WorldWideScience

Sample records for carbon tetrafluoride mixtures

  1. Fragment ion-photon coincidence investigation of carbon tetrafluoride by controlled electron impact

    International Nuclear Information System (INIS)

    Fragment ion-photon coincidence (FIPCO) spectra by 120 eV electron impact on carbon tetrafluoride (CF4) have been observed, in which optical emission in the 200-600 nm region has been detected. Only the CF3+ fragment has been found in the FIPCO spectra, demonstrating that the dissociative double-ionization process producing a pair of CF3+ and F+ is negligible in the correlation with the optical emission. This finding was already known from photon-impact experiments, but such a process was expected to play an important role in the ultraviolet-visible emission by electron impact on CF4. The translational energy distribution of CF3+ has also been estimated on the basis of the high-resolution FIPCO spectra and their Monte Carlo simulation. The magnitude of the mean translational energy of CF3+ has been explained together with earlier results obtained through threshold photoelectron-photoion coincidence experiments by considering the Franck-Condon region in the transition among the neutral ground state of CF4 and its ionic A, C and D states. (author)

  2. Slope and amplitude asymmetry effects on low frequency capacitively coupled carbon tetrafluoride plasmas

    Science.gov (United States)

    Bruneau, B.; Korolov, I.; Lafleur, T.; Gans, T.; O'Connell, D.; Greb, A.; Derzsi, A.; Donkó, Z.; Brandt, S.; Schüngel, E.; Schulze, J.; Johnson, E.; Booth, J.-P.

    2016-04-01

    We report investigations of capacitively coupled carbon tetrafluoride (CF4) plasmas excited with tailored voltage waveforms containing up to five harmonics of a base frequency of 5.5 MHz. The impact of both the slope asymmetry, and the amplitude asymmetry, of these waveforms on the discharge is examined by combining experiments with particle-in-cell simulations. For all conditions studied herein, the discharge is shown to operate in the drift-ambipolar mode, where a comparatively large electric field in the plasma bulk (outside the sheaths) is the main mechanism for electron power absorption leading to ionization. We show that both types of waveform asymmetries strongly influence the ion energy at the electrodes, with the particularity of having the highest ion flux on the electrode where the lowest ion energy is observed. Even at the comparatively high pressure (600 mTorr) and low fundamental frequency of 5.5 MHz used here, tailoring the voltage waveforms is shown to efficiently create an asymmetry of both the ion energy and the ion flux in geometrically symmetric reactors.

  3. Effect of titanium tetrafluoride and amine fluoride treatment combined with carbon dioxide laser irradiation on enamel and dentin erosion

    OpenAIRE

    Wiegand, A.; Magalhães, A C; Navarro, R S; Schmidlin, P R; Rios, D.; Buzalaf, M.A.R.; Attin, T.

    2010-01-01

    OBJECTIVE: This in vitro study aimed to analyze the influence of carbon dioxide (CO(2)) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and amine fluoride (AmF) in protecting enamel and dentin against erosion. METHODS: Bovine enamel and dentin samples were pretreated with carbon dioxide (CO(2)) laser irradiation only (group I), TiF(4) only (1% F, group II), CO(2) laser irradiation before (group III) or through (group IV) TiF(4) application, AmF only (1% F, group V), or CO...

  4. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    Science.gov (United States)

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  5. Silicon Tetrafluoride on Io

    CERN Document Server

    Schaefer, L; Schaefer, Laura

    2005-01-01

    Silicon tetrafluoride (SiF4) is observed in terrestrial volcanic gases and is predicted to be the major F - bearing species in low temperature volcanic gases on Io (Schaefer and Fegley, 2005b). SiF4 gas is also a potential indicator of silica-rich crust on Io. We used F/S ratios in terrestrial and extraterrestrial basalts, and gas/lava enrichment factors for F and S measured at terrestrial volcanoes to calculate equilibrium SiF4/SO2 ratios in volcanic gases on Io. We conclude that SiF4 can be produced at levels comparable to the observed NaCl/SO2 gas ratio. We also considered potential loss processes for SiF4 in volcanic plumes and in Io's atmosphere including ion-molecule reactions, electron chemistry, photochemistry, reactions with the major atmospheric constituents, and condensation. Photochemical destruction (tchem ~ 266 days) and/or condensation as Na2SiF6 (s) appear to be the major sinks for SiF4. We recommend searching for SiF4 with infrared spectroscopy using its 9.7 micron band as done on Earth.

  6. Multiphase carbon and its properties in complex mixtures

    Energy Technology Data Exchange (ETDEWEB)

    van Thiel, M.; Ree, F.H.

    1990-09-01

    We describe some key features of a carbon three-phase equation of state and a high-pressure high temperature mixture model in which it is used. Electronic terms in the carbon model have been investigated with INFERNO (atom in a cell model). The Lindeman criterion for melting is rederived for the anisotropic structure of the graphite lattice. The curvature of the graphite melting line is constrained by the evidence for the positive slope of the diamond melting line. The importance of carbon is apparent from various experiments on shock generated mixtures. The model allows us to estimate the energy of carbon clusters produced in a detonating mixture. A cluster model with specific surface structure is used to predict this energy. 41 refs., 7 figs., 4 tabs.

  7. Standardisation of gas mixtures for estimating carbon monoxide transfer factor.

    OpenAIRE

    Kendrick, A. H.; Laszlo, G.

    1993-01-01

    BACKGROUND--The American Thoracic Society recommends that the inspired concentration used for the estimation of carbon monoxide transfer factor (TLCO) mixture should be 0.25-0.35% carbon monoxide, 10-14% helium, 17-21% oxygen, balance nitrogen. Inspired oxygen influences alveolar oxygen and hence carbon monoxide uptake, such that transfer factor increases by 0.35% per mm Hg decrease in alveolar oxygen. To aid in the standardisation of TLCO either a known inspired oxygen concentration should b...

  8. Molecular dynamics simulations of a lithium/sodium carbonate mixture.

    Science.gov (United States)

    Ottochian, Alistar; Ricca, Chiara; Labat, Frederic; Adamo, Carlo

    2016-03-01

    The diffusion and ionic conductivity of Li x Na1-x CO3 salt mixtures were studied by means of Molecular Dynamics (MD) simulations, using the Janssen and Tissen model (Janssen and Tissen, Mol Simul 5:83-98; 1990). These salts have received particular attention due to their central role in fuel cells technology, and reliable numerical methods that could perform as important interpretative tool of experimental data are thus required but still lacking. The chosen computational model nicely reproduces the main structural behaviour of the pure Li2CO3, Na2CO3 and K2CO3 carbonates, but also of their Li/K and Li/Na mixtures. However, it fails to accurately describe dynamic properties such as activation energies of diffusion and conduction processes, outlining the need to develop more accurate models for the simulation of molten salt carbonates. PMID:26897519

  9. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  10. In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon

    Science.gov (United States)

    Alam, Todd M.; Osborn Popp, Thomas M.

    2016-08-01

    High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.

  11. Phase transition of carbonate solvent mixture solutions at low temperatures

    Science.gov (United States)

    Okumura, Takefumi; Horiba, Tatsuo

    2016-01-01

    The phase transition of carbonate solvent mixture solutions consisting of ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and LiPF6 salt have been studied for improving the low temperature performance of lithium-ion batteries. The Li ion conductivity at 25 °C was maximum at x = 0.3 in a series of 1 M LiPF6 mixed carbonate solvents compositions consisting of ECxDMC0.5-0.5xEMC0.5-0.5x (x = 0 to 0.6), while the maximum tended to shift to x = 0.2 as the temperature lowered. The differential scanning calorimetry results showed that the freezing temperature depressions of EC in the 1 M LiPF6 solution were larger than those of the DMC or EMC. The chemical shift of 7Li nuclear magnetic resonance changed from a constant to increasing at around x = 0.3, which could be reasonably understood by focusing on the change in solvation energy calculated using Born equation. However, in the region of a high EC concentration of over x = 0.3 (EC/LiPF6 > 4) in the 1 M LiPF6 solution, the free EC from the solvation to the lithium ions seems to reduce the freezing temperature depression of the EC, and thus, decreases the ionic conductivity of the solution at low temperatures, due to the EC freezing.

  12. Crystallization of Carbon Oxygen Mixtures in White Dwarf Stars

    CERN Document Server

    Horowitz, C J; Berry, D K

    2010-01-01

    We determine the phase diagram for dense carbon/ oxygen mixtures in White Dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the $^{12}$C($\\alpha,\\gamma$)$^{16}$O reaction to S_{300} <= 170 keV barns.

  13. Catalytic Formation of Propylene Carbonate from Supercritical Carbon Dioxide/Propylene Oxide Mixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylammon-ium bromide (n-Bu4NBr) as catalyst. The high rate of reaction was attributed to rapid diffusion and the high miscibility of propylene oxide in SC-CO2 under employed conditions. Various reaction periods present different formation rate of propylene carbonate, mainly due to the existence of phase change during the reaction. The experimental results demonstrate that SC-CO2 could be used as not only an environmentally benign solvent but also a carbon precursor in synthesis.

  14. Critical temperatures and pressures of reacting mixture in synthesis of dimethyl carbonate with methanol and carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Xing Cui Guo; Zhang Feng Qin; Guo Fu Wang; Jian Guo Wang

    2008-01-01

    Critical temperatures and pressures of nominal reacting mixture in synthesis of dimethyl carbonate (DMC)from methanol and carbon dioxide(quaternary mixture of carbon dioxide+methanol+water+DMC)were measured using a high-pressure view cell.The results suggested that the critical properties of the reacting mixture depended on the reaction extent as well as its initial composition(initial ratio of carbon dioxide to methanol).Such information is essential for determining the reaction conditions when one intends to carry out the synthesis of DMC with CO2 and methanol under supercritical conditions.

  15. Development of a new gas sensor for binary mixtures based on the permselectivity of polymeric membranes. Application to carbon dioxide/methane and carbon dioxide/helium mixtures

    OpenAIRE

    Rosa Rego; Nídia Caetano; Adélio Mendes

    2004-01-01

    Membrane-based gas sensors were developed and used for determining the composition on bi-component mixtures in the 0100% range, such as oxygen/nitrogen and carbon dioxide/methane (biogas). These sensors are low cost and are aimed at a low/medium precision market.The paper describes the use of this sensor for two gas mixtures: carbon dioxide/methane and carbon dioxide/helium. The membranes used are poly(dimethylsiloxane) (PDMS) and Teflon-AF hollow fibers. The response curves for both sensors ...

  16. Mixture

    Directory of Open Access Journals (Sweden)

    Silva-Aguilar Martín

    2011-01-01

    Full Text Available Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  17. Dielectric constants of binary mixtures of propylene carbonate with dimethyl carbonate and ethylene carbonate from molecular dynamics simulation: comparison between non-polarizable and polarizable force fields

    Science.gov (United States)

    Lee, Sanghun; Park, Sung Soo

    2013-01-01

    Using non-polarizable and polarizable molecular dynamics simulations, binary mixtures of propylene carbonate + dimethyl carbonate and propylene carbonate + ethylene carbonate with various compositions were investigated. The polarizable model produces more reasonable estimation of dielectric constants than the non-polarizable model; however, combining the electronic continuum model with the non-polarizable MD improves the comparison between the two models. Fair agreement was found between the results from these simulations and available experimental data. In addition, for a better understanding of the mixing behaviour, the excess dielectric constants over the entire composition were calculated. By comparison of the two mixtures in various mole fractions, distinctive mixing behaviours of propylene carbonate + dimethyl carbonate (poorly symmetric mixture) and propylene carbonate + ethylene carbonate (highly symmetric mixture) were observed.

  18. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  19. Viscosity prediction of carbon dioxide plus hydrocarbon mixtures using the friction theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2002-01-01

    The general one-parameter f-theory model has been used in conjunction with the SRK and the PR EOS to predict the viscosity of well-defined carbon dioxide + hydrocarbon mixtures. The predicted viscosities are within the uncertainty appropriate for most industrial applications. Although the studied...... mixtures develop may have a direct influence on the performance of the viscosity modeling and prediction....

  20. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  1. Monte-Carlo simulations of methane/carbon dioxide and ethane/carbon dioxide mixture adsorption in zeolites and comparison with matrix treatment of statistical mechanical lattice model

    Science.gov (United States)

    Dunne, Lawrence J.; Furgani, Akrem; Jalili, Sayed; Manos, George

    2009-05-01

    Adsorption isotherms have been computed by Monte-Carlo simulation for methane/carbon dioxide and ethane/carbon dioxide mixtures adsorbed in the zeolite silicalite. These isotherms show remarkable differences with the ethane/carbon dioxide mixtures displaying strong adsorption preference reversal at high coverage. To explain the differences in the Monte-Carlo mixture isotherms an exact matrix calculation of the statistical mechanics of a lattice model of mixture adsorption in zeolites has been made. The lattice model reproduces the essential features of the Monte-Carlo isotherms, enabling us to understand the differing adsorption behaviour of methane/carbon dioxide and ethane/carbon dioxide mixtures in zeolites.

  2. Therapeutic effect of carbonate buffer mixture on gastrointestinal atony in cattle

    Institute of Scientific and Technical Information of China (English)

    Yu Yi Li; Nai Sheng Zhang; Ze Wang; Zi Jun Yang

    2000-01-01

    AIM To substantiate the therapeutic effects of carbonate buffer mixture on naturally occurringgastrointestinal atony in cattle.METHODS Therapeutic effects of carbonate buffer mixture (Na2CO350 g, NaHCO3420 g, KCI 20 g, NaC1100 g, water 10 L) were observed in 120 cases of gastrointestinal atony including forestomach atony, rumenimpaction, rumen acidosis, omasum impaction and intestinal constipation. Judgement of curative effects ascure: after treated, the cases become clinically normal in general conditions, appetite, rumination, ruminalperistalsis and defecation; uncure: after giving two doses, the gasto-intestinal atony has not been eliminated.RESULTS Average cure rate of carbonate buffer mixture on above-mentioned diseases were 95%, andaverage dose was 1.4±0.5.CONCLUSION Being a new approach for treatment of gastrointestinal atony in ruminants, the carbonatebuffer mixture can eliminate the gastrointestinal atony originated from the over acidity in gastrointestinalcanal.

  3. Engineering analysis for disposal of depleted uranium tetrafluoride (UF4)

    International Nuclear Information System (INIS)

    This report presents and evaluates options for disposing of depleted uranium in the chemical form of uranium tetrafluoride (UF4). Two depleted uranium inventories are considered. One results from the original U.S. Department of Energy (DOE) inventory of 560,000 metric tons (te) of depleted uranium hexafluoride (UF6); the other inventory is the original DOE inventory augmented by 145,000 te of depleted UF6 from the United States Enrichment Corporation. Preconceptual designs are included for three disposal options: disposal in a vault, disposal in an engineered trench, and disposal in a deep mine cavity. The disposal container is taken to be either a 30-gallon drum or a 55-gallon drum. Descriptions of the facilities associated with the three disposal options are provided. Staffing estimates for the construction and operation of the facilities are also provided. Wastes and emissions from the facilities during construction, operation, and maintenance have been estimated. Parametric studies have also been performed on the basis of 25% and 50% of the original inventory

  4. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    Science.gov (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level. PMID:26915200

  5. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    Science.gov (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  6. Investigation of Binary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide and Ethylene Carbonate

    OpenAIRE

    Hofmann, A.; Migeot, M.; Hanemann, T.

    2016-01-01

    Temperature dependent viscosity, conductivity, and density data of binary mixtures containing ethylene carbonate (EC) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide (EMIM-TFSA) were determined at atmospheric pressure in a wide temperature range of (20 to 120) °C. Additionally, differential scanning calorimetry (DSC) measurements were performed from (−120 to +100) °C to characterize phase behavior of the mixtures. On the basis of the experimental data it is demonstrated t...

  7. Fuels by Waste Plastics Using Activated Carbon, MCM-41, HZSM-5 and Their Mixture

    Directory of Open Access Journals (Sweden)

    Miskolczi Norbert

    2016-01-01

    Full Text Available Waste material was pyrolyzed in a horizontal tubular reactor at 530-540°C using different catalysts, such as activated carbon, MCM-41, HZSM-5 and their mixtures. Products were investigated by gas-chromatography, EDXRFS and standardized methods. Catalysts significantly affected the yields of volatiles; e.g. HZSM-5 catalyst increased especially the yield of gaseous hydrocarbons, while MCM-41 catalyst was responsible for increasing the pyrolysis oil yield. Synergistic effects were found using mixtures of different catalysts. Furthermore the catalysts modified the main carbon frame of the products. Pyrolysis oil obtained over HZSM-5 catalyst contained large amounts of aromatics, while MCM-41 catalyst mainly isomerized the carbon frame. Regarding contaminants it was concluded, that the sulphur content could be significantly decreased by activated carbon, however it had only a slight effect to the other properties of the products.

  8. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Cuiqin [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Julin, E-mail: julinwang@126.com [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Tao [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2014-12-01

    Graphical abstract: - Highlights: • COOH-CNTs can react with sizing agent, and the optimum reaction ratio was 1:20. • Carbon fibers were dipped into the mixture bath of CNTs and sizing agent. • SEM results indicate that fibers surfaces were coated with CNTs and sizing agent. • ILSS was increased by 67.01% for the composites after the mixture coating process. • Single fibers tensile strength was maintained after the deposited process. - Abstract: The effects of deposition to carbon fibers surfaces with mixture of functionalized multi-walled carbon fibers (MWCNTs) and sizing agent were investigated. Relationships between CNTs and sizing agent were studied with Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS) and Ubbelohde viscometer. The results revealed that CNTs could react with sizing agent at 120 °C, and optimal reaction occurs when mass ratio was about 1:20. Then, carbon fibers were immersed in mixed aqueous suspension of CNTs and sizing agent with the above ratio dispersed by ultrasonication. According to scanning electron microscope (SEM) observations, fibers surfaces were coated with CNTs and sizing agent. The static contact angle tests indicated wetting performance between fibers and epoxy resin were improved after deposited procedures. Interlaminar shear strength was increased by 67.01% for fibers/epoxy resin composites after mixture deposited process. Moreover, the tensile strength of single fibers after depositing showed a slightly increase compared with that of fibers without depositing layer.

  9. Extended XG Equation for the Prediction of Adsorption Equilibrium of Vapor Mixture on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    谢自立; 敦坤敏; 吴菊芳; 袁存禾

    2003-01-01

    The XG equation, which is developed by us previously for describing the adsorption equilibrium of pure vapor on activated carbon, is extended to multi-component system. Verified by experimental data, the extended XG equation was found to be more successful in predicting the adsorption equilibrium of vapor mixture on activated carbon than the extended Langmuir equation, the extended BET equation and the ideal adsorbed solution theory (IAST).

  10. Glycerol and glycerol carbonate as ultraviscous solvents for mixture analysis by NMR

    Science.gov (United States)

    Lameiras, Pedro; Boudesocque, Leslie; Mouloungui, Zéphirin; Renault, Jean-Hugues; Wieruszeski, Jean-Michel; Lippens, Guy; Nuzillard, Jean-Marc

    2011-09-01

    NMR of weakly polar analytes in an apolar ultraviscous solvent has recently been proposed for mixture analysis as a pertinent alternative to the DOSY experiment. The present article reports the first use of glycerol and glycerol carbonate as polar solvents for the NMR analysis of a model mixture of dipeptides. This work demonstrates the high potentiality of these solvents for the analysis of mixtures made of polar and potentially bioactive compounds. Medium-sized molecules slowly reorient in glycerol and glycerol carbonate under particular temperature conditions, so that solute resonances may show spin diffusion in NOESY spectra, thus opening the way to mixture analysis. Glycerol and glycerol carbonate have turned out to be ultraviscous solvents of choice for the individualization of four structurally close mixed dipeptides: Leu-Val, Leu-Tyr, Gly-Tyr and Ala-Tyr by means of 1D and 2D NOESY experiments. Selective sample excitation and signal detection were implemented to eliminate the intense proton signals of the non-deuterated solvents. Moreover, the recording of a multiplet selective 2D NOESY-TOCSY has shown that the analytical power of NMR in highly viscous solvents is not limited to the extraction of mixture component 1D subspectra but may also yield some supplementary information about atom connectivity within components.

  11. Increased plant carbon translocation linked to overyielding in grassland species mixtures

    NARCIS (Netherlands)

    Deyn, de G.B.; Quirk, H.; Oakley, S.; Ostle, N.J.; Bardgett, R.D.

    2012-01-01

    Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and det

  12. The Properties of the Carbonated Brick Made of Steel Slag-slaked Lime Mixture

    Institute of Scientific and Technical Information of China (English)

    CAO Weida; YANG Quanbing

    2015-01-01

    The properties of the carbonated brick made of steel slag-slaked lime mixture such as strength, drying shrinkage, water absorption and soundness were mainly investigated. The experimental results indicate that, after carbonation, the strength of the brick increases, its drying shrinkage reduces, and its soundness becomes eligible. The optimal slaked lime/steel slag (SL/SS) ratio for the carbonated brick is 0.2 and the as-prepared brick meets the requirements of the Chinese standard for MU20-grade building bricks, additionally, it also demonstrates prominent environmental benefits. The XRD and pore structure analyses indicate that the excellent properties of this carbonated brick are attributed to the formation of carbonate crystals and the dense structure due to the carbonation.

  13. Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient

    Science.gov (United States)

    Zheng, Jie; Lennon, Erin M.; Tsao, Heng-Kwong; Sheng, Yu-Jane; Jiang, Shaoyi

    2005-06-01

    In this work, we report a dual-control-volume grand canonical molecular dynamics simulation study of the transport of a water and methanol mixture under a fixed concentration gradient through nanotubes of various diameters and surface chemistries. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is intermediate between nonpolar and strongly polar molecules. Carboxyl acid (-COOH) groups are anchored onto the inner wall of a carbon nanotube to alter the hydrophobic surface into a hydrophilic one. Results show that the transport of the mixture through hydrophilic tubes is faster than through hydrophobic nanotubes although the diffusion of the mixture is slower inside hydrophilic than hydrophobic pores due to a hydrogen network. Thus, the transport of the liquid mixture through the nanotubes is controlled by the pore entrance effect for which hydrogen bonding plays an important role.

  14. Effect of titanium tetrafluoride, amine fluoride and fluoride varnish on enamel erosion in vitro

    NARCIS (Netherlands)

    Vieira, A; Ruben, JL; Huysmans, MCDNJM

    2005-01-01

    This study aimed at evaluating the effect of 1 and 4% titanium tetrafluoride (TiF4) gels, amine fluoride (AmF) 1 and 0.25% and a fluoride varnish (FP) on the prevention of dental erosion. Two experimental groups served as controls, one with no pretreatment and another one pre-treated with a fluoride

  15. Carbon nanofibers synthesized by pyrolysis of chloroform and ethanol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wang-Hua [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China); Li, Yuan-Yao, E-mail: chmyyl@ccu.edu.tw [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China); Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China); Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi, 62102, Taiwan (China)

    2015-08-01

    Platelet graphite nanofibers (PGNFs) and turbostratic carbon nanofibers (TSCNFs) were synthesized by the pyrolysis of 3 and 10 vol% chloroform in ethanol, respectively, in the presence of Ni catalyst at 700 °C. Auger electron spectrometry analysis reveals that the participation of chloroform in the synthesis led to Ni–Cl bonding on the surface of the catalysts, resulting in a relatively poor crystalline layer and a coarse surface. Furthermore, the Ni–Cl compound affected the melting point and mobility of Ni, changing the morphology and geometrical shape of Ni particles. A low amount of chlorine in the catalyst led to the formation of smaller catalyst particles with a flat surface, resulting in graphene nanosheets stacked perpendicular to the fiber axis, which became PGNFs. In contrast, a high amount of chlorine in the catalyst led to the aggregation of the catalyst and thus the formation of large catalyst particles with a rough surface, resulting in the random stacking of graphene nanosheets, which became TSCNFs. The participation of chlorine was found to be important in the synthesis of the PGNFs and TSCNFs. - Graphical abstract: Display Omitted - Highlights: • The morphology of CNFs changed while different amount of CHCl{sub 3} presented. • The interaction of Ni and Cl changed the geometry and morphology of catalysts. • The structure of CNFs formed attributed to the surface morphology of catalysts. • PGNFs and TSCNFs were perpendicular and random stacking of graphene.

  16. Reduction of carbon monoxide emissions in burning processes of gaseous fuel mixtures

    International Nuclear Information System (INIS)

    The carbon monoxide produced in the combustion of gaseous fuel mixtures of low hydrocarbon-air content represents a transition component of high risk for living organisms. The limit of admissible concentration of carbon monoxide in the atmosphere is 50 ppm. The paper presents a method of reduction of monoxide carbon present in the combustion emissions which can be can achieved by means of the chemical reaction CO+OH -> H + CO2. The hydroxyl radical can be obtained either by thermic decomposition or by hydrogen injection. (author). 3 figs., 4 refs

  17. CFD Simulation for Separation of Carbon Dioxide-Methane Mixture by Pressure Swing Adsorption

    OpenAIRE

    K. Rambabu; Muruganandam, L.; Velu, S.

    2014-01-01

    A developing technology for gas separations is pressure swing adsorption, which has been proven to be more economical and energy efficient compared to other separation methods like cryogenic distillation and membrane separation. A pressure swing adsorption (PSA) column, with carbon dioxide-methane as feed mixture and 6-FDA based polyimides as the adsorbent, was modeled and simulated in this work. Ansys Fluent 12.1, along with supplementary user defined functions, was used to develop a 2D tran...

  18. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  19. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  20. Ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotube mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, Alexander A., E-mail: kozulyn@ftf.tsu.ru; Vorozhtsov, Sergey A., E-mail: vorn1985@gmail.com; Kulkov, Sergey S.; Kulkov, Sergey N. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Teipel, U. [Georg Simon Ohm University of Applied Sciences, Nuremberg (Germany)

    2015-10-27

    Comprehensive investigations of aluminum nanopowders, multi-walled carbon nanotubes, and aluminum mixtures with multi-walled carbon nanotubes subjected to ultrasonic deagglomeration in a liquid medium were performed, using microstructural, X-ray diffraction, thermogravimetric, and calorimetric analyses, and specific surface area measurements. The regime of ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotubes in a liquid medium is described, during which the division of large agglomerates and creation of homogeneous distribution of mixtures components in the volume takes place. It was determined that ultrasonic treatment influences the morphology and crystalline structure of investigated mixtures, contributes to the appearance of X-ray amorphous phase, decreases the specific surface area of the aluminum nanopowder from 13 to 12 m{sup 2}/g, and increases the pore volume and average size from 0.04 to 0.06 cm{sup 3}/g and from 12 to 19 nm, respectively. The size of coherently-diffracting domain was determined by the X-ray diffraction analysis is close to that estimated from the specific surface area and corresponds to average crystallites size in the materials under study.

  1. Equation of state for partially ionized carbon and oxygen mixtures at high temperatures

    CERN Document Server

    Massacrier, G; Chabrier, G

    2011-01-01

    The equation of state (EOS) for partially ionized carbon, oxygen, and carbon-oxygen mixtures at temperatures 3\\times10^5 K <~ T <~ 3\\times10^6 K is calculated over a wide range of densities, using the method of free energy minimization in the framework of the chemical picture of plasmas. The free energy model is an improved extension of our model previously developed for pure carbon (Phys. Rev. E, 72, 046402; arXiv:physics/0510006). The internal partition functions of bound species are calculated by a self-consistent treatment of each ionization stage in the plasma environment taking into account pressure ionization. The long-range Coulomb interactions between ions and screening of the ions by free electrons are included using our previously published analytical model, recently improved, in particular for the case of mixtures. We also propose a simple but accurate method of calculation of the EOS of partially ionized binary mixtures based on detailed ionization balance calculations for pure substances.

  2. Ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotube mixtures

    International Nuclear Information System (INIS)

    Comprehensive investigations of aluminum nanopowders, multi-walled carbon nanotubes, and aluminum mixtures with multi-walled carbon nanotubes subjected to ultrasonic deagglomeration in a liquid medium were performed, using microstructural, X-ray diffraction, thermogravimetric, and calorimetric analyses, and specific surface area measurements. The regime of ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotubes in a liquid medium is described, during which the division of large agglomerates and creation of homogeneous distribution of mixtures components in the volume takes place. It was determined that ultrasonic treatment influences the morphology and crystalline structure of investigated mixtures, contributes to the appearance of X-ray amorphous phase, decreases the specific surface area of the aluminum nanopowder from 13 to 12 m2/g, and increases the pore volume and average size from 0.04 to 0.06 cm3/g and from 12 to 19 nm, respectively. The size of coherently-diffracting domain was determined by the X-ray diffraction analysis is close to that estimated from the specific surface area and corresponds to average crystallites size in the materials under study

  3. Measurements of mixtures with carbon dioxide under supercritical conditions using commercial high pressure equipment

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luciana L.P.R. de; Rutledge, Luis Augusto Medeiros; Moreno, Eesteban L.; Hovell, Ian; Rajagopal, Krishnaswamy [Universidade Federal do Rio de Janeiro (LATCA-EQ-UFRJ), RJ (Brazil). Escola de Quimica. Lab. de Termodinamica e Cinetica Aplicada

    2012-07-01

    There is a growing interest in studying physical properties of binary and multicomponent fluid mixtures with supercritical carbon dioxide (CO{sub 2}) over an extended range of temperature and pressure. The estimation of properties such as density, viscosity, saturation pressure, compressibility, solubility and surface tension of mixtures is important in design, operation and control as well as optimization of chemical processes especially in extractions, separations, catalytic and enzymatic reactions. The phase behaviour of binary and multicomponent mixtures with supercritical CO{sub 2} is also important in the production and refining of petroleum where mixtures of paraffin, naphthene and aromatics with supercritical fluids are often encountered. Petroleum fluids can present a complex phase behaviour in the presence of CO{sub 2}, where two-phase (VLE and LLE) and three phase regions (VLLE) might occur within ranges of supercritical conditions of temperature and pressure. The objective of this study is to develop an experimental methodology for measuring the phase behaviour of mixtures containing CO{sub 2} in supercritical regions, using commercial high-pressure equipment. (author)

  4. Adsorption and desorption of mixtures of organic vapors on beaded activated carbon.

    Science.gov (United States)

    Wang, Haiyan; Jahandar Lashaki, Masoud; Fayaz, Mohammadreza; Hashisho, Zaher; Philips, John H; Anderson, James E; Nichols, Mark

    2012-08-01

    In this study, adsorption and desorption of mixtures of organic compounds commonly emitted from automotive painting operations were experimentally studied. A mixture of two alkanes and a mixture of eight organic compounds were adsorbed onto beaded activated carbon (BAC) and then thermally desorbed under nitrogen. Following both adsorption and regeneration, samples of the BAC were chemically extracted. Gas chromatography-mass spectrometry (GC-MS) was used to quantify the compounds in the adsorption and desorption gas streams and in the BAC extracts. In general, for both adsorbate mixtures, competitive adsorption resulted in displacing low boiling point compounds by high boiling point compounds during adsorption. In addition to boiling point, adsorbate structure and functionality affected adsorption dynamics. High boiling point compounds such as n-decane and 2,2-dimethylpropylbenzene were not completely desorbed after three hours regeneration at 288 °C indicating that these two compounds contributed to heel accumulation on the BAC. Additional compounds not present in the mixtures were detected in the extract of regenerated BAC possibly due to decomposition or other reactions during regeneration. Closure analysis based on breakthrough curves, solvent extraction of BAC and mass balance on the reactor provided consistent results of the amount of adsorbates on the BAC after adsorption and/or regeneration. PMID:22742925

  5. Mixtures of Steel-Making Slag and Carbons as Catalyst for Microwave-Assisted Dry Reforming of CH4

    Institute of Scientific and Technical Information of China (English)

    Jose M. BERMUDEZ; Beatriz FIDALGO; Ana ARENILLAS; J. Angel MENENDEZ

    2012-01-01

    The use of steel-making slag as catalysts for microwave-assisted dry reforming of CH4 was studied.Two carbon materials (an activated carbon and a metallurgical coke),mixtures of the carbon materials and Fe-rich slag,and mixtures of the carbon materials and Ni/Al2O3 were tested as catalysts.The mixtures of slag with carbons gave rise to higher and steadier conversions than those achieved over the carbon materials alone.In addition,the use of the metallurgical coke mixed with metal-rich catalysts gave rise to remarkable results.Thus,no CH4 and CO2 conversions were achieved when coke was used alone,whereas high conversions were obtained when it was mixed with the metal-rich catalysts.

  6. Thermodynamic promotion of carbon dioxide-clathrate hydrate formation by tetrahydrofuran, cyclopentane and their mixtures

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens;

    2013-01-01

    Gas clathrate hydrate dissociation pressures are reported for mixtures of carbon dioxide, water and thermodynamic promoters forming structure II hydrates.Hydrate (H)-aqueous liquid (Lw)-vapour (V) equilibrium pressures for the ternary system composed of water, tetrahydrofuran (THF), and carbon...... dioxide (CO2), with 5.0mole percent THF in the initial aqueous phase, are presented in the temperature range from 283.3K to 285.2K. At 283.3K, the three-phase equilibrium pressure is determined to be 0.61MPa (absolute pressure).Four-phase hydrate (H)-aqueous liquid (Lw)-organic liquid (La)-vapour (V....... It is shown that upon adding THF to the pure aqueous phase to form a 4mass percent solution, the equilibrium pressure of the formed hydrates may be lowered compared to the ternary system of water, cyclopentane and carbon dioxide. © 2013 Elsevier Ltd....

  7. Additional development of large diameter carbon monofilament. [from boron, hydrogen, and methane gas mixture

    Science.gov (United States)

    Jacob, B. A.; Veltri, R. D.

    1974-01-01

    The chemical vapor process for preparing a large diameter carbon-base monofilament from a BCl3, Ch4 and H2 gas mixture with a carbon substrate fiber was studied. The effect of reactor geometry, total gas flows and deposition temperature on the tensile strength of the monofilament were investigated. It was noted that consistent results could only be obtained when the carbon substrate fiber was cleaned. The strength of the monofilament was found to depend on the highest temperature and the temperature profile of the monofilament in the reactor. The strength of monofilament produced in the dc and RF reactors were found to be similar and similar alloy compositions in the monofilament were attained when the same gas ratios were used. The tensile strength of the monofilament at 500 C was found to be 60 to 70% of the room temperature tensile strength. No degradation was noted after exposure to molten aluminum.

  8. Excess Molar Volumes and Viscosities of Binary Mixture of Diethyl Carbonate+Ethanol at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    MA Peisheng; LI Nannan

    2005-01-01

    The purpose of this work was to report excess molar volumes and dynamic viscosities of the binary mixture of diethyl carbonate (DEC)+ethanol. Densities and viscosities of the binary mixture of DEC+ethanol at temperatures 293.15 K-343.15 K and atmospheric pressure were determined over the entire composition range. Densities of the binary mixture of DEC+ethanol were measured by using a vibrating U-shaped sample tube densimeter. Viscosities were determined by using Ubbelohde suspended-level viscometer. Densities are accurate to 1.0×10-5 g·cm-3, and viscosities are reproducible within ±0.003 mPa·s. From these data, excess molar volumes and deviations in viscosity were calculated. Positive excess molar volumes and negative deviations in viscosity for DEC+ethanol system are due to the strong specific interactions.All excess molar vo-lumes and deviations in viscosity fit to the Redlich-Kister polynomial equation.The fitting parameters were presented,and the average deviations and standard deviations were also calculated.The errors of correlation are very small.It proves that it is valuable for estimating densities and viscosities of the binary mixture by the correlated equation.

  9. Experimental study of negative corona discharge in pure carbon dioxide and its mixtures with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Mikoviny, T [Department of Plasma Physics, Comenius University, Mlynska dolina F-2, 84248 Bratislava (Slovakia); Kocan, M [Department of Plasma Physics, Comenius University, Mlynska dolina F-2, 84248 Bratislava (Slovakia); Matejcik, S [Department of Plasma Physics, Comenius University, Mlynska dolina F-2, 84248 Bratislava (Slovakia); Mason, N J [Department of Physics and Astronomy, Centre of Molecular and Optical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Skalny, J D [Department of Plasma Physics, Comenius University, Mlynska dolina F-2, 84248 Bratislava (Slovakia)

    2004-01-07

    The products of a negative corona discharge in both pure CO{sub 2} and mixtures of CO{sub 2} + O{sub 2} have been studied using a coaxial cylindrical electrode geometry with particular emphasis on the production of ozone. The discharge current in pure CO{sub 2} was found to be highly sensitive to the presence of trace concentrations of molecular oxygen and to changes in the flow speed through the discharge. The effect of dissociative electron attachment to ozone on the discharge current was studied by measurements of ozone and CO production. The ozone concentration increases monotonically with increasing content of oxygen in the mixture with carbon dioxide, whereas the CO concentration exhibits a flat maximum for oxygen concentrations of around 4%. A simple kinetic model of the dominant chemical processes is described and compared with the experimental results.

  10. Experimental study of negative corona discharge in pure carbon dioxide and its mixtures with oxygen

    International Nuclear Information System (INIS)

    The products of a negative corona discharge in both pure CO2 and mixtures of CO2 + O2 have been studied using a coaxial cylindrical electrode geometry with particular emphasis on the production of ozone. The discharge current in pure CO2 was found to be highly sensitive to the presence of trace concentrations of molecular oxygen and to changes in the flow speed through the discharge. The effect of dissociative electron attachment to ozone on the discharge current was studied by measurements of ozone and CO production. The ozone concentration increases monotonically with increasing content of oxygen in the mixture with carbon dioxide, whereas the CO concentration exhibits a flat maximum for oxygen concentrations of around 4%. A simple kinetic model of the dominant chemical processes is described and compared with the experimental results

  11. Solubility of Paclitaxel in Mixtures of Dichloromethane and Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    LUO Nin; LU Yingmei; JIANG Yanbin

    2011-01-01

    Phase behavior of paclitaxel in solvent mixtures of dichloromethane and supercritical carbon dioxide was investigated using a supercritical phase monitor.Cloud point pressures were determined as a function of temperature,pressure and paclitaxel content from 313.1 to 343.1K and pressures up to 33.52 MPa.The ternary mixtures exhibit a typical lower critical solution temperature behavior.When paclitaxel content increases,the single-phase region shrinks in size.Three cubic equations of state(Redlich-Kworng,Soave-Redlich-Kwong and Peng-Robinson equation of state) coupled with the van der Waals one-fluid mixing rules were selected to correlate the experimental data.The results indicate that SRK EOS coupled with two binary interaction parameters kij and lij can predict paclitaxel solubility for the best fit of experimental data.

  12. New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution

    CERN Document Server

    Althaus, Leandro G; Isern, Jordi; Córsico, Alejandro H; Bertolami, Marcelo M Miller

    2011-01-01

    Cool white dwarfs are reliable and independent stellar chronometers. The most common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling ages of very cool white dwarfs sensitively depend on the adopted phase diagram of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen mixtures appropriate for white dwarf interiors has been recently obtained using direct molecular dynamics simulations. In this paper, we explore the consequences of this phase diagram in the evolution of cool white dwarfs. To do this we employ a detailed stellar evolutionary code and accurate initial white dwarf configurations, derived from the full evolution of progenitor stars. We use two different phase diagrams, that of Horowitz et al. (2010), which presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993), which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun white dwarf models during the crystallization phase, and we found that the energy released...

  13. Integrated Data Collection Analysis (IDCA) Program - KClO4/Carbon Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-31

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of KClO4 and activated carbon—KClO4/C mixture. This material was selected because of the challenge of performing SSST testing of a mixture of two solids. The mixture was found to be insensitive to impact, friction, and thermal stimulus, and somewhat sensitive to spark discharge. This effort, funded by the Department of Homeland Security (DHS), ultimately will put the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study has the potential to suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. Note, however, the test procedures differ among the laboratories. The results are compared among the laboratories and then compared to historical data from various sources. The testing performers involved for the KClO4/carbon mixture are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to understand how to compare results when these testing variables cannot be made consistent.

  14. Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production.

    Science.gov (United States)

    Zainol, Muzakkir Mohammad; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2015-08-01

    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel.

  15. Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides

    DEFF Research Database (Denmark)

    Gainaru, Catalin; Hecksher, Tina; Olsen, Niels Boye;

    2012-01-01

    Propylene carbonate and a mixture of two secondary amides, N-ethylformamide and Nethylacetamide, are investigated by means of broadband dielectric and mechanical shear spectroscopy. The similarities between the rheological and the dielectric responses of these liquids and of the previously...... investigated tripropylene glycol are discussed within a simple approach that employs an electrical circuit for describing the frequency-dependent behavior of viscous materials. The circuit is equivalent to the Gemant-DiMarzio-Bishop model, but allows for a negative capacitive element. The circuit can be used...

  16. Killing wild geese with carbon dioxide or a mixture of carbon dioxide and argon

    NARCIS (Netherlands)

    Gerritzen, M.A.; Reimert, H.G.M.; Lourens, A.; Bracke, M.B.M.; Verhoeven, M.T.W.

    2013-01-01

    The killing of animals is the subject of societal and political debate. Wild geese are caught and killed on a regular basis for fauna conservation and damage control. Killing geese with carbon dioxide (CO2) is commonly practiced, but not listed in legislation on the protection of flora and fauna, an

  17. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    Science.gov (United States)

    Pekala, Richard W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  18. Laboratory appraisal of organic carbon changes in mixtures made with different inorganic wastes.

    Science.gov (United States)

    Arbestain, M Camps; Ibargoitia, M L; Madinabeitia, Z; Gil, M V; Virgel, S; Morán, A; Pereira, R Calvelo; Macías, F

    2009-12-01

    Mixtures of organic and inorganic wastes were incubated to examine the changes in organic C (OC) contents. An anaerobic sludge and a CaO-treated aerobic sludge, with OC concentrations of 235 and 129 gkg(-1), were used. The inorganic wastes used - referred to as "conditioners" - were shot blasting scrap, fettling, Linz-Donawitz slag, foundry sand (FS), and fly ash from wood bark combustion (FA). The total OC (TOC) and KMnO(4)(-) oxidized OC were determined. DTA-TGA profiles and FTIR spectra were also obtained. Mixtures made with the FS contained significantly lower (P<0.05) amounts of TOC (45 gkg(-1)) than the rest of mixtures, which was attributed to the non-existence of reactive surfaces in the conditioner and the increased aeration induced by this material. Those made with FA contained significantly higher (P<0.05) amounts of TOC (170 gkg(-1)), which was attributed to: (i) the addition of an extra source of C - black carbon (BC) - in the FA, and (ii) the inhibition of mineralization from the compounds present in this conditioner (e.g., amorphous aluminosilicates, BC). The results highlight the importance of the characteristics of the conditioners on the fate of the OM originating from the sludges. PMID:19632821

  19. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran

    2016-03-01

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  20. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride.

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y Mauricio; Vrabec, Jadran

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values. PMID:27036455

  1. Simulation and reference interaction site model theory of methanol and carbon tetrachloride mixtures.

    Science.gov (United States)

    Munaò, G; Costa, D; Saija, F; Caccamo, C

    2010-02-28

    We report molecular dynamics and reference interaction site model (RISM) theory of methanol and carbon tetrachloride mixtures. Our study encompasses the whole concentration range, by including the pure component limits. We majorly focus on an analysis of partial, total, and concentration-concentration structure factors, and examine in detail the k-->0 limits of these functions. Simulation results confirm the tendency of methanol to self-associate with the formation of ring structures in the high dilution regime of this species, in agreement with experimental studies and with previous simulations by other authors. This behavior emerges as strongly related to the high nonideality of the mixture, a quantitative estimate of which is provided in terms of concentration fluctuation correlations, through the structure factors examined. The interaggregate correlation distance is also thereby estimated. Finally, the compressibility of the mixture is found in good agreement with experimental data. The RISM predictions are throughout assessed against simulation; the theory describes better the apolar solvent than the alcohol properties. Self-association of methanol is qualitatively reproduced, though this trend is much less marked in comparison with simulation results.

  2. Transport Properties of Amine/Carbon Dioxide Reactive Mixtures and Implications to Carbon Capture Technologies.

    Science.gov (United States)

    Turgman-Cohen, Salomon; Giannelis, Emmanuel P; Escobedo, Fernando A

    2015-08-19

    The structure and transport properties of physisorbed and chemisorbed CO2 in model polyamine liquids (hexamethylenediamine and diethylenetriamine) are studied via molecular dynamics simulations. Such systems are relevant to CO2 absorption processes where nonaqueous amines are used as absorbents (e.g., when impregnated or grafted onto mesoporous media or misted in the gas phase). It is shown that accounting for the ionic speciation resulting from CO2 chemisorption enabled us to capture the qualitative changes in extent of absorption and fluidity with time that are observed in thermogravimetric experiments. Simulations reveal that high enough concentration of reacted CO2 leads to strong intermolecular ionic interactions and the arrest of molecular translations. The transport properties obtained from the simulations of the ionic speciated mixtures are also used to construct an approximate continuum-level model for the CO2 absorption process that mimics thermogravimetric experiments.

  3. Carbon nanostructures and graphite-coated metal nanostructures obtained by pyrolysis of ruthenocene and ruthenocene–ferrocene mixtures

    Indian Academy of Sciences (India)

    L S Panchakarla; A Govindaraj

    2007-02-01

    Pyrolysis of ruthenocene carried out in an atmosphere of argon or hydrogen is found to give rise to spherical nanoparticles of carbon with diameters in the 10–200 nm range. Pyrolysis of ruthenocene as well as mixtures of ruthenocene and ethylene in hydrogen gives rise to spherical nanoparticles, which contain a high proportion of 3 carbon. Under certain conditions, pyrolysis of ruthenocene gives rise to graphite coated ruthenium nanoparticles as well as worm-like carbon structures. Pyrolysis of mixtures of ruthenocene and ferrocene gives rise to nanoparticles or nanorods of FeRu alloys, the composition depending upon the composition of the original mixture. Nanorods of the Ru and FeRu alloys encapsulated in the carbon nanotubes are also formed in the pyrolysis reaction.

  4. CFD Simulation for Separation of Carbon Dioxide-Methane Mixture by Pressure Swing Adsorption

    Directory of Open Access Journals (Sweden)

    K. Rambabu

    2014-01-01

    Full Text Available A developing technology for gas separations is pressure swing adsorption, which has been proven to be more economical and energy efficient compared to other separation methods like cryogenic distillation and membrane separation. A pressure swing adsorption (PSA column, with carbon dioxide-methane as feed mixture and 6-FDA based polyimides as the adsorbent, was modeled and simulated in this work. Ansys Fluent 12.1, along with supplementary user defined functions, was used to develop a 2D transient Eulerian laminar viscous flow model for the PSA column. The model was validated by comparing the simulated results with established analytical models for PSA. The developed numerical model was used to determine the carbon dioxide concentration in the column as a function of time based on different operating conditions. Effect of various operating parameters like pressure, temperature, and flow rate on the separation efficiency has been studied and reported. Optimization studies were carried out to obtain suitable operating conditions for the feed gases separation. Simulation studies were carried out to determine the separation length required for complete separation of the feed mixture corresponding to different inlet feed concentrations which were entering the column at a given flow rate.

  5. The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Doorn, Stephen [Los Alamos National Laboratory; Atwater, Mark [UNM MECH.ENG.; Leseman, Zayd [UNM MECH.ENG.; Luhrs, Claudia C [UNM ENG.MECH; Diez, Yolanda F [SPAIN; Diaz, Angel M [SPAIN

    2009-01-01

    The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

  6. Carbon nanostructures and graphite-coated metal nanostructures obtained by pyrolysis of ruthenocene and ruthenocene–ferrocene mixtures

    OpenAIRE

    Panchakarla, LS; Govindaraj, A.

    2007-01-01

    Pyrolysis of ruthenocene carried out in an atmosphere of argon or hydrogen is found to give rise to spherical nanoparticles of carbon with diameters in the 10–200 nm range. Pyrolysis of ruthenocene as well as mixtures of ruthenocene and ethylene in hydrogen gives rise to spherical nanoparticles, which contain a high proportion of sp3 carbon. Under certain conditions, pyrolysis of ruthenocene gives rise to graphite coated ruthenium nanoparticles as well as worm-like carbon structures. Pyrolys...

  7. Protection of short-time enamel erosion by different tetrafluoride compounds

    OpenAIRE

    Wiegand, Annette; Laabs, Kolja A; Gressmann, Grit; Roos, Malgorzata; Magalhães, Ana C.; Attin, Thomas

    2008-01-01

    OBJECTIVE: This in vitro study aimed to analyse the protective effect of differently concentrated titanium (TiF(4)), zirconium (ZrF(4)) and hafnium (HfF(4)) tetrafluoride on enamel erosion. METHODS: Polished enamel surfaces of 36 bovine crowns were covered with tape leaving 4 enamel windows each 3mm in diameter exposed. The crowns were randomly assigned to six groups (each n=6) and pretreated with 4% TiF(4), 10% TiF(4), 4% ZrF(4), 10% ZrF(4), 4% HfF(4) or 10% HfF(4) for 4 min (first window), ...

  8. Reduction of uranium hexafluoride to tetrafluoride by using the hydrogen atoms

    Science.gov (United States)

    Aleksandrov, B. P.; Gordon, E. B.; Ivanov, A. V.; Kotov, A. A.; Smirnov, V. E.

    2016-09-01

    We consider the reduction of UF6 to UF4 by chemical reaction with hydrogen atoms originated in the powerful chemical generator. The principal design of such a chemical convertor is described. The results of the mathematical modeling of the thermodynamics and kinetics of the UF6 to UF4 reduction process are analyzed. The few options for the hydrogen atom generator design are proposed. A layout of the experimental setup with the chemical reactor is presented. The high efficiency together with the ability of the process scaling without loss of its efficiency makes this approach to the uranium hexafluoride depletion into tetrafluoride promising for its application in the industry.

  9. Molecular Dynamics Simulations of Carbon Dioxide, Methane, and Their Mixture in Montmorillonite Clay Hydrates

    KAUST Repository

    Kadoura, Ahmad Salim

    2016-05-26

    Molecular dynamics simulations were carried out to study the structural and transport properties of carbon dioxide, methane, and their mixture at 298.15 K in Na-montmorillonite clay in the presence of water. The simulations show that, the self-diffusion coefficients of pure CO2 and CH4 molecules in the interlayers of Na-montmorillonite decrease as their loading increases, possibly because of steric hindrance. The diffusion of CO2 in the interlayers of Na-montmorillonite, at constant loading of CO2, is not significantly affected by CH4 for the investigated CO2/CH4 mixture compositions. We attribute this to the preferential adsorption of CO2 over CH4 in Na-montmorillonite. While the presence of adsorbed CO2 molecules, at constant loading of CH4, very significantly reduces the self-diffusion coefficients of CH4, and relatively larger decrease in those diffusion coefficients are obtained at higher loadings. The preferential adsorption of CO2 molecules to the clay surface screens those possible attractive surface sites for CH4. The competition between screening and steric effects leads to a very slight decrease in the diffusion coefficients of CH4 molecules at low CO2 loadings. The steric hindrance effect, however, becomes much more significant at higher CO2 loadings and the diffusion coefficients of methane molecules significantly decrease. Our simulations also indicate that, similar effects of water on both carbon dioxide and methane, increase with increasing water concentration, at constant loadings of CO2 and CH4 in the interlayers of Na-montmorillonite. Our results could be useful, because of the significance of shale gas exploitation and carbon dioxide storage.

  10. Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures

    International Nuclear Information System (INIS)

    Highlights: ► The solubilities of carbon dioxide in a eutectic mixture of choline chloride and glycerol were measured. ► The pressure was up to 6.3 MPa. ► The temperature studied was (303.15 to 343.15) K. ► The measured data were reported as functions of temperature and pressure. ► The measured data were represented satisfactorily by the applied correlation. - Abstract: In this work, we present new measurements on the solubility of carbon dioxide in a deep eutectic solvent (DES) containing choline chloride and glycerol (1:2 mole ratio) over the temperature range (303.15 to 343.15) K and pressures up to 6.3 MPa. Experimental measurements were carried out in a thermogravimetric microbalance, and the effects of buoyancy on the measurements were accounted for. Results indicated that the solubility of the gas in the solvent increased almost linearly with pressure and decreased with increasing temperature. The dependence of the carbon dioxide solubility in the DES (in molality) on temperature and pressure were accurately represented by an extended Henry’s law model at an average absolute deviation of 1.4%.

  11. Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures

    OpenAIRE

    Furmaniak, Sylwester; KOWALCZYK, PIOTR; Terzyk, Artur P.; Gauden, Piotr A.; Harris , P. J. F.

    2013-01-01

    We have studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry (the number of carbonyl groups) on CO2 capture from its mixtures with CH4 at typical operating conditions for industrial adsorptive separation (298 K and compressed CO2CH4 mixtures). Although both confinement and surface oxidation have an impact on the efficiency of CO2/CH4 adsorptive separation at thermodynamics equilibrium, we show that surface functionalization is the most important factor in ...

  12. Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based Protic Ionic Liquid + propylene carbonate) binary mixture

    OpenAIRE

    Pires, J; Timperman, L.; Jacquemin, J.; A. Balducci; Anouti, M.

    2013-01-01

    Density, ?, viscosity, ?, and conductivity, s, measurements of binary mixtures containing the pyrrolidinium nitrate Protic Ionic Liquid (PIL) and propylene carbonate (PC), are determined at the atmospheric pressure as a function of the temperature from (283.15 to 353.15) K and within the whole composition range. The temperature dependence of both the viscosity and conductivity of each mixture exhibits a non-Arrhenius behaviour, but is correctly fitted by using the Vogel–Tamman–Fulcher (VTF) e...

  13. Preparation of Ammonia Adsorbent by Carbonizing and Activating Mixture of Biomass Material and Hygroscopic Salt

    Institute of Scientific and Technical Information of China (English)

    LONG Zhen; BU Xianbiao; LU Zhenneng; LI Huashan; MA Weibin

    2015-01-01

    We put forward a new and ingenious method for the preparation of a new adsorbent by soaking, carbonizing and activating the mixture of hygroscopic salt and biomass material. The new adsorbent has high porosity, uniform distribution and high content of CaCl2, and exhibits high adsorption performance. The ammonia uptake and specific cooling power (SCP) at 5 min adsorption time can reach as high as 0.19 g•g-1 and 793.9 W•kg-1, respectively. The concept of utilizing the biomass materials and hygroscopic salts as raw materials for the preparation of adsorbents is of practical interest with respect to the potential quantity of biomass materials around the world, indicating that there would be a new market for biomass materials.

  14. Efficiency of ethylene dichloride and carbon tetrachloride mixture for fumigation of important animal feeds

    Directory of Open Access Journals (Sweden)

    H. G. Khalsa

    1964-01-01

    Full Text Available It has been found that animal feeds like crushed barley, crushed gram and wheat bran can be effectively disinfested by fumigation with 3:1 mixture of ethylene dichloride and carbon tetrachloride at a dosage of 2.5 gallons per 1,000 cuft. The lowest average atmospheric temperatures, at which the fumigation for 48 hours and for 72 hours was found effective, were 28.6 and 24.15 degree celcius respectively. It was also found that the order of susceptibility of the three test insects, viz. Tribolium castaneum Herbst, Trogoderma granerium Everts and Latheticus oryzae Watrh and their various stages varied considerably. in all cases, adults and pupae were found to be more susceptible than larvae.

  15. Electroadsorption of acilan blau dye from textile effluents by using activated carbon-perlite mixtures.

    Science.gov (United States)

    Koparal, A S; Yavuz, Y; Bakir Ogütveren, U

    2002-01-01

    The feasibility of the removal of dye stuffs from textile effluents by electroadsorption has been investigated. An activated carbon-perlite mixture with a ratio of 8:1 for bipolarity has been used as the adsorbent. Conventional adsorption experiments have also been conducted for comparison. A bipolar trickle reactor has been used in the electroadsorption experiments. The model wastewater has been prepared by using acilan blau dye. Initial dye concentration, bed height between the electrodes, applied potential, flowrate, and the supporting electrolyte concentration have been examined as the parameters affecting the removal efficiency. A local textile plant effluent has been treated in the optimum values of these parameters obtained from the experimental studies. Adsorption kinetics and the amount of adsorbent required to reach the maximum removal efficiency have also been investigated and mass-transfer coefficients have been calculated for adsorption and electroadsorption. The results showed that a removal efficiency of up to 100% can be achieved with energy consumption values of 1.58 kWh/m3 of wastewater treated. However, energy consumption decreases to 0.09 kWh/m3 if an exit dye concentration of 4.65 mg/L is accepted. It can be concluded from this work that this method combines all of the advantages of the activated-carbon adsorption and electrolytic methods for the removal of dyes from wastewater.

  16. Coordinated spectral and XRD analyses of magnesite-nontronite-forsterite mixtures and implications for carbonates on Mars

    Science.gov (United States)

    Bishop, Janice L.; Perry, Kaysea A.; Darby Dyar, M.; Bristow, Thomas F.; Blake, David F.; Brown, Adrian J.; Peel, Samantha E.

    2013-04-01

    Mineral detection on Mars largely relies on laboratory data of minerals and mineral mixtures. The objective of this study is to provide reflectance spectra in the visible/near-infrared (VNIR) and mid-IR regions, X-ray diffraction (XRD) data and Mössbauer spectra of a suite of carbonate, phyllosilicate and olivine mixtures in order to facilitate identification and characterization of these minerals on Mars. Remote sensing observations indicate that combinations of these minerals are present in ancient rocks on Mars around the Isidis Basin and in Gusev crater. Magnesite, nontronite, and forsterite size fractions spectra of mixtures. Analyses of the NIR band depths near 2.3, 2.5, 3.4, and 4 µm showed clear trends with carbonate abundance, although the data are not linear. Mixtures of magnesite and nontronite exhibited a band near 2.3 µm much closer to that observed for nontronite than that for magnesite. VNIR analyses of the mixtures indicated that a small amount of forsterite in any of the mixtures contributed a large increase in the broad ~1 µm band and, hence, the red slope characteristic of Fe2+-bearing minerals. Mid-IR mixture spectra were dominated by magnesite and forsterite, and nontronite was much more difficult to detect by mid-IR spectra in the mixtures. This could be related to why phyllosilicates are detected in many locations on Mars using data collected by the Compact Reconnaissance Imaging Spectrometer for Mars, but not detected using data collected by the Thermal Emission Spectrometer. Mössbauer spectroscopy is well suited for analyses of Fe2+- and Fe3+-bearing minerals, and modeling of the peak areas gave well-correlated trends for nontronite and forsterite abundances where abundant Fe was present. XRD full-pattern fitting analyses were performed on the magnesite-forsterite series, giving results within 6 wt % of the actual values, with a mean difference between actual and calculated values of 2.4 wt %. This study provides important laboratory

  17. Remediation of Nitrate-contaminated Groundwater by a Mixture of Iron and Activated Carbon

    Science.gov (United States)

    Huang, Guoxin; Liu, Fei; Jin, Aifang; Qin, Xiaopeng

    2010-11-01

    Nitrate contamination in groundwater has become a major environmental and health problem worldwide. The aim of the present study is to remediate groundwater contaminated by nitrate and develop potential reactive materials to be used in PRBs (Permeable Reactive Barriers). A new approach was proposed for abiotic groundwater remediation by reactive materials of iron chips and granular activated carbon particles. Batch tests were conducted and remediation mechanisms were discussed. The results show that nitrate decreases from 86.31 to 33.79 mgṡL-1 under the conditions of near neutral pH and reaction time of 1h. The combination of iron chips and activated carbon particles is cost-effective and suitable for further use as denitrification media in PRBs. Nitrogen species don't change significantly with the further increase in reaction time (>1 h). The iron-activated carbon-water-nitrate system tends to be steady-state. Small amounts of ammonium and nitrite (0.033-0.039 and 0.14-3.54 mgṡL-1, respectively) appear at reaction time from 0 h to 5 h. There is no substantial accumulation of nitrogen products in the system. The removal rate of nitrate only reaches 16.11% by sole iron chips at reaction time of 5 h, while 63.57% by the mixture of iron chips and activated carbon particles. There is significantly synergistic and promotive effect of mixing the two different types of materials on nitrate treatment. Fe/C ratio (1/1.5-1/2.5) doesn't cause dramatically different residual nitrate concentrations (24.09-26.70 mgṡL-1). Nitrate can't be limitlessly decreased with decreasing Fe/C ratio. The concomitant occurrences of chemical reduction, galvanic cell reaction, electrophoretic accumulation, chemical coagulation, and physical adsorption are all responsible for the overall nitrate removal by iron allied with activated carbon. To accurately quantify various nitrogen species, further studies on adsorption mechanisms of nitrite and nitrate are needed.

  18. Synthesis and characterization of poly lactic acid and multiwall carbon nano-tubes mixtures

    Science.gov (United States)

    Kumar LG, Santhosh; del A. Cardona, Rocío; Berríos-Soto, Melvin; Santiago-Avilés, Jorge J.

    2011-10-01

    The motivation for this study is to reproduce processing conditions which lead to the formation of photo or photoinduced thermal actuation, combined with inexpensive, environmentally friendly (easily degradable) materials. Commercially available polymer, poly lactic acid (PLA), was used in our studies. PLA is a well know biodegradable polymer naturally obtained from corn. PLA was received as a solid resin in pellet form and dissolved in 1:3 acetone/chloroform solutions, to achieve the proper electrospinning kinematic viscosity. Once in the liquid phase, the material was mixed with commercially available multi-walled carbon nanotubes (MWCNTs) at varying concentrations and dispersed by severe sonication. The mixtures was electrospun at room temperature using a home built electrospinning apparatus capable of depositing randomly oriented fiber mats or oriented fibers onto different substrates, ranging from oxidized silicon wafers, alumina squares or glass microscope slides. The fibers diameters and lengths are statistically distributed following a log-normal distribution and the mean and dispersion are controlled by spinning parameters. Once the fibers were electrospun, they were compositionally, morphologically and structurally characterized by thermal and gravimetric analysis (TGA/DTA), rheology, imaging using a focused Ion Beam Scanning Electron Microscope (IBSEM), and IR /Raman methodologies. These studies can be used to explore PLA-MWCNTs mixtures suitability in applications such as super-capacitor technology, which would enable us to pursue further research in this field, while focusing on improving the electro spinning conditions so as to be able to better anticipate fiber morphology to generate a consistent regime of fibers.

  19. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes.

    Science.gov (United States)

    Dong, Ki-Young; Choi, Jinnil; Lee, Yang Doo; Kang, Byung Hyun; Yu, Youn-Yeol; Choi, Hyang Hee; Ju, Byeong-Kwon

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas.

  20. Spectrographic determination of impurities in uranium tetrafluoride; Determinacion espectrografica de impurezas en tetrafluoruro de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila Perez, C.; Roca Adell, M.; Alvarez Gonzalez, F.

    1967-07-01

    A carrier distillation method for the determination of Ag, Al, As, B, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Si in uranium tetrafluoride was develop ped. the previous addition of 25% Y{sub 2}3 prevents the excitation of uranium by conversion of the volatile UF{sub 4} into U{sub 3}0{sub 8} during the arc discharge. NaCl or Ga{sub 2}0{sub 3}, containing Ge and V as internal standards, are used as carriers, and samples are arced in 10 Amp. d.c. arc in a graphite anode cup. 7 mm diameter, 10 mm deep, being the weight of charge 300 mg. (Author) 14 refs.

  1. Simulation of Multiphase Water-Carbon Dioxide Mixture Flows in Porous Media

    Science.gov (United States)

    Afanasyev, A. A.

    2012-04-01

    Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). For deep aquifers where CO2 injection may result a plume of supercritical CO2 compositional simulation approach must be applied. This approach originated from petrol reservoir simulation studies is based on a cubic equation of state and is also capable only of single-phase states and two-phase states of liquid-gas type. The goal of the present study lies in development of a new mathematical approach for compositional simulation of carbon sequestration processes. The approach is supposed to be capable both of single-phase and two-phase states of liquid-gas type as in classical models and also of two-phase states of liquid-liquid type and three-phase states at high pressure. The liquid-liquid states are formed by two liquids. The first liquid is mainly saturated with water while the second is mainly saturated with CO2. These thermodynamic equilibriums with liquefied CO2 phase can be detected experimentally (Takenouchi et. al., 1964). The three-phase states represent a composition of the two-phase states of liquid-gas and liquid-liquid types. The three phases are water and CO2 in liquid and gaseous states. As liquefied CO2 is negatively buoyant at high pressure the described states can result in non-classical hydrodynamic effects in the aquifer with CO2 sinking and consequently in non-classical structural trapping scenarios. The distinctive feature of the proposed approach lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The proposed approach was implemented in MUFITS (Multiphase

  2. Influence of carbon monoxide additions on the sensitivity of the dry hydrogen-air mixtures to detonation

    International Nuclear Information System (INIS)

    Under severe accident conditions of water cooled nuclear reactors the hydrogen-air detonation represents one of the most hazardous events which can result in the reactor containment damage. An important factor related with the measure of gas mixture detonability is the detonation cell size which correlates with the critical tube diameter and detonation initiation energy. A numerical kinetic study is presented of the influence of carbon monoxide admixtures (from 0 vol.% to 40 vol.%) upon the sensitivity (detonation cell size) of the dry hydrogen-air gas mixtures to detonation in post-accident containment atmosphere. (author). 3 refs., 3 figs

  3. Sorption of a phenols mixture in aqueous solution with activated carbon

    International Nuclear Information System (INIS)

    The constant population growth and the quick industrialization have caused severe damages to our natural aquifer resources for a great variety of organic and inorganic pollutants. Among these they are those phenol compounds that are highly toxic, resistant (to the degradation chemistry) and poorly biodegradable. The phenolic compounds is used in a great variety of industries, like it is the production of resins, nylon, plastifiers, anti-oxidants, oil additives, drugs, pesticides, colorants, explosives, disinfectants and others. The disseminated discharges or effluents coming from the industrial processes toward lakes and rivers are causing a growing adverse effect in the environment, as well as a risk for the health. Numerous studies exist on the phenols removal and phenols substituted for very varied techniques, among them they are the adsorption in activated carbon. This finishes it has been used successfully for the treatment of residual waters municipal and industrial and of drinking waters and it is considered as the best technique available to eliminate organic compounds not biodegradable and toxic present in aqueous solution (US EPA, 1991). However a little information exists on studies carried out in aqueous systems with more of a phenolic compound. The activated carbon is broadly used as adsorbent due to its superficial properties in the so much treatment of water as of aqueous wastes, adsorbent for the removal of organic pollutants. The main objective of this work is the adsorption of a aqueous mixture of phenol-4 chloro phenol of different concentrations in activated carbon of mineral origin of different meshes and to diminish with it their presence in water. The experiments were carried out for lots, in normal conditions of temperature and pressure. The experimental results show that the removal capacity depends so much of the superficial properties of the sorbent like of the physical properties and chemical of the sorbate. The isotherms were carried

  4. CH/pi interaction between benzene and hydrocarbons having six carbon atoms in their binary liquid mixtures.

    Science.gov (United States)

    Kasahara, Yasutoshi; Suzuki, Yuji; Kabasawa, Aino; Minami, Hideyuki; Matsuzawa, Hideyo; Iwahashi, Makio

    2010-01-01

    Molecular interactions between benzene and hydrocarbons having six carbon atoms, such as hexane, cyclohexane and 1-hexene in their binary liquid mixtures were studied through the measurements of density, viscosity, self-diffusion coefficient, (13)C NMR spin-lattice relaxation time and (1)H NMR chemical shift. CH/pi attraction between hexane and benzene in their binary mixture was observed in a relatively benzene rich region, whereas a special attractive interaction was not observed between cyclohexane and benzene. On the other hand, 1-hexene and benzene in their binary mixtures were characteristic in their self-diffusion coefficient behaviors: 1-hexene more strongly attract benzene not only by the CH/pi attraction but also probably by the p/p interaction between the double bond in 1-hexene and the p-electron in benzene ring. PMID:20032596

  5. Dipolar Self-Assembling in Mixtures of Propylene Carbonate and Dimethyl Sulfoxide as Revealed by the Orientational Entropy.

    Science.gov (United States)

    Płowaś, Iwona; Świergiel, Jolanta; Jadżyn, Jan

    2016-08-18

    This article presents the results of static dielectric studies performed on mixtures of two strongly polar liquids important from a technological point of view: propylene carbonate (PC) and dimethyl sulfoxide (DMSO). The dielectric data were analyzed in terms of the molar orientational entropy increment induced by the probing electric field. It was found that the two polar liquids in the neat state reveal quite different molecular organization in terms of dipole-dipole self-assembling: PC exhibits a dipolar coupling of the head-to-tail type, whereas in DMSO one observes extreme restriction of dipolar association in any form. In PC + DMSO mixtures, the disintegration of the dipolar ensembles of PC molecules takes place and the progress of that process is strictly proportional to the concentration of DMSO. The static permittivity of mixtures of such differently self-organized liquids exhibits a positive deviation from the additive rule and the deviation develops symmetrically within the concentration scale. PMID:27458791

  6. An Experimental Study of Mixture Corrosion Effects of Carbonate Rocks in the Transitional Zone of Littoral Karst Areas

    Institute of Scientific and Technical Information of China (English)

    陈鸿汉; 邹胜章; 朱远峰; 陈从喜

    2001-01-01

    The mechanism for development of littoral karst differs from that of inland karst, and the mixture corrosion effects are one of the most important factors that control the development of littoral karst. Through seven groups of static experiments carried out in a closed CO2-H2O system, basic conclusions can be drawn as follows: (1) the basic law of corrosion process in a transitional zone of seawater-freshwater in littoral karst areas is identical with that in the fresh water,i.e., the lithologic characteristics and rock structure are the main factors which control the development of littoral karst; (2)the mixture corrosion rate of the carbonate rock in the above transitional zone is faster than that in fresh water or seawater;(3) the mechanism for development of carbonate rocks differs at various pressures of CO2 in a transitional zone in littoral karst areas.``

  7. Electrical Conductivity Of Carbon Pellets Prepared From Mixtures Of Pyropolymers From Oil Palm Bunches and Petroleum Green Coke

    Science.gov (United States)

    Deraman, M.; Awitdrus, Talib, I. A.; Omar, R.; Jumali, M. H.; Ishak, M. M.; Saad, S. K. M.; Taer, E.; Saman, M. M.; Farma, R.; Yunus, R. M.

    2010-12-01

    Green pellets (GPs), prepared at different compression pressures (cs = 6, 7.5 and 12 metric tonne) from mixtures containing self-adhesive carbon grains (sacg) from the oil palm empty fruit bunch (EFB) and different percentages (pr = 0 to 90%) of a non self-adhesive powder of petroleum green coke (ppgc), were carbonized (800° C) and activated with CO2 to produce carbon pellets (CPs). The measured electrical conductivity (σ) of the CP for all cs showed a curve having a minimum value at pr around 50%, indicating that the conducting phase displays a nonlinear σ- pr relationship. A significant increase in the σ due to CO2 activation was observed. For a sufficienctly high cs, an existence of a pr range in which the σ varies linearly with the density was also observed. These results provide some new information for modifying the electrical conductivity of carbon derived from the sacg from EFB or other types of biomass.

  8. Heated uranium tetrafluoride target system to release non-rare gas fission products for the TRISTAN isotope separator

    International Nuclear Information System (INIS)

    The development of a heated uranium tetrafluoride target system for the TRISTAN isotope separator to release non-rare gas fission products is presented. Off-line experiments indicated that fluorides of As, Se, Br, Kr, Zr, Nb, Mo, Tc, Ru, Sb, Te, I and Xe could be volatilized, but except for Br, Kr, I and Xe, none of these elements was observed after mass separation in the on-line experiments. The results of the on-line experiments indicated a very low level of hydride contamination at ambient temperature and consequently, uranium tetrafluoride replaced uranyl stearate as the primary gaseous fission product target. Possible reasons for the failure of the heated target system to yield non-rare gas activities are discussed and suggestions for designing a new heated target system are presented

  9. A molecular-based approach to the thermodynamics of aqueous solutions: binary mixture of water and carbon dioxide

    International Nuclear Information System (INIS)

    A simple model and theory of molecular fluids is applied to a binary mixture of water and carbon dioxide. An approach based on the perturbation theory is followed using a reference system of so-called pseudo-hard bodies for water and hard triatomics for carbon dioxide. Pseudo-hard bodies bear the traits of the non-additive nature of association supplementing the common excluded volume effect. The reference term is parametrized using Monte Carlo simulation data on the compressibility factor. After adding a simple mean-field term to the reference equation, fluid phase equilibria are qualitatively reproduced. (paper)

  10. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    International Nuclear Information System (INIS)

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10–17 cm2 molecule–1 was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  11. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model.

    Science.gov (United States)

    Fitzgerald, James E; Robinson, Robert L; Gasem, Khaled A M

    2006-11-01

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO2 on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO2 on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties. PMID:17073487

  12. The redox combustion of carbon monoxide for recovering pure carbon dioxide by using molten (Na+,K+)2(CO32-,SO42-) mixtures.

    Science.gov (United States)

    Shimano, Satoshi; Asakura, Shukuji

    2006-06-01

    Large-scale combustion systems, such as thermal power plants, emit large amounts of carbon dioxide, which can increase global warming. A molten salt redox combustion system was proposed to recover pure carbon dioxide exhausted from the combustion of fossil fuels. This system is composed of two successive processes by using reactions occurring in a molten salt. The molten salt is the mixture of the molten alkali metal sulfates and carbonates. The sulfate ions oxidize the fuels in first processes, being changed to reductive species such as sulfide ions. In this process, carbon dioxide and water are exclusively exhausted. The reductive species of sulfur compounds are oxidized to regenerate the sulfate ions by air in the second process. In this study, these above two processes were tried by using molten [(Na(+))(0.5),(K(+))(0.5)](2)[(CO(3)(2-))(0.9),(SO(4)(2-))(0.1)] alternatively. The oxidation of carbon monoxide as fuel by sulfate ions and the regeneration of sulfate ions by air were investigated in the temperature range of 700-950 degrees C, respectively. These reactions were exothermic. The rate of the regeneration of the sulfate ions was extremely high. During the oxidation of carbon monoxide, the reaction was first order in carbon monoxide with an activation energy of 101 kJ mol(-1). The optimum condition to recover pure carbon dioxide on practical operation was discussed. PMID:16337672

  13. High-pressure phase behaviour of poly(D-lactic acid), trichloromethane, and carbon dioxide ternary mixture systems

    International Nuclear Information System (INIS)

    Highlights: • The high pressure phase behaviour of poly(D-lactic acid), trichloromethane and carbon dioxide ternary mixtures was measured. • The experimental data shows the characteristics of the LCST behaviour of (polymer + solvent + gas) systems. • The hybrid equation of state for the (polymer + carbon dioxide) system was used to correlate the experimental data. - Abstract: The high pressure phase behaviour of poly(D-lactic acid) (Mw = 359,000), trichloromethane, and carbon dioxide ternary mixture systems is presented in this study. Cloud and bubble point pressures were measured using a variable volume view cell at temperatures (313.15 to 363.15) K and pressures up to 33.6 MPa. The hybrid equation of state for the polymer-carbon dioxide system was used to correlate the experimental results. The van der Waals one-fluid mixing rule with three adjustable binary interaction parameters was used for all correlations. The binary parameters were optimised using the simplex method algorithm

  14. Transport properties of binary mixtures of carbon dioxide and 1-butyl-3-methylimidazolium hexafluorophosphate studied by transient grating spectroscopy.

    Science.gov (United States)

    Demizu, Masashi; Terazima, Masahide; Kimura, Yoshifumi

    2008-10-01

    Transient grating spectroscopy was applied to measurements of sound velocity and thermal diffusivity in binary mixture solutions of carbon dioxide (CO(2)) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF(6)]) along the saturated line of CO(2) at 40 degrees C up to 20.0 MPa. The sound velocity decreased more than 10% by increasing the pressure to 10 MPa, and the pressure effect was very small above 10 MPa. The change in the thermal diffusivity was small. The translational diffusion coefficients of carbon monoxide, diphenylacetylene (DPA), and diphenylcyclopropenone (DPCP) were also determined. The diffusion coefficients increased up to 10 MPa, and the pressure effect was almost saturated above 10 MPa. The pressure dependence of the diffusion coefficients of DPCP and DPA was larger than that of carbon monoxide. The results are discussed in relation with the viscosity change caused by applying pressure. PMID:18845895

  15. Environmental impacts of options for disposal of depleted uranium tetrafluoride (UF4)

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) evaluated options for managing its depleted uranium hexafluoride (UF6) inventory in the Programmatic Environmental Impact Statement for the Long-Term Management and Use of Depleted Uranium Hexafluoride (PEIS) of April 1999. Along with the impacts from other management options, the PEIS discussed the environmental impacts from the disposal of depleted uranium oxide, which could result from the chemical conversion of depleted UF6. It has been suggested that the depleted UF6 could also be converted to uranium tetrafluoride (UF4) and disposed of. This report considers the potential environmental impacts from the disposal of DOE's depleted UF6 inventory after its conversion to UF4. The impacts were evaluated for the same three disposal facility options that were considered in the PEIS for uranium oxide: shallow earthen structures, belowground vaults, and mines. They were evaluated for a dry environmental setting representative of the western United States. To facilitate comparisons and future decision making, the depleted UF4 disposal analyses performed and the results presented in this report are at the same level of detail as that in the PEIS

  16. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, J.B.; Urano de Carvalho, E.F.; Oliveira, F.B.V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: jbsneto@ipen.br; elitaucf@ipen.br; fabio@ipen.br; Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)]. E-mail: riella@enq.ufsc.br

    2007-07-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium silicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF{sub 6} hydrolysis solution with stannous chloride, and the hydrofluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH{sub 4}HF{sub 2} precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO{sub 2}, which comes from the U miniplates recovery, also to its conversion in a solid state reaction, to obtain UF{sub 4}. That returns to the process of metallic uranium production unity to the U{sub 3}Si{sub 2} obtention. This fuel is considered in IPEN-CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U{sub 3}O{sub 8}-Al fuel. (author)

  17. Assessment of uranium tetrafluoride dissolution in the lung by in vivo and in vitro methods

    International Nuclear Information System (INIS)

    The data acquired over the past twenty years concerning the solubility of uranium tetrafluoride (UF4) are contradictory. To check the validity of this compound's W classification by the ICRP, we investigated its in vivo dissolution in rats and baboons and compared it to the in vitro dissolution obtained either with alveolar macrophages in culture or with a serum simulant fluid. We studied daily urinary excretion of uranium in rats and baboons and U tissue distribution in rats after inhalation of raw UF4 powder or intratracheal instillation of a UF4 particle suspension. Alveolar macrophages from 4 rats and 2 baboons were tested for their ability to dissolve UF4. Since UF4 dissolution in the lung may be influenced by oxidation to the very soluble form UO2F2, we performed in vitro dissolution with a serum simulant fluid bubbled with either pure oxygen or argon. There was good agreement between the in vivo and in vitro results for both rats and baboons. Our results support the view that dissolution of UF4 in the lung is fast, and that this compound is more soluble than expected. (author)

  18. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    International Nuclear Information System (INIS)

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF6 hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH4HF2 precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO2, which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF4. That returns to the process of metallic uranium production unity to the U3Si2 obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U3Si2-Al fuel. (author)

  19. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, W.F. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)]. E-mail: dingwf2000@vip.163.com; Xu, J.H. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Shen, M. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Su, H.H. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Fu, Y.C. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Xiao, B. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2006-08-25

    In order to develop new generation brazed CBN grinding wheels, the joining experiments of CBN abrasive grains and medium carbon steel using the powder mixture of Ag-Cu alloy and pure Ti as active brazing alloy are carried out at elevated temperature under high vacuum condition. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining behavior among the CBN grains, the filler layer and the steel substrate, are investigated extensively by means of differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The results show that, similar to Ag-Cu-Ti filler alloy, Ag-Cu/Ti powder mixture exhibits good soakage capability to CBN grains during brazing. Moreover, Ti in the powder mixture concentrates preferentially on the surface of the grains to form a layer of needlelike Ti-N and Ti-B compounds by chemical metallurgic interaction between Ti, N and B at high temperature. Additionally, based on the experimental results, the brazing and joining mechanism is deeply discussed in a view of thermodynamic criterion and phase diagram of Ti-B-N ternary system.

  20. Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures

    Directory of Open Access Journals (Sweden)

    Dayun Yan

    2015-07-01

    Full Text Available In the incubation period of ultrasonic cavitation, due to the impact of microjets on the material surface, the needle-like microjet-pits are formed. Because the formation of microjet-pits relates with the evolution of cavitation erosion on engineering materials, corresponding study will promote the understanding on the mechanism of cavitation erosion. However, little study on the microjet-pits has been carried out, especially in the particles-water mixture. In this study, we firstly demonstrated the microjet-pits on the carbon steel would be significantly inhibited by Al particles in water. Such inhibition effect indicated that particular particles might not only provide growth sites for cavitation bubbles but also affect the collapse of cavitation bubbles near a solid surface. Our study deepened the understanding on the ultrasonic cavitation erosion in the particles-water mixture.

  1. Equation of state of initially liquid carbon monoxide and nitrogen mixture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The modified liquid perturbation variational theory and the improved vdW-1f model were applied to calculating the equation of the state of liquid CO-N2 mixture with the ratio of 1:1, 4:1 and 1:4, respectively, in the shock pressure range of 9-49 GPa. It was shown that the calculated result for CO-N2 mixture with the ratio of 1:1 is well consistent with the earlier experimental data. The thermodynamics equilibrium, chemical equilibrium and phase equilibrium were all considered in detail. It was found that Hugoniot of liquid CO-N2 mixture is moderately softened in the pressure range of 20-30 GPa and 30-49 GPa for different initial proportions, and that the Hugoniot is more softened in the latter pressure range, which means that the structural phase transition occurs near 20 GPa and 30 GPa. Since the shock pro-ductions may absorb a plenty of systematic energy, the shock temperature and pressure decline compared with the case of no chemical reaction. Pressures and temperatures increase gradually with the increase in the mole fraction of nitrogen composition. The results for the 1:1 CO-N2 mixture lie in the middle of two others. Therefore, it was shown that the modified Lorentz-Berthelor rule used in the scheme is effective to study shock-compression properties of liquid CO-N2 mixture under high temperatures and high pressures.

  2. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    Science.gov (United States)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  3. Novel electrolyte mixtures based on dimethyl sulfone, ethylene carbonate and LiPF6 for lithium-ion batteries

    Science.gov (United States)

    Hofmann, Andreas; Hanemann, Thomas

    2015-12-01

    In this study, novel electrolyte mixtures for Li-ion cells are presented which are composed of ethylene carbonate/dimethyl sulfone (80:20 wt./wt.) as a solvent mixture and LiPF6, lithium bis(oxalato)borate and lithium difluoro(oxalato)borate as conducting salts. The main advantages of the solvent mixture are high flash points of >140 °C which enhance the intrinsic safety of Li-ion cells while maintaining good cell performance above 0-5 °C. The movability of the lithium ions in the electrolyte is investigated via programmed current derivative chronopotentiometry. It is found that pure electrolyte properties cannot necessarily predict the electrolyte behavior in real Li-ion cells but the complex interplay between electrolytes, electrode materials and separators has to be taken into account. Using the newly developed electrolytes, it is possible to achieve C-rates up to 1.5C with >80% of the initial specific discharge capacity (25 °C). Within 200 cycles during one month in cell tests (C||NMC) it is proven that the retention of the specific capacity is >98% of the third discharge cycle in dependence of the conducting salt.

  4. Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics.

    Science.gov (United States)

    Hofmann, Andreas; Migeot, Matthias; Thißen, Eva; Schulz, Michael; Heinzmann, Ralf; Indris, Sylvio; Bergfeldt, Thomas; Lei, Boxia; Ziebert, Carlos; Hanemann, Thomas

    2015-06-01

    In this study, novel electrolyte mixtures for Li-ion cells are presented with highly improved safety features. The electrolyte formulations are composed of ethylene carbonate/dimethyl sulfone (80:20 wt/wt) as the solvent mixture and LiBF4 , lithium bis(trifluoromethanesulfonyl)azanide, and lithium bis(oxalato)borate as the conducting salts. Initially, the electrolytes are characterized with regard to their physical properties, their lithium transport properties, and their electrochemical stability. The key advantages of the electrolytes are high flash points of >140 °C, which enhance significantly the intrinsic safety of Li-ion cells containing these electrolytes. This has been quantified by measurements in an accelerating rate calorimeter. By using the newly developed electrolytes, which are liquid down to T=-10 °C, it is possible to achieve C-rates of up to 1.5 C with >80 % of the initial specific capacity. During 100 cycles in cell tests (graphite||LiNi1/3 Co1/3 Mn1/3 O2 ), it is proven that the retention of the specific capacity is >98 % of the third discharge cycle with dependence on the conducting salt. The best electrolyte mixture yields a capacity retention of >96 % after 200 cycles in coin cells. PMID:25950145

  5. Microscopic structure and interaction analysis for supercritical carbon dioxide-ethanol mixtures: a Monte Carlo simulation study.

    Science.gov (United States)

    Xu, Wenhao; Yang, Jichu; Hu, Yinyu

    2009-04-01

    Configurational-bias Monte Carlo simulations in the isobaric-isothermal ensemble using the TraPPE-UA force field were performed to study the microscopic structures and molecular interactions of mixtures containing supercritical carbon dioxide (scCO(2)) and ethanol (EtOH). The binary vapor-liquid coexisting curves were calculated at 298.17, 333.2, and 353.2 K and are in excellent agreement with experimental results. For the first time, three important interactions, i.e., EtOH-EtOH hydrogen bonding, EtOH-CO(2) hydrogen bonding, and EtOH-CO(2) electron donor-acceptor (EDA) bonding, in the mixtures were fully analyzed and compared. The EtOH mole fraction, temperature, and pressure effect on the three interactions was investigated and then explained by the competition of interactions between EtOH and CO(2) molecules. Analysis of the microscopic structures indicates a strong preference for the formation of EtOH-CO(2) hydrogen-bonded tetramers and pentamers at higher EtOH compositions. The distribution of aggregation sizes and types shows that a very large EtOH-EtOH hydrogen-bonded network exists in the mixtures, while only linear EtOH-CO(2) hydrogen-bonded and EDA-bonded dimers and trimers are present. Further analysis shows that EtOH-CO(2) EDA complex is more stable than the hydrogen-bonded one.

  6. Heated uranium tetrafluoride target system to release non-rare gas fission products for the TRISTAN isotope separator

    International Nuclear Information System (INIS)

    Off-line experiments indicated that fluorides of As, Se, Br, Kr, Zr, Nb, Mo, Tc, Ru, Sb, Te, I and Xe could be volatilized, but except for Br, Kr, I and Xe, none of these elements were observed after mass separation in the on-line experiments. The results of the on-line experiments indicated a very low level of hydride contamination at ambient temperature and consequently, uranium tetrafluoride replaced uranyl stearate as the primary gaseous fission product target. Possible reasons for the failure of the heated target system to yield non-rare gas activities are discussed and suggestions for designing a new heated target system are presented

  7. Protective effect of different tetrafluorides on erosion of pellicle-free and pellicle-covered enamel and dentine

    OpenAIRE

    Wiegand, Annette; Meier, Werner; E. Sutter; Magalhães, Ana C.; Becker, Klaus; Roos, Malgorzata; Attin, Thomas

    2008-01-01

    The aim was to analyze the protective effects of titanium, zirconium and hafnium tetrafluorides on erosion of pellicle-free and pellicle-covered enamel and dentine in vitro. Eight groups of 20 specimens each of bovine enamel and bovine dentine were prepared. Half the specimens in each group were immersed in human saliva for 2 h for pellicle formation. Specimens were then left untreated (controls) or were treated for 120 s with TiF(4), ZrF(4) or HfF(4) solutions (0.4 or 1%) or 1.25% AmF/NaF ge...

  8. The solid-liquid phase diagrams of binary mixtures of even saturated fatty acids differing by six carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Mariana C. [LPT, Department of Chemical Process, School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP (Brazil); EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, P.O. Box 6121, 13083-862, Campinas-SP (Brazil); CICECO, Departamento de Quimica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Rolemberg, Marlus P. [DETQI, Department of Chemical Technology, Federal University of Maranhao (UFMA), Sao Luis, Maranhao (Brazil); Meirelles, Antonio J.A. [EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, P.O. Box 6121, 13083-862, Campinas-SP (Brazil); Coutinho, Joao A.P. [CICECO, Departamento de Quimica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Kraehenbuehl, M.A., E-mail: mak@feq.unicamp.br [LPT, Department of Chemical Process, School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP (Brazil)

    2009-12-10

    This study was aimed at using the solid-liquid phase diagrams for three binary mixtures of saturated fatty acids, especially the phase transitions below the liquidus line. These mixtures are compounded by caprylic acid (C{sub 8:0}) + myristic acid (C{sub 14:0}), capric acid (C{sub 10:0}) + palmitic acid (C{sub 16:0}), lauric acid (C{sub 12:0}) + stearic acid (C{sub 18:0}), differing by six carbon atoms between carbon chains. The phase diagrams were obtained by differential scanning calorimetry (DSC). The polarized light microscopy was used to complement the characterization for a full grasp of the phase diagram. Not only do these phase diagrams present peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common, in fatty acids. These findings have contributed to the elucidation of the phase behavior of these important biochemical molecules with implications in various industrial production.

  9. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    Science.gov (United States)

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward. PMID:21112151

  10. Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite

    Indian Academy of Sciences (India)

    J Temuujin; M Aoyama; M Senna; T Masuko; C Ando; H Kishi; A Minjigmaa

    2006-10-01

    -type hexagonal ferrite precursor was prepared by a soft mechanochemical treatment of BaCO3 and -FeOOH mixtures. The effect of milling on its structure and thermal behaviour was examined by XRD, SEM and FTIR. Well crystallized -type hexagonal ferrite was formed from just 1 h milled precursors at 800°C. The beneficial effect of milling was explained in terms of increased homogeneity with simultaneous hetero bridging bond formation between powder constituents.

  11. Functional evaluation of rat hearts transplanted after preservation in a high-pressure gaseous mixture of carbon monoxide and oxygen.

    Science.gov (United States)

    Hatayama, Naoyuki; Inubushi, Masayuki; Naito, Munekazu; Hirai, Shuichi; Jin, Yong-Nan; Tsuji, Atsushi B; Seki, Kunihiro; Itoh, Masahiro; Saga, Tsuneo; Li, Xiao-Kang

    2016-01-01

    We recently succeeded in resuscitating an extracted rat heart following 24-48 hours of preservation in a high-pressure gaseous mixture of carbon monoxide (CO) and oxygen (O2). This study aimed to examine the function of rat hearts transplanted after being preserved in the high-pressure CO and O2 gas mixture. The hearts of donor rats were preserved in a chamber filled with CO and O2 under high pressure for 24 h (CO24h) or 48 h at 4 °C. For the positive control (PC) group, hearts immediately extracted from donor rats were used for transplantation. The preserved hearts were transplanted into recipient rats by heterotopic cervical heart transplantation. CO toxicity does not affect the grafts or the recipients. Light microscopy and [(18)F]-fluorodeoxyglucose positron emission tomography revealed that there were no significant differences in the size of the myocardial infarction or apoptosis of myocardial cells in post-transplant hearts between the PC and CO24h groups. Furthermore, at 100 days after the transplantation, the heart rate, weight and histological staining of the post-transplanted hearts did not differ significantly between the PC and CO24h groups. These results indicate that the function of rat hearts is well preserved after 24 hours of high-pressure preservation in a CO and O2 gas mixture. Therefore, high-pressure preservation in a gas mixture can be a useful method for organ preservation. PMID:27562456

  12. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C{sub 1}-C{sub 4}) and dimethyl carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroyuki, E-mail: matsuda@chem.cst.nihon-u.ac.jp [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Fukano, Makoto; Kikkawa, Shinichiro [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Constantinescu, Dana [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany); Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Gmehling, Juergen [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany)

    2012-01-15

    Highlights: > The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. > VLE data for ternary and binary mixtures containing alcohol and DMC were measured. > Several activity coefficient models were used for data reduction or prediction. > Valley line, i.e., distillation boundary, was observed for the ternary mixture. > Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {l_brace}methanol + propan-1-ol + dimethyl carbonate (DMC){r_brace}, and four binary mixtures, namely an {l_brace}alcohol (C{sub 3} or C{sub 4}) + DMC{r_brace}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  13. Carbon-coated hexagonal magnetite nanoflakes production by spray CVD of alcohols in mixture with water

    International Nuclear Information System (INIS)

    In this study, we report a successful technique for synthesizing magnetite hexagonal nanoflakes coated with carbon layers using spray thermal decomposition, which is a reproducible method that is easy to scale up. We investigated the effects of mixing different volumes of deionized (DI) water with alcohol on the population and quality of single-crystalline Fe3O4 hexagonal nanoflakes. Methanol and ethanol were used as the carbon and oxygen source, while ferrocene was mainly used as the Fe source. To obtain a large quantity of hexagonal structures, a strongly oxidative atmosphere was required. The DI water was used to enhance the oxidative environment during the reaction and was an important component for obtaining well-shaped hexagonal magnetite crystalline nanoflakes. The use of alcohols, water and the spray chemical vapor deposition (CVD) method make this procedure easy to use. In addition, this method provides a one-step process for synthesizing carbon-coated hexagonal Fe3O4 nanocrystals. (paper)

  14. Binary Adsorption Equilibrium of Benzene—Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    GAOHuasheng; YEYunchun; 等

    2002-01-01

    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg·m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon.A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.A modified polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculte the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  15. Groundwater calculations for depleted uranium disposed of as uranium tetrafluoride (UF4)

    International Nuclear Information System (INIS)

    This report discusses calculations performed to estimate the impacts on groundwater from the long-term disposal of depleted uranium in the form of uranium tetrafluoride (UF4) in a trench, vault, and mined cavity. The calculations were done for a deep groundwater system, typical of conditions in the western United States. They were performed for two initial inventories of UF4: 500,000 and 630,000 metric tons. Disposal was in either 30- or 50-gal drums. All of the contaminant and radioactivity concentrations at the water table are predicted to be very low, even for a fairly mobile compound. In general, concentrations after 1,000 years at the water table would be about an order of magnitude greater for disposal in a deep mine than for disposal in a trench or vault. The largest activity concentration at the water table after 1,000 years would be derived from a failed mine that releases a fairly mobile and very soluble uranium complex; it would be about 8.6 x 10-6 pCi/L for 500,000 metric tons of UF4 disposed of in 30-gal drums. The smallest activity concentrations at the water table after 1,000 years would, in general, be derived from a failed trench (1.2 x 10-9 pCi/L), if the contaminant reached the water table as schoepite. Although all the activity concentrations at the water table after 1,000 years are predicted to be small, maximum activity concentrations could still be large, even after dilution. Maximum activity concentrations of uranium would exceed 900 pCi/L for a failed disposal facility if a very soluble and mobile uranium complex formed. If the solubility of the uranium compound was small (2.4 x 10-3 g/L), the resulting activity concentrations would be small, less than 2.5 pCi/L. The estimated time for these maximum concentrations would range from 65,000 to 2,000,000 years

  16. Phase Equilibria of Three Binary Mixtures: Methanethiol + Methane, Methanethiol + Nitrogen, and Methanethiol + Carbon Dioxide

    DEFF Research Database (Denmark)

    Awan, Javeed; Tsivintzelis, Ioannis; Coquelet, Christophe;

    2012-01-01

    New vapor–liquid equilibrium (VLE) data for methanethiol (MM) + methane (CH4), methanethiol (MM) + nitrogen (N2), and methanethiol (MM) + carbon dioxide (CO2) is reported for temperatures of (304, 334, and 364) K in the pressure range (1 to 8) MPa. A “static–analytic” method was used for performi...

  17. In situ carbon and nitrogen dynamics in ryegrass-clover mixtures

    DEFF Research Database (Denmark)

    Rasmussen, J.; Eriksen, J.; Jensen, Erik Steen;

    2007-01-01

    =9). 15N-enriched compounds were not detected in percolating pore water, which may be caused by either dilution from irrigation or low availability of leachable N compounds. 14C was found solely as 14CO2 in the pore water indicating that dissolved organic carbon (DOC) did not originate from fresh...

  18. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Directory of Open Access Journals (Sweden)

    Rhonalyn V. Maulion

    2015-12-01

    Full Text Available Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capacity of activated carbon tablets derived from corncobs in the removal of oil. The properties of activated carbon produced have a pH of 7.0, bulk density of 0.26 g//cm3 , average pore size of 45nm, particle size of 18% at 60 mesh and 39% at 80 mesh, iodine number of 1370 mg/g and surface area of 1205 g/m2. The amount of bentonite clay as binder (15%,20%,30%, number of ACT (1,2,3 and time of contact(30,60,90 mins has been varied to determine the optimum condition where the activated carbon will have the best adsorption capacity in the removal of oil. Results showed that at 15% binder, 60 mins contact time and 3 tablets of activated carbon is the optimum condition which give a percentage adsorption of 22.82% of oil. Experimental data also showed that a Langmuir isotherm was the best fit isotherm for adsorption of ACT.

  19. Origin and evolution of paramagnetic states in mixtures of ZnO and carbon nanoparticles during intensive mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, Mykola, E-mail: kakazey@hotmail.com; Vlasova, Marina [CIICAp - Universidad Autonoma del Estado de Morelos (Mexico); Juarez-Arellano, Erick A. [Universidad del Papaloapan, Instituto de Química Aplicada (Mexico)

    2015-03-15

    In this study, the microstructural evolution and reaction processes in the mixture of ZnO + xC nanoparticles during prolonged high-energy mechanical activation were explored. The formation of paramagnetic centers has been identified. It was observed that the evolution of various paramagnetic defects reveals several macroscopic flow processes that take place in the system. Some of these processes are the destruction of primary durable nanoparticle ZnO aggregates, the crushing of individual nanoparticles (250–14 nm), the development of accumulative thermal processes in the sample, the interaction of carbon atoms with oxygen from the treatment chamber and from the surface of the ZnO nanoparticles, the formation of reducing atmosphere in the grinding chamber, and the occurrence of the forming conditions of the phase transition ZnO{sub W} → ZnO{sub S} on the surface layers of ZnO{sub W} nanoparticles.

  20. Efficiency of water removal from water/ethanol mixtures using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    M. A. Rodrigues

    2006-06-01

    Full Text Available Techniques involving supercritical carbon dioxide have been successfully used for the formation of drug particles with controlled size distributions. However, these processes show some limitations, particularly in processing aqueous solutions. A diagram walking algorithm based on available experimental data was developed to evaluate the effect of ethanol on the efficiency of water removal processes under different process conditions. Ethanol feeding was the key parameter resulting in a tenfold increase in the efficiency of water extraction.

  1. Accurate values of some thermodynamic properties for carbon dioxide, ethane, propane, and some binary mixtures.

    Science.gov (United States)

    Velasco, Inmaculada; Rivas, Clara; Martínez-López, José F; Blanco, Sofía T; Otín, Santos; Artal, Manuela

    2011-06-30

    Quasicontinuous PρT data of CO(2), ethane, propane, and the [CO(2) + ethane] mixture have been determined along subcritical, critical, and supercritical regions. These data have been used to develop the optimal experimental method and to determine the precision of the results obtained when using an Anton Paar DMA HPM vibrating-tube densimeter. A comparison with data from reference EoS and other authors confirm the quality of our experimental setup, its calibration, and testing. For pure compounds, the value of the mean relative deviation is MRD(ρ) = 0.05% for the liquid phase and for the extended critical and supercritical region. For binary mixtures the mean relative deviation is MRD(ρ) = 0.70% in the range up to 20 MPa and MRD(ρ) = 0.20% in the range up to 70 MPa. The number of experimental points measured and their just quality have enable us to determine some derivated properties with satisfactory precision; isothermal compressibilities, κ(T), have been calculated for CO(2) and ethane (MRD(κ(T)) = 1.5%), isobaric expasion coefficients, α(P), and internal pressures, π(i), for CO(2) (MRD(α(P)) = 5% and MRD(π(i)) = 7%) and ethane (MRD(α(P)) = 7.5% and MRD(π(i)) = 8%). An in-depth discussion is presented on the behavior of the properties obtained along subcritical, critical, and supercritical regions. In addition, PuT values have been determined for water and compressed ethane from 273.19 to 463.26 K up to pressures of 190.0 MPa, using a device based on a 5 MHz pulsed ultrasonic system (MRD(u) = 0.1%). With these data we have calibrated the apparatus and have verified the adequacy of the operation with normal liquids as well as with some compressed gases. From density and speed of sound data of ethane, isentropic compressibilities, κ(s), have been obtained, and from these and our values for κ(T) and α(P), isobaric heat capacities, C(p), have been calculated with MRD(C(p)) = 3%, wich is within that of the EoS. PMID:21639086

  2. Aspects regarding the tribological evaluation of sintered composites obtained from mixture of copper with carbon fibers

    Science.gov (United States)

    Caliman, R.

    2015-11-01

    This paper presents a study of the tribological properties of sintered composite materials made from combination of copper with short carbon fibers. Sintered composite materials are more effective if refer to specific properties per unit volume compared to conventional isotropic materials. Potential advantages of copper - carbon composite materials are: high resistance to breakage and high value ratios strength/density; resistance to high temperatures; low density and high resistance to wear; low or high friction coefficient. The sintered composite materials used in this research work are obtained combining different percentages of copper with short carbon fibres with iron and lead in order to investigate the variation of the friction behaviour. Varying the percentage of copper from 92,2% to 97,6% and the percentage of short carbon fibres from 7,8% to 2,4%, five different composite materials are obtained and tested. Friction tests are carried out, at room temperature, in dry conditions, on a pin-on-disc machine. The friction coefficient was measured using abrasive discs made from steel 4340 having the average hardness of 40 HRC, and sliding velocity of 0,6 m/sec. The main objective of this research work it was to identify a combination of materials with improved friction behaviour. The experimental results revealed that the force applied on the specimen during the tests, is playing a very important role regarding friction coefficient and also the wearing speed. Graphite particles are conveyed consistently inside the net, enhancing scraped spot safety and voltage drop over normal composite material. The static tests demonstrated that this new kind of sintered composite material has preferable electrical execution over previous brush material in the same conditions, and the element tests demonstrated that the temperature climb is not enormous when the brush with this new composite material is exchanged on with huge current and the surface scraped spot is littler amid

  3. Analysis of an activated-carbon sorption compressor operating with gas mixtures

    Science.gov (United States)

    Tzabar, N.; Grossman, G.

    2012-10-01

    Sorption compressors elevate the pressure of gases and can provide a more or less continuous mass flow. Unlike mechanical compressors, sorption compressors have no moving parts, and therefore do not emit vibrations and are highly reliable. There exist different sorption compressors for different operating conditions and various gases. However, there are no published reports of sorption compressors for mixed gases. Such compressors, among other applications, may drive mixed-refrigerant Joule-Thomson cryocoolers. The adsorption of mixed gases is usually investigated under steady conditions, mainly for storage and separation processes. However, the sorption process in a compressor goes through varying states and mass changes; therefore, it differs from the common mixed gases adsorption applications. In this research a numerical analysis for mixed gas sorption compressors is developed, based on pure gas adsorption characteristics and the ideal adsorbed solution theory. Two pure gas adsorption models are used for calculating the conditions of the adsorbed phase: Langmuir and Sips; and the Peng-Robinson equation of state is used to calculate the conditions of the vapor phase. Two mixtures are investigated; nitrogen-methane and nitrogen-ethane. Finally, the analysis is verified against experimental results. This research provides initiatory observation for mixed gases sorption compressor in which each component is differently adsorbed.

  4. Sorption of a mixture of phenols in aqueous solution with activated carbon; Sorcion de una mezcla de fenoles en solucion acuosa con carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Mejia M, D.; Lopez M, B.E.; Iturbe G, J.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The main objective of this work is the sorption of an aqueous mixture of phenol-4 chloro phenol of different concentrations in a molar relationship 1:1 in activated carbon of mineral origin of different nets (10, 20 and 30) and to diminish with it its presence in water. The experimental results show that the removal capacity depends so much of the surface properties of the sorbent like of the physical and chemical properties of the sorbate. In all the cases it was observed that in the aqueous systems of low concentration the 4-chloro phenol are removed in an approximate proportion of 1.2-4 times greater to than phenol, however to concentrations but high both they are removed approximately in the same proportion. (Author)

  5. Transport coefficients for carbon, hydrogen, and the organic mixture C2H3

    International Nuclear Information System (INIS)

    Electrical and thermal transport coefficients are calculated for amorphous elemental carbon and hydrogen, using the best available systematic theoretical methods. The density range considered is 10-3g/cm3 less than or equal to rho less than or equal to 106g/cm3 for carbon, and 10-4g/cm3 less than or equal to rho less than or equal to 105g/cm3 for hydrogen. The temperature range considered is 10-2eV less than or equal to kT less than or equal to 104eV. Calculational methods include relativistic partial-wave analysis of the extended Ziman theory, and nonrelativistic plane-wave analysis (Born approximation) of the original Ziman theory. Physical models include relativistic Dirac-Fock-Slater and nonrelativistic Thomas-Fermi-Dirac electron-ion potentials, and one-component-plasma ion-ion structure factors. A mixing algorithm is used to obtain approximate transport coefficients for the atomic ratio C2H3. 10 refs., 31 figs

  6. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures

    KAUST Repository

    Choi, Byungchul

    2012-06-01

    The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process. © 2012 The Korean Society of Mechanical Engineers.

  7. High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, JungMin; Kim, Hwayong [Seoul National University, Seoul (Korea, Republic of); Shin, Hun Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Soo Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-04-15

    The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the CO{sub 2}/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the CO{sub 2}-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

  8. Solid-phase transformations in a mixture of highly disperse powders of the system W-Mo with additions of nickel and carbon in sintering

    Energy Technology Data Exchange (ETDEWEB)

    Trusov, L.I.; Voskresenskii, Yu.A.; Novikov, V.I.; Lapovok, V.N.; Troitskii, V.N.; Chukalin, V.I.; Rezchikova, T.V.

    1988-03-01

    Structural phase transformations in finely dispersed particles of molybdenum-tungsten with added nickel and carbon were studied in systems distinguished by dispersity, mobility of boundaries, and migratory mobility. The density, lattice parameters, and phase composition of the mixture were also assessed. X-ray diffraction and electron microscopy were used to confirm the recrystallization behavior during sintering.

  9. Simulation of Pore Width and Pore Charge Effects on Selectivities of CO2 vs. H2 from a Syngas-like Mixture in Carbon Mesopores

    NARCIS (Netherlands)

    Trinh, T.T.; Vlugt, T.J.H.; Hägg, M.B.; Bedeaux, D.; Kjelstrup, S.

    2014-01-01

    Classical molecular dynamics simulations were performed to study the effect of pore width and surface charge in carbon mesoporous materials on adsorption and diffusion selectivities of CO2/H2 in a syngas-like mixture (mole fraction of CO2 = 0.30). The pore width of the graphite slit varied from 2.5

  10. Improvement of the relaxation time and the order parameter of nematic liquid crystal using a hybrid alignment mixture of carbon nanotube and polyimide

    International Nuclear Information System (INIS)

    We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to the smooth surface topology of the CNT-polyimide mixture

  11. Improvement of the relaxation time and the order parameter of nematic liquid crystal using a hybrid alignment mixture of carbon nanotube and polyimide

    Science.gov (United States)

    Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon; Soo Park, Young

    2014-05-01

    We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to the smooth surface topology of the CNT-polyimide mixture.

  12. Improvement of the relaxation time and the order parameter of nematic liquid crystal using a hybrid alignment mixture of carbon nanotube and polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon, E-mail: jihoonlee@jbnu.ac.kr [Advanced Electronics and Information Research Center, Division of Electronic Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Soo Park, Young, E-mail: irony@kctech.re.kr [Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk, 561-756 (Korea, Republic of); Korea Institute of Carbon Convergence Technology, Banryong-ro, Jeonju, Jeonbuk 561-844 (Korea, Republic of)

    2014-05-12

    We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to the smooth surface topology of the CNT-polyimide mixture.

  13. Effect of carbon type (graphite, CFs and diamond) on the hydrogen desorption of Mg–C powder mixtures under microwave irradiation

    International Nuclear Information System (INIS)

    Highlights: • MgH2 + x wt% C milled mixtures desorbed hydrogen rapidly under micro waves exposition. • Carbon fibers are effective to reduce the desorption time. • Almost full desorption can be reached in 10 s. - Abstract: Binary MgH2–x wt% C mixtures (x = 0, 2, 5 and 10 wt% for carbon fibers (CFs), 10 wt% for graphite (G) and diamond (D)) were prepared by hand mixing and by ball milling (5 h) for MgH2–10 wt% CFs. The aims of the work were: – to investigate the dehydriding reaction of MgH2 catalyzed by carbon under microwave irradiation; – to assess the effect of presence of different carbon type and content on the desorption reaction; – to evaluate the influence microwave power on the rate of hydrogen release; to study the influence of milling process on the dehydrogenation time. The amount of hydride and Mg phases (e.g. hydrogen content) was estimated from XRD pattern matching (Eva and Fullprof). The morphology of the powders and the particle size distribution were observed by Scanning Electron Microscopy (SEM) and laser granulometry respectively. Carbon distribution in the MgH2 matrix was investigated by electron probe microanalyses. The different carbon type transfer the heat, generated from absorbed microwave irradiation, to the MgH2 matrix which induces the hydrogen release. It was found that the dehydrogenation rate and time were enhanced with rising carbon content, microwave power and with milling time. For the MgH2–10 wt% CFs mixtures, under 1500 W of microwave, more than 90% of conversion MgH2 to Mg phases was obtained after 20 s for hand mixing mixture and after only 10 s for 5 h ball milled one

  14. Effect of carbon type (graphite, CFs and diamond) on the hydrogen desorption of Mg–C powder mixtures under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Awad, A.S., E-mail: awad@icmcb-bordeaux.cnrs.fr [Université de Bordeaux, ICMCB, 87 Avenue du Dr Schweitzer, F-33608 Pessac (France); LCPM, Université Libanaise, Faculté des Sciences 2, 90656 Jdeidet El Matn (Lebanon); Tayeh, T. [Université de Bordeaux, ICMCB, 87 Avenue du Dr Schweitzer, F-33608 Pessac (France); LCPM, Université Libanaise, Faculté des Sciences 2, 90656 Jdeidet El Matn (Lebanon); Nakhl, M.; Zakhour, M. [LCPM, Université Libanaise, Faculté des Sciences 2, 90656 Jdeidet El Matn (Lebanon); Ourane, B.; Le Troëdec, M.; Bobet, J.-L. [Université de Bordeaux, ICMCB, 87 Avenue du Dr Schweitzer, F-33608 Pessac (France)

    2014-09-01

    Highlights: • MgH{sub 2} + x wt% C milled mixtures desorbed hydrogen rapidly under micro waves exposition. • Carbon fibers are effective to reduce the desorption time. • Almost full desorption can be reached in 10 s. - Abstract: Binary MgH{sub 2}–x wt% C mixtures (x = 0, 2, 5 and 10 wt% for carbon fibers (CFs), 10 wt% for graphite (G) and diamond (D)) were prepared by hand mixing and by ball milling (5 h) for MgH{sub 2}–10 wt% CFs. The aims of the work were: – to investigate the dehydriding reaction of MgH{sub 2} catalyzed by carbon under microwave irradiation; – to assess the effect of presence of different carbon type and content on the desorption reaction; – to evaluate the influence microwave power on the rate of hydrogen release; to study the influence of milling process on the dehydrogenation time. The amount of hydride and Mg phases (e.g. hydrogen content) was estimated from XRD pattern matching (Eva and Fullprof). The morphology of the powders and the particle size distribution were observed by Scanning Electron Microscopy (SEM) and laser granulometry respectively. Carbon distribution in the MgH{sub 2} matrix was investigated by electron probe microanalyses. The different carbon type transfer the heat, generated from absorbed microwave irradiation, to the MgH{sub 2} matrix which induces the hydrogen release. It was found that the dehydrogenation rate and time were enhanced with rising carbon content, microwave power and with milling time. For the MgH{sub 2}–10 wt% CFs mixtures, under 1500 W of microwave, more than 90% of conversion MgH{sub 2} to Mg phases was obtained after 20 s for hand mixing mixture and after only 10 s for 5 h ball milled one.

  15. Understanding adsorption of CO2, N2, CH4 and their mixtures in functionalized carbon nanopipe arrays.

    Science.gov (United States)

    Halder, Prosun; Maurya, Manish; Jain, Surendra K; Singh, Jayant K

    2016-05-18

    The selective adsorption behaviours of carbon dioxide, methane and nitrogen on bundles of functionalized CMK-5 are investigated at 303 K using grand-canonical Monte Carlo simulations. Functional groups (-OH, -COOH) cause a significant enhancement in CO2 uptake (up to 19.5% at a pressure of 38.13 bar for -COOH). On the other hand, the adsorption amount of methane decreases with respect to bare CMK-5 by ∼13% (at 38.13 bar) upon functionalization. Furthermore, functionalized CMK-5 with different pore sizes (4 nm, 6 nm, 8 nm) and inter-tube distances (d = 0 to 1.5 nm) are used to investigate the adsorption behaviour of flue gases. While the pore diameter is seen to reduce the isosteric heat of adsorption, the inter-tube distance of 0.25 nm shows the highest uptake of CO2 at p ≤ 18 bar, followed by 0.5 nm for the pressure range of 18 30 bar, d = 1.0 nm shows the maximum uptake. For methane and nitrogen, the maximum adsorption is obtained at d = 0.25 nm in the studied pressure range. The selective adsorption of CO2 in binary mixtures is investigated using ideal adsorption solution theory. CO2-N2 selectivity is found to increase significantly by surface functionalization of CMK-5 compared to pure CMK-5. The maximum selectivity of CO2-CH4 using -COOH functionalized CMK-5 is found to be ∼10 for an equimolar CO2-CH4 mixture at a pressure of 38.13 bar. PMID:27158697

  16. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets.

    Science.gov (United States)

    Almkhelfe, Haider; Carpena-Núñez, Jennifer; Back, Tyson C; Amama, Placidus B

    2016-07-21

    Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst pretreatment and/or preheating of the carbon feedstock. The efficiency of the process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe-Cu catalysts even at temperatures as low as 400 °C - a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The grown CNTs exhibit a straight morphology with hollow interior and parallel graphitic planes along the tube walls. The apparent activation energies for CNT carpet growth on Fe and Fe-Cu catalysts are 0.71 and 0.54 eV, respectively. The synergistic effect of Fe and Cu show a strong dependence on the growth temperature, with Cu being more influential at temperatures higher than 450 °C. The low activation energies and long catalyst lifetimes observed are rationalized based on the unique composition of FTS-GP and Gibbs free energies for the decomposition reactions of the hydrocarbon components. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability. PMID:27353432

  17. Spectrographic determination of boron and silicon in uranium tetrafluoride: Study of the chemical reactions in the electrode cavity when ZnO is used as a uranium excitation suppressor

    International Nuclear Information System (INIS)

    A method has been developed for determining traces of boron and silicon in uranium tetrafluoride. Use is made of zinc oxide to decrease the volatilization of uranium and achieve high sensitivities. The thermochemical reactions which occur in the anode cavity during the arcing process have been investigated. UO2 and a uranium, zinc and fluorine compound, both less volatile than uranium tetrafluoride, are formed. (Author)

  18. Cleavage of catalytic ally grown carbon nanofibers into hydrophilic segments by oxidation in a mixture of concentrated HNO3-H2SO4 in an autoclave

    Institute of Scientific and Technical Information of China (English)

    TENG Li-hua; WANG Zhi-jiang; TANG Tian-di

    2012-01-01

    The catalytically grown carbon nanofibers were treated by a mixture of concentrated nitric aid and sulfuric aid in an autoclave at temperature 333,363 and 423 K.It was found that the samples treated at 363 K and 423 K were still well dispersed in water 15 hours later,indicating that carbon nanofibers can be made hydrophilicy.It was also found that the dispersion was destroyed when the pH value was lowered by adding acid.The results are significant when the carbon nanofibers are used as enhancing component in polymer composite material because several hundreds of nm are perfect size and the hydrophilicity controls the dispersion of CNFs in the polymer media.It is concluded that the amount of the oxygen-containing groups on the surface and the hydrophilicity of the carbon nanofibers can be controlled by the treatment temperature,and that the carbon nanofibers can be cleaved into uniform segments.

  19. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.

    2012-01-01

    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  20. Synthesis of silver nanoparticle decorated multiwalled carbon nanotubes-graphene mixture and its heat transfer studies in nanofluid

    Directory of Open Access Journals (Sweden)

    Tessy Theres Baby

    2013-01-01

    Full Text Available The present study describes a novel synthesis procedure for a hybrid nanostructure consisting of multiwalled carbon nanotubes (MWNT, hydrogen exfoliated graphene (HEG and silver nanoparticles. Moreover, synthesis of nanofluids using the above hybrid material and their heat transfer properties are discussed. The hybrid structure of MWNT and HEG (MWNT-HEG has been synthesized by a simple mixing of MWNT and graphite oxide (GO followed by exfoliation of this mixture in hydrogen atmosphere. The sample has been characterized with different experimental techniques. After surface functionalization, this hybrid material is decorated with silver nanoparticles (Ag/(MWNT-HEG and dispersed in ethylene glycol (EG without any surfactant. The thermal conductivity and convective heat transfer properties are measured for different volume fractions. An enhancement of ∼8% in thermal conductivity is obtained for a volume fraction of 0.04% at 25°C. The convective heat transfer coefficient of these nanofluids is determined using an in-house fabricated setup. The enhancement in heat transfer coefficient is about 570% for 0.005% volume fraction at the entrance of the pipe for Re = 250.

  1. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1111, LB5134_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1111, LB5134_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  2. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1212, LB5137_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1212, LB5137_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  3. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1212, LB5136_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1212, LB5136_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  4. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1111, LB5133_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1111, LB5133_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  5. Effect of carbon on formation of mixed solid solutions during mechanochemical synthesis of Ni-Al-Mo-C mixtures and ordering of solutions during heating

    Science.gov (United States)

    Portnoi, V. K.; Leonov, A. V.; Streletskii, A. N.; Logacheva, A. I.

    2014-03-01

    Solid solutions Ni(Al, Mo, C) are formed via milling the Ni2.8Al1Mo0.2 and Ni3Al0.8Mo0.2 and graphite-containing Ni2.8Al1Mo0.2C(0.25, 0.5) and Ni3Al0.8Mo0.2C(0.25, 0.5) mixtures. In this case, some amount of Mo remains beyond the solid solution. Graphite added to a starting mixture decreases the Mo solubility and favors the amorphization of solid solutions. The complete amorphization was found for the mixture with the 5 at % C and 5 at % Mo, which was added instead of Ni. The heating of mechanically synthesized (MS) powder alloys leads to the ordering of carbon-free and carbon-containing solid solutions with the formation of the L12 and E21 structure, respectively. In the course of the ordering of the Ni(Al, Mo, C) solid solutions, Mo and carbon precipitate in the form of the molybdenum carbide (Mo2C) second phase. The hardness of the MS three-phase Ni-Al-Mo-C solid solutions subjected to hot isostatic pressing is determined by the mass fraction of the formed Mo2C carbide. It is shown that the carbon content in the multicomponent antiperovskite can be estimated by analyzing the ratio of integral intensities of superlattice reflections I (100)/ I (110).

  6. Thermodynamic properties of binary mixtures containing dimethyl carbonate+2-alkanol: Experimental data, correlation and prediction by ERAS model and cubic EOS

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Mohammad, E-mail: m.almasi@khouzestan.srbiau.ac.ir [Department of Chemistry, Science and Research Branch, Islamic Azad University, Khouzestan (Iran, Islamic Republic of)

    2013-03-01

    Densities and viscosities for binary mixtures of dimethyl carbonate with 2-propanol up to 2-heptanol were measured at various temperatures and ambient pressure. From experimental data, excess molar volumes, V{sub m}{sup E}. were calculated and correlated by the Redlich–Kister equation to obtain the binary coefficients and the standard deviations. Excess molar volumes, V{sub m}{sup E}, are positive for all studied mixtures over the entire range of the mole fraction. The ERAS-model has been applied for describing the binary excess molar volumes and also Peng–Robinson–Stryjek–Vera (PRSV) equation of state (EOS) has been used to predict the binary excess molar volumes and viscosities. Also several semi-empirical models were used to correlate the viscosity of binary mixtures.

  7. Thermodynamic properties of binary mixtures containing dimethyl carbonate+2-alkanol: Experimental data, correlation and prediction by ERAS model and cubic EOS

    Science.gov (United States)

    Almasi, Mohammad

    2013-03-01

    Densities and viscosities for binary mixtures of dimethyl carbonate with 2-propanol up to 2-heptanol were measured at various temperatures and ambient pressure. From experimental data, excess molar volumes, VmE. were calculated and correlated by the Redlich-Kister equation to obtain the binary coefficients and the standard deviations. Excess molar volumes, VmE, are positive for all studied mixtures over the entire range of the mole fraction. The ERAS-model has been applied for describing the binary excess molar volumes and also Peng-Robinson-Stryjek-Vera (PRSV) equation of state (EOS) has been used to predict the binary excess molar volumes and viscosities. Also several semi-empirical models were used to correlate the viscosity of binary mixtures.

  8. Sorption of a phenols mixture in aqueous solution with activated carbon; Sorcion de una mezcla de fenoles en solucion acuosa con carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Mejia M, D

    2004-07-01

    The constant population growth and the quick industrialization have caused severe damages to our natural aquifer resources for a great variety of organic and inorganic pollutants. Among these they are those phenol compounds that are highly toxic, resistant (to the degradation chemistry) and poorly biodegradable. The phenolic compounds is used in a great variety of industries, like it is the production of resins, nylon, plastifiers, anti-oxidants, oil additives, drugs, pesticides, colorants, explosives, disinfectants and others. The disseminated discharges or effluents coming from the industrial processes toward lakes and rivers are causing a growing adverse effect in the environment, as well as a risk for the health. Numerous studies exist on the phenols removal and phenols substituted for very varied techniques, among them they are the adsorption in activated carbon. This finishes it has been used successfully for the treatment of residual waters municipal and industrial and of drinking waters and it is considered as the best technique available to eliminate organic compounds not biodegradable and toxic present in aqueous solution (US EPA, 1991). However a little information exists on studies carried out in aqueous systems with more of a phenolic compound. The activated carbon is broadly used as adsorbent due to its superficial properties in the so much treatment of water as of aqueous wastes, adsorbent for the removal of organic pollutants. The main objective of this work is the adsorption of a aqueous mixture of phenol-4 chloro phenol of different concentrations in activated carbon of mineral origin of different meshes and to diminish with it their presence in water. The experiments were carried out for lots, in normal conditions of temperature and pressure. The experimental results show that the removal capacity depends so much of the superficial properties of the sorbent like of the physical properties and chemical of the sorbate. The isotherms were carried

  9. Removal of two ionic dyes from water by MgO-loaded porous carbons prepared through one-step process from poly(ethylene terephthalate)/magnesium carbonate mixtures

    Indian Academy of Sciences (India)

    A Czyżewski; J Karolczyk; A Usarek; J Przepiórski

    2012-04-01

    Mixtures of poly(ethylene terephthalate) and magnesium carbonate at different weight ratios were heated up to 850°C in argon atmosphere. During heating, components of the initial mixtures underwent thermal decomposition yielding porous carbon materials loaded with different amounts of magnesium oxide. Structural characteristics of the prepared materials were determined from adsorption/desorption isotherms of nitrogen, measured at 77 K. For reference, portions of the products obtained were acid-washed to obtain MgO-free carbons. Pore structures of the prepared materials were strongly dependent on the quantitative compositions of starting mixtures. As a rule, specific surface areas determined for acid-washed materials were much higher than those for MgO-loaded carbons. The adsorption abilities of obtained materials towards cationic (Basic Red 18) and anionic (Reactive Red 198) dyes as model contaminants were examined. Surprisingly, in spite of relatively low specific surface areas, substantially high adsorption of the dyes on MgO-loaded carbons was observed. An influence of specific surface area and the role of magnesium oxide presence on the adsorption capacity of the acquired sorbents were studied.

  10. Estimation of the minimum Prandtl number for binary gas mixtures formed with light helium and certain heavier gases: Application to thermoacoustic refrigerators

    International Nuclear Information System (INIS)

    This paper addresses a detailed procedure for the accurate estimation of low Prandtl numbers of selected binary gas mixtures. In this context, helium (He) is the light primary gas and the heavier secondary gases are nitrogen (N2), oxygen (O2), xenon (Xe), carbon dioxide (CO2), methane (CH4), tetrafluoromethane or carbon tetrafluoride (CF4) and sulfur hexafluoride (SF6). The three thermophysical properties forming the Prandtl number of binary gas mixtures Prmix are heat capacity at constant pressure Cp,mix (thermodynamic property), viscosity ηmix (transport property) and thermal conductivity λmix (transport property), which in general depend on temperature T and molar gas composition w. The precise formulas for the calculation of the trio Cp,mix, ηmix, and λmix are gathered from various dependable sources. When the set of computed Prmix values for the seven binary gas mixtures He + N2, He + O2, He + Xe, He + CO2, He + CH4, He + CF4, He + SF6 at atmospheric conditions T = 300 K, p = 1 atm is plotted against the molar gas composition w on the w-domain [0,1], the family of Prmix(w) curves exhibited distinctive concave shapes. In the curves format, all Prmix(w) curves initiate with Pr ∼ 0.7 at w = 0 (associated with light primary He). Forthwith, each Prmix(w) curve descends to a unique minimum and thereafter ascend back to Pr ∼ 0.7 at the terminal point w = 1 (connected to heavier secondary gases). Overall, it was found that among the seven binary gas mixtures tested, the He + Xe gas mixture delivered the absolute minimum Prandtl number Prmix,min = 0.12 at the optimal molar gas composition wopt = 0.975. - Highlights: →Accurate estimation of low Prandtl numbers for some helium-based binary gas mixtures. →The thermophysical properties of the gases are calculated with precise formulas. →The absolute minimum Prandtl number is delivered by the He + Xe binary gas mixture. →Application to experimental thermoacoustic refrigerators

  11. New (p, {rho}, T) data for carbon dioxide - Nitrogen mixtures from (250 to 400) K at pressures up to 20 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Mondejar, M.E.; Martin, M.C. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, Escuela de Ingenierias Industriales, Universidad de Valladolid, Paseo del Cauce, 59, E-47011 Valladolid (Spain); Span, R. [Lehrstuhl fuer Thermodynamik, Fakultaet fuer Maschinenbau Gebaeude IB, Ebene 5, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum (Germany); Chamorro, C.R., E-mail: cescha@eis.uva.es [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, Escuela de Ingenierias Industriales, Universidad de Valladolid, Paseo del Cauce, 59, E-47011 Valladolid (Spain)

    2011-12-15

    Highlights: > Densities of two mixtures of nitrogen and carbon dioxide are reported. > Experimental data are compared with calculated densities from the equation of state. > Experimental data agree with the equation of state for low pressures above 300 K. > The equation of state shows higher deviations than expected at high pressures. - Abstract: Comprehensive (p, {rho}, T) measurements on two binary mixtures (0.10 CO{sub 2} + 0.90 N{sub 2} and 0.15 CO{sub 2} + 0.85 N{sub 2}) were carried out in the gas phase at seven isotherms between (250 and 400) K and pressures up to 20 MPa using a single sinker densimeter with magnetic suspension coupling. A total of 69 (p, {rho}, T) data for the first mixture and 69 (p, {rho}, T) data for the second are presented in this article. The uncertainty in density was estimated to be (0.02 to 0.15)%, while the uncertainty in temperature was 3.9 mK and the uncertainty in pressure was less than 0.015% (coverage factor k = 2). Experimental results were compared with densities calculated from the GERG equation of state and with data reported by other authors for similar mixtures. Results yielded that, while deviations between experimental data and values calculated from the GERG equation were lower than 0.05% in density for low pressures, the relative error at high pressures and low temperatures increased to about (0.2 to 0.3)%. The main aim of this work was to contribute to an accurate density data base for CO{sub 2}/N{sub 2} mixtures and to check or improve equations of state existing for these binary mixtures.

  12. FORMATION OF S-BEARING SPECIES BY VUV/EUV IRRADIATION OF H{sub 2}S-CONTAINING ICE MIXTURES: PHOTON ENERGY AND CARBON SOURCE EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Juang, K.-J.; Qiu, J.-M.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Jiménez-Escobar, A.; Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Fung, H.-S. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Ip, W.-H. [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2015-01-10

    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H{sub 2}S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H{sub 2}S and CO{sub 2}:H{sub 2}S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS{sub 2}, OCS, SO{sub 2}, etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H{sub 2}S ice mixtures is higher than that of CO{sub 2}:H{sub 2}S ice mixtures; (2) a lower concentration of H{sub 2}S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS{sub 2} differ significantly upon VUV and EUV irradiations. Furthermore, CS{sub 2} was produced only after VUV photoprocessing of CO:H{sub 2}S ices, while the VUV-induced production of SO{sub 2} occurred only in CO{sub 2}:H{sub 2}S ice mixtures. More generally, the production yields of OCS, H{sub 2}S{sub 2}, and CS{sub 2} were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H{sub 2}S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments.

  13. FORMATION OF S-BEARING SPECIES BY VUV/EUV IRRADIATION OF H2S-CONTAINING ICE MIXTURES: PHOTON ENERGY AND CARBON SOURCE EFFECTS

    International Nuclear Information System (INIS)

    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H2S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H2S and CO2:H2S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS2, OCS, SO2, etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H2S ice mixtures is higher than that of CO2:H2S ice mixtures; (2) a lower concentration of H2S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS2 differ significantly upon VUV and EUV irradiations. Furthermore, CS2 was produced only after VUV photoprocessing of CO:H2S ices, while the VUV-induced production of SO2 occurred only in CO2:H2S ice mixtures. More generally, the production yields of OCS, H2S2, and CS2 were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H2S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments

  14. Sorption of methane and carbon dioxide mixtures in Polish hard coals considered in terms of adsorption-absorption model

    Science.gov (United States)

    Jodłowski, G. S.; Baran, P.; Wójcik, M.; Nodzeński, A.; Porada, St.; Milewska-Duda, J.

    2007-04-01

    The measurements of gas mixture sorption of CO 2 + CH 4 (50%:50%) on hard coals were carried out using an original measurement method. The accuracy of the experimental data was controlled by using a gas chromatograph. Experimental sorption isotherms of individual gases were used for the simulation of sorption of their mixtures. A good agreement was obtained between the simulated and experimental data.

  15. Synthesis of single-walled carbon nanotubes by the pyrolysis of a compression activated iron(II) phthalocyanine/phthalocyanine metal-free derivative/ferric acetate mixture

    Indian Academy of Sciences (India)

    Tawanda Mugadza; Edith Antunes; Tebello Nyokong

    2015-07-01

    This paper reports on the synthesis of single walled carbon nanotubes (SWCNTs) from an activated mixture of iron (II) phthalocyanine, its metal-free derivative and ferric acetate. The powdered mixture was activated by compression into a tablet by applying a force of 300 kN, followed by re-grinding into powder and heating it to high temperatures (1000°C). The activation by compression resulted in more than 50% debundling of SWCNTs as judged by transition electron microscopy. Acid functionalization of the SWCNTs was confirmed by the increase in the D:G ratio from 0.56 to 0.87 in the Raman spectra and the observation of an average of one carboxylic acid group per 13 carbon atoms from thermogravimetric analysis (TGA). TGA also showed that the initial decomposition temperatures for the activated and non-activated mixtures to be 205°C and 245°C, respectively. Hence, activation leads to the lowering of the pyrolysis temperature of the phthalocyanines. X-ray diffraction, electronic absorption and Fourier transform infrared spectra were also employed to characterize the SWCNT.

  16. Microporous-mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them

    Science.gov (United States)

    Härmas, M.; Thomberg, T.; Kurig, H.; Romann, T.; Jänes, A.; Lust, E.

    2016-09-01

    Various electrochemical methods have been applied to establish the electrochemical characteristics of the electrical double layer capacitor (EDLC) consisting of the 1 M triethylmethylammonium tetrafluoroborate solution in acetonitrile and activated carbon based electrodes. Activated microporous carbon materials used for the preparation of electrodes have been synthesized from the hydrothermal carbonization product (HTC) prepared via hydrothermal carbonization process of D-(+)-glucose solution in H2O, followed by activation with ZnCl2, KOH or their mixture. Highest porosity and Brunauer-Emmett-Teller specific surface area (SBET = 2150 m2 g-1), micropore surface area (Smicro = 2140 m2 g-1) and total pore volume (Vtot = 1.01 cm3 g-1) have been achieved for HTC activated using KOH with a mass ratio of 1:4 at 700 °C. The correlations between SBET, Smicro, Vtot and electrochemical characteristics have been studied to investigate the reasons for strong dependence of electrochemical characteristics on the synthesis conditions of carbon materials studied. Wide region of ideal polarizability (ΔV ≤ 3.0 V), very short characteristic relaxation time (0.66 s), and high specific series capacitance (134 F g-1) have been calculated for the mentioned activated carbon material, demonstrating that this system can be used for completing the EDLC with high energy- and power densities.

  17. In vitro solubility of uranium tetrafluoride with oxidizing medium compared with in vivo solubility in rats

    International Nuclear Information System (INIS)

    A simple in vitro solubility test for UF4 was developed to investigate effects of addition of enzymes, proteins or gases (eg O2) to synthetic biological fluid or Gamble solvent. Tests were made concomitantly with an in vivo inhalation study using male rats. With Gamble solvent alone, UF4 showed class Y behaviour with dissolution half-time 300-500 days. When O2 or carbonates were added to Gamble solvent, UF4 showed class W behaviour (half-time 25-50 days). In the presence of oxygen and pyrogallol, the superoxide ion was formed and UF4 behaved as class D (half-time 2-3 days). Results correlated with those of the inhalation experiment in which dissolution half-time was 2.5 and 5.2 days. Data also agree with urine monitoring data for workers exposed to UF4 over 20 years. (author)

  18. Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Moghadasi, Jalil; Yousefi, Fakhri [Shiraz University, Department of Chemistry, Shiraz (Iran); Papari, Mohammad Mehdi; Faghihi, Mohammad Ali [Shiraz University of Technology, Department of Chemistry, Shiraz (Iran); Mohsenipour, Ali Asghar [University of Waterloo, Department of Chemical Engineering, Waterloo (Canada)

    2009-09-15

    It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO{sub 2}-He, CO{sub 2}-Ne, CO{sub 2}-Ar, CO{sub 2}-Kr, and CO{sub 2}-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K

  19. One-step "green" preparation of graphene nanosheets and carbon nanospheres mixture by electrolyzing graphite rob and its application for glucose biosensing.

    Science.gov (United States)

    Yin, Huanshun; Zhou, Yunlei; Meng, Xiaomeng; Shang, Kun; Ai, Shiyun

    2011-12-15

    The graphene nanosheets and carbon nanospheres mixture (GNS-CNS) was prepared by electrolyzing graphite rob in KNO(3) solution under constant current, which was characterized by TEM, AFM, SEM, FT-IR, XRD, XPS, TGA and UV-vis. The nano-mixture can keep stable in water for more than one month. Based on this kind of mixture material, a novel electrochemical biosensing platform for glucose determination was developed. Cyclic voltammetry of glucose oxidase (GOD) immobilized on GNS-CNS/GCE exhibited a pair of well-defined quasi-reversible redox peaks at -0.488 V (E(pa)) and -0.509 V (E(pc)) by direct electron transfer between the protein and the electrode. The charge-transfer coefficient (α) was 0.51, the electron transfer rate constant was 2.64 s(-1) and the surface coverage of HRP was 3.18×10(-10) mol cm(-2). The immobilized GOD could retain its bioactivity and catalyze the reduction of dissolved oxygen. The glucose biosensor has a linear range from 0.4 to 20 mM with detection limit of 0.1 mM. Moreover, the biosensor exhibits acceptable reproducibility and storage stability. The fabricated biosensor was further used to determine glucose in human plasma sample with the recoveries from 96.83% to 105.52%. Therefore, GOD/GNS-CNS/GCE could be promisingly applied to determine blood sugar concentration in the practical clinical analysis. PMID:21959225

  20. Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment

    Science.gov (United States)

    Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar

    2009-09-01

    It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.

  1. FAST TRACK COMMUNICATION: Effects of reducing interferers in a binary gas mixture on NO2 gas adsorption using carbon nanotube networked films based chemiresistors

    Science.gov (United States)

    Penza, M.; Rossi, R.; Alvisi, M.; Signore, M. A.; Serra, E.

    2009-04-01

    Analysis of binary gas mixtures using chemiresistors based on carbon nanotubes (CNTs) networked films has been performed for chemical detection up to a sub-ppm level. The effects of individual interfering analytes of reducing H2S and NH3 gases on oxidizing NO2 gas adsorption in CNTs tangled films are considered. The CNTs are grown by plasma-enhanced chemical vapour deposition technology onto inexpensive alumina substrates, coated by cobalt nanosized catalyst. Charge transfer between adsorbed gas molecules and CNT networks, characterized by a semiconducting p-type electrical transport, occurs depending on opposite trend in the sensor response to the electron-donating interfering gases (H2S, NH3) and target electron-withdrawing NO2 gas causing a compensation of the charge transport, upon given working conditions. This compensated exchange of electrical charge affects the limit of detection of the targeted NO2 gas sensed in different real-world binary gas mixtures of reducing interferers of H2S and NH3. In addition, the functionalization of the CNT films with Au nanoclusters enhanced the sensitivity of the chemiresistor and tuned the compensation of electrical charge crossover in the selected binary oxido-reducing mixtures.

  2. Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture

    Science.gov (United States)

    Lee, Min-Sang; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-03-01

    In this study, N-containing pitch-based activated carbons (NPCs) were prepared using petroleum pitch with a low softening point and melamine with a high nitrogen content. The major advantage of the preparation method is that it enables variations in chemical structures and textural properties by steam activation at high temperatures. The adequate micropore structures, appropriate chemical modifications, and high adsorption enthalpies of NPCs are favorable for CO2 adsorption onto carbon surfaces. Furthermore, the structure generates a considerable gas/N-containing carbon interfacial area, and provides selective access to CO2 molecules over N2 molecules by offering an increased number of active sites on the carbon surfaces. The highest CO2/N2 selectivity, i.e., 47.5, and CO2 adsorption capacity for a CO2/N2 (0.15:0.85) binary gas mixture, i.e., 5.30 wt%, were attained at 298 K. The NPCs also gave reversible and durable CO2-capturing performances. All the results suggest that NPCs are promising CO2 sorbents, which can meet the challenges of current CO2 capture and separation techniques.

  3. Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture

    Science.gov (United States)

    Lee, Min-Sang; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-01-01

    In this study, N-containing pitch-based activated carbons (NPCs) were prepared using petroleum pitch with a low softening point and melamine with a high nitrogen content. The major advantage of the preparation method is that it enables variations in chemical structures and textural properties by steam activation at high temperatures. The adequate micropore structures, appropriate chemical modifications, and high adsorption enthalpies of NPCs are favorable for CO2 adsorption onto carbon surfaces. Furthermore, the structure generates a considerable gas/N-containing carbon interfacial area, and provides selective access to CO2 molecules over N2 molecules by offering an increased number of active sites on the carbon surfaces. The highest CO2/N2 selectivity, i.e., 47.5, and CO2 adsorption capacity for a CO2/N2 (0.15:0.85) binary gas mixture, i.e., 5.30 wt%, were attained at 298 K. The NPCs also gave reversible and durable CO2-capturing performances. All the results suggest that NPCs are promising CO2 sorbents, which can meet the challenges of current CO2 capture and separation techniques. PMID:26987683

  4. Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures

    OpenAIRE

    Dayun Yan; Jiadao Wang; Fengbin Liu

    2015-01-01

    In the incubation period of ultrasonic cavitation, due to the impact of microjets on the material surface, the needle-like microjet-pits are formed. Because the formation of microjet-pits relates with the evolution of cavitation erosion on engineering materials, corresponding study will promote the understanding on the mechanism of cavitation erosion. However, little study on the microjet-pits has been carried out, especially in the particles-water mixture. In this study, we firstly demonstra...

  5. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    Energy Technology Data Exchange (ETDEWEB)

    Myint, P. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Firoozabadi, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  6. Congener-specific carbon isotopic analysis of technical PCB and PCN mixtures using two-dimensional gas chromatography-isotope ratio mass spectrometry.

    Science.gov (United States)

    Horii, Yuichi; Kannan, Kurunthachalam; Petrick, Gert; Gamo, Toshitaka; Falandysz, Jerzy; Yamashita, Nobuyoshi

    2005-06-01

    Analysis of stable carbon isotope fractionation is a useful method to study the sources and fate of anthropogenic organic contaminants such as polychlorinated biphenyls (PCBs) in the environment. To evaluate the utility of carbon isotopes, determination of isotopic ratios of 13C/12C in source materials, for example, technical PCB preparations, is needed. In this study, we determined delta13C values of 31 chlorobiphenyl (CB) congeners in 18 technical PCB preparations and 15 chloronaphthalene (CN) congeners in 6 polychlorinated naphthalene preparations using two-dimensional gas chromatography-combustion furnace-isotope ratio mass spectrometry (2DGC-C-IRMS). Development of 2DGC-IRMS enabled improved resolution and sensitivity of compound-specific carbon isotope analysis (CSIA) of CB or CN congeners. Delta13C values of PCB congeners ranged from -34.4 (Delors) to -22.0/1000 (Sovol). Analogous PCB preparations with similar chlorine content, but different geographical origin, had different delta13C values. PCB preparations from Eastern European countries--Delors, Sovol, Trichlorodiphenyl, and Chlorofen--had distinct delta13C values. PCB mixtures showed increased 13C depletion with increasing chlorine content. Delta13C values for individual CB congeners varied depending on the degree of chlorination in technical mixtures. Delta13C values of CN congeners in Halowaxes ranged from -26.3 to -21.7/1000 and these values are within the ranges observed for PCBs. This study establishes the range of delta13C values in technical PCB and PCN preparations, which may prove to be useful in the determination of sources of these compounds in the environment. This is the first study to employ 2DGC-IRMS analysis of delta13C values in technical PCB and PCN preparations.

  7. Hydrate-based removal of carbon dioxide and hydrogen sulphide from biogas mixtures: Experimental investigation and energy evaluations

    International Nuclear Information System (INIS)

    This paper presents an experimental study on the application of gas hydrate technology to biogas upgrading. Since CH4, CO2 and H2S form hydrates at quite different thermodynamic conditions, the capture of CO2 and H2S by means of gas hydrate crystallization appears to be a viable technological alternative for their removal from biogas streams. Nevertheless, hydrate-based biogas upgrading has been poorly investigated. Works found in literature are mainly at a laboratory scale and concern with thermodynamic and kinetic fundamental studies. The experimental campaign was carried out with an up-scaled apparatus, in which hydrates are produced in a rapid manner, with hydrate formation times of few minutes. Two types of mixtures were used: a CH4/CO2 mixture and a CH4/CO2/H2S mixture. The objective of the investigation is to evaluate the selectivity and the separation efficiency of the process and the role of hydrogen sulphide in the hydrate equilibrium. Results show that H2S can be captured along with CO2 in the same process. The maximum value of the separation factor, defined as the ratio between the number of moles of CO2 and the number of moles of CH4 removed from the gas phase, is 11. In the gas phase, a reduction of CO2 of 24.5% in volume is achievable in 30 min. Energy costs of a real 30-min separation process, carried out in the experimental campaign, are evaluated and compared with those obtained from theoretical calculations. Some aspects for technology improvement are discussed. - Highlights: • Tests on CO2 and H2S removal from biogas mixture via gas hydrates were carried out. • An up-scaled apparatus was used with hydrate formation times of few minutes. • CO2 hydrates were produced through spraying aqueous solution into the gas phase. • H2S was completely captured along with CO2 in 30- minute formation process. • Aspects for process improvement and energy costs are evaluated

  8. Investigation of HCCI Combustion of Diethyl Ether and Ethanol Mixtures Using Carbon 14 Tracing and Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mack, J H; Dibble, R W; Buchholz, B A; Flowers, D L

    2004-01-16

    Despite the rapid combustion typically experienced in Homogeneous Charge Compression Ignition (HCCI), components in fuel mixtures do not ignite in unison or burn equally. In our experiments and modeling of blends of diethyl ether (DEE) and ethanol (EtOH), the DEE led combustion and proceeded further toward completion, as indicated by {sup 14}C isotope tracing. A numerical model of HCCI combustion of DEE and EtOH mixtures supports the isotopic findings. Although both approaches lacked information on incompletely combusted intermediates plentiful in HCCI emissions, the numerical model and {sup 14}C tracing data agreed within the limitations of the single zone model. Despite the fact that DEE is more reactive than EtOH in HCCI engines, they are sufficiently similar that we did not observe a large elongation of energy release or significant reduction in inlet temperature required for light-off, both desired effects for the combustion event. This finding suggests that, in general, HCCI combustion of fuel blends may have preferential combustion of some of the blend components.

  9. Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide

    DEFF Research Database (Denmark)

    Musko, Nikolai; Jensen, Anker Degn; Baiker, Alfons;

    2012-01-01

    performed using a 5wt% Pd on activated carbon in custom-designed high pressure autoclaves at 323K. The Cubic-Plus-Association (CPA) equation of state was employed to model the phase behaviour of the experimentally studied systems. CPA binary interaction parameters were estimated based on the experimental...

  10. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, Oleksandr; Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Petr, Martin; Choukourov, Andrei; Hanuš, Jan; Biederman, Hynek

    2013-07-01

    Hydrogenated amorphous carbon thin films were deposited by RF plasma polymerization in argon/n-hexane gas mixture on polyethylene terephthalate (PET) foils. It was found that such deposited films may significantly improve the barrier properties of PET. It was demonstrated that the principal parameter that influences barrier properties of such deposited films towards oxygen and water vapor is the density of the coatings. Moreover, it was shown that for achieving good barrier properties it is advantageous to deposit coatings with very low thickness. According to the presented results, optimal thickness of the coating should not be higher than several tens of nm. - Highlights: • a-C:H films were prepared by plasma polymerization in Ar/n-hexane atmosphere. • Barrier properties of coatings are dependent on their density and thickness. • Highest barrier properties were observed for films with thickness 15 nm.

  11. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture

    International Nuclear Information System (INIS)

    Hydrogenated amorphous carbon thin films were deposited by RF plasma polymerization in argon/n-hexane gas mixture on polyethylene terephthalate (PET) foils. It was found that such deposited films may significantly improve the barrier properties of PET. It was demonstrated that the principal parameter that influences barrier properties of such deposited films towards oxygen and water vapor is the density of the coatings. Moreover, it was shown that for achieving good barrier properties it is advantageous to deposit coatings with very low thickness. According to the presented results, optimal thickness of the coating should not be higher than several tens of nm. - Highlights: • a-C:H films were prepared by plasma polymerization in Ar/n-hexane atmosphere. • Barrier properties of coatings are dependent on their density and thickness. • Highest barrier properties were observed for films with thickness 15 nm

  12. Thermodynamic and Experimental Study of the Energetic Cost Involved in the Capture of Carbon Dioxide by Aqueous Mixtures of Commonly Used Primary and Tertiary Amines.

    Science.gov (United States)

    Arcis, Hugues; Coulier, Yohann; Coxam, Jean-Yves

    2016-01-01

    The capture of carbon dioxide with chemical solvents is one solution to mitigate greenhouse gas emissions from anthropogenic sources and thus tackle climate change. Recent research has been focused on optimizing new kinds of advanced absorbents including aqueous amine blends, but critical downsides such as the large energetic cost involved with the industrial process remain. To address this issue, a better understanding of the energetic interactions existing in solution is necessary. In this paper, we report direct experimental measurements of the energy cost involved in the solvation of CO2 in two aqueous amine blends at different temperatures. The chemical solvents were designed as aqueous mixtures of commonly used primary and tertiary amines to study the influence of the different chemical properties inferred by the amine class. We have also applied a thermodynamic model to represent the energetic effects that take place in solution during CO2 dissolution in these mixtures, where all parameters were taken from previous studies focused on single amine absorbents. The noteworthy agreement observed with the reported experimental heats of absorption and with literature vapor liquid equilibrium properties confirmed the relevance of the underlying molecular mechanisms considered in our model, and suggest that this model would prove useful to investigate CO2 dissolution in other amine blends.

  13. Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride

    International Nuclear Information System (INIS)

    Highlights: • Solubilities of carbon dioxide in six renewable deep eutectic solvents (DESs) have been reported. • The experimental data were well correlated by Henry’s law. • The dissolution Gibbs free energy, enthalpy, and entropy changes were derived. • The absorption capacities of CO2 in present DESs and other DESs as well as several ionic liquids were compared. - Abstract: The solubilities of carbon dioxide (CO2) in the renewable deep eutectic solvents (DESs) containing levulinic acid (or furfuryl alcohol) and choline chloride were determined at temperatures (303.15, 313.15, 323.15, and 333.15) K and pressures up to 600.0 kPa using an isochoric saturation method. The mole ratios of levulinic acid (or furfuryl alcohol) to choline chloride were fixed at 3:1, 4:1 and 5:1. Standard Gibbs free energy, dissolution enthalpy and dissolution entropy were calculated from Henry’s law constant of CO2 in the DESs. Results indicated that levulinic acid based DESs are more effective to capture CO2 than furfuryl alcohol based ones. The solubility of CO2 in the DESs increased with increasing mole ratio of levulinic acid (or furfuryl alcohol) to choline chloride as well as pressure and decreased with increasing temperature

  14. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    Science.gov (United States)

    Izac, Marie; Garnier, Dominique; Speck, Denis; Lindley, Nic D

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  15. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    Directory of Open Access Journals (Sweden)

    Marie Izac

    Full Text Available It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  16. Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar.

    Science.gov (United States)

    Darby, Ian; Xu, Cheng-Yuan; Wallace, Helen M; Joseph, Stephen; Pace, Ben; Bai, Shahla Hosseini

    2016-06-01

    This study aims to examine the effects of different organic treatments including compost (generated from cattle hide waste and plant material), compost mixed with biochar (compost + biochar) and a new formulation of organo-mineral biochar (produced by mixing biochar with clay, minerals and chicken manure) on carbon (C) nitrogen (N) cycling. We used compost at the rate of 20 t ha(-1), compost 20 t ha(-1) mixed with 10 t ha(-1) biochar (compost + biochar) and organo-mineral biochar which also contained 10 t ha(-1) biochar. Control samples received neither of the treatments. Compost and compost + biochar increased NH4 (+) -N concentrations for a short time, mainly due to the release of their NH4 (+) -N content. Compost + biochar did not alter N cycling of the compost significantly but did significantly increase CO2 emission compared to control. Compost significantly increased N2O emission compared to control. Compost + biochar did not significantly change N supply and also did not decrease CO2 and N2O emissions compared to compost, suggesting probably higher rates of biochar may be required to be added to the compost to significantly affect compost-induced C and N alteration. The organo-mineral biochar had no effect on N cycling and did not stimulate CO2 and N2O emission compared to the control. However, organo-mineral biochar maintained significantly higher dissolved organic carbon (DOC) than compost and compost + biochar from after day 14 to the end of the incubation. Biochar used in organo-mineral biochar had increased organic C adsorption which may become available eventually. However, increased DOC in organo-mineral biochar probably originated from both biochar and chicken manure which was not differentiated in this experiment. Hence, in our experiment, compost, compost + biochar and organo-mineral biochar affected C and N cycling differently mainly due to their different content. PMID:26924699

  17. Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H{sub 2}O mixture

    Energy Technology Data Exchange (ETDEWEB)

    Samiento-Bustos, E. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Rodriguez, J.G. Gonzalez [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico)], E-mail: ggonzalez@uaem.mx; Uruchurtu, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Dominguez-Patino, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); U.A.E.M. Facultad de Ciencias Quimicas e Ingenieria, Av. Universidad 1001, 62209, Cuernavaca, Morelos (Mexico); Salinas-Bravo, V.M. [Instituto de Investigaciones Electricas, Gerencia de Materiales y Proceso Quimicos, Av. Reforma 113, Col. Palmira, CP 62490, Cuernavaca, Morelos (Mexico)

    2008-08-15

    The effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the mixture LiBr (55%) + ethylene glycol + H{sub 2}O at room temperature has been evaluated. Used inhibitors included LiNO{sub 3} (Lithium Nitrate), Li{sub 2}MoO{sub 4} (Lithium Molybdate) and Li{sub 2}CrO{sub 4} (Lithium Chromate) at concentrations of 5, 20 and 50 ppm. Electrochemical techniques included potentiodynamic polarization curves, electrochemical noise resistance (EN) and electrochemical impedance spectroscopy (EIS) measurements. Additionally, adsorption isotherms were calculated. The results obtained showed that both, the corrosion rate and the passive current density decreased with inhibitors, and, in general terms, inhibitors efficiency increased with inhibitor concentration, except in the case of Li{sub 2}CrO{sub 4,} where the highest efficiency was obtained with 20 ppm of inhibitor. Pitting potential with 5 ppm of inhibitor, regardless its chemical composition, was more active than in absence of inhibitor, increased at 20 ppm, especially with Li{sub 2}CrO{sub 4}, and remained unaltered with 50 ppm. EN measurements showed that at 5 ppm of inhibitor, the number of film rupture/repassivation events was higher than that obtained at 20 or 50 ppm. Adsorption isotherms suggested a different adsorption mechanism for each inhibitor, whereas EIS results suggested that the corrosion process when nitrates were added was under charge transfer control, but in the case of molybdates or chromates was under diffusion control.

  18. Numerical Simulation and Analysis of Migration Law of Gas Mixture Using Carbon Dioxide as Cushion Gas in Underground Gas Storage Reservoir

    Institute of Scientific and Technical Information of China (English)

    ChuanKai Niu; YuFei Tan

    2014-01-01

    One of the major technical challenges in using carbon dioxide ( CO2 ) as part of the cushion gas of the underground gas storage reservoir ( UGSR) is the mixture of CO2 and natural gas. To decrease the mixing extent and manage the migration of the mixed zone, an understanding of the mechanism of CO2 and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper, a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City, China. Using the validated model, the mixed characteristic of CO2 and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly, the impacts of the following factors on the migration mechanism are studied:the ratio of CO2 injection, the reservoir porosity and the initial operating pressure. Based on the results, the optimal CO2 injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2 as cushion gas for UGSR in real projects.

  19. Association constants in solutions of lithium salts in butyrolactone and a mixture of propylene carbonate with 1,2-dimethoxyethane (1 : 1), according to conductometric data

    Science.gov (United States)

    Chernozhuk, T. V.; Sherstyuk, Yu. S.; Novikov, D. O.; Kalugin, O. N.

    2016-02-01

    A conductometric study is performed with solutions of lithium bis(oxalato)borate (LiBOB) in γ-butyrolactone (γ-BL) at 278.15-388.15 K and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), LiBOB, and lithium tetrafluoroborate (LiBF4) in mixtures of propylene carbonate and 1,2-dimethoxyethane (PC + 1,2-DME) (1 : 1) at 278.15-348.15 K. Limiting molar electrical conductivities (LMECs) and association constants ( K a) in the studied solutions of electrolytes are determined using the Lee-Wheaton equation. The effect temperature, the nature of the solvent, and the properties of the anion have on the conductivity and interparticle interactions in solutions of lithium salts in γ-BL and PC + 1,2-DME (1 : 1) is established. It was concluded that the studied solutions are characterized by low values of their association constants. It was found that the BOB;- anion destroys the structure of the solvent.The thickness of the dynamic solvation shell of ions (Δ R) remains constant for both solvents over the studied range of temperatures, and Δ R is significantly greater for Li+ than for other ions.

  20. Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1112, LB4865_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1112, LB4865_V)' providing data by calculation of mass density in the single-phase region(s) from low-pressure dilatometric measurements of the molar excess volume at variable mole fraction and constant temperature.

  1. Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1511, LB4517_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1511, LB4517_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  2. Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1212, LB4519_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1212, LB4519_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  3. Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1111, LB4518_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C6H12O3 2,4,6-Trimethyl-1,3,5-trioxane (VMSD1111, LB4518_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  4. Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1211, LB4862_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1211, LB4862_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  5. Dissipation of a commercial mixture of polyoxyethylene amine surfactants in aquatic outdoor microcosms: Effect of water depth and sediment organic carbon.

    Science.gov (United States)

    Rodriguez-Gil, Jose Luis; Lissemore, Linda; Solomon, Keith; Hanson, Mark

    2016-04-15

    This study optimized existing analytical approaches and characterized the effect of sediment total organic carbon (0.05-2.05% TOC), and water depth (15, 30, and 90cm) on the fate of MON 0818, a commercial mixture of polyoxyethylene amine surfactants (POEAs), in outdoor microcosms. Mixtures of POEAs are commonly used as adjuvants in commercial herbicide formulations containing glyphosate. Until recently, analytical methods sensitive enough to monitor environmental concentrations of POEAs in aquatic systems were not available. After optimizing recently developed analytical methods, we found that the combined use of accelerated solvent extraction (ASE) and liquid chromatography-tandem mass spectrometry provided a reliable approach for determining the concentration of sediment-adsorbed POEAs. The surfactant showed strong affinity for sediment materials, with low maximum recoveries by ASE of 52%. Under microcosm conditions, water depth or sediment characteristics did not significantly affect the water-column half-life of POEA, which ranged from 3.2 to 5.3h. Binding of POEAs to suspended solids was observed, which dissipated via one- or two-phase exponential decay; when two-phase decay occurred, fast phase half-life values ranged from 0.71 to 1.3h and slow-phase values ranged from 18 to 44h. Concentrations of POEA increased in sediment shortly after application and decreased over the study period with a half-life of 5.8 to 71d. The concentrations of POEAs in the sediment of the shallow (15cm) ponds dissipated following a two-phase exponential decay model with an initial fast-phase half-life of 1.1 to 8.9d and a slower second-phase half-life of 21d. Our results suggest that aquatic organisms are unlikely to be exposed to POEAs in aqueous phase for periods of more than a few hours following an over-water application, and that sediment is a significant sink for POEAs in aquatic systems. PMID:26845181

  6. Extended XG Equation for the Prediction of Adsorption Equilibrium of Vapor Mixture on Activated Carbon%混合蒸汽在活性炭上的吸附平衡

    Institute of Scientific and Technical Information of China (English)

    谢自立; 郭坤敏; 吴菊芳; 袁存乔

    2003-01-01

    The XG equation, which is developed by us previously for describing the adsorption equilibrium of purevapor on activated carbon, is extended to multi-component system. Verified by experimental data, the extendedXG equation was found to be more successful in predicting the adsorption equilibrium of vapor mixture on activatedcarbon than the extended Langmuir equation, the extended BET equation and the ideal adsorbed solution theory(IAST).

  7. A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor

    Science.gov (United States)

    Semprini, L.; Azizian, M. F.; Kim, Y.

    2011-12-01

    Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to

  8. Viscosity of LiF–NaF–KF eutectic and effect of cerium trifluoride and uranium tetrafluoride additions

    Energy Technology Data Exchange (ETDEWEB)

    Merzlyakov, Alexander; Ignatiev, Victor, E-mail: Ignatev_VV@nrcki.ru; Abalin, Sergei

    2014-10-15

    Highlights: • Kinematic viscosity of the 46.5LiF–11.5NaF–42KF eutectic (mol%) is measured. • Method of torsional oscillations damping of a cylinder filled with the melt is used. • Found that the kinematic viscosity of this eutectic has some deviations from the exponential law, that may be explained by the existence of clusters in the melt. • Addition of CeF{sub 3} or UF{sub 4} significantly increased the liquidus temperature of eutectic. • Addition of CeF{sub 3} and UF{sub 4} decreased the viscosity of the eutectic at low temperatures. - Abstract: Kinematic viscosity of the 46.5LiF–11.5NaF–42KF eutectic (mol%) has been measured in the temperature range 727–1144 K by the method of torsional oscillations damping of a cylinder with the liquid under study. Found that the kinematic viscosity of this eutectic has some deviations from the exponential law, that may be explained by the existence of clusters in the melt. The volume fraction of the clusters in the eutectic as a function of its temperature was estimated. The kinematic viscosity of the 46.5LiF–11.5NaF–42KF eutectic (in mol%) with additions of (1) 5 and 10 mol% CeF{sub 3} as well as (2) 20 mol% UF{sub 4} and 10 mol% CeF{sub 3} was also measured. It is experimentally proved that the addition of 5 mol% CeF{sub 3} significantly reduces the viscosity at low temperatures and slightly increases it – at high temperatures. Reduction of viscosity at low temperatures can be explained by the fact that the molecules of CeF{sub 3} destroy clusters. Additions of 20 mol% UF{sub 4} also decreased kinematic viscosity of the molten salt mixture compared to pure 46.5LiF–11.5NaF–42KF eutectic (in mol%). Note, that all additions used significantly increased the liquidus temperature of the molten salt mixture. Particularly, additions of 20 mol% UF{sub 4} without and with 10 mol% CeF{sub 3} increased the liquidus temperature up to 923 and 1023 K, respectively.

  9. Viscosity of LiF–NaF–KF eutectic and effect of cerium trifluoride and uranium tetrafluoride additions

    International Nuclear Information System (INIS)

    Highlights: • Kinematic viscosity of the 46.5LiF–11.5NaF–42KF eutectic (mol%) is measured. • Method of torsional oscillations damping of a cylinder filled with the melt is used. • Found that the kinematic viscosity of this eutectic has some deviations from the exponential law, that may be explained by the existence of clusters in the melt. • Addition of CeF3 or UF4 significantly increased the liquidus temperature of eutectic. • Addition of CeF3 and UF4 decreased the viscosity of the eutectic at low temperatures. - Abstract: Kinematic viscosity of the 46.5LiF–11.5NaF–42KF eutectic (mol%) has been measured in the temperature range 727–1144 K by the method of torsional oscillations damping of a cylinder with the liquid under study. Found that the kinematic viscosity of this eutectic has some deviations from the exponential law, that may be explained by the existence of clusters in the melt. The volume fraction of the clusters in the eutectic as a function of its temperature was estimated. The kinematic viscosity of the 46.5LiF–11.5NaF–42KF eutectic (in mol%) with additions of (1) 5 and 10 mol% CeF3 as well as (2) 20 mol% UF4 and 10 mol% CeF3 was also measured. It is experimentally proved that the addition of 5 mol% CeF3 significantly reduces the viscosity at low temperatures and slightly increases it – at high temperatures. Reduction of viscosity at low temperatures can be explained by the fact that the molecules of CeF3 destroy clusters. Additions of 20 mol% UF4 also decreased kinematic viscosity of the molten salt mixture compared to pure 46.5LiF–11.5NaF–42KF eutectic (in mol%). Note, that all additions used significantly increased the liquidus temperature of the molten salt mixture. Particularly, additions of 20 mol% UF4 without and with 10 mol% CeF3 increased the liquidus temperature up to 923 and 1023 K, respectively

  10. Characterization of coal- and petroleum-derived binder pitches and the interaction of pitch/coke mixtures in pre-baked carbon anodes

    Science.gov (United States)

    Suriyapraphadilok, Uthaiporn

    Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder. During the manufacturing of carbon anodes, coal tar pitch is mixed with calcined petroleum coke. The mix of binder, filler and some additives is heated to about 50°C above the softening point of the pitch, typically 160°C. This temperature is sufficient to enable the pitch to wet the coke particles. The mix is then either extruded, vibrated, or pressed to form a green anode. The binding between coke and pitch is very important to the anode properties. There are different binder pitches used in this work, which were standard coal tar pitch (SCTP-2), petroleum pitch (PP-1), gasification pitch (GP-115), coal-extract pitch (WVU-5), and co-coking pitches (HTCCP and OXCCP). Petroleum pitch is a residue produced from heat-treatment and distillation of petroleum fractions. Production of coal-extract pitch involves a prehydrogenation of coal followed by extraction using a dipolar solvent. Gasification pitches are distilled by-product tars produced from the coal gasification process. Co-coking pitch was developed in this work and was obtained from the liquid distillate of co-coking process of coal and heavy petroleum residue. Understanding of composition and structures of pitches from different sources and processes would lead to greater understanding of the binding properties of pitch in carbon anodes and was one of the main focuses in this study. Characterization of pitches by using different techniques including gas chromatography/mass spectrometry (GC/MS), high performance liquid chromatography (HPLC), matrix-assisted laser desorption ionization/mass spectrometry (MALDI/MS), 1H and 13C solution-state nuclear magnetic resonance (NMR), and 13C solid-state NMR yield important chemistry and structural information. The binding, or in other words the interactions in the pitch/coke mixture, is another interest in this

  11. 短切PAN基碳纤维导电沥青混合料性能试验研究%Experimental research on performances for conductive asphalt mixture with chopped PAN-based carbon fiber

    Institute of Scientific and Technical Information of China (English)

    查旭东; 陈勇强; 程景

    2012-01-01

    In order to determine a reasonable carbon fiber contents for the conductive asphalt mixture with carbon fiber,the chopped polyacrylonitrile(PAN) based carbon fiber was selected as a conductive phase material.Many laboratory experiments were conducted to analyze the effect of the carbon fiber contents on the Marshall performances and the conductive performances for the AC-13C of conductive asphalt mixture and then verify its pavement performances.The results show that,under the same asphalt-aggregate ratio,with the increases of the carbon fiber contents,the bulk volume density,the voids filled with asphalt and the Marshall stability of the conductive asphalt mixture are appeared the trend from increasing to decreasing,the volume of air voids and the voids in mineral aggregate are changed as the relation from decreasing to increasing,but the flow value is increased continuously.The technical standards of AC,adjustment and SMA were applied to the asphalt mixtures with the different ranges of carbon fiber content,respectively,and the reasonable optimal asphalt-aggregate ratios were determined.There is a good semilogarithm correlation between the optimal asphalt-aggregate ratios and the carbon fiber contents.Under the optimal asphalt-aggregate ratio,a good correlation of power function is showed between the logarithms of electrical resistivity and the carbon fiber contents for the conductive asphalt mixture.All the pavement performances of asphalt mixture with 0.1% of carbon fiber content have attained the technical requirements of modified asphalt mixture and SMA in the climate conditions with high demand.Therefore,the suitable carbon fiber content can play an excellent role in reinforcing the conductive asphalt mixture and then form the stable conductive network.The technical requirements of various performances and conductive heating are integrated to recommend the suitable carbon fiber content as 0.1%.%为了确定碳纤维导电沥青混合料的合理碳纤

  12. Performance experiments of carbon fiber-reinforced conductive SBS modified asphalt mixture%碳纤维导电SBS改性沥青混合料性能试验

    Institute of Scientific and Technical Information of China (English)

    查旭东; 蔡良; 曹艳霞

    2014-01-01

    In order to analyze pavement performances and ice-melting effects of conductive asphalt concrete,the chopped polyacrylonitrile-based carbon fibers were incorporated into SBS modified asphalt mixture AC-13C to prepare the carbon fiber-reinforced conductive modified asphalt mixtures.Five kinds of carbon fiber contents were selected respectively to conduct the laboratory experiments such as mix ratio design,pavement performances and simulated ice-melting etc.The results show,with the increase of carbon fiber content,the optimum asphalt-aggregate ratios of SBS modified asphalt mixture increase linearly;the dy-namic stability,the immersion residual Marshall stability and the freeze-thaw split strength ratios change in parabolic relationship;the low-temperature flexural-tensile strengths and the failure strains increase in"S"curve,but the stiffness moduli decrease in"Z"curve.It il-lustrates when the proper carbon fibers were incorporated into the SBS modified asphalt mixture,the pavement performances such as high-temperature anti-rutting,low-tempera-ture anti-cracking and moisture damage resistance etc can be improved because of the bridg-ing,reinforced and toughening effects of carbon fiber.However,the excessive carbon fibers can cause the decrease of enhancement effect because of poor dispersion and easy cluster. Simultaneously,when the carbon fiber contents are more than 0.3%,the carbon fibers in-side mixtures are lapped each other to form the good conductive network with the fine ice-melting results.On the whole,when the carbon fiber content is 0.4%,the pavement per-formances,the electrical conductivity and the ice-melting efficiency of carbon fiber-rein-forced SBS modified asphalt mixture are the best.%为了分析导电沥青混凝土的路用性能和融冰效果,将短切聚丙烯腈基碳纤维掺入 SBS改性沥青混合料 AC-13 C中,制备成碳纤维导电改性沥青混合料。选取5种碳纤维掺量分别进行了配合比设计、路用性能和模拟

  13. Supercapacitor electrode based on mixtures of graphene/graphite and carbon nanotubes fabricated using a new dynamic air-brush deposition technique

    Science.gov (United States)

    Bondavalli, P.; Delfaure, C.; Pribat, D.; Legagneux, P.

    2013-09-01

    This contribution deals with the fabrication of electrode and supercapacitor cell using a new dynamic air-brush deposition technique. This method allows to achieve extremely (ou highly) uniform mats with finely tuned thickness and weight in a completely reproducible way. Using this deposition technique, we have analyzed the effect of mixture of CNTs and graphene/graphite on the electrode and cell properties (energy, power and capacitance). using a mixture of 75% of graphene/graphite and 25% of CNTs we increased the power by a factor 2.5 compared to bare CNTs based electrodes. We also analyzed the effect of the weight firstly on the capacitance and specific energy and then on the specific power. We were able to reach a specific power of 200kW/Kg and a specific energy of 9.1Wh/Kg with an electrode having a surface of 2cm2 and a weight of 0.25mg composed by 50% of CNTs and graphene/graphite (using a common aqueous electrolyte). using our deposition technique we are able to achieve supercapacitors with ad-hoc characteristics simply modulating the weight and the concentration of the mixture in a completely reproducible way.

  14. Mixture Density Mercer Kernels

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a method of generating Mercer Kernels from an ensemble of probabilistic mixture models, where each mixture model is generated from a Bayesian mixture...

  15. Co-production of activated carbon, fuel-gas, and oil from the pyrolysis of corncob mixtures with wet and dried sewage sludge.

    Science.gov (United States)

    Shao, Linlin; Jiang, Wenbo; Feng, Li; Zhang, Liqiu

    2014-06-01

    This study explored the amount and composition of pyrolysis gas and oil derived from wet material or dried material during the preparation of sludge-corncob activated carbon, and evaluated the physicochemical and surface properties of the obtained two types of sludge-corncob-activated carbons. For wet material, owing to the presence of water, the yields of sludge-corncob activated carbon and the oil fraction slightly decreased while the yield of gases increased. The main pyrolysis gas compounds were H2 and CO2, and more H2 was released from wet material than dried material, whereas the opposite holds for CO2 Heterocyclics, nitriles, organic acids, and steroids were the major components of pyrolysis oil. Furthermore, the presence of water in wet material reduced the yield of polycyclic aromatic hydrocarbons from 6.76% to 5.43%. The yield of furfural, one of heterocyclics, increased sharply from 3.51% to 21.4%, which could be explained by the enhanced hydrolysis of corncob. In addition, the surface or chemical properties of the two sludge-corncob activated carbons were almost not affected by the moisture content of the raw material, although their mesopore volume and diameter were different. In addition, the adsorption capacities of the two sludge-corncob activated carbons towards Pb and nitrobenzene were nearly identical.

  16. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid.

    Science.gov (United States)

    Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic

    2013-05-28

    Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.

  17. 石墨烯/碳纳米管复合粉体制备工艺的研究%Research on Preparation Process of Graphene Platelets/Carbon Nanotube Mixture Powders

    Institute of Scientific and Technical Information of China (English)

    易义武; 曾效舒; 罗超

    2011-01-01

    It has been explored for synthesizing in situ mixture powder of graphene platelet (NGP) and carbon nanotube(CNT) using expanded graphite(EG) as the catalyst support through CVD technology. The structures of the mixture powder were characterized by SEM. The results showed that it was easy to produce in mass the mixture powder using general CVD. The graphene platelets in this mixture powder were plane structure and only l0nm thick. The ratio of the CNT/NGP, which generally ranged from 0. 625 to 8. 250, could be adjusted through adjusting deposition parameters. And the optimal catalyst and optimal process have been acquired roughly. Research conclusion show that the excellent performance of NGP/CNT mixture powder materials can be prepared by this method.%研究了利用膨化石墨制备石墨烯/碳纳米管复合粉体技术.以膨胀石墨为基体,利用硝酸铁、碳酸铵等对其进行修饰,结合化学气相沉积工艺,原位制备出石墨烯/碳纳米管复合粉体材料;研究了不同的修饰液相、不同沉积工艺对复合粉体比例、微观形貌的影响.利用扫描电镜对复合粉体进行了表征.结果表明,实现了石墨烯/碳纳米管复合粉体材料的批量制备;其中石墨烯为透明薄片,其厚度最小可达到10nm;通过控制工艺参数,可以实现碳纳米管/石墨烯的质量比在0.625~8.250之间变化;并初步获得了最佳修饰液相和最佳工艺.研究结果表明该方法可以制备出性能优异的石墨烯/碳纳米管复合粉体材料.

  18. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    Directory of Open Access Journals (Sweden)

    Wang Feng-Lei

    2008-01-01

    Full Text Available Abstract SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.

  19. Optimal mixture experiments

    CERN Document Server

    Sinha, B K; Pal, Manisha; Das, P

    2014-01-01

    The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model.  Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture desig...

  20. A Study on the Effects of Carrier Gases on the Structure and Morphology of Carbon Nanotubes Prepared by Pyrolysis of Ferrocene and C2H2 Mixture

    Institute of Scientific and Technical Information of China (English)

    Wanliang Mi; Jerry Yuesheng Lin; Qian Mao; Yongdan Li; Baoquan Zhang

    2005-01-01

    Carbon nanotubes (CNTs) were prepared using different carrier gases,with ferrocene as the catalyst precusor and acetylene as the carbon source. The effects of ammonia and nitrogen as carrier gases on the structure and morphology of CNTs were investigated. Transmission electron microscope (TEM),high-resolution electron microscope (HRTEM),scanning electron microscope (SEM) and X-ray diffraction (XRD) were employed to characterize the products and the catalyst. Experiment results show that the CNTs grown in N2 gas exhibited cylindrical and tubular structure,while a bamboo-like structure was observed for the CNTs grown in NH3 gas. Moreover,vertically aligned CNTs were obtained on an Al2O3 disk when NH3 was used as the carrier gas. The carrier gas also exerted influence on the shape of the catalyst. Based on the theory of active centers of catalysis and combined with the particle shape of the catalyst,a growth model for the vertically aligned CNTs on the substrate is given.

  1. Alternative process to produce UF{sub 4} using the effluent from ammonium uranyl carbonate route

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Joao B.; Garcia, Rafael Henrique Lazzari; Dal Vechio, Edvaldo, E-mail: jbsneto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Riella, Humberto G., E-mail: riella@enq.ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq) (Brazil); Carvalho, Elita F. Urano de; Durazzo, Michelangelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq) (Brazil)

    2011-07-01

    The Nuclear Fuel Centre of IPEN / CNEN - SP develops and manufactures dispersion fuel with high uranium concentration. It meets the demand of the IEA-R1 reactor and future research reactors to be constructed in Brazil. The fuel uses uranium silicide (U{sub 3}Si{sub 2}) dispersed in aluminum. For producing the fuel, the process of uranium hexafluoride (UF{sub 6}) conversion consist in obtaining U{sub 3}Si{sub 2} and / or U{sub 3}O{sub 8} through the preparation of intermediate compounds, among them ammonium uranyl carbonate - AUC, ammonium diuranate - DUA and uranium tetrafluoride - UF{sub 4}. This work describes a procedure for preparing uranium tetrafluoride via a dry route, using as raw material the filtrate generated when ammonium uranyl carbonate is routinely produced. The filtrate consists mainly of a solution containing high concentrations of ammonium (NH{sup 4+}), fluoride (F{sup -}), carbonate (CO{sup 3-}) and low concentrations of uranium. The procedure consists in recovering NH{sup 4F} and uranium, as UF{sub 4}, through the crystallization of ammonium bifluoride (NH{sub 4}HF{sub 2}) and, in a later step, the addition of UO{sub 2}, occurring fluoridation and decomposition. The UF{sub 4} obtained is further diluted in the UF{sub 4} produced routinely at IPEN / CNEN-SP by a wet route process. (author)

  2. Electroanalysis with carbon paste electrodes

    CERN Document Server

    Svancara, Ivan; Walcarius, Alain; Vytras, Karel

    2011-01-01

    Introduction to Electrochemistry and Electroanalysis with Carbon Paste-Based ElectrodesHistorical Survey and GlossaryField in Publication Activities and LiteratureCarbon Pastes and Carbon Paste ElectrodesCarbon Paste as the Binary MixtureClassification of Carbon Pastes and Carbon Paste ElectrodesConstruction of Carbon Paste HoldersCarbon Paste as the Electrode MaterialPhysicochemical Properties of Carbon PastesElectrochemical Characteristics of Carbon PastesTesting of Unmodified CPEsIntera

  3. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures

    Science.gov (United States)

    Walsh, A. J.; Tielens, A. G. G. M.; Ruth, A. A.

    2016-07-01

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles' spectroscopic and optical properties with those of carbonaceous materials indicate a sp3/sp2 hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  4. Purging mixture for extruder

    OpenAIRE

    Okpala, Chukwubuike

    2015-01-01

    This thesis work focuses on compounding a mechanical purge mixture for extruders. The base resin for making the purge mixture is recycled High Density Polyethylene chosen for its high density and good processing temperature. The additives are mainly clay and sili-con dioxide added as filler and scrubbing materials respectively. The purge mixture was produced by mixing the base resin and additives in percentage ratios into five places la-beled A, B, C, D, and E. the mixtures were extruded and ...

  5. Low temperature asphalt mixtures

    OpenAIRE

    Modrijan, Damjan

    2006-01-01

    This thesis presents the problem of manufacturing and building in the asphalt mixtures produced by the classical hot procedure and the possibility of manufacturing low temperature asphalt mixtures.We will see the main advantages of low temperature asphalt mixtures prepared with bitumen with organic addition Sasobit and compare it to the classical asphalt mixtures. The advantages and disadvantages of that are valued in the practical example in the conclusion.

  6. Formation of Biofilms and Biocorrosion on AISI-1020 Carbon Steel Exposed to Aqueous Systems Containing Different Concentrations of a Diesel/Biodiesel Mixture

    Directory of Open Access Journals (Sweden)

    Ivanilda Ramos de Melo

    2011-01-01

    Full Text Available Environmental and economic concerns accelerated biofuels research and industrial production. Many countries have been using diesel and biodiesel blends as fuels justifying research on biofilms formation and metals corrosion. Cylinders made of AISI-1020 carbon steel with an exposed area of 1587 mm2, water, and water associated with B3 fuel (diesel/biodiesel blend at 97 : 3 v/v were used.The formation of biofilms was detected, and biocorrosion was detected on AISI-1020. The results showed a variation in sessile microflora during the experiments. In the biofilms, a significant concentration of aerobic, anaerobic, IOB, Pseudomonas aeruginosa, and sulfate-reducing bacteria was observed. The corrosion rates varied between 0.45±0.01 and 0.12±0.01 mm/year, depending on the experimental conditions. The main corrosion products identified were various forms of FeOOH, magnetite, and all forms of FexSy. In systems where there were high levels of sulfate reducing bacteria, corrosion pits were observed. In addition, the aliphatic hydrocarbons present in the fluid containing 10% B3 were totally degraded.

  7. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    Science.gov (United States)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  8. Experimental study of the carbon dioxide absorption in mixtures of aqueous DEA and others%DEA复配水溶液二氧化碳溶解度的测定实验

    Institute of Scientific and Technical Information of China (English)

    李小康; 刘应书; 张辉; 魏广飞; 李虎; 张四宗

    2013-01-01

    A device was designed to measure the solubility of CO2 in the aqueous amine in this research. The following data were obtained, carbon dioxide solubility in 2 mol/L aqueous DEA at 308 K、318 K、 328 K、 358 K under CO2 partial pressure of 0—150 kPa. Meanwhile, mixtures of additives such as DETA, MDEA, AEE as well as SG and aqueous DEA were compounded and the solubility of CO2 in such mixtures were measured. The molar ratio of DEA and the additive in the mixture was 3 : 1 and the total concentration of the amine remained at 2 mol/L. The results showed that elevating the partial pressure of CO2 may contribute to the increase of the solubility in the aqueous DEA, and the temperature played a reverse role. Impacts of different additives on the solubility of CO2 was presented to be DETA > AEE > SG > MDEA.%设计了测定CO2在溶液中溶解度的实验装置,并对2 mol/L的DEA水溶液分别在温度条件为308 K、318K、328 K、358 K,CO2分压力范围0~150 kPa时的CO2溶解度进行了测定.并选取MDEA、DETA、AEE和SG作为代表添加物,测定了添加剂与DEA摩尔比为1:3、醇胺总浓度为2mol/L的条件下溶液中CO2的溶解度.结果表明,在实验压力范围内,DEA溶液中CO2溶解度随压力增大逐渐增大随温度升高而减小;对DEA溶液中CO2的溶解度影响大小顺序为DETA> AEE> SG> MDEA.

  9. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  10. ZSM-5/ZSM-12 catalyst mixture for cracking alkylbenzenes

    Energy Technology Data Exchange (ETDEWEB)

    Kaeding, W.W.; Lee, C.S.

    1986-03-18

    A process is described for converting a first hydrocarbon mixture to a second hydrocarbon mixture. The first hydrocarbon mixture consists essentially of aromatic hydrocarbons having 10 or more carbon atoms. The first hydrocarbon mixture comprises at least 50% by weight of diisopropylbenzene and less than 5% by weight of the sum of benzene, toluene, xylene and ethylbenzene. The second hydrocarbon mixture consists of at least 30% by weight of the sum of benzene, toluene, xylene and ethylbenzene and less than 20% by weight of diisopropylbenzene, the process comprising cracking the first hydrocarbon mixture over a catalyst comprising a mixture of zeolites, the mixture of zeolites consisting essentially of from about 10% to about 90% by weight of ZSM-5, the remainder being essentially ZSM-12.

  11. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere and str...

  12. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents; Processo alternativo para obtencao de tetrafluoreto de uranio a partir de efluentes fluoretados da etapa de reconversao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Joao Batista da

    2008-07-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF{sub 6} hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH{sub 4}HF{sub 2} precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO{sub 2}, which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF{sub 4}. That returns to the process of metallic uranium production unity to the U{sub 3}Si{sub 2} obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U{sub 3}Si{sub 2}-Al fuel. (author)

  13. Iterative Mixture Component Pruning Algorithm for Gaussian Mixture PHD Filter

    OpenAIRE

    Xiaoxi Yan

    2014-01-01

    As far as the increasing number of mixture components in the Gaussian mixture PHD filter is concerned, an iterative mixture component pruning algorithm is proposed. The pruning algorithm is based on maximizing the posterior probability density of the mixture weights. The entropy distribution of the mixture weights is adopted as the prior distribution of mixture component parameters. The iterative update formulations of the mixture weights are derived by Lagrange multiplier and Lambert W funct...

  14. Study of volumetric properties (PVT) of mixtures made of light hydrocarbons (C1-C4), carbon dioxide and hydrogen sulfide - Experimental measurements through a vibrating tube densimeter and modelling; Etude des proprietes volumetriques (PVT) d'hydrocarbures legers (C1-C4), du dioxyde de carbone et de l'hydrogene sulfure. Mesures par densimetrie a tube vibrant et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Rivollet, F.

    2005-12-15

    Various pollutant contents (i.e. carbon dioxide, hydrogen sulphide or other sulphur products) are found in produced oils. These latter must undergo a number of transformations and purifications. The design and dimensioning of the corresponding units can well be optimized only if one has reliable and accurate data about phase equilibria and volumetric properties and of course reliable and accurate modeling. This work was devoted partly to measurements of volumetric properties on three binary mixtures (ethane - hydrogen sulphide, ethane - propane and carbon dioxide - hydrogen sulphide). These measurements were carried out using equipment, comprising a vibrating tube densimeter (Paar, model DMA 512 P), which was especially designed and built for this work. The binary mixtures were studied in the 253 to 363 K temperature range from at pressures up to either 20 or 40 MPa. Two calibration methods of the vibrating tube were used: the FPMC method (Forced Path Mechanical Calibration) described in the literature and an original method containing neural network, developed herein. The study undertaken about the modeling of volumetric properties made it possible to highlight the inadequacy of the traditional use of cubic equations of state to represent simultaneously volumetric properties and phase equilibria. Among the equations of state investigated, a close attention however was paid to cubic equations of state because of their very great use in the oil field. A new tool was found to adapt cubic equations of state to the simultaneous and satisfactory representation of volumetric properties and phase equilibria. It concerns the coupling of the cubic Redlich-Kwong-Soave equation of state with volume correction through a neural network. This new model was tested successfully, it makes it possible to benefit from the existing work of representation of phase equilibria (mixing rules and interaction coefficients) while improving calculation of the volumetric data.

  15. I. Cognitive and instructional factors relating to students' development of personal models of chemical systems in the general chemistry laboratory II. Solvation in supercritical carbon dioxide/ethanol mixtures studied by molecular dynamics simulation

    Science.gov (United States)

    Anthony, Seth

    likely to appear in students' post-laboratory refined models. These discussions during the laboratory period are primarily prompted by factors external to the students or their laboratory groups such as questions posed by the instructor or laboratory materials. Part II. Solvation of polar molecules within non-polar supercritical carbon dioxide is often facilitated by the introduction of polar cosolvents as entrainers, which are believed to preferentially surround solute molecules. Molecular dynamics simulations of supercritical carbon dioxide/ethanol mixtures reveal that ethanol molecules form hydrogen-bonded aggregates of varying sizes and structures, with cyclic tetramers and pentamers being unusually prevalent. The dynamics of ethanol molecules within these mixtures at a range of thermodynamic conditions can largely be explained by differences in size and structure in these aggregates. Simulations that include solute molecules reveal enhancement of the polar cosolvent around hydrogen-bonding sites on the solute molecules, corroborating and helping to explain previously reported experimental trends in solute mobility.

  16. Preparation of hydrogenated diamond-like carbon films using high-density pulsed plasmas of Ar/C2H2 and Ne/C2H2 mixture

    Science.gov (United States)

    Kimura, Takashi; Kamata, Hikaru

    2016-07-01

    Hydrogenated diamond-like carbon films are prepared using reactive high-density pulsed plasmas of Ar/C2H2 and Ne/C2H2 mixture in the total pressure range from 0.5 to 2 Pa. The plasmas are produced using a reactive high-power impulse magnetron sputtering (HiPIMS) system. A negative pulse voltage of ‑500 V is applied to the substrate for a period of 15 µs in the afterglow mode. The growth rate does not strongly depend on the type of ambient gas but it markedly increases to about 2.7 µm/h at a C2H2 fraction of 10% and a total pressure of 2 Pa with increasing C2H2 fraction. The marked increase in the growth rate means that the HiPIMS system can be regarded as a plasma source for the chemical vapor deposition process. The hardness of the films prepared by Ne/C2H2 plasmas is somewhat higher than that of the films prepared by Ar/C2H2 plasmas under the same operating conditions, and the difference becomes larger as the pressure increases. The hardness of the films prepared by Ne/C2H2 plasmas ranges between 11 and 18 GPa. In the Raman spectra, two very broad overlapping bands are assigned as the G (graphite) and D (disorder) bands. The peak position of the G band is roughly independent of the total pressure, whereas the FWHM of the G peak decreases with increasing total pressure as a whole.

  17. Volumetric properties of binary mixture of ethyl acetate and carbon tetrachloride%乙酸乙酯/四氯化碳二元混合体系的体积性质

    Institute of Scientific and Technical Information of China (English)

    赵秀琴; 黄荣谊

    2011-01-01

    The densities of the binary mixture formed by ethyl acetate with carbon tetrachloride were determined in the entire composition range and at the temperature of 288.15-323. IS K and atmospheric pressure. The calculation equations of densities and composition and temperature for the binary system were established, respectively. The results show that the excess molar volumes are positive in entire composition range and at determining temperature. It increases slightly when temperature increases. The regression coefficients and standard deviations were given by fitting the Redlich-Kister equation. Besides, the relation of apparent molar volumes and the molar volumes to the temperature and composition were investigated from density measurements, both values also increase with temperature rise.%常压下测定了乙酸乙酯与四氯化碳二元体系在288.15-323.15 K内全摩尔分数范围的密度,分别建立了该二元体系密度与组成和温度的计算方程.在此基础上,计算了该二元体系的超额摩尔体积,结果表明:该二元体系的超额摩尔体积在所测定温度和全摩尔分数范围内均呈正偏差,且均随温度的升高而偏差增大,并利用Redlich-Kister方程进行了关联,给出了回归系数和标准偏差.另外还探讨了该二元体系的组分表观摩尔体积和摩尔体积与温度和组成的关系,其值随温度的升高均呈增大的趋势.

  18. A mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon tetrachloride mixtures III: nonequilibrium hydrogen-bond dynamics and infrared pump-probe spectra.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2013-06-27

    We present a mixed quantum-classical molecular dynamics study of the nonequilibrium hydrogen-bond dynamics following vibrational energy relaxation of the hydroxyl stretch in a 10 mol % methanol/carbon tetrachloride mixture and pure methanol. The ground and first-excited energy levels and wave functions are identified with the eigenvalues and eigenfunctions of the hydroxyl's adiabatic Hamiltonian and as such depend parametrically on the configuration of the remaining, classically treated, degrees of freedom. The dynamics of the classical degrees of freedom are in turn governed by forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields and nonlinear mapping relations between the hydroxyl transition frequencies and dipole moments and the electric field along the hydroxyl bond are used, which were previously shown to quantitatively reproduce the experimental infrared steady-state absorption spectra and excited state lifetime [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184; 2012, 116, 2856]. The relaxation from the first-excited state to the ground state is treated as a nonadiabatic transition. Within the mixed quantum-classical treatment, relaxation from the excited state to the ground state is accompanied by a momentum-jump in the classical degrees of freedom, which is in turn dictated by the nonadiabatic coupling vector. We find that the momentum jump leads to breaking of hydrogen bonds involving the relaxing hydroxyl, thereby blue-shifting the transition frequency by more than the Stokes shift between the steady-state emission and absorption spectra. The subsequent nonequilibrium relaxation toward equilibrium on the ground state potential energy surface is thereby accompanied by red shifting of the transition frequency. The signature of this nonequilibrium relaxation process on the pump-probe spectrum is analyzed in detail. The calculated pump-probe spectrum is found

  19. Perception of trigeminal mixtures.

    Science.gov (United States)

    Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes

    2015-01-01

    The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels.

  20. Perception of trigeminal mixtures.

    Science.gov (United States)

    Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes

    2015-01-01

    The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels. PMID:25500807

  1. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  2. Multilevel Mixture Kalman Filter

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2004-11-01

    Full Text Available The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates samples of some indicator variables recursively based on sequential importance sampling (SIS and integrates out the linear and Gaussian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion, beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.

  3. Effect of HNO{sub 3} and NH{sub 3} treatment on the catalytic oxidation of carbon catalyses by Cu, Mo and their mixture at the eutectic composition

    Energy Technology Data Exchange (ETDEWEB)

    Palma, M.C.; Silva, I.F.; Lobo, L.S. [Universidade Nova de Lisboa, Monte de caparica (Portugal)

    1995-12-31

    The dispersion of the active phase on the carbon surface can be improved by chemical treatment of the surface. Functional groups can affect the carbon/metal interaction leading to changes on the catalytic behaviour. The aim of this work is to study, whether chemical surface treatments influences carbon reactivity as well as molybdenum and copper dispersion in charcoal gasification by air. Several catalyst preparation techniques were used. The modified carbons were analysed by XPS and FTIR.

  4. Nitrocarburising in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammoniapropene- hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... and straightforward control of the carburizing and nitriding potentials is in principle possible. The nitrocarburising response of unalloyed (ARMCO) Fe was investigated in a thermobalance during controlled nitrocarburising at 580°C. The “cases” obtained on nitrocarburised iron were characterized by reflected light...

  5. Mixtures Estimation and Applications

    CERN Document Server

    Mengersen, Kerrie; Titterington, Mike

    2011-01-01

    This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject

  6. I-optimal mixture designs

    OpenAIRE

    Goos, Peter; JONES, Bradley; SYAFITRI, Utami

    2013-01-01

    In mixture experiments, the factors under study are proportions of the ingredients of a mixture. The special nature of the factors in a mixture experiment necessitates specific types of regression models, and specific types of experimental designs. Although mixture experiments usually are intended to predict the response(s) for all possible formulations of the mixture and to identify optimal proportions for each of the ingredients, little research has been done concerning their I-optimal desi...

  7. Mixtures and interactions

    NARCIS (Netherlands)

    Groten, J.P.

    2000-01-01

    Drinking water can be considered as a complex mixture that consists of tens, hundreds or thousands of chemicals of which the composition is qualitatively and quantitatively not fully known. From a public health point of view it is most relevant to answer the question of whether chemicals in drinking

  8. Mechanical Tests of Tetrafluoride Skateboard Plain Chloroprene Rubber Bearings of Highway Bridge under Freeze-Thaw Cycle Condition%冻融条件下公路桥梁四氟滑板氯丁橡胶支座力学性能试验

    Institute of Scientific and Technical Information of China (English)

    张延年; 单春红; 郑怡; 熊卫士; 沈小俊; 高飞

    2013-01-01

    目的 研究公路桥梁四氟滑板氯丁橡胶支座经过冻融循环后的承载力变化情况,为各项公路桥梁的施工提供依据.方法 将四氟滑板氯丁橡胶支座放入标准冻融试验箱中进行100次的冻融循环处理,而后进行轴心受压及抗剪试验.与标准试件进行对比分析,研究承载力、极限抗压和抗剪强度、竖向刚度、水平等效刚度、弹性模量等各项性能指标的变化.结果 四氟滑板氯丁橡胶支座经过冻融循环处理,更易发生脆性破坏,且钢板外露、裂缝等破坏现象较标准试件更为严重.经处理的四氟滑板氯丁橡胶支座的承载力、极限抗压及抗剪强度、抗压及抗剪弹性模量小于标准试件.结论 经冻融循环处理,公路桥梁四氟滑板氯丁橡胶支座的各项力学性能指标均明显降低,建议提高四氟滑板氯丁橡胶支座的最低使用温度,严格控制其温度适用范围,在寒冷地区尽量采用天然橡胶支座.%In order to provide the basis for the construction of the highway bridge,we study the changes of capacity of the tetrafluoride skateboard plain chloroprene rubber bearings of highway bridge under freeze-thaw cycle condition. The tetrafluoride skateboard plain chloroprene rubber bearings were processed 100 times by freeze-thaw cycle in the standard freeze-thaw chamber,and then the axial compression and shear tests were carried. Compared with the standard test pieces, studied the changes of the performance indicators in the bearing capacity,the ultimate compressive strength and shear strength,vertical stiffness,horizontal e-quivalent stiffness, and elastic modulus. The results show that the tetrafluoride skateboard plain chloroprene rubber bearings which after the freeze-thaw cycle were more prone to brittle failure,the steel plate exposed, cracks and other damage phenomenon were more serious than the standard test pieces. The bearing capacity, ultimate compressive strength and shear

  9. Acoustic properties of organic acid mixtures in water

    Science.gov (United States)

    Macavei, I.; Petrisor, V.; Auslaender, D.

    1974-01-01

    The variation of the rate of propagation of ultrasounds in organic acid mixtures in water points to structural changes caused by interactions that take place under conditions of thermal agitation, at different acid concentrations. At the same time, a difference is found in the changes in velocity as a function of the length of the carbon chain of the acids in the mixture as a result of their effect on the groups of water molecules associated by hydrogen bonds.

  10. The scent of mixtures: rules of odour processing in ants.

    Science.gov (United States)

    Perez, Margot; Giurfa, Martin; d'Ettorre, Patrizia

    2015-01-01

    Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects. PMID:25726692

  11. The scent of mixtures: rules of odour processing in ants.

    Science.gov (United States)

    Perez, Margot; Giurfa, Martin; d'Ettorre, Patrizia

    2015-03-02

    Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects.

  12. Transport properties of supercritical fluids and their binary mixtures

    CERN Document Server

    Luedemann, H D

    2002-01-01

    The molecular dynamics of the two supercritical fluids most applied in industry and some of their mixtures are characterized by their self-diffusion coefficients D sub i , measured by high pressure high resolution nuclear magnetic resonance with the strengthened glass cell technique. The technical details of the apparatus will be given. The fluids studied are carbon dioxide and ammonia. For CO sub 2 , mixtures with C sub 6 H sub 6 , H sub 2 , CH sub 3 COOH and CH sub 3 OH were investigated. The NH sub 3 mixtures include C sub 6 H sub 6 , (CH sub 3) sub 3 N, CH sub 3 CN and CH sub 3 OH.

  13. Toxicological evaluation of chemical mixtures

    NARCIS (Netherlands)

    Feron, V.J.; Groten, J.P.

    2002-01-01

    This paper addresses major developments in the safety evaluation of chemical mixtures during the past 15 years, reviews today's state of the art of mixture toxicology, and discusses challenges ahead. Well-thought-out tailor-made mechanistic and empirical designs for studying the toxicity of mixtures

  14. Separating Underdetermined Convolutive Speech Mixtures

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Wang, DeLiang; Larsen, Jan;

    2006-01-01

    a method for underdetermined blind source separation of convolutive mixtures. The proposed framework is applicable for separation of instantaneous as well as convolutive speech mixtures. It is possible to iteratively extract each speech signal from the mixture by combining blind source separation...

  15. Separation of gas mixtures

    International Nuclear Information System (INIS)

    Apparatus is described for the separation of a gaseous plasma mixture into components in some of which the original concentration of a specific ion has been greatly increased or decreased, comprising: a source for converting the gaseous mixture into a train of plasma packets; an open-ended vessel with a main section and at least one branch section, adapted to enclose along predetermined tracks the original plasma packets in the main section, and the separated plasma components in the branch sections; drive means for generating travelling magnetic waves along the predetermined tracks with the magnetic flux vector of the waves transverse to each of the tracks; and means for maintaining phase coherence between the plasma packets and the magnetic waves at a value needed for accelerating the components of the packets to different velocities and in such different directions that the plasma of each packet is divided into distinctly separate packets in some of which the original concentration of a specific ion has been greatly increased or decreased, and which plasma packets are collected from the branch sections of the vessels. (author)

  16. Mixture Based Outlier Filtration

    Directory of Open Access Journals (Sweden)

    P. Pecherková

    2006-01-01

    Full Text Available Success/failure of adaptive control algorithms – especially those designed using the Linear Quadratic Gaussian criterion – depends on the quality of the process data used for model identification. One of the most harmful types of process data corruptions are outliers, i.e. ‘wrong data’ lying far away from the range of real data. The presence of outliers in the data negatively affects an estimation of the dynamics of the system. This effect is magnified when the outliers are grouped into blocks. In this paper, we propose an algorithm for outlier detection and removal. It is based on modelling the corrupted data by a two-component probabilistic mixture. The first component of the mixture models uncorrupted process data, while the second models outliers. When the outlier component is detected to be active, a prediction from the uncorrupted data component is computed and used as a reconstruction of the observed data. The resulting reconstruction filter is compared to standard methods on simulated and real data. The filter exhibits excellent properties, especially in the case of blocks of outliers. 

  17. Spectroscopic analysis of lithium terbium tetrafluoride

    DEFF Research Database (Denmark)

    Christensen, H.P.

    1978-01-01

    The absorption spectra of Tb3+ in LiTbF4 have been recorded in the spectral interval from 4000 to 25000 cm-1 and for temperatures between 2.3 and 150 K. This covers the transitions from the ground multiplet 7F6 to the multiplets 7F3, 7F2, 7F1, 7F0, and 5D4. The transitions were predominantly of e...

  18. Toxicological evaluation of chemical mixtures.

    Science.gov (United States)

    Feron, V J; Groten, J P

    2002-06-01

    This paper addresses major developments in the safety evaluation of chemical mixtures during the past 15 years, reviews today's state of the art of mixture toxicology, and discusses challenges ahead. Well-thought-out tailor-made mechanistic and empirical designs for studying the toxicity of mixtures have gradually substituted trial-and-error approaches, improving the insight into the testability of joint action and interaction of constituents of mixtures. The acquired knowledge has successfully been used to evaluate the safety of combined exposures and complex mixtures such as, for example, the atmosphere at hazardous waste sites, drinking water disinfection by-products, natural flavouring complexes, and the combined intake of food additives. To consolidate the scientific foundation of mixture toxicology, studies are in progress to revisit the biological concepts and mathematics underlying formulas for low-dose extrapolation and risk assessment of chemical mixtures. Conspicuous developments include the production of new computer programs applicable to mixture research (CombiTool, BioMol, Reaction Network Modelling), the application of functional genomics and proteomics to mixture studies, the use of nano-optochemical sensors for in vivo imaging of physiological processes in cells, and the application of optical sensor micro- and nano-arrays for complex sample analysis. Clearly, the input of theoretical biologists, biomathematicians and bioengineers in mixture toxicology is essential for the development of this challenging branch of toxicology into a scientific subdiscipline of full value. PMID:11983277

  19. 苯-水混合蒸气在活性炭上的二元吸附平衡%Binary Adsorption Equilibrium of Benzene-Water Vapor Mixtures on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩

    2002-01-01

    Adsorption equilibrium isotherms of benzene in the concentration range of 500-4000mg@m-3 on two commercial activated carbons were obtained using long-column method under 30℃ and different humidity conditions. Results show that the benzene and water vapors have depression effects upon the adsorption of each other and that the unfavorable effect of water vapor resembles its single-component isotherm on activated carbon. A competitive adsorption model was proposed to explore the depression mechanisms of the non-ideal, non-similar binary adsorption systems. A modified Polanyi-Dubinin equation was set up to correlate the binary adsorption equilibrium and to calculate the isotherms of benzene on activated carbon in presence of water vapor with considerable precision.

  20. Thermal electron mobilities in low density gaseous mixtures

    International Nuclear Information System (INIS)

    A new method of obtaining thermal electron mobilities from experimental dependencies observed in the electron swarm is described; the method is suitable for both electron accepting and non-accepting systems. The electron mobilities for CO2, CH4 C2H6 as well as for N2, Ar, Xe, Kr and their mixtures with carbon dioxide are obtained. (Author)

  1. Understanding the amorphous-to-microcrystalline silicon transition in SiF{sub 4}/H{sub 2}/Ar gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dornstetter, Jean-Christophe [TOTAL New Energies, 24 cours Michelet, 92069 Paris La Défense Cedex (France); LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Bruneau, Bastien; Bulkin, Pavel; Johnson, Erik V.; Roca i Cabarrocas, Pere [LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-06-21

    We report on the growth of microcrystalline silicon films from the dissociation of SiF{sub 4}/H{sub 2}/Ar gas mixtures. For this growth chemistry, the formation of HF molecules provides a clear signature of the amorphous to microcrystalline growth transition. Depositing films from silicon tetrafluoride requires the removal of F produced by SiF{sub 4} dissociation, and this removal is promoted by the addition of H{sub 2} which strongly reacts with F to form HF molecules. At low H{sub 2} flow rates, the films grow amorphous as all the available hydrogen is consumed to form HF. Above a critical flow rate, corresponding to the full removal of F, microcrystalline films are produced as there is an excess of atomic hydrogen in the plasma. A simple yet accurate phenomenological model is proposed to explain the SiF{sub 4}/H{sub 2} plasma chemistry in accordance with experimental data. This model provides some rules of thumb to achieve high deposition rates for microcrystalline silicon, namely, that increased RF power must be balanced by an increased H{sub 2} flow rate.

  2. Transport Properties of operational gas mixtures used at LHC

    CERN Document Server

    Assran, Yasser

    2011-01-01

    This report summarizes some useful data on the transport characteristics of gas mixtures which are required for detection of charged particles in gas detectors. We try to replace Freon used for RPC detector in the CMS experiment with another gas while maintaining the good properties of the Freon gas mixture unchanged. We try to switch to freonless gas mixture because Freon is not a green gas, it is very expensive and its availability is decreasing. Noble gases like Ar, He, Ne and Xe (with some quenchers like carbon dioxide, methane, ethane and isobutene) are investigated. Transport parameters like drift velocity, diffusion, Townsend coefficient, attachment coefficient and Lorentz angle are computed using Garfield software for different gas mixtures and compared with experimental data.

  3. 气体膜分离混合气中二氧化碳的研究进展%Progress of separation of carbon dioxide from gas mixture by gas separation membrane

    Institute of Scientific and Technical Information of China (English)

    孙翀; 李洁; 孙丽艳; 许瑞娜; 郑祥; 雷洋; 杨烨

    2011-01-01

    As the carbon capture program, gas membrane separation technology is considered to be the most development potential method of the decarburization by the international community. The status of hollow fiber membrane contactors, membrane structures, systems technology and absorbent research is reviewed. Alkanolamines relatively to water and carbonates, which hold high carbon dioxide absorption rate, lower heat of reaction, reaction speed and ease of recycling, etc. ,are most widely used in the research and industrial process.%气体膜分离技术作为碳捕获方案被国际社会认为是最有发展潜力的脱碳方法之一.综述介绍了中空纤维膜接触器、膜结构、系统工艺和吸收剂的研究现状.相对于水和碳酸盐类,醇胺具有的二氧化碳吸收率高、反应热低、反应速度快以及容易再生等优点,在研究与工业过程中是应用最广泛的吸收剂之一.

  4. Evaporating Drops of Alkane Mixtures

    CERN Document Server

    Gu'ena, G; Poulard, C; Cazabat, Anne-Marie; Gu\\'{e}na, Geoffroy; Poulard, Christophe

    2005-01-01

    Alkane mixtures are model systems where the influence of surface tension gradients during the spreading and the evaporation of wetting drops can be easily studied. The surface tension gradients are mainly induced by concentration gradients, mass diffusion being a stabilising process. Depending on the relative concentration of the mixture, a rich pattern of behaviours is obtained.

  5. Easy and flexible mixture distributions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Mabit, Stefan L.

    2013-01-01

    We propose a method to generate flexible mixture distributions that are useful for estimating models such as the mixed logit model using simulation. The method is easy to implement, yet it can approximate essentially any mixture distribution. We test it with good results in a simulation study...

  6. Effectiveness of Micro- and Nanomaterials in Asphalt Mixtures through Dynamic Modulus and Rutting Tests

    OpenAIRE

    Hui Yao; Zhanping You

    2016-01-01

    The objectives of this research are to use micro- and nanomaterials to modify the asphalt mixture and to evaluate the mechanical performance of asphalt mixtures. These micro- and nanomaterials, including carbon microfiber, Nanomer material, nanosilica, nonmodified nanoclay, and polymer modified nanoclay, were selected to blend with the control asphalt to improve the overall performance of the modified asphalt binders and mixtures. The microstructures of original materials and asphalt binders ...

  7. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    OpenAIRE

    Gennady G. Kuvshinov; Maksim V. Popov; Evgeny A. Soloviev; Armen I. Arzumanyan; Georgy A. Peshkov

    2012-01-01

    The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  8. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  9. Mixtures of truncated basis functions

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael;

    2012-01-01

    In this paper we propose a framework, called mixtures of truncated basis functions (MoTBFs), for representing general hybrid Bayesian networks. The proposed framework generalizes both the mixture of truncated exponentials (MTEs) framework and the mixture of polynomials (MoPs) framework. Similar...... for efficiently approximating an arbitrary density function using the MoTBF framework. The transla- tion method is more flexible than existing MTE or MoP-based methods, and it supports an online/anytime tradeoff between the accuracy and the complexity of the approxima- tion. Experimental results show...

  10. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  11. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  12. Separation of gas mixtures by supported complexes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.A.; Lilga, M.A.; Hallen, R.T.; Lyke, S.E.

    1986-08-01

    The goal of this program is to determine the feasibility of solvent-dissolved coordination complexes for the separation of gas mixtures under bench-scale conditions. In particular, mixtures such as low-Btu gas are examined for CO and H/sub 2/ separation. Two complexes, Pd/sub 2/(dpm)/sub 2/Br/sub 2/ and Ru(CO)/sub 2/(PPh/sub 3/)/sub 3/, were examined in a bench-scale apparatus for the separation of binary (CO-N/sub 2/ or H/sub 2/-N/sub 2/) and quinary (H/sub 2/, CO, CO/sub 2/, CH/sub 4/, and N/sub 2/) mixtures. The separation of CO-N/sub 2/ was enhanced by the presence of the palladium complex in the 1,1,2-trichloroethane (TCE) solvent, especially at high gas and low liquid rates. The five-component gas mixture separation with the palladium complex in TCE provided quite unexpected results based on physical solubility and chemical coordination. The complex retained CO, while the solvent retained CO/sub 2/, CH/sub 4/, and N/sub 2/ to varying degrees. This allowed the hydrogen content to be enhanced due to its low solubility in TCE and inertness to the complex. Thus, a one-step, hydrogen separation can be achieved from gas mixtures with compositions similar to that of oxygen-blown coal gas. A preliminary economic evaluation of hydrogen separation was made for a system based on the palladium complex. The palladium system has a separation cost of 50 to 60 cents/MSCF with an assumed capital investment of $1.60/MSCF of annual capacity charged at 30% per year. This assumes a 3 to 4 year life for the complex. Starting with a 90% hydrogen feed, PSA separation costs are in the range of 30 to 50 cents/MSCF. The ruthenium complex was not as successful for hydrogen or carbon monoxide separation due to unfavorable kinetics. The palladium complex was found to strip hydrogen gas from H/sub 2/S. The complex could be regenerated with mild oxidants which removed the sulfur as SO/sub 2/. 24 refs., 26 figs., 10 tabs.

  13. Performance of asphalt rubber mixtures

    OpenAIRE

    Thives, Liseane Padilha; Trichês, Glicério; Pereira, Paulo A. A.; Pais, Jorge C.

    2010-01-01

    Asphalt rubber mixtures are one of the most promising techniques to extend the service life of asphalt pavement overlays. Asphalt rubber binder is composed of crumb rubber from reclaimed tires and conventional asphalt. The asphalt rubber binder can be obtained through wet process in two different systems: terminal blending (produced at industrial plants) and continuous blending (produced in asphalt plants). This study presents a laboratory evaluation of asphalt rubber mixtures produced with d...

  14. Optimal Parameters Multicomponent Mixtures Extruding

    Directory of Open Access Journals (Sweden)

    Ramil F. Sagitov

    2013-01-01

    Full Text Available Experimental research of multicomponent mixtures extruding from production wastes are carried out, unit for production of composites from different types of waste is presented. Having analyzed dependence of multicomponent mixtures extruding energy requirements on die length and components content at three values of angular rate of screw rotation, we received the values of energy requirements at optimal length of the die, angular speed and percent of binding additives.

  15. Bayesian Kernel Mixtures for Counts

    OpenAIRE

    Canale, Antonio; David B Dunson

    2011-01-01

    Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviatio...

  16. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    OpenAIRE

    Deepak, FL; Govindaraj, A.; Rao, CNR

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y-junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic-thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis-of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives ...

  17. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    F L Deepak; A Govindaraj; C N R Rao

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Yjunction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallicthiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

  18. 碳源对复合乳酸菌发酵西芹浆的影响研究%Effect of Different Carbon Sources on the Fermentation of Celery Juice by Lactic Acid Bacteria Mixture

    Institute of Scientific and Technical Information of China (English)

    陈中; 苏郅珉; 林伟锋

    2012-01-01

    A study on lactic acid bacteria mixture (the ratio of Lactobacillus casei and Leuconostoc mesenteroides being of 1:1) for the fermentation of celery juice was carried out. During the fermentation the changes and internal relation of viable count, pH, total acid and reducing sugar were observed. The experimental results indicate: sugar, glucose and fructose syrup were added to the celery juice respectively, and the total acid of celery juice were 8.52 mg/g, 8.18 mg/g and 8.32 mg/g. They were larger than the total acid of original celery juice (7.26 mg/g). The utilization rate of reducing sugar was also improved. After the adjunction of fructose syrup the stability period, whole viable count, amount of acid and utilization rate of reducing sugar were increased effectively. And then the delicious fermented celery juice with celery fragrance was obtained.%本试验通过复合乳酸菌(干酪乳杆菌与肠膜明串珠菌复合比例为1∶1)对分别添加了白砂糖、葡萄糖以及果葡糖浆的西芹浆进行对比发酵,探讨其发酵过程中活菌数、pH值、总酸以及还原糖的变化规律及内在联系.结果表明,发酵72 h后,添加白砂糖、葡萄糖和果葡糖浆的西芹浆中的总酸分别为8.52 mg/g、8.18 mg/g和8.32 mg/g,均比不加碳源的7.26 mg/g高.添加葡萄糖和果葡糖浆的西芹浆中还原糖含量分别减少了29.14%和14.81%,而添加白砂糖的西芹浆中还原糖含量却增加了69.20%.其中,添加了果葡糖浆的西芹浆中乳酸菌稳定期得到有效延长、整体活菌数最高、产酸量以及还原糖利用率都有所增加,可得到西芹清香明显、酸甜度适中的发酵西芹浆.

  19. Analysis of asphalt mixtures on town roads

    OpenAIRE

    Glavica, Primož

    2006-01-01

    Asphalt mixtures are most commonly used composite for construction of top layers of different drive ways. By definition asphalt mixtures are composed of crushed rock, fill, bitumen and additives. Percentage of individual components wary according to the purpose asphalt mixture is to be used for. Asphalt mixtures must be capable of enduring different types of load. According to the type of load asphalt mixtures are divided into asphalt mixtures used for supporting layers and asp...

  20. Marangoni Convection in Binary Mixtures

    CERN Document Server

    Zhang, J; Oron, A; Behringer, Robert P.; Oron, Alexander; Zhang, Jie

    2006-01-01

    Marangoni instabilities in binary mixtures are different from those in pure liquids. In contrast to a large amount of experimental work on Marangoni convection in pure liquids, such experiments in binary mixtures are not available in the literature, to our knowledge. Using binary mixtures of sodium chloride/water, we have systematically investigated the pattern formation for a set of substrate temperatures and solute concentrations in an open system. The flow patterns evolve with time, driven by surface-tension fluctuations due to evaporation and the Soret effect, while the air-liquid interface does not deform. A shadowgraph method is used to follow the pattern formation in time. The patterns are mainly composed of polygons and rolls. The mean pattern size first decreases slightly, and then gradually increases during the evolution. Evaporation affects the pattern formation mainly at the early stage and the local evaporation rate tends to become spatially uniform at the film surface. The Soret effect becomes i...

  1. Preparation of conducting solid mixtures

    International Nuclear Information System (INIS)

    The application of conducting plastic mixtures to the fundamental problem of radiation dosimetry is briefly reviewed. A particular approach to achieving formulations with the necessary characteristics is described. A number of successful mixtures are defined for a number of different specific dosimetry situations. To obtain high quality stable materials requires intense blending and working of the materials at elevated temperatures. One machine that succeeds in this task is the Shonka plastics mixer-extruder. The Shonka mixer is described in complete detail. The procedures used in preparing representative formulations with this device are presented. A number of properties of successful conducting mixtures so prepared are summarized. The conditions required for molding such material are given. Several special welding methods for specific application with these formulations have been devised and are described

  2. Mixtures of skewed Kalman filters

    KAUST Repository

    Kim, Hyoungmoon

    2014-01-01

    Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class of closed skew-normal distributions. Some basic properties are derived and a class of closed skew. t distributions is obtained. Our suggested family of distributions is skewed and has heavy tails too, so it is appropriate for robust analysis. Our proposed special sequential Monte Carlo methods use a random mixture of the closed skew-normal distributions to approximate a target distribution. Hence it is possible to handle skewed and heavy tailed data simultaneously. These methods are illustrated with numerical experiments. © 2013 Elsevier Inc.

  3. Bayesian Kernel Mixtures for Counts.

    Science.gov (United States)

    Canale, Antonio; Dunson, David B

    2011-12-01

    Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online. PMID:22523437

  4. Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels

    OpenAIRE

    Macías, Carlos; Haro Remón, Marta; Rasines, Gloria; Parra Soto, José Bernardo; Ovín Ania, María Concepción

    2013-01-01

    [EN] A simple modification of the conventional sol–gel polymerization of resorcinol–formaldehyde mixtures allowed a facile preparation of ultrahigh mesoporous carbon gels. In the conventional synthesis the growth of the cluster polymer particles leading to the development of the porosity is controlled by the R/C ratio. In the presence of a carbon conductive additive, the polymerization of the reactants proceeded through the formation of less-branched polymer clusters resulting in carbon gels ...

  5. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    Science.gov (United States)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  6. The use of gaseous fuels mixtures for SI engines propulsion

    Science.gov (United States)

    Flekiewicz, M.; Kubica, G.

    2016-09-01

    Paper presents results of SI engine tests, carried on for different gaseous fuels. Carried out analysis made it possible to define correlation between fuel composition and engine operating parameters. Tests covered various gaseous mixtures: of methane and hydrogen and LPG with DME featuring different shares. The first group, considered as low carbon content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in those mixtures realizes the function of combustion process activator. That is why hydrogen addition improves the energy conversion by about 3%. The second group of fuels is constituted by LPG and DME mixtures. DME mixes perfectly with LPG, and differently than in case of other hydrocarbon fuels consists also of oxygen makes the stoichiometric mixture less oxygen demanding. In case of this fuel an improvement in engine volumetric and overall engine efficiency has been noticed, when compared to LPG. For the 11% DME share in the mixture an improvement of 2% in the efficiency has been noticed. During the tests standard CNG/LPG feeding systems have been used, what underlines utility value of the research. The stand tests results have been followed by combustion process simulation including exhaust forming and charge exchange.

  7. Evaluation system for CO2 emission of hot asphalt mixture

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2015-04-01

    Full Text Available The highway construction industry plays an important role in economic and development, but is also a primary source of carbon emission. Accordingly, with the global climate change, energy conservation and reduction of carbon emissions have become critical issues in the highway construction industry. However, to date, a model for the highway construction industry has not been established. Hence, to implement a low-carbon construction model for highways, this study divided asphalt pavement construction into aggregate stacking, aggregate supply, and other stages, and compiled a list of energy consumption investigation. An appropriate calculation model of CO2 emission was then built. Based on the carbon emission calculation model, the proportion of carbon emissions in each stage was analyzed. The analytic hierarchy process was used to establish the system of asphalt pavement construction with a judgment matrix, thereby enabling calculation of the weight coefficient of each link. In addition, the stages of aggregate heating, asphalt heating, and asphalt mixture mixing were defined as key stages of asphalt pavement construction. Carbon emissions at these stages accounted for approximately 90% of the total carbon emissions. Carbon emissions at each stage and their impact on the environment were quantified and compared. The energy saving construction schemes as well as the environmental and socioeconomic benefits were then proposed. Through these schemes, significant reductions in carbon emissions and costs can be achieved. The results indicate that carbon emissions reduce by 32.30% and 35.93%, whereas costs reduce by 18.58% and 6.03%. The proposed energy-saving and emission reduction scheme can provide a theoretical basis and technical support for the development of low-carbon highway construction.

  8. Thermodynamics of mixtures containing alkoxyethanols

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan Antonio [G.E.T.E.F., Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid (Spain)], E-mail: jagl@termo.uva.es; Mozo, Ismael; Fuente, Isaias Garcia de la; Cobos, Jose Carlos [G.E.T.E.F., Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid (Spain); Riesco, Nicolas [Department of Earth Science and Engineering, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2008-09-30

    The Flory model is applied to predict the isobaric expansion coefficients, {alpha}{sub P}, isentropic, {kappa}{sub S}, and isothermal, {kappa}{sub T}, compressibilities and speeds of sound, u, of the highly complex mixtures: hydroxyether + alkane, + dibutylether, + 1-butanol or + 2-methoxyethanol, 1-alkanol + alkane, and 1-alkanol + dibutylether. Predictions were obtained using the energetic parameter, {chi}{sub 12}, determined from values of excess enthalpies, H{sup E}, and from values of the excess isochoric internal energies, U{sub V}{sup E}, at equimolar composition. No meaningful differences exist between such predictions. Deviations between experimental and calculated values are lower than 2% for mixtures containing alkoxyethanols. Poorer results are obtained for 1-alkanol + dibutylether mixtures with deviations up to 5%. It is shown that predictions on {alpha}{sub P}, {kappa}{sub S}, {kappa}{sub T}, and u essentially depend on structural effects and not on the orientational effects present in the studied mixtures. Results are improved using {chi}{sub 12} values fitted to molar excess volumes. In this case, deviations are similar to those obtained from semiempirical models as free length theory, collision factor theory, or Nomoto or Junjie equations.

  9. THE MIXTURES OF 2.4-DINITROPHENYLHIDRAZONES OF INFERIOR CARBONYL COMPOUNDS AND THEIR HPLC SEPARATION WITH GRADIENT BINARY MIXTURES PHASES

    Directory of Open Access Journals (Sweden)

    Gheorghe Zgherea

    2008-06-01

    Full Text Available Mixtures of small quantities of carbonyl compounds are presents in foods, concerning sensorial qualities. The inferior carbonyl compounds (C2-C4, boiling point <100°C – mono and dicarbonyl – can be identified and measured their concentrations, after a separation by distillation on the water bath. They are transferred in a strongly acid solution of 2.4-dinitrophenylhidrazine (2.4-DNPH, generating a mixture of insoluble 2.4-dinitrophenylhidrazones (2.4-DNPH-ones. The 2.4-DNPH-ones are organic compounds with weak polarity, solids, crystallized, yellows and water insoluble, soluble in organic solvents. The mixture of 2.4dinitrophenylhidrazones may be separated by liquid chromatography, using the reverse phase mechanism [1-3]. This paper contains experimental and theoretical considerations to the means of separation through liquid chromatography of two synthetically and a natural mixtures that contain 2.4-DNPH-ones provided by inferior carbonyl compounds; to obtain conclude results, in the synthetically mixtures was introduce and 2.4-DNPH-ones provided by carbonyl compounds having three (acetone and propanal and four (isobutyl aldehyde atoms of carbon.

  10. Uphill diffusion in multicomponent mixtures.

    Science.gov (United States)

    Krishna, Rajamani

    2015-05-21

    Molecular diffusion is an omnipresent phenomena that is important in a wide variety of contexts in chemical, physical, and biological processes. In the majority of cases, the diffusion process can be adequately described by Fick's law that postulates a linear relationship between the flux of any species and its own concentration gradient. Most commonly, a component diffuses down the concentration gradient. The major objective of this review is to highlight a very wide variety of situations that cause the uphill transport of one constituent in the mixture. Uphill diffusion may occur in multicomponent mixtures in which the diffusion flux of any species is strongly coupled to that of its partner species. Such coupling effects often arise from strong thermodynamic non-idealities. For a quantitative description we need to use chemical potential gradients as driving forces. The transport of ionic species in aqueous solutions is coupled with its partner ions because of the electro-neutrality constraints; such constraints may accelerate or decelerate a specific ion. When uphill diffusion occurs, we observe transient overshoots during equilibration; the equilibration process follows serpentine trajectories in composition space. For mixtures of liquids, alloys, ceramics and glasses the serpentine trajectories could cause entry into meta-stable composition zones; such entry could result in phenomena such as spinodal decomposition, spontaneous emulsification, and the Ouzo effect. For distillation of multicomponent mixtures that form azeotropes, uphill diffusion may allow crossing of distillation boundaries that are normally forbidden. For mixture separations with microporous adsorbents, uphill diffusion can cause supra-equilibrium loadings to be achieved during transient uptake within crystals; this allows the possibility of over-riding adsorption equilibrium for achieving difficult separations. PMID:25761383

  11. Prospects for using carbon-carbon composites for EMI shielding

    Science.gov (United States)

    Gaier, James R.

    1990-01-01

    Since pyrolyzed carbon has a higher electrical conductivity than most polymers, carbon-carbon composites would be expected to have higher electromagnetic interference (EMI) shielding ability than polymeric resin composites. A rule of mixtures model of composite conductivity was used to calculate the effect on EMI shielding of substituting a pyrolyzed carbon matrix for a polymeric matrix. It was found that the improvements were small, no more than about 2 percent for the lowest conductivity fibers (ex-rayon) and less than 0.2 percent for the highest conductivity fibers (vapor grown carbon fibers). The structure of the rule of mixtures is such that the matrix conductivity would only be important in those cases where it is much higher than the fiber conductivity, as in metal matrix composites.

  12. Asphalt rubber mixtures in Portugal: fatigue resistance

    OpenAIRE

    Miranda, Henrique; Batista, Fátima; Neves, José; Antunes, Maria de Lurdes; Fonseca, Paulo

    2009-01-01

    This paper presents a study concerning the fatigue behaviour of asphalt mixtures with bitumen modified with high content of crumb rubber used in Portugal. For assessing the fatigue behaviour of this type of mixtures, four asphalt mixtures with high content of crumb rubber were used: two field bituminous mixtures – an open-graded and a gap-graded – both with granite aggregates; and two laboratory manufactured bituminous mixtures – an open-graded mixture with granite aggregates and a gap-graded...

  13. Binary mixtures of chiral gases

    CERN Document Server

    Presilla, Carlo

    2015-01-01

    A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.

  14. Thermal plasmas in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, A.B. [CSIRO Telecommunications and Industrial Physics, Lindfield, NSW (Australia)

    2001-10-21

    The calculation and measurement of the properties of thermal plasmas in mixtures of different gases are reviewed. The calculation of composition, thermodynamic properties and transport coefficients is described. Particular attention is given to the calculation of diffusion coefficients, which is a significant problem in mixed-gas plasmas. The combined diffusion coefficient formulation is shown to be a useful method for the treatment of diffusion. Computational fluid dynamic modelling of thermal plasmas in gas mixtures is considered, using the examples of demixing in welding arcs, the turbulent mixing of atmospheric air into a plasma jet and a plasma waste destruction process. Diagnostic techniques for mixed-gas plasmas, in particular emission spectroscopy, laser scattering and laser-induced fluorescence, are discussed. (author)

  15. Mixtures of Gaussian process priors

    CERN Document Server

    Lemm, J C

    1999-01-01

    Nonparametric Bayesian approaches based on Gaussian processes have recently become popular in the empirical learning community. They encompass many classical methods of statistics, like Radial Basis Functions or various splines, and are technically convenient because Gaussian integrals can be calculated analytically. Restricting to Gaussian processes, however, forbids for example the implemention of genuine nonconcave priors. Mixtures of Gaussian process priors, on the other hand, allow the flexible implementation of complex and situation specific, also nonconcave "a priori" information. This is essential for tasks with, compared to their complexity, a small number of available training data. The paper concentrates on the formalism for Gaussian regression problems where prior mixture models provide a generalisation of classical quadratic, typically smoothness related, regularisation approaches being more flexible without having a much larger computational complexity.

  16. Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Musko, Nikolai E.; Baiker, Alfons;

    2013-01-01

    This study focuses on the investigation of the phase behavior of mixtures relevant to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The bubble points of corresponding quaternary mixtures of varying composition were experimentally determined. The Cubic-Plus-Associati...

  17. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Directory of Open Access Journals (Sweden)

    Mehran Tehrani

    2014-05-01

    Full Text Available Carbon nanofilament and nanotubes (CNTs have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD, in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD technique was also utilized to grow multiwall CNTs (MWCNTs on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  18. ZSM-5/ZSM-12 catalyst mixture for cracking alkylbenzenes. [By-products of isopropyl benzene preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kaeding, W.W.

    1986-06-03

    A method is described for the preparation of isopropylbenzene from benzene and a mixture of propane and propylene, wherein a heavy aromatic bottoms fraction is produced as a byproduct, the bottoms fraction consisting essentially of hydrocarbons having 10 or more carbon atoms, the improvement comprising cracking the bottoms fraction over a catalyst comprising a mixture of zeolites. The mixture consists of: (i) from about 10% to about 90% by weight of ZSM-5; and (ii) from about 10% to about 90% by weight of ZSM-12.

  19. Shear viscosity of binary mixtures: The Gay–Berne potential

    International Nuclear Information System (INIS)

    Highlights: ► Most useful potential model to study the real systems is the Gay–Berne (GB) potential. ► We use GB model to examine thermodynamical properties of some anisotropic binary mixtures in two different phases. ► The integral equation methods are applied to solve numerically the Percus–Yevick (PY) equation. ► We obtain expansion coefficients of correlation functions needed to calculate the properties of studied mixtures. ► The results are compared with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, etc.] - Abstract: The Gay–Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus–Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  20. PARTICLE SEGREGATION IN FLUIDIZED BINARY-MIXTURES

    NARCIS (Netherlands)

    HOFFMANN, AC; JANSSEN, LPBM

    1993-01-01

    The particle segregation in fluidised beds consisting of different types of binary mixtures is shown to be governed by the same particle transport processes. The segregation behaviour of both ''different-density mixtures'' and ''equal-density mixtures'', two types of system which until now largely h

  1. Psychophysical studies of mixtures of tastants.

    NARCIS (Netherlands)

    Graaf, de C.

    1988-01-01

    The human perception of mixtures of tastante was studied with reference to three central issues, i.e., 1) the paradigma of equiratio taste substance mixtures. as an instrument to manipulate the physical composition of tastant mixtures. This paradiama also enables the construction of psychophysical f

  2. Some properties of explosive mixtures containing peroxides

    International Nuclear Information System (INIS)

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E0, and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E0 values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m-3. Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities

  3. Investigations of reversible thermochromic mixtures

    Science.gov (United States)

    MacLaren, Douglas C.

    Three-component organic thermochromic systems have potential applications in reversible, rewritable thermal printing. In principle, such mixtures could maintain a coloured or non-coloured state at ambient temperature depending on their thermal treatment. These systems generally consist of a functional dye (1--3 mol%), a weakly acidic colour developer (5--25 mol%), and a high-melting organic solvent (75--90 mol%). Colour development occurs at the fusion temperature of the mixture, which triggers the interaction of the dye and developer. Slow cooling of the melt results in an equilibrium state with low colour density, whereas rapid cooling of the melt results in a metastable state with high colour density. The metastable state can be decoloured by heating to an intermediate decolourisation temperature at which the coloured state becomes unstable. Barriers to the widespread use of reversible, rewritable thermochromic materials include problems with colour contrast, colour stability, and decolourisation rates. Development is hindered by a lack of detailed knowledge of the interactions between components in these systems. In this study the developer-dye and developer-solvent interactions were examined for an archetypal dye/developer/solvent thermochromic system. Vibrational spectroscopy, NMR, and thermal analysis were used to examine compounds formed in developer/dye and developer/solvent binary mixtures. Rewritable thermochromic properties such as metastable colour density, equilibrium colour density, and decolourisation rates were examined and discussed in terms of the thermodynamics of the developer/dye and developer/solvent interactions. Observed thermochromic properties are shown to be strongly correlated to a competition between the dye and the solvent for interaction with the developer. Increasing the attractive interaction between the solvent and developer results in enhanced rewritable thermochromic properties.

  4. Study on multimers and their structures in molecular association mixture

    Institute of Scientific and Technical Information of China (English)

    NI Yi; DOU XiaoMing; ZHAO HaiYing; YIN GuangZhong; YAMAGUCHI Yoshinori; OZAKI Yukihiro

    2007-01-01

    Self-association system of (R)-1,3-butanediol in dilute carbon tetrachloride (CCl4) solution is studied as a model of molecular association mixture. Analysis methods including FSMWEFA (fixed-size moving window evolving factor analysis) combined with PCA (principal component analysis), SIMPLISMA (simple-to-use interactive self-modeling mixture analysis), and ITTFA (iterative target transformation factor analysis) are adopted to resolve infrared spectra of (R)-1,3-butanediol solution. Association number and equilibrium constant are computed. (R)-1,3-butanediol in dilute inert solution is determined as a monomer-trimer equilibrium system. Theoretical investigation of trimer structures is carried out with DFT (density functional theory), and structural factors are analyzed.

  5. Shear viscosity of binary mixtures: The Gay-Berne potential

    Science.gov (United States)

    Khordad, R.

    2012-05-01

    The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  6. Study on multimers and their structures in molecular association mixture

    Institute of Scientific and Technical Information of China (English)

    YAMAGUCHI; Yoshinori; OZAKI; Yukihiro

    2007-01-01

    Self-association system of(R)-1,3-butanediol in dilute carbon tetrachloride(CCl4)solution is studied as a model of molecular association mixture.Analysis methods including FSMWEFA(fixed-size moving window evolving factor analysis)combined with PCA(principal component analysis),SIMPLISMA (simple-to-use interactive self-modeling mixture analysis),and ITTFA(iterative target transformation factor analysis)are adopted to resolve infrared spectra of(R)-1,3-butanediol solution.Association number and equilibrium constant are computed.(R)-1,3-butanediol in dilute inert solution is determined as a monomer-trimer equilibrium system.Theoretical investigation of trimer structures is carried out with DFT(density functional theory),and structural factors are analyzed.

  7. An integral equation model for warm and hot dense mixtures

    CERN Document Server

    Starrett, C E; Daligault, J; Hamel, S

    2014-01-01

    In Starrett and Saumon [Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one "atom" in a plasma is determined using a density functional theory based average-atom (AA) model, and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e. mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.

  8. GRAVITY PIPELINE TRANSPORT FOR HARDENING FILLING MIXTURES

    Directory of Open Access Journals (Sweden)

    Leonid KROUPNIK

    2015-12-01

    Full Text Available In underground mining of solid minerals becoming increasingly common development system with stowing hardening mixtures. In this case the natural ore array after it is replaced by an artificial excavation of solidified filling mixture consisting of binder, aggregates and water. Such a mixture is prepared on the surface on special stowing complexes and transported underground at special stowing pipelines. However, it is transported to the horizons of a few kilometers, which requires a sustainable mode of motion of such a mixture in the pipeline. Hardening stowing mixture changes its rheological characteristics over time, which complicates the calculation of the parameters of pipeline transportation. The article suggests a method of determining the initial parameters of such mixtures: the status coefficient, indicator of transportability, coefficient of hydrodynamic resistance to motion of the mixture. These indicators characterize the mixture in terms of the possibility to transport it through pipes. On the basis of these indicators is proposed methodology for calculating the parameters of pipeline transport hardening filling mixtures in drift mode when traffic on the horizontal part of the mixture under pressure column of the mixture in the vertical part of the backfill of the pipeline. This technique allows stable operation is guaranteed to provide pipeline transportation.

  9. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  10. Pitch carbon microsphere composite

    Science.gov (United States)

    Price, H. L.; Nelson, J. B.

    1977-01-01

    Petroleum pitch carbon microspheres were prepared by flash heating emulsified pitch and carbonizing the resulting microspheres in an inert atmosphere. Microsphere composites were obtained from a mixture of microspheres and tetraester precursor pyrrone powder. Scanning electron micrographs of the composite showed that it was an aggregate of microspheres bonded together by the pyrrone at the sphere contact points, with voids in and among the microspheres. Physical, thermal, and sorption properties of the composite are described. Composite applications could include use as a honeycomb filler in elevated-temperature load-bearing sandwich boards or in patient-treatment tables for radiation treatment of tumors.

  11. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  12. Interpreting Y chromosome STR haplotype mixture.

    Science.gov (United States)

    Ge, Jianye; Budowle, Bruce; Chakraborty, Ranajit

    2010-05-01

    Mixture interpretation is a challenging problem in forensic DNA analyses. The interpretation of Y short tandem repeat (STR) haplotype mixtures, due to a lack of recombination, differs somewhat from that of the autosomal DNA markers and is more complex. We describe approaches for calculating the probability of exclusion (PE) and likelihood ratio (LR) methods to interpret Y-STR mixture evidence with population substructure incorporated. For a mixture sample, first, all possible contributor haplotypes in a reference database are listed as a candidate list. The PE is the complement of the summation of the frequencies of haplotypes in the candidate list. The LR method compares the probabilities of the evidence given alternative hypotheses. The hypotheses are possible explanations for the mixture. Population substructure may be further incorporated in likelihood calculation. The maximum number of contributors is based on the candidate list and the computing complexity is polynomial. Additionally, mixtures were simulated by combining two or three 16 Y-STR marker haplotypes derived from the US forensic Y-STR database. The average PE was related to the size of database. With a database comprised of 500 haplotypes an average PE value of at least 0.995 can be obtained for two-person mixtures. The PE decreases with an increasing number of contributors to the mixture. Using the total sample population, the average number of candidate haplotypes of two-person mixtures is 3.73 and 95% mixtures have less than or equal to 10 candidate haplotypes. More than 98.7% of two-person mixtures can only be explained by the haplotype combinations that mixtures are composed. These values are generally higher for three-person mixtures. A small proportion of three-person mixture can also be explained by only two haplotypes.

  13. Optimizing Laboratory Mixture Design as It Relates to Field Compaction to Improve Asphalt Mixture Durability

    OpenAIRE

    Hekmatfar, Ali; McDaniel, Rebecca S; Shah, Ayesha; Haddock, John E.

    2015-01-01

    Most departments of transportation, including Indiana, currently use the Superpave mixture design method to design asphalt mixtures. This method specifies that the optimum asphalt content for a given gradation be selected at 4 percent air voids. During construction, these mixtures are typically compacted to 7-8 percent air voids. If mixtures were designed to be more compactable in the field they could be compacted to the same density as the laboratory mixture design, which would increase pave...

  14. Electron irradiation of carbon dioxide-carbon disulphide ice analog and its implication on the identification of carbon disulphide on Moon

    Indian Academy of Sciences (India)

    B Sivaraman

    2016-01-01

    Carbon dioxide (CO2) and carbon disulphide (CS2) molecular ice mixture was prepared under low temperature (85 K) astrochemical conditions. The icy mixture irradiated with keV electrons simulates the irradiation environment experienced by icy satellites and Interstellar Icy Mantles (IIM). Upon electron irradiation the chemical composition was found to have altered and the new products from irradiation were found to be carbonyl sulphide (OCS), sulphur dioxide (SO2), ozone (O3), carbon trioxide (CO3), sulphur trioxide (SO3), carbon subsulphide (C3S2) and carbon monoxide (CO). Results obtained confirm the presence of CS2 molecules in lunar south-pole probed by the Moon Impact Probe (MIP).

  15. Adsorption over polyacrylonitrile based carbon monoliths

    Science.gov (United States)

    Nandi, Mahasweta; Dutta, Arghya; Patra, Astam Kumar; Bhaumik, Asim; Uyama, Hiroshi

    2013-02-01

    Highly porous activated carbon monoliths have been prepared from mesoporous polyacrylonitrile (PAN) monolith as the carbon precursor. The mesoporous PAN monoliths are fabricated by a unique and facile template-free method which on carbonization gives N-doped activated carbon monoliths. The carbonization is achieved via two step thermal process which includes pretreatment in air leading to cyclization and subsequent aromatization of the PAN moieties followed by carbonization in a mixture of argon and carbon dioxide to give a layered carbon framework. Nitrogen sorption experiments carried over these carbon monoliths revealed high surface area (ca. 2500 m2g-1) for these materials with precise micropore size distribution. The activated carbons show extraordinarily high CO2 capture capacity and the uptake up to 3 bar has been found to be as high as 22.5 and 10.6 mmol/g at 273 K and 298 K, respectively.

  16. Carbon Carbon Composites: An Overview .

    OpenAIRE

    G. Rohini Devi; K. Rama Rao

    1993-01-01

    Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several indust...

  17. Evaluating permanent deformation in asphalt rubber mixtures

    OpenAIRE

    Fontes, Liseane P. T. L.; Trichês, Glicério; Pais, Jorge C.; Pereira, Paulo A. A.

    2009-01-01

    Permanent deformation or rutting, one of the most important distresses inflexible pavements, has long been a problem in asphalt mixtures. Throughout the years, researchers have used different test methods lo estimate the performance of asphalt mixtures in relation to rutting. One of the alternatives to reduce permanent deformation in asphalt pavement layers is through the use of mixtures produced with asphalt rubber This work aims at comparing the performance of a conventional dense graded mi...

  18. Microstructural characterisation of rubber modified asphalt mixtures

    OpenAIRE

    Abdul Hassan, Norhidayah

    2013-01-01

    Research to improve the performance of asphalt mixtures through the addition of crumb rubber using the dry process has continued worldwide because of its potential as a recycling option for used tires. For decades, dry mixed rubberised asphalt mixtures have performed inconsistently in field trials and laboratory evaluations. However, current research has revealed that the performance of asphalt mixtures is highly dependent on the characteristics of its internal structure or phase constituents...

  19. Performance-based asphalt mixture design methodology

    Science.gov (United States)

    Ali, Al-Hosain Mansour

    Today, several State D.O.T.s are being investigating the use of tire rubber with local conventional materials. Several of the ongoing investigations identified potential benefits from the use of these materials, including improvements in material properties and performance. One of the major problems is being associated with the transferability of asphalt rubber technology without appropriately considering the effects of the variety of conventional materials on mixture behavior and performance. Typically, the design of these mixtures is being adapted to the physical properties of the conventional materials by using the empirical Marshall mixture design and without considering fundamental mixture behavior and performance. Use of design criteria related to the most common modes of failure for asphalt mixtures, such as rutting, fatigue cracking, and low temperature thermal cracking have to be developed and used for identifying the "best mixture," in term of performance, for the specific local materials and loading conditions. The main objective of this study was the development of a mixture design methodology that considers mixture behavior and performance. In order to achieve this objective a laboratory investigation able to evaluate mixture properties that can be related to mixture performance, (in terms of rutting, low temperature cracking, moisture damage and fatigue), and simulating the actual field loading conditions that the material is being exposed to, was conducted. The results proved that the inclusion of rubber into asphalt mixtures improved physical characteristics such as elasticity, flexibility, rebound, aging properties, increased fatigue resistance, and reduced rutting potential. The possibility of coupling the traditional Marshall mix design method with parameters related to mixture behavior and performance was investigated. Also, the SHRP SUPERPAVE mix design methodology was reviewed and considered in this study for the development of an integrated

  20. Compositional Adjustment of Dirichlet Mixture Priors

    OpenAIRE

    Ye, Xugang; Yu, Yi-Kuo; Altschul, Stephen F.

    2010-01-01

    Dirichlet mixture priors provide a Bayesian formalism for scoring alignments of protein profiles to individual sequences, which can be generalized to constructing scores for multiple-alignment columns. A Dirichlet mixture is a probability distribution over multinomial space, each of whose components can be thought of as modeling a type of protein position. Applied to the simplest case of pairwise sequence alignment, a Dirichlet mixture is equivalent to an implied symmetric substitution matrix...

  1. Carbon Fiber Foam Composites and Methods for Making the Same

    Science.gov (United States)

    Leseman, Zayd Chad (Inventor); Atwater, Mark Andrew (Inventor); Phillips, Jonathan (Inventor)

    2014-01-01

    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.

  2. Cluster kinetics model for mixtures of glassformers.

    Science.gov (United States)

    Brenskelle, Lisa A; McCoy, Benjamin J

    2007-10-14

    For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied. PMID:17935407

  3. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  4. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  5. Influence of Spur Processes on Positronium Formation in Some Mixtures of Organic Liquids

    DEFF Research Database (Denmark)

    Jansen, P.; Eldrup, Morten Mostgaard; Mogensen, O. E.;

    1974-01-01

    To test some predictions of the spur reaction model of positronium (Ps) formation, positron lifetime studies of the following binary organic mixtures: (a) dioxane/n-heptane, (b) triethylamine/n-heptane, (c) pyrrolidine/n-heptane, and (d) carbon disulphide/n-hexane were performed. The results were...

  6. A new high-throughput LC-MS method for the analysis of complex fructan mixtures

    DEFF Research Database (Denmark)

    Verspreet, Joran; Hansen, Anders Holmgaard; Dornez, Emmie;

    2014-01-01

    In this paper, a new liquid chromatography-mass spectrometry (LC-MS) method for the analysis of complex fructan mixtures is presented. In this method, columns with a trifunctional C18 alkyl stationary phase (T3) were used and their performance compared with that of a porous graphitized carbon (PGC...

  7. Carbon Carbon Composites: An Overview .

    Directory of Open Access Journals (Sweden)

    G. Rohini Devi

    1993-10-01

    Full Text Available Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several industrial and biomedical applications. The multidirectional carbon-carbon product technology is versatile and offers design flexibility. This paper describes the multidirectional preform and carbon-carbon process technology and research and development activities within the country. Carbon-carbon product experience at DRDL has also been discussed. Development of carbon-carbon brake discs process technology using the liquid impregnation process is described. Further the test results on material characterisation, thermal, mechanical and tribological properties are presented.

  8. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  9. Phenol and cresol mixture degradation by the yeast Trichosporon cutaneum.

    Science.gov (United States)

    Alexieva, Z; Gerginova, M; Manasiev, J; Zlateva, P; Shivarova, N; Krastanov, A

    2008-11-01

    Most industrial wastes contain different organic mixtures, making important the investigation on the microbial destruction of composite substrates. The capability of microbes to remove harmful chemicals from polluted environments strongly depends on the presence of other carbon and energy substrates. The effect of mixtures of phenol- and methyl-substituted phenols (o-, m-, p-cresol) on the growth behaviour and degradation capacity of Trichosporon cutaneum strain was investigated. The cell-free supernatants were analysed by HPLC. It was established that the presence of o-, m- and p- cresol has not prevented complete phenol assimilation but had significant delaying effect on the phenol degradation dynamics. The mutual influence of phenol and p-cresol was investigated. We developed the kinetic model on the basis of Haldane kinetics, which used model parameters from single-substrate experiments to predict the outcome of the two-substrate mixture experiment. The interaction coefficients indicating the degree to which phenol affects the biodegradation of p-cresol and vice versa were estimated. Quantitative estimation of interaction parameters is essential to facilitate the application of single or mixed cultures to the bio-treatment of hazardous compounds.

  10. A Linear Gradient Theory Model for Calculating Interfacial Tensions of Mixtures

    DEFF Research Database (Denmark)

    Zou, You-Xiang; Stenby, Erling Halfdan

    1996-01-01

    containing supercritical methane, argon, nitrogen, and carbon dioxide gases at high pressure. With this model it is unnecessary to solve the time-consuming density profile equations of the gradient theory model. The model has been tested on a number of mixtures at low and high pressures. The results show......In this research work, we assumed that the densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor and liquid phases, and we developed a linear gradient theory model for computing interfacial tensions of mixtures, especially mixtures...... excellent agreement between the predicted and experimental IFTs at high and moderate levels of IFTs, while the agreement is reasonably accurate in the near-critical region as the used equations of state reveal classical scaling behavior. To predict accurately low IFTs (sigma

  11. Thermodynamics of mixtures containing amines

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan Antonio [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain)], E-mail: jagl@termo.uva.es; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain); Riesco, Nicolas [Department of Chemical Engineering, Loughborough University, Loughborough, LE113TU Leicestershire (United Kingdom)

    2008-01-30

    Mixtures with dimethyl or trimethylpyridines and alkane, aromatic compound or 1-alkanol have been examined using different theories: DISQUAC, Flory, the concentration-concentration structure factor, S{sub CC}(0), or the Kirkwood-Buff formalism. DISQUAC represents fairly well the available experimental data, and improves theoretical calculations from Dortmund UNIFAC. Two important effects have been investigated: (i) the effect of increasing the number of methyl groups attached to the aromatic ring of the amine; (ii) the effect of modifying the position of the methyl groups in this ring. The molar excess enthalpy, H{sup E}, and the molar excess volume, V{sup E}, decrease in systems with alkane or methanol as follows: pyridine > 3-methylpyridine > 3,5-dimethylpyridine and pyridine > 2-methylpyridine > 2,4-dimethylpyridine > 2,4,6-trimethylpyridine, which has been attributed to a weakening of the amine-amine interactions in the same sequences. This is in agreement with the relative variation of the effective dipole moment, {mu}-bar, and of the differences between the boiling temperature of a pyridine base and that of the homomorphic alkane. For heptane solutions, the observed H{sup E} variation, H{sup E} (3,5-dimethylpyridine) > H{sup E} (2,4-dimethylpyridine) > H{sup E} (2,6-dimethylpyridine), is explained similarly. Calculations on the basis of the Flory model confirm that orientational effects become weaker in systems with alkane in the order: pyridine > methylpyridine > dimethylpyridine > trimethylpyridine. S{sub CC}(0) calculations show that steric effects increase with the number of CH{sub 3}- groups in the pyridine base, and that the steric effects exerted by methyl groups in positions 2 and 6 are higher than when they are placed in positions 3 and 5. The hydrogen bond energy in methanol mixtures is independent of the pyridine base, and it is estimated to be -35.2 kJ mol{sup -1}. Heterocoordination in these solutions is due in part to size effects. Their

  12. Simulation of mixture microstructures via particle packing models and their direct comparison with real mixtures

    Science.gov (United States)

    Gulliver, Eric A.

    The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered

  13. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors

    DEFF Research Database (Denmark)

    Stefánsson, E; Jensen, P K; Eysteinsson, T;

    1999-01-01

    To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture....

  14. STAR-POLYMER -- COLLOID MIXTURES

    Directory of Open Access Journals (Sweden)

    J.Dzubiella

    2002-01-01

    Full Text Available Recent results in theory and simulation of star-polymer--colloid mixtures are reviewed. We present the effective interaction between hard, colloidal particles and star polymers in a good solvent derived by monomer-resolved Molecular Dynamics simulations and theoretical arguments. The relevant parameters are the size ratio q between the stars and the colloids, as well as the number of polymeric arms f (functionality attached to the common center of the star. By covering a wide range of q's ranging from zero (star against a flat wall up to about 0.5, we establish analytical forms for the star-colloid interaction which are in excellent agreement with simulation results. By employing this cross interaction and the effective interactions between stars and colloids themselves, a demixing transition in the fluid phase is observed and systematically investigated for different arm numbers and size ratios. The demixing binodals are compared with experimental observations and found to be consistent. Furthermore, we map the full two-component system on an effective one-component description for the colloids, by inverting the two-component Ornstein-Zernike equations. Some recent results for the depletion interaction and freezing transitions are shown.

  15. The Modified Enskog Equation for Mixtures

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1973-01-01

    In a previous paper it was shown that a modified form of the Enskog equation, applied to mixtures of hard spheres, should be considered as the correct extension of the usual Enskog equation to the case of mixtures. The main argument was that the modified Enskog equation leads to linear transport coe

  16. Fibril assembly in whey protein mixtures

    NARCIS (Netherlands)

    Bolder, S.G.

    2007-01-01

    The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly

  17. A gamma model for {DNA} mixture analyses

    OpenAIRE

    Cowell, R. G.; Lauritzen, S L; Mortera, J.

    2007-01-01

    We present a new methodology for analysing forensic identification problems involving DNA mixture traces where several individuals may have contributed to the trace. The model used for identification and separation of DNA mixtures is based on a gamma distribution for peak area values. In this paper we illustrate the gamma model and apply it on several real examples from forensic casework.

  18. Separation of organic azeotropic mixtures by pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simple distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.

  19. Recursive unsupervised learning of finite mixture models

    NARCIS (Netherlands)

    Zivkovic, Zoran; Heijden, van der Ferdinand

    2004-01-01

    There are two open problems when finite mixture densities are used to model multivariate data: the selection of the number of components and the initialization. In this paper, we propose an online (recursive) algorithm that estimates the parameters of the mixture and that simultaneously selects the

  20. Rheological and commodity properties of petroleum mixtures

    International Nuclear Information System (INIS)

    Results of researches of rheological and commodity characteristics of prognosis petroleum mixtures, pumping on an Western Kazakhstan-Kumkol petroleum pipe-line are presented. It is shown, that petroleum mixtures are low viscous, low solidifying and have not viscosity anomaly at positive temperatures. (author)

  1. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors

    DEFF Research Database (Denmark)

    Stefánsson, E; Jensen, P K; Eysteinsson, T;

    1999-01-01

    To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture.......To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture....

  2. Deformation Properties and Fatigue of Bituminous Mixtures

    Directory of Open Access Journals (Sweden)

    Frantisek Schlosser

    2013-01-01

    Full Text Available Deformation properties and fatigue performance are important characteristics of asphalt bound materials which are used for construction of pavement layers. Viscoelastic asphalt mixtures are better characterized via dynamic tests. This type of tests allows us to collate materials with regard to axle vibrations which lie usually in the range of 6 Hz–25 Hz for standard conditions. Asphalt modified for heat sensitivity in the range from −20°C to +60°C has significant impact on the overall characteristics of the mixture. Deformation properties are used as inputs for empirical mixture design, and fatigue performance of asphalt mixtures reflects the parameters of functional tests. Master curves convey properties of asphalt mixtures for various conditions and allow us to evaluate them without the need of time expensive testing.

  3. Mixture toxicity of PBT-like chemicals

    DEFF Research Database (Denmark)

    Syberg, Kristian; Dai, Lina; Ramskov, Tina;

    addition is a suitable model for default estimations of mixture effects. One of the major challenges is therefore how to select specific chemicals for actual mixture toxicity assessments. Persistant chemicals are likely to be present in the environment for an extended period of time, thus increasing......Even though most chemicals regulation is still conducted on a chemical by chemical basis, mixture toxicity is achieving increasing attention. The scientific understanding has increased substantially in the last decades, and a general consensus now seems to have been acieved that concentration...... the likelihood of them being present in environmentally found mixtures. Persistant, bioaccumulative and toxic (PBT) chemicals are therefore a highly relevant group of chemicals to consider for mixture toxicity regulation. The present study evaluates to what extent a number of PBT-like chemicals posess concern...

  4. Relativistic mixtures of charged and uncharged particles

    Science.gov (United States)

    Kremer, Gilberto M.

    2014-01-01

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad's moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick's law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad's distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  5. Gasification of biomass chars in steam-nitrogen mixture

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)]. E-mail: hanzade@itu.edu.tr; Yaman, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Kucukbayrak, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)

    2006-05-15

    Some agricultural and waste biomass samples such as sunflower shell, pinecone, rapeseed, cotton refuse and olive refuse were first pyrolyzed in nitrogen, and then, their chars were gasified in a gas mixture of steam and nitrogen. Experiments were performed using the thermogravimetric analysis technique. Pyrolysis of the biomass samples was performed at a heating rate of 20 K/min from ambient to 1273 K in a dynamic nitrogen atmosphere of 40 cm{sup 3} min{sup -1}. The obtained chars were cooled to ambient temperature and then gasified up to 1273 K in a dynamic atmosphere of 40 cm{sup 3} min{sup -1} of a mixture of steam and nitrogen. Derivative thermogravimetric analysis profiles from gasification of the chars were derived, and the mass losses from the chars were interpreted in terms of temperature. It was concluded that gasification characteristics of biomass chars were fairly dependent on the biomass properties such as ash and fixed carbon contents and the constituents present in the ash. Different mechanisms in the three temperature intervals, namely water desorption at lower temperatures, decomposition of hydroxide minerals to oxide minerals and formation of carbon monoxide at medium temperatures and production of hydrogen at high temperatures govern the behavior of the char during the gasification process. The chars from pinecone and sunflower shell could be easily gasified under the mentioned conditions. In order to further raise the conversion yields, long hold times should be applied at high temperatures. However, the chars from rapeseed and olive refuse were not gasified satisfactorily. Low ash content and high fixed carbon content biomass materials are recommended for use in gasification processes when char from pyrolysis at elevated temperatures is used as a feedstock.

  6. Protonic Ammonium Nitrate Ionic Liquids and Their Mixtures: Insights into Their Thermophysical Behavior.

    Science.gov (United States)

    Canongia Lopes, José N; Esperança, José M S S; de Ferro, André Mão; Pereiro, Ana B; Plechkova, Natalia V; Rebelo, Luis P N; Seddon, Kenneth R; Vázquez-Fernández, Isabel

    2016-03-10

    This study is centered on the thermophysical characterization of different families of alkylammonium nitrate ionic liquids and their binary mixtures, namely the determination at atmospheric pressure of densities, electric conductivities and viscosities in the 288.15 liquids with differing numbers of hydrogen bond donor groups: diethylammonium nitrate (two hydrogen bond donors), triethylammonium nitrate (one hydrogen bond donor) and tetraethylammonium nitrate (no hydrogen bond donors). Finally, the behavior of mixtures with different numbers of equivalent carbon atoms in the alkylammonium cations was analyzed. The results show a quasi-ideal behavior for all monoalkylammonium nitrate mixtures. In contrast, the other mixtures show deviations from ideality, namely when the difference in the number of carbon atoms present in the cations increases or the number of hydrogen bond donors present in the cation decreases. Overall, the results clearly show that, besides the length and distribution of alkyl chains present in a cation such as alkylammonium, there are other structural and interaction parameters that influence the thermophysical properties of both pure compounds and their mixtures. PMID:26886188

  7. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    OpenAIRE

    Epand, Richard M.; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidy...

  8. On the mixture model for multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, M.; Taivassalo, V. [VTT Energy, Espoo (Finland). Nuclear Energy; Kallio, S. [Aabo Akademi, Turku (Finland)

    1996-12-31

    Numerical flow simulation utilising a full multiphase model is impractical for a suspension possessing wide distributions in the particle size or density. Various approximations are usually made to simplify the computational task. In the simplest approach, the suspension is represented by a homogeneous single-phase system and the influence of the particles is taken into account in the values of the physical properties. This study concentrates on the derivation and closing of the model equations. The validity of the mixture model is also carefully analysed. Starting from the continuity and momentum equations written for each phase in a multiphase system, the field equations for the mixture are derived. The mixture equations largely resemble those for a single-phase flow but are represented in terms of the mixture density and velocity. The volume fraction for each dispersed phase is solved from a phase continuity equation. Various approaches applied in closing the mixture model equations are reviewed. An algebraic equation is derived for the velocity of a dispersed phase relative to the continuous phase. Simplifications made in calculating the relative velocity restrict the applicability of the mixture model to cases in which the particles reach the terminal velocity in a short time period compared to the characteristic time scale of the flow of the mixture. (75 refs.)

  9. METHANOL REMOVAL FROM METHANOL-WATER MIXTURE USING ACTIVATED SLUDGE, AIR STRIPPING AND ADSORPTION PROCESS: COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    SALAM K. AL-DAWERY

    2015-12-01

    Full Text Available An experimental research has been carried out in order to examine the removal of methanol from methanol-water mixtures using three different methods; activated sludge; activated carbon and air stripping. The results showed that the methanol was totally consumed by the bacteria as quickly as the feed entered the activated sludge vessel. Air stripping process has a limited ability for removing of methanol due to strong intermolecular forces between methanol and water; however, the results showed that the percentage of methanol removed using air pressure at 0.5 bar was higher than that of using air pressure of 0.25 bar. Removal of methanol from the mixture with a methanol content of 5% using activated carbon was not successful due to the limited capacity of the of the activated carbon. Thus, the activated sludge process can be considered as the most suitable process for the treatment of methanol-water mixtures.

  10. Assessing exposures to inhaled complex mixtures.

    OpenAIRE

    Leaderer, B P; Lioy, P J; Spengler, J D

    1993-01-01

    In the course of daily activities, individuals spend varying amounts of time in different spaces where they are exposed to a complex mixture of gas, vapor, and particulate contaminants. The term complex is used in this paper to refer to binary mixtures as well as truly complex mixtures of three or more constituents. The diversity of the environments where pollution may occur, the number of pollutants that may be present, and the nature of the activity in the environment combine to pose a chal...

  11. Correlation of the liquid mixture viscosities

    Directory of Open Access Journals (Sweden)

    Knežević-Stevanović Anđela B.

    2012-01-01

    Full Text Available In this paper forty two selected correlation models for liquid mixture viscosities of organic compounds were tested on 219 binary and 41 ternary sets of experimental data taken from literature. The binary sets contained 3675 experimental data points for 70 different compounds. The ternary sets contained 2879 experimental data points for 29 different compounds. The Heric I, Heric-Brewer II, and Krishnan-Laddha models demonstrated the best correlative characteristics for binary mixtures (overall absolute average deviation < 2%. The Heric I, Heric-Brewer II, Krishnan-Laddha and Heric II models demonstrated the best correlative characteristics for ternary mixtures (overall absolute average deviation < 3%.

  12. Adsorption on mixtures of ion exchangers

    International Nuclear Information System (INIS)

    A theoretical study has been made of adsorption on mixtures of ion exchangers. The effect of variables such as the concentration of the ion being adsorbed, the concentration of the supporting electrolyte, loading, the values of the capacities and equilibrium constants for the various exchange processes, and the fraction of each adsorber in the mixture on the observed distribution coefficient has been investigated. A computer program has been written to facilitate the calculation of distribution coefficients for the adsorption of an ion on a given mixture of ion exchangers under a specified set of conditions

  13. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne;

    2007-01-01

    Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...

  14. Variational Theory of Mixtures in Continuum Mechanics

    CERN Document Server

    Gouin, Henri

    2008-01-01

    In continuum mechanics, the equations of motion for mixtures are derived through the use of Hamilton's extended principle which regards the mixture as a collection of distinct continua. The internal energy is assumed to be a function of densities, entropies and successive spatial gradients of each constituent. We first write the equations of motion for each constituent of an inviscid miscible mixture of fluids without chemical reactions or diffusion. Our work leads to the equations of motion in an universal thermodynamic form in which interaction terms subject to constitutive laws, difficult to interpret physically, do not occur. For an internal energy function of densities, entropies and spatial gradients, an equation describing the barycentric motion of the constituents is obtained. The result is extended for dissipative mixtures and an equation of energy is obtained. A form of Clausius-Duhem's inequality which represents the second law of thermodynamics is deduced. In the particular case of compressible mi...

  15. Robust clustering using exponential power mixtures.

    Science.gov (United States)

    Zhang, Jian; Liang, Faming

    2010-12-01

    Clustering is a widely used method in extracting useful information from gene expression data, where unknown correlation structures in genes are believed to persist even after normalization. Such correlation structures pose a great challenge on the conventional clustering methods, such as the Gaussian mixture (GM) model, k-means (KM), and partitioning around medoids (PAM), which are not robust against general dependence within data. Here we use the exponential power mixture model to increase the robustness of clustering against general dependence and nonnormality of the data. An expectation-conditional maximization algorithm is developed to calculate the maximum likelihood estimators (MLEs) of the unknown parameters in these mixtures. The Bayesian information criterion is then employed to determine the numbers of components of the mixture. The MLEs are shown to be consistent under sparse dependence. Our numerical results indicate that the proposed procedure outperforms GM, KM, and PAM when there are strong correlations or non-Gaussian components in the data. PMID:20163406

  16. Ultrafiltration of a polymer-electrolyte mixture

    NARCIS (Netherlands)

    Vonk, P; Noordman, T.R; Schippers, D; Tilstra, B; Wesselingh, J.A

    1997-01-01

    We present a mathematical model to describe the ultrafiltration behaviour of polymer-electrolyte mixtures. The model combines the proper thermodynamic forces (pressure, chemical potential and electrical potential differences) with multicomponent diffusion theory. The model is verified with experimen

  17. Model structure selection in convolutive mixtures

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, Scott; Hansen, Lars Kai

    2006-01-01

    The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimoneous represent......The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimoneous...... representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: 'Are we actually dealing with a convolutive mixture?'. We try to answer this question for EEG data....

  18. Transparent Films from CO2 -Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing.

    Science.gov (United States)

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter; Müller, Thomas E

    2016-04-25

    Transparent films were prepared by cross-linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2 , propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron-acceptor and electron-donor groups enables particularly facile UV- or redox-initiated free-radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  19. Production of single-walled carbon nanotube grids

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  20. Thermodynamic scheme of inhomogeneous perfect fluid mixtures

    OpenAIRE

    Zarate, R D; Quevedo, Hernando

    2004-01-01

    We analyze the compatibility between the geometrodynamics and thermodynamics of a binary mixture of perfect fluids which describe inhomogeneous cosmological models. We generalize the thermodynamic scheme of general relativity to include the chemical potential of the fluid mixture with non-vanishing entropy production. This formalism is then applied to the case of Szekeres and Stephani families of cosmological models. The compatibility conditions turn out to impose symmetry conditions on the c...

  1. Laboratory performance of asphalt rubber mixtures

    OpenAIRE

    Fontes, Liseane; Trichês, Glicério; Pais, Jorge; Pereira, Paulo; Minhoto, Manuel

    2009-01-01

    Asphalt rubber mixtures are one of the most promising techniques to extend the service life of asphalt pavement overlays. Asphalt rubber binder is composed of crumb rubber from reclaimed tires and conventional asphalt. The asphalt rubber binder can be obtained through wet process in two different systems: tire rubber modified asphalt binder (produced at industrial plants) and continuous blending (produced in asphalt plants). This study presents a laboratory evaluation of asphalt rubber mixtur...

  2. Asphalt mixtures produced with 100% reclaimed materials

    OpenAIRE

    Oliveira, Joel; Silva, Hugo Manuel Ribeiro Dias da; Jesus, Carlos M. G.

    2011-01-01

    The environmental and economic benefits of using Reclaimed Asphalt Pavement (RAP) material in hot mix asphalt (HMA) applications could be pushed up to the limit, by producing totally recycled HMAs (100% RAP), but the performance of this alternative must be satisfactory. In fact, these mixtures could possibly present a lower performance due to the behaviour of the aged binder, which loses its lighter fractions with time. In order to improve the mixture properties, a binder rejuvenator should b...

  3. Liquid mixture viscosities correlation with rational models

    Directory of Open Access Journals (Sweden)

    Knežević-Stevanović Anđela B.

    2014-01-01

    Full Text Available In this paper twenty two selected rational correlation models for liquid mixture viscosities of organic compounds were tested on 219 binary sets of experimental data taken from literature. The binary sets contained 3675 experimental data points for 70 different compounds. The Dimitrov-Kamenski X, Dimitrov-Kamenski XII, and Dimitrov-Kamenski XIII models demonstrated the best correlative characteristics for binary mixtures with overall absolute average deviation less then 2%. [Projekat Ministarstva nauke Republike Srbije, br. 172063

  4. A Gaussian mixture ensemble transform filter

    OpenAIRE

    Reich, Sebastian

    2011-01-01

    We generalize the popular ensemble Kalman filter to an ensemble transform filter where the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions, ...

  5. Learning Mixtures of Gaussians in High Dimensions

    OpenAIRE

    Ge, Rong; Huang, Qingqing; Kakade, Sham M.

    2015-01-01

    Efficiently learning mixture of Gaussians is a fundamental problem in statistics and learning theory. Given samples coming from a random one out of k Gaussian distributions in Rn, the learning problem asks to estimate the means and the covariance matrices of these Gaussians. This learning problem arises in many areas ranging from the natural sciences to the social sciences, and has also found many machine learning applications. Unfortunately, learning mixture of Gaussians is an information th...

  6. Porous concrete mixtures for pervious urban pavements

    OpenAIRE

    Castro, J.; Fernández, B.; Videla, C.; de Solminihac, H.

    2007-01-01

    The present study aimed to analyze the hydraulic and mechanical behaviour of a series of roller-compacted, laboratory porous concrete mixtures. The mix design variables examined were the actual void ratio in the hardened concrete and the water/cement ratio. From these results the better dosages from the mechanical and hydraulical behaviour point of view were determined. One of the designs developed was found to exhibit excellent hydraulic capacity and 20% greater strength than the mixtures re...

  7. Assessing sanitary mixtures in East African cities

    OpenAIRE

    Letema, S.C.

    2012-01-01

    The urbanisation of poverty and informality in East African cities poses a threat to environmental health, perpetuates social exclusion and inequalities, and creates service gaps (UN-Habitat, 2008). This makes conventional sanitation provision untenable citywide, giving rise to the emergence of sanitation mixtures. Sanitation mixtures have different scales, institutional arrangements, user groups, and rationalities for their establishment, location, and management. For assessing the performan...

  8. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  9. Investigation of Structure and Oxidation Behavior of Pitch and Resin Resultant Carbon

    Institute of Scientific and Technical Information of China (English)

    ZHUBo-quan; LINan

    1996-01-01

    The structure and oxidation behaviors of pitch carbon,resin carbon and their mixture re-sultant carbon have been investigated.The results indicate that the pitch carbon has relative higher true specific gravity,well developed crystalline and better oxidation resistance than resin carbon,With 20%-35% resin added to pitch,the structure of the resultant carbon can be modified and oxidation resistance will be improved significantly.

  10. Homogeneous cooling of mixtures of particle shapes

    Science.gov (United States)

    Hidalgo, R. C.; Serero, D.; Pöschel, T.

    2016-07-01

    In this work, we examine theoretically the cooling dynamics of binary mixtures of spheres and rods. To this end, we introduce a generalized mean field analytical theory, which describes the free cooling behavior of the mixture. The relevant characteristic time scale for the cooling process is derived, depending on the mixture composition and the aspect ratio of the rods. We simulate mixtures of spherocylinders and spheres using a molecular dynamics algorithm implemented on graphics processing unit (GPU) architecture. We systematically study mixtures composed of spheres and rods with several aspect ratios and varying the mixture composition. A homogeneous cooling state, where the time dependence of the system's intensive variables occurs only through a global granular temperature, is identified. We find cooling dynamics in excellent agreement with Haff's law, when using an adequate time scale. Using the scaling properties of the homogeneous cooling dynamics, we estimated numerically the efficiency of the energy interchange between rotational and translational degrees of freedom for collisions between spheres and rods.

  11. Phase equilibria for complex fluid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, J.M.

    1983-04-01

    After defining complex mixtures, attention is given to the canonical procedure used for the thermodynamics of fluid mixtures: first, we establish a suitable, idealized reference system and then we establish a perturbation (or excess function) which corrects the idealized system for real behavior. For complex mixtures containing identified components (e.g. alcohols, ketones, water) discussion is directed at possible techniques for extending to complex mixtures our conventional experience with reference systems and perturbations for simple mixtures. Possible extensions include generalization of the quasi-chemical approximation (local compositions) and superposition of chemical equilibria (association and solvation) on a physical equation of state. For complex mixtures containing unidentified components (e.g. coal-derived fluids), a possible experimental method is suggested for characterization; conventional procedures can then be used to calculate phase equilibria using the concept of pseudocomponents whose properties are given by the characterization data. Finally, as an alternative to the pseudocomponent method, a brief introduction is given to phase-equilibrium calculations using continuous thermodynamics.

  12. Production of Iodine-132 from Irradiated Uranium Tetrafluoride

    International Nuclear Information System (INIS)

    Instead of the metallic uranium or uranium oxides usually used, the authors selected UF4 as the material to be irradiated. The reasons for this choice are as follows: (a) it possesses good thermal and radiolytic stability; (b) it is easily soluble in a solution consisting of concentrated hydrochloric acid and boric acid; (c) the dissolution reaction is gentle and without gas release; (d) the uranium is dissolved as U4+ in a non-oxidizing medium, which permits of selective reduction of the telluric acid added as carrier. The above factors greatly facilitate the process of separating the Te132. The method of separating the Te132 is as follows: (a) dissolution of the UF4 in the medium mentioned above; (b) direct reduction of the telluric acid using SnCl2 followed by filtration; (c) re-dissolution of the Te using concentrated hydrochloric acid and hydrogen peroxide; (d) re-precipitation of the Te in a hydrochloric medium using SnCl2 or SO2, followed by filtration; (e) final dissolution of the Te in concentrated nitric acid. The nitric solution of tellurium, containing no fission products that are not isotopic with Te132, is fixed on an alumina column and the I132 is removed periodically. The fixation of Te182 and the elution of I132 were studied and the chemical and radiochemical purity of the product obtained was verified. This method can be used with relatively large quantities of UF4, which compensates for the poor integral fluxes available in research reactors, such as JEN -1, and thus enables sufficient quantities of I132 - of the order of 0.5 c - to be obtained in establishments lacking high-flux reactors in almost continuous operation or unable to irradiate enriched uranium. (author)

  13. Brief report on primary mixture preparation for precise CO observation

    Science.gov (United States)

    Lee, J.; Lee, J. B.; Moon, D. M.; Kim, J. S.

    2012-04-01

    Greenhouse gases (GHG) have been known as causing materials of the greenhouse effect. Because it is very important to reduce their emission, they has been paid attention since Kyoto protocol to the United Nations Framework Convention on Climate Change. Accurate observation data of ambient GHG are vital for the study of the relationship between GHGs and global warming, but it is not easy to quantify their mixing ratios owing to their globally and temporally tiny variation. For example, mixing ratio of carbon dioxide in the atmosphere, is reported to be growing by +1.7 ppm (parts per million)/year for recen 10 years according to GAW report. CO has contributed as an indicator in that an air mass is from source or background, although it lacks its traceability. CO is known to be emitted from industry, vehicle, and biomass burning. The atmospheric lifetime of CO varies from weeks to months depending on OH radical amount however ambient CO ranges from 50 nmol/mol to 300 nmol/mol at marine boundary, from 100 nmol/mol to 500 nmol/mol at city area. In order to monitor precisely CO at ambient, the World Meteorological Organization (WMO) requires its measurement capability of 2 nmol/mol uncertainty. For these reasons, it's necessary for the measurement results to be accurate and consistent among the assigned standards. . In order to prepare CO/air standard mixtures with an absolute scale we have studied several factors on gravimetry; purity analysis of CO and an artificial air and stability including unexpected contamination during preparation and adsorption on inner wall of cylinders. Currently we are going to present the preliminary results on the development of standard mixtures with ~ 300 nmol/mol. The mixtures were verified by comparing their amount with a Gas Chromatography / Electron Capture Detector (GC/FID) and cavity ring down spectrometer (CRDS). Analytical capability during comparison is within ± 2 ppb, which satisfies WMO DQO.

  14. Thermophysical properties of supercritical fluids and fluid mixtures

    International Nuclear Information System (INIS)

    This research is concerned with the development of a quantitative scientific description of the thermodynamic and transport properties of supercritical and subcritical fluids and fluid mixtures. It is known that the thermophysical properties of fluids and fluid mixtures asymptotically close to the critical point satisfy scaling laws with universal critical exponents and universal scaling functions. However, the range of validity of these asymptotic scaling laws is quite small. As a consequence, the impact of the modern theory of critical phenomena on chemical engineering has been limited. On the other hand, an a priori estimate of the range of temperatures and densities, where critical fluctuations become significant, can be made on the basis of the so-called Ginzburg criterion. A recent analysis of this criterion suggests that this range is actually quite large and for a fluid like carbon dioxide can easily extend to 100 degrees or so above the critical temperature. Hence, the use of traditional engineering equations like cubic equations is not scientifically justified in a very wide range of temperatures and densities around the critical point. We have therefore embarked on a scientific approach to deal with the global effects of critical fluctuations on the thermophysical properties of fluids and fluid mixtures. For this purpose it is not sufficient to consider the asymptotic critical fluctuations but we need to deal also with the nonasymptotic critical fluctuations. The goal is to develop scientifically based questions that account for the crossover of the thermophysical properties from their asymptotic singular behavior in the near vicinity of the critical point to their regular behavior very far away from the critical point

  15. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  16. Dermal tumorigen PAH and complex mixtures for biological research

    International Nuclear Information System (INIS)

    Thirteen commercially available, commonly reported four-five ring dermal tumorigen PAHs, were determined in a set of complex mixtures consisting of crude and upgraded coal liquids, and petroleum crude oils and their distillate fractions. Semi-preparative scale, normal phase high performance liquid chromatographic fractionation followed by capillary column gas chromatography or gas chromatography-mass spectroscopy were used for the measurements. Deuterated or carbon-14 labeled PAH served as internal standards or allowed recovery corrections. Approaches for the preparation and measurement of radiolabeled PAH were examined to provide chemical probes for biological study. Synthetic routes for production of 14C labeled dihydrobenzo[a]pyrene and 14C- or 3H 10-azabenzo[a]pyrene are being studied to provide tracers for fundamental studies in tracheal transplant and skin penetration systems. (DT)

  17. Calculation of effective absorption coefficient for aerosols of internal mixture

    International Nuclear Information System (INIS)

    The effective absorption coefficient with time of strong absorbing aerosol made of carbon dusts and water of internal mixture is analyzed, and the influence of different wavelengths and radius ratios on it is discussed. The shorter the wavelength is, the larger the effective absorption coefficient is , and more quickly it increases during 1-100 μs, and the largest increase if 132.65% during 1-100 μs. Different ratios between inner and outer radius have large influence on the effective absorption coefficient. The larger the ratio is, the larger the effective absorption coefficient is, and more quickly it increases during 1-100 μs. The increase of the effective absorption coefficient during 1-100 μs is larger than that during 100-1000 μs, and the largest increase is 138.66% during 1-100 μs. (authors)

  18. Calculation of thermodynamic functions for hydrocarbons and their mixtures

    Science.gov (United States)

    Perkins, Jeffery; Ho, Jason; Weinberg, Noham

    2013-06-01

    Knowledge of thermodynamic parameters of oil components in their pure forms and in mixtures is vital to understanding the properties of petroleum. The fact that hydrocarbons, thermodynamically unstable at ambient conditions, are formed spontaneously at geochemical conditions from a variety of precursors, ranging from kerogen to carbon, suggests that the thermodynamic stability of hydrocarbons increases dramatically with increasing pressure and temperature. Better grasp of their thermodynamic properties at extreme conditions is therefore crucially important both for our understanding of the processes of oil formation and for our ability to design and engineer new methods of synthetic oil production. Unfortunately, with a very few exceptions of the simplest compounds, such as e.g. methane, ethane, or ethene, these properties are tabulated for rather narrow ranges of pressures and temperatures, and in most cases are listed only for standard conditions at 25°C. We propose a new computational methodology, based on classical molecular dynamics simulations, for obtaining accurate thermodynamic functions, such as Gibbs energies, entropies, and enthalpies, of oil components and their mixtures at elevated and extreme temperatures and pressures.

  19. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  20. A PROCESS FOR SEPARATING AZEOTROPIC MIXTURES BY EXTRACTIVE AND CONVECTIVE DISTILLATION

    Science.gov (United States)

    Frazer, J.W.

    1961-12-19

    A method is described for separating an azeotrope of carbon tetrachloride and 1,1,2,2-tetrafluorodinitroethane boiling at 60 deg C. The ndethod comnprises, specifically, feeding azeotrope vapors admixed with a non- reactive gas into an extractive distillation column heated to a temperature preferably somewhat above the boiling point of the constant boiling mixture. A solvent, di-n-butylphthalate, is metered into the column above the gas inlet and permitted to flow downward, earrying with it the higher bomling fraction, while the constituent having the lower boiling point passes out of the top of the column with the non-reactive gas and is collected in a nitrogen cold trap. Other solvents which alter the vapor pressure relationship may be substituted. The method is generally applicable to azeotropic mixtures. A number of specific mixtures whicb may be separated are disclosed. (AEC)

  1. Non-self-sustained electric discharge in oxygen gas mixtures: singlet delta oxygen production

    International Nuclear Information System (INIS)

    The possibility of obtaining a high specific input energy in an electron-beam sustained discharge ignited in oxygen gas mixtures O2 : Ar : CO (or H2) at the total gas pressures of 10-100 Torr was experimentally demonstrated. The specific input energy per molecular component exceeded ∼6 kJ l-1 atm-1 (150 kJ mol-1) as a small amount of carbon monoxide was added into a gas mixture of oxygen and argon. It was theoretically demonstrated that one might expect to obtain a singlet delta oxygen yield of 25% exceeding its threshold value needed for an oxygen-iodine laser operation at room temperature, when maintaining a non-self-sustained discharge in oxygen gas mixtures with molecular additives CO, H2 or D2. The efficiency of singlet delta oxygen production can be as high as 40%

  2. Extraction equilibrium of ytterbium(III) with sulfoxides and their mixtures

    International Nuclear Information System (INIS)

    The extraction equilibria of 175Yb from thiocyanate solutions with di-n-pentyl sulfoxide (DPSO), di-n-octyl sulfoxide (DOSO), tri-n-octylphosphine oxide (TOPO) and their mixtures in carbon tetrachloride has been investigated. A relatively small synergistic enhancement has been observed with mixtures of dialkyl sulfoxides (DPSO + DOSO) and also with mixtures of DPSO + TOPO. These extraction data have been analyzed with the aid of a computer by taking into account complexation of the metal in the aqueous phase by inorganic ligands and assuming a set of product species in the organic phase and adjusting their information constants through an interative non-linear least-squares procedure to obtain the best fit to the data. The extraction of the metal is inversely and linearly dependent upon the dielectric constant of the solvent and temperature of the system. (author) 10 refs.; 6 figs.; 3 tabs

  3. Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier

    Energy Technology Data Exchange (ETDEWEB)

    See Hoon Lee; Sang Jun Yoon; Ho Won Ra; Young Il Son; Jai Chang Hong; Jae Goo Lee [Korean Institute of Energy Research, Taejon (Republic of Korea). Gasification Research Group

    2010-08-15

    To enhance clean energy utilization and reduce greenhouse gases, various gasification technologies have been developed in the world. The gasification characteristics, such as syngas flow rate, compositions, cold gas efficiency and carbon conversion, of petroleum coke and mixture of petroleum coke and lignite were investigated in a 1 T/d entrained-flow gasifier (ID. 0.2 m x height 1.7 m) with quencher as a syngas cooler. CO concentration was 31-42 vol% and H{sub 2} concentration was almost 22 vol% in the gasification experiments of petroleum coke. In the case of mixture of petroleum coke and lignite, CO concentration was 37-47 vol% and H{sub 2} concentration was almost 25 vol% due to synergy effect. The gasification of mixture resulted in higher syngas heating value and cold gas efficiency because of the higher H{sub 2} and CO composition in syngas.

  4. Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Lee, See Hoon; Yoon, Sang Jun; Ra, Ho Won; Son, Young Il; Hong, Jai Chang; Lee, Jae Goo [Gasification Research Group, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea)

    2010-08-15

    To enhance clean energy utilization and reduce greenhouse gases, various gasification technologies have been developed in the world. The gasification characteristics, such as syngas flow rate, compositions, cold gas efficiency and carbon conversion, of petroleum coke and mixture of petroleum coke and lignite were investigated in a 1 T/d entrained-flow gasifier (I.D. 0.2 m x height 1.7 m) with quencher as a syngas cooler. CO concentration was 31-42 vol% and H{sub 2} concentration was almost 22 vol% in the gasification experiments of petroleum coke. In the case of mixture of petroleum coke and lignite, CO concentration was 37-47 vol% and H{sub 2} concentration was almost 25 vol% due to synergy effect. The gasification of mixture resulted in higher syngas heating value and cold gas efficiency because of the higher H{sub 2} and CO composition in syngas. (author)

  5. A constitutive theory of reacting electrolyte mixtures

    Science.gov (United States)

    Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto

    2013-11-01

    A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).

  6. Asbestos Tailings as Aggregates for Asphalt Mixture

    Institute of Scientific and Technical Information of China (English)

    LIU Xinoming; XU Linrong

    2011-01-01

    To use many asbestos tailings collected in Ya-Lu highway, and to explore the feasibility of using asbestos tailings as aggregates in common asphalt mixtures, and properties of some asphalt mixtures were evaluated as well. X-ray diffraction (XRD), X-ray fluorescent (XRF), and atomic absorption spectrophotometry (AAS) were employed to determine the solid waste content of copper, zinc, lead, and cadmium. Volume properties and pavement performances of AC-25 asphalt mixture with asbestos tailings were also evaluated compared with those with basalt as aggregates.XRD and XRF measurement results infer that asbestos tailing is an excellent road material. Volume properties of AC-25 asphalt mixture with asbestos tailings satisfied the related specifications. No heavy metals and toxic pollution were detected in AAS test and the value of pH test is 8.23, which is help to the adhesion with asphalt in the asphalt concrete. When compared with basalt, high temperature property and the resistance to low temperature cracking of AC-25 asphalt mixture was improved by using asbestos tailings as aggregates. In-service AC-25 asphalt pavement with asbestos tailings also presented excellent performance and British Pendulum Number (BPN) coefficient of surface.

  7. Relativistic mixtures of charged and uncharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  8. ASPECTS OF THERMODYNAMICS OF POLYMER MIXTURES

    Institute of Scientific and Technical Information of China (English)

    CHAI Zhikuan

    1987-01-01

    In this brief review article some aspects of the thermodynamics of polymer mixtures are discussed,mainly based on the author's research. The studies of poly (methyl methacrylate)/chlorinated polyethylene (CPE), poly (butyl acrylate)/CPE and CPE/CPE (different chlorine content) mixture verify the "dissimilarity" and "similarity" principles for predicting miscibility of polymer mixtures. The sign of heat of mixing of oligomeric analogues is not sufficient in predicting the miscibility. The Flory equation of state theory has been applied to simulate the phase boundaries of polymer mixtures. The empirical entropy parameter Q12 plays an important role in the calculation, this reduces the usefulness of the theory. With energy parameter X12 ≠ 0 and Q12 ≠ 0 the spinodals so calculated are reasonable compared to experiments.A hole model was suggested for the statistics of polymer mixtures. The new hole theory combines the features of both the Flory equation of state theory and the Sanchez lattice fluid theory and can be reduced to them under some conditions.

  9. Identifiability of large phylogenetic mixture models.

    Science.gov (United States)

    Rhodes, John A; Sullivant, Seth

    2012-01-01

    Phylogenetic mixture models are statistical models of character evolution allowing for heterogeneity. Each of the classes in some unknown partition of the characters may evolve by different processes, or even along different trees. Such models are of increasing interest for data analysis, as they can capture the variety of evolutionary processes that may be occurring across long sequences of DNA or proteins. The fundamental question of whether parameters of such a model are identifiable is difficult to address, due to the complexity of the parameterization. Identifiability is, however, essential to their use for statistical inference.We analyze mixture models on large trees, with many mixture components, showing that both numerical and tree parameters are indeed identifiable in these models when all trees are the same. This provides a theoretical justification for some current empirical studies, and indicates that extensions to even more mixture components should be theoretically well behaved. We also extend our results to certain mixtures on different trees, using the same algebraic techniques.

  10. Performance Analysis of Neuro Genetic Algorithm Applied on Detecting Proportion of Components in Manhole Gas Mixture

    Directory of Open Access Journals (Sweden)

    Varun Kumar Ojha

    2012-08-01

    Full Text Available The article presents performance analysis of a real valued neuro genetic algorithm applied for thedetection of proportion of the gases found in manhole gas mixture. The neural network (NN trained usinggenetic algorithm (GA leads to concept of neuro genetic algorithm, which is used for implementing anintelligent sensory system for the detection of component gases present in manhole gas mixture Usually amanhole gas mixture contains several toxic gases like Hydrogen Sulfide, Ammonia, Methane, CarbonDioxide, Nitrogen Oxide, and Carbon Monoxide. A semiconductor based gas sensor array used for sensingmanhole gas components is an integral part of the proposed intelligent system. It consists of many sensorelements, where each sensor element is responsible for sensing particular gas component. Multiple sensorsof different gases used for detecting gas mixture of multiple gases, results in cross-sensitivity. The crosssensitivity is a major issue and the problem is viewed as pattern recognition problem. The objective of thisarticle is to present performance analysis of the real valued neuro genetic algorithm which is applied formultiple gas detection.

  11. Performance Analysis of Neuro Genetic Algorithm Applied on Detecting Proportion of Components in Manhole Gas Mixture

    Directory of Open Access Journals (Sweden)

    Varun Kumar Ojha

    2012-07-01

    Full Text Available The article presents performance analysis of a real valued neuro genetic algorithm applied for the detection of proportion of the gases found in manhole gas mixture. The neural network (NN trained using genetic algorithm (GA leads to concept of neuro genetic algorithm, which is used for implementing an intelligent sensory system for the detection of component gases present in manhole gas mixture Usually a manhole gas mixture contains several toxic gases like Hydrogen Sulfide, Ammonia, Methane, Carbon Dioxide, Nitrogen Oxide, and Carbon Monoxide. A semiconductor based gas sensor array used for sensing manhole gas components is an integral part of the proposed intelligent system. It consists of many sensor elements, where each sensor element is responsible for sensing particular gas component. Multiple sensors of different gases used for detecting gas mixture of multiple gases, results in cross-sensitivity. The crosssensitivity is a major issue and the problem is viewed as pattern recognition problem. The objective of this article is to present performance analysis of the real valued neuro genetic algorithm which is applied for multiple gas detection.

  12. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    A method is described for recovering UF6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  13. Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring

    OpenAIRE

    Sun, Tai-ping; Shieh, Hsiu-Li; Ching, Congo Tak-Shing; Yao, Yan-Dong; Huang, Su-Hua; Liu, Chia-Ming; Liu, Wei-Hao; Chen, Chung-Yuan

    2010-01-01

    This study aims to develop an amperometric glucose biosensor, based on carbon nanotubes material for reverse iontophoresis, fabricated by immobilizing a mixture of glucose oxidase (GOD) and multiwalled carbon nanotubes (MWCNT) epoxy-composite, on a planar screen-printed carbon electrode. MWCNT was employed to ensure proper incorporation into the epoxy mixture and faster electron transfer between the GOD and the transducer. Results showed this biosensor possesses a low detection potential (+50...

  14. Growth Temperature Effect on Carbon Nano tubes Formation by Spray Pyrolysis Method

    International Nuclear Information System (INIS)

    Carbon nano tubes has been produced by using spray pyrolysis method with no carrier gas. Carbon nano tubes were formulated from a mixture a ferrocene and benzene with certain ratio and then the mixture were injected by the sprayer into the furnace. Growth temperature was optimized in the range of 650 until 850 oC to get the high quality of carbon nano tubes. These were characterized by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX). (author)

  15. Adaptive Mixture Methods Based on Bregman Divergences

    CERN Document Server

    Donmez, Mehmet A; Kozat, Suleyman S

    2012-01-01

    We investigate adaptive mixture methods that linearly combine outputs of $m$ constituent filters running in parallel to model a desired signal. We use "Bregman divergences" and obtain certain multiplicative updates to train the linear combination weights under an affine constraint or without any constraints. We use unnormalized relative entropy and relative entropy to define two different Bregman divergences that produce an unnormalized exponentiated gradient update and a normalized exponentiated gradient update on the mixture weights, respectively. We then carry out the mean and the mean-square transient analysis of these adaptive algorithms when they are used to combine outputs of $m$ constituent filters. We illustrate the accuracy of our results and demonstrate the effectiveness of these updates for sparse mixture systems.

  16. Computer simulation of rod-sphere mixtures

    CERN Document Server

    Antypov, D

    2003-01-01

    Results are presented from a series of simulations undertaken to investigate the effect of adding small spherical particles to a fluid of rods which would otherwise represent a liquid crystalline (LC) substance. Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadth of the rods is simulated at various sphere concentrations. Both mixing-demixing and isotropic-nematic transition are studied using Monte Carlo techniques. Secondly, the effect of adding Lennard-Jones particles to an LC system modelled using the well established Gay-Berne potential is investigated. These rod-sphere mixtures are simulated using both the original set of interaction parameters and a modified version of the rod-sphere potential proposed in this work. The subject of interest is the internal structure of the binary mixture and its dependence on density, temperature, concentration and various parameters characterising the intermolecular interactions. Both...

  17. The label switching problem in mixture models

    Directory of Open Access Journals (Sweden)

    Ali Etemad

    2014-07-01

    Full Text Available Mixture models are fascinating objects in that, while based on elementary distributions, they of-fer a much wider range of modeling possibilities than their components. They also need both highlycomplex computational challenges and delicate inferential derivations . In Bayesian framework thiskind of models do not admit an analytical solution and one should content him/her self by an ap-proximative solution.In this work, we introduce denition of identiability in statistical model. We focus on denition ofidentiability of mixtures of models from Bayesian point of view. This issue is called label-switchingproblem in Bayesian literatures. We will study a method to identify the mixtures parameter by usingMCMC output.

  18. MICROBIAL QUALITY OF HONEY MIXTURE WITH POLLEN

    Directory of Open Access Journals (Sweden)

    Ján Mareček

    2011-02-01

    Full Text Available Normal 0 21 MicrosoftInternetExplorer4 The aim of this study was evaluation of microbial quality in raw materials (honey, pollen and evaluation of microbial quality in honey mixture with pollen (2.91 % and 3.85 % and also dynamics of microbial groups in honey mixtures with pollen after 14 days storage at the room temperature (approximately 25 °C and in cold store (8 °C. We used dilution plating method for testing of samples. Detections of total plate microbial count (aerobic and anaerobic microorganisms, sporulating bacteria, coliform bacteria, Bifidobacterium sp., Lactobacillus sp. and microscopic fungi were performed. In general, counts of microorganisms decreased in honey mixture with pollen compared to raw pollen and these counts increased compared to natural honey. Total plate count was 5.37 log KTJ.g-1 in pollen; 1.36 log KTJ.g-1 in honey; 2.97 log KTJ.g-1 in honey mixture with 2.91 % pollen and 2.04 log KTJ.g-1 in honey mixture with 3.85 % pollen. Coliform bacteria were detected in pollen (1.77 log KTJ.g-1. Then, we found coliform bacteria in one sample of honey mixtures with pollen (2.91 % - 1.00 log KTJ.g-1.Bifidobacterium species were detected only in raw pollen. We did not findLactobacillus sp. in any of the samples. Microscopic fungi were detected on two cultivating media. Yeasts were present in pollen sample (average 5.39 log KTJ.g-1, honey mixture with 2.91 % pollen (average 2.51 log KTJ.g-1 and honey mixture with 3.85 % pollen (average 1.58 log KTJ.g-1. Filamentous microscopic fungi were detectable in pollen (average 3.38 log KTJ.g-1, in honey (only on one medium: 1.00 log KTJ.g-1, in honey mixture with 2.91 % pollen (average 1.15 log KTJ.g-1 and in honey mixture with 3.85 % pollen (1.71 %. Raw pollen contained microscopic fungi as Absidiasp., Mucor sp., Alternaria sp. andEmericella nidulans. Honey mixture with 2.91 % pollen after storage (14 days contained lower microbial counts when compared with the sample

  19. Quasi-chemical approximation for polyatomic mixtures

    CERN Document Server

    Dávila, M V; Matoz-Fernandez, D A; Ramirez-Pastor, A J

    2016-01-01

    The statistical thermodynamics of binary mixtures of polyatomic species was developed on a generalization in the spirit of the lattice-gas model and the quasi-chemical approximation (QCA). The new theoretical framework is obtained by combining: (i) the exact analytical expression for the partition function of non-interacting mixtures of linear $k$-mers and $l$-mers (species occupying $k$ sites and $l$ sites, respectively) adsorbed in one dimension, and its extension to higher dimensions; and (ii) a generalization of the classical QCA for multicomponent adsorbates and multisite-occupancy adsorption. The process is analyzed through the partial adsorption isotherms corresponding to both species of the mixture. Comparisons with analytical data from Bragg-Williams approximation (BWA) and Monte Carlo simulations are performed in order to test the validity of the theoretical model. Even though a good fitting is obtained from BWA, it is found that QCA provides a more accurate description of the phenomenon of adsorpti...

  20. Characterization of transport properties of wasteform mixtures

    International Nuclear Information System (INIS)

    This study investigates the transport properties of different wasteform mixtures. The objective is to collect data to model the long-term service-life of a cement barrier/wasteform system and see how the wasteform affect the durability of the storage structure, which is expected to last many thousand years. Two different wasteform mixtures incorporating different slag and fly ash contents were tested. The materials were characterized using different experimental tests in order to estimate tortuosity, porosity, permeability and pore size distribution. The tests showed that despite a very high porosity, the wasteform mixtures exhibit very low transport properties values. Immersion tests in NaCl solution showed very slow chloride ingress in accordance with the transport properties. Furthermore, the two formulations showed a significant improvement in properties when slag content was increased. (authors)

  1. Laser-induced breakdown emission in hydrocarbon fuel mixtures

    Science.gov (United States)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Carter, Campbell; Do, Hyungrok

    2016-04-01

    Time-resolved emission measurements of laser-induced breakdown plasmas have been carried out to investigate the effect that gas species might have on the kinetics, particularly in excited states, and the resulting plasma properties. For this purpose, fuel-oxygen (O2)-carbon dioxide (CO2) mixtures with either helium (He) or nitrogen (N2) balance are prepared while maintaining their atomic compositions. The fuels tested in this study are methane (CH4), ethylene (C2H4), propane (C3H8), and butane (C4H10). The breakdown is produced in the mixtures (CH4/CO2/O2/He, C2H4/O2/He, C3H8/CO2/O2/He and C4H10/CO2/O2/He or CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) at room conditions using the second harmonic of a Q-switched Nd:YAG laser (with pulse duration of 10 ns). The temporal evolution of plasma temperature is deduced from the ratio of two oxygen lines (777 nm and 823 nm) through Boltzmann analysis, while the evolution of electron number density is estimated based on Stark broadening of the Balmer-alpha (H α ) line at 656 nm and the measured plasma temperature. From the results, the temporal evolution of emission spectra and decay rates of atomic line-intensities are found to be almost identical between the breakdown plasma in the different mixtures given balancing gases. Furthermore, the temporal evolution of plasma temperature and electron number density are also found to be independent of the species compositions. Therefore, this behavior—of the breakdown emissions and plasma properties in the different mixtures with identical atomic composition—may be because the breakdown gases reach similar thermodynamic and physiochemical states immediately after the breakdown.

  2. Helium-oxygen mixture does not improve gas exchange in mechanically ventilated children with bronchiolitis

    OpenAIRE

    Gross, Matthew F; Spear, Robert M.; Peterson, Bradley M

    2000-01-01

    Introduction: Heliox has been found to reduce both the arterial carbon dioxide tension (PaCO2) and work of breathing in children and adults with status asthmaticus. We hypothesized that, in mechanically ventilated children with bronchiolitis, increasing the ratio of helium:oxygen concentrations would improve both ventilation and oxygenation. Objective: To examine the effect of varying concentrations of heliox mixtures on ventilation and oxygenation in mechanically ventilated children with bro...

  3. Evaluating Pt-Ru/C mixtures as ethanol electro-oxidation catalysers

    OpenAIRE

    Bibian Alonso Hoyos; Javier González; Carlos Sánchez

    2010-01-01

    This work studies ethanol electro-catalytic oxidation by cyclic voltametry in sulphuric acid solutions at different temperatures and concetrations, using platinum.rutenium mixtures supported in vitreous carbon as catalysers. The results indicate that ethanol oxidation in theses electrodes is irreversible, has slow kinetics, is controlled by charge transfer and is brought about by a bi-functional reaction mechanism, this being ethanol adsorption on platinum atoms and additional oxidation of sp...

  4. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  5. Mixture for removing tar and paraffin deposits

    Energy Technology Data Exchange (ETDEWEB)

    kamenshchikov, F.A.; Frolov, M.A.; Golovin, I.N.; Khusainov, Z.M.; Smirnov, Ya.L.; Suchkov, B.M.

    1981-05-23

    Mixture is claimed for removing tar and paraffin deposits (TPD) on the basis of the butyl-benzene fraction (BBF), which is intended to more efficiently remove TPD from the surface of refinery equipment, additionally has piperylene, isoprene and isoamine with the following ratio of the components: piperylene, 19-31%; isoprene, 8-12%; isoamines, 8-12%, while BBF, the rest. The efficiency of the given compositions was assessed by the rate at which the plates were cleaned of TPD and pure commercial paraffin. It has been shown that BBF dissolves 4-6 times faster in the given mixture than in BBF and pyperylene.

  6. Heterogeneous solid mixtures combustion: influence of microstructure

    International Nuclear Information System (INIS)

    A model of solid composite microstructure is developed to predict concentration limits of heterogeneous solid mixture combustion of gasless and small-gas-content systems. The prediction is based on the percolation theory combined with the fractal concept and the Scher-Zallen criterion that postulates that the volume fraction necessary for the onset of percolation is about 16% of the total volume. The validity of the criterion is supported by a set of literature data on concentration limits of combustion for binary mixtures of transition metals and p-block elements such as Zr, Hf, Nb, Ta, Mo, B, C, Si, Al, Ge

  7. Thermophysical Properties of Fluids and Fluid Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  8. Two-microphone Separation of Speech Mixtures

    DEFF Research Database (Denmark)

    2006-01-01

    Matlab source code for underdetermined separation of instaneous speech mixtures. The algorithm is described in [1] Michael Syskind Pedersen, DeLiang Wang, Jan Larsen and Ulrik Kjems: ''Two-microphone Separation of Speech Mixtures,'' 2006, submitted for journal publoication. See also, [2] Michael...... Syskind Pedersen, DeLiang Wang, Jan Larsen and Ulrik Kjems: ''Overcomplete Blind Source Separation by Combining ICA and Binary Time-Frequency Masking,'' in proceedings of IEEE International workshop on Machine Learning for Signal Processing, pp. 15-20, 2005. All files should be in the same directory...

  9. Model structure selection in convolutive mixtures

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai

    2006-01-01

    The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious represent......The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious...

  10. On Normal Variance-Mean Mixtures

    CERN Document Server

    Yu, Yaming

    2011-01-01

    Normal variance-mean mixtures encompass a large family of useful distributions such as the generalized hyperbolic distribution, which itself includes the Student t, Laplace, hyperbolic, normal inverse Gaussian, and variance gamma distributions as special cases. We study shape properties of normal variance-mean mixtures, in both the univariate and multivariate cases, and determine conditions for unimodality and log-concavity of the density functions. This leads to a short proof of the unimodality of all generalized hyperbolic densities. We also interpret such results in practical terms and discuss discrete analogues.

  11. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    Science.gov (United States)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  12. 用修正的Polanyi-Dubinin方程描述有机蒸气-水蒸气在活性炭上的吸附平衡%MODIFIED POLANYI-DUBININ EQUATION TO ORRELATE ADSORPTION EQUILIBRIUM OF VOC-WATER VAPOR MIXTURES ON ACTIVATED CARBON

    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩

    2001-01-01

    Long-column method was used to determine the adsorption isotherms of 4 VOCs (benzene, toluene, chloroform and acetone) in concentration range of 250~5000?mg*m-3 on a commercial activated-carbon under different humidity levels at 30?℃.A modified Polanyi-Dubinin equation was proposed to correlate the adsorption equilibrium of different VOC-water vapor systems. Among 3 methods of calculating the Relative Affinity Coefficient β used,the Molar Volume method and the Molecular Parachor method proved to be suitable for the calculation with better precision than the Electronic Polarization method. Calculation results were satisfactory for the benzene-, toluene-, and chloroform-water vapor/activated carbon systems, but poor for acetone possibly because of its strong polarity.The equation could be used to estimate the detaining effect of atmospheric humidity on the adsorption equilibrium of VOCs on activated carbon.

  13. Multiphase Binary Mixture Flows in Porous Media in a Wide Pressure and Temperature Range Including Critical Conditions

    Science.gov (United States)

    Afanasyev, A.

    2011-12-01

    Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is

  14. On-line method to study dynamics of ion adsorption from mixtures of salts in capacitive deionization

    NARCIS (Netherlands)

    Dykstra, J.E.; Dijkstra, J.; Wal, van der A.; Hamelers, H.V.M.; Porada, S.

    2016-01-01

    Capacitive Deionization (CDI) is a water desalination technology that adsorbs ions into two oppositely polarized porous carbon electrodes, under the action of an applied voltage. Here, we introduce a novel method to analyze the effluent concentration of multiple ionic species in mixtures of salt

  15. Explorations of soil microbial processes driven by dissolved organic carbon

    NARCIS (Netherlands)

    Straathof, A.L.

    2015-01-01

    Explorations of soil microbial processes driven by dissolved organic carbon Angela L. Straathof June 17, 2015, Wageningen UR ISBN 978-94-6257-327-7 Abstract Dissolved organic carbon (DOC) is a complex, heterogeneous mixture of C compounds which, as

  16. Modification of free-energy density functional theory approach for prediction of high-pressure mixture adsorption

    Institute of Scientific and Technical Information of China (English)

    LIU ShuYan; YANG XiaoNing; YANG Zhen

    2008-01-01

    A modified non-local free energy density functional theory (NDFT) model, with the consideration of the nonadditivity term of solid-fluid and fluid-fluid interactions and finite pore wall thickness (≈2 layers), was developed to model the confined fluid mixtures in slit pore. This improved NDFT approach, com-bining with the pore size distribution (PSD) analysis of adsorbent material can be applied to predicting the adsorption equilibria of high-pressure gas mixtures on activated carbon. Compared with the con-ventional NDFT method, this new approach partly improves the correlation performance of adsorption equilibrium for pure species and increases the reliability of the PSD analysis. For the mixtures, CH4/N2 and CO2/N2, a relatively improved performance has been observed for the adsorption equilibrium pre-diction of the mixtures under high-pressure conditions, especially for the weakly adsorbed species.

  17. Investigation of interlaminar shear strength in carbon epoxy and carbon epoxy carbon nanotubes using experimental and finite element technique

    Directory of Open Access Journals (Sweden)

    P. Rama Lakshmi

    2012-05-01

    Full Text Available The present study concerns experimental and finite element analysis of carbon epoxy and carbon epoxy carbon nanotube composites to estimate interlaminar shear strength. Mechanical properties such as elastic ratios, thickness are varied for double notched specimen and the corresponding deflections and interlaminar shear strengths are estimated by ANSYS. From simple rule of mixtures, equivalent orthotropic material properties are estimated. These properties are provided as input in ANSYS to generate finite element model. Solid layered element is used to model double notch specimen. To estimate the properties of carbon epoxy carbon nanotube composite, initially finite element model of matrix and carbon nanotube is generated by properties individual material properties of both the materials. From the obtained stretch and stress, the equivalent material property of combined matrix and carbon nanotube is achieved. This property is provided as input in simple rule of mixtures to find out the equivalent orthotropic materials are determined. It is inferred that experiment results are in good agreement with results generated by ANSYS. The superiority of the presence of carbon nanotube in the composite is proved from experimental and finite element technique from the estimated fracture parameters.

  18. Toxicology of chemical mixtures: International perspective

    NARCIS (Netherlands)

    Feron, V.J.; Cassee, F.R.; Groten, J.P.

    1998-01-01

    This paper reviews major activities outside the United States on human health issues related to chemical mixtures. In Europe an international study group on combination effects has been formed and has started by defining synergism and antagonism. Successful research programs in Europe include the de

  19. Two-Microphone Separation of Speech Mixtures

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Wang, DeLiang; Larsen, Jan;

    2008-01-01

    combined, independent component analysis (ICA) and binary time–frequency (T–F) masking. By estimating binary masks from the outputs of an ICA algorithm, it is possible in an iterative way to extract basis speech signals from a convolutive mixture. The basis signals are afterwards improved by grouping...

  20. A structural investigation of ionic liquid mixtures.

    Science.gov (United States)

    Matthews, Richard P; Villar-Garcia, Ignacio J; Weber, Cameron C; Griffith, Jeraime; Cameron, Fiona; Hallett, Jason P; Hunt, Patricia A; Welton, Tom

    2016-03-28

    The structures of mixtures of ionic liquids (ILs) featuring a common 1-butyl-3-methylimidazolium ([C4C1im](+)) cation but different anions have been investigated both experimentally and computationally. (1)H and (13)C NMR of the ILs and their mixtures has been performed both on the undiluted liquids and those diluted by CD2Cl2. These experiments have been complemented by quantum chemical density functional theory calculations and molecular dynamics simulations. These techniques have identified the formation of preferential interactions between H(2) of the imidazolium cation and the most strongly hydrogen bond (H-bond) accepting anion. In addition, a preference for the more weakly H-bond accepting anion to interact above the imidazolium ring through anion-π(+) interactions has been identified. The modelling of these data has identified that the magnitude of these preferences are small, of the order of only a few kJ mol(-1), for all IL mixtures. No clustering of the anions around a specific cation could be observed, indicating that these interactions arise from the reorientation of the cation within a randomly assigned network of anions. π(+)-π(+) stacking of the imidazolium cations was also studied and found to be promoted by ILs with a strong H-bond accepting anion. Stacking interactions are easily disrupted by the introduction of small proportions (accounting for why most IL mixtures exhibit ideal, or nearly ideal, behaviour. PMID:26947103

  1. Spinodal decomposition of chemically reactive binary mixtures

    Science.gov (United States)

    Lamorgese, A.; Mauri, R.

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  2. Concrete mixture characterization. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Protiere, Yannick [SIMCO Technologies, Inc., Quebec (Canada)

    2014-12-01

    This report summarizes the characterization study performed on two concrete mixtures used for radioactive waste storage. Both mixtures were prepared with approximately 425 kg of binder. The testing protocol mostly focused on determining the transport properties of the mixtures; volume of permeable voids (porosity), diffusion coefficients, and water permeability were evaluated. Tests were performed after different curing durations. In order to obtain data on the statistical distribution of transport properties, the measurements after 2 years of curing were performed on 10+ samples. Overall, both mixtures exhibited very low tortuosities and permeabilities, a direct consequence of their low water-to-binder ratio and the use of supplementary cementitious materials. The data generated on 2-year old samples showed that porosity, tortuosity and permeability follow a normal distribution. Chloride ponding tests were also performed on test samples. They showed limited chloride ingress, in line with measured transport properties. These test results also showed that both materials react differently with chloride, a consequence of the differences in the binder chemical compositions.

  3. Spinodal decomposition of chemically reactive binary mixtures.

    Science.gov (United States)

    Lamorgese, A; Mauri, R

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration. PMID:27627358

  4. Regularized Finite Mixture Models for Probability Trajectories

    Science.gov (United States)

    Shedden, Kerby; Zucker, Robert A.

    2008-01-01

    Finite mixture models are widely used in the analysis of growth trajectory data to discover subgroups of individuals exhibiting similar patterns of behavior over time. In practice, trajectories are usually modeled as polynomials, which may fail to capture important features of the longitudinal pattern. Focusing on dichotomous response measures, we…

  5. Mixtures of Ultracold Fermions with Unequal Masses

    Science.gov (United States)

    de Melo, Carlos A. R. Sa

    2008-05-01

    The quantum phases of ultracold fermions with unequal masses are discussed in continuum and lattice models for a wide variety of mixtures which exhibit Feshbach resonances, e.g., mixtures of ^6Li and ^40K. The evolution of superfluidity from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein condensation (BEC) regime in the continuum is analyzed as a function of scattering parameter, population imbalance and mass anisotropy. In the continuum case, regions corresponding to normal, phase-separated or coexisting uniform-superfluid/excess-fermion phases are identified and the possibility of topological phase transitions is discussed [1]. For optical lattices, the phase diagrams as a function of interaction strength, population imbalance, filling fraction and tunneling parameters are presented [2]. In addition to the characteristic phases of the continuum, a series of insulating phases emerge in the phase diagrams of optical lattices, including a Bose-Mott insulator (BMI), a Fermi-Pauli insulator (FPI), a phase-separated BMI/FPI mixture, and a Bose-Fermi checkerboard (BFC) phase. Lastly, the effects of harmonic traps and the emergence of unusual shell structures are discussed for mixtures of fermions with unequal masses. [1] M. Iskin, and C. A. R. S' a de Melo, Phys. Rev. Lett 97, 100404 (2006); [2] M. Iskin, and C. A. R. S' a de Melo, Phys. Rev. Lett. 99, 080403 (2007).

  6. Cementitious barriers partnership concrete mixture characterization

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Protiere, Yannick [SIMCO Technologies, Inc., Quebec (Canada)

    2014-12-01

    This report summarizes the characterization study performed on two concrete mixtures used for radioactive waste storage. Both mixtures were prepared with approximately 425 kg of binder. The testing protocol mostly focused on determining the transport properties of the mixtures; volume of permeable voids (porosity), diffusion coefficients, and water permeability were evaluated. Tests were performed after different curing durations. In order to obtain data on the statistical distribution of transport properties, the measurements after 2 years of curing were performed on 10+ samples. Overall, both mixtures exhibited very low tortuosities and permeabilities, a direct consequence of their low water-to-binder ratio and the use of supplementary cementitious materials. The data generated on 2-year old samples showed that porosity, tortuosity and permeability follow a normal distribution. Chloride ponding tests were also performed on test samples. They showed limited chloride ingress, in line with measured transport properties. These test results also showed that both materials react differently with chloride, a consequence of the differences in the binder chemical compositions.

  7. Method for removing methane from gas mixtures

    NARCIS (Netherlands)

    Makkee, M.; Xu Xiao, D.

    2008-01-01

    The invention relates to a method for oxidizing methane, comprising passing a gaseous, methane containing mixture over a catalyst, comprising a carrier with a substrate surface which consists substantially of titanium dioxide with a combination of platinum and palladium thereon, in the presence of m

  8. Two-microphone Separation of Speech Mixtures

    DEFF Research Database (Denmark)

    2006-01-01

    of Speech Mixtures," 2006, submited for journal publication. See also, [2] Michael Syskind Pedersen, DeLiang Wang, Jan Larsen and Ulrik Kjems: "Overcomplete Blind Source Separation by Combining ICA and Binary Time-Frequency Masking," in proceedings of IEEE International workshop on Machine Learning...

  9. Modeling text with generalizable Gaussian mixtures

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Sigurdsson, Sigurdur; Kolenda, Thomas;

    2000-01-01

    We apply and discuss generalizable Gaussian mixture (GGM) models for text mining. The model automatically adapts model complexity for a given text representation. We show that the generalizability of these models depends on the dimensionality of the representation and the sample size. We discuss...

  10. Molecular weight scaling in critical polymer mixtures

    DEFF Research Database (Denmark)

    Gehlsen, M.D.; Rosedale, J.R.; Bates, F.S.;

    1992-01-01

    Symmetric binary mixtures of partially deuterated polymers were prepared at the critical composition. The segment-segment interaction energy parameter chi(eff) was varied by adjusting the difference in deuterium content DELTA-X(D) between species. Chi(eff) was measured as a function of temperature...

  11. Multicomponent transport in weakly ionized mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Giovangigli, V [CMAP, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Graille, B [Laboratoire de Mathematiques, Universite Paris-Sud, 91405, Orsay (France); Magin, T [Center for Turbulence Research, Stanford University, CA 94305 (United States); Massot, M, E-mail: vincent.giovangigli@polytechnique.f [Laboratoire EM2C, Ecole Centrale de Paris, 92295 Chatenay-Malabry (France)

    2010-06-15

    We discuss transport coefficients in weakly ionized mixtures. We investigate the situations of weak and strong magnetic fields as well as electron temperature nonequilibrium. We present in each regime the Boltzmann equations, examples of transport fluxes, the structure of transport linear systems and discuss their solution by efficient iterative techniques. Numerical simulations are presented for partially ionized high-temperature air.

  12. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  13. Complex mixtures, complex responses: Assessing pharmaceutical mixtures using field and laboratory approaches

    Science.gov (United States)

    Schoenfuss, Heiko L.; Furlong, Edward T.; Phillips, Patrick J.; Scott, Tia-Marie; Kolpin, Dana W.; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E.; Rearick, Daniel C.

    2016-01-01

    Pharmaceuticals are present in low concentrations (concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning levels of biological organization and life stages when assessing contaminant interactions.

  14. MixtureTree annotator: a program for automatic colorization and visual annotation of MixtureTree.

    Directory of Open Access Journals (Sweden)

    Shu-Chuan Chen

    Full Text Available The MixtureTree Annotator, written in JAVA, allows the user to automatically color any phylogenetic tree in Newick format generated from any phylogeny reconstruction program and output the Nexus file. By providing the ability to automatically color the tree by sequence name, the MixtureTree Annotator provides a unique advantage over any other programs which perform a similar function. In addition, the MixtureTree Annotator is the only package that can efficiently annotate the output produced by MixtureTree with mutation information and coalescent time information. In order to visualize the resulting output file, a modified version of FigTree is used. Certain popular methods, which lack good built-in visualization tools, for example, MEGA, Mesquite, PHY-FI, TreeView, treeGraph and Geneious, may give results with human errors due to either manually adding colors to each node or with other limitations, for example only using color based on a number, such as branch length, or by taxonomy. In addition to allowing the user to automatically color any given Newick tree by sequence name, the MixtureTree Annotator is the only method that allows the user to automatically annotate the resulting tree created by the MixtureTree program. The MixtureTree Annotator is fast and easy-to-use, while still allowing the user full control over the coloring and annotating process.

  15. MixtureTree annotator: a program for automatic colorization and visual annotation of MixtureTree.

    Science.gov (United States)

    Chen, Shu-Chuan; Ogata, Aaron

    2015-01-01

    The MixtureTree Annotator, written in JAVA, allows the user to automatically color any phylogenetic tree in Newick format generated from any phylogeny reconstruction program and output the Nexus file. By providing the ability to automatically color the tree by sequence name, the MixtureTree Annotator provides a unique advantage over any other programs which perform a similar function. In addition, the MixtureTree Annotator is the only package that can efficiently annotate the output produced by MixtureTree with mutation information and coalescent time information. In order to visualize the resulting output file, a modified version of FigTree is used. Certain popular methods, which lack good built-in visualization tools, for example, MEGA, Mesquite, PHY-FI, TreeView, treeGraph and Geneious, may give results with human errors due to either manually adding colors to each node or with other limitations, for example only using color based on a number, such as branch length, or by taxonomy. In addition to allowing the user to automatically color any given Newick tree by sequence name, the MixtureTree Annotator is the only method that allows the user to automatically annotate the resulting tree created by the MixtureTree program. The MixtureTree Annotator is fast and easy-to-use, while still allowing the user full control over the coloring and annotating process.

  16. Experiments with Mixtures Designs, Models, and the Analysis of Mixture Data

    CERN Document Server

    Cornell, John A

    2011-01-01

    The most comprehensive, single-volume guide to conducting experiments with mixtures"If one is involved, or heavily interested, in experiments on mixtures of ingredients, one must obtain this book. It is, as was the first edition, the definitive work."-Short Book Reviews (Publication of the International Statistical Institute)"The text contains many examples with worked solutions and with its extensive coverage of the subject matter will prove invaluable to those in the industrial and educational sectors whose work involves the design and analysis of mixture experiments."-Journal of the Royal S

  17. Mars in situ propellants: Carbon monoxide and oxygen ignition experiments

    Science.gov (United States)

    Linne, Diane L.; Roncace, James; Groth, Mary F.

    1990-01-01

    Carbon monoxide and oxygen were tested in a standard spark-torch igniter to identify the ignition characteristics of this potential Mars in situ propellant combination. The ignition profiles were determined as functions of mixture ratio, amount of hydrogen added to the carbon monoxide, and oxygen inlet temperature. The experiments indicated that the carbon monoxide and oxygen combination must have small amounts of hydrogen present to initiate reaction. Once the reaction was started, the combustion continued without the presence of hydrogen. A mixture ratio range was identified where ignition occurred, and this range varied with the oxygen inlet temperature.

  18. Black carbon estimation in French calcareous soils using chemo-thermal oxidation method

    OpenAIRE

    Caria, G.; Arrouays, D.; Dubromel, E.; Jolivet, C.; Ratié, C.; Bernoux, MARTIAL,; Barthès, Bernard; Brunet, Didier; Grinand, Clovis

    2011-01-01

    We studied the black carbon (BC) content of ca. 405 samples from French topsoil and artificial soil and carbonate mixtures. Our protocol involved three main steps: (i) decarbonation by HCl, (ii) elimination of non-pyrogenic organic carbon in a furnace at 375 degrees C, and (iii) quantification of residual carbon by CHN analysis. BC content increased for calcareous soils according to their carbonates content. Subsequent analyses confirmed the existence of a methodological artefact for BC deter...

  19. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  20. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  1. Method for making thin carbon foam electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

    1999-08-03

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  2. Method for making thin carbon foam electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, Richard W. (Pleasant Hill, CA); Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Morrison, Robert L. (Modesto, CA)

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  3. Novel microthermal sensor principle for determining the mixture ratio of binary fluid mixtures using Föppl vortices

    OpenAIRE

    B. Schmitt; Kiefer, C; Schütze, A.

    2015-01-01

    A novel sensor principle for determining binary fluid mixtures of known components is presented, making use of different thermal and rheological properties of the mixture's components. Using a microheater, a heat pulse is introduced in the mixture. The resulting temperature increase depends on the thermal properties of the mixture, allowing determination of the mixture ratio. Placing a bluff body in the fluid channel causes the formation of a stationary pair of vortices behi...

  4. Understanding hydrothermal carbonization of mixed feedstocks for waste conversion

    Science.gov (United States)

    Lu, Xiaowei

    Hydrothermal carbonization (HTC) is an environmentally beneficial means to convert waste materials to value-added solid and liquid products with minimal greenhouse gas emission. Research is lacking on understanding the influence of critical process conditions on product formation and environmental implication associated with HTC of waste streams. This work was conducted to determine how reaction conditions and heterogeneous compound mixtures (representative of municipal wastes) influence hydrothermal carbonization processes. The specific experiments include: (1) determine how carbonization product properties are manipulated by controlling feedstock composition, process conditions, and catalyst addition; (2) determine if carbonization of heterogeneous mixtures follows similar pathways as that with pure feedstocks; and (3) evaluate and compare the carbon and energy-related implications associated with carbonization products with those associated with other common waste management processes for solid waste.

  5. Carbon membranes for efficient water-ethanol separation

    CERN Document Server

    Gravelle, Simon; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-01-01

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale 'graphene-oxide' like membranes then opens an avenue for a versatile and efficient ...

  6. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    was investigated using current-potential-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4) and dopedceria (CeO2, Ce1-xGdxO2-x/2, Ce1-xRExO2-delta (RE = Pr, Sm)), the effectiveness......Hybrid direct carbon fuel cells consisting of a solid carbon (carbon black)-molten carbonate ((62-38 wt% Li-K)(2)CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800 degrees C. Performance...

  7. 温室气体监测用四氟化碳标准气体气相色谱分析方法及定值方法的研究%Study on Analytical Method and Determining Value Method by Gas Chromatography for Carbon Tetrafluoride Calibration Gas in Greenhouse Gas Control

    Institute of Scientific and Technical Information of China (English)

    李春瑛; 韩桥; 金美兰; 杜秋芳; 刘智勇

    2004-01-01

    叙述了温室气体监测用四氟化碳(CF4)标准气体气相色谱的实验方法和条件,给出了气相色谱分析方法的精密度和实验结果.该方法重现性好,分析结果准确可靠.

  8. Cultivation of Escherichia coli with mixtures of 3-phenylpropionic acid and glucose: dynamics of growth and substrate consumption.

    Science.gov (United States)

    Kovárová, K; Käch, A; Chaloupka, V; Egli, T

    In technical as well as natural ecosystems, pollutants are often mineralised in the presence of easily degradable carbon sources. A laboratory model system consisting of Escherichia coli ML 30 growing with mixtures of 3-phenylpropionic acid (3ppa, 'pollutant') and glucose (easily degradable substrate) was investigated in batch and carbon-limited continuous culture. Untypically, a linear growth pattern was observed during batch cultivation with 3ppa as the only carbon/energy source. When exposed to mixtures of both substrates in batch culture, E. coli utilised the two compounds sequentially. However, 3ppa and glucose were consumed simultaneously in continuous culture. Whereas a pulse of excess glucose to a batch culture growing with 3ppa led to the repression of 3ppa utilisation, an excess of glucose added into continuous culture did not inhibit the utilisation of 3ppa. During continuous cultivation the 3ppa-degrading enzyme system operated close to saturation.

  9. The optimization of concrete mixtures for use in highway applications

    Science.gov (United States)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content

  10. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  11. Phase structure of liposome in lipid mixtures.

    Science.gov (United States)

    Zhang, Tianxi; Li, Yuzhuo; Mueller, Anja

    2011-11-01

    Gas microbubbles present in ultrasound imaging contrast agents are stabilized by lipid aggregates that typically contain a mixture of lipids. In this study, the phase structure of the lipid mixtures that contained two or three lipids was investigated using three different methods: dynamic light scattering, (1)H NMR, and microfluidity measurements with fluorescence probes. Three lipids that are commonly present in imaging agents (DPPC, DPPE-PEG, and DPPA) were used. Two types of systems, two-lipid model systems and simulated imaging systems were investigated. The results show that liposomes were the dominant aggregates in all the samples studied. The polar PEG side chains from the PEGylated lipid lead to the formation of micelles and micellar aggregates in small sizes. In the ternary lipid systems, almost all the lipids were present in bilayers with micelles absent and free lipids at very low concentration. These results suggest that liposomes, not micelles, contribute to the stabilization of microbubbles in an ultrasound imaging contrast agent.

  12. Mixtures of maximally entangled pure states

    Science.gov (United States)

    Flores, M. M.; Galapon, E. A.

    2016-09-01

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.

  13. Sum of Bernoulli Mixtures: Beyond Conditional Independence

    Directory of Open Access Journals (Sweden)

    Taehan Bae

    2014-01-01

    Full Text Available We consider the distribution of the sum of Bernoulli mixtures under a general dependence structure. The level of dependence is measured in terms of a limiting conditional correlation between two of the Bernoulli random variables. The conditioning event is that the mixing random variable is larger than a threshold and the limit is with respect to the threshold tending to one. The large-sample distribution of the empirical frequency and its use in approximating the risk measures, value at risk and conditional tail expectation, are presented for a new class of models which we call double mixtures. Several illustrative examples with a Beta mixing distribution, are given. As well, some data from the area of credit risk are fit with the models, and comparisons are made between the new models and also the classical Beta-binomial model.

  14. Polydispersity effects in colloid-polymer mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Liddle, S M; Poon, W C K [SUPA and School of Physics and Astronomy, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Narayanan, T, E-mail: S.Liddle@ed.ac.uk, E-mail: narayan@esrf.fr, E-mail: w.poon@ed.ac.uk [European Synchrotron Radiation Facility, F-38043 Grenoble Cedex (France)

    2011-05-18

    We study phase separation and transient gelation experimentally in a mixture consisting of polydisperse colloids (polydispersity: {approx} 6%) and non-adsorbing polymers, where the ratio of the average size of the polymer to that of the colloid is {approx} 0.062. Unlike what has been reported previously for mixtures with somewhat lower colloid polydispersity ({approx} 5%), the addition of polymers does not expand the fluid-solid coexistence region. Instead, we find a region of fluid-solid coexistence which has an approximately constant width but an unexpected re-entrant shape. We detect the presence of a metastable gas-liquid binodal, which gives rise to two-stepped crystallization kinetics that can be rationalized as the effect of fractionation. Finally, we find that the separation into multiple coexisting solid phases at high colloid volume fractions predicted by equilibrium statistical mechanics is kinetically suppressed before the system reaches dynamical arrest.

  15. The Supervised Learning Gaussian Mixture Model

    Institute of Scientific and Technical Information of China (English)

    马继涌; 高文

    1998-01-01

    The traditional Gaussian Mixture Model(GMM)for pattern recognition is an unsupervised learning method.The parameters in the model are derived only by the training samples in one class without taking into account the effect of sample distributions of other classes,hence,its recognition accuracy is not ideal sometimes.This paper introduces an approach for estimating the parameters in GMM in a supervising way.The Supervised Learning Gaussian Mixture Model(SLGMM)improves the recognition accuracy of the GMM.An experimental example has shown its effectiveness.The experimental results have shown that the recognition accuracy derived by the approach is higher than those obtained by the Vector Quantization(VQ)approach,the Radial Basis Function (RBF) network model,the Learning Vector Quantization (LVQ) approach and the GMM.In addition,the training time of the approach is less than that of Multilayer Perceptrom(MLP).

  16. On the Asphalt Mixture Ratio Design

    Institute of Scientific and Technical Information of China (English)

    谢文怡

    2013-01-01

      热拌沥青混合料配合比设计关系到沥青砼路面的路用性能。本文结合高速公路沥青路面建设的实际情况,对如何规范操作,以及设计沥青混合料配合比时注意的问题提出了一些建议。%Hot-mix asphalt mixture design is related to the performance of asphalt concrete pavement. This paper, combining with the actual situation of the highway asphalt pavement construction, made recommendations on how to regulate the operation and the problems need pay attention to in design of asphalt mixture.

  17. Tails of correlation mixtures of elliptical copulas

    CERN Document Server

    Manner, Hans

    2009-01-01

    Correlation mixtures of elliptical copulas arise when the correlation parameter is driven itself by a latent random process. For such copulas, both penultimate and asymptotic tail dependence are much larger than for ordinary elliptical copulas with the same unconditional correlation. Furthermore, for Gaussian and Student t-copulas, tail dependence at sub-asymptotic levels is generally larger than in the limit, which can have serious consequences for estimation and evaluation of extreme risk. Finally, although correlation mixtures of Gaussian copulas inherit the property of asymptotic independence, at the same time they fall in the newly defined category of near asymptotic dependence. The consequences of these findings for modeling are assessed by means of a simulation study and a case study involving financial time series.

  18. Quantum state smoothing for classical mixtures

    CERN Document Server

    Tan, D; Mølmer, K; Murch, K W

    2016-01-01

    In quantum mechanics, wave functions and density matrices represent our knowledge about a quantum system and give probabilities for the outcomes of measurements. If the combined dynamics and measurements on a system lead to a density matrix $\\rho(t)$ with only diagonal elements in a given basis $\\{|n\\rangle\\}$, it may be treated as a classical mixture, i.e., a system which randomly occupies the basis states $|n\\rangle$ with probabilities $\\rho_{nn}(t)$. Fully equivalent to so-called smoothing in classical probability theory, subsequent probing of the occupation of the states $|n\\rangle$ improves our ability to retrodict what was the outcome of a projective state measurement at time $t$. Here, we show with experiments on a superconducting qubit that the smoothed probabilities do not, in the same way as the diagonal elements of $\\rho$, permit a classical mixture interpretation of the state of the system at the past time $t$.

  19. TOPICAL REVIEW: Thermal plasmas in gas mixtures

    Science.gov (United States)

    Murphy, A. B.

    2001-10-01

    The calculation and measurement of the properties of thermal plasmas in mixtures of different gases are reviewed. The calculation of composition, thermodynamic properties and transport coefficients is described. Particular attention is given to the calculation of diffusion coefficients, which is a significant problem in mixed-gas plasmas. The combined diffusion coefficient formulation is shown to be a useful method for the treatment of diffusion. Computational fluid dynamic modelling of thermal plasmas in gas mixtures is considered, using the examples of demixing in welding arcs, the turbulent mixing of atmospheric air into a plasma jet and a plasma waste destruction process. Diagnostic techniques for mixed-gas plasmas, in particular emission spectroscopy, laser scattering and laser-induced fluorescence, are discussed.

  20. Heterogeneity in multistage carcinogenesis and mixture modeling

    Directory of Open Access Journals (Sweden)

    Morgenthaler Stephan

    2008-07-01

    Full Text Available Abstract Carcinogenesis is commonly described as a multistage process, in which stem cells are transformed into cancer cells via a series of mutations. In this article, we consider extensions of the multistage carcinogenesis model by mixture modeling. This approach allows us to describe population heterogeneity in a biologically meaningful way. We focus on finite mixture models, for which we prove identifiability. These models are applied to human lung cancer data from several birth cohorts. Maximum likelihood estimation does not perform well in this application due to the heavy censoring in our data. We thus use analytic graduation instead. Very good fits are achieved for models that combine a small high risk group with a large group that is quasi immune.

  1. Detonation Diffraction Through a Mixture Gradient

    OpenAIRE

    Schultz, E.; Shepherd, J

    2000-01-01

    A simple one-dimensional model of a self-propagating gaseous detonation consists of a shock wave tightly coupled to a reaction zone, propagating through a combustible gas mixture as shown in Fig. 1 (Strehlow 1984). A feedback mechanism exists in that the shock wave generates the thermodynamic conditions under which the gas combusts, and the energy release from the reaction zone maintains the strength of the shock This is in contrast to a flame, or deflagrative combustion, in which thermal and...

  2. Lattice Model for water-solute mixtures

    OpenAIRE

    Furlan, A. P.; Almarza, N. G.; M. C. Barbosa

    2016-01-01

    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting on, hydrophilic, inert and hydrophobic interactions. Extensive Monte Carlo simulations were carried out and the behavior of pure components and the excess proper...

  3. Conditional Density Approximations with Mixtures of Polynomials

    DEFF Research Database (Denmark)

    Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre;

    2015-01-01

    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method....

  4. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.;

    2005-01-01

    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two....... As ceramide incorporates the lipid backbone common to all sphingolipids, this arrangement may be relevant to the understanding of the molecular organization of lipid rafts....

  5. Endocrine activity of mycotoxins and mycotoxin mixtures.

    Science.gov (United States)

    Demaegdt, Heidi; Daminet, Britt; Evrard, Annick; Scippo, Marie-Louise; Muller, Marc; Pussemier, Luc; Callebaut, Alfons; Vandermeiren, Karine

    2016-10-01

    Reporter gene assays incorporating nuclear receptors (estrogen, androgen, thyroid β and PPARγ2) have been implemented to assess the endocrine activity of 13 mycotoxins and their mixtures. As expected, zearalenone and its metabolites α-zearalenol and β- zearalenol turned out to have the strongest estrogenic potency (EC50 8,7 10-10 ± 0,8; 3,1 10-11 ± 0,5 and 1,3 10-8 ± 0,3 M respectively). The metabolite of deoxynivalenol, 3-acetyl-deoxynivalenol also had estrogenic activity (EC50 3,8 10-7 ± 1,1 M). Furthermore, most of the mycotoxins (and their mixtures) showed anti-androgenic effects (15-acetyldeoxynivalenol, 3-acetyl-deoxynivalenol and α-zearalenol with potencies within one order of magnitude of that of the reference compound flutamide). In particular, deoxynivalenol and 15-acetyl-deoxynivalenol acted as antagonists for the PPARy2 receptor. When testing mixtures of mycotoxins on the same cell systems, we showed that most of the mixtures reacted as predicted by the concentration addition (CA) theory. Generally, the CA was within the 95% confidence interval of the observed ones, only minor deviations were detected. Although these reporter gene tests cannot be directly extrapolated in vivo, they can be the basis for further research. Especially the additive effects of ZEN and its metabolites are of importance and could have repercussions in vivo. PMID:27481073

  6. Neighborhood Mixture Model for Knowledge Base Completion

    OpenAIRE

    Nguyen, Dat Quoc; Sirts, Kairit; Qu, Lizhen; Johnson, Mark

    2016-01-01

    Knowledge bases are useful resources for many natural language processing tasks, however, they are far from complete. In this paper, we define a novel entity representation as a mixture of its neighborhood in the knowledge base and apply this technique on TransE-a well-known embedding model for knowledge base completion. Experimental results show that the neighborhood information significantly helps to improve the results of the TransE, leading to better performance than obtained by other sta...

  7. Dynamic thermodiffusion model for binary liquid mixtures.

    Science.gov (United States)

    Eslamian, Morteza; Saghir, M Ziad

    2009-07-01

    Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring's reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models. PMID:19658691

  8. Modified Sonine approximation for granular binary mixtures

    OpenAIRE

    Garzó, Vicente; Reyes, Francisco Vega; Montanero, José María

    2008-01-01

    We evaluate in this work the hydrodynamic transport coefficients of a granular binary mixture in $d$ dimensions. In order to eliminate the observed disagreement (for strong dissipation) between computer simulations and previously calculated theoretical transport coefficients for a monocomponent gas, we obtain explicit expressions of the seven Navier-Stokes transport coefficients with the use of a new Sonine approach in the Chapman-Enskog theory. Our new approach consists in replacing, where a...

  9. Transport coefficients for inelastic Maxwell mixtures

    OpenAIRE

    Garzo, Vicente; Astillero, Antonio

    2004-01-01

    The Boltzmann equation for inelastic Maxwell models is used to determine the Navier-Stokes transport coefficients of a granular binary mixture in $d$ dimensions. The Chapman-Enskog method is applied to solve the Boltzmann equation for states near the (local) homogeneous cooling state. The mass, heat, and momentum fluxes are obtained to first order in the spatial gradients of the hydrodynamic fields, and the corresponding transport coefficients are identified. There are seven relevant transpor...

  10. Dynamic thermodiffusion model for binary liquid mixtures

    Science.gov (United States)

    Eslamian, Morteza; Saghir, M. Ziad

    2009-07-01

    Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring’s reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models.

  11. Stability analysis of mixtures of mutagenetic trees

    Directory of Open Access Journals (Sweden)

    Rahnenführer Jörg

    2008-03-01

    Full Text Available Abstract Background Mixture models of mutagenetic trees are evolutionary models that capture several pathways of ordered accumulation of genetic events observed in different subsets of patients. They were used to model HIV progression by accumulation of resistance mutations in the viral genome under drug pressure and cancer progression by accumulation of chromosomal aberrations in tumor cells. From the mixture models a genetic progression score (GPS can be derived that estimates the genetic status of single patients according to the corresponding progression along the tree models. GPS values were shown to have predictive power for estimating drug resistance in HIV or the survival time in cancer. Still, the reliability of the exact values of such complex markers derived from graphical models can be questioned. Results In a simulation study, we analyzed various aspects of the stability of estimated mutagenetic trees mixture models. It turned out that the induced probabilistic distributions and the tree topologies are recovered with high precision by an EM-like learning algorithm. However, only for models with just one major model component, also GPS values of single patients can be reliably estimated. Conclusion It is encouraging that the estimation process of mutagenetic trees mixture models can be performed with high confidence regarding induced probability distributions and the general shape of the tree topologies. For a model with only one major disease progression process, even genetic progression scores for single patients can be reliably estimated. However, for models with more than one relevant component, alternative measures should be introduced for estimating the stage of disease progression.

  12. Effective interaction in an unbalanced Fermion mixture

    OpenAIRE

    Recher, Christian; Kohler, Heinerich

    2013-01-01

    A one dimensional Fermi mixture with delta--interaction is investigated in the limit of extreme imbalance. In particular we consider the cases of only one or two minority Fermions which interact with the Fermi-sea of the majority Fermions. We calculate dispersion relation and polaron mass for the minority Fermions as well as equal time density-density correlators. Within a cluster expansion we derive an expression for the effective interaction potential between minority Fermions. For our calc...

  13. Unconventional quantum phases of lattice bosonic mixtures

    OpenAIRE

    Buonsante, P.; Giampaolo, S. M.; Illuminati, F.; Penna, V; Vezzani, A.

    2008-01-01

    We consider strongly interacting boson-boson mixtures on one-dimensional lattices and, by adopting a qualitative mean-field approach, investigate their quantum phases as the interspecies repulsion is increased. In particular, we analyze the low-energy "quantum emulsion" metastable states occurring at large values of the interspecies interaction, which are expected to prevent the system from reaching its true ground state. We argue a significant decrease in the visibility of the time-of-flight...

  14. Bayesian mixture models for Poisson astronomical images

    OpenAIRE

    Guglielmetti, Fabrizia; Fischer, Rainer; Dose, Volker

    2012-01-01

    Astronomical images in the Poisson regime are typically characterized by a spatially varying cosmic background, large variety of source morphologies and intensities, data incompleteness, steep gradients in the data, and few photon counts per pixel. The Background-Source separation technique is developed with the aim to detect faint and extended sources in astronomical images characterized by Poisson statistics. The technique employs Bayesian mixture models to reliably detect the background as...

  15. Molecular simulation of multi-component adsorption processes related to carbon capture in a high surface area, disordered activated carbon

    OpenAIRE

    Di Biase, Emanuela; Sarkisov, Lev

    2015-01-01

    We employ a previously developed model of a high surface area activated carbon, based on a random packing of small fragments of a carbon sheet, functionalized with hydroxyl surface groups, to explore adsorption of water and multicomponent mixtures under conditions representing typical carbon capture processes. Adsorption of water is initialized and proceeds through the growth of clusters around the surface groups, in a process predominantly governed by hydrogen bond interactions. In contrast,...

  16. Negative Binomial Process Count and Mixture Modeling.

    Science.gov (United States)

    Zhou, Mingyuan; Carin, Lawrence

    2015-02-01

    The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters. PMID:26353243

  17. Confusion of concepts in mixture toxicology.

    Science.gov (United States)

    Könemann, W H; Pieters, M N

    1996-01-01

    Regulatory limit values are generally set for single compounds. However, humans are exposed both simultaneously and sequentially to a wide variety of compounds. Some concepts on mixture toxicology are discussed in this introduction to the European Conference on Combination Toxicology. Studies on mixtures are often accompanied by statements about the type of combined action, which can be, for example, additive, synergistic or antagonistic. Unfortunately, comparison of results is hardly possible for various reasons. First, the terminology for indicating combined action is far from consistent. Bearing this in mind, researchers should be explicit in the definitions of terms. Secondly, depending on the model, different conclusions may be drawn from the same results. It is therefore important to provide clear definitions of the null hypothesis. Thirdly, adequate statistical methods should be used for testing the null hypothesis. In the past, many mixtures studies either used no statistics or used statistics incorrectly. Last, but not least, the study should be designed in such a way that it should be possible to obtain clear answers. In this introduction, it is stressed that environmental toxicologists should focus on the low-dose region of the dose-effect curves. It appears that interactions are less plausible at low doses. Dose additivity, however, cannot be excluded.

  18. Ethane-xenon mixtures under shock conditions

    Science.gov (United States)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  19. Hierarchical similarity transformations between Gaussian mixtures.

    Science.gov (United States)

    Rigas, George; Nikou, Christophoros; Goletsis, Yorgos; Fotiadis, Dimitrios I

    2013-11-01

    In this paper, we propose a method to estimate the density of a data space represented by a geometric transformation of an initial Gaussian mixture model. The geometric transformation is hierarchical, and it is decomposed into two steps. At first, the initial model is assumed to undergo a global similarity transformation modeled by translation, rotation, and scaling of the model components. Then, to increase the degrees of freedom of the model and allow it to capture fine data structures, each individual mixture component may be transformed by another, local similarity transformation, whose parameters are distinct for each component of the mixture. In addition, to constrain the order of magnitude of the local transformation (LT) with respect to the global transformation (GT), zero-mean Gaussian priors are imposed onto the local parameters. The estimation of both GT and LT parameters is obtained through the expectation maximization framework. Experiments on artificial data are conducted to evaluate the proposed model, with varying data dimensionality, number of model components, and transformation parameters. In addition, the method is evaluated using real data from a speech recognition task. The obtained results show a high model accuracy and demonstrate the potential application of the proposed method to similar classification problems. PMID:24808615

  20. Statistical mechanical theory of fluid mixtures

    Science.gov (United States)

    Zhao, Yueqiang; Wu, Zhengming; Liu, Weiwei

    2014-01-01

    A general statistical mechanical theory of fluid mixtures (liquid mixtures and gas mixtures) is developed based on the statistical mechanical expression of chemical potential of components in the grand canonical ensemble, which gives some new relationships between thermodynamic quantities (equilibrium ratio Ki, separation factor α and activity coefficient γi) and ensemble average potential energy u for one molecule. The statistical mechanical expressions of separation factor α and activity coefficient γi derived in this work make the fluid phase equilibrium calculations can be performed by molecular simulation simply and efficiently, or by the statistical thermodynamic approach (based on the saturated-vapor pressure of pure substance) that does not need microscopic intermolecular pair potential functions. The physical meaning of activity coefficient γi in the liquid phase is discussed in detail from a viewpoint of molecular thermodynamics. The calculated Vapor-Liquid Equilibrium (VLE) properties of argon-methane, methanol-water and n-hexane-benzene systems by this model fit well with experimental data in references, which indicates that this model is accurate and reliable in the prediction of VLE properties for small, large and strongly associating molecules; furthermore the statistical mechanical expressions of separation factor α and activity coefficient γi have good compatibility with classical thermodynamic equations and quantum mechanical COSMO-SAC approach.

  1. Transparent Films from CO2‐Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing

    Science.gov (United States)

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter

    2016-01-01

    Abstract Transparent films were prepared by cross‐linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2, propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron‐acceptor and electron‐donor groups enables particularly facile UV‐ or redox‐initiated free‐radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  2. Mixture risk assessment: a case study of Monsanto experiences.

    Science.gov (United States)

    Nair, R S; Dudek, B R; Grothe, D R; Johannsen, F R; Lamb, I C; Martens, M A; Sherman, J H; Stevens, M W

    1996-01-01

    Monsanto employs several pragmatic approaches for evaluating the toxicity of mixtures. These approaches are similar to those recommended by many national and international agencies. When conducting hazard and risk assessments, priority is always given to using data collected directly on the mixture of concern. To provide an example of the first tier of evaluation, actual data on acute respiratory irritation studies on mixtures were evaluated to determine whether the principle of additivity was applicable to the mixture evaluated. If actual data on the mixture are unavailable, extrapolation across similar mixtures is considered. Because many formulations are quite similar in composition, the toxicity data from one mixture can be extended to a closely related mixture in a scientifically justifiable manner. An example of a family of products where such extrapolations have been made is presented to exemplify this second approach. Lastly, if data on similar mixtures are unavailable, data on component fractions are used to predict the toxicity of the mixture. In this third approach, process knowledge and scientific judgement are used to determine how the known toxicological properties of the individual fractions affect toxicity of the mixture. Three examples of plant effluents where toxicological data on fractions were used to predict the toxicity of the mixture are discussed. The results of the analysis are used to discuss the predictive value of each of the above mentioned toxicological approaches for evaluating chemical mixtures.

  3. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    Science.gov (United States)

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  4. Mixtures as a fungicide resistance management tactic.

    Science.gov (United States)

    van den Bosch, Frank; Paveley, Neil; van den Berg, Femke; Hobbelen, Peter; Oliver, Richard

    2014-12-01

    We have reviewed the experimental and modeling evidence on the use of mixtures of fungicides of differing modes of action as a resistance management tactic. The evidence supports the following conclusions. 1. Adding a mixing partner to a fungicide that is at-risk of resistance (without lowering the dose of the at-risk fungicide) reduces the rate of selection for fungicide resistance. This holds for the use of mixing partner fungicides that have either multi-site or single-site modes of action. The resulting predicted increase in the effective life of the at-risk fungicide can be large enough to be of practical relevance. The more effective the mixing partner (due to inherent activity and/or dose), the larger the reduction in selection and the larger the increase in effective life of the at-risk fungicide. 2. Adding a mixing partner while lowering the dose of the at-risk fungicide reduces the selection for fungicide resistance, without compromising effective disease control. The very few studies existing suggest that the reduction in selection is more sensitive to lowering the dose of the at-risk fungicide than to increasing the dose of the mixing partner. 3. Although there are very few studies, the existing evidence suggests that mixing two at-risk fungicides is also a useful resistance management tactic. The aspects that have received too little attention to draw generic conclusions about the effectiveness of fungicide mixtures as resistance management strategies are as follows: (i) the relative effect of the dose of the two mixing partners on selection for fungicide resistance, (ii) the effect of mixing on the effective life of a fungicide (the time from introduction of the fungicide mode of action to the time point where the fungicide can no longer maintain effective disease control), (iii) polygenically determined resistance, (iv) mixtures of two at-risk fungicides, (v) the emergence phase of resistance evolution and the effects of mixtures during this phase

  5. Reflectance properties of spinel-plagioclase mixtures

    Science.gov (United States)

    Cheek, L.; Jackson, C.; Dhingra, D.; Pieters, C. M.; Prissel, T. C.; Williams, K. B.

    2012-12-01

    Near-infrared spectra displaying the diagnostic properties of Mg-spinel have recently been reported in several lunar craters based on Moon Mineralogy Mapper (M3) data [1-5]. These spectra lack evidence for olivine or pyroxene, suggesting that they represent a spinel-plagioclase lithology [1]. Current hypotheses [6, 7] suggest that this lithology formed by interactions of a mafic or ultramafic liquid with an anorthositic country rock, but the proportions of spinel and plagioclase are unknown. The aim of this work is to constrain the modal abundances of spinel and plagioclase in the observed lithology using laboratory reflectance spectroscopy of particulate mixtures. Reflectance spectra of Mg-spinel display a strong absorption at ~2000 nm due to Fe2+ in a tetrahedral site [e.g., 8]. At higher FeO contents, > ~5 wt%, an octahedral absorption near 1000 nm is also apparent [9]. Plagioclase often displays a broad absorption centered near 1250 nm due to trace amounts (0.1 wt%) of Fe2+ in the Ca2+ site. Previous studies have noted that plagioclase must be present in extremely high abundances (~85 vol%) in order for the 1250 nm absorption to be apparent in mixtures with olivine and pyroxene [10, 11]. Recent nonlinear modeling has suggested that at least 50% plagioclase is necessary for the 1250 nm absorption to be apparent in a calculated mixture with spinel [12]. Our approach involves making mineral mixtures of spinel and plagioclase particulate samples and measuring near-infrared spectra of the bulk material. For the plagioclase endmember, we use terrestrial gem quality labradorite with ~0.3 wt% FeO. The spinel endmember was produced experimentally at Brown University (1500 C; fO2~ IW; sintered 72 hrs), and contains 5 wt% FeO. Preliminary results show that spectra of a 90% plagioclase - 10% spinel mixture only display the spectral properties of the spinel component; the 1250 nm absorption is not apparent. Importantly, the addition of 90% plagioclase does not significantly

  6. Carbothermal Reduction of Quartz in Methane-Hydrogen-Argon Gas Mixture

    Science.gov (United States)

    Li, Xiang; Zhang, Guangqing; Tang, Kai; Ostrovski, Oleg; Tronstad, Ragnar

    2015-10-01

    Synthesis of silicon carbide (SiC) by carbothermal reduction of quartz in a CH4-H2-Ar gas mixture was investigated in a laboratory fixed-bed reactor in the temperature range of 1573 K to 1823 K (1300 °C to 1550 °C). The reduction process was monitored by an infrared gas analyser, and the reduction products were characterized by LECO, XRD, and SEM. A mixture of quartz-graphite powders with C/SiO2 molar ratio of 2 was pressed into pellets and used for reduction experiments. The reduction was completed within 2 hours under the conditions of temperature at or above 1773 K (1500 °C), methane content of 0.5 to 2 vol pct, and hydrogen content ≥70 vol pct. Methane partially substituted carbon as a reductant in the SiC synthesis and enhanced the reduction kinetics significantly. An increase in the methane content above 2 vol pct caused excessive carbon deposition which had a detrimental effect on the reaction rate. Hydrogen content in the gas mixture above 70 vol pct effectively suppressed the cracking of methane.

  7. Chemical Mixture Risk Assessment Additivity-Based Approaches

    Science.gov (United States)

    Powerpoint presentation includes additivity-based chemical mixture risk assessment methods. Basic concepts, theory and example calculations are included. Several slides discuss the use of "common adverse outcomes" in analyzing phthalate mixtures.

  8. Mixture Density Mercer Kernels: A Method to Learn Kernels

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a method of generating Mercer Kernels from an ensemble of probabilistic mixture models, where each mixture model is generated from a Bayesian...

  9. Liquid class predictor for liquid handling of complex mixtures

    Science.gov (United States)

    Seglke, Brent W.; Lekin, Timothy P.

    2008-12-09

    A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.

  10. Explosion and detonation of ozone in mixtures with carrier gases employed in nuclear technology

    International Nuclear Information System (INIS)

    Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of 85krypton from the head end off gas of a reprocessing plant. The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas. Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozone-xenon mixtures. The effect of a packing such as used in the 85Kr-separation plant 'KRETA' in KfK on ozone-xenon detonation was investigated. In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O3/Ar) and the detonation (O3/Xe) of an ozone-noble gas mixture was determined. (orig.)

  11. Reduction of Quartz to Silicon Monoxide by Methane-Hydrogen Mixtures

    Science.gov (United States)

    Li, Xiang; Zhang, Guangqing; Tronstad, Ragnar; Ostrovski, Oleg

    2016-08-01

    The reduction of quartz was studied isothermally in a fluidized bed reactor using continuously flowing methane-hydrogen gas mixture in the temperature range from 1623 K to 1773 K (1350 °C to 1500 °C). The CO content in the off-gas was measured online using an infrared gas analyzer. The main phases of the reduced samples identified by XRD analysis were quartz and cristobalite. Significant weight loss in the reduction process indicated that the reduction products were SiO and CO. Reduction of SiO2 to SiO by methane starts with adsorption and dissociation of CH4 on the silica surface. The high carbon activity in the CH4-H2 gas mixture provided a strongly reducing condition. At 1623 K (1350 °C), the reduction was very slow. The rate and extent of reduction increased with the increasing temperature to 1723 K (1450 °C). A further increase in temperature to 1773 K (1500 °C) resulted in a decrease in the rate and extent of reduction. An increase in the gas flow rate from 0.4 to 0.8 NL/min and an increase in the methane content in the CH4-H2 gas mixture from 0 to 5 vol pct facilitated the reduction. Methane content in the gas mixture should be maintained at less than 5 vol pct in order to suppress methane cracking.

  12. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques.

    Science.gov (United States)

    Hossain, Md Uzzal; Rahman, Md Toufiqur; Ehsan, Md Qamrul

    2015-01-01

    Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed with a glassy carbon electrode (GCE) modified with polyglutamic acid (PGA) on the three dihydroxybenzene isomers, catechol (CT), hydroquinone (HQ), and resorcinol (RS). At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers.

  13. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Md. Uzzal Hossain

    2015-01-01

    Full Text Available Cyclic voltammetry (CV and differential pulse voltammetry (DPV were performed with a glassy carbon electrode (GCE modified with polyglutamic acid (PGA on the three dihydroxybenzene isomers, catechol (CT, hydroquinone (HQ, and resorcinol (RS. At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers.

  14. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems.......Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary...

  15. Bayesian D-Optimal Choice Designs for Mixtures

    NARCIS (Netherlands)

    A. Ruseckaite (Aiste); P.P. Goos (Peter); D. Fok (Dennis)

    2014-01-01

    markdownabstract__Abstract__ Consumer products and services can often be described as mixtures of ingredients. Examples are the mixture of ingredients in a cocktail and the mixture of different components of waiting time (e.g., in-vehicle and out-of-vehicle travel time) in a transportation setting.

  16. Intrinsic nanoscale phase separation in miscible mixtures and supramolecular assemblies

    OpenAIRE

    Lei Zhang

    2011-01-01

    A model is used to describe the intrinsic nanoscale phase separation in miscible mixtures and supramolecular assemblies. Phase-separated nanostructures related to size-dependent surface tension, molecular structural factors and strong interphase interactions exist in miscible mixtures and supramolecular assemblies. The intrinsic nanoscale phase separation may exist universally in miscible mixtures.

  17. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  18. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    OpenAIRE

    Valerian Cerempei

    2011-01-01

    The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  19. 21 CFR 864.8625 - Hematology quality control mixture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hematology quality control mixture. 864.8625... quality control mixture. (a) Identification. A hematology quality control mixture is a device used to... parameters such as white cell count (WBC), red cell count (RBC), platelet count (PLT), hemoglobin,...

  20. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    , Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance......Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62–38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800°C. Performance...... was investigated using current-voltage-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, Mn3O4, MnO), metal carbonates (Ag2CO3, MnCO3, Ce2(CO3)3), metals (Ag, Ce, Ni), doped-ceria (CeO2, Ce1-xGdxO2-x/2...

  1. Quantification of the joint effects of mixtures of hepatotoxic agents: evaluation of a theoretical model in mice

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, D.W.; Weber, L.J.

    1981-10-01

    An approach previously developed for studying the effects of toxic mixtures on whole organism performances (i.e., growth, mortality) was evaluated to determine its applicability and limitations at the organ system level. The approach was tested by quantifying the hepatotoxic effects of carbon tetrachloride (CCl/sub 4/), monochlorobenzene (MCB), acetaminophen (ACET), and selected mixtures of these compounds in male albino CF-1 mice. Based upon parallel dose-response curves, concentration addition was predicted for the mixtures of both CCl/sub 4/ + MCB and CCl/sub 4/ + ACET. The actual dose-response relationship for each mixture was empirically determined and compared to the predicted curves. In the case of the CCl/sub 4/ + ACET mixture revealed a statistical difference between the observed and predicted curves. The joint effects for the mixture of CCl/sub 4/ + MCB is thus classified as concentration additive. The model proves to be adequate in predicting, classifying, and describing the joint effects of these hepatotoxicants.

  2. Surface tension of HFC refrigerant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Okada, M. [Tsukuba Coll. of Technology (Japan). Dept. of Mechanical Engineering; Shibata, T.; Sato, Y.; Higashi, Y. [Iwaki Meisei Univ. (Japan)

    1999-01-01

    The surface tension of refrigerant mixtures, i.e., R-410A (50 mass% R-32/50 mass% R-125), R-410B (45 mass% R-32/55 mass% R-125), R-407C (23 mass% R-32/25 mass% R-125/52 mass% R-134a), R-404A (44 mass% R-125/52 mass% R-143a/4 mass% R-134a), and R-507 (50 mass% R-125/50 mass% R-143a), has been measured and correlated in the present study. Although the first three mixtures are very important as promising replacements for R-22 in air-conditioners and heat-pumps and the last two are promising replacements for R-502, surface tension data for these mixtures were not previously available. The measurements were conducted under conditions of coexistence of the sample liquid and its saturated vapor in equilibrium. The differential capillary rise method (DCRM) was used, with two glass capillaries with inner radii of 0.3034 {+-} 0.0002 and 0.5717 {+-} 0.0002 mm. The temperature range covered was from 273 to 323 K, and the uncertainty of measurements for surface tensions and temperatures is estimated to be at most {+-} 0.2 mN {center_dot} m{sup {minus}1} and {+-} 20 mK, respectively. A mixing rule was selected for representing the temperature dependence of the resultant data. These data were successfully represented by a mixing rule using mass fraction based on the van der Waals correlation.

  3. Can the speed of sound be used for detecting critical states of fluid mixtures?

    Science.gov (United States)

    Reis, João Carlos R; Ribeiro, Nuno; Aguiar-Ricardo, Ana

    2006-01-12

    The phenomenology of sound speeds in fluid mixtures is examined near and across critical lines. Using literature data for binary and ternary mixtures, it is shown that the ultrasound speed along an isotherm-isopleth passes through a minimum value in the form of an angular (or V-shaped) point at critical states. The relation between critical and pseudo-critical coordinates is discussed. For nonazeotropic fixed-composition fluid mixtures, pseudo-critical temperatures and pressures are found to be lower than the corresponding critical temperatures and pressures. The analysis shows that unstable pseudo-critical states cannot be detected using acoustic methods. The thermodynamic link between sound speeds and isochoric heat capacities is formulated and discussed in terms of p-Vm-T derivatives capable of being calculated using cubic equations of state. Based on the Griffiths-Wheeler theory of critical phenomena, a new specific link between critical sound speeds and critical isochoric heat capacities is deduced in terms of the rate of change of critical pressures and critical temperatures along the p-T projection of the critical locus of binary fluid mixtures. It is shown that the latter link can be used to obtain estimates of critical isochoric heat capacities from the experimental determination of critical speeds of sound. The applicability domain of the new link does not include binary systems at compositions along the critical line for which the rate of change in pressure with temperature changes sign. The new equation is combined with thermodynamic data to provide approximate numerical estimates for the speed of sound in two mixtures of carbon dioxide and ethane at different temperatures along their critical isochores. A clear decrease in the sound speed is found at critical points. A similar behavior is suggested by available critical heat capacity data for several binary fluid mixtures. Using an acoustic technique, the critical temperature and pressure were

  4. Flows and chemical reactions in heterogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2014-01-01

    This book - a sequel of previous publications 'Flows and Chemical Reactions' and 'Chemical Reactions in Flows and Homogeneous Mixtures' - is devoted to flows with chemical reactions in heterogeneous environments.  Heterogeneous media in this volume include interfaces and lines. They may be the site of radiation. Each type of flow is the subject of a chapter in this volume. We consider first, in Chapter 1, the question of the generation of environments biphasic individuals: dusty gas, mist, bubble flow.  Chapter 2 is devoted to the study at the mesoscopic scale: particle-fluid exchange of mom

  5. THERMODYNAMIC PROPERTIES OF POLYDISPERSE FLUID MIXTURES

    OpenAIRE

    S.Leroch; D.Gottwald; Kahl, G

    2004-01-01

    We present a systematic study of the thermodynamic properties of a polydisperse fluid mixture. The size of the particles, σ, is assumed to be distributed according to a continuous distribution function fΣ(σ), for which we have chosen a Γ-distribution. The interatomic potentials are given by a hard core repulsion plus an adjacent attractive tail in the form of a square-well or a Yukawa potential; for the size-dependence of the attraction strength we have assumed different models. The propertie...

  6. Video compressive sensing using Gaussian mixture models.

    Science.gov (United States)

    Yang, Jianbo; Yuan, Xin; Liao, Xuejun; Llull, Patrick; Brady, David J; Sapiro, Guillermo; Carin, Lawrence

    2014-11-01

    A Gaussian mixture model (GMM)-based algorithm is proposed for video reconstruction from temporally compressed video measurements. The GMM is used to model spatio-temporal video patches, and the reconstruction can be efficiently computed based on analytic expressions. The GMM-based inversion method benefits from online adaptive learning and parallel computation. We demonstrate the efficacy of the proposed inversion method with videos reconstructed from simulated compressive video measurements, and from a real compressive video camera. We also use the GMM as a tool to investigate adaptive video compressive sensing, i.e., adaptive rate of temporal compression.

  7. Spectrometric mixture analysis: An unexpected wrinkle

    Indian Academy of Sciences (India)

    Robert De Levie

    2009-09-01

    The spectrometric analysis of a mixture of two chemically and spectroscopically similar compounds is illustrated for the simultaneous spectrometric determination of caffeine and theobromine, the primary stimulants in coffee and tea, based on their ultraviolet absorbances. Their analysis indicates that such measurements may need an unexpectedly high precision to yield accurate answers, because of an artifact of inverse cancellation, in which a small noise or drift signal is misinterpreted in terms of a concentration difference. The computed sum of the concentrations is not affected.

  8. Expansion of gas mixtures in free jets

    International Nuclear Information System (INIS)

    The cooling of mixtures of SF6 and N2 (He, Ar) in a free jet expansion is studied experimentally; laser scattering is used to detect condensation, and electron beam fluorescence or infrared laser absorption to measure local rotational temperatures in N2 and SF6. Experimental and theoretical results are presented with respect to lowest temperatures that can be reached, the onset of condensation, and the influence of concentration X (SF6), psub(o)D (stagnation pressure Psub(o), orifice diameter D), and D on condensation and relaxation. (author)

  9. Bayesian Estimation of a Mixture Model

    OpenAIRE

    Ilhem Merah; Assia Chadli

    2015-01-01

    We present the properties of a bathtub curve reliability model having both a sufficient adaptability and a minimal number of parameters introduced by Idée and Pierrat (2010). This one is a mixture of a Gamma distribution G(2, (1/θ)) and a new distribution L(θ). We are interesting by Bayesian estimation of the parameters and survival function of this model with a squared-error loss function and non-informative prior using the approximations of Lindley (1980) and Tierney and Kadane (1986). Usin...

  10. Computing Properties Of Chemical Mixtures At Equilibrium

    Science.gov (United States)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  11. Formation of Nanoparticles in binary polymer mixtures

    Science.gov (United States)

    Cai, Tong; Lu, Xihua; Hu, Zhibin

    2000-10-01

    Formation of Nanoparticles in binary polymer mixtures Tong CAI, Xihua LU, and Zhibin HU Department of Physics, Denton, TX76203 The nanoparticles of hydrorypropyl cellulose (HPC)-polyacrylic acid (PAA) complex have been studied using light scattering method. The formation of the nanoparticles results from the hydrogen-bonding interaction between HPC and PAA. The particle size and size distribution, characterized by dynamic light scattering, depend on the HPC concentration, PAA concentration and reactive temperature. Because HPC and PAA have been approved for use inside human body by FDA, the nanoparticle obtained in this study could be used as drug carriers for controlled release.

  12. Temperature relaxation in dense plasma mixtures

    Science.gov (United States)

    Faussurier, Gérald; Blancard, Christophe

    2016-09-01

    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  13. Hydrogen Reduction of Zinc and Iron Oxides Containing Mixtures

    Science.gov (United States)

    de Siqueira, Rogério Navarro C.; de Albuquerque Brocchi, Eduardo; de Oliveira, Pamela Fernandes; Motta, Marcelo Senna

    2013-10-01

    Zinc is a metal of significant technological importance and its production from secondary sources has motivated the development of alternative processes, such as the chemical treatment of electrical arc furnace (EAF) dust. Currently, the extraction of zinc from the mentioned residue using a carbon-containing reducing agent is in the process of being established commercially and technically. In the current study, the possibility of reducing zinc from an EAF dust sample through a H2 constant flux in a horizontal oven is studied. The reduction of a synthetic oxide mixture of analogous composition is also investigated. The results indicated that the reduction process is thermodynamically viable for temperatures higher than 1123 K (850 °C), and all zinc metal produced is transferred to the gas stream, enabling its complete separation from iron. The same reaction in the presence of zinc crystals was considered for synthesizing FeZn alloys. However, for the experimental conditions employed, although ZnO reduction was indeed thermodynamically hindered because of the presence of zinc crystals (the metal's partial pressure was enhanced), the zinc metal's escape within the gaseous phase could not be effectively avoided.

  14. CO$_2$ Infrared Phonon Modes in Interstellar Ice Mixtures

    CERN Document Server

    Cooke, Ilsa R; Öberg, Karin I

    2016-01-01

    CO$_2$ ice is an important reservoir of carbon and oxygen in star and planet forming regions. Together with water and CO, CO$_2$ sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO$_2$ ice spectroscopy is a prerequisite to characterize CO$_2$ interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO$_2$ longitudinal optical (LO) phonon mode in pure CO$_2$ ice and in CO$_2$ ice mixtures with H$_2$O, CO, O$_2$ components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of JWST, this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enabl...

  15. Carbon Deposition Model for Oxygen-Hydrocarbon Combustion, Volume 2

    Science.gov (United States)

    Hernandez, R.; Ito, J. I.; Niiya, K. Y.

    1987-01-01

    Presented are details of the design, fabrication, and testing of subscale hardware used in the evaluation of carbon deposition characteristics of liquid oxygen and three hydrocarbon fuels for both main chamber and preburner/gas generator operating conditions. In main chamber conditions, the deposition of carbon on the combustion chamber wall was investigated at mixture ratios of 2.0 to 4.0 and at chamber pressures of 1000 to 1500 psia. No carbon deposition on chamber walls was detected at these main chamber mixture ratios. In preburner/gas generator operating conditions, the deposition of carbon on the turbine simulator tubes was evaluated at mixture ratios of 0.20 to 0.60 and at chamber pressures of 720 to 1650 psia. The results of the tests showed carbon deposition rate to be a strong function of mixture ratio and a weak function of chamber pressure. Further analyses evaluated the operational concequences of carbon deposition on preburner/gas generator performance. This is Volume 2 of the report, which contains data plots of all the test programs.

  16. Carbon deposition model for oxygen-hydrocarbon combustion, volume 1

    Science.gov (United States)

    Hernandez, R.; Ito, J. I.; Niiya, K. Y.

    1987-01-01

    Presented are details of the design, fabrication, and testing of subscale hardware used in the evaluation of carbon deposition characteristics of liquid oxygen and three hydrocarbon fuels for both main chamber and preburner/gas generator operating conditions. In main chamber conditions, the deposition of carbon on the combustion chamber wall was investigated at mixture ratios of 2.0 to 4.0 and at pressures of 1000 to 1500 psia. No carbon deposition on the chamber walls was detected at these main chamber mixture ratios. In preburner/gas generator operating conditions, the deposition of carbon on the turbine simulator tubes was evaluated at mixture ratios of 0.20 to 0.60 and at chamber pressures of 720 to 1650 psia. The results of the tests showed carbon deposition rate to be a strong function of mixture ratio and a weak function of chamber pressure. Further analyses evaluated the operational consequences of carbon deposition on preburner/gas generator performance. The report is in two volumes, of which this is Volume 1 covering the main body of the report plus Appendixes A through D.

  17. X-RAY IRRADIATION OF H{sub 2}O + CO ICE MIXTURES WITH SYNCHROTRON LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Escobar, A.; Ciaravella, A.; Micela, G.; Cecchi-Pestellini, C. [INAF–Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy); Chen, Y.-J.; Huang, C.-H., E-mail: jimenezea@astropa.inaf.it, E-mail: ciarave@astropa.inaf.it, E-mail: giusi@astropa.inaf.it, E-mail: cecchi-pestellini@astropa.inaf.it, E-mail: asperchen@phy.ncu.edu.tw, E-mail: 101222023@cc.ncu.edu.tw [Department of Physics, National Central University, Jhongli District, Taoyuan City 32054, Taiwan (China)

    2016-03-20

    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250–1200 eV) were employed. During the irradiation, the H{sub 2}O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistry is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.

  18. Extraction of Uranium and Cerium mixture with liquid membrane emulsion process using Tributylphosphate extractant

    International Nuclear Information System (INIS)

    As a membrane a mixture of surfactant (span-80), Tributylphosphate in kerosene and sodium carbonate was used. The feeder was a mixture of uranium and cerium solution with 418.88 ppm U and 101.81 ppm Ce concentration in nitrate acid. The variables investigated were % surfactant (1-8 %) percentage, rotary speed for membrane making (2,500-10,000 rpm) and the acidity of feeder (0.5-3 M). The experiment result were that the optimal concentration of surfactant 5 %, rotary speed 7,500 rpm and efficiency extraction (efeks-U = 23.65 %, efeks-Ce = 7.09 %) at 0.5 M nitric acid and the efficiency stripping (efstripp-U = 5.06 %, efstripp-Ce = 99.91 %) at 0.5 M nitric acid

  19. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes

    KAUST Repository

    Pan, Yichang

    2012-02-01

    The separation of propylene/propane mixtures is one of the most important but challenging processes in the petrochemical industry. A novel zeolitic imidazole framework (ZIF-8) membrane prepared by a facile hydrothermal seeded growth method showed excellent separation performances for a wide range of propylene/propane mixtures. The membrane showed a permeability of propylene up to 200. barrers and a propylene to propane separation factor up to 50 at optimal separation conditions, well surpassing the "upper-bound trade-off" lines of existing polymer and carbon membranes. The experimental data also showed that the membranes had excellent reproducibility, long-term stability and thermal stability. © 2011 Elsevier B.V.

  20. Porous carbons

    Indian Academy of Sciences (India)

    Satish M Manocha

    2003-02-01

    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5–0.8 cm3 /gm and surface areas of 700–1800 m2 /gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.