N2 selectivity, i.e., 47.5, and CO2 adsorption capacity for a CO2/N2 (0.15:0.85) binary gas mixture, i.e., 5.30 wt%, were attained at 298 K. The NPCs also gave reversible and durable CO2-capturing performances. All the results suggest that NPCs are promising CO2 sorbents, which can meet the challenges of current CO2 capture and separation techniques. PMID:26987683

  4. Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture (United States)

    Lee, Min-Sang; Park, Mira; Kim, Hak Yong; Park, Soo-Jin


    In this study, N-containing pitch-based activated carbons (NPCs) were prepared using petroleum pitch with a low softening point and melamine with a high nitrogen content. The major advantage of the preparation method is that it enables variations in chemical structures and textural properties by steam activation at high temperatures. The adequate micropore structures, appropriate chemical modifications, and high adsorption enthalpies of NPCs are favorable for CO2 adsorption onto carbon surfaces. Furthermore, the structure generates a considerable gas/N-containing carbon interfacial area, and provides selective access to CO2 molecules over N2 molecules by offering an increased number of active sites on the carbon surfaces. The highest CO2/N2 selectivity, i.e., 47.5, and CO2 adsorption capacity for a CO2/N2 (0.15:0.85) binary gas mixture, i.e., 5.30 wt%, were attained at 298 K. The NPCs also gave reversible and durable CO2-capturing performances. All the results suggest that NPCs are promising CO2 sorbents, which can meet the challenges of current CO2 capture and separation techniques.

  5. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    Energy Technology Data Exchange (ETDEWEB)

    Myint, P. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Firoozabadi, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  6. Supercritical Phase Equilibria Modeling of Glyceride Mixtures and Carbon Dioxide Using the Group Contribution EoS

    Directory of Open Access Journals (Sweden)

    Tiziana Fornari


    Experimental data was obtained in a countercurrent packed extraction column at pressures ranging from 16 to 25 MPa and temperatures from 313 to 368 K. The GC-EoS model was applied in a completely predictive manner to simulate the phase equilibria behavior of the multistage separation process. The chemical analysis of the glyceride mixture allowed a significant simplification of its complex composition and thus, a simple and satisfactory simulation of the supercritical extraction process was achieved.

  7. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. (United States)

    Lee, Chang-Gu; Lee, Soonjae; Park, Jeong-Ann; Park, Chanhyuk; Lee, Sang Jeong; Kim, Song-Bae; An, Byungryul; Yun, Seong-Taek; Lee, Sang-Hyup; Choi, Jae-Woo


    In this study, the characterizations and adsorption efficiencies for chromium, copper and nickel were evaluated using manufacture-grade Fe2O3-carbon foam. SEM, XRD, XRF and BET analyses were performed to determine the characteristics of the material. Various pore sizes (12-420 μm) and iron contents (3.62%) were found on the surface of the Fe2O3-carbon foam. Fe2O3-carbon foam was found to have excellent adsorption efficiency compared to carbon foam for mixed solutions of cationic and anionic heavy metals. The adsorption capacities for chromium, copper and nickel were 6.7, 3.8 and 6.4 mg/g, respectively, which were obtained using a dual exponential adsorption model. In experiments with varying dosages of the Fe2O3 powder, no notable differences were observed in the removal efficiency. In a fixed-bed column test, Fe2O3-carbon foam achieved adsorption capacities for chromium, copper and nickel of 33.0, 12.0 and 9.5 mg/g, respectively, after 104 h. Based on these results, Fe2O3-carbon foam was observed to be a promising material for treatment of plating wastewater.

  8. Congener-specific carbon isotopic analysis of technical PCB and PCN mixtures using two-dimensional gas chromatography-isotope ratio mass spectrometry. (United States)

    Horii, Yuichi; Kannan, Kurunthachalam; Petrick, Gert; Gamo, Toshitaka; Falandysz, Jerzy; Yamashita, Nobuyoshi


    Analysis of stable carbon isotope fractionation is a useful method to study the sources and fate of anthropogenic organic contaminants such as polychlorinated biphenyls (PCBs) in the environment. To evaluate the utility of carbon isotopes, determination of isotopic ratios of 13C/12C in source materials, for example, technical PCB preparations, is needed. In this study, we determined delta13C values of 31 chlorobiphenyl (CB) congeners in 18 technical PCB preparations and 15 chloronaphthalene (CN) congeners in 6 polychlorinated naphthalene preparations using two-dimensional gas chromatography-combustion furnace-isotope ratio mass spectrometry (2DGC-C-IRMS). Development of 2DGC-IRMS enabled improved resolution and sensitivity of compound-specific carbon isotope analysis (CSIA) of CB or CN congeners. Delta13C values of PCB congeners ranged from -34.4 (Delors) to -22.0/1000 (Sovol). Analogous PCB preparations with similar chlorine content, but different geographical origin, had different delta13C values. PCB preparations from Eastern European countries--Delors, Sovol, Trichlorodiphenyl, and Chlorofen--had distinct delta13C values. PCB mixtures showed increased 13C depletion with increasing chlorine content. Delta13C values for individual CB congeners varied depending on the degree of chlorination in technical mixtures. Delta13C values of CN congeners in Halowaxes ranged from -26.3 to -21.7/1000 and these values are within the ranges observed for PCBs. This study establishes the range of delta13C values in technical PCB and PCN preparations, which may prove to be useful in the determination of sources of these compounds in the environment. This is the first study to employ 2DGC-IRMS analysis of delta13C values in technical PCB and PCN preparations.

  9. Mixture Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.


    A mixture experiment involves combining two or more components in various proportions or amounts and then measuring one or more responses for the resulting end products. Other factors that affect the response(s), such as process variables and/or the total amount of the mixture, may also be studied in the experiment. A mixture experiment design specifies the combinations of mixture components and other experimental factors (if any) to be studied and the response variable(s) to be measured. Mixture experiment data analyses are then used to achieve the desired goals, which may include (i) understanding the effects of components and other factors on the response(s), (ii) identifying components and other factors with significant and nonsignificant effects on the response(s), (iii) developing models for predicting the response(s) as functions of the mixture components and any other factors, and (iv) developing end-products with desired values and uncertainties of the response(s). Given a mixture experiment problem, a practitioner must consider the possible approaches for designing the experiment and analyzing the data, and then select the approach best suited to the problem. Eight possible approaches include 1) component proportions, 2) mathematically independent variables, 3) slack variable, 4) mixture amount, 5) component amounts, 6) mixture process variable, 7) mixture of mixtures, and 8) multi-factor mixture. The article provides an overview of the mixture experiment designs, models, and data analyses for these approaches.

  10. Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing (United States)

    Flaten, Ellen Marie; Seiersten, Marion; Andreassen, Jens-Petter


    Long subsea tie-ins for transportation of moist gas and condensate require corrosion and hydrate control. The combination of alkalinity for corrosion mitigation and monoethylene glycol (MEG) for hydrate inhibition strongly affects the tolerance for produced formation water. The elevated alkalinity downstream of the injection point increases the risk of carbonate formation. Calcium carbonate is the most common precipitate at such conditions. Our previous findings (Flaten et al., 2009) [1] show that MEG governs calcium carbonate precipitation and promotes formation of the metastable polymorph vaterite. This paper describes crystal growth of vaterite in mixed MEG water solvent with 0-70 wt% MEG at temperatures of 40 and 70 °C in solutions with high calcium to carbonate ratios representative of the production conditions. Results of some experiments in solutions with stoichiometric amounts of the reactants are included for comparison. The growth rate of vaterite can be described by second-order kinetics in most of the investigated supersaturation range. The growth order is lower at high MEG contents and high calcium concentrations when the carbonate activity is reduced in order to maintain comparable supersaturation values. It is then probable that the low carbonate activity makes the reaction diffusion limited. MEG reduces the growth rate constant of vaterite when the reaction is second order. Increasing the MEG concentration from 0 to 50 wt%, decreases the growth rate constant kr from 1.9 to 0.7 nm/s at 40 °C and from 2.6 to 1.2 nm/s at 70 °C. The growth reduction can be explained by a change of either de-hydration or diffusion rate along the surface when the ions are incorporated into the crystal lattice. Further investigations into which of the two mechanisms that is rate determining is outside the scope of this work.

  11. Use of eutectic mixtures for preparation of monolithic carbons with CO₂-adsorption and gas-separation capabilities. (United States)

    López-Salas, N; Jardim, E O; Silvestre-Albero, A; Gutiérrez, M C; Ferrer, M L; Rodríguez-Reinoso, F; Silvestre-Albero, J; del Monte, F


    With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad "highways" leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.

  12. Electrochemical oxidation of carbon monoxide: from platinum single crystals to low temperature fuel catalysts. Part II: Electrooxidation of H2, CO and H2/CO mixtures on well characterized PtMo alloy

    Directory of Open Access Journals (Sweden)



    Full Text Available The oxidation of hydrogen and hydrogen–carbon monoxide mixture has been investigated on well-characterized metallurgically prepared platinum–molybdenum (PtMo alloys. It was concluded that the optimum surface concentration of molybdenum is near 23 mol.%. Based on experimentally determined parameters and simulations, the mechanism of the oxidation of CO/H2 mixtures is discussed.

  13. The solid-liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids: differing by four carbon atoms. (United States)

    Costa, Mariana C; Sardo, Mariana; Rolemberg, Marlus P; Ribeiro-Claro, Paulo; Meirelles, Antonio J A; Coutinho, João A P; Krähenbühl, M A


    The complete solid-liquid phase diagrams for four binary mixtures of saturated fatty acids are presented, for the first time, in this work. These mixtures are formed by caprylic acid (C(8:0))+lauric acid (C(12:0)), capric acid (C(10:0))+myristic acid (C(14:0)), lauric acid (C(12:0))+palmitic acid (C(16:0)) and myristic acid (C(14:0))+stearic acid (C(18:0)). The phase diagrams were obtained by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). FT-Raman spectrometry and polarized light microscopy were used to complement the characterization for a complete understanding of the phase diagram. All of the phase diagrams here reported show the same global behavior that is far more complex than previously accepted. They present not only peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common in fatty acids, and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules with implications in various industrial applications.

  14. Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide

    DEFF Research Database (Denmark)

    Musko, Nikolai; Jensen, Anker Degn; Baiker, Alfons


    performed using a 5wt% Pd on activated carbon in custom-designed high pressure autoclaves at 323K. The Cubic-Plus-Association (CPA) equation of state was employed to model the phase behaviour of the experimentally studied systems. CPA binary interaction parameters were estimated based on the experimental...

  15. Ternary mixtures of nitrile-functionalized glyme, non-flammable hydrofluoroether and fluoroethylene carbonate as safe electrolytes for lithium-ion batteries (United States)

    Liu, Yi; Fang, Shaohua; Shi, Pei; Luo, Dong; Yang, Li; Hirano, Shin-ichi


    New mixtures of 3-(2-methoxyethoxy)propanenitrile, fluoroethylene carbonate and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether are introduced as safe electrolytes for lithium-ion batteries. The electrolytes with 30 wt% 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether can own high safety and better wettability to separator and electrodes than the conventional electrolyte. The oxidation potentials of these electrolytes are about 4.8 V versus Li/Li+, and their conductivity can reach 5.42 mS cm-1 at 25 °C. Graphite/LiMn2O4 coin cells are used to evaluate the electrochemical performances, and this kind of safe electrolytes can exhibit better rate and cycle performances than the conventional electrolyte. These results indicate that such ternary electrolytes have a great potential for practical application.

  16. Thermodynamic and Experimental Study of the Energetic Cost Involved in the Capture of Carbon Dioxide by Aqueous Mixtures of Commonly Used Primary and Tertiary Amines. (United States)

    Arcis, Hugues; Coulier, Yohann; Coxam, Jean-Yves


    The capture of carbon dioxide with chemical solvents is one solution to mitigate greenhouse gas emissions from anthropogenic sources and thus tackle climate change. Recent research has been focused on optimizing new kinds of advanced absorbents including aqueous amine blends, but critical downsides such as the large energetic cost involved with the industrial process remain. To address this issue, a better understanding of the energetic interactions existing in solution is necessary. In this paper, we report direct experimental measurements of the energy cost involved in the solvation of CO2 in two aqueous amine blends at different temperatures. The chemical solvents were designed as aqueous mixtures of commonly used primary and tertiary amines to study the influence of the different chemical properties inferred by the amine class. We have also applied a thermodynamic model to represent the energetic effects that take place in solution during CO2 dissolution in these mixtures, where all parameters were taken from previous studies focused on single amine absorbents. The noteworthy agreement observed with the reported experimental heats of absorption and with literature vapor liquid equilibrium properties confirmed the relevance of the underlying molecular mechanisms considered in our model, and suggest that this model would prove useful to investigate CO2 dissolution in other amine blends.

  17. Removal of a mixture tetracycline-tylosin from water based on anodic oxidation on a glassy carbon electrode coupled to activated sludge. (United States)

    Yahiaoui, Idris; Aissani-Benissad, Farida; Fourcade, Florence; Amrane, Abdeltif


    The purpose of this study was first to examine the electrochemical oxidation of two antibiotics, tetracycline (TC) and tylosin (Tylo), considered separately or in mixture, on a glassy carbon electrode in aqueous solutions; and then to assess the relevance of such electrochemical process as a pre-treatment prior to a biological treatment (activated sludge) for the removal of these antibiotics. The influence of the working potential and the initial concentration of TC and Tylo on the electrochemical pre-treatment process was also investigated. It was noticed that antibiotics degradation was favoured at high potential (2.4 V/ saturated calomel electrode (SCE)), achieving total degradation after 50 min for TC and 40 min for Tylo for 50 mg L(-1) initial concentration, with a higher mineralization efficiency in the case of TC. The biological oxygen demand in 5 days (BOD5)/Chemical oxygen demand (COD) ratio increased substantially, from 0.033 to 0.39 and from 0.038 to 0.50 for TC and Tylo, respectively. Regarding the mixture (TC and Tylo), the mineralization yield increased from 10.6% to 30.0% within 60 min of reaction time when the potential increased from 1.5 to 2.4 V/SCE and the BOD5/COD ratio increased substantially from 0.010 initially to 0.29 after 6 h of electrochemical pre-treatment. A biological treatment was, therefore, performed aerobically during 30 days, leading to an overall decrease of 72% of the dissolved organic carbon by means of the combined process.

  18. Effect of 4% titanium tetrafluoride solution on the erosion of permanent and deciduous human enamel: an in situ/ex vivo study

    Directory of Open Access Journals (Sweden)

    Ana Carolina Magalhães


    Full Text Available This in situ/ex vivo study assessed the effect of titanium tetrafluoride (TiF4 solution on erosion of permanent (P and deciduous (d human enamel. Ten volunteers wore acrylic palatal appliances containing 4 enamel samples, divided into two rows: TiF4 and no - TiF4 (control. Each row contained one deciduous and one permanent enamel sample. During the 1st day, formation of a salivary pellicle was allowed. At the 2nd day, the 4% TiF4 solution was applied on one row (TiF4, while the other row remained untreated (control. From the 3rd until the 7th day, the samples were subjected to erosion by immersion in a cola drink for 5 min, 4 times/day. Enamel alterations were determined by microhardness testing (%SMHC. Data were analyzed using 2 two-way ANOVA and Tukey's post hoc test (α=0.05. The mean %SMHC (±SD amounted to: P (TiF4 - 73.32 ± 5.16 and control - 83.49 ± 4.59 and d (TiF4 - 83.01 ± 7.41 and control - 75.75 ± 2.57. In conclusion, the application of 4% TiF4 solution reduced the softening of permanent enamel but not of deciduous enamel significantly. However, no significant differences were detected between the permanent and deciduous enamel when the factor substrate was considered.

  19. Influence of the glass-calcium carbonate mixture's characteristics on the foaming process and the properties of the foam glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng


    We prepared foam glasses from cathode-ray-tube panel glass and CaCO3 as a foaming agent. We investigated the influences of powder preparation, CaCO3 concentration and foaming temperature and time on the density, porosity and homogeneity of the foam glasses. The results show that the decomposition...... kinetics of CaCO3 has a strong influence on the foaming process. The decomposition temperature can be modified by varying the milling time of the glass–CaCO3 mixture and thus for a specific CaCO3 concentration an optimum milling time exists, at which a minimum in density and a homogeneous closed porosity...... are obtained. Under the optimum preparation conditions the samples exhibit a density of 260 kg/m3. The thermal conductivity of the foam glass was measured to be 50–53 mW/(m K). The observed dependence of the foaming process on the decomposition kinetics of the foaming agent can be applied as a universal rule...

  20. Structural characteristics of copper/hydrogenated amorphous carbon composite films prepared by microwave plasma-assisted deposition processes from methane-argon and acetylene-argon gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Thiery, F.; Pauleau, Y.; Grob, J.J.; Babonneau, D


    Copper/hydrogenated amorphous carbon (Cu/a-C:H) composite films have been deposited on silicon substrates by a hybrid technique combining microwave plasma-assisted chemical vapor deposition and sputter-deposition from methane-argon and acetylene-argon gas mixtures. The major objective of this work was to investigate the effect of the carbon gas precursor on the structural characteristics of Cu/a-C:H composite films deposited at ambient temperature. The major characteristics of CH{sub 4}-argon and C{sub 2}H{sub 2}-argon plasmas were analyzed by Langmuir probe measurements. The composition of films was determined by Rutherford backscattering spectroscopy, energy recoil detection analyses and nuclear reaction analyses. The carbon content in the films was observed to vary in the range 20-77 at.% and 7.5-99 at.% as the CH{sub 4} and C{sub 2}H{sub 2} concentrations in the gas phase increased from 10 to 100%, respectively. The atom number ratio H/C in the films was scattered approximately 0.4 whatever the carbon gas precursor used. The crystallographic structure and the size of copper crystallites incorporated in the a-C were determined by X-ray diffraction techniques. The copper crystallite size decreased from 20 nm in pure copper films to less than 5 nm in Cu/a-C:H films containing more than 40 at.% of carbon. Grazing incidence small angle X-ray scattering measurements were performed to investigate the size distribution and distance of copper crystallites as functions of the deposition parameters. The structural characteristics of copper crystallites were dependent on the hydrocarbon gas precursor used. The crystallite size and the width of the size distribution were homogeneous in films deposited from CH{sub 4}. Copper crystallites with an anisotropic shape were found in films deposited from C{sub 2}H{sub 2}. The major radicals formed in the plasma and condensed on the surface of growing films, namely CH and C{sub 2}H radicals for films produced from CH{sub 4} and C

  1. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates. (United States)

    Izac, Marie; Garnier, Dominique; Speck, Denis; Lindley, Nic D


    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  2. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    Directory of Open Access Journals (Sweden)

    Marie Izac

    Full Text Available It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  3. Catalytic hydrothermal treatment of pulping effluent using a mixture of Cu and Mn metals supported on activated carbon as catalyst. (United States)

    Yadav, Bholu Ram; Garg, Anurag


    The present study was performed to investigate the performance of activated carbon-supported copper and manganese base catalyst for catalytic wet oxidation (CWO) of pulping effluent. CWO reaction was performed in a high pressure reactor (capacity = 0.7 l) at temperatures ranging from 120 to 190 °C and oxygen partial pressures of 0.5 to 0.9 MPa with the catalyst concentration of 3 g/l for 3 h duration. With Cu/Mn/AC catalyst at 190 °C temperature and 0.9 MPa oxygen partial pressures, the maximum chemical oxygen demand (COD), total organic carbon (TOC), lignin, and color removals of 73, 71, 86, and 85 %, respectively, were achieved compared to only 52, 51, 53, and 54 % removals during the non-catalytic process. Biodegradability (in terms of 5-day biochemical oxygen demand (BOD5) to COD ratio) of the pulping effluent was improved to 0.38 from an initial value of 0.16 after the catalytic reaction. The adsorbed carbonaceous fraction on the used catalyst was also determined which contributed meager TOC reduction of 3-4 %. The leaching test showed dissolution of the metals (i.e., Cu and Mn) from the catalysts in the wastewater during CWO reaction at 190 °C temperature and 0.9 MPa oxygen partial pressures. In the future, the investigations should focus on the catalyst reusability.

  4. Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar. (United States)

    Darby, Ian; Xu, Cheng-Yuan; Wallace, Helen M; Joseph, Stephen; Pace, Ben; Bai, Shahla Hosseini


    This study aims to examine the effects of different organic treatments including compost (generated from cattle hide waste and plant material), compost mixed with biochar (compost + biochar) and a new formulation of organo-mineral biochar (produced by mixing biochar with clay, minerals and chicken manure) on carbon (C) nitrogen (N) cycling. We used compost at the rate of 20 t ha(-1), compost 20 t ha(-1) mixed with 10 t ha(-1) biochar (compost + biochar) and organo-mineral biochar which also contained 10 t ha(-1) biochar. Control samples received neither of the treatments. Compost and compost + biochar increased NH4 (+) -N concentrations for a short time, mainly due to the release of their NH4 (+) -N content. Compost + biochar did not alter N cycling of the compost significantly but did significantly increase CO2 emission compared to control. Compost significantly increased N2O emission compared to control. Compost + biochar did not significantly change N supply and also did not decrease CO2 and N2O emissions compared to compost, suggesting probably higher rates of biochar may be required to be added to the compost to significantly affect compost-induced C and N alteration. The organo-mineral biochar had no effect on N cycling and did not stimulate CO2 and N2O emission compared to the control. However, organo-mineral biochar maintained significantly higher dissolved organic carbon (DOC) than compost and compost + biochar from after day 14 to the end of the incubation. Biochar used in organo-mineral biochar had increased organic C adsorption which may become available eventually. However, increased DOC in organo-mineral biochar probably originated from both biochar and chicken manure which was not differentiated in this experiment. Hence, in our experiment, compost, compost + biochar and organo-mineral biochar affected C and N cycling differently mainly due to their different content.

  5. Transferable SAFT-VR models for the calculation of the fluid phase equilibria in reactive mixtures of carbon dioxide, water, and n-alkylamines in the context of carbon capture. (United States)

    Mac Dowell, N; Pereira, F E; Llovell, F; Blas, F J; Adjiman, C S; Jackson, G; Galindo, A


    The amine functional groups are fundamental building blocks of many molecules that are central to life, such as the amino acids, and to industrial processes, such as the alkanolamines, which are used extensively for gas absorption. The modeling of amines and of mixtures of amines with water (H(2)O) and carbon dioxide (CO(2)) is thus relevant to a number of applications. In this contribution, we use the statistical associating fluid theory for potentials of variable range (SAFT-VR) to describe the fluid phase behavior of ammonia + H(2)O + CO(2) and n-alkyl-1-amine + H(2)O + CO(2) mixtures. Models are developed for ammonia (NH(3)) and n-alkyl-1-amines up to n-hexyl-1-amine (CH(3)NH(2) to C(6)H(13)NH(2)). The amines are modeled as homonuclear chain molecules formed from spherical segments with additional association sites incorporated to mediate the effect of hydrogen-bonding interactions. The SAFT-VR approach provides a representation of the pure component fluid phase equilibria, on average, to within 1.48% of the experimental data in relative terms for the saturated liquid densities and vapor pressures. A simple empirical correlation is derived for the SAFT-VR parameters of the n -alkylamine series as a function of molecular weight. Aqueous mixtures of the amines are modeled using a model of water taken from previous work. The models developed for the mixtures are of high fidelity and can be used to calculate the binary fluid phase equilibrium of these systems to within 2.28% in relative terms for the temperature or pressure and 0.027 in absolute terms for the mole fraction. Regions of both vapor-liquid and liquid-liquid equilibria are considered. We also consider the reactive mixtures of amines and CO(2) in aqueous solution. To model the reaction of CO(2) with the amine, an additional site is included on the otherwise nonassociating CO(2) model. The unlike interaction parameters for the NH(3) + H(2)O + CO(2) ternary mixture are obtained by comparison to the

  6. CO selective methanation in hydrogen-rich gas mixtures over carbon nanotube supported Ru-based catalysts

    Institute of Scientific and Technical Information of China (English)

    Jun Xiong; Xinfa Dong; Lingling Li


    Series of carbon nanotube supported Ru-based catalysts were prepared by impregnation method and applied successfully for complete removal of CO by CO selective methanation from H2-rich gas stream conducted in a fixed-bed quartz tubular reactor at ambient pressure.It was found that the metal promoter,reduction temperature and metal loading affected the catalytic properties significantly.The most excellent performance was presented by 30 wt% Ru-Zr/CNTs catalyst reduced at 350 ℃.Since it decreased CO concentration to below 10 ppm from 12000 ppm by CO selective methanation at the temperature range of 180-240 ℃,and kept CO selectivity higher than 85% at the temperature below 200 ℃.Characterization using XRD,TEM,H2-TPR and XPS suggests that Zr modification of Ru/CNTs results in the weakening of the interaction between Ru and CNTs,a higher Ru dispersion and the oxidization of surface Ru.Amorphous and high dispersed Ru particles with small size were obtained for 30 wt% Ru-Zr/CNTs catalyst reduced at 350 ℃,leading to excellent catalytic performance in CO selective methanation.

  7. Numerical Simulation and Analysis of Migration Law of Gas Mixture Using Carbon Dioxide as Cushion Gas in Underground Gas Storage Reservoir

    Institute of Scientific and Technical Information of China (English)

    ChuanKai Niu; YuFei Tan


    One of the major technical challenges in using carbon dioxide ( CO2 ) as part of the cushion gas of the underground gas storage reservoir ( UGSR) is the mixture of CO2 and natural gas. To decrease the mixing extent and manage the migration of the mixed zone, an understanding of the mechanism of CO2 and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper, a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City, China. Using the validated model, the mixed characteristic of CO2 and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly, the impacts of the following factors on the migration mechanism are studied:the ratio of CO2 injection, the reservoir porosity and the initial operating pressure. Based on the results, the optimal CO2 injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2 as cushion gas for UGSR in real projects.

  8. Greening pharmaceutical applications of liquid chromatography through using propylene carbonate-ethanol mixtures instead of acetonitrile as organic modifier in the mobile phases. (United States)

    Tache, Florentin; Udrescu, Stefan; Albu, Florin; Micăle, Florina; Medvedovici, Andrei


    Substitution of acetonitrile (ACN) as organic modifier in mobile phases for liquid chromatography by mixtures of propylene carbonate (PC) and ethanol (EtOH) may be considered a greener approach for pharmaceutical applications. Such a replacement is achievable without any major compromise in terms of elution order, chromatographic retention, efficiency and peak symmetry. This has been equally demonstrated for reverse phase (RP), ion pair formation (IP) and hydrophilic interaction liquid chromatography (HILIC) separation modes. The impact on the sensitivity induced by the replacement between these organic solvents is discussed for UV-vis and mass spectrometric detection. A comparison between Van Deemter plots obtained under elution conditions based on ACN and PC/EtOH is presented. The alternative elution modes were also compared in terms of thermodynamic parameters, such as standard enthalpy (ΔH⁰) and entropic contributions to the partition between the mobile and the stationary phases, for some model compounds. Van't Hoff plots demonstrated that differences between the thermodynamic parameters are minor when shifting from ACN/water to PC/EtOH/water elution on an octadecyl chemically modified silicagel stationary phase. As long as large volume injection (LVI) of diluents non-miscible with the mobile phase is a recently developed topic having a high potential of greening the sample preparation procedures through elimination of the solvent evaporation stage, this feature was also assessed in the case of ACN replacement by PC/EtOH.

  9. Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H{sub 2}O mixture

    Energy Technology Data Exchange (ETDEWEB)

    Samiento-Bustos, E. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Rodriguez, J.G. Gonzalez [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico)], E-mail:; Uruchurtu, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Dominguez-Patino, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); U.A.E.M. Facultad de Ciencias Quimicas e Ingenieria, Av. Universidad 1001, 62209, Cuernavaca, Morelos (Mexico); Salinas-Bravo, V.M. [Instituto de Investigaciones Electricas, Gerencia de Materiales y Proceso Quimicos, Av. Reforma 113, Col. Palmira, CP 62490, Cuernavaca, Morelos (Mexico)


    The effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the mixture LiBr (55%) + ethylene glycol + H{sub 2}O at room temperature has been evaluated. Used inhibitors included LiNO{sub 3} (Lithium Nitrate), Li{sub 2}MoO{sub 4} (Lithium Molybdate) and Li{sub 2}CrO{sub 4} (Lithium Chromate) at concentrations of 5, 20 and 50 ppm. Electrochemical techniques included potentiodynamic polarization curves, electrochemical noise resistance (EN) and electrochemical impedance spectroscopy (EIS) measurements. Additionally, adsorption isotherms were calculated. The results obtained showed that both, the corrosion rate and the passive current density decreased with inhibitors, and, in general terms, inhibitors efficiency increased with inhibitor concentration, except in the case of Li{sub 2}CrO{sub 4,} where the highest efficiency was obtained with 20 ppm of inhibitor. Pitting potential with 5 ppm of inhibitor, regardless its chemical composition, was more active than in absence of inhibitor, increased at 20 ppm, especially with Li{sub 2}CrO{sub 4}, and remained unaltered with 50 ppm. EN measurements showed that at 5 ppm of inhibitor, the number of film rupture/repassivation events was higher than that obtained at 20 or 50 ppm. Adsorption isotherms suggested a different adsorption mechanism for each inhibitor, whereas EIS results suggested that the corrosion process when nitrates were added was under charge transfer control, but in the case of molybdates or chromates was under diffusion control.

  10. Hydrogen Sulphide Corrosion of Carbon and Stainless Steel Alloys Immersed in Mixtures of Renewable Fuel Sources and Tested Under Co-processing Conditions

    Directory of Open Access Journals (Sweden)

    Gergely András


    Full Text Available In accordance with modern regulations and directives, the use of renewable biomass materials as precursors for the production of fuels for transportation purposes is to be strictly followed. Even though, there are problems related to processing, storage and handling in wide range of subsequent uses, since there must be a limit to the ratio of biofuels mixed with mineral raw materials. As a key factor with regards to these biomass sources pose a great risk of causing multiple forms of corrosion both to metallic and non-metallic structural materials. To assess the degree of corrosion risk to a variety of engineering alloys like low-carbon and stainless steels widely used as structural metals, this work is dedicated to investigating corrosion rates of economically reasonable engineering steel alloys in mixtures of raw gas oil and renewable biomass fuel sources under typical co-processing conditions. To model a desulphurising refining process, corrosion tests were carried out with raw mineral gasoline and its mixture with used cooking oil and animal waste lard in relative quantities of 10% (g/g. Co-processing was simulated by batch-reactor laboratory experiments. Experiments were performed at temperatures between 200 and 300ºC and a pressure in the gas phase of 90 bar containing 2% (m3/m3 hydrogen sulphide. The time span of individual tests were varied between 1 and 21 days so that we can conclude about changes in the reaction rates against time exposure of and extrapolate for longer periods of exposure. Initial and integral corrosion rates were defined by a weight loss method on standard size of coupons of all sorts of steel alloys. Corrosion rates of carbon steels indicated a linear increase with temperature and little variation with composition of the biomass fuel sources. Apparent activation energies over the first 24-hour period remained moderate, varying between 35.5 and 50.3 kJ mol−1. Scales developed on carbon steels at higher

  11. Extended XG Equation for the Prediction of Adsorption Equilibrium of Vapor Mixture on Activated Carbon%混合蒸汽在活性炭上的吸附平衡

    Institute of Scientific and Technical Information of China (English)

    谢自立; 郭坤敏; 吴菊芳; 袁存乔


    The XG equation, which is developed by us previously for describing the adsorption equilibrium of purevapor on activated carbon, is extended to multi-component system. Verified by experimental data, the extendedXG equation was found to be more successful in predicting the adsorption equilibrium of vapor mixture on activatedcarbon than the extended Langmuir equation, the extended BET equation and the ideal adsorbed solution theory(IAST).

  12. A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor (United States)

    Semprini, L.; Azizian, M. F.; Kim, Y.


    Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to

  13. Characterization of coal- and petroleum-derived binder pitches and the interaction of pitch/coke mixtures in pre-baked carbon anodes (United States)

    Suriyapraphadilok, Uthaiporn

    Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder. During the manufacturing of carbon anodes, coal tar pitch is mixed with calcined petroleum coke. The mix of binder, filler and some additives is heated to about 50°C above the softening point of the pitch, typically 160°C. This temperature is sufficient to enable the pitch to wet the coke particles. The mix is then either extruded, vibrated, or pressed to form a green anode. The binding between coke and pitch is very important to the anode properties. There are different binder pitches used in this work, which were standard coal tar pitch (SCTP-2), petroleum pitch (PP-1), gasification pitch (GP-115), coal-extract pitch (WVU-5), and co-coking pitches (HTCCP and OXCCP). Petroleum pitch is a residue produced from heat-treatment and distillation of petroleum fractions. Production of coal-extract pitch involves a prehydrogenation of coal followed by extraction using a dipolar solvent. Gasification pitches are distilled by-product tars produced from the coal gasification process. Co-coking pitch was developed in this work and was obtained from the liquid distillate of co-coking process of coal and heavy petroleum residue. Understanding of composition and structures of pitches from different sources and processes would lead to greater understanding of the binding properties of pitch in carbon anodes and was one of the main focuses in this study. Characterization of pitches by using different techniques including gas chromatography/mass spectrometry (GC/MS), high performance liquid chromatography (HPLC), matrix-assisted laser desorption ionization/mass spectrometry (MALDI/MS), 1H and 13C solution-state nuclear magnetic resonance (NMR), and 13C solid-state NMR yield important chemistry and structural information. The binding, or in other words the interactions in the pitch/coke mixture, is another interest in this

  14. 短切PAN基碳纤维导电沥青混合料性能试验研究%Experimental research on performances for conductive asphalt mixture with chopped PAN-based carbon fiber

    Institute of Scientific and Technical Information of China (English)

    查旭东; 陈勇强; 程景


    In order to determine a reasonable carbon fiber contents for the conductive asphalt mixture with carbon fiber,the chopped polyacrylonitrile(PAN) based carbon fiber was selected as a conductive phase material.Many laboratory experiments were conducted to analyze the effect of the carbon fiber contents on the Marshall performances and the conductive performances for the AC-13C of conductive asphalt mixture and then verify its pavement performances.The results show that,under the same asphalt-aggregate ratio,with the increases of the carbon fiber contents,the bulk volume density,the voids filled with asphalt and the Marshall stability of the conductive asphalt mixture are appeared the trend from increasing to decreasing,the volume of air voids and the voids in mineral aggregate are changed as the relation from decreasing to increasing,but the flow value is increased continuously.The technical standards of AC,adjustment and SMA were applied to the asphalt mixtures with the different ranges of carbon fiber content,respectively,and the reasonable optimal asphalt-aggregate ratios were determined.There is a good semilogarithm correlation between the optimal asphalt-aggregate ratios and the carbon fiber contents.Under the optimal asphalt-aggregate ratio,a good correlation of power function is showed between the logarithms of electrical resistivity and the carbon fiber contents for the conductive asphalt mixture.All the pavement performances of asphalt mixture with 0.1% of carbon fiber content have attained the technical requirements of modified asphalt mixture and SMA in the climate conditions with high demand.Therefore,the suitable carbon fiber content can play an excellent role in reinforcing the conductive asphalt mixture and then form the stable conductive network.The technical requirements of various performances and conductive heating are integrated to recommend the suitable carbon fiber content as 0.1%.%为了确定碳纤维导电沥青混合料的合理碳纤

  15. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.


    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...

  16. Nitrocarburising in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.


    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammoniapropene- hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...

  17. Alternative process to produce UF{sub 4} using the effluent from ammonium uranyl carbonate route

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Joao B.; Garcia, Rafael Henrique Lazzari; Dal Vechio, Edvaldo, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Riella, Humberto G., E-mail: [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq) (Brazil); Carvalho, Elita F. Urano de; Durazzo, Michelangelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq) (Brazil)


    The Nuclear Fuel Centre of IPEN / CNEN - SP develops and manufactures dispersion fuel with high uranium concentration. It meets the demand of the IEA-R1 reactor and future research reactors to be constructed in Brazil. The fuel uses uranium silicide (U{sub 3}Si{sub 2}) dispersed in aluminum. For producing the fuel, the process of uranium hexafluoride (UF{sub 6}) conversion consist in obtaining U{sub 3}Si{sub 2} and / or U{sub 3}O{sub 8} through the preparation of intermediate compounds, among them ammonium uranyl carbonate - AUC, ammonium diuranate - DUA and uranium tetrafluoride - UF{sub 4}. This work describes a procedure for preparing uranium tetrafluoride via a dry route, using as raw material the filtrate generated when ammonium uranyl carbonate is routinely produced. The filtrate consists mainly of a solution containing high concentrations of ammonium (NH{sup 4+}), fluoride (F{sup -}), carbonate (CO{sup 3-}) and low concentrations of uranium. The procedure consists in recovering NH{sup 4F} and uranium, as UF{sub 4}, through the crystallization of ammonium bifluoride (NH{sub 4}HF{sub 2}) and, in a later step, the addition of UO{sub 2}, occurring fluoridation and decomposition. The UF{sub 4} obtained is further diluted in the UF{sub 4} produced routinely at IPEN / CNEN-SP by a wet route process. (author)

  18. Performance experiments of carbon fiber-reinforced conductive SBS modified asphalt mixture%碳纤维导电SBS改性沥青混合料性能试验

    Institute of Scientific and Technical Information of China (English)

    查旭东; 蔡良; 曹艳霞


    In order to analyze pavement performances and ice-melting effects of conductive asphalt concrete,the chopped polyacrylonitrile-based carbon fibers were incorporated into SBS modified asphalt mixture AC-13C to prepare the carbon fiber-reinforced conductive modified asphalt mixtures.Five kinds of carbon fiber contents were selected respectively to conduct the laboratory experiments such as mix ratio design,pavement performances and simulated ice-melting etc.The results show,with the increase of carbon fiber content,the optimum asphalt-aggregate ratios of SBS modified asphalt mixture increase linearly;the dy-namic stability,the immersion residual Marshall stability and the freeze-thaw split strength ratios change in parabolic relationship;the low-temperature flexural-tensile strengths and the failure strains increase in"S"curve,but the stiffness moduli decrease in"Z"curve.It il-lustrates when the proper carbon fibers were incorporated into the SBS modified asphalt mixture,the pavement performances such as high-temperature anti-rutting,low-tempera-ture anti-cracking and moisture damage resistance etc can be improved because of the bridg-ing,reinforced and toughening effects of carbon fiber.However,the excessive carbon fibers can cause the decrease of enhancement effect because of poor dispersion and easy cluster. Simultaneously,when the carbon fiber contents are more than 0.3%,the carbon fibers in-side mixtures are lapped each other to form the good conductive network with the fine ice-melting results.On the whole,when the carbon fiber content is 0.4%,the pavement per-formances,the electrical conductivity and the ice-melting efficiency of carbon fiber-rein-forced SBS modified asphalt mixture are the best.%为了分析导电沥青混凝土的路用性能和融冰效果,将短切聚丙烯腈基碳纤维掺入 SBS改性沥青混合料 AC-13 C中,制备成碳纤维导电改性沥青混合料。选取5种碳纤维掺量分别进行了配合比设计、路用性能和模拟

  19. Co-production of activated carbon, fuel-gas, and oil from the pyrolysis of corncob mixtures with wet and dried sewage sludge. (United States)

    Shao, Linlin; Jiang, Wenbo; Feng, Li; Zhang, Liqiu


    This study explored the amount and composition of pyrolysis gas and oil derived from wet material or dried material during the preparation of sludge-corncob activated carbon, and evaluated the physicochemical and surface properties of the obtained two types of sludge-corncob-activated carbons. For wet material, owing to the presence of water, the yields of sludge-corncob activated carbon and the oil fraction slightly decreased while the yield of gases increased. The main pyrolysis gas compounds were H2 and CO2, and more H2 was released from wet material than dried material, whereas the opposite holds for CO2 Heterocyclics, nitriles, organic acids, and steroids were the major components of pyrolysis oil. Furthermore, the presence of water in wet material reduced the yield of polycyclic aromatic hydrocarbons from 6.76% to 5.43%. The yield of furfural, one of heterocyclics, increased sharply from 3.51% to 21.4%, which could be explained by the enhanced hydrolysis of corncob. In addition, the surface or chemical properties of the two sludge-corncob activated carbons were almost not affected by the moisture content of the raw material, although their mesopore volume and diameter were different. In addition, the adsorption capacities of the two sludge-corncob activated carbons towards Pb and nitrobenzene were nearly identical.

  20. Mixture Density Mercer Kernels (United States)

    National Aeronautics and Space Administration — We present a method of generating Mercer Kernels from an ensemble of probabilistic mixture models, where each mixture model is generated from a Bayesian mixture...

  1. Supercritical separation process for complex organic mixtures (United States)

    Chum, Helena L.; Filardo, Giuseppe


    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  2. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid. (United States)

    Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic


    Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.

  3. Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium. (United States)

    Nguyen, Phuong Khanh Quoc; Lunsford, Suzanne K


    A novel carbon modified electrode was developed by incorporating titanium dioxide/zirconium dioxide into the graphite carbon paste electrode to detect heavy metals-cadmium and lead. In this work, the development of the novel titanium dioxide/zirconium dioxide modified carbon paste electrode was studied to determine the optimum synthesis conditions related to the temperature, heating duration, amount and ratio of titanium dioxide/zirconium dioxide, and amount of surfactant, to create the most reproducible results. Using cyclic voltammetric (CV) analysis, this study has proven that the novel titanium dioxide/zirconium dioxide can be utilized to detect heavy metals-lead and cadmium, at relatively low concentrations (7.6×10(-6) M and 1.1×10(-5) M for Pb and Cd, respectively) at optimum pH value (pH=3). From analyzing CV data the optimal electrodes surface area was estimated to be 0.028 (±0.003) cm(2). Also, under the specific experimental conditions, electron transfer coefficients were estimated to be 0.44 and 0.33 along with the heterogeneous electron transfer rate constants of 5.64×10(-3) and 2.42×10(-3) (cm/s) for Pb and Cd, respectively.

  4. Comparative evaluation of microhardness of dentin treated with 4% titanium tetrafluoride and 1.23% acidic phosphate fluoride gel before and after exposure to acidic pH: An ex vivo study (United States)

    Kandanuru, Vivek; Madhusudhana, Koppolu; Ramachandruni, Vamsi Krishna; Vitta, Harish Madhav; Babu, Lenin


    Aim: The aim of this study was to comparatively evaluate the effect of 4% titanium tetrafluoride (TiF4) and 1.23% acidic phosphate fluoride (APF) gel on the microhardness of human coronal dentin. Materials and Methods: Thirty noncarious extracted premolars were collected and sectioned buccolingually with the help of diamond disk. Exposing the sectioned surface, teeth were embedded in self-cure acrylic. Exposed coronal dentin was polished with abrasive papers starting with 220–5000 grit. Microhardness was evaluated by Vickers microhardness evaluator, at four different stages as follows - stage 1: Baseline values, Stage 2: Exposure of specimens to acidic environment at a pH 1 for 5 min, Stage 3: Application of 1.23% APF gel and 4% TiF4 (after dividing the specimens into two groups, i.e., Group A and B, respectively), and Stage 4: Followed by exposure of fluoridated specimens to acidic protocol as mentioned above. Results: Paired t-test was used to compare the readings between Groups A and B. Group B has shown greater resistance to decrease in microhardness of coronal dentin (P < 0.05) on exposure to acidic protocol. Conclusion: Due to acidic pH (1.5) of 4% TiF4, amount of increase in microhardness of dentin is <1.23% APF gel. 4% TiF4 was more effective in resisting demineralization than 1.23% APF gel. PMID:27994319

  5. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents; Processo alternativo para obtencao de tetrafluoreto de uranio a partir de efluentes fluoretados da etapa de reconversao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Joao Batista da


    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF{sub 6} hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH{sub 4}HF{sub 2} precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO{sub 2}, which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF{sub 4}. That returns to the process of metallic uranium production unity to the U{sub 3}Si{sub 2} obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U{sub 3}Si{sub 2}-Al fuel. (author)

  6. Electroanalysis with carbon paste electrodes

    CERN Document Server

    Svancara, Ivan; Walcarius, Alain; Vytras, Karel


    Introduction to Electrochemistry and Electroanalysis with Carbon Paste-Based ElectrodesHistorical Survey and GlossaryField in Publication Activities and LiteratureCarbon Pastes and Carbon Paste ElectrodesCarbon Paste as the Binary MixtureClassification of Carbon Pastes and Carbon Paste ElectrodesConstruction of Carbon Paste HoldersCarbon Paste as the Electrode MaterialPhysicochemical Properties of Carbon PastesElectrochemical Characteristics of Carbon PastesTesting of Unmodified CPEsIntera

  7. Synthesis of carbon loaded γ-Fe2O3 nanocomposite and their applicability for the selective removal of binary mixture of dyes by ultrasonic adsorption based on response surface methodology. (United States)

    Saad, Muhammad; Tahir, Hajira


    The contemporary problems concerning water purification could be resolved by using nanosorbents. The present studies emphasis on the synthesis of γ-Fe2O3-activated carbon nanocomposites (γ-Fe2O3-NP-AC) by sol-gel method. The composition and surface morphology of them were studied by FTIR, EDS, SEM and XRD techniques. Moreover they were employed for the selective removal of binary mixture of dyes including reactive red 223 dye (RR) and Malachite Green dye (MG) by ultrasonic assisted adsorption method. Sonication is the act of applying sound energy to agitate particles in the sample. The ultrasonic frequencies (>20kHz) were used to agitate experimental solutions in current studies. The response surface methodology based on 5 factorial central composite design (CCD) was employed to investigate the optimum parameters of adsorption. The optimum operating parameters (OOP) including sonication time, solution pH, amount of adsorbent, concentration of RR and MG were estimated for the selective removal of mixture of dyes. On OOP conditions of RR, the % removal of RR and MG were observed to be 92.12% and 10.05% respectively. While at OOP of MG, the % removal of MG and RR were observed to be 85.32% and 32.13% from the mixture respectively. Moreover the mechanisms of adsorption of RR and MG on the γ-Fe2O3-NP-AC were also illustrated. The significance of the RR-γ-Fe2O3-NP-AC and MG-γ-Fe2O3-NP-AC adsorption models was affirmed by ANOVA test. The Pareto plots for the selective removal of the RR and MG from the binary mixture also confirm the significance of the factors. Isothermal studies were performed and RR adsorption was observed to follow Langmuir isotherm model whereas MG adsorption was observed to follow Freundlich model. Thermodynamic studies were conducted and the outcomes suggested the spontaneous nature of adsorption processes. The kinetic models were employed to study the kinetics of the process. It was observed that the system followed pseudo second order, intra

  8. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    Directory of Open Access Journals (Sweden)

    Wang Feng-Lei


    Full Text Available Abstract SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.

  9. A Study on the Effects of Carrier Gases on the Structure and Morphology of Carbon Nanotubes Prepared by Pyrolysis of Ferrocene and C2H2 Mixture

    Institute of Scientific and Technical Information of China (English)

    Wanliang Mi; Jerry Yuesheng Lin; Qian Mao; Yongdan Li; Baoquan Zhang


    Carbon nanotubes (CNTs) were prepared using different carrier gases,with ferrocene as the catalyst precusor and acetylene as the carbon source. The effects of ammonia and nitrogen as carrier gases on the structure and morphology of CNTs were investigated. Transmission electron microscope (TEM),high-resolution electron microscope (HRTEM),scanning electron microscope (SEM) and X-ray diffraction (XRD) were employed to characterize the products and the catalyst. Experiment results show that the CNTs grown in N2 gas exhibited cylindrical and tubular structure,while a bamboo-like structure was observed for the CNTs grown in NH3 gas. Moreover,vertically aligned CNTs were obtained on an Al2O3 disk when NH3 was used as the carrier gas. The carrier gas also exerted influence on the shape of the catalyst. Based on the theory of active centers of catalysis and combined with the particle shape of the catalyst,a growth model for the vertically aligned CNTs on the substrate is given.

  10. Optimal mixture experiments

    CERN Document Server

    Sinha, B K; Pal, Manisha; Das, P


    The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model.  Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture desig...

  11. Optimized unlike-pair interactions for water-carbon dioxide mixtures described by the SPC/E and EPM2 models. (United States)

    Vlcek, Lukas; Chialvo, Ariel A; Cole, David R


    The unlike-pair interaction parameters for the SPC/E-EPM2 models have been optimized to reproduce the mutual solubility of water and carbon dioxide at the conditions of liquid-supercritical fluid phase equilibria. An efficient global optimization of the parameters is achieved through an implementation of the coupling parameter approach, adapted to phase equilibria calculations in the Gibbs ensemble, that explicitly corrects for the overpolarization of the SPC/E water molecule in the nonpolar CO(2) environments. The resulting H(2)O-CO(2) force field accurately reproduces the available experimental solubilities at the two fluid phases in equilibria as well as the corresponding species tracer diffusion coefficients.

  12. Methods of analyzing carbon nanostructures, methods of preparation of analytes from carbon nanostructures, and systems for analyzing carbon nanostructures

    KAUST Repository

    Da Costa, Pedro Miquel Ferreira Joaquim


    Provided herein is a method determining the concentration of impurities in a carbon material, comprising: mixing a flux and a carbon material to form a mixture, wherein the carbon material is selected from the group consisting of graphene, carbon nanotubes, fullerene, carbon onions, graphite, carbon fibers, and a combination thereof; heating the mixture using microwave energy to form fused materials; dissolution of the fused materials in an acid mixture; and measuring the concentration of one or more impurities.

  13. Low temperature asphalt mixtures


    Modrijan, Damjan


    This thesis presents the problem of manufacturing and building in the asphalt mixtures produced by the classical hot procedure and the possibility of manufacturing low temperature asphalt mixtures.We will see the main advantages of low temperature asphalt mixtures prepared with bitumen with organic addition Sasobit and compare it to the classical asphalt mixtures. The advantages and disadvantages of that are valued in the practical example in the conclusion.

  14. Formation of Biofilms and Biocorrosion on AISI-1020 Carbon Steel Exposed to Aqueous Systems Containing Different Concentrations of a Diesel/Biodiesel Mixture

    Directory of Open Access Journals (Sweden)

    Ivanilda Ramos de Melo


    Full Text Available Environmental and economic concerns accelerated biofuels research and industrial production. Many countries have been using diesel and biodiesel blends as fuels justifying research on biofilms formation and metals corrosion. Cylinders made of AISI-1020 carbon steel with an exposed area of 1587 mm2, water, and water associated with B3 fuel (diesel/biodiesel blend at 97 : 3 v/v were used.The formation of biofilms was detected, and biocorrosion was detected on AISI-1020. The results showed a variation in sessile microflora during the experiments. In the biofilms, a significant concentration of aerobic, anaerobic, IOB, Pseudomonas aeruginosa, and sulfate-reducing bacteria was observed. The corrosion rates varied between 0.45±0.01 and 0.12±0.01 mm/year, depending on the experimental conditions. The main corrosion products identified were various forms of FeOOH, magnetite, and all forms of FexSy. In systems where there were high levels of sulfate reducing bacteria, corrosion pits were observed. In addition, the aliphatic hydrocarbons present in the fluid containing 10% B3 were totally degraded.

  15. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent (United States)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.


    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  16. Experimental study of the carbon dioxide absorption in mixtures of aqueous DEA and others%DEA复配水溶液二氧化碳溶解度的测定实验

    Institute of Scientific and Technical Information of China (English)

    李小康; 刘应书; 张辉; 魏广飞; 李虎; 张四宗


    A device was designed to measure the solubility of CO2 in the aqueous amine in this research. The following data were obtained, carbon dioxide solubility in 2 mol/L aqueous DEA at 308 K、318 K、 328 K、 358 K under CO2 partial pressure of 0—150 kPa. Meanwhile, mixtures of additives such as DETA, MDEA, AEE as well as SG and aqueous DEA were compounded and the solubility of CO2 in such mixtures were measured. The molar ratio of DEA and the additive in the mixture was 3 : 1 and the total concentration of the amine remained at 2 mol/L. The results showed that elevating the partial pressure of CO2 may contribute to the increase of the solubility in the aqueous DEA, and the temperature played a reverse role. Impacts of different additives on the solubility of CO2 was presented to be DETA > AEE > SG > MDEA.%设计了测定CO2在溶液中溶解度的实验装置,并对2 mol/L的DEA水溶液分别在温度条件为308 K、318K、328 K、358 K,CO2分压力范围0~150 kPa时的CO2溶解度进行了测定.并选取MDEA、DETA、AEE和SG作为代表添加物,测定了添加剂与DEA摩尔比为1:3、醇胺总浓度为2mol/L的条件下溶液中CO2的溶解度.结果表明,在实验压力范围内,DEA溶液中CO2溶解度随压力增大逐渐增大随温度升高而减小;对DEA溶液中CO2的溶解度影响大小顺序为DETA> AEE> SG> MDEA.

  17. Occupational exposure to complex mixtures of volatile organic compounds in ambient air: desorption from activated charcoal using accelerated solvent extraction can replace carbon disulfide? (United States)

    Fabrizi, Giovanni; Fioretti, Marzia; Rocca, Lucia Mainero


    A desorption study of 57 volatile organic compounds (VOCs) has been conducted by use of accelerated solvent extraction (ASE) and gas chromatography-mass spectrometry. Different solvents were tested to extract activated charcoal tubes with the objective of replacing carbon disulfide, used in official methods, because of its highly toxic health and environmental effects. Extraction conditions, for example temperature and number of cycles, were investigated and optimized. The definitive extraction procedure selected was use of acetone at 150 °C and two consecutive extraction cycles at a pressure of 1,500 psi. Considering a sample volume of 0.005 Nm(3), corresponding to a sampling time of 8 h at a flow rate of 0.01 L min(-1), the method was validated over the concentration range 65-26,300 μg Nm(-3). The lowest limit of quantification was 6 μg Nm(-3), and recovery for the 93 % of analytes ranged from 65 to 102 %. For most of the compounds, relative standard deviations were less than 15 % for inter and intra-day precision. Uncertainty of measurement was also determined: the relative expanded uncertainty was always below 29.6 %, except for dichlorodifluoromethane. This work shows that use of friendlier solvent, for example acetone, coupled with use of ASE, can replace use of CS(2) for chemical removal of VOCs from activated charcoal. ASE has several advantages over traditional solvent-extraction methods, including shorter extraction time, minimum sample manipulation, high reproducibility, and less extraction discrimination. No loss of sensitivity occurs and there is also a salutary effect on bench workers' health and on the smell of laboratory air.

  18. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S


    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  19. On the reduced Redlich-Kister excess properties for 1,2-dimethoxyethane with propylene carbonate binary mixtures at temperatures (from 298.15 to 318.15 K.

    Directory of Open Access Journals (Sweden)

    Hanen Salhi


    Full Text Available Values of excess properties in 1,2-dimethoxyethane + propylene carbonate binary liquid mixtures at different temperatures from experimental density and viscosity values presented in earlier work, were used to test the applicability of the correlative reduced Redlich-Kister functions and the Belda equation, and to reveal eventual specific interaction hidden by the classical treatment of direct excess Redlich-Kister functions. Their correlation ability at different temperatures, and the use of different numbers of parameters, is discussed for the case of limited experimental data. The relative Redlich-Kister functions are important to reduce the effect of temperature and, consequently, to reveal the effects of different types of interactions. Values of limiting excess partial molar volume at infinite dilution deduced from different methods were discussed. Also, the activation parameters and partial molar Gibbs free energy of activation of viscous flow against compositions were investigated. Correlation between the two Arrhenius parameters of viscosity shows the existence of main different behaviors separated by a stabilized structure in a short range of mole fraction in 1,2-dimethoxyethane (0.45 to 0.83. In this context, the correlation Belda equation has also been applied to the present system for thermodynamic properties in order to reveal eventual solute-solvent interaction at high dilution.

  20. Tailored Voltage Waveform Deposition of Microcrystalline Silicon Thin Films from Hydrogen-Diluted Silane and Silicon Tetrafluoride: Optoelectronic Properties of Films (United States)

    Johnson, Erik V.; Pouliquen, Sylvain; Delattre, Pierre-Alexandre; Booth, Jean-Paul


    The use of tailored voltage waveforms (TVW's) to excite a plasma for the deposition of thin films of hydrogenated microcrystalline silicon (µc-Si:H) has been shown to be an effective technique to decouple mean ion bombardment energy (IBE) from injected power. In this work, we examine the changes in material properties controlled by this technique through Raman scattering and spectroscopic ellipsometry for films deposited from H2-diluted SiH4, and we examine the electrical properties of such films using temperature dependent conductivity. As the laboratory-scale deposition system used had neither a load lock nor an oxygen filter in the H2 line, accidental O-doping was observed for the µc-Si:H films. We investigated suppression of this doping by adding varying amounts of SiF4, and using an SiF4/Ar pre-etch step to clean the reactor. This technique is shown to be effective in decreasing the accidental doping of the films, and intrinsic µc-Si:H films are produced with an activation energy of up to 0.55 eV. As well, an important difference in the amorphous-to-microcrystalline transition is observed once SiF4 is included in the gas mixture.

  1. 电化学阻抗解析多壁碳纳米管/活性炭的电化学性能%The electrochemical performance of a multi-wall carbon nanotube/activated carbon mixture as the electrode of electric double layer capacitors analyzed by electrochemical impedance

    Institute of Scientific and Technical Information of China (English)

    耿新; 李峰; 王大伟; 成会明


    Activated carbon was prepared from petroleum coke by chemical activation. Multi-walled carbon nanotubes (MWCNTs) were mixed with the activated carbon to form the electrode material of electric double layer capacitors. According to the relative values of impedance and capacitance in electrochemical impedance, the available capacitance and energy dissipation from resistance were evaluated. Results showed that the real part of the capacitance for this mixture was higher than for activated carbon alone when activated carbon was mixed with a mass fraction 3%-15% MWCNTs. With the increase of MWCNT content, the imaginary part of the capacitance and its percentage decreases while the real part of capacitance and its percentage increases. It was revealed that the efficiency of energy storage was improved, the relaxation time constant was decreased, the characteristic of capacitance response versus frequency was improved and the electrode resistance was decreased by the addition of MWCNTs to activated carbon.%以石油焦为原料化学活化制得活性炭(Activated carbon,AC),在此AC中加入不同量的多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)作为超级电容器电极材料.依据交流阻抗谱中阻抗与电容关系,区分有效容量和内阻造成的能量损失,评价了超级电容器的性能.结果表明:加入质量分数3%~15% MWCNTs的AC电极,实部电容高于纯AC电极,虚部电容则随着MWCNTs添加量的增加而显著降低.且其实部电容分数随MWCNTs加入量的增加呈上升趋势,虚部电容分数则随MWCNTs加入量增加而降低.在AC电极中加入MWCNTs,在降低电极内阻的同时可有效提高超级电容器的储能效率,并降低弛豫时间,提高其频率特性,改善电容行为.

  2. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    Knowledge of the thermodynamic properties and phase equilibria of mixtures containing carbon dioxide (CO2) is important in several industrial processes such as enhanced oil recovery, carbon capture and storage, and supercritical extractions, where CO2 is used as a solvent. Despite this importance......, accurate predictions of the thermodynamic properties and phase equilibria of mixtures containing CO2 are challenging with classical models such as the Soave-Redlich-Kwong (SRK) equation of state (EoS). This is believed to be due to the fact, that CO2 has a large quadrupole moment which the classical models....... The predictions of these pure compound properties were satisfactory with qCPA, although similar predictions were achieved with the other CPA approaches. The model was subsequently evaluated for its ability to predict and correlate the binary VLE and LLE of mixtures containing CO2 and n-alkanes, water, alcohols...

  3. Study of volumetric properties (PVT) of mixtures made of light hydrocarbons (C1-C4), carbon dioxide and hydrogen sulfide - Experimental measurements through a vibrating tube densimeter and modelling; Etude des proprietes volumetriques (PVT) d'hydrocarbures legers (C1-C4), du dioxyde de carbone et de l'hydrogene sulfure. Mesures par densimetrie a tube vibrant et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Rivollet, F.


    Various pollutant contents (i.e. carbon dioxide, hydrogen sulphide or other sulphur products) are found in produced oils. These latter must undergo a number of transformations and purifications. The design and dimensioning of the corresponding units can well be optimized only if one has reliable and accurate data about phase equilibria and volumetric properties and of course reliable and accurate modeling. This work was devoted partly to measurements of volumetric properties on three binary mixtures (ethane - hydrogen sulphide, ethane - propane and carbon dioxide - hydrogen sulphide). These measurements were carried out using equipment, comprising a vibrating tube densimeter (Paar, model DMA 512 P), which was especially designed and built for this work. The binary mixtures were studied in the 253 to 363 K temperature range from at pressures up to either 20 or 40 MPa. Two calibration methods of the vibrating tube were used: the FPMC method (Forced Path Mechanical Calibration) described in the literature and an original method containing neural network, developed herein. The study undertaken about the modeling of volumetric properties made it possible to highlight the inadequacy of the traditional use of cubic equations of state to represent simultaneously volumetric properties and phase equilibria. Among the equations of state investigated, a close attention however was paid to cubic equations of state because of their very great use in the oil field. A new tool was found to adapt cubic equations of state to the simultaneous and satisfactory representation of volumetric properties and phase equilibria. It concerns the coupling of the cubic Redlich-Kwong-Soave equation of state with volume correction through a neural network. This new model was tested successfully, it makes it possible to benefit from the existing work of representation of phase equilibria (mixing rules and interaction coefficients) while improving calculation of the volumetric data.

  4. Volumetric properties of binary mixture of ethyl acetate and carbon tetrachloride%乙酸乙酯/四氯化碳二元混合体系的体积性质

    Institute of Scientific and Technical Information of China (English)

    赵秀琴; 黄荣谊


    The densities of the binary mixture formed by ethyl acetate with carbon tetrachloride were determined in the entire composition range and at the temperature of 288.15-323. IS K and atmospheric pressure. The calculation equations of densities and composition and temperature for the binary system were established, respectively. The results show that the excess molar volumes are positive in entire composition range and at determining temperature. It increases slightly when temperature increases. The regression coefficients and standard deviations were given by fitting the Redlich-Kister equation. Besides, the relation of apparent molar volumes and the molar volumes to the temperature and composition were investigated from density measurements, both values also increase with temperature rise.%常压下测定了乙酸乙酯与四氯化碳二元体系在288.15-323.15 K内全摩尔分数范围的密度,分别建立了该二元体系密度与组成和温度的计算方程.在此基础上,计算了该二元体系的超额摩尔体积,结果表明:该二元体系的超额摩尔体积在所测定温度和全摩尔分数范围内均呈正偏差,且均随温度的升高而偏差增大,并利用Redlich-Kister方程进行了关联,给出了回归系数和标准偏差.另外还探讨了该二元体系的组分表观摩尔体积和摩尔体积与温度和组成的关系,其值随温度的升高均呈增大的趋势.

  5. Perception of trigeminal mixtures. (United States)

    Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes


    The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels.

  6. A sealing mixture

    Energy Technology Data Exchange (ETDEWEB)

    Khayrullin, S.R.; Firsov, I.A.; Ongoyev, V.M.; Shekhtman, E.N.; Taskarin, B.T.


    A plugging mixture is proposed which contains triethanolamine, caustic soda, water and an additive. It is distinguished by the fact that in order to reduce the cost of the mixture while preserving its operational qualities, it additionally contains clay powder and as the additive, ground limestone with the following component ratio in percent by mass: ground limestone, 50 to 60; triethanolamine, 0.1 to 0.15; caustic soda, 2 to 3; clay powder, 8 to 10 and water the remainder. The mixture is distinguished by the fact that the ground limestone has a specific surface of 2,000 to 3,000 square centimeters per gram.

  7. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai


    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  8. CH4/N2混合气在炭分子筛上的变压吸附分离%Separation of methane/nitrogen mixture by pressure swing adsorption on carbon molecular sieve

    Institute of Scientific and Technical Information of China (English)

    席芳; 林文胜; 顾安忠


    The breakthrough curves of CH4/N2 mixture on a carbon molecular sieve (CMS) fixed adsorption bed were measured. The separation ability of this CMS was studied. The influence of fed gas velocity and adsorption pressure on separation was determined,as well as the influence on CH4 recovery. The results show that N2 is with preferentially ad-sorption and there is nearly no N2 at the exit of the fixed bed at the initial time of adsorption. With a proper adsorption time, the CH4 concentration in the product can be up to 96%. The feed gas velocity has a greater influence on separa-tion than that of pressure, and it is adverse to the separation when the velocity is too large. The CH4 recovery decreases as the velocity or pressure increases.%测量了CH4/N2混合气在一种炭分子筛固定床上的穿透曲线;研究了该炭分子筛对CH4的提浓效果,以及原料气流速和吸附压力对分离效果及CH4回收率的影响.结果表明:在吸附初期,该炭分子筛选择性吸附N2,吸附床出口基本检测不到N2,合理地控制吸附时间可使吸附床出口气中CH4浓度达到96%以上;原料气流速对分离效果的影响大于压力的影响,且流速太大不利于CH4/N2混合气的分离;随着流速和压力的增加,CH4的回收率减小.

  9. Spectroscopic analysis of lithium terbium tetrafluoride

    DEFF Research Database (Denmark)

    Christensen, H.P.


    The absorption spectra of Tb3+ in LiTbF4 have been recorded in the spectral interval from 4000 to 25000 cm-1 and for temperatures between 2.3 and 150 K. This covers the transitions from the ground multiplet 7F6 to the multiplets 7F3, 7F2, 7F1, 7F0, and 5D4. The transitions were predominantly of e...

  10. Mixtures and interactions

    NARCIS (Netherlands)

    Groten, J.P.


    Drinking water can be considered as a complex mixture that consists of tens, hundreds or thousands of chemicals of which the composition is qualitatively and quantitatively not fully known. From a public health point of view it is most relevant to answer the question of whether chemicals in drinking

  11. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.


    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  12. Pointer Sentinel Mixture Models


    Merity, Stephen; Xiong, Caiming; Bradbury, James; Socher, Richard


    Recent neural network sequence models with softmax classifiers have achieved their best language modeling performance only with very large hidden states and large vocabularies. Even then they struggle to predict rare or unseen words even if the context makes the prediction unambiguous. We introduce the pointer sentinel mixture architecture for neural sequence models which has the ability to either reproduce a word from the recent context or produce a word from a standard softmax classifier. O...

  13. The scent of mixtures: rules of odour processing in ants. (United States)

    Perez, Margot; Giurfa, Martin; d'Ettorre, Patrizia


    Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects.

  14. Transport properties of supercritical fluids and their binary mixtures

    CERN Document Server

    Luedemann, H D


    The molecular dynamics of the two supercritical fluids most applied in industry and some of their mixtures are characterized by their self-diffusion coefficients D sub i , measured by high pressure high resolution nuclear magnetic resonance with the strengthened glass cell technique. The technical details of the apparatus will be given. The fluids studied are carbon dioxide and ammonia. For CO sub 2 , mixtures with C sub 6 H sub 6 , H sub 2 , CH sub 3 COOH and CH sub 3 OH were investigated. The NH sub 3 mixtures include C sub 6 H sub 6 , (CH sub 3) sub 3 N, CH sub 3 CN and CH sub 3 OH.

  15. Toxicological evaluation of chemical mixtures

    NARCIS (Netherlands)

    Feron, V.J.; Groten, J.P.


    This paper addresses major developments in the safety evaluation of chemical mixtures during the past 15 years, reviews today's state of the art of mixture toxicology, and discusses challenges ahead. Well-thought-out tailor-made mechanistic and empirical designs for studying the toxicity of mixtures

  16. Essays on Finite Mixture Models

    NARCIS (Netherlands)

    A. van Dijk (Bram)


    textabstractFinite mixture distributions are a weighted average of a ¯nite number of distributions. The latter are usually called the mixture components. The weights are usually described by a multinomial distribution and are sometimes called mixing proportions. The mixture components may be the sam

  17. Mixtures of truncated basis functions

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael


    In this paper we propose a framework, called mixtures of truncated basis functions (MoTBFs), for representing general hybrid Bayesian networks. The proposed framework generalizes both the mixture of truncated exponentials (MTEs) framework and the mixture of polynomials (MoPs) framework. Similar...

  18. Separating Underdetermined Convolutive Speech Mixtures

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Wang, DeLiang; Larsen, Jan


    a method for underdetermined blind source separation of convolutive mixtures. The proposed framework is applicable for separation of instantaneous as well as convolutive speech mixtures. It is possible to iteratively extract each speech signal from the mixture by combining blind source separation...

  19. Carbon Dioxide Absorbents (United States)


    carbondioxide content of the solution was then determined. A gas mixture containing 2.6% carbon dioxide and 97.4% nitrogen was prepared in the...which carbon dioxide is removed by heat0 Since this step is usually carried out by "steam stripping ", that is, contacting the solution at its boiling...required to produce the steam required for stripping the carbon dioxide from the s olution. The method ueed in this investigation for determining the

  20. Mixture Based Outlier Filtration

    Directory of Open Access Journals (Sweden)

    P. Pecherková


    Full Text Available Success/failure of adaptive control algorithms – especially those designed using the Linear Quadratic Gaussian criterion – depends on the quality of the process data used for model identification. One of the most harmful types of process data corruptions are outliers, i.e. ‘wrong data’ lying far away from the range of real data. The presence of outliers in the data negatively affects an estimation of the dynamics of the system. This effect is magnified when the outliers are grouped into blocks. In this paper, we propose an algorithm for outlier detection and removal. It is based on modelling the corrupted data by a two-component probabilistic mixture. The first component of the mixture models uncorrupted process data, while the second models outliers. When the outlier component is detected to be active, a prediction from the uncorrupted data component is computed and used as a reconstruction of the observed data. The resulting reconstruction filter is compared to standard methods on simulated and real data. The filter exhibits excellent properties, especially in the case of blocks of outliers. 


    Piper, R.D.


    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  2. 苯-水混合蒸气在活性炭上的二元吸附平衡%Binary Adsorption Equilibrium of Benzene-Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩


    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg@m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon. A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal, non-similar binary adsorption systems. A modified Polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculate the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  3. Studies on Molecular Interaction in Ternary Liquid Mixtures

    Directory of Open Access Journals (Sweden)

    R. Uvarani


    Full Text Available Ultrasonic velocity, density and viscosity for the ternary liquid mixtures of cyclohexanone with 1-propanol and 1-butanol in carbon tetrachloride were measured at 303 K. The acoustical parameters and their excess values were calculated. The trends in the variation of these excess parameters were used to discuss the nature and strength of the interactions present between the component molecules.

  4. Protein mixtures: interactions and gelation


    Ersch, C.


    Gelation is a ubiquitous process in the preparation of foods. As most foods are multi constituent mixtures, understanding gelation in mixtures is an important goal in food science. Here we presented a systematic investigation on the influence of molecular interactions on the gelation in protein mixtures. Gelatin gels with added globular protein and globular protein gels with added gelatin were analyzed for their gel microstructure and rheological properties. Mixed gels with altered microstruc...

  5. 气体膜分离混合气中二氧化碳的研究进展%Progress of separation of carbon dioxide from gas mixture by gas separation membrane

    Institute of Scientific and Technical Information of China (English)

    孙翀; 李洁; 孙丽艳; 许瑞娜; 郑祥; 雷洋; 杨烨


    As the carbon capture program, gas membrane separation technology is considered to be the most development potential method of the decarburization by the international community. The status of hollow fiber membrane contactors, membrane structures, systems technology and absorbent research is reviewed. Alkanolamines relatively to water and carbonates, which hold high carbon dioxide absorption rate, lower heat of reaction, reaction speed and ease of recycling, etc. ,are most widely used in the research and industrial process.%气体膜分离技术作为碳捕获方案被国际社会认为是最有发展潜力的脱碳方法之一.综述介绍了中空纤维膜接触器、膜结构、系统工艺和吸收剂的研究现状.相对于水和碳酸盐类,醇胺具有的二氧化碳吸收率高、反应热低、反应速度快以及容易再生等优点,在研究与工业过程中是应用最广泛的吸收剂之一.

  6. Gas adsorption and gas mixture separations using mixed-ligand MOF material (United States)

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang


    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  7. Carbonic inclusions (United States)

    Van den Kerkhof, Alfons; Thiéry, Régis


    The paper gives an overview of the phase relations in carbonic fluid inclusions with pure, binary and ternary mixtures of the system CO 2-CH 4-N 2, compositions, which are frequently found in geological materials. Phase transitions involving liquid, gas and solid phases in the temperature range between -192°C and 31°C are discussed and presented in phase diagrams ( PT, TX and VX projections). These diagrams can be applied for the interpretation of microthermometry data in order to determine fluid composition and molar volume (or density).

  8. Evaporating Drops of Alkane Mixtures

    CERN Document Server

    Gu'ena, G; Poulard, C; Cazabat, Anne-Marie; Gu\\'{e}na, Geoffroy; Poulard, Christophe


    Alkane mixtures are model systems where the influence of surface tension gradients during the spreading and the evaporation of wetting drops can be easily studied. The surface tension gradients are mainly induced by concentration gradients, mass diffusion being a stabilising process. Depending on the relative concentration of the mixture, a rich pattern of behaviours is obtained.

  9. Thermophysical Properties of Hydrocarbon Mixtures (United States)

    SRD 4 NIST Thermophysical Properties of Hydrocarbon Mixtures (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  10. Evaporating Drops of Alkane Mixtures


    Guéna, Geoffroy; Poulard, Christophe; Cazabat, Anne-Marie


    22 pages 9 figures; Alkane mixtures are model systems where the influence of surface tension gradients during the spreading and the evaporation of wetting drops can be easily studied. The surface tension gradients are mainly induced by concentration gradients, mass diffusion being a stabilising process. Depending on the relative concentration of the mixture, a rich pattern of behaviours is obtained.

  11. Protein mixtures: interactions and gelation

    NARCIS (Netherlands)

    Ersch, C.


    Gelation is a ubiquitous process in the preparation of foods. As most foods are multi constituent mixtures, understanding gelation in mixtures is an important goal in food science. Here we presented a systematic investigation on the influence of molecular interactions on the gelation in protein mixt

  12. Easy and flexible mixture distributions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Mabit, Stefan L.


    We propose a method to generate flexible mixture distributions that are useful for estimating models such as the mixed logit model using simulation. The method is easy to implement, yet it can approximate essentially any mixture distribution. We test it with good results in a simulation study...

  13. CH4/CO2混合组分在13X分子筛上的吸附平衡及分离性能%Adsorption Equilibrium and Separation of Methane and Carbon Dioxide Mixtures on 13X Molecular Sieve

    Institute of Scientific and Technical Information of China (English)

    陆江园; 刘伟; 孙林兵; 刘晓勤


      采用高精度智能重量分析仪IGA-100对13X分子筛进行CH4、CO2的吸附分离实验。于298、310、326 K温度下,分别测定了CH4、CO2纯组分及混合组分的吸附等温线。纯组分吸附等温线用DL(Double-Langmuir)模型拟合,并通过DL-IAST(Ideal Adsorbed Solution Theory,IAST)模型与实验测定值进行比较。利用该模型计算出不同温度下混合气中各组分的吸附量,得到了CO2的吸附选择性。结果表明,DL-IAST模型可以准确地描述CH4、CO2在13X分子筛上的吸附行为。在298 K时,随着压力的增加,CO2的吸附选择性增加,最后稳定在80左右;当温度一定时,CO2吸附选择性随着混合物中CO2浓度增加而减小。%Pure gas and binary gas mixture adsorption isotherms of methane and carbon dioxide on 13X molecular sieve were measured by using the high-precision intelligent gravimetric analyzer at temperature of 298, 310 and 326 K, respectively. Double-Langmuir model was used to study the pure gas adsorption;the DL model and the ideal adsorbed solution theory (IAST) were combined to predict the binary gas mixture adsorption isotherms and using the model, the adsorption amount of the single component of gas mixture and the selectivity of CO2 were calculated. It shows that the combined method (DL-IAST) can be applied to describe the adsorption of CH4 and CO2 binary mixtures on 13X molecular sieve perfectly. The selectivity of CO2 increases with increasing pressure and finally reaches 80 at 298 K;when the temperature is constant, the selectivity of CO2 decreases with increasing the CO2 concentration.

  14. Carbon fuel particles used in direct carbon conversion fuel cells (United States)

    Cooper, John F.; Cherepy, Nerine


    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  15. Sensitivity of Some Explosive/Brine Mixtures (United States)


    concentration in brine mixtures. 3 Friction test results of brine mixtures. 10 4 Thermal test results of brine mixtures. 11 Li 71 - INTRODUCTION A...also carried out on these impact insensitive mixtures. Of the seven mixtures only the 15% M28-Comp. B sample passed the thermal test , since smoking

  16. Separation of gas mixtures by supported complexes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.A.; Lilga, M.A.; Hallen, R.T.; Lyke, S.E.


    The goal of this program is to determine the feasibility of solvent-dissolved coordination complexes for the separation of gas mixtures under bench-scale conditions. In particular, mixtures such as low-Btu gas are examined for CO and H/sub 2/ separation. Two complexes, Pd/sub 2/(dpm)/sub 2/Br/sub 2/ and Ru(CO)/sub 2/(PPh/sub 3/)/sub 3/, were examined in a bench-scale apparatus for the separation of binary (CO-N/sub 2/ or H/sub 2/-N/sub 2/) and quinary (H/sub 2/, CO, CO/sub 2/, CH/sub 4/, and N/sub 2/) mixtures. The separation of CO-N/sub 2/ was enhanced by the presence of the palladium complex in the 1,1,2-trichloroethane (TCE) solvent, especially at high gas and low liquid rates. The five-component gas mixture separation with the palladium complex in TCE provided quite unexpected results based on physical solubility and chemical coordination. The complex retained CO, while the solvent retained CO/sub 2/, CH/sub 4/, and N/sub 2/ to varying degrees. This allowed the hydrogen content to be enhanced due to its low solubility in TCE and inertness to the complex. Thus, a one-step, hydrogen separation can be achieved from gas mixtures with compositions similar to that of oxygen-blown coal gas. A preliminary economic evaluation of hydrogen separation was made for a system based on the palladium complex. The palladium system has a separation cost of 50 to 60 cents/MSCF with an assumed capital investment of $1.60/MSCF of annual capacity charged at 30% per year. This assumes a 3 to 4 year life for the complex. Starting with a 90% hydrogen feed, PSA separation costs are in the range of 30 to 50 cents/MSCF. The ruthenium complex was not as successful for hydrogen or carbon monoxide separation due to unfavorable kinetics. The palladium complex was found to strip hydrogen gas from H/sub 2/S. The complex could be regenerated with mild oxidants which removed the sulfur as SO/sub 2/. 24 refs., 26 figs., 10 tabs.

  17. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    F L Deepak; A Govindaraj; C N R Rao


    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Yjunction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallicthiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

  18. 碳源对复合乳酸菌发酵西芹浆的影响研究%Effect of Different Carbon Sources on the Fermentation of Celery Juice by Lactic Acid Bacteria Mixture

    Institute of Scientific and Technical Information of China (English)

    陈中; 苏郅珉; 林伟锋


    A study on lactic acid bacteria mixture (the ratio of Lactobacillus casei and Leuconostoc mesenteroides being of 1:1) for the fermentation of celery juice was carried out. During the fermentation the changes and internal relation of viable count, pH, total acid and reducing sugar were observed. The experimental results indicate: sugar, glucose and fructose syrup were added to the celery juice respectively, and the total acid of celery juice were 8.52 mg/g, 8.18 mg/g and 8.32 mg/g. They were larger than the total acid of original celery juice (7.26 mg/g). The utilization rate of reducing sugar was also improved. After the adjunction of fructose syrup the stability period, whole viable count, amount of acid and utilization rate of reducing sugar were increased effectively. And then the delicious fermented celery juice with celery fragrance was obtained.%本试验通过复合乳酸菌(干酪乳杆菌与肠膜明串珠菌复合比例为1∶1)对分别添加了白砂糖、葡萄糖以及果葡糖浆的西芹浆进行对比发酵,探讨其发酵过程中活菌数、pH值、总酸以及还原糖的变化规律及内在联系.结果表明,发酵72 h后,添加白砂糖、葡萄糖和果葡糖浆的西芹浆中的总酸分别为8.52 mg/g、8.18 mg/g和8.32 mg/g,均比不加碳源的7.26 mg/g高.添加葡萄糖和果葡糖浆的西芹浆中还原糖含量分别减少了29.14%和14.81%,而添加白砂糖的西芹浆中还原糖含量却增加了69.20%.其中,添加了果葡糖浆的西芹浆中乳酸菌稳定期得到有效延长、整体活菌数最高、产酸量以及还原糖利用率都有所增加,可得到西芹清香明显、酸甜度适中的发酵西芹浆.

  19. Analysis of asphalt mixtures on town roads


    Glavica, Primož


    Asphalt mixtures are most commonly used composite for construction of top layers of different drive ways. By definition asphalt mixtures are composed of crushed rock, fill, bitumen and additives. Percentage of individual components wary according to the purpose asphalt mixture is to be used for. Asphalt mixtures must be capable of enduring different types of load. According to the type of load asphalt mixtures are divided into asphalt mixtures used for supporting layers and asp...

  20. Predicting the toxicity of metal mixtures. (United States)

    Balistrieri, Laurie S; Mebane, Christopher A


    The toxicity of single and multiple metal (Cd, Cu, Pb, and Zn) solutions to trout is predicted using an approach that combines calculations of: (1) solution speciation; (2) competition and accumulation of cations (H, Ca, Mg, Na, Cd, Cu, Pb, and Zn) on low abundance, high affinity and high abundance, low affinity biotic ligand sites; (3) a toxicity function that accounts for accumulation and potency of individual toxicants; and (4) biological response. The approach is evaluated by examining water composition from single metal toxicity tests of trout at 50% mortality, results of theoretical calculations of metal accumulation on fish gills and associated mortality for single, binary, ternary, and quaternary metal solutions, and predictions for a field site impacted by acid rock drainage. These evaluations indicate that toxicity of metal mixtures depends on the relative affinity and potency of toxicants for a given aquatic organism, suites of metals in the mixture, dissolved metal concentrations and ratios, and background solution composition (temperature, pH, and concentrations of major ions and dissolved organic carbon). A composite function that incorporates solution composition, affinity and competition of cations for two types of biotic ligand sites, and potencies of hydrogen and individual metals is proposed as a tool to evaluate potential toxicity of environmental solutions to trout.

  1. Marangoni Convection in Binary Mixtures

    CERN Document Server

    Zhang, J; Oron, A; Behringer, Robert P.; Oron, Alexander; Zhang, Jie


    Marangoni instabilities in binary mixtures are different from those in pure liquids. In contrast to a large amount of experimental work on Marangoni convection in pure liquids, such experiments in binary mixtures are not available in the literature, to our knowledge. Using binary mixtures of sodium chloride/water, we have systematically investigated the pattern formation for a set of substrate temperatures and solute concentrations in an open system. The flow patterns evolve with time, driven by surface-tension fluctuations due to evaporation and the Soret effect, while the air-liquid interface does not deform. A shadowgraph method is used to follow the pattern formation in time. The patterns are mainly composed of polygons and rolls. The mean pattern size first decreases slightly, and then gradually increases during the evolution. Evaporation affects the pattern formation mainly at the early stage and the local evaporation rate tends to become spatially uniform at the film surface. The Soret effect becomes i...

  2. Mixtures of skewed Kalman filters

    KAUST Repository

    Kim, Hyoungmoon


    Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class of closed skew-normal distributions. Some basic properties are derived and a class of closed skew. t distributions is obtained. Our suggested family of distributions is skewed and has heavy tails too, so it is appropriate for robust analysis. Our proposed special sequential Monte Carlo methods use a random mixture of the closed skew-normal distributions to approximate a target distribution. Hence it is possible to handle skewed and heavy tailed data simultaneously. These methods are illustrated with numerical experiments. © 2013 Elsevier Inc.

  3. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents (United States)

    Buczek, Bronisław


    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  4. The use of gaseous fuels mixtures for SI engines propulsion (United States)

    Flekiewicz, M.; Kubica, G.


    Paper presents results of SI engine tests, carried on for different gaseous fuels. Carried out analysis made it possible to define correlation between fuel composition and engine operating parameters. Tests covered various gaseous mixtures: of methane and hydrogen and LPG with DME featuring different shares. The first group, considered as low carbon content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in those mixtures realizes the function of combustion process activator. That is why hydrogen addition improves the energy conversion by about 3%. The second group of fuels is constituted by LPG and DME mixtures. DME mixes perfectly with LPG, and differently than in case of other hydrocarbon fuels consists also of oxygen makes the stoichiometric mixture less oxygen demanding. In case of this fuel an improvement in engine volumetric and overall engine efficiency has been noticed, when compared to LPG. For the 11% DME share in the mixture an improvement of 2% in the efficiency has been noticed. During the tests standard CNG/LPG feeding systems have been used, what underlines utility value of the research. The stand tests results have been followed by combustion process simulation including exhaust forming and charge exchange.

  5. Effectiveness of Micro- and Nanomaterials in Asphalt Mixtures through Dynamic Modulus and Rutting Tests

    Directory of Open Access Journals (Sweden)

    Hui Yao


    Full Text Available The objectives of this research are to use micro- and nanomaterials to modify the asphalt mixture and to evaluate the mechanical performance of asphalt mixtures. These micro- and nanomaterials, including carbon microfiber, Nanomer material, nanosilica, nonmodified nanoclay, and polymer modified nanoclay, were selected to blend with the control asphalt to improve the overall performance of the modified asphalt binders and mixtures. The microstructures of original materials and asphalt binders were observed by the field emission scanning electron microscope (FE-SEM. The mixture performance tests were employed to evaluate the resistance to rutting and permanent deformation of the modified asphalt mixtures. Test results indicate that (1 the dynamic modulus of micro- and nanomodified asphalt mixtures improved significantly; (2 the rutting susceptibility of the modified asphalt mixtures was reduced significantly compared to that of the control asphalt mixture; (3 the microstructures of modified asphalt binders were different from the control asphalt, and the structures determine the improvement in the performance of modified asphalt mixtures. These results indicate that the addition of micro- and nanomaterials enhanced the rutting performance and strength of asphalt mixtures. In addition, the analysis of variance (ANOVA was used to analyze the modifying effects of micro- and nanomaterials on the performance.

  6. Evaluation system for CO2 emission of hot asphalt mixture

    Directory of Open Access Journals (Sweden)

    Bo Peng


    Full Text Available The highway construction industry plays an important role in economic and development, but is also a primary source of carbon emission. Accordingly, with the global climate change, energy conservation and reduction of carbon emissions have become critical issues in the highway construction industry. However, to date, a model for the highway construction industry has not been established. Hence, to implement a low-carbon construction model for highways, this study divided asphalt pavement construction into aggregate stacking, aggregate supply, and other stages, and compiled a list of energy consumption investigation. An appropriate calculation model of CO2 emission was then built. Based on the carbon emission calculation model, the proportion of carbon emissions in each stage was analyzed. The analytic hierarchy process was used to establish the system of asphalt pavement construction with a judgment matrix, thereby enabling calculation of the weight coefficient of each link. In addition, the stages of aggregate heating, asphalt heating, and asphalt mixture mixing were defined as key stages of asphalt pavement construction. Carbon emissions at these stages accounted for approximately 90% of the total carbon emissions. Carbon emissions at each stage and their impact on the environment were quantified and compared. The energy saving construction schemes as well as the environmental and socioeconomic benefits were then proposed. Through these schemes, significant reductions in carbon emissions and costs can be achieved. The results indicate that carbon emissions reduce by 32.30% and 35.93%, whereas costs reduce by 18.58% and 6.03%. The proposed energy-saving and emission reduction scheme can provide a theoretical basis and technical support for the development of low-carbon highway construction.

  7. H2S/N2混合物在碳纳米管中吸附分离的分子模拟%Molecular Simulations of Adsorption and Separation of H2S and N2 Mixture by Single Wall Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    乔智威; 任树化; 周健


    Adsorption and separation of 1 : 99(volume ratio) HjS/N, mixture by single wall carbon nanotubes were studied using the grand canonical Monte Carlo(GCMC) method at a range of nanotube diameters, pressures and temperatures. It is demonstrated that the selectivity towards H2S increases and then decreases with increasing nanotube diameter and the selectivity is highest for (11,0) carbon nanotube which is due to the synergy of geometry effect and energy effect. It is shown that under different operation conditions, the adsorption isotherm and selectivity can vary significantly. At 100 kPa, the amount of adsorbed of H2S in (11,0) carbon nanotube and the selectivity towards H2S firstly increase and then decrease with increasing temperatures. Moreover, at 300 K, with increasing pressures, the adsorbed amount of H2S and the selectivity towards H2S decrease. The simulation findings in this work would be helpful for the design and development of sulfur removal processes.%采用巨正则Monte Carlo(GCMC)方法讨论了不同温度、压力及管径下,碳纳米管对H2S/N2混合物(主体相体积比为1:99)的吸附分离选择性.结果表明,随着碳纳米管管径的增大,H2S的吸附选择性先增加后减小;而(11,0)碳纳米管(管径为0.86 nm)对H2S的选择性最高,这种选择性与管径的关系是由几何效应和能量效应共同决定的.针对(11,0)碳纳米管讨论了温度和压力对H2S吸附量和选择性的影响.模拟结果表明,随着温度上升,H2S的吸附量和选择性都呈先增加后减小的趋势;随着压力增加,H2S的吸附量和选择性都有所下降.本文模拟结果可为含硫气体混合物的吸附分离提供一定参考.


    Directory of Open Access Journals (Sweden)

    Gheorghe Zgherea


    Full Text Available Mixtures of small quantities of carbonyl compounds are presents in foods, concerning sensorial qualities. The inferior carbonyl compounds (C2-C4, boiling point <100°C – mono and dicarbonyl – can be identified and measured their concentrations, after a separation by distillation on the water bath. They are transferred in a strongly acid solution of 2.4-dinitrophenylhidrazine (2.4-DNPH, generating a mixture of insoluble 2.4-dinitrophenylhidrazones (2.4-DNPH-ones. The 2.4-DNPH-ones are organic compounds with weak polarity, solids, crystallized, yellows and water insoluble, soluble in organic solvents. The mixture of 2.4dinitrophenylhidrazones may be separated by liquid chromatography, using the reverse phase mechanism [1-3]. This paper contains experimental and theoretical considerations to the means of separation through liquid chromatography of two synthetically and a natural mixtures that contain 2.4-DNPH-ones provided by inferior carbonyl compounds; to obtain conclude results, in the synthetically mixtures was introduce and 2.4-DNPH-ones provided by carbonyl compounds having three (acetone and propanal and four (isobutyl aldehyde atoms of carbon.

  9. Taylor dispersion analysis of mixtures. (United States)

    Cottet, Hervé; Biron, Jean-Philippe; Martin, Michel


    Taylor dispersion analysis (TDA) is a fast and simple method for determining hydrodynamic radii. In the case of sample mixtures, TDA, as the other nonseparative methods, leads to an average diffusion coefficient on the different molecules constituting the mixture. We set in this work the equations giving, on a consistent basis, the average values obtained by TDA with detectors with linear response functions. These equations confronted TDA experiments of sample mixtures containing different proportions of a small molecule and a polymer standard. Very good agreement between theory and experiment was obtained. In a second part of this work, on the basis of monomodal or bimodal molar mass distributions of polymers, the different average diffusion coefficients corresponding to TDA were compared to the z-average diffusion coefficient (D(z)) obtained from dynamic light scattering (DLS) experiments and to the weight average diffusion coefficient (D(w)). This latter value is sometimes considered as the most representative of the sample mixture. From these results, it appears that, for monomodal distribution and relatively low polydispersity (I = 1.15), the average diffusion coefficient generally derived from TDA is very close to Dw. However, for highly polydisperse samples (e.g., bimodal polydisperse distributions), important differences could be obtained (up to 35% between TDA and D(w)). In all the cases, the average diffusion coefficient obtained by TDA for a mass concentration detector was closer to the Dw value than the z-average obtained by DLS.

  10. Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Musko, Nikolai E.; Baiker, Alfons


    This study focuses on the investigation of the phase behavior of mixtures relevant to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The bubble points of corresponding quaternary mixtures of varying composition were experimentally determined. The Cubic-Plus-Associati...

  11. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Directory of Open Access Journals (Sweden)

    Mehran Tehrani


    Full Text Available Carbon nanofilament and nanotubes (CNTs have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD, in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD technique was also utilized to grow multiwall CNTs (MWCNTs on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  12. Selective Oxidation of Soft Grade Carbon


    Zecevic, N


    Oil-furnace carbon black is produced by pyrolysis of gaseous or liquid hydrocarbons or their mixtures. The oil feedstock for the production of oil-furnace carbon black is mainly composed of high-boiling aromatic hydrocarbons, which are residues of petroleum cracking, while the gaseous raw material is commonly natural gas. Most of the oil-furnace carbon black production (> 99 %) is used as a reinforcing agent in rubber compounds. Occasionally, oil-furnace carbon blacks are used in contact with...

  13. Binary mixtures of chiral gases

    CERN Document Server

    Presilla, Carlo


    A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.

  14. Atomistic Simulations of Bicelle Mixtures


    Jiang, Yong; Wang, Hao; Kindt, James T.


    Mixtures of long- and short-tail phosphatidylcholine lipids are known to self-assemble into a variety of aggregates combining flat bilayerlike and curved micellelike features, commonly called bicelles. Atomistic simulations of bilayer ribbons and perforated bilayers containing dimyristoylphosphatidylcholine (DMPC, di-C14 tails) and dihexanoylphosphatidylcholine (DHPC, di-C6 tails) have been carried out to investigate the partitioning of these components between flat and curved microenvironmen...


    Institute of Scientific and Technical Information of China (English)

    Baosheng WU; Albert MOLINAS; Anping SHU


    A new method based on the Transport Capacity Fraction (TCF) concept is proposed to compute the fractional transport rates for nonuniform sediment mixtures in sand-bed channels. The TCF concept is derived from the understanding that the measurements and predictions of bed-material load are more accurate and reliable than the measurements and predictions of fractional loads. First the bed-material load is computed using an appropriate equation, then the fractional transport rates are determined by distributing the bed-material load into size groups through a transport capacity distribution function. For the computation of bed-material loads, the Aekers and White, Engelund and Hansen, and Yang equations are used in this study. Two new transport capacity distribution functions are developed for flows in sand-bed channels. The new expressions presented in this paper account for the sheltering and exposure effects that exist in mixtures. Comparisons with measured data show that the proposed method can significantly improve the predictions of fractional transport rates for nonuniform sediment mixtures.

  16. Simplex-centroid mixture formulation for optimised composting of kitchen waste. (United States)

    Abdullah, N; Chin, N L


    Composting is a good recycling method to fully utilise all the organic wastes present in kitchen waste due to its high nutritious matter within the waste. In this present study, the optimised mixture proportions of kitchen waste containing vegetable scraps (V), fish processing waste (F) and newspaper (N) or onion peels (O) were determined by applying the simplex-centroid mixture design method to achieve the desired initial moisture content and carbon-to-nitrogen (CN) ratio for effective composting process. The best mixture was at 48.5% V, 17.7% F and 33.7% N for blends with newspaper while for blends with onion peels, the mixture proportion was 44.0% V, 19.7% F and 36.2% O. The predicted responses from these mixture proportions fall in the acceptable limits of moisture content of 50% to 65% and CN ratio of 20-40 and were also validated experimentally.


    Directory of Open Access Journals (Sweden)



    Full Text Available The aim of this study was to assess the organic matter changes in quantity and quality, particularly of the humic fraction in the surface layer (0–20 cm, of a Typic Plinthustalf soil under different management of plant mixtures used as green manure for mango (Mangifera indica L. crops. The plant mixtures, which were seeded between rows of mango trees, were formed by two groups of leguminous and non-leguminous plants. Prior to sowing, seeds were combined in different proportions and compositions constituting the following treatments: 100% non-leguminous species (NL; 100% leguminous species (L; 75% L and 25% NL; 50% L and 50% NL; 25% L and 75% NL; and 100% spontaneous vegetation, considered a control. The plant mixtures that grew between rows of mango trees caused changes in the chemical composition of the soil organic matter, especially for the treatments 50% L and 50% NL and 25% L and 75% NL, which increased the content of humic substances in the soil organic matter. However, the treatment 25% L and 75% NL was best at minimising loss of total organic carbon from the soil. The humic acids studied have mostly aliphatic characteristics, showing large amounts of carboxylic and nitrogen groups and indicating that most of the organic carbon was formed by humic substances, with fulvic acid dominating among the alkali soluble fractions.

  18. Processing fissile material mixtures containing zirconium and/or carbon (United States)

    Johnson, Michael Ernest; Maloney, Martin David


    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  19. 21 CFR 82.6 - Certifiable mixtures. (United States)


    ... mixture is harmless and suitable for use therein; and (3) No diluent (except resins, natural gum, pectin... mixture is for external application to shell eggs, or for use in coloring a food specified in the...

  20. Thermodiffusion of polycyclic aromatic hydrocarbons in binary mixtures (United States)

    Hashmi, Sara M.; Senthilnathan, Sid; Firoozabadi, Abbas


    Thermodiffusion in liquid mixtures may explain some counter-intuitive but naturally occurring phenomena such as hydrocarbon reservoirs with heavier component(s) stratified on top of lighter ones. However, beyond benchmark systems, systematic measurements of thermodiffusion in binary organic mixtures are lacking. We use an optical beam deflection apparatus to simultaneously probe Fickian and thermal diffusion in binary solution mixtures of polycyclic aromatic hydrocarbons dissolved in alkanes, and measure both Fickian diffusion D and the Soret coefficient ST, and then obtain the thermodiffusion coefficient DT. In a series of nine binary mixtures, we vary both the size of the aromatic compound from two to four rings, as well as the length of the alkane chain from 6 to 16 carbons. To probe the effect of increasing ring size, we include a 6-ringed aromatic compound, coronene, and toluene as a solvent, due to the insolubility of coronene in alkanes. Our results suggest that Fickian diffusion increases with the inverse of solvent viscosity and also with decreasing molecular weight of the solute. While both of these trends match our intuition, the behavior of ST and DT is more complicated. We find that ST and DT increase with the solute molecular weight when the solvent is held fixed and that the impact of solute ring size is higher in shorter chain alkane solvents.

  1. A study on flammability limits of fuel mixtures. (United States)

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Sekiya, Akira


    Flammability limit measurements were made for various binary and ternary mixtures prepared from nine different compounds. The compounds treated are methane, propane, ethylene, propylene, methyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. The observed values of lower flammability limits of mixtures were found to be in good agreement to the calculated values by Le Chatelier's formula. As for the upper limits, however, some are close to the calculated values but some are not. It has been found that the deviations of the observed values of upper flammability limits from the calculated ones are mostly to lower concentrations. Modification of Le Chatelier's formula was made to better fit to the observed values of upper flammability limits. This procedure reduced the average difference between the observed and calculated values of upper flammability limits to one-third of the initial value.

  2. An integral equation model for warm and hot dense mixtures

    CERN Document Server

    Starrett, C E; Daligault, J; Hamel, S


    In Starrett and Saumon [Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one "atom" in a plasma is determined using a density functional theory based average-atom (AA) model, and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e. mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.

  3. Study on multimers and their structures in molecular association mixture

    Institute of Scientific and Technical Information of China (English)

    NI Yi; DOU XiaoMing; ZHAO HaiYing; YIN GuangZhong; YAMAGUCHI Yoshinori; OZAKI Yukihiro


    Self-association system of (R)-1,3-butanediol in dilute carbon tetrachloride (CCl4) solution is studied as a model of molecular association mixture. Analysis methods including FSMWEFA (fixed-size moving window evolving factor analysis) combined with PCA (principal component analysis), SIMPLISMA (simple-to-use interactive self-modeling mixture analysis), and ITTFA (iterative target transformation factor analysis) are adopted to resolve infrared spectra of (R)-1,3-butanediol solution. Association number and equilibrium constant are computed. (R)-1,3-butanediol in dilute inert solution is determined as a monomer-trimer equilibrium system. Theoretical investigation of trimer structures is carried out with DFT (density functional theory), and structural factors are analyzed.

  4. Study on multimers and their structures in molecular association mixture

    Institute of Scientific and Technical Information of China (English)

    YAMAGUCHI; Yoshinori; OZAKI; Yukihiro


    Self-association system of(R)-1,3-butanediol in dilute carbon tetrachloride(CCl4)solution is studied as a model of molecular association mixture.Analysis methods including FSMWEFA(fixed-size moving window evolving factor analysis)combined with PCA(principal component analysis),SIMPLISMA (simple-to-use interactive self-modeling mixture analysis),and ITTFA(iterative target transformation factor analysis)are adopted to resolve infrared spectra of(R)-1,3-butanediol solution.Association number and equilibrium constant are computed.(R)-1,3-butanediol in dilute inert solution is determined as a monomer-trimer equilibrium system.Theoretical investigation of trimer structures is carried out with DFT(density functional theory),and structural factors are analyzed.

  5. Fly ash carbon passivation (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G


    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  6. Electron irradiation of carbon dioxide-carbon disulphide ice analog and its implication on the identification of carbon disulphide on Moon

    Indian Academy of Sciences (India)

    B Sivaraman


    Carbon dioxide (CO2) and carbon disulphide (CS2) molecular ice mixture was prepared under low temperature (85 K) astrochemical conditions. The icy mixture irradiated with keV electrons simulates the irradiation environment experienced by icy satellites and Interstellar Icy Mantles (IIM). Upon electron irradiation the chemical composition was found to have altered and the new products from irradiation were found to be carbonyl sulphide (OCS), sulphur dioxide (SO2), ozone (O3), carbon trioxide (CO3), sulphur trioxide (SO3), carbon subsulphide (C3S2) and carbon monoxide (CO). Results obtained confirm the presence of CS2 molecules in lunar south-pole probed by the Moon Impact Probe (MIP).

  7. The Kinetics of Enzyme Mixtures

    Directory of Open Access Journals (Sweden)

    Simon Brown


    Full Text Available Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme. For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present. Based on the standard Michaelis-Menten model, we show that if the Michaelis constants (Km of two isoforms differ by a factor of at least 20 the steady-state kinetics can be used to characterise the mixture. However, even if heterogeneity is reflected in the kinetic data, the proportions of the different forms of the enzyme cannot be estimated from the kinetic data alone. Consequently, the heterogeneity of enzyme preparations is rarely reflected in measurements of their steady-state kinetics unless the species present have significantly different kinetic properties. This has two implications: (1 it is difficult, but not impossible, to detect molecular heterogeneity using kinetic data and (2 even when it is possible, a considerable quantity of high quality data is required.

  8. Supercritical Water Mixture (SCWM) Experiment (United States)

    Hicks, Michael C.; Hegde, Uday G.


    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  9. Atomistic simulations of bicelle mixtures. (United States)

    Jiang, Yong; Wang, Hao; Kindt, James T


    Mixtures of long- and short-tail phosphatidylcholine lipids are known to self-assemble into a variety of aggregates combining flat bilayerlike and curved micellelike features, commonly called bicelles. Atomistic simulations of bilayer ribbons and perforated bilayers containing dimyristoylphosphatidylcholine (DMPC, di-C(14) tails) and dihexanoylphosphatidylcholine (DHPC, di-C(6) tails) have been carried out to investigate the partitioning of these components between flat and curved microenvironments and the stabilization of the bilayer edge by DHPC. To approach equilibrium partitioning of lipids on an achievable simulation timescale, configuration-bias Monte Carlo mutation moves were used to allow individual lipids to change tail length within a semigrand-canonical ensemble. Since acceptance probabilities for direct transitions between DMPC and DHPC were negligible, a third component with intermediate tail length (didecanoylphosphatidylcholine, di-C(10) tails) was included at a low concentration to serve as an intermediate for transitions between DMPC and DHPC. Strong enrichment of DHPC is seen at ribbon and pore edges, with an excess linear density of approximately 3 nm(-1). The simulation model yields estimates for the onset of edge stability with increasing bilayer DHPC content between 5% and 15% DHPC at 300 K and between 7% and 17% DHPC at 323 K, higher than experimental estimates. Local structure and composition at points of close contact between pores suggest a possible mechanism for effective attractions between pores, providing a rationalization for the tendency of bicelle mixtures to aggregate into perforated vesicles and perforated sheets.

  10. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.


    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  11. Gravimetric dilution of calibration gas mixtures (CO2, CO, and CH4 in He balance): Toward their uncertainty estimation (United States)

    Budiman, Harry; Mulyana, Muhammad Rizky; Zuas, Oman


    Uncertainty estimation for the gravimetric dilution of four calibration gas mixtures [carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4) in helium (He) Balance] have been carried out according to the International Organization for Standardization (ISO) of "Guide to the Expression of Uncertainty in Measurement". The uncertainty of the composition of gas mixtures was evaluated to measure the quality, reliability, and comparability of the prepared calibration gas mixtures. The analytical process for the uncertainty estimation is comprised of four main stages such as specification of measurand, identification, quantification of the relevant uncertainty sources, and combination of the individual uncertainty sources. In this study, important uncertainty sources including weighing, gas cylinder, component gas, certified calibration gas mixture (CCGM) added, and purity of the He balance were examined to estimate the final uncertainty of composition of diluted calibration gas mixtures. The results shows that the uncertainties of gravimetric dilution of the four calibration gas mixtures (CO2, CO, and CH4 in He Balance) were found in the range of 5.974% - 7.256% that were expressed as %relative of expanded uncertainty at 95% of confidence level (k=2). The major contribution of sources uncertainty to the final uncertainty arose from the uncertainty related to the certified calibration gas mixture (CCGM) which was the uncertainty value stated in the CCGM certificate. The verification of calibration gas mixtures composition shows that the gravimetric values of calibration gas mixtures were consistent with the results of measurement using gas chromatography flame ionization detector equipped by methanizer.

  12. Effect of Mixture Pressure and Equivalence Ratio on Detonation Cell Size for Hydrogen-Air Mixtures (United States)



  13. Carbon Fiber Foam Composites and Methods for Making the Same (United States)

    Leseman, Zayd Chad (Inventor); Atwater, Mark Andrew (Inventor); Phillips, Jonathan (Inventor)


    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.

  14. Afrikaner spirituality: A complex mixture

    Directory of Open Access Journals (Sweden)

    Erna Olivier


    Full Text Available The article argues that the perception that Afrikaner spirituality is and has always been founded mainly or only upon the Calvinistic tradition is a misconception. Nineteenth century Afrikaner spiritualism consisted of a mixture of theology, philosophy and a way of adapting to extreme living conditions. These factors, although with different contents, are also the determinant issues that made 21st century Afrikaner spirituality such a complex phenomenon. The article postulates that the Afrikaner nation’s current identity crisis can be resolved by closely looking at the different influences on the spirituality of the nation and by carefully guiding the people through the complex set of multiple choices to a fresh relation with Christ in a new found Christian identity to confirm our Christian foundation.

  15. Carbon Carbon Composites: An Overview .

    Directory of Open Access Journals (Sweden)

    G. Rohini Devi


    Full Text Available Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several industrial and biomedical applications. The multidirectional carbon-carbon product technology is versatile and offers design flexibility. This paper describes the multidirectional preform and carbon-carbon process technology and research and development activities within the country. Carbon-carbon product experience at DRDL has also been discussed. Development of carbon-carbon brake discs process technology using the liquid impregnation process is described. Further the test results on material characterisation, thermal, mechanical and tribological properties are presented.

  16. A new high-throughput LC-MS method for the analysis of complex fructan mixtures

    DEFF Research Database (Denmark)

    Verspreet, Joran; Hansen, Anders Holmgaard; Dornez, Emmie


    In this paper, a new liquid chromatography-mass spectrometry (LC-MS) method for the analysis of complex fructan mixtures is presented. In this method, columns with a trifunctional C18 alkyl stationary phase (T3) were used and their performance compared with that of a porous graphitized carbon (PGC...

  17. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors

    DEFF Research Database (Denmark)

    Stefánsson, E; Jensen, P K; Eysteinsson, T;


    To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture....

  18. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R


    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  19. A Linear Gradient Theory Model for Calculating Interfacial Tensions of Mixtures

    DEFF Research Database (Denmark)

    Zou, You-Xiang; Stenby, Erling Halfdan


    In this research work, we assumed that the densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor and liquid phases, and we developed a linear gradient theory model for computing interfacial tensions of mixtures, especially mixtures...... containing supercritical methane, argon, nitrogen, and carbon dioxide gases at high pressure. With this model it is unnecessary to solve the time-consuming density profile equations of the gradient theory model. The model has been tested on a number of mixtures at low and high pressures. The results show...... excellent agreement between the predicted and experimental IFTs at high and moderate levels of IFTs, while the agreement is reasonably accurate in the near-critical region as the used equations of state reveal classical scaling behavior. To predict accurately low IFTs (sigma

  20. Phenol and cresol mixture degradation by the yeast Trichosporon cutaneum. (United States)

    Alexieva, Z; Gerginova, M; Manasiev, J; Zlateva, P; Shivarova, N; Krastanov, A


    Most industrial wastes contain different organic mixtures, making important the investigation on the microbial destruction of composite substrates. The capability of microbes to remove harmful chemicals from polluted environments strongly depends on the presence of other carbon and energy substrates. The effect of mixtures of phenol- and methyl-substituted phenols (o-, m-, p-cresol) on the growth behaviour and degradation capacity of Trichosporon cutaneum strain was investigated. The cell-free supernatants were analysed by HPLC. It was established that the presence of o-, m- and p- cresol has not prevented complete phenol assimilation but had significant delaying effect on the phenol degradation dynamics. The mutual influence of phenol and p-cresol was investigated. We developed the kinetic model on the basis of Haldane kinetics, which used model parameters from single-substrate experiments to predict the outcome of the two-substrate mixture experiment. The interaction coefficients indicating the degree to which phenol affects the biodegradation of p-cresol and vice versa were estimated. Quantitative estimation of interaction parameters is essential to facilitate the application of single or mixed cultures to the bio-treatment of hazardous compounds.


    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith


    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  2. Simulation of mixture microstructures via particle packing models and their direct comparison with real mixtures (United States)

    Gulliver, Eric A.

    The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered

  3. Thermodynamics of mixtures containing amines

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan Antonio [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain)], E-mail:; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain); Riesco, Nicolas [Department of Chemical Engineering, Loughborough University, Loughborough, LE113TU Leicestershire (United Kingdom)


    Mixtures with dimethyl or trimethylpyridines and alkane, aromatic compound or 1-alkanol have been examined using different theories: DISQUAC, Flory, the concentration-concentration structure factor, S{sub CC}(0), or the Kirkwood-Buff formalism. DISQUAC represents fairly well the available experimental data, and improves theoretical calculations from Dortmund UNIFAC. Two important effects have been investigated: (i) the effect of increasing the number of methyl groups attached to the aromatic ring of the amine; (ii) the effect of modifying the position of the methyl groups in this ring. The molar excess enthalpy, H{sup E}, and the molar excess volume, V{sup E}, decrease in systems with alkane or methanol as follows: pyridine > 3-methylpyridine > 3,5-dimethylpyridine and pyridine > 2-methylpyridine > 2,4-dimethylpyridine > 2,4,6-trimethylpyridine, which has been attributed to a weakening of the amine-amine interactions in the same sequences. This is in agreement with the relative variation of the effective dipole moment, {mu}-bar, and of the differences between the boiling temperature of a pyridine base and that of the homomorphic alkane. For heptane solutions, the observed H{sup E} variation, H{sup E} (3,5-dimethylpyridine) > H{sup E} (2,4-dimethylpyridine) > H{sup E} (2,6-dimethylpyridine), is explained similarly. Calculations on the basis of the Flory model confirm that orientational effects become weaker in systems with alkane in the order: pyridine > methylpyridine > dimethylpyridine > trimethylpyridine. S{sub CC}(0) calculations show that steric effects increase with the number of CH{sub 3}- groups in the pyridine base, and that the steric effects exerted by methyl groups in positions 2 and 6 are higher than when they are placed in positions 3 and 5. The hydrogen bond energy in methanol mixtures is independent of the pyridine base, and it is estimated to be -35.2 kJ mol{sup -1}. Heterocoordination in these solutions is due in part to size effects. Their


    Energy Technology Data Exchange (ETDEWEB)

    Koziol, Lucas; Goldman, Nir, E-mail:, E-mail: [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)


    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  5. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures (United States)

    Goldman, Nir; Koziol, Lucas


    We present results of prebiotic organic synthesis in shock compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium time-scales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impact on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon and nitrogen bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding for hydrocarbon impact synthesis on early Earth and its role in producing life building molecules from simple starting materials. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Carbon catalysis of reactions in the lithium SOCl2 and SO2 systems (United States)

    Kilroy, W. P.


    Certain hazards associated with lithium batteries have delayed widespread acceptance of these power sources. The reactivity of ground lithium carbon mixtures was examined. The effect of carbon types on this reactivity was determined. The basic reaction involved mixtures of lithium and carbon with battery electrolyte. The various parameters that influenced this reactivity included: the nature and freshness of the carbon; the freshness, the purity, and the conductive salt of the electrolyte; and the effect of Teflon or moisture.


    Energy Technology Data Exchange (ETDEWEB)

    Mark C. Thies


    The ability to model the thermodynamic phase behavior of long-chain and short-chain alkane mixtures is of considerable industrial and theoretical interest. However, attempts to accurately describe the phase behavior of what we call asymmetric mixtures of hydrocarbons (AMoHs) have met with only limited success. Vapor-liquid equilibrium (VLE) data are surprisingly scarce, and the limited data that are available suggest that cubic equations of state may not be capable of fitting (much less predicting) the phase behavior of AMoHs. The following tasks, which address the problems described above, were accomplished during the one-year period of this Phase I UCR grant: (1) A continuous-flow apparatus was modified for the measurement of AMoHs and used to measure VLE for propane + hexadecane mixtures at temperatures from 473 to 626 K and pressures up to the mixture critical pressures of about 100 bar. (2) The extent to which cubic vs. modern, statistical mechanics-based equations of state (EoS) are applicable to AMoHs was evaluated. Peng-Robinson (PR) was found to be a surprisingly accurate equation for fitting AMoHs, but only if its pure component parameters were regressed to liquid densities and vapor pressures. However, even this form of PR was still not a predictive equation, as there was a significant variation of kij with temperature. In spite of its deficiencies in terms of vapor-phase predictions and modeling of the critical region, PC-SAFT was found to be the most appropriate EoS for truly predicting the phase behavior of highly asymmetric mixtures of alkanes. (3) Finally, a dense-gas extraction (DGE) apparatus was designed and constructed for the fractionation of F-T waxes into cuts of pure oligomers. Such oligomers are needed in g-sized quantities to perform VLE measurements with long-chain alkanes with carbon numbers greater than 40. The dense gas and the solute mixture to be extracted are contacted in a packed column that has a separation power significantly

  8. Fibril assembly in whey protein mixtures

    NARCIS (Netherlands)

    Bolder, S.G.


    The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly

  9. Robust classification using mixtures of dependency networks

    DEFF Research Database (Denmark)

    Gámez, José A.; Mateo, Juan L.; Nielsen, Thomas Dyhre


    -ups are often obtained at the expense of accuracy. In this paper we try to address this issue through the use of mixtures of dependency networks. To reduce learning time and improve robustness when dealing with data sparse classes, we outline methods for reusing calculations across mixture components. Finally...

  10. Two-microphone Separation of Speech Mixtures

    DEFF Research Database (Denmark)


    Matlab source code for underdetermined separation of instaneous speech mixtures. The algorithm is described in [1] Michael Syskind Pedersen, DeLiang Wang, Jan Larsen and Ulrik Kjems: ''Two-microphone Separation of Speech Mixtures,'' 2006, submitted for journal publoication. See also, [2] Michael...

  11. Gasification of biomass chars in steam-nitrogen mixture

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)]. E-mail:; Yaman, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Kucukbayrak, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)


    Some agricultural and waste biomass samples such as sunflower shell, pinecone, rapeseed, cotton refuse and olive refuse were first pyrolyzed in nitrogen, and then, their chars were gasified in a gas mixture of steam and nitrogen. Experiments were performed using the thermogravimetric analysis technique. Pyrolysis of the biomass samples was performed at a heating rate of 20 K/min from ambient to 1273 K in a dynamic nitrogen atmosphere of 40 cm{sup 3} min{sup -1}. The obtained chars were cooled to ambient temperature and then gasified up to 1273 K in a dynamic atmosphere of 40 cm{sup 3} min{sup -1} of a mixture of steam and nitrogen. Derivative thermogravimetric analysis profiles from gasification of the chars were derived, and the mass losses from the chars were interpreted in terms of temperature. It was concluded that gasification characteristics of biomass chars were fairly dependent on the biomass properties such as ash and fixed carbon contents and the constituents present in the ash. Different mechanisms in the three temperature intervals, namely water desorption at lower temperatures, decomposition of hydroxide minerals to oxide minerals and formation of carbon monoxide at medium temperatures and production of hydrogen at high temperatures govern the behavior of the char during the gasification process. The chars from pinecone and sunflower shell could be easily gasified under the mentioned conditions. In order to further raise the conversion yields, long hold times should be applied at high temperatures. However, the chars from rapeseed and olive refuse were not gasified satisfactorily. Low ash content and high fixed carbon content biomass materials are recommended for use in gasification processes when char from pyrolysis at elevated temperatures is used as a feedstock.

  12. Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna. (United States)

    Meyer, Joseph S; Ranville, James F; Pontasch, Mandee; Gorsuch, Joseph W; Adams, William J


    Standard static-exposure acute lethality tests were conducted with Daphnia magna neonates exposed to binary or ternary mixtures of Cd, Cu, and Zn in moderately hard reconstituted water that contained 3 mg dissolved organic carbon/L added as Suwannee River fulvic acid. These experiments were conducted to test for additive toxicity (i.e., the response to the mixture can be predicted by combining the responses obtained in single-metal toxicity tests) or nonadditive toxicity (i.e., the response is less than or greater than additive). Based on total metal concentrations (>90% dissolved) the toxicity of the tested metal mixtures could be categorized into all 3 possible additivity categories: less-than-additive toxicity (e.g., Cd-Zn and Cd-Cu-Zn mixtures and Cd-Cu mixtures when Cu was titrated into Cd-containing waters), additive toxicity (e.g., some Cu-Zn mixtures), or more-than-additive toxicity (some Cu-Zn mixtures and Cd-Cu mixtures when Cd was titrated into Cu-containing waters). Exposing the organisms to a range of sublethal to supralethal concentrations of the titrated metal was especially helpful in identifying nonadditive interactions. Geochemical processes (e.g., metal-metal competition for binding to dissolved organic matter and/or the biotic ligand, and possibly supersaturation of exposure waters with the metals in some high-concentration exposures) can explain much of the observed metal-metal interactions. Therefore, bioavailability models that incorporate those geochemical (and possibly some physiological) processes might be able to predict metal mixture toxicity accurately.

  13. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Claus H.


    treatment of a mixture of sucrose and ammonia followed by carbonization of the mixture in N-2 at high temperatures. The porous carbon produced by this method was subsequently applied as a hard template in the synthesis of mesoporous silicalite-1 and removed by combustion after synthesis. X-ray diffraction...

  14. Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalysts

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Borghei, Maryam; Andersen, Shuang Ma;


    Commercially available graphitized carbon nanofibers and multi-walled carbon nanotubes, two carbon materials with very different structure, have been functionalized in a nitric–sulfuric acid mixture. Further on, the materials have been platinized by a microwave assisted polyol method. The relative...... that the functionalization improves the stability for multi-walled carbon nanotubes, at the cost of decreased activity....


    Directory of Open Access Journals (Sweden)



    Full Text Available An experimental research has been carried out in order to examine the removal of methanol from methanol-water mixtures using three different methods; activated sludge; activated carbon and air stripping. The results showed that the methanol was totally consumed by the bacteria as quickly as the feed entered the activated sludge vessel. Air stripping process has a limited ability for removing of methanol due to strong intermolecular forces between methanol and water; however, the results showed that the percentage of methanol removed using air pressure at 0.5 bar was higher than that of using air pressure of 0.25 bar. Removal of methanol from the mixture with a methanol content of 5% using activated carbon was not successful due to the limited capacity of the of the activated carbon. Thus, the activated sludge process can be considered as the most suitable process for the treatment of methanol-water mixtures.

  16. On the mixture model for multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, M.; Taivassalo, V. [VTT Energy, Espoo (Finland). Nuclear Energy; Kallio, S. [Aabo Akademi, Turku (Finland)


    Numerical flow simulation utilising a full multiphase model is impractical for a suspension possessing wide distributions in the particle size or density. Various approximations are usually made to simplify the computational task. In the simplest approach, the suspension is represented by a homogeneous single-phase system and the influence of the particles is taken into account in the values of the physical properties. This study concentrates on the derivation and closing of the model equations. The validity of the mixture model is also carefully analysed. Starting from the continuity and momentum equations written for each phase in a multiphase system, the field equations for the mixture are derived. The mixture equations largely resemble those for a single-phase flow but are represented in terms of the mixture density and velocity. The volume fraction for each dispersed phase is solved from a phase continuity equation. Various approaches applied in closing the mixture model equations are reviewed. An algebraic equation is derived for the velocity of a dispersed phase relative to the continuous phase. Simplifications made in calculating the relative velocity restrict the applicability of the mixture model to cases in which the particles reach the terminal velocity in a short time period compared to the characteristic time scale of the flow of the mixture. (75 refs.)

  17. Foaming of mixtures of pure hydrocarbons (United States)

    Robinson, J. V.; Woods, W. W.


    Mixtures of pure liquid hydrocarbons are capable of foaming. Nine hydrocarbons were mixed in pairs, in all possible combinations, and four proportions of each combination. These mixtures were sealed in glass tubes, and the foaming was tested by shaking. Mixtures of aliphatic with other aliphatic hydrocarbons, or of alkyl benzenes with other alkyl benzenes, did not foam. Mixtures of aliphatic hydrocarbons with alkyl benzenes did foam. The proportions of the mixtures greatly affected the foaming, the maximum foaming of 12 of 20 pairs being at the composition 20 percent aliphatic hydrocarbon, 80 percent alkyl benzene. Six seconds was the maximum foam lifetime of any of these mixtures. Aeroshell 120 lubricating oil was fractionated into 52 fractions and a residue by extraction with acetone in a fractionating extractor. The index of refraction, foam lifetime, color, and viscosity of these fractions were measured. Low viscosity and high index fractions were extracted first. The viscosity of the fractions extracted rose and the index decreased as fractionation proceeded. Foam lifetimes and color were lowest in the middle fractions. Significance is attached to the observation that none of the foam lifetimes of the fractions or residue is as high as the foam lifetime of the original Aeroshell, indicating that the foaming is not due to a particular foaming constituent, but rather to the entire mixture.

  18. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne


    Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...

  19. Investigation of Structure and Oxidation Behavior of Pitch and Resin Resultant Carbon

    Institute of Scientific and Technical Information of China (English)

    ZHUBo-quan; LINan


    The structure and oxidation behaviors of pitch carbon,resin carbon and their mixture re-sultant carbon have been investigated.The results indicate that the pitch carbon has relative higher true specific gravity,well developed crystalline and better oxidation resistance than resin carbon,With 20%-35% resin added to pitch,the structure of the resultant carbon can be modified and oxidation resistance will be improved significantly.

  20. Production of single-walled carbon nanotube grids (United States)

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean


    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  1. Application of the Electronic Nose Technique to Differentiation between Model Mixtures with COPD Markers

    Directory of Open Access Journals (Sweden)

    Jacek Namieśnik


    Full Text Available The paper presents the potential of an electronic nose technique in the field of fast diagnostics of patients suspected of Chronic Obstructive Pulmonary Disease (COPD. The investigations were performed using a simple electronic nose prototype equipped with a set of six semiconductor sensors manufactured by FIGARO Co. They were aimed at verification of a possibility of differentiation between model reference mixtures with potential COPD markers (N,N-dimethylformamide and N,N-dimethylacetamide. These mixtures contained volatile organic compounds (VOCs such as acetone, isoprene, carbon disulphide, propan-2-ol, formamide, benzene, toluene, acetonitrile, acetic acid, dimethyl ether, dimethyl sulphide, acrolein, furan, propanol and pyridine, recognized as the components of exhaled air. The model reference mixtures were prepared at three concentration levels—10 ppb, 25 ppb, 50 ppb v/v—of each component, except for the COPD markers. Concentration of the COPD markers in the mixtures was from 0 ppb to 100 ppb v/v. Interpretation of the obtained data employed principal component analysis (PCA. The investigations revealed the usefulness of the electronic device only in the case when the concentration of the COPD markers was twice as high as the concentration of the remaining components of the mixture and for a limited number of basic mixture components.

  2. The disentangling number for phylogenetic mixtures

    CERN Document Server

    Sullivant, Seth


    We provide a logarithmic upper bound for the disentangling number on unordered lists of leaf labeled trees. This results is useful for analyzing phylogenetic mixture models. The proof depends on interpreting multisets of trees as high dimensional contingency tables.

  3. Model structure selection in convolutive mixtures

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, Scott; Hansen, Lars Kai


    The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimoneous represent......The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimoneous...... representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: 'Are we actually dealing with a convolutive mixture?'. We try to answer this question for EEG data....

  4. Model structure selection in convolutive mixtures

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai


    The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious represent......The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious...... representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: ’Are we actually dealing with a convolutive mixture?’. We try to answer this question for EEG data....

  5. Ultrafiltration of a polymer-electrolyte mixture

    NARCIS (Netherlands)

    Vonk, P; Noordman, T.R; Schippers, D; Tilstra, B; Wesselingh, J.A


    We present a mathematical model to describe the ultrafiltration behaviour of polymer-electrolyte mixtures. The model combines the proper thermodynamic forces (pressure, chemical potential and electrical potential differences) with multicomponent diffusion theory. The model is verified with experimen

  6. Investigation of the helium proportion influence on the Prandtl number value of gas mixtures

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev


    Full Text Available The paper investigates an influence of helium fraction (light gases on the Prandtl number value for binary and more complex gas mixtures.It is shown that a low value of the Prandtl number (Pr-number results in decreasing a temperature recovery factor value and, respectively, in reducing a recovery temperature value on the wall (thermoinsulated wall temperature with the compressive gas flow bypassing it. This, in turn, allows us to increase efficiency of gasdynamic energy separation in Leontyev's tube.The paper conducts a numerical research of the influence of binary and more complex gas mixture composition on the Prandtl number value. It is shown that a mixture of two gases with small and large molecular weight allows us to produce a mixture with a lower value of the Prandtl number in comparison with the initial gases. Thus, the value of Prandtl number decreases by 1.5-3.2 times in comparison with values for pure components (the more a difference of molar mass of components, the stronger is a decrease.The technique to determine the Prandtl number value for mixtures of gases in the wide range of temperatures and pressure is developed. Its verification based on experimental data and results of numerical calculations of other authors is executed. It is shown that it allows correct calculation of binary and more complex mixtures of gasesFor the mixtures of inert gases it has been obtained that the minimum value of the Prandtl number is as follows: for helium - xenon mixtures (He-Xe makes 0.2-0.22, for helium - krypton mixtures (He-Kr – 0.3, for helium - argon mixes (He-Ar – 0.41.For helium mixture with carbon dioxide the minimum value of the Prandtl number makes about 0.4, for helium mixture with N2 nitrogen the minimum value of the Prandtl number is equal to 0.48, for helium-methane (CH4 - 0.5 and helium – oxygen (O2 – 0.46.This decrease is caused by the fact that the thermal capacity of mixture changes under the linear law in regard to the

  7. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez


    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  8. Fitting mixture distributions to phenylthiocarbamide (PTC) sensitivity.


    Jones, P N; G.J. McLachlan


    A technique for fitting mixture distributions to phenylthiocarbamide (PTC) sensitivity is described. Under the assumptions of Hardy-Weinberg equilibrium, a mixture of three normal components is postulated for the observed distribution, with the mixing parameters corresponding to the proportions of the three genotypes associated with two alleles A and a acting at a single locus. The corresponding genotypes AA, Aa, and aa are then considered to have separate means and variances. This paper is c...

  9. Laboratory performance of asphalt rubber mixtures


    Fontes, Liseane; Trichês, Glicério; Pais, Jorge; Pereira, Paulo; Minhoto, Manuel


    Asphalt rubber mixtures are one of the most promising techniques to extend the service life of asphalt pavement overlays. Asphalt rubber binder is composed of crumb rubber from reclaimed tires and conventional asphalt. The asphalt rubber binder can be obtained through wet process in two different systems: tire rubber modified asphalt binder (produced at industrial plants) and continuous blending (produced in asphalt plants). This study presents a laboratory evaluation of asphalt rubber mixtur...

  10. Bioavailability and variability of biphasic insulin mixtures

    DEFF Research Database (Denmark)

    Søeborg, Tue; Rasmussen, Christian Hove; Mosekilde, Erik


    , the absorption kinetics for mixtures of insulins is described. This requires that the bioavailability of the different insulins is considered. A short review of insulin bioavailability and a description of the subcutaneous depot thus precede the presentation of possible mechanisms associated with subcutaneous...... mixtures. The results can be used in both the development of novel insulin products and in the planning of the treatment of insulin dependent diabetic patients....

  11. Homogeneous cooling of mixtures of particle shapes (United States)

    Hidalgo, R. C.; Serero, D.; Pöschel, T.


    In this work, we examine theoretically the cooling dynamics of binary mixtures of spheres and rods. To this end, we introduce a generalized mean field analytical theory, which describes the free cooling behavior of the mixture. The relevant characteristic time scale for the cooling process is derived, depending on the mixture composition and the aspect ratio of the rods. We simulate mixtures of spherocylinders and spheres using a molecular dynamics algorithm implemented on graphics processing unit (GPU) architecture. We systematically study mixtures composed of spheres and rods with several aspect ratios and varying the mixture composition. A homogeneous cooling state, where the time dependence of the system's intensive variables occurs only through a global granular temperature, is identified. We find cooling dynamics in excellent agreement with Haff's law, when using an adequate time scale. Using the scaling properties of the homogeneous cooling dynamics, we estimated numerically the efficiency of the energy interchange between rotational and translational degrees of freedom for collisions between spheres and rods.

  12. Brief report on primary mixture preparation for precise CO observation (United States)

    Lee, J.; Lee, J. B.; Moon, D. M.; Kim, J. S.


    Greenhouse gases (GHG) have been known as causing materials of the greenhouse effect. Because it is very important to reduce their emission, they has been paid attention since Kyoto protocol to the United Nations Framework Convention on Climate Change. Accurate observation data of ambient GHG are vital for the study of the relationship between GHGs and global warming, but it is not easy to quantify their mixing ratios owing to their globally and temporally tiny variation. For example, mixing ratio of carbon dioxide in the atmosphere, is reported to be growing by +1.7 ppm (parts per million)/year for recen 10 years according to GAW report. CO has contributed as an indicator in that an air mass is from source or background, although it lacks its traceability. CO is known to be emitted from industry, vehicle, and biomass burning. The atmospheric lifetime of CO varies from weeks to months depending on OH radical amount however ambient CO ranges from 50 nmol/mol to 300 nmol/mol at marine boundary, from 100 nmol/mol to 500 nmol/mol at city area. In order to monitor precisely CO at ambient, the World Meteorological Organization (WMO) requires its measurement capability of 2 nmol/mol uncertainty. For these reasons, it's necessary for the measurement results to be accurate and consistent among the assigned standards. . In order to prepare CO/air standard mixtures with an absolute scale we have studied several factors on gravimetry; purity analysis of CO and an artificial air and stability including unexpected contamination during preparation and adsorption on inner wall of cylinders. Currently we are going to present the preliminary results on the development of standard mixtures with ~ 300 nmol/mol. The mixtures were verified by comparing their amount with a Gas Chromatography / Electron Capture Detector (GC/FID) and cavity ring down spectrometer (CRDS). Analytical capability during comparison is within ± 2 ppb, which satisfies WMO DQO.

  13. Process for separating CO sub 2 from a gaseous mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, R.; Kick, H.


    A process is disclosed for the separation of carbon dioxide from gases containing light hydrocarbons and a relatively high proportion of CO{sub 2}. Such gases include natural gases, notably those found in tertiary petroleum extraction processes wherein CO{sub 2} is injected under high pressure into deposits. The process has the objective of improving known separation process and reducing the energy requirements needed for carrying out the process. According to the invention, a 2-stage fractionating procedure is provided. In a first fractionating stage, the entire amount of C1 and C2 hydrocarbons in the gaseous mixture to be treated is separated from the mixture. The overhead portion of the product coming from this stage contains essentially all of the C1 and C2 hydrocarbons as well as a portion of the CO{sub 2}. The bottoms fraction from this stage contains essentially all of the C3+ hydrocarbons and the largest portion of the CO{sub 2}. In a second fractionating stage, the bottoms fraction is pumped to a higher pressure and further distilled into a C3+ hydrocarbon fraction and a CO{sub 2} fraction. At least part of the bottoms heating of the first fractionating stage is effected by liquid withdrawn from the bottoms. This liquid is heated while cooling the head of the second fractionating stage and is then recycled into the bottoms of the first fractionating stage. 1 fig.

  14. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  15. A constitutive theory of reacting electrolyte mixtures (United States)

    Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto


    A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).

  16. Relativistic mixtures of charged and uncharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)


    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.


    Institute of Scientific and Technical Information of China (English)

    CHAI Zhikuan


    In this brief review article some aspects of the thermodynamics of polymer mixtures are discussed,mainly based on the author's research. The studies of poly (methyl methacrylate)/chlorinated polyethylene (CPE), poly (butyl acrylate)/CPE and CPE/CPE (different chlorine content) mixture verify the "dissimilarity" and "similarity" principles for predicting miscibility of polymer mixtures. The sign of heat of mixing of oligomeric analogues is not sufficient in predicting the miscibility. The Flory equation of state theory has been applied to simulate the phase boundaries of polymer mixtures. The empirical entropy parameter Q12 plays an important role in the calculation, this reduces the usefulness of the theory. With energy parameter X12 ≠ 0 and Q12 ≠ 0 the spinodals so calculated are reasonable compared to experiments.A hole model was suggested for the statistics of polymer mixtures. The new hole theory combines the features of both the Flory equation of state theory and the Sanchez lattice fluid theory and can be reduced to them under some conditions.

  18. Identifiability of large phylogenetic mixture models. (United States)

    Rhodes, John A; Sullivant, Seth


    Phylogenetic mixture models are statistical models of character evolution allowing for heterogeneity. Each of the classes in some unknown partition of the characters may evolve by different processes, or even along different trees. Such models are of increasing interest for data analysis, as they can capture the variety of evolutionary processes that may be occurring across long sequences of DNA or proteins. The fundamental question of whether parameters of such a model are identifiable is difficult to address, due to the complexity of the parameterization. Identifiability is, however, essential to their use for statistical inference.We analyze mixture models on large trees, with many mixture components, showing that both numerical and tree parameters are indeed identifiable in these models when all trees are the same. This provides a theoretical justification for some current empirical studies, and indicates that extensions to even more mixture components should be theoretically well behaved. We also extend our results to certain mixtures on different trees, using the same algebraic techniques.

  19. Asbestos Tailings as Aggregates for Asphalt Mixture

    Institute of Scientific and Technical Information of China (English)

    LIU Xinoming; XU Linrong


    To use many asbestos tailings collected in Ya-Lu highway, and to explore the feasibility of using asbestos tailings as aggregates in common asphalt mixtures, and properties of some asphalt mixtures were evaluated as well. X-ray diffraction (XRD), X-ray fluorescent (XRF), and atomic absorption spectrophotometry (AAS) were employed to determine the solid waste content of copper, zinc, lead, and cadmium. Volume properties and pavement performances of AC-25 asphalt mixture with asbestos tailings were also evaluated compared with those with basalt as aggregates.XRD and XRF measurement results infer that asbestos tailing is an excellent road material. Volume properties of AC-25 asphalt mixture with asbestos tailings satisfied the related specifications. No heavy metals and toxic pollution were detected in AAS test and the value of pH test is 8.23, which is help to the adhesion with asphalt in the asphalt concrete. When compared with basalt, high temperature property and the resistance to low temperature cracking of AC-25 asphalt mixture was improved by using asbestos tailings as aggregates. In-service AC-25 asphalt pavement with asbestos tailings also presented excellent performance and British Pendulum Number (BPN) coefficient of surface.

  20. Performance Analysis of Neuro Genetic Algorithm Applied on Detecting Proportion of Components in Manhole Gas Mixture

    Directory of Open Access Journals (Sweden)

    Varun Kumar Ojha


    Full Text Available The article presents performance analysis of a real valued neuro genetic algorithm applied for thedetection of proportion of the gases found in manhole gas mixture. The neural network (NN trained usinggenetic algorithm (GA leads to concept of neuro genetic algorithm, which is used for implementing anintelligent sensory system for the detection of component gases present in manhole gas mixture Usually amanhole gas mixture contains several toxic gases like Hydrogen Sulfide, Ammonia, Methane, CarbonDioxide, Nitrogen Oxide, and Carbon Monoxide. A semiconductor based gas sensor array used for sensingmanhole gas components is an integral part of the proposed intelligent system. It consists of many sensorelements, where each sensor element is responsible for sensing particular gas component. Multiple sensorsof different gases used for detecting gas mixture of multiple gases, results in cross-sensitivity. The crosssensitivity is a major issue and the problem is viewed as pattern recognition problem. The objective of thisarticle is to present performance analysis of the real valued neuro genetic algorithm which is applied formultiple gas detection.

  1. Performance Analysis of Neuro Genetic Algorithm Applied on Detecting Proportion of Components in Manhole Gas Mixture

    Directory of Open Access Journals (Sweden)

    Varun Kumar Ojha


    Full Text Available The article presents performance analysis of a real valued neuro genetic algorithm applied for the detection of proportion of the gases found in manhole gas mixture. The neural network (NN trained using genetic algorithm (GA leads to concept of neuro genetic algorithm, which is used for implementing an intelligent sensory system for the detection of component gases present in manhole gas mixture Usually a manhole gas mixture contains several toxic gases like Hydrogen Sulfide, Ammonia, Methane, Carbon Dioxide, Nitrogen Oxide, and Carbon Monoxide. A semiconductor based gas sensor array used for sensing manhole gas components is an integral part of the proposed intelligent system. It consists of many sensor elements, where each sensor element is responsible for sensing particular gas component. Multiple sensors of different gases used for detecting gas mixture of multiple gases, results in cross-sensitivity. The crosssensitivity is a major issue and the problem is viewed as pattern recognition problem. The objective of this article is to present performance analysis of the real valued neuro genetic algorithm which is applied for multiple gas detection.

  2. Detonation wave driven by condensation of supersaturated carbon vapor. (United States)

    Emelianov, A; Eremin, A; Fortov, V; Jander, H; Makeich, A; Wagner, H Gg


    An experimental observation of a detonation wave driven by the energy of condensation of supersaturated carbon vapor is reported. The carbon vapor was formed by the thermal decay of unstable carbon suboxide C3O2 behind shock waves in mixtures containing 10-30% C3O2 in Ar. In the mixture 10% C3O2+Ar the insufficient heat release resulted in a regime of overdriven detonation. In the mixture 20% C3O2+Ar measured values of the pressure and wave velocity coincident with calculated Chapman-Jouguet parameters were attained. In the richest mixture 30% C3O2+Ar an excess heat release caused the slowing down of the condensation rate and the regime of underdriven detonation was observed.

  3. A cold energy mixture theory for the equation of state in solid and porous metal mixtures (United States)

    Zhang, X. F.; Qiao, L.; Shi, A. S.; Zhang, J.; Guan, Z. W.


    Porous or solid multi-component mixtures are ubiquitous in nature and extensively used as industrial materials such as multifunctional energetic structural materials (MESMs), metallic and ceramic powder for shock consolidation, and porous armor materials. In order to analyze the dynamic behavior of a particular solid or porous metal mixture in any given situation, a model is developed to calculate the Hugoniot data for solid or porous mixtures using only static thermodynamic properties of the components. The model applies the cold energy mixture theory to calculate the isotherm of the components to avoid temperature effects on the mixtures. The isobaric contribution from the thermodynamic equation of state is used to describe the porous material Hugoniot. Dynamic shock responses of solid or porous powder mixtures compacted by shock waves have been analyzed based on the mixture theory and Hugoniot for porous materials. The model is tested on both single-component porous materials such as aluminum 2024, copper, and iron; and on multi-component mixtures such as W/Cu, Fe/Ni, and Al/Ni. The theoretical calculations agree well with the corresponding experimental and simulation results. The present model produces satisfactory correlation with the experimentally obtained Hugoniot data for solid porous materials over a wide pressure range.

  4. Quasi-chemical approximation for polyatomic mixtures

    CERN Document Server

    Dávila, M V; Matoz-Fernandez, D A; Ramirez-Pastor, A J


    The statistical thermodynamics of binary mixtures of polyatomic species was developed on a generalization in the spirit of the lattice-gas model and the quasi-chemical approximation (QCA). The new theoretical framework is obtained by combining: (i) the exact analytical expression for the partition function of non-interacting mixtures of linear $k$-mers and $l$-mers (species occupying $k$ sites and $l$ sites, respectively) adsorbed in one dimension, and its extension to higher dimensions; and (ii) a generalization of the classical QCA for multicomponent adsorbates and multisite-occupancy adsorption. The process is analyzed through the partial adsorption isotherms corresponding to both species of the mixture. Comparisons with analytical data from Bragg-Williams approximation (BWA) and Monte Carlo simulations are performed in order to test the validity of the theoretical model. Even though a good fitting is obtained from BWA, it is found that QCA provides a more accurate description of the phenomenon of adsorpti...

  5. Efficient radiative transfer in dust grain mixtures

    CERN Document Server

    Wolf, S


    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially with increasing optical depth, converging towards the temperature distribution resulting from the approximation of mean dust grain parameters, and (2) the resulting spectral energy distributions do not differ by more than 10% if >= 2^5 grain sizes are considered which justifies the mean parameter approximation and the many results obtained under its assumption so far. Nevertheless, the dust grain temperature dispersion at the inner boundary of a dust shell may amount to >>100K and has therefore to be considered in the cor...

  6. Computer simulation of rod-sphere mixtures

    CERN Document Server

    Antypov, D


    Results are presented from a series of simulations undertaken to investigate the effect of adding small spherical particles to a fluid of rods which would otherwise represent a liquid crystalline (LC) substance. Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadth of the rods is simulated at various sphere concentrations. Both mixing-demixing and isotropic-nematic transition are studied using Monte Carlo techniques. Secondly, the effect of adding Lennard-Jones particles to an LC system modelled using the well established Gay-Berne potential is investigated. These rod-sphere mixtures are simulated using both the original set of interaction parameters and a modified version of the rod-sphere potential proposed in this work. The subject of interest is the internal structure of the binary mixture and its dependence on density, temperature, concentration and various parameters characterising the intermolecular interactions. Both...

  7. Two-Microphone Separation of Speech Mixtures

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Wang, DeLiang; Larsen, Jan


    Separation of speech mixtures, often referred to as the cocktail party problem, has been studied for decades. In many source separation tasks, the separation method is limited by the assumption of at least as many sensors as sources. Further, many methods require that the number of signals within...... the recorded mixtures be known in advance. In many real-world applications, these limitations are too restrictive. We propose a novel method for underdetermined blind source separation using an instantaneous mixing model which assumes closely spaced microphones. Two source separation techniques have been...... combined, independent component analysis (ICA) and binary time–frequency (T–F) masking. By estimating binary masks from the outputs of an ICA algorithm, it is possible in an iterative way to extract basis speech signals from a convolutive mixture. The basis signals are afterwards improved by grouping...

  8. Adaptive Mixture Methods Based on Bregman Divergences

    CERN Document Server

    Donmez, Mehmet A; Kozat, Suleyman S


    We investigate adaptive mixture methods that linearly combine outputs of $m$ constituent filters running in parallel to model a desired signal. We use "Bregman divergences" and obtain certain multiplicative updates to train the linear combination weights under an affine constraint or without any constraints. We use unnormalized relative entropy and relative entropy to define two different Bregman divergences that produce an unnormalized exponentiated gradient update and a normalized exponentiated gradient update on the mixture weights, respectively. We then carry out the mean and the mean-square transient analysis of these adaptive algorithms when they are used to combine outputs of $m$ constituent filters. We illustrate the accuracy of our results and demonstrate the effectiveness of these updates for sparse mixture systems.

  9. Modeling methods for mixture-of-mixtures experiments applied to a tablet formulation problem. (United States)

    Piepel, G F


    During the past few years, statistical methods for the experimental design, modeling, and optimization of mixture experiments have been widely applied to drug formulation problems. Different methods are required for mixture-of-mixtures (MoM) experiments in which a formulation is a mixture of two or more "major" components, each of which is a mixture of one or more "minor" components. Two types of MoM experiments are briefly described. A tablet formulation optimization example from a 1997 article in this journal is used to illustrate one type of MoM experiment and corresponding empirical modeling methods. Literature references that discuss other methods for MoM experiments are also provided.

  10. Explorations of soil microbial processes driven by dissolved organic carbon

    NARCIS (Netherlands)

    Straathof, A.L.


    Explorations of soil microbial processes driven by dissolved organic carbon Angela L. Straathof June 17, 2015, Wageningen UR ISBN 978-94-6257-327-7 Abstract Dissolved organic carbon (DOC) is a complex, heterogeneous mixture of C compounds which, as


    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩


    Long-column method was used to determine the adsorption isotherms of 4 VOCs (benzene, toluene, chloroform and acetone) in concentration range of 250~5000?mg*m-3 on a commercial activated-carbon under different humidity levels at 30?℃.A modified Polanyi-Dubinin equation was proposed to correlate the adsorption equilibrium of different VOC-water vapor systems. Among 3 methods of calculating the Relative Affinity Coefficient β used,the Molar Volume method and the Molecular Parachor method proved to be suitable for the calculation with better precision than the Electronic Polarization method. Calculation results were satisfactory for the benzene-, toluene-, and chloroform-water vapor/activated carbon systems, but poor for acetone possibly because of its strong polarity.The equation could be used to estimate the detaining effect of atmospheric humidity on the adsorption equilibrium of VOCs on activated carbon.

  12. Flows and chemical reactions in homogeneous mixtures

    CERN Document Server

    Prud'homme, Roger


    Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c

  13. Mixture for removing tar and paraffin deposits

    Energy Technology Data Exchange (ETDEWEB)

    kamenshchikov, F.A.; Frolov, M.A.; Golovin, I.N.; Khusainov, Z.M.; Smirnov, Ya.L.; Suchkov, B.M.


    Mixture is claimed for removing tar and paraffin deposits (TPD) on the basis of the butyl-benzene fraction (BBF), which is intended to more efficiently remove TPD from the surface of refinery equipment, additionally has piperylene, isoprene and isoamine with the following ratio of the components: piperylene, 19-31%; isoprene, 8-12%; isoamines, 8-12%, while BBF, the rest. The efficiency of the given compositions was assessed by the rate at which the plates were cleaned of TPD and pure commercial paraffin. It has been shown that BBF dissolves 4-6 times faster in the given mixture than in BBF and pyperylene.

  14. Thermophysical Properties of Fluids and Fluid Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sengers, Jan V.; Anisimov, Mikhail A.


    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  15. Conditional Density Approximations with Mixtures of Polynomials

    DEFF Research Database (Denmark)

    Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre


    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated...

  16. Paternity testing that involves a DNA mixture. (United States)

    Mortera, Julia; Vecchiotti, Carla; Zoppis, Silvia; Merigioli, Sara


    Here we analyse a complex disputed paternity case, where the DNA of the putative father was extracted from his corpse that had been inhumed for over 20 years. This DNA was contaminated and appears to be a mixture of at least two individuals. Furthermore, the mother's DNA was not available. The DNA mixture was analysed so as to predict the most probable genotypes of each contributor. The major contributor's profile was then used to compute the likelihood ratio for paternity. We also show how to take into account a dropout allele and the possibility of mutation in paternity testing.

  17. Investigation of interlaminar shear strength in carbon epoxy and carbon epoxy carbon nanotubes using experimental and finite element technique

    Directory of Open Access Journals (Sweden)

    P. Rama Lakshmi


    Full Text Available The present study concerns experimental and finite element analysis of carbon epoxy and carbon epoxy carbon nanotube composites to estimate interlaminar shear strength. Mechanical properties such as elastic ratios, thickness are varied for double notched specimen and the corresponding deflections and interlaminar shear strengths are estimated by ANSYS. From simple rule of mixtures, equivalent orthotropic material properties are estimated. These properties are provided as input in ANSYS to generate finite element model. Solid layered element is used to model double notch specimen. To estimate the properties of carbon epoxy carbon nanotube composite, initially finite element model of matrix and carbon nanotube is generated by properties individual material properties of both the materials. From the obtained stretch and stress, the equivalent material property of combined matrix and carbon nanotube is achieved. This property is provided as input in simple rule of mixtures to find out the equivalent orthotropic materials are determined. It is inferred that experiment results are in good agreement with results generated by ANSYS. The superiority of the presence of carbon nanotube in the composite is proved from experimental and finite element technique from the estimated fracture parameters.

  18. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials. (United States)

    Edison, J R; Monson, P A


    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.

  19. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures (United States)

    Westra, Douglas G.


    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  20. On-line method to study dynamics of ion adsorption from mixtures of salts in capacitive deionization

    NARCIS (Netherlands)

    Dykstra, J.E.; Dijkstra, J.; Wal, van der A.; Hamelers, H.V.M.; Porada, S.


    Capacitive Deionization (CDI) is a water desalination technology that adsorbs ions into two oppositely polarized porous carbon electrodes, under the action of an applied voltage. Here, we introduce a novel method to analyze the effluent concentration of multiple ionic species in mixtures of salt

  1. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    Energy Technology Data Exchange (ETDEWEB)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I. [Los Alamos National Lab., NM (United States)


    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  2. Multiphase Binary Mixture Flows in Porous Media in a Wide Pressure and Temperature Range Including Critical Conditions (United States)

    Afanasyev, A.


    Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is

  3. Carbonized asphaltene-based carbon-carbon fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George; Lula, James; Bowen, III, Daniel E.


    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  4. Separating proteins with activated carbon. (United States)

    Stone, Matthew T; Kozlov, Mikhail


    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  5. The effect of carbon nanotubes on chiral chemical reactions (United States)

    Rance, Graham A.; Miners, Scott A.; Chamberlain, Thomas W.; Khlobystov, Andrei N.


    The intrinsic helicity of carbon nanotubes influences the formation of chiral molecules in chemical reactions. A racemic mixture of P and M enantiomers of nanotubes affects the enantiomeric excess of the products of the autocatalytic Soai reaction proportional to the amount of nanotubes added in the reaction mixture. An intermediate complex formed between the nanotube and the organometallic reagent is essential and explains the observed correlation between the enantiomeric distribution of products and the curvature of the carbon nanostructure. This Letter establishes a key mechanism for harnessing the helicity of nanoscale carbon surfaces for preparative organic reactions.

  6. Adiabatic Coupling Constant of Nitrobenzene- n-Alkane Critical Mixtures. Evidence from Ultrasonic Spectra and Thermodynamic Data (United States)

    Mirzaev, Sirojiddin Z.; Kaatze, Udo


    Ultrasonic spectra of mixtures of nitrobenzene with n-alkanes, from n-hexane to n-nonane, are analyzed. They feature up to two Debye-type relaxation terms with discrete relaxation times and, near the critical point, an additional relaxation term due to the fluctuations in the local concentration. The latter can be well represented by the dynamic scaling theory. Its amplitude parameter reveals the adiabatic coupling constant of the mixtures of critical composition. The dependence of this thermodynamic parameter upon the length of the n-alkanes corresponds to that of the slope in the pressure dependence of the critical temperature and is thus taken another confirmation of the dynamic scaling model. The change in the variation of the coupling constant and of several other mixture parameters with alkane length probably reflects a structural change in the nitrobenzene- n-alkane mixtures when the number of carbon atoms per alkane exceeds eight.

  7. Modification of free-energy density functional theory approach for prediction of high-pressure mixture adsorption

    Institute of Scientific and Technical Information of China (English)

    LIU ShuYan; YANG XiaoNing; YANG Zhen


    A modified non-local free energy density functional theory (NDFT) model, with the consideration of the nonadditivity term of solid-fluid and fluid-fluid interactions and finite pore wall thickness (≈2 layers), was developed to model the confined fluid mixtures in slit pore. This improved NDFT approach, com-bining with the pore size distribution (PSD) analysis of adsorbent material can be applied to predicting the adsorption equilibria of high-pressure gas mixtures on activated carbon. Compared with the con-ventional NDFT method, this new approach partly improves the correlation performance of adsorption equilibrium for pure species and increases the reliability of the PSD analysis. For the mixtures, CH4/N2 and CO2/N2, a relatively improved performance has been observed for the adsorption equilibrium pre-diction of the mixtures under high-pressure conditions, especially for the weakly adsorbed species.

  8. Uniform design of experiments with mixtures

    Institute of Scientific and Technical Information of China (English)

    王元; 方开泰


    Consider a design of experiments with mixtures:0≤ai

  9. Spinodal decomposition of chemically reactive binary mixtures (United States)

    Lamorgese, A.; Mauri, R.


    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  10. Cementitious barriers partnership concrete mixture characterization

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Protiere, Yannick [SIMCO Technologies, Inc., Quebec (Canada)


    This report summarizes the characterization study performed on two concrete mixtures used for radioactive waste storage. Both mixtures were prepared with approximately 425 kg of binder. The testing protocol mostly focused on determining the transport properties of the mixtures; volume of permeable voids (porosity), diffusion coefficients, and water permeability were evaluated. Tests were performed after different curing durations. In order to obtain data on the statistical distribution of transport properties, the measurements after 2 years of curing were performed on 10+ samples. Overall, both mixtures exhibited very low tortuosities and permeabilities, a direct consequence of their low water-to-binder ratio and the use of supplementary cementitious materials. The data generated on 2-year old samples showed that porosity, tortuosity and permeability follow a normal distribution. Chloride ponding tests were also performed on test samples. They showed limited chloride ingress, in line with measured transport properties. These test results also showed that both materials react differently with chloride, a consequence of the differences in the binder chemical compositions.

  11. Mixture toxicity of PBT-like chemicals

    DEFF Research Database (Denmark)

    Syberg, Kristian; Dai, Lina; Ramskov, Tina;

    beyond that of the individual components. Firstly, the effects of three chemicals with PBT-like properties (acetyl cedrene, pyrene and triclosan) was examined on the freshwater snail, Potamopyrgus antipodarum. Secondly, mixture bioaccumulation of the same three chemicals were assessed experimentally...

  12. Using Regression Mixture Analysis in Educational Research

    Directory of Open Access Journals (Sweden)

    Cody S. Ding


    Full Text Available Conventional regression analysis is typically used in educational research. Usually such an analysis implicitly assumes that a common set of regression parameter estimates captures the population characteristics represented in the sample. In some situations, however, this implicit assumption may not be realistic, and the sample may contain several subpopulations such as high math achievers and low math achievers. In these cases, conventional regression models may provide biased estimates since the parameter estimates are constrained to be the same across subpopulations. This paper advocates the applications of regression mixture models, also known as latent class regression analysis, in educational research. Regression mixture analysis is more flexible than conventional regression analysis in that latent classes in the data can be identified and regression parameter estimates can vary within each latent class. An illustration of regression mixture analysis is provided based on a dataset of authentic data. The strengths and limitations of the regression mixture models are discussed in the context of educational research.

  13. Toxicity of metal mixtures to chick embryos

    Energy Technology Data Exchange (ETDEWEB)

    Birge, W.J.; Roberts, O.W.; Black, J.A.


    The toxic effects of mercury/selenium and certain other metal mixtures on the chick embryo are examined to determine whether antagonistic, additive or synergistic interactions occur. White Plymouth Rock chicken eggs were treated by yolk injection with cadmium chloride, mercuric chloride, zinc chloride and sodium selenate. Test aliquots were injected prior to incubation using the needle track procedure. Using a sample size of 200, percent survival was determined as hatchability of experimental eggs/controls. Metal mixtures used included mercury/cadmium, mercury/selenium, mercury/zinc, cadmium/selenium, and cadmium/zinc. Except for mercury/selenium, all other metal mixtures gave actual values that were within 5% of those for additive toxic effects. Actual hatchability frequencies for test concentrations of mercury/selenium indicated a moderate degree of synergism. Results indicate that the strong mercury/selenium synergism which affects embryonic development in the carp does not apply for the chick embryo; that most two-way combinations of cadmium, mercury, selenium and zinc exert purely additive effects on chick hatchability; and that these metal mixtures give no discernible antagonistic interactions which affect survival of chick embryos. (MFB)

  14. A Skew-Normal Mixture Regression Model (United States)

    Liu, Min; Lin, Tsung-I


    A challenge associated with traditional mixture regression models (MRMs), which rest on the assumption of normally distributed errors, is determining the number of unobserved groups. Specifically, even slight deviations from normality can lead to the detection of spurious classes. The current work aims to (a) examine how sensitive the commonly…

  15. Toxicology of chemical mixtures: International perspective

    NARCIS (Netherlands)

    Feron, V.J.; Cassee, F.R.; Groten, J.P.


    This paper reviews major activities outside the United States on human health issues related to chemical mixtures. In Europe an international study group on combination effects has been formed and has started by defining synergism and antagonism. Successful research programs in Europe include the de

  16. Mixture model analysis of complex samples

    NARCIS (Netherlands)

    Wedel, M; ter Hofstede, F; Steenkamp, JBEM


    We investigate the effects of a complex sampling design on the estimation of mixture models. An approximate or pseudo likelihood approach is proposed to obtain consistent estimates of class-specific parameters when the sample arises from such a complex design. The effects of ignoring the sample desi

  17. Mixtures of Ultracold Fermions with Unequal Masses (United States)

    de Melo, Carlos A. R. Sa


    The quantum phases of ultracold fermions with unequal masses are discussed in continuum and lattice models for a wide variety of mixtures which exhibit Feshbach resonances, e.g., mixtures of ^6Li and ^40K. The evolution of superfluidity from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein condensation (BEC) regime in the continuum is analyzed as a function of scattering parameter, population imbalance and mass anisotropy. In the continuum case, regions corresponding to normal, phase-separated or coexisting uniform-superfluid/excess-fermion phases are identified and the possibility of topological phase transitions is discussed [1]. For optical lattices, the phase diagrams as a function of interaction strength, population imbalance, filling fraction and tunneling parameters are presented [2]. In addition to the characteristic phases of the continuum, a series of insulating phases emerge in the phase diagrams of optical lattices, including a Bose-Mott insulator (BMI), a Fermi-Pauli insulator (FPI), a phase-separated BMI/FPI mixture, and a Bose-Fermi checkerboard (BFC) phase. Lastly, the effects of harmonic traps and the emergence of unusual shell structures are discussed for mixtures of fermions with unequal masses. [1] M. Iskin, and C. A. R. S' a de Melo, Phys. Rev. Lett 97, 100404 (2006); [2] M. Iskin, and C. A. R. S' a de Melo, Phys. Rev. Lett. 99, 080403 (2007).

  18. Quantification of complex mixtures by NMR

    NARCIS (Netherlands)

    Duynhoven, van J.P.M.; Velzen, van E.; Jacobs, D.M.


    NMR has firmly established itself as an analytical tool that can quantify analyte concentrations in complex mixtures in a rapid, cost-effective, accurate and precise manner. Here, the technological advances with respect to instrumentation, sample preparation, data acquisition and data processing ove

  19. Pool Boiling of Hydrocarbon Mixtures on Water

    Energy Technology Data Exchange (ETDEWEB)

    Boee, R.


    In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.

  20. Two-microphone Separation of Speech Mixtures

    DEFF Research Database (Denmark)


    of Speech Mixtures," 2006, submited for journal publication. See also, [2] Michael Syskind Pedersen, DeLiang Wang, Jan Larsen and Ulrik Kjems: "Overcomplete Blind Source Separation by Combining ICA and Binary Time-Frequency Masking," in proceedings of IEEE International workshop on Machine Learning...

  1. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.


    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two...

  2. Modeling text with generalizable Gaussian mixtures

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Sigurdsson, Sigurdur; Kolenda, Thomas


    We apply and discuss generalizable Gaussian mixture (GGM) models for text mining. The model automatically adapts model complexity for a given text representation. We show that the generalizability of these models depends on the dimensionality of the representation and the sample size. We discuss...

  3. Self-assembly models for lipid mixtures (United States)

    Singh, Divya; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula


    Solutions of mixed long and short (detergent-like) phospholipids referred to as ``bicelle'' mixtures in the literature, are known to form a variety of different morphologies based on their total lipid composition and temperature in a complex phase diagram. Some of these morphologies have been found to orient in a magnetic field, and consequently bicelle mixtures are widely used to study the structure of soluble as well as membrane embedded proteins using NMR. In this work, we report on the low temperature phase of the DMPC and DHPC bicelle mixture, where there is agreement on the discoid structures but where molecular packing models are still being contested. The most widely accepted packing arrangement, first proposed by Vold and Prosser had the lipids completely segregated in the disk: DHPC in the rim and DMPC in the disk. Using data from small angle neutron scattering (SANS) experiments, we show how radius of the planar domain of the disks is governed by the effective molar ratio qeff of lipids in aggregate and not the molar ratio q (q = [DMPC]/[DHPC] ) as has been understood previously. We propose a new quantitative (packing) model and show that in this self assembly scheme, qeff is the real determinant of disk sizes. Based on qeff , a master equation can then scale the radii of disks from mixtures with varying q and total lipid concentration.

  4. Flexible Rasch Mixture Models with Package psychomix

    Directory of Open Access Journals (Sweden)

    Hannah Frick


    Full Text Available Measurement invariance is an important assumption in the Rasch model and mixture models constitute a flexible way of checking for a violation of this assumption by detecting unobserved heterogeneity in item response data. Here, a general class of Rasch mixture models is established and implemented in R, using conditional maximum likelihood estimation of the item parameters (given the raw scores along with flexible specification of two model building blocks: (1 Mixture weights for the unobserved classes can be treated as model parameters or based on covariates in a concomitant variable model. (2 The distribution of raw score probabilities can be parametrized in two possible ways, either using a saturated model or a specification through mean and variance. The function raschmix( in the R package psychomix provides these models, leveraging the general infrastructure for fitting mixture models in the flexmix package. Usage of the function and its associated methods is illustrated on artificial data as well as empirical data from a study of verbally aggressive behavior.

  5. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)



    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  6. Concrete mixture characterization. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Protiere, Yannick [SIMCO Technologies, Inc., Quebec (Canada)


    This report summarizes the characterization study performed on two concrete mixtures used for radioactive waste storage. Both mixtures were prepared with approximately 425 kg of binder. The testing protocol mostly focused on determining the transport properties of the mixtures; volume of permeable voids (porosity), diffusion coefficients, and water permeability were evaluated. Tests were performed after different curing durations. In order to obtain data on the statistical distribution of transport properties, the measurements after 2 years of curing were performed on 10+ samples. Overall, both mixtures exhibited very low tortuosities and permeabilities, a direct consequence of their low water-to-binder ratio and the use of supplementary cementitious materials. The data generated on 2-year old samples showed that porosity, tortuosity and permeability follow a normal distribution. Chloride ponding tests were also performed on test samples. They showed limited chloride ingress, in line with measured transport properties. These test results also showed that both materials react differently with chloride, a consequence of the differences in the binder chemical compositions.

  7. Theory of dynamic arrest in colloidal mixtures. (United States)

    Juárez-Maldonado, R; Medina-Noyola, M


    We present a first-principles theory of dynamic arrest in colloidal mixtures based on the multicomponent self-consistent generalized Langevin equation theory of colloid dynamics [M. A. Chávez-Rojo and M. Medina-Noyola, Phys. Rev. E 72, 031107 (2005); M. A. Chávez-Rojo and M. Medina-Noyola, Phys. Rev. E76, 039902 (2007)]. We illustrate its application with a description of dynamic arrest in two simple model colloidal mixtures: namely, hard-sphere and repulsive Yukawa binary mixtures. Our results include observation of the two patterns of dynamic arrest, one in which both species become simultaneously arrested and the other involving the sequential arrest of the two species. The latter case gives rise to mixed states in which one species is arrested while the other species remains mobile. We also derive the ("bifurcation" or fixed-point") equations for the nonergodic parameters of the system, which takes the surprisingly simple form of a system of coupled equations for the localization length of the particles of each species. The solution of this system of equations indicates unambiguously which species is arrested (finite localization length) and which species remains ergodic (infinite localization length). As a result, we are able to draw the entire ergodic-nonergodic phase diagram of the binary hard-sphere mixture.

  8. The Coffee-Milk Mixture Problem Revisited (United States)

    Marion, Charles F.


    This analysis of a problem that is frequently posed at professional development workshops, in print, and on the Web--the coffee-milk mixture riddle--illustrates the timeless advice of George Pólya's masterpiece on problem solving in mathematics, "How to Solve It." In his book, Pólya recommends that problems previously solved and put…

  9. MixtureTree annotator: a program for automatic colorization and visual annotation of MixtureTree.

    Directory of Open Access Journals (Sweden)

    Shu-Chuan Chen

    Full Text Available The MixtureTree Annotator, written in JAVA, allows the user to automatically color any phylogenetic tree in Newick format generated from any phylogeny reconstruction program and output the Nexus file. By providing the ability to automatically color the tree by sequence name, the MixtureTree Annotator provides a unique advantage over any other programs which perform a similar function. In addition, the MixtureTree Annotator is the only package that can efficiently annotate the output produced by MixtureTree with mutation information and coalescent time information. In order to visualize the resulting output file, a modified version of FigTree is used. Certain popular methods, which lack good built-in visualization tools, for example, MEGA, Mesquite, PHY-FI, TreeView, treeGraph and Geneious, may give results with human errors due to either manually adding colors to each node or with other limitations, for example only using color based on a number, such as branch length, or by taxonomy. In addition to allowing the user to automatically color any given Newick tree by sequence name, the MixtureTree Annotator is the only method that allows the user to automatically annotate the resulting tree created by the MixtureTree program. The MixtureTree Annotator is fast and easy-to-use, while still allowing the user full control over the coloring and annotating process.

  10. MixtureTree annotator: a program for automatic colorization and visual annotation of MixtureTree. (United States)

    Chen, Shu-Chuan; Ogata, Aaron


    The MixtureTree Annotator, written in JAVA, allows the user to automatically color any phylogenetic tree in Newick format generated from any phylogeny reconstruction program and output the Nexus file. By providing the ability to automatically color the tree by sequence name, the MixtureTree Annotator provides a unique advantage over any other programs which perform a similar function. In addition, the MixtureTree Annotator is the only package that can efficiently annotate the output produced by MixtureTree with mutation information and coalescent time information. In order to visualize the resulting output file, a modified version of FigTree is used. Certain popular methods, which lack good built-in visualization tools, for example, MEGA, Mesquite, PHY-FI, TreeView, treeGraph and Geneious, may give results with human errors due to either manually adding colors to each node or with other limitations, for example only using color based on a number, such as branch length, or by taxonomy. In addition to allowing the user to automatically color any given Newick tree by sequence name, the MixtureTree Annotator is the only method that allows the user to automatically annotate the resulting tree created by the MixtureTree program. The MixtureTree Annotator is fast and easy-to-use, while still allowing the user full control over the coloring and annotating process.

  11. Plasma reactor for deposition of carbon nanowalls at atmospheric pressure (United States)

    Dimitrov, Zh; Mitev, D.; Kiss'ovski, Zh


    In this study a novel plasma reactor for deposition of carbon nanowalls at atmospheric pressure is constructed and characterized. A low power microwave discharge is used as a plasma source and working gas of Ar/H2/CH4 gas mixture. The substrate is heated by plasma flame and its temperature is in the range 600-700 C. The chemical composition of the plasma and the gas mixture effect on the concentration of the various particles in the plasma is investigated by optical emission spectroscopy. The emission spectrum of the plasma jet in Ar/H2/CH4 mixture shows the presence of carbon (Swan band) and an intensive line of CH (388 nm), which are necessary species for deposition of carbon nanostructures. Additional voltage in the range from -20 V to -100 V is applied in order to ensure the vertical growth of graphene walls. Results of deposited carbon nanostructures on metal substrate are shown.

  12. Carbon membranes for efficient water-ethanol separation

    CERN Document Server

    Gravelle, Simon; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric


    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale 'graphene-oxide' like membranes then opens an avenue for a versatile and efficient ...

  13. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent


    was investigated using current-potential-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4) and dopedceria (CeO2, Ce1-xGdxO2-x/2, Ce1-xRExO2-delta (RE = Pr, Sm)), the effectiveness......Hybrid direct carbon fuel cells consisting of a solid carbon (carbon black)-molten carbonate ((62-38 wt% Li-K)(2)CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800 degrees C. Performance...

  14. Dynamic quantum molecular sieving separation of D2 from H2-D2 mixture with nanoporous materials. (United States)

    Niimura, Subaru; Fujimori, Toshihiko; Minami, Daiki; Hattori, Yoshiyuki; Abrams, Lloyd; Corbin, Dave; Hata, Kenji; Kaneko, Katsumi


    Quantum molecular sieving separability of D(2) from an H(2)-D(2) mixture was measured at 77 K for activated carbon fiber, carbon molecular sieve, zeolite and single wall carbon nanotube using a flow method. The amount of adsorbed D(2) was evidently larger than H(2) for all samples. The maximum adsorption ratio difference between D(2) and H(2) was 40% for zeolite (MS13X), yielding a selectivity for D(2) with respect to H(2) of 3.05.

  15. Experiments with Mixtures Designs, Models, and the Analysis of Mixture Data

    CERN Document Server

    Cornell, John A


    The most comprehensive, single-volume guide to conducting experiments with mixtures"If one is involved, or heavily interested, in experiments on mixtures of ingredients, one must obtain this book. It is, as was the first edition, the definitive work."-Short Book Reviews (Publication of the International Statistical Institute)"The text contains many examples with worked solutions and with its extensive coverage of the subject matter will prove invaluable to those in the industrial and educational sectors whose work involves the design and analysis of mixture experiments."-Journal of the Royal S

  16. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga


    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  17. Root biomass and carbon storage in differently managed multispecies temporary grasslands

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Mortensen, Tine Bloch; Søegaard, Karen


    Species-rich grasslands may potentially increase carbon (C) storage in soil, and an experiment was established to investigate C storage in highly productive temporary multi-species grasslands. Plots were established with three mixtures: (1) a herb mixture containing salad burnet (Sanguisorba minor......% of the herb mixture and 50% of a white clover (Trifolium repens L.) - perennial ryegrass (Lolium perenne L.) mixture, and (3) 5% of the herb mixture and 95% of the white clover-ryegrass mixture. Management factors were number of cuts per year and fertilizer application. Aboveground biomass increased...... considerably with increasing content of herbs and with fertilizer application in plots with a 4-cut strategy. With a 6-cut strategy without fertilizer, herbs had no effect on the aboveground biomass. In the herb mixture, biomass of small roots was lower than in mixtures with white clover and ryegrass...

  18. Method for carbon dioxide splitting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.


    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0mixture, adding carbon dioxide, and heating to a temperature less than approximately 1400 C, thereby producing carbon monoxide gas and the original metal oxide compound.

  19. Shear Flow Induced Alignment of Carbon Nanotubes in Natural Rubber

    Directory of Open Access Journals (Sweden)

    Yan He


    Full Text Available A new procedure for the fabrication of natural rubber composite with aligned carbon nanotubes is provided in this study. The two-step approach is based on (i the preparation of mixture latex of natural rubber, multiwalled carbon nanotubes, and other components and (ii the orientation of carbon nanotubes by a flow field. Rubber composite sheets filled with variable volume fraction of aligned carbon nanotubes were fabricated and then confirmed by transmission electron microscopy and Raman spectroscopy studies. An obvious increase in thermal conductivity has been obtained after the alignment of carbon nanotubes. The dynamic mechanical analysis was carried out in a tear mode for the composite.

  20. Experimental and molecular modeling study of the three-phase behavior of (n-decane + carbon dioxide + Water) at reservoir conditions


    E. Forte; Galindo, A.; Trusler, JPM


    Knowledge of the phase behavior of mixtures of oil with carbon dioxide and water is essential for reservoir engineering, especially in the processes of enhanced oil recovery and geological storage of carbon dioxide. However, for a comprehensive understanding, the study of simpler systems needs to be completed. In this work the system (n-decane + carbon dioxide + water) was studied as a model (oil + carbon dioxide + water) mixture. To accomplish our aim, a new analytical apparatus to measure p...

  1. The optimization of concrete mixtures for use in highway applications (United States)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content

  2. Complex mixtures, complex responses: Assessing pharmaceutical mixtures using field and laboratory approaches (United States)

    Schoenfuss, Heiko L.; Furlong, Edward T.; Phillips, Patrick J.; Scott, Tia-Marie; Kolpin, Dana W.; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E.; Rearick, Daniel C.


    Pharmaceuticals are present in low concentrations (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning levels of biological organization and life stages when assessing contaminant interactions.

  3. The Supervised Learning Gaussian Mixture Model

    Institute of Scientific and Technical Information of China (English)

    马继涌; 高文


    The traditional Gaussian Mixture Model(GMM)for pattern recognition is an unsupervised learning method.The parameters in the model are derived only by the training samples in one class without taking into account the effect of sample distributions of other classes,hence,its recognition accuracy is not ideal sometimes.This paper introduces an approach for estimating the parameters in GMM in a supervising way.The Supervised Learning Gaussian Mixture Model(SLGMM)improves the recognition accuracy of the GMM.An experimental example has shown its effectiveness.The experimental results have shown that the recognition accuracy derived by the approach is higher than those obtained by the Vector Quantization(VQ)approach,the Radial Basis Function (RBF) network model,the Learning Vector Quantization (LVQ) approach and the GMM.In addition,the training time of the approach is less than that of Multilayer Perceptrom(MLP).

  4. Phase structure of liposome in lipid mixtures. (United States)

    Zhang, Tianxi; Li, Yuzhuo; Mueller, Anja


    Gas microbubbles present in ultrasound imaging contrast agents are stabilized by lipid aggregates that typically contain a mixture of lipids. In this study, the phase structure of the lipid mixtures that contained two or three lipids was investigated using three different methods: dynamic light scattering, (1)H NMR, and microfluidity measurements with fluorescence probes. Three lipids that are commonly present in imaging agents (DPPC, DPPE-PEG, and DPPA) were used. Two types of systems, two-lipid model systems and simulated imaging systems were investigated. The results show that liposomes were the dominant aggregates in all the samples studied. The polar PEG side chains from the PEGylated lipid lead to the formation of micelles and micellar aggregates in small sizes. In the ternary lipid systems, almost all the lipids were present in bilayers with micelles absent and free lipids at very low concentration. These results suggest that liposomes, not micelles, contribute to the stabilization of microbubbles in an ultrasound imaging contrast agent.

  5. Quantum state smoothing for classical mixtures

    CERN Document Server

    Tan, D; Mølmer, K; Murch, K W


    In quantum mechanics, wave functions and density matrices represent our knowledge about a quantum system and give probabilities for the outcomes of measurements. If the combined dynamics and measurements on a system lead to a density matrix $\\rho(t)$ with only diagonal elements in a given basis $\\{|n\\rangle\\}$, it may be treated as a classical mixture, i.e., a system which randomly occupies the basis states $|n\\rangle$ with probabilities $\\rho_{nn}(t)$. Fully equivalent to so-called smoothing in classical probability theory, subsequent probing of the occupation of the states $|n\\rangle$ improves our ability to retrodict what was the outcome of a projective state measurement at time $t$. Here, we show with experiments on a superconducting qubit that the smoothed probabilities do not, in the same way as the diagonal elements of $\\rho$, permit a classical mixture interpretation of the state of the system at the past time $t$.

  6. Molecular thermodiffusion (thermophoresis) in liquid mixtures. (United States)

    Semenov, Semen N; Schimpf, Martin E


    Thermodiffusion (thermophoresis) in liquid mixtures is theoretically examined using a hydrodynamic approach. Thermodiffusion is related to the local temperature-induced pressure gradient in the liquid layer surrounding the selected molecule and to the secondary macroscopic pressure gradient established in the system. The local pressure gradient is produced by excess pressure due to the asymmetry of interactions with surrounding molecules in a nonuniform temperature field. The secondary pressure gradient is considered an independent parameter related to the concentration gradient formed by volume forces, calculated from the generalized equations for mass transfer. Values of Soret coefficients for mixtures of toluene and -hexane are calculated using parameters in the literature. When the molecules are assumed to be similar in shape, the calculated Soret coefficients are lower than the empirical values found in the literature. However, by introducing an asymmetry parameter, which is calculated from independent measurements of component diffusion in the literature, very good agreement is obtained.

  7. Sum of Bernoulli Mixtures: Beyond Conditional Independence

    Directory of Open Access Journals (Sweden)

    Taehan Bae


    Full Text Available We consider the distribution of the sum of Bernoulli mixtures under a general dependence structure. The level of dependence is measured in terms of a limiting conditional correlation between two of the Bernoulli random variables. The conditioning event is that the mixing random variable is larger than a threshold and the limit is with respect to the threshold tending to one. The large-sample distribution of the empirical frequency and its use in approximating the risk measures, value at risk and conditional tail expectation, are presented for a new class of models which we call double mixtures. Several illustrative examples with a Beta mixing distribution, are given. As well, some data from the area of credit risk are fit with the models, and comparisons are made between the new models and also the classical Beta-binomial model.

  8. Carbonate aquifers (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen


    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  9. Fluorous Mixture Synthesis of Asymmetric Dendrimers (United States)

    Jiang, Zhong-Xing; Yu, Yihua Bruce


    A divergent fluorous mixture synthesis (FMS) of asymmetric fluorinated dendrimers has been developed. Four generations of fluorinated dendrimers with the same fluorinated moiety were prepared with high efficiency, yield and purity. Comparison of the physicochemical properties of these dendrimers provided valuable information for their application and future optimization. This strategy has not only provided a practical method for the synthesis and purification of dendrimers, but also established the possibility of utilizing the same fluorinated moiety for FMS. PMID:20170088

  10. Lattice Model for water-solute mixtures


    Furlan, A. P.; Almarza, N. G.; M. C. Barbosa


    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting on, hydrophilic, inert and hydrophobic interactions. Extensive Monte Carlo simulations were carried out and the behavior of pure components and the excess proper...

  11. Endocrine activity of mycotoxins and mycotoxin mixtures. (United States)

    Demaegdt, Heidi; Daminet, Britt; Evrard, Annick; Scippo, Marie-Louise; Muller, Marc; Pussemier, Luc; Callebaut, Alfons; Vandermeiren, Karine


    Reporter gene assays incorporating nuclear receptors (estrogen, androgen, thyroid β and PPARγ2) have been implemented to assess the endocrine activity of 13 mycotoxins and their mixtures. As expected, zearalenone and its metabolites α-zearalenol and β- zearalenol turned out to have the strongest estrogenic potency (EC50 8,7 10-10 ± 0,8; 3,1 10-11 ± 0,5 and 1,3 10-8 ± 0,3 M respectively). The metabolite of deoxynivalenol, 3-acetyl-deoxynivalenol also had estrogenic activity (EC50 3,8 10-7 ± 1,1 M). Furthermore, most of the mycotoxins (and their mixtures) showed anti-androgenic effects (15-acetyldeoxynivalenol, 3-acetyl-deoxynivalenol and α-zearalenol with potencies within one order of magnitude of that of the reference compound flutamide). In particular, deoxynivalenol and 15-acetyl-deoxynivalenol acted as antagonists for the PPARy2 receptor. When testing mixtures of mycotoxins on the same cell systems, we showed that most of the mixtures reacted as predicted by the concentration addition (CA) theory. Generally, the CA was within the 95% confidence interval of the observed ones, only minor deviations were detected. Although these reporter gene tests cannot be directly extrapolated in vivo, they can be the basis for further research. Especially the additive effects of ZEN and its metabolites are of importance and could have repercussions in vivo.

  12. Hierarchical mixture models for assessing fingerprint individuality


    Dass, Sarat C.; Li, Mingfei


    The study of fingerprint individuality aims to determine to what extent a fingerprint uniquely identifies an individual. Recent court cases have highlighted the need for measures of fingerprint individuality when a person is identified based on fingerprint evidence. The main challenge in studies of fingerprint individuality is to adequately capture the variability of fingerprint features in a population. In this paper hierarchical mixture models are introduced to infer the extent of individua...

  13. Population mixture model for nonlinear telomere dynamics (United States)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl


    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  14. Tandem mass spectrometry: analysis of complex mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, K.E.


    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated.

  15. Confusion of concepts in mixture toxicology. (United States)

    Könemann, W H; Pieters, M N


    Regulatory limit values are generally set for single compounds. However, humans are exposed both simultaneously and sequentially to a wide variety of compounds. Some concepts on mixture toxicology are discussed in this introduction to the European Conference on Combination Toxicology. Studies on mixtures are often accompanied by statements about the type of combined action, which can be, for example, additive, synergistic or antagonistic. Unfortunately, comparison of results is hardly possible for various reasons. First, the terminology for indicating combined action is far from consistent. Bearing this in mind, researchers should be explicit in the definitions of terms. Secondly, depending on the model, different conclusions may be drawn from the same results. It is therefore important to provide clear definitions of the null hypothesis. Thirdly, adequate statistical methods should be used for testing the null hypothesis. In the past, many mixtures studies either used no statistics or used statistics incorrectly. Last, but not least, the study should be designed in such a way that it should be possible to obtain clear answers. In this introduction, it is stressed that environmental toxicologists should focus on the low-dose region of the dose-effect curves. It appears that interactions are less plausible at low doses. Dose additivity, however, cannot be excluded.

  16. Statistical mechanical theory of fluid mixtures (United States)

    Zhao, Yueqiang; Wu, Zhengming; Liu, Weiwei


    A general statistical mechanical theory of fluid mixtures (liquid mixtures and gas mixtures) is developed based on the statistical mechanical expression of chemical potential of components in the grand canonical ensemble, which gives some new relationships between thermodynamic quantities (equilibrium ratio Ki, separation factor α and activity coefficient γi) and ensemble average potential energy u for one molecule. The statistical mechanical expressions of separation factor α and activity coefficient γi derived in this work make the fluid phase equilibrium calculations can be performed by molecular simulation simply and efficiently, or by the statistical thermodynamic approach (based on the saturated-vapor pressure of pure substance) that does not need microscopic intermolecular pair potential functions. The physical meaning of activity coefficient γi in the liquid phase is discussed in detail from a viewpoint of molecular thermodynamics. The calculated Vapor-Liquid Equilibrium (VLE) properties of argon-methane, methanol-water and n-hexane-benzene systems by this model fit well with experimental data in references, which indicates that this model is accurate and reliable in the prediction of VLE properties for small, large and strongly associating molecules; furthermore the statistical mechanical expressions of separation factor α and activity coefficient γi have good compatibility with classical thermodynamic equations and quantum mechanical COSMO-SAC approach.

  17. Familial searching on DNA mixtures with dropout. (United States)

    Slooten, K


    Familial searching, the act of searching a database for a relative of an unknown individual whose DNA profile has been obtained, is usually restricted to cases where the DNA profile of that person has been unambiguously determined. Therefore, it is normally applied only with a good quality single source profile as starting point. In this article we investigate the performance of the method if applied to mixtures with and without allelic dropout, when likelihood ratios are computed with a semi-continuous (binary) model. We show that mixtures with dropout do not necessarily perform worse than mixtures without, especially if some separation between the donors is possible due to their different dropout probabilities. The familial searching true and false positive rates of mixed profiles on 15 loci are in some cases better than those of single source profiles on 10 loci. Thus, the information loss due to the fact that the person of interest's DNA has been mixed with that of other, and is affected by dropout, can be less than the loss of information corresponding to having 5 fewer loci available for a single source trace. Profiles typed on 10 autosomal loci are often involved in familial searching casework since many databases, including the Dutch one, in part consist of such profiles. Therefore, from this point of view, there seems to be no objection to extend familial searching to mixed or degraded profiles.

  18. Ethane-xenon mixtures under shock conditions (United States)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas


    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  19. Mixture risk assessment: a case study of Monsanto experiences. (United States)

    Nair, R S; Dudek, B R; Grothe, D R; Johannsen, F R; Lamb, I C; Martens, M A; Sherman, J H; Stevens, M W


    Monsanto employs several pragmatic approaches for evaluating the toxicity of mixtures. These approaches are similar to those recommended by many national and international agencies. When conducting hazard and risk assessments, priority is always given to using data collected directly on the mixture of concern. To provide an example of the first tier of evaluation, actual data on acute respiratory irritation studies on mixtures were evaluated to determine whether the principle of additivity was applicable to the mixture evaluated. If actual data on the mixture are unavailable, extrapolation across similar mixtures is considered. Because many formulations are quite similar in composition, the toxicity data from one mixture can be extended to a closely related mixture in a scientifically justifiable manner. An example of a family of products where such extrapolations have been made is presented to exemplify this second approach. Lastly, if data on similar mixtures are unavailable, data on component fractions are used to predict the toxicity of the mixture. In this third approach, process knowledge and scientific judgement are used to determine how the known toxicological properties of the individual fractions affect toxicity of the mixture. Three examples of plant effluents where toxicological data on fractions were used to predict the toxicity of the mixture are discussed. The results of the analysis are used to discuss the predictive value of each of the above mentioned toxicological approaches for evaluating chemical mixtures.

  20. Investigation of antioxidant properties of metal ascorbates and their mixtures by voltammetry (United States)

    Vtorushina, A. N.; Nikonova, E. D.


    The paper describes modern ways for selection of anti-radical substances. Molding of such components with a carbon-based material decreases the rate of its oxidative destruction. Addition of such a component to a carbon-based material decreases the rate of its oxidative destruction. The purpose of this study is to determine the antioxidant activity of ascorbates metals (Ca, Mg, Li, Co, Fe), used in the practice of medicine, as well as mixtures based on them together with well-known antioxidants. In this article we examine the effect of metals on the process of ascorbate oxygen electroreduction. From these ascorbates lithium and magnesium ascorbate showed the greatest activity toward cathode oxygen reduction process. Also mixtures with well-known examined antioxidants ascorbate (glucose, dihydroquercetin) were investigated at different concentrations of components. It is shown that the multicomponent mixtures exhibit lower activity than the individual drugs. Recommended the creation of drugs on the basis of ascorbate Mg and Li with not more than 3 number of components.

  1. Carbothermal Reduction of Quartz in Methane-Hydrogen-Argon Gas Mixture (United States)

    Li, Xiang; Zhang, Guangqing; Tang, Kai; Ostrovski, Oleg; Tronstad, Ragnar


    Synthesis of silicon carbide (SiC) by carbothermal reduction of quartz in a CH4-H2-Ar gas mixture was investigated in a laboratory fixed-bed reactor in the temperature range of 1573 K to 1823 K (1300 °C to 1550 °C). The reduction process was monitored by an infrared gas analyser, and the reduction products were characterized by LECO, XRD, and SEM. A mixture of quartz-graphite powders with C/SiO2 molar ratio of 2 was pressed into pellets and used for reduction experiments. The reduction was completed within 2 hours under the conditions of temperature at or above 1773 K (1500 °C), methane content of 0.5 to 2 vol pct, and hydrogen content ≥70 vol pct. Methane partially substituted carbon as a reductant in the SiC synthesis and enhanced the reduction kinetics significantly. An increase in the methane content above 2 vol pct caused excessive carbon deposition which had a detrimental effect on the reaction rate. Hydrogen content in the gas mixture above 70 vol pct effectively suppressed the cracking of methane.

  2. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent


    was investigated using current-voltage-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, Mn3O4, MnO), metal carbonates (Ag2CO3, MnCO3, Ce2(CO3)3), metals (Ag, Ce, Ni), doped-ceria (CeO2, Ce1-xGdxO2-x/2......, Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance......Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62–38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800°C. Performance...

  3. Mixtures as a fungicide resistance management tactic. (United States)

    van den Bosch, Frank; Paveley, Neil; van den Berg, Femke; Hobbelen, Peter; Oliver, Richard


    We have reviewed the experimental and modeling evidence on the use of mixtures of fungicides of differing modes of action as a resistance management tactic. The evidence supports the following conclusions. 1. Adding a mixing partner to a fungicide that is at-risk of resistance (without lowering the dose of the at-risk fungicide) reduces the rate of selection for fungicide resistance. This holds for the use of mixing partner fungicides that have either multi-site or single-site modes of action. The resulting predicted increase in the effective life of the at-risk fungicide can be large enough to be of practical relevance. The more effective the mixing partner (due to inherent activity and/or dose), the larger the reduction in selection and the larger the increase in effective life of the at-risk fungicide. 2. Adding a mixing partner while lowering the dose of the at-risk fungicide reduces the selection for fungicide resistance, without compromising effective disease control. The very few studies existing suggest that the reduction in selection is more sensitive to lowering the dose of the at-risk fungicide than to increasing the dose of the mixing partner. 3. Although there are very few studies, the existing evidence suggests that mixing two at-risk fungicides is also a useful resistance management tactic. The aspects that have received too little attention to draw generic conclusions about the effectiveness of fungicide mixtures as resistance management strategies are as follows: (i) the relative effect of the dose of the two mixing partners on selection for fungicide resistance, (ii) the effect of mixing on the effective life of a fungicide (the time from introduction of the fungicide mode of action to the time point where the fungicide can no longer maintain effective disease control), (iii) polygenically determined resistance, (iv) mixtures of two at-risk fungicides, (v) the emergence phase of resistance evolution and the effects of mixtures during this phase

  4. Investigation of rheological properties of mixtures of soft ice cream

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva


    Full Text Available The paper presents the study of the rheological properties of multicomponent mixtures for soft ice cream enriched with various stabilizers to facilitate evaluation and selection of the optimal mixture.

  5. Chemometrics as a tool to analyse complex chemical mixtures

    DEFF Research Database (Denmark)

    Christensen, J. H.

    Chemical characterisation of contaminant mixtures is important for environmental forensics and risk assessment. The great challenge in future research lies in develop- ing suitable, rapid, reliable and objective methods for analysis of the composition of complex chemical mixtures. This thesis...

  6. Methods for Assessing Curvature and Interaction in Mixture Experiments

    Energy Technology Data Exchange (ETDEWEB)



    The terms curvature and interaction traditionally are not defined or used in the context of mixture experiments because curvature and interaction effects are partially confounded due to the mixture constrain that the component proportions sum to 1.

  7. Mixture Density Mercer Kernels: A Method to Learn Kernels (United States)

    National Aeronautics and Space Administration — This paper presents a method of generating Mercer Kernels from an ensemble of probabilistic mixture models, where each mixture model is generated from a Bayesian...

  8. Optimal (Solvent) Mixture Design through a Decomposition Based CAMD methodology

    DEFF Research Database (Denmark)

    Achenie, L.; Karunanithi, Arunprakash T.; Gani, Rafiqul


    Computer Aided Molecular/Mixture design (CAMD) is one of the most promising techniques for solvent design and selection. A decomposition based CAMD methodology has been formulated where the mixture design problem is solved as a series of molecular and mixture design sub-problems. This approach is...... is able to overcome most of the difficulties associated with the solution of mixture design problems. The new methodology has been illustrated with the help of a case study involving the design of solvent-anti solvent binary mixtures for crystallization of Ibuprofen.......Computer Aided Molecular/Mixture design (CAMD) is one of the most promising techniques for solvent design and selection. A decomposition based CAMD methodology has been formulated where the mixture design problem is solved as a series of molecular and mixture design sub-problems. This approach...

  9. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Md. Uzzal Hossain


    Full Text Available Cyclic voltammetry (CV and differential pulse voltammetry (DPV were performed with a glassy carbon electrode (GCE modified with polyglutamic acid (PGA on the three dihydroxybenzene isomers, catechol (CT, hydroquinone (HQ, and resorcinol (RS. At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers.

  10. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques. (United States)

    Hossain, Md Uzzal; Rahman, Md Toufiqur; Ehsan, Md Qamrul


    Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed with a glassy carbon electrode (GCE) modified with polyglutamic acid (PGA) on the three dihydroxybenzene isomers, catechol (CT), hydroquinone (HQ), and resorcinol (RS). At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers.

  11. Reduction of Quartz to Silicon Monoxide by Methane-Hydrogen Mixtures (United States)

    Li, Xiang; Zhang, Guangqing; Tronstad, Ragnar; Ostrovski, Oleg


    The reduction of quartz was studied isothermally in a fluidized bed reactor using continuously flowing methane-hydrogen gas mixture in the temperature range from 1623 K to 1773 K (1350 °C to 1500 °C). The CO content in the off-gas was measured online using an infrared gas analyzer. The main phases of the reduced samples identified by XRD analysis were quartz and cristobalite. Significant weight loss in the reduction process indicated that the reduction products were SiO and CO. Reduction of SiO2 to SiO by methane starts with adsorption and dissociation of CH4 on the silica surface. The high carbon activity in the CH4-H2 gas mixture provided a strongly reducing condition. At 1623 K (1350 °C), the reduction was very slow. The rate and extent of reduction increased with the increasing temperature to 1723 K (1450 °C). A further increase in temperature to 1773 K (1500 °C) resulted in a decrease in the rate and extent of reduction. An increase in the gas flow rate from 0.4 to 0.8 NL/min and an increase in the methane content in the CH4-H2 gas mixture from 0 to 5 vol pct facilitated the reduction. Methane content in the gas mixture should be maintained at less than 5 vol pct in order to suppress methane cracking.

  12. Effect of schisandrin B and sesamin mixture on CCl(4)-induced hepatic oxidative stress in rats. (United States)

    Chang, Chia-Yu; Chen, Ya-Ling; Yang, Suh-Ching; Huang, Guan-Cheng; Tsi, Daniel; Huang, Chi-Chang; Chen, Jiun-Rong; Li, Joe-Sharg


    To study the effects of schisandrin B and sesamin mixture on carbon tetrachloride (CCl(4))-induced hepatic oxidative stress in male Sprague-Dawley rats. The rats were randomly assigned to five groups: control group (olive oil injection), CCl(4) group (CCl(4) injection), silymarin group (CCl(4) injection combined with supplementation of silymarin, 7.5 mg/kg/day), low dose group (CCl(4) injection combined with supplementation of schisandrin B and sesamin mixture at a low dose, 43 mg/kg/day) and high dose group (CCl(4) injection combined with the supplementation of schisandrin B and sesamin mixture at a high dose, 215 mg/kg/day). The hepatic superoxide dismutase and glutathione peroxidase activities of rats in the low dose and high dose groups were increased significantly compared with those in the CCl(4) group. The hepatic reduced glutathione concentration in the silymarin, low dose and high dose groups were increased significantly (48%, 45% and 53%, respectively) when compared with those of the CCl(4) group. In addition, the concentration of glutathione in the erythrocytes of the low dose group was significantly higher than the CCl(4) group by 25%. These results suggest that the schisandrin B-sesamin mixture exerted a hepatoprotective effect by improving the antioxidative capacity in rats under CCl(4)-induced hepatic oxidative stress.

  13. Quantum phases of Fermi-Fermi mixtures in optical lattices


    Iskin, M.; de Melo, C. A. R. Sa


    The ground state phase diagram of Fermi-Fermi mixtures in optical lattices is analyzed as a function of interaction strength, population imbalance, filling fraction and tunneling parameters. It is shown that population imbalanced Fermi-Fermi mixtures reduce to strongly interacting Bose-Fermi mixtures in the molecular limit, in sharp contrast to homogeneous or harmonically trapped systems where the resulting Bose-Fermi mixture is weakly interacting. Furthermore, insulating phases are found in ...

  14. Carbon classified?

    DEFF Research Database (Denmark)

    Lippert, Ingmar


    How does a corporation know it emits carbon? Acquiring such knowledge starts with the classification of environmentally relevant consumption information. This paper visits the corporate location at which this underlying element for their knowledge is assembled to give rise to carbon emissions. Us...

  15. Porous carbons

    Indian Academy of Sciences (India)

    Satish M Manocha


    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5–0.8 cm3 /gm and surface areas of 700–1800 m2 /gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.

  16. Carbon photonics

    Energy Technology Data Exchange (ETDEWEB)

    Konov, V I [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)


    The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)

  17. Quantification of the joint effects of mixtures of hepatotoxic agents: evaluation of a theoretical model in mice

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, D.W.; Weber, L.J.


    An approach previously developed for studying the effects of toxic mixtures on whole organism performances (i.e., growth, mortality) was evaluated to determine its applicability and limitations at the organ system level. The approach was tested by quantifying the hepatotoxic effects of carbon tetrachloride (CCl/sub 4/), monochlorobenzene (MCB), acetaminophen (ACET), and selected mixtures of these compounds in male albino CF-1 mice. Based upon parallel dose-response curves, concentration addition was predicted for the mixtures of both CCl/sub 4/ + MCB and CCl/sub 4/ + ACET. The actual dose-response relationship for each mixture was empirically determined and compared to the predicted curves. In the case of the CCl/sub 4/ + ACET mixture revealed a statistical difference between the observed and predicted curves. The joint effects for the mixture of CCl/sub 4/ + MCB is thus classified as concentration additive. The model proves to be adequate in predicting, classifying, and describing the joint effects of these hepatotoxicants.


    Directory of Open Access Journals (Sweden)

    Valerian Cerempei


    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  19. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  20. 21 CFR 864.8625 - Hematology quality control mixture. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hematology quality control mixture. 864.8625 Section 864.8625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... quality control mixture. (a) Identification. A hematology quality control mixture is a device used...

  1. Continuous mixtures with bathtub-shaped failure rates


    Block, Henry W.; LI, YULIN; Savits, Thomas H.; Wang, Jie


    The failure rate of a mixture of even the most standard distributions used in reliability can have a complicated shape. However, failure rates of mixtures of two carefully selected distributions will have the well-known bathtub shape. Here we show that mixtures of whole families of distribtions can have a bathtub-shaped failure rate.

  2. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture. (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methyl acetylene-propadiene mixture. 154.1735 Section... Operating Requirements § 154.1735 Methyl acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must be within the following limits or specially approved by...

  3. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    Energy Technology Data Exchange (ETDEWEB)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K., E-mail:


    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO{sub 2} adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO{sub 2} at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability.

  4. Carbon-Carbon Piston Architectures (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)


    An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  5. Counter-current carbon dioxide purification of partially deacylated sunflower oil (United States)

    High oleic sunflower oil was partially deacylated by propanolysis to produce a mixture of diglycerides and triglycerides. To remove by-product fatty acid propyl esters (FAPEs) from this reaction mixture, a liquid carbon dioxide (L-CO2) counter-current fractionation method was developed. The fracti...

  6. Organic biowastes blend selection for composting industrial eggshell by-product: experimental and statistical mixture design. (United States)

    Soares, Micaela A R; Andrade, Sandra R; Martins, Rui C; Quina, Margarida J; Quinta-Ferreira, Rosa M


    Composting is one of the technologies recommended for pre-treating industrial eggshells (ES) before its application in soils, for calcium recycling. However, due to the high inorganic content of ES, a mixture of biodegradable materials is required to assure a successful procedure. In this study, an adequate organic blend composition containing potato peel (PP), grass clippings (GC) and wheat straw (WS) was determined by applying the simplex-centroid mixture design method to achieve a desired moisture content, carbon: nitrogen ratio and free air space for effective composting of ES. A blend of 56% PP, 37% GC and 7% WS was selected and tested in a self heating reactor, where 10% (w/w) of ES was incorporated. After 29 days of reactor operation, a dry matter reduction of 46% was achieved and thermophilic temperatures were maintained during 15 days, indicating that the blend selected by statistical approach was adequate for composting of ES.

  7. Laser synthesis of silicon carbide powders from silane and hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Cauchetier, M.; Croix, O.; Luce, M. (CEN Saclay, Gis sur Yvette (France))


    Ultrafine silicon carbide powders have been synthesized from mixtures of silane and hydrocarbons (with one to four carbon atoms) irradiated with an unfocused, high-power (1 kW), continuous-wave industrial CO{sub 2} laser. The chemistry of the reaction has been determined by analysis of the gaseous phase, either by infrared spectroscopy or by combined-gas chromatography-mass spectrometry; reaction yields have been determined. A silicon carbide production rate of 30 g/h with a yield > 99% was obtained from silane and acetylene mixtures with a 600-W laser power. An attempt to approach a production rate of 100 g/h at laboratory scale has been successful. Powder characteristics, such as particle size (10 to 50 nm), crystallinity, and stoichiometry can be controlled through optimization of laser intensity, gas pressure, and flow rate. The powders consist of equiaxed particles which exhibit a narrow size distribution.


    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Escobar, A.; Ciaravella, A.; Micela, G.; Cecchi-Pestellini, C. [INAF–Osservatorio Astronomico di Palermo, Parlamento 1, I-90134 Palermo (Italy); Chen, Y.-J.; Huang, C.-H., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Department of Physics, National Central University, Jhongli District, Taoyuan City 32054, Taiwan (China)


    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250–1200 eV) were employed. During the irradiation, the H{sub 2}O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistry is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.

  9. Thermogravitational column as a technique for thermal diffusion factor measurement in liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ecenarro, O.; Madariaga, J.A.; Navarro, J.; Santamaria, C.M. (Universidad Pais Vasco, Bilbao (Spain)); Carrion, J.A.; Saviron, J.M. (Universidad de Zaragoza (Spain))

    Thermogravitational thermal diffusion separations are studied for benzene-n-heptane, benzene-n-hexane, toluene-n-heptane, toluene-n-hexane, carbon tetrachloride-n-hexane, and cyclohexane-n-hexane mixtures at a mean temperature of 37.5{degree}C. The column used was of 90 cm length with a 0.095 cm gap. Despite its length, this column can be used as a standard for the value of {alpha}{sub T} extraction when the separation factor is extrapolated to {Delta}t = 0{degree}C. Thermal diffusion factors are calculated for benzene-n-heptane and benzene-n-hexane mixtures in different concentrations. For the rest of the systems investigated, {alpha}{sub T}D{sub 12} values (D{sub 12} being the ordinary diffusion coefficient) are calculated.

  10. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes

    KAUST Repository

    Pan, Yichang


    The separation of propylene/propane mixtures is one of the most important but challenging processes in the petrochemical industry. A novel zeolitic imidazole framework (ZIF-8) membrane prepared by a facile hydrothermal seeded growth method showed excellent separation performances for a wide range of propylene/propane mixtures. The membrane showed a permeability of propylene up to 200. barrers and a propylene to propane separation factor up to 50 at optimal separation conditions, well surpassing the "upper-bound trade-off" lines of existing polymer and carbon membranes. The experimental data also showed that the membranes had excellent reproducibility, long-term stability and thermal stability. © 2011 Elsevier B.V.

  11. CO$_2$ Infrared Phonon Modes in Interstellar Ice Mixtures

    CERN Document Server

    Cooke, Ilsa R; Öberg, Karin I


    CO$_2$ ice is an important reservoir of carbon and oxygen in star and planet forming regions. Together with water and CO, CO$_2$ sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO$_2$ ice spectroscopy is a prerequisite to characterize CO$_2$ interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO$_2$ longitudinal optical (LO) phonon mode in pure CO$_2$ ice and in CO$_2$ ice mixtures with H$_2$O, CO, O$_2$ components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of JWST, this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enabl...

  12. The structure of n-alkane binary mixtures adsorbed on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Espeau, Philippe [Laboratoire de Chimie Physique et Minerale, Faculte de Pharmacie, Universite Rene Descartes-Paris V, F-75006 Paris (France)]. E-mail:; White, John W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Papoular, Robert J. [Laboratoire Leon Brillouin, CEA-CEN Saclay, F-91191 Gif-sur-Yvette Cedex (France)


    The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A{sub 1-x}B {sub x} try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations.

  13. Temperature relaxation in dense plasma mixtures (United States)

    Faussurier, Gérald; Blancard, Christophe


    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  14. Spectrometric mixture analysis: An unexpected wrinkle

    Indian Academy of Sciences (India)

    Robert De Levie


    The spectrometric analysis of a mixture of two chemically and spectroscopically similar compounds is illustrated for the simultaneous spectrometric determination of caffeine and theobromine, the primary stimulants in coffee and tea, based on their ultraviolet absorbances. Their analysis indicates that such measurements may need an unexpectedly high precision to yield accurate answers, because of an artifact of inverse cancellation, in which a small noise or drift signal is misinterpreted in terms of a concentration difference. The computed sum of the concentrations is not affected.

  15. Video compressive sensing using Gaussian mixture models. (United States)

    Yang, Jianbo; Yuan, Xin; Liao, Xuejun; Llull, Patrick; Brady, David J; Sapiro, Guillermo; Carin, Lawrence


    A Gaussian mixture model (GMM)-based algorithm is proposed for video reconstruction from temporally compressed video measurements. The GMM is used to model spatio-temporal video patches, and the reconstruction can be efficiently computed based on analytic expressions. The GMM-based inversion method benefits from online adaptive learning and parallel computation. We demonstrate the efficacy of the proposed inversion method with videos reconstructed from simulated compressive video measurements, and from a real compressive video camera. We also use the GMM as a tool to investigate adaptive video compressive sensing, i.e., adaptive rate of temporal compression.

  16. Flows and chemical reactions in heterogeneous mixtures

    CERN Document Server

    Prud'homme, Roger


    This book - a sequel of previous publications 'Flows and Chemical Reactions' and 'Chemical Reactions in Flows and Homogeneous Mixtures' - is devoted to flows with chemical reactions in heterogeneous environments.  Heterogeneous media in this volume include interfaces and lines. They may be the site of radiation. Each type of flow is the subject of a chapter in this volume. We consider first, in Chapter 1, the question of the generation of environments biphasic individuals: dusty gas, mist, bubble flow.  Chapter 2 is devoted to the study at the mesoscopic scale: particle-fluid exchange of mom

  17. Gaussian mixture model of heart rate variability.

    Directory of Open Access Journals (Sweden)

    Tommaso Costa

    Full Text Available Heart rate variability (HRV is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters.

  18. Bayesian mixture models for partially verified data

    DEFF Research Database (Denmark)

    Kostoulas, Polychronis; Browne, William J.; Nielsen, Søren Saxmose;


    for some individuals, in order to minimize this loss in the discriminatory power. The distribution of the continuous antibody response against MAP has been obtained for healthy, MAP-infected and MAP-infectious cows of different age groups. The overall power of the milk-ELISA to discriminate between healthy......Bayesian mixture models can be used to discriminate between the distributions of continuous test responses for different infection stages. These models are particularly useful in case of chronic infections with a long latent period, like Mycobacterium avium subsp. paratuberculosis (MAP) infection...

  19. Molecular weight scaling in critical polymer mixtures

    DEFF Research Database (Denmark)

    Gehlsen, M.D.; Rosedale, J.R.; Bates, F.S.


    , DELTA-X(D), and molecular weight by small-angle neutron scattering. The critical point for demixing was determined to scale as chi(eff,c) is similar to N(-delta) with delta = 1.01 +/- 0.05, where N is the degree of polymerization. This result confirms the mean-field prediction of Flory and Huggins.......Symmetric binary mixtures of partially deuterated polymers were prepared at the critical composition. The segment-segment interaction energy parameter chi(eff) was varied by adjusting the difference in deuterium content DELTA-X(D) between species. Chi(eff) was measured as a function of temperature...

  20. Effects of Two Purification Pretreatments on Electroless Copper Coating over Single-Walled Carbon Nanotubes


    Zhong Zheng; Lianjie Li; Shijie Dong; Anchun Xiao; Shixuan Sun; Sinian Li


    To achieve the reinforcement of copper matrix composite by single-walled carbon nanotubes, a three-step-refluxing purification of carbon nanotubes sample with HNO3-NaOH-HCl was proposed and demonstrated. A previously reported purification process using an electromagnetic stirring with H2O2/HCl mixture was also repeated. Then, the purified carbon nanotubes were coated with copper by the same electroless plating process. At the end, the effects of the method on carbon nanotubes themselves and o...

  1. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht;


    In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid...

  2. An equiratio mixture model for non-additive components : a case study for aspartame/acesulfame-K mixtures

    NARCIS (Netherlands)

    Schifferstein, H.N.J.


    The Equiratio Mixture Model predicts the psychophysical function for an equiratio mixture type on the basis of the psychophysical functions for the unmixed components. The model reliably estimates the sweetness of mixtures of sugars and sugar-alchohols, but is unable to predict intensity for asparta

  3. Uniform designs for mixture-amount experiments and for mixture experiments under order restrictions

    Institute of Scientific and Technical Information of China (English)

    田国梁; 方开泰


    With order statistics of the uniform distribution on [0, 1], exponential and beta distributions, a stochastic representation is obtained for the uniform distribution over various domains, where A-type domains are closely associated with reliability growth analysis, order restricted statistical inference and isotonic regression theory, V-type domains are connected with the mixture-amount experiments, and T-type domains are well related to mixture experiments. With these stochastic representations, the corresponding uniform distribution and number-theoretic nets can be generated. This approach seems to be new and is called order statistics method. Some examples on reliability growth analysis and experimental design are presented.

  4. Separation of gas mixtures by supported complexes. Final report, 1 October 1982-30 September 1984

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.A.; Hallen, R.T.; Lilga, M.A.


    This final report covers research performed to identify and demonstrate advantageous procedures for the chemical separation of gases, such as CO, CO/sub 2/, and H/sub 2/, from medium-Btu gas mixtures by use of supported complexes. Three complexes were chosen for rapid gas uptake and selectivity at 25/sup 0/C from among a group of 22 coordination complexes synthesized during this program. The three complexes showed considerable selectivity toward individual gases. For instance, Pd/sub 2/(dpm)/sub 2/Cl/sub 2/ or (Pd-Pd), rapidly bound carbon monoxide from solution. This complex could be regenerated, with the carbon monoxide reversibly removed, by warming to 40/sup 0/C. The presence of other gases, such as carbon dioxide, oxygen, nitrogen, hydrogen, ethylene, or acetylene, had no effect upon the rapid uptake of carbon monoxide or its removal. Such selectivity was also noted with Ru(CO)/sub 2/(PPh/sub 3/)/sub 3/, biscarbonyltris(triphenylphosphine)ruthenium. Although this complex bound hydrogen, carbon monoxide, and oxygen in solution, the hydrogen was taken up twice as fast as carbon monoxide and seven times faster than oxygen. These gases could be removed from the complex with mild heat or decreased pressure. Crystalline Rh(OH)(CO)(PPh/sub 3/)/sub 2/, hydroxocarbonylbis(triphenylphosphine)rhodium, rapidly bound carbon dioxide; the complex was regenerated at 50/sup 0/C under reduced pressure. The rapid uptake of carbon dioxide by this complex was not changed in the presence of oxygen. In general the three selected crystalline or solvent dissolved complexes performed well in the absence of polymeric support. The stability and favorable kinetics of the three complexes suggest that they could be utilized in a solution system for gas separation (Conceptual Analyses and Preliminary Economics). Further, these complexes appear to be superb candidates as transport agents for facilitated-transport, membrane systems

  5. Prediction of saturated liquid enthalpy of refrigerant mixtures

    Institute of Scientific and Technical Information of China (English)

    CHEN ZeShao; CHEN JianXin; HU Peng


    New corresponding temperature and corresponding enthalpy of refrigerant mixtures were defined. The relationship between saturated liquid corresponding enthalpy and corresponding temperature of refrigerant mixtures accorded with that of pure components. The characteristic parameters of saturated liquid enthalpy difference of refrigerant mixtures were calculated by three methods according to the different application conditions. The generalized equation of saturated liquid enthalpy of refrigerant mixtures was presented. The calculated values were compared with the values in literature for five ternary and binary refrigerant mixtures, namely R404A, R407A, R407B, R32/R134a, and R410A. The overall average absolute deviation was less than 1.0%.

  6. Carbon cyclist (United States)

    Showstack, Randy

    A satellite launched in early August as part of NASA's Mission to Planet Earth could dramatically increase understanding of how carbon cycles through the Earth's biosphere and living organisms and how this process influences global climate. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) will measure the color of the oceans with a radiometer to determine the concentration of chlorophyll found in oceanic phytoplankton. The single-celled plants, at the base of food chains around the world, remove carbon dioxide from seawater through photosynthesis, which allows oceans to absorb more carbon dioxide from the atmosphere.

  7. Investigation of Adding Proportion of RAP in Recycled Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Cao He


    Full Text Available According to the relationship between gradation and proportion of Reclaimed Asphalt Pavement (RAP and design gradation of recycled mixture, the authors discussed the influence of proportion of RAP on gradation adjustment of recycled mixture. And then, recycled mixture with 0%, 30%, 50%, 70% of RAP were made, and Influence of proportion of RAP on high and low temperature performance, water stability and anti-aging performance of recycled mixture were discussed. The results and analysis indicate that gradation of recycled mixture would not be adjusted to aiming gradation if proportion of RAP was too big. With the increase of proportion of RAP, high temperature performance and anti-aging performance of recycled mixture enhanced, but low temperature performance and water stability decayed sharply. In practical application, reasonable proportion of RAP should be determined according to gradation, performance demand and economy of recycled mixture.

  8. Systems and methods for removing components of a gas mixture (United States)



    A system for removing components of a gaseous mixture is provided comprising: a reactor fluid containing vessel having conduits extending therefrom, aqueous fluid within the reactor, the fluid containing a ligand and a metal, and at least one reactive surface within the vessel coupled to a power source. A method for removing a component from a gaseous mixture is provided comprising exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand. A method of capturing a component of a gaseous mixture is provided comprising: exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand, altering the oxidation state of the metal, the altering unbinding the component from the ligand, and capturing the component.

  9. Health and environmental effects of complex chemical mixtures: proceedings

    Energy Technology Data Exchange (ETDEWEB)


    The Office of Health and Environmental Research (OHER) of the Department of Energy supports a broad long-term research program on human health and environmental effects from potential exposure to energy-related complex chemical mixtures. The program seeks basic mechanistic data on the effects of complex mixtures at the cellular, molecular, and whole animal levels to aid in predicting human health effects and seeks ecological data on biological and physical transformations in the mixtures, concentrations of the mixtures in various compartments of the environment, and potential routes for human exposure to these mixtures (e.g., food chain). On June 17-18, 1985, OHER held its First Annual Technical Meeting on the Complex Chemical Mixtures Program in Chicago, IL. The primary purpose of the meeting was to enable principal investigators to report the research status and accomplishments of ongoing complex chemical mixture studies supported by OHER. To help focus future research directions round table discussions were conducted.

  10. A simple mixture to enhance muscle transmittance (United States)

    Oliveira, Luís; Lage, Armindo; Clemente, Manuel Pais; Tuchin, Valery V.


    Skeletal muscle is a fibrous tissue composed by muscle fibers and interstitial fluid. Due to this constitution, the muscle presents a non uniform refractive index profile that origins strong light scattering. One way to improve tissue transmittance is to reduce this refractive index mismatch by immersing the muscle in an optical clearing agent. As a consequence of such immersion tissue also suffers dehydration. The study of the optical clearing effect created by a simple mixture composed by ethanol, glycerol and distilled water has proven its effectiveness according to the variations observed in the parameters under study. The effect was characterized in terms of its magnitude, time duration and histological variations. The applied treatment has created a small reduction of the global sample refractive index that is justified by the long time rehydration caused by water in the immersing solution. From the reduction in sample pH we could also identify the dehydration process created in the sample. The immersion treatment has originated fiber bundle contraction and a spread distribution of the muscle fiber bundles inside. New studies with the mixture used, or with other combinations of its constituents might be interesting to perform with the objective to develop new clinical procedures.

  11. Transport and radiation in complex LTE mixtures (United States)

    Janssen, Jesper; Peerenboom, Kim; Suijker, Jos; Gnybida, Mykhailo; van Dijk, Jan


    Complex LTE mixtures are for example encountered in re-entry, welding, spraying and lighting. These mixtures typically contain a rich chemistry in combination with large temperature gradients. LTE conditions are also interesting because they can aid in the validation of NLTE algorithms. An example is the calculation of transport properties. In this work a mercury free high intensity discharge lamp is considered. The investigation focusses on using salts like InI or SnI as a buffer species. By using these species a dominant background gas like mercury is no longer present. As a consequence the diffusion algorithms based on Fick's law are no longer applicable and the Stefan-Maxwell equations must be solved. This system of equations is modified with conservation rules to set a coldspot pressure for saturated species and enforce the mass dosage for unsaturated species. The radiative energy transport is taken into account by raytracing. Quantum mechanical simulations have been used to calculate the potential curves and the transition dipole moments for indium with iodine and tin with iodine. The results of these calculations have been used to predict the quasistatic broadening by iodine. The work was supported by the project SCHELP from the Belgium IWT (Project Number 110003) and the CATRENE SEEL Project (CA502).

  12. Spinodal Decomposition in Mixtures Containing Surfactants (United States)

    Melenekvitz, J.


    Spinodal decomposition in mixtures containing two immiscible liquids (A and B) plus surfactant was investigated using a recently developed (J. Melenkevitz and S. H. Javadpour, J. Chem. Phys., 107, 623 (1997).) 3-component Ginzburg-Landau model. The time dependent Ginzburg-Landau (TDGL) equations governing the evolution of structure were numerically integrated in 2-dimensions. We found the growth rate of the average domain size, R(t), decreased with increasing surfactant concentration over a wide range of relative amounts of A and B. This can be attributed to the surfactant accumulating at the growing interface between the immiscible liquids, which leads to a reduction in the surface tension. At late times, the growth rate was noticeably altered when thermal fluctuations were added to the numerical simulations. In this case, power law behavior was observed for R(t) at late times, R(t) ~ t^α, with the exponent α decreasing as the amount of surfactant increased. The dynamics at early times were determined by linearizing the TDGL equations about a uniformly mixed state. The growth rate at ealry times was found to be strongly dependent on the model parameters describing the surfactant miscibility in A and B and the surfactant strength. Comparison with recent measurements on SBR / PB mixtures with added PB-SBR diblock copolymer will also be presented.

  13. A mixture approach to vagueness and ambiguity.

    Directory of Open Access Journals (Sweden)

    Steven Verheyen

    Full Text Available When asked to indicate which items from a set of candidates belong to a particular natural language category inter-individual differences occur: Individuals disagree which items should be considered category members. The premise of this paper is that these inter-individual differences in semantic categorization reflect both ambiguity and vagueness. Categorization differences are said to be due to ambiguity when individuals employ different criteria for categorization. For instance, individuals may disagree whether hiking or darts is the better example of sports because they emphasize respectively whether an activity is strenuous and whether rules apply. Categorization differences are said to be due to vagueness when individuals employ different cut-offs for separating members from non-members. For instance, the decision to include hiking in the sports category or not, may hinge on how strenuous different individuals require sports to be. This claim is supported by the application of a mixture model to categorization data for eight natural language categories. The mixture model can identify latent groups of categorizers who regard different items likely category members (i.e., ambiguity with categorizers within each of the groups differing in their propensity to provide membership responses (i.e., vagueness. The identified subgroups are shown to emphasize different sets of category attributes when making their categorization decisions.

  14. Foaming characteristics of refigerant/lubricant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, D.Y.; Shah, D.O.; Jotshi, C.K.; Bhagwat, S.; Leung, M.; Gregory, A.


    The air-conditioning and refrigeration industry has moved to HFC refrigerants which have zero ozone depletion and low global warming potential due to regulations on CFC and HCFC refrigerants and concerns for the environment. The change in refrigerants has prompted the switch from mineral oil and alkylbenzene lubricants to polyolester-based lubricants. This change has also brought about a desire for lubricant, refrigerant and compressor manufacturers to understand the foaming properties of alternative refrigerant/ lubricant mixtures, as well as the mechanisms which affect these properties. The objectives of this investigation are to experimentally determine the foaming absorption and desorption rates of HFC and blended refrigerants in polyolester lubricant and to define the characteristics of the foam formed when the refrigerant leaves the refrigerant/ lubricant mixture after being exposed to a pressure drop. The refrigerants being examined include baseline refrigerants: CFC-12 (R-12) and HCFC-22 (R-22); alternative refrigerants: HFC-32 (R-32), R-125, R-134a, and R-143a; and blended refrigerants: R-404A, R-407C, and R-410A. The baseline refrigerants are tested with ISO 32 (Witco 3GS) and ISO 68 (4GS) mineral oils while the alternative and blended refrigerants are tested with two ISO 68 polyolesters (Witco SL68 and ICI RL68H).

  15. Thermodynamics of organic mixtures containing amines

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan Antonio [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain)]. E-mail:; Mozo, Ismael [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain); Fuente, Isaias Garcia de la [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain); Cobos, Jose Carlos [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain)


    Binary mixtures containing pyridine (PY), or 2-methylpyridine (2MPY) or 3-methylpyridine (3MPY) or 4-methylpyridine (4MPY) and an organic solvent as benzene, toluene, alkane, or 1-alkanol are investigated in the framework of DISQUAC. The corresponding interaction parameters are reported. The model describes accurately a whole set of thermodynamic properties: vapor-liquid equilibria (VLE), liquid-liquid equilibria (LLE), solid-liquid equilibria (SLE), molar excess Gibbs energies (G{sup E}), molar excess enthalpies (H{sup E}), molar excess heat capacities at constant pressure (C{sub P}{sup E}) and the concentration-concentration structure factor (S{sub CC}(0)). It is remarkable that DISQUAC correctly predicts the W-shaped curve of the C{sub P}{sup E} of the pyridine + n-hexadecane system. The model can be applied successfully to mixtures with strong positive or negative deviations from the Raoult's law. DISQUAC improves the theoretical results from UNIFAC (Dortmund version). The replacement of pyridine by a methylpyridine leads to a weakening of the amine-amine interactions, ascribed to the steric effect caused by the methyl group attached to the aromatic ring. This explains that for a given solvent (alkane, 1-alkanol) H{sup E}(pyridine)>H{sup E}(methylpyridine)

  16. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures (United States)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.


    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  17. Carbon Stars

    Indian Academy of Sciences (India)

    T. Lloyd Evans


    In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  18. Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress


    Full Text Available Initiated by the first single-walled carbon nanotube (SWCNT transistors [1,2], and reinvigorated with the isolation of graphene [3], the field of carbon-based nanoscale electronic devices and components (Carbon Nanoelectronics for short has developed at a blistering pace [4]. Comprising a vast number of scientists and engineers that span materials science, physics, chemistry, and electronics, this field seeks to provide an evolutionary transition path to address the fundamental scaling limitations of silicon CMOS [5]. Concurrently, researchers are actively investigating the use of carbon nanomaterials in applications including back-end interconnects, high-speed optoelectronic applications [6], spin-transport [7], spin tunnel barrier [8], flexible electronics, and many more.

  19. Engineering properties of sintered waste sludge as lightweight aggregate in a densified concrete mixture

    Institute of Scientific and Technical Information of China (English)



    The global trend towards carbon reduction,energy conservation,and sustainable use of resources has led to an increased focus on the use of waste sludge in construction.We used waste sludge from a reservoir to produce high-strength sintered lightweight aggregate,and then used the densified mixture design algorithm to create high-performance concrete from the sintered aggregate with only small amounts of mixing water and cement.Ultrasonic,electrical resistance and concrete strength efficiency tests were perfo...

  20. Evaluating Pt-Ru/C mixtures as ethanol electro-oxidation catalysers

    Directory of Open Access Journals (Sweden)

    Bibian Alonso Hoyos


    Full Text Available This work studies ethanol electro-catalytic oxidation by cyclic voltametry in sulphuric acid solutions at different temperatures and concetrations, using platinum.rutenium mixtures supported in vitreous carbon as catalysers. The results indicate that ethanol oxidation in theses electrodes is irreversible, has slow kinetics, is controlled by charge transfer and is brought about by a bi-functional reaction mechanism, this being ethanol adsorption on platinum atoms and additional oxidation of specties adsorbed in the presence of platinum and retenium oxides. Experimental results show increased catalytic activity with electrodes, followed by reduced activity for electrodes having a greater quantity of rutenium.

  1. Infiltrated carbon foam composites (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)


    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  2. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, H. [Facultad de Ingenieria, Universidad Catolica de la Santisima Concepcion, Caupolican 491, Concepcion (Chile)]. E-mail:; Zaror, C.A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Correo 3, Casilla 160-C, Concepcion (Chile)


    The combined or sequential use of ozone and activated carbon to treat toxic effluents has increased in recent years. However, little is known about the influence of carbon surface active sites on ozonation of organic adsorbed pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on gaseous ozonation of spent activated carbons. Benzothiazole (BT) was selected as a target organic compound in this study due to its environmental concern. Activated carbons with different chemical surface composition were prepared from a Filtrasorb-400 activated carbon. Pre-treatment included: ozonation, demineralisation, and deoxygenation of activated carbon. Ozonation experiments of BT saturated-activated carbons were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O{sub 2}/O{sub 3} gas mixture (2 dm{sup 3}/min, 5 g O{sub 3}/h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. Results show that extended gaseous ozonation of activated carbon saturated with BT led to the effective destruction of the adsorbate by oxidation reactions. Oxidation of BT adsorbed on activated carbon seemed to occur via both direct reaction with ozone molecules, and by oxygen radical species generated by catalytic ozone decomposition on metallic surface sites.

  3. Adaptive and non-adaptive responses in rats exposed to ozone, alone and in mixtures, with acidic aerosols. (United States)

    Kleinman, M T; Mautz, W J; Bjarnason, S


    Healthy young adult (300 g) Sprague-Dawley rats were exposed for 1-day or 5-day periods, nose only, to purified air (CA) or four different pollutant atmospheres. Pollutant atmospheres included (a) 0.2 ppm ozone; (b) 0.4 ppm O3; (c) a low concentration mixture of ozone and sulfuric acid-coated carbon particles (0.2 ppm, 100 microg/m(3) and 50 microg/m(3), respectively); and (d) a high-concentration O3 and sulfuric acid-coated carbon particle mixture (0.4 ppm, 500 microg/m(3) and 250 microg/m(3), respectively). Following 1-day exposures to the high O3 concentration, significant (pmechanisms that have been reported by us and others after repeated exposures to ozone alone.

  4. Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. (United States)

    Ngo, Phuong-Thi; Rumpel, Cornelia; Ngo, Quoc-Anh; Alexis, Marie; Velásquez Vargas, Gabriela; Mora Gil, Maria de la Luz; Dang, Dinh-Kim; Jouquet, Pascal


    This study characterized the carbon and phosphorus composition of buffalo manure, its compost and vermicompost and investigated if presence of bamboo biochar has an effect on their chemical and biological reactivity. The four substrates were characterized for chemical and biochemical composition and P forms. The biological stability of the four substrates and their mixtures were determined during an incubation experiment. Their chemical reactivity was analyzed after acid dichromate oxidation. Biological reactivity of these substrates was related to their soluble organic matter content, which decreased in the order buffalo manure>compost>vermicompost. Phosphorus was labile in all organic substrates and composting transformed organic P into plant available P. The presence of biochar led to a protection of organic matter against chemical oxidation and changed their susceptibility to biological degradation, suggesting that biochar could increase the carbon sequestration potential of compost, vermicompost and manure, when applied in mixture.

  5. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique


    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  6. Analytical processing of binary mixture information by olfactory bulb glomeruli.

    Directory of Open Access Journals (Sweden)

    Max L Fletcher

    Full Text Available Odors are rarely composed of a single compound, but rather contain a large and complex variety of chemical components. Often, these mixtures are perceived as having unique qualities that can be quite different than the combination of their components. In many cases, a majority of the components of a mixture cannot be individually identified. This synthetic processing of odor information suggests that individual component representations of the mixture must interact somewhere along the olfactory pathway. The anatomical nature of sensory neuron input into segregated glomeruli with the bulb suggests that initial input of odor information into the bulb is analytic. However, a large network of interneurons within the olfactory bulb could allow for mixture interactions via mechanisms such as lateral inhibition. Currently in mammals, it is unclear if postsynaptic mitral/tufted cell glomerular mixture responses reflect the analytical mixture input, or provide the initial basis for synthetic processing with the olfactory system. To address this, olfactory bulb glomerular binary mixture representations were compared to representations of each component using transgenic mice expressing the calcium indicator G-CaMP2 in olfactory bulb mitral/tufted cells. Overall, dorsal surface mixture representations showed little mixture interaction and often appeared as a simple combination of the component representations. Based on this, it is concluded that dorsal surface glomerular mixture representations remain largely analytical with nearly all component information preserved.

  7. Ab initio studies on [bmim][PF6]–CO2 mixture and CO2 clusters

    Indian Academy of Sciences (India)

    B L Bhargava; M Saharay; S Balasubramanian


    Ab initio molecular dynamics studies have been carried out on the room temperature ionic liquid, 1,n-butyl,3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and supercritical carbon dioxide mixture at room temperature and experimental density. Partial radial distribution functions (RDF) for different sites have been computed to see the organization of CO2 molecules around the ionic liquid. Several partial RDFs around the carbon atom of CO2 molecule are compared to find out that the CO2 has specific interaction with a carbon atom present in the imidazolium ring. The CO2 is also found to be very well organized around the terminal carbon atom of the butyl chain. The partial RDFs for the oxygen atoms around oxygen and carbon atoms of the CO2 suggests that there is very good organization of CO2 molecules around themselves even in the [bmim][PF6] – CO2 mixture. The instantaneous quadrupole moment tensor has been calculated for the anion and the cation. The ensemble average of diagonal components of quadrupole moment tensor of the cation have finite values, whereas the off-diagonal components of the cation and both the diagonal and off-diagonal components of the anion have the value of zero with a large standard deviation. The CPMD studies performed on CO2 clusters reveals the greater tendency of the clusters with more CO2 units, to deviate from the linear geometry.

  8. A molecular dynamics simulation study of dynamic process and mesoscopic structure in liquid mixture systems (United States)

    Yang, Peng

    The focus of this dissertation is the Molecular Dynamics (MD) simulation study of two different systems. In thefirst system, we study the dynamic process of graphene exfoliation, particularly graphene dispersion using ionic surfactants (Chapter 2). In the second system, we investigate the mesoscopic structure of binary solute/ionic liquid (IL) mixtures through the comparison between simulations and corresponding experiments (Chapter 3 and 4). In the graphene exfoliation study, we consider two separation mechanisms: changing the interlayer distance and sliding away the relative distance of two single-layer graphene sheets. By calculating the energy barrier as a function of separation (interlayer or sliding-away) distance and performing sodium dodecyl sulfate (SDS) structure analysis around graphene surface in SDS surfactant/water + bilayer graphene mixture systems, we find that the sliding-away mechanism is the dominant, feasible separation process. In this process, the SDS-graphene interaction gradually replaces the graphene-graphene Van der Waals (VdW) interaction, and decreases the energy barrier until almost zero at critical SDS concentration. In solute/IL study, we investigate nonpolar (CS2) and dipolar (CH 3CN) solute/IL mixture systems. MD simulation shows that at low concentrations, IL is nanosegregated into an ionic network and nonpolar domain. It is also found that CS2 molecules tend to be localized into the nonpolar domain, while CH3CN interacts with nonpolar domain as well as with the charged head groups in the ionic network because of its amphiphilicity. At high concentrations, CH3CN molecules eventually disrupt the nanostructural organization. This dissertation is organized in four chapters: (1) introduction to graphene, ionic liquids and the methodology of MD; (2) MD simulation of graphene exfoliation; (3) Nanostructural organization in acetonitrile/IL mixtures; (4) Nanostructural organization in carbon disulfide/IL mixtures; (5) Conclusions. Results

  9. Effect of carbon coating on electrochemical performance of hard carbons as anode materials for lithium-ion batteries (United States)

    Lee, Jong-Hyuk; Lee, Heon-Young; Oh, Seh-Min; Lee, Seo-Jae; Lee, Ki-Young; Lee, Sung-Man

    Surface modification by a soft-carbon coating is used to improve the electrochemical performance of hard carbons as the negative-electrode (anode) material in lithium-ion batteries. The coating process involves simple heat-treatment of a mixture of coal-tar pitch and hard carbon powders at 1000 °C. The carbon coating significantly reduces the reaction of lithium with surface functional groups or absorbed species caused by air exposure. This is attributed to the effective suppression of the diffusion of both air and water into the hard carbon by the soft-carbon coating, and the better resistance of soft carbon to air. As a result, the charge-discharge coulombic efficiency during cycling, as well as during the first cycle, is improved.

  10. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures (United States)

    Lueking, Angela; Narayanan, Deepa


    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  11. Mixture Model and MDSDCA for Textual Data (United States)

    Allouti, Faryel; Nadif, Mohamed; Hoai An, Le Thi; Otjacques, Benoît

    E-mailing has become an essential component of cooperation in business. Consequently, the large number of messages manually produced or automatically generated can rapidly cause information overflow for users. Many research projects have examined this issue but surprisingly few have tackled the problem of the files attached to e-mails that, in many cases, contain a substantial part of the semantics of the message. This paper considers this specific topic and focuses on the problem of clustering and visualization of attached files. Relying on the multinomial mixture model, we used the Classification EM algorithm (CEM) to cluster the set of files, and MDSDCA to visualize the obtained classes of documents. Like the Multidimensional Scaling method, the aim of the MDSDCA algorithm based on the Difference of Convex functions is to optimize the stress criterion. As MDSDCA is iterative, we propose an initialization approach to avoid starting with random values. Experiments are investigated using simulations and textual data.

  12. Derived thermodynamic properties of alcohol + cyclohexylamine mixtures

    Directory of Open Access Journals (Sweden)



    Full Text Available Thermal expansion coefficients, α, excess thermal expansion coefficients, αE, isothermal coefficients of pressure excess molar enthalpy, (∂HE/∂pT,x, partial molar volumes, , partial molar volumes at infinite dilution, , partial excess molar volumes, , and partial excess molar volumes at infinite dilution, , were calculated using experimental densities and excess molar volumes, , data. All calculations are performed for the binary systems of cyclohexylamine with 1-propanol or 1-butanol or 2-butanol or 2-methyl-2-propanol. The Redlich–Kister polynomial and the reduced excess molar volume approach were used in the evaluation of these properties. In addition, the aim of this investigation was to provide a set of various volumetric data in order to asses the influence of temperature, chain length and position of hydroxyl group in the alcohol molecule on the molecular interactions in the examined binary mixtures.

  13. Quantum-coherent mixtures of causal relations

    CERN Document Server

    MacLean, Jean-Philippe W; Spekkens, Robert W; Resch, Kevin J


    Understanding the causal influences that hold among the parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common cause acting on both. Here, we show that it is possible to have a coherent mixture of these two possibilities. We realize such a nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's paradox. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, such as Bell's theorem and the search for quantum gravity, but could also provide a resource for novel quantum technologies.

  14. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail:; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)


    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.


    Institute of Scientific and Technical Information of China (English)

    Ruping Zou; Aibing Yu


    The initial forming of fiber blend to high green density, i.e. the packing of fibrous particles, is important to the reinforcement of composite materials. It is very useful to develop a general predictive method for the optimum selection of particle mixtures for the property control of ceramic or composite products. This paper presents such a mathematical model developed on the basis of the similarity analysis between the spherical and non-spherical particle packings and assesses its applicability to the packing of fibrous particles with discrete and/or continuous length distributions. The results indicate that the model can predict this packing system well and hence provide an effective way to solve various packing problems in the composite materials processing.

  16. Continuum thermodynamics of chemically reacting fluid mixtures

    CERN Document Server

    Bothe, Dieter


    We consider viscous and heat conducting mixtures of molecularly miscible chemical species forming a fluid in which the constituents can undergo chemical reactions. Assuming a common temperature for all components, a first main aim is the derivation of a closed system of partial mass and partial momentum balances plus a common balance of internal energy. This is achieved by careful exploitation of the entropy principle which, in particular, requires appropriate definitions of absolute temperature and chemical potentials based on an adequate definition of thermal energy that excludes diffusive contributions. The latter is crucial in order to obtain a closure framework for the interaction forces between the different species. The interaction forces split into a thermo-mechanical and a chemical part, where the former turns out to be symmetric if binary interactions are assumed. In the non-reactive case, this leads to a system of Navier-Stokes type sub-systems, coupled by interspecies friction forces. For chemical...

  17. Processes assessment in binary mixture plant

    Directory of Open Access Journals (Sweden)

    N. Shankar Ganesh, T. Srinivas


    Full Text Available Binary fluid system has an efficient system of heat recovery compared to a single fluid system due to a better temperature match between hot and cold fluids. There are many applications with binary fluid system i.e. Kalina power generation, vapor absorption refrigeration, combined power and cooling etc. Due to involvement of three properties (pressure, temperature and concentration in the processes evaluation, the solution is complicated compared to a pure substance. The current work simplifies this complex nature of solution and analyzes the basic processes to understand the processes behavior in power generation as well as cooling plants. Kalina power plant consists of regenerator, heat recovery vapor generator, condenser, mixture, separator, turbine, pump and throttling device. In addition to some of these components, the cooling plant consists of absorber which is similar in operation of condenser. The amount of vapor at the separator decreases with an increase in its pressure and temperature.


    Energy Technology Data Exchange (ETDEWEB)



    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  19. Bayesian Estimation of a Mixture Model

    Directory of Open Access Journals (Sweden)

    Ilhem Merah


    Full Text Available We present the properties of a bathtub curve reliability model having both a sufficient adaptability and a minimal number of parameters introduced by Idée and Pierrat (2010. This one is a mixture of a Gamma distribution G(2, (1/θ and a new distribution L(θ. We are interesting by Bayesian estimation of the parameters and survival function of this model with a squared-error loss function and non-informative prior using the approximations of Lindley (1980 and Tierney and Kadane (1986. Using a statistical sample of 60 failure data relative to a technical device, we illustrate the results derived. Based on a simulation study, comparisons are made between these two methods and the maximum likelihood method of this two parameters model.

  20. Critical Phenomena in Liquid-Liquid Mixtures (United States)

    Jacobs, D. T.


    Critical phenomena provide intriguing and essential insight into many issues in condensed matter physics because of the many length scales involved. Large density or concentration fluctuations near a system's critical point effectively mask the identity of the system and produce universal phenomena that have been well studied in simple liquid-vapor and liquid-liquid systems. Such systems have provided useful model systems to test theoretical predictions which can then be extended to more complicated systems. Along various thermodynamic paths, several quantities exhibit a simple power-law dependence close to the critical point. The critical exponents describing these relationships are universal and should depend only on a universality class determined by the order-parameter and spatial dimensionality of the system. Liquid gas, binary fluid mixtures, uniaxial ferromagnetism, polymer-solvent, and protein solutions all belong to the same (Ising model) universality class. The diversity of critical systems that can be described by universal relations indicates that experimental measurements on one system should yield the same information as on another. Our experimental investigations have tested existing theory and also extended universal behavior into new areas. By measuring the coexistence curve, heat capacity, thermal expansion and static light scattering (turbidity) in various liquid-liquid and polymer-solvent systems, we have determined critical exponents and amplitudes that have sometimes confirmed and other times challenged current theory. Recent experiments investigating the heat capacity and light scattering in a liquid-liquid mixture very close to the critical point will be discussed. This research is currently supported by The Petroleum Research Fund and by NASA grant NAG8-1433 with some student support from NSF-DMR 9619406.

  1. Carbon Nanoparticles in Nematic Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    S.Eren San; Mustafa Okutan; O(g)uz K(o)ysal; Yusuf Yer-li


    Fullerene G60,C70,single-walled and multi-walled carbon nanotubes and graphene sheets are doped to nematic liquid crystal(LC)host in the same percentage.Planar samples of these mixtures are prepared and our measurements constitute an optimization basis for possible applications.Fullerene balls are found to be the best compatible material for optical aims and reorientation of LC molecules,while the carbon nanotubes experience some reorientation possibility in LC media and graphene layers are good barriers to preserve reorientation.

  2. Carbon nanotube based transparent conductive thin films. (United States)

    Yu, X; Rajamani, R; Stelson, K A; Cui, T


    Carbon nanotube (CNT) based optically transparent and electrically conductive thin films are fabricated on plastic substrates in this study. Single-walled carbon nanotubes (SWNTs) are chemically treated with a mixture of concentrated sulfuric acid and nitric acid before being dispersed in aqueous surfactant-contained solutions. SWNT thin films are prepared from the stable SWNT solutions using wet coating techniques. The 100 nm thick SWNT thin film exhibits a surface resistivity of 6 kohms/square nanometer with an average transmittance of 88% on the visible light range, which is three times better than the films prepared from the high purity as-received SWNTs.

  3. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures (United States)

    Pekala, Richard W.


    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes.ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  4. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Isaacman, Gabriel [Univ. of California, Berkeley, CA (United States); Wilson, Kevin R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Arthur W. H. [Univ. of California, Berkeley, CA (United States); Worton, David R. [Univ. of California, Berkeley, CA (United States). Aerosol Dynamics Inc., Berkeley, CA (United States); Kimmel, Joel R. [Aerodyne Research, Inc., Billerica, MA (United States); Univ. of Colorado, Boulder, CO (United States). Tofwerk AG, Thun (Switzerland); Nah, Theodora [Univ. of California, Berkeley, CA (United States); Hohaus, Thorsten [Aerodyne Research, Inc., Billerica, MA (United States); Gonin, Marc [Tofwerk AG, Thun (Switzerland); Kroll, Jesse H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Worsnop, Douglas R. [Aerodyne Research, Inc., Billerica, MA (United States); Goldstein, Allen H. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography/mass spectrometry (GC/MS) techniques. In this study, we use vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally “unresolved complex mixture” by separating components by GC retention time, tR, and mass-to-charge ratio, m/z, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved on the basis of tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. Lastly, the classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  5. Nuclear fuel alloys or mixtures and method of making thereof (United States)

    Mariani, Robert Dominick; Porter, Douglas Lloyd


    Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.

  6. Maximum likelihood estimation of finite mixture model for economic data (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir


    Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.

  7. Synthesis of carbon nanotube-anatase TiO₂ sub-micrometer-sized sphere composite photocatalyst for synergistic degradation of gaseous styrene. (United States)

    An, Taicheng; Chen, Jiangyao; Nie, Xin; Li, Guiying; Zhang, Haimin; Liu, Xiaolu; Zhao, Huijun


    The carbon nanotube (CNT)-sub-micrometer-sized anatase TiO₂ sphere composite photocatalysts were synthesized by a facile one-step hydrothermal method using titanium tetrafluoride as titanium source and CNTs as structure regulator. Various technologies including X-ray diffraction, UV-visible absorption spectra, N₂ adsorption-desorption, scanning electron microscopy, and transmission electron microscopy were employed to characterize the structure properties of the prepared composite photocatalysts. The results indicated that the composite photocatalysts consisted of CNTs wrapping around the sub-micrometer-sized anatase TiO₂ spheres with controllable crystal facets and that the aggregated particles with average diameter ranged from 200 to 600 nm. The fabricated composite photocatalysts were used to degrade gaseous styrene in this work. As expected, a synergistic effect that remarkably enhancing the photocatalytic degradation efficiency of gaseous styrene by the prepared composite photocatalysts was observed in comparison with that the degradation efficiency using pure anatase TiO₂ and the adsorption of CNTs. Similar results were also confirmed in the decolorization of liquid methyl orange. Further investigation demonstrated that the synergistic effect in the photocatalytic activity was related to the structure of the sub-micrometer-sized anatase TiO₂ spheres and the significant roles of CNTs in the composite photocatalysts. By controlling the content of CNTs, the content of TiO₂ or the temperature during the hydrothermal synthesis process, anatase TiO₂ spheres with controllable crystallite size and dominant crystal facets such as {001}, {101}, or polycrystalline could be obtained, which was beneficial for the increase in the synergistic effect and further enhancement of the photocatalytic efficiencies.

  8. Statistical mechanics of light elements at high pressure. VIII - Thomas-Fermi-Dirac theory for binary mixtures of H with He, C, and O. [in Jupiter planet interiors (United States)

    Hubbard, W. B.; Macfarlane, J. J.


    We present three-dimensional Thomas-Fermi-Dirac calculations of lattice mixing energies of hydrogen with carbon and oxygen atoms, respectively. The results are used to derive effective interatomic potentials for use in liquid-state mixture calculations. We then use the potentials to derive analytic expressions for binary mixture-free energies and to map out the phase diagrams of mixtures of hydrogen with, respectively, helium, carbon, and oxygen, over a pressure range of about 5 to about 10 to the 3rd Mbar. Within this pressure range, all three of the latter elements are found to have unlimited solubility in metallic hydrogen over a temperature range which lies above their pure-element melting temperatures, and which includes likely interior temperatures in the Jovian planets.

  9. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices (United States)

    Richey, Christina Rae; Gerakines, P.A.


    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  10. Sorting carbon nanotubes for electronics. (United States)

    Martel, Richard


    Because of their unique structure and composition, single-wall carbon nanotubes (SWNTs) are at the interface between molecules and crystalline solids. They also present properties that are ideal for making lightweight, inexpensive, and flexible electronics. The raw material is composed of a heterogeneous mixture of SWNTs that differ in helicity and diameter and, therefore, requires purification and separation. In a series of groundbreaking experiments, a robust process serving this purpose was developed based on SWNTs encapsulated in surfactants and water. Ultracentrifugation in a density gradient combined with surfactant mixtures provided buoyant density differences, enabling enrichment for both diameter and electronic properties. A new paper in this issue explores further the process through the hydrodynamic properties of SWNT-surfactant complexes. The study reveals that we have just begun to uncover the dynamics and properties of nanotube-surfactant interactions and highlights the potential that could be gained from a better understanding of their chemistry. The time scale of integration of carbon nanotubes into electronics applications remains unclear, but the recent developments in sorting out SWNTs paves the way for improving on the properties of network-based SWNTs.

  11. Antiandrogenic activity of phthalate mixtures: Validity of concentration addition

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Crettaz, Pierre; Oberli-Schrämmli, Aurelia [Swiss Federal Office of Public Health, Division Chemical Products, 3003 Bern (Switzerland); Fent, Karl, E-mail: [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Sciences, 8092 Zürich (Switzerland)


    Phthalates and bisphenol A have very widespread use leading to significant exposure of humans. They are suspected to interfere with the endocrine system, including the androgen, estrogen and the thyroid hormone system. Here we analyzed the antiandrogenic activity of six binary, and one ternary mixture of phthalates exhibiting complete antiandrogenic dose–response curves, and binary mixtures of phthalates and bisphenol A at equi-effective concentrations of EC{sub 10}, EC{sub 25} and EC{sub 50} in MDA-kb2 cells. Mixture activity followed the concentration addition (CA) model with a tendency to synergism at high and antagonism at low concentrations. Isoboles and the toxic unit approach (TUA) confirmed the additive to synergistic activity of the binary mixtures BBP + DBP, DBP + DEP and DEP + BPA at high concentrations. Both methods indicate a tendency to antagonism for the EC{sub 10} mixtures BBP + DBP, BBP + DEP and DBP + DEP, and the EC{sub 25} mixture of DBP + BPA. A ternary mixture revealed synergism at the EC{sub 50}, and weak antagonistic activity at the EC{sub 25} level by the TUA. A mixture of five phthalates representing a human urine composition and reflecting exposure to corresponding parent compounds showed no antiandrogenic activity. Our study demonstrates that CA is an appropriate concept to account for mixture effects of antiandrogenic phthalates and bisphenol A. The interaction indicates a departure from additivity to antagonism at low concentrations, probably due to interaction with the androgen receptor and/or cofactors. This study emphasizes that a risk assessment of phthalates should account for mixture effects by applying the CA concept. -- Highlights: ► Antiandrogenic activity of mixtures of 2 and 3 phthalates are assessed in MDA-kb2 cells. ► Mixture activities followed the concentration addition model. ► A tendency to synergism at high and antagonism at low levels occurred.


    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout


    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  13. Determination of thermal conductivity in foundry mould mixtures

    Directory of Open Access Journals (Sweden)

    G. Solenički


    Full Text Available For a thorough understanding of the behaviour of foundry mould mixtures, a good knowledge of thermal properties of mould materials is needed. Laboratory determination of thermal conductivity of mould mixtures enables a better control over scabbing defects which are a major problem in green sand mould mixtures. A special instrument has been designed for that purpose and it is described in this work.

  14. Dietary relevant mixtures of phytoestrogens inhibit adipocyte differentiation in vitro

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Specht, Ina Olmer; Boberg, Julie


    Phytoestrogens (PEs) are naturally occurring plant components, with the ability to induce biological responses in vertebrates by mimicking or modulating the action of endogenous hormones.Single isoflavones have been shown to affect adipocyte differentiation, but knowledge on the effect of dietary...... as tested for their PPARγ activating abilities. The results showed that mixtures of isoflavonoid parent compounds and metabolites, respectively, a mixture of lignan metabolites, as well as coumestrol concentration-dependently inhibited adipocyte differentiation. Furthermore, a mixture of isoflavonoid parent...

  15. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory. (United States)

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick


    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  16. Carbon Nanotubes Synthesis via Arc Discharge with a Yttria Catalyst


    M. I. Mohammad; Ahmed A. Moosa; J.H. Potgieter; Mustafa K. Ismael


    A facile method is proposed to use a computer controlled Arc discharge gap between graphite electrodes together with an yttria-nickel catalyst to synthesize carbon nanotubes under an Ar-H2 gases mixture atmosphere by applying different DC currents and pressure. This produces carbon nanotubes with decreased diameters and increased length. XRD evidence indicated a shift toward higher crystallinity nanotubes. Yields of the CNTs after purification were also enhanced.

  17. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes (United States)

    Wu, Gang; Zelenay, Piotr


    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  18. Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ho; Kim, Dae Su [Chungbuk National University, Cheongju (Korea, Republic of)


    Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surface-modified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

  19. Mixtures of conditional Gaussian scale mixtures applied to multiscale image representations.

    Directory of Open Access Journals (Sweden)

    Lucas Theis

    Full Text Available We present a probabilistic model for natural images that is based on mixtures of Gaussian scale mixtures and a simple multiscale representation. We show that it is able to generate images with interesting higher-order correlations when trained on natural images or samples from an occlusion-based model. More importantly, our multiscale model allows for a principled evaluation. While it is easy to generate visually appealing images, we demonstrate that our model also yields the best performance reported to date when evaluated with respect to the cross-entropy rate, a measure tightly linked to the average log-likelihood. The ability to quantitatively evaluate our model differentiates it from other multiscale models, for which evaluation of these kinds of measures is usually intractable.

  20. Calculation and Analysis of Mean Opacity of Gold Mixtures

    Institute of Scientific and Technical Information of China (English)

    YAN An-ying; JIANG Ming; CHENG Xin-lu; YANG Xiang-dong


    A screened hydrogenic model for l splitting (SHML) is used to calculate the Rosseland mean opacities of high-Z Au, Ta, Yb, Ho, Gd, Sm, Nd, Sn, Ag plasmas and mixtures of gold and these elements at high temperature (T=200-400eV) and dense (ρ=1g/cm3).From the calculated Rosseland mean opacities of the mixtures, Au-Nd seems to be a better choice than other mixtures.Simultaneously, the reason that the mean opacities of mixture of Au-Sn decrease slightly when T=400eV is analyzed.