WorldWideScience

Sample records for carbon tetrachloride-induced hepatotoxicity

  1. Attenuation of Carbon Tetrachloride-Induced Hepatotoxicity by Cow Urine Distillate in Rats

    Institute of Scientific and Technical Information of China (English)

    M PGURURAJA; A B JOSHI; HIMANSHU JOSHI; D SATHYANARAYANA; E V S SUBRAHMANYAM; K S CHANDRASHEKHAR

    2009-01-01

    Objectives To study the carbon tetrachloride-induced hepatoprotective activity in cow urine. Methods Effect of cow urine distillate on liver function was studied in vivo in rats intoxicated with carbon tetrachloride (CCl4). Hepatotoxicity was induced by a 1:1 (v/v) mixture of CCl4 in olive oil (5 mL/kg i.p). Protective effect of cow urine distillate (in three dose levels) and standard drug Silymarin (100 mg/kg, p.o) on liver function were studied in intoxicated rats. Parameters in the study included liver function tests and histological observations. Results The cow urine distillate decreased the levels of SGOT, SGPT, ALP, GGT, and total bilirubin in a dose-dependent manner (P<0.05) as sylimarin. Conclusion The observed protective effects of cow urine distillate on liver function might be due to the presence of antioxidants in cow urine.

  2. Phytochemical and Pharmacological Standardisation of Polyherbal Tablets For Hepatoprotective Activity Against Carbon Tetrachloride Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Vilas A. Arsul

    2010-10-01

    Full Text Available Literature survey revealed that phyllanthin and hypophyllanthin from Phyllanthus niruri, wedenolactone from Eclipta alba, and kutkin from Picrorhiza kurroa are responsible for hepatoprotective activity, and phenolic and flavonoids are responsible for antioxidant activity. A selected polyherbal formulation composed of 7 herbal extract mixtures such as Phyllanthus niruri, Eclipta alba, Cichorium intybus, Boerhaavia diffusa, Embelia ribes, Berberis aristata and Picrorhiza kurroa. The phytochemical evaluation was carried out by estimation of total phenolic content and total flavonoids. The antioxidant activity was compared with ascorbic acid (ASC and Rutin as standard. The hepatoprotective activity in carbon tetrachloride induced hepatotoxicity were studied. Assessment of liver function was made by estimating the activities of SGOT, SGPT, ALP, Cholesterol, Bilirubin and Total protein. From the study it is seen that formulation exhibit significant activity.

  3. Role of the sympathetic nervous system in carbon tetrachloride-induced hepatotoxicity and systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Jung-Chun Lin

    Full Text Available Carbon tetrachloride (CCl4 is widely used as an animal model of hepatotoxicity and the mechanisms have been arduously studied, however, the contribution of the sympathetic nervous system (SNS in CCl4-induced acute hepatotoxicity remains controversial. It is also known that either CCl4 or SNS can affect systemic inflammatory responses. The aim of this study was to establish the effect of chemical sympathectomy with 6-hydroxydopamine (6-OHDA in a mouse model of CCl4-induced acute hepatotoxicity and systemic inflammatory response. Mice exposed to CCl4 or vehicle were pretreated with 6-OHDA or saline. The serum levels of aminotransferases and alkaline phosphatase in the CCl4-poisoning mice with sympathetic denervation were significantly lower than those without sympathetic denervation. With sympathetic denervation, hepatocellular necrosis and fat infiltration induced by CCl4 were greatly decreased. Sympathetic denervation significantly attenuated CCl4-induced lipid peroxidation in liver and serum. Acute CCl4 intoxication showed increased expression of inflammatory cytokines/chemokines [eotaxin-2/CCL24, Fas ligand, interleukin (IL-1α, IL-6, IL-12p40p70, monocyte chemoattractant protein-1 (MCP-1/CCL2, and tumor necrosis factor-α (TNF-α], as well as decreased expression of granulocyte colony-stimulating factor and keratinocyte-derived chemokine. The overexpressed levels of IL-1α, IL-6, IL-12p40p70, MCP-1/CCL2, and TNF-α were attenuated by sympathetic denervation. Pretreatment with dexamethasone significantly reduced CCl4-induced hepatic injury. Collectively, this study demonstrates that the SNS plays an important role in CCl4-induced acute hepatotoxicity and systemic inflammation and the effect may be connected with chemical- or drug-induced hepatotoxicity and circulating immune response.

  4. Role of nuclear receptor CAR in carbon tetrachloride-induced hepatotoxicity

    Institute of Scientific and Technical Information of China (English)

    Yuichi Yamazaki; Satoru Kakizaki; Norio Horiguchi; Hitoshi Takagi; Masatomo Mori; Masahiko Negishi

    2005-01-01

    AIM: To investigate the precise roles of CAR in CCl4-induced acute hepatotoxicity.METHODS: To prepare an acute liver injury model, CCl4 was intraperitoneally injected in CAR+/+ and CAR-/- mice.RESULTS: Elevation of serum alanine aminotransferase and extension of centrilobular necrosis were slightly inhibited in CAR-/- mice compared to CAR+/+ mice without PB. Administration of a CAR inducer, PB, revealed that CCl4-induced liver toxicity was partially inhibited in CAR-/- mice compared with CAR+/+ mice. On the other hand,androstanol, an inverse agonist ligand, inhibited hepatotoxicity in CAR+/+ but not in CAR-/- mice. Thus, CAR activation caused CCl4 hepatotoxicity while CAR inhibition resulted in partial protection against CCl4-induced hepatotoxicity.There were no differences in the expression of CYP2E1, the main metabolizing enzyme for CCl4, between CAR+/+ and CAR-/- mice. However, the expression of other CCl4-metabolizing enzymes, such as CYP2B10 and 3A11, was induced by PB in CAR+/+ but not in CAR-/- mice. Although the main pathway of CCl4-induced acute liver injury is mediated by CYP2E1, CAR modulates its pathway via induction of CYP2B10 and 3A11 in the presence of activator or inhibitor.CONCLUSION: The nuclear receptor CAR modulates CCl4-induced liver injury via induction of CCl4-metabolizing enzymes in the presence of an activator. Our results suggest that drugs interacting with nuclear receptors such as PB might play critical roles in drug-induced liver injury or drugdrug interaction even though such drugs themselves are not hepatotoxic.

  5. Protection by pantethine, pantothenic acid and cystamine against carbon tetrachloride-induced hepatotoxicity in the rat.

    Science.gov (United States)

    Nagiel-Ostaszewski, I; Lau-Cam, C A

    1990-02-01

    The daily ip administration of pantethine (500 mg/kg), pantothenic acid (100 mg/kg) or cystamine (50 mg/kg) for 5 days conferred significant protection against the hepatotoxic and peroxidative actions of a 0.5 mL/kg ip dose of CCl4 in rats. All three treatments lessened the increases in serum ALT and liver TBARS values, and the reductions in serum triglyceride levels, and prevented the development of hepatic steatosis caused by the halocarbon. Pantethine was found to offer the greatest protection. PMID:2333416

  6. Hepatoprotective effects of berberine on carbon tetrachloride-induced acute hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Feng Yibin

    2010-09-01

    Full Text Available Abstract Background Berberine is an active compound in Coptidis Rhizoma (Huanglian with multiple pharmacological activities including antimicrobial, antiviral, anti-inflammatory, cholesterol-lowering and anticancer effects. The present study aims to determine the hepatoprotective effects of berberine on serum and tissue superoxide dismutase (SOD levels, the histology in tetrachloride (CCl4-induced liver injury. Methods Sprague-Dawley rats aged seven weeks were injected intraperitoneally with 50% CCl4 in olive oil. Berberine was orally administered before or after CCl4 treatment in various groups. Twenty-four hours after CCl4 injection, serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities, serum and liver superoxide dismutase (SOD activities were measured. Histological changes of liver were examined with microscopy. Results Serum ALT and AST activities significantly decreased in a dose-dependent manner in both pre-treatment and post-treatment groups with berberine. Berberine increased the SOD activity in liver. Histological examination showed lowered liver damage in berberine-treated groups. Conclusion The present study demonstrates that berberine possesses hepatoprotective effects against CCl4-induced hepatotoxicity and that the effects are both preventive and curative. Berberine should have potential for developing a new drug to treat liver toxicity.

  7. Dietary Antioxidants Effectiveness on Carbon Tetrachloride-Induced Hepatotoxicity in Adult Female Albino Rats

    International Nuclear Information System (INIS)

    Hepatic toxicity through carbon tetrachloride (CCI4) induced lipid peroxidation was extensively used in experimental models to understand the cellular mechanisms behind oxidative damage and to evaluate the therapeutic potential of drugs and dietary antioxidants. The ameliorative effect of Aloe vera juice and carrot supplementation on hepato carcinogenesis induced by carbon tetrachloride in adult female albino rats was investigated. The carcinogenic process was determined by measuring gamma-glutamyl transpeptidase (GGT), ornithine carbamyl transferase (OCT), thiobarbituric acid reactive substances (TBARs), representing levels of lipid peroxides, and carcinoembryonic antigen (CEA) in the sera of female albino rats. Carbon tetrachloride significantly elevated the serum GGT, OCT activities and the level of TBARs. Administration of Aloe vera leaf juice filtrate after CCl4 treatment resulted in a non-significant modification in GGT, OCT activities and significantly improved the level of TBARs in comparison with control. Supplementation of carrot to CCI4 treated animals led to a great amelioration in OCT activity and TBARs level, whereas GGT activity was ameliorated but statistically changed compared to control. There was a non-significant alteration in the level of CEA in all treated groups compared to normal control one

  8. Suppressive Effect of Kampo Formula "Juzen-taiho-to" on Carbon Tetrachloride-Induced Hepatotoxicity in Mice.

    Science.gov (United States)

    Yoshioka, Hiroki; Fukaya, Shiori; Miura, Nobuhiko; Onosaka, Satomi; Nonogaki, Tsunemasa; Nagatsu, Akito

    2016-01-01

    The aim of the present study was to investigate whether pretreatment with the Japanese herbal medicine, "Juzen-taiho-to" (JTX), had an ameliorative effect on carbon tetrachloride (CCl4)-induced hepatotoxicity through anorexia prevention. Mice injected with CCl4 exhibited severe anorexia. Moreover, CCl4 increased the plasma levels of hepatic injury markers (i.e., alanine aminotransferase and aspartate aminotransferase), lipid peroxidation, and hepatic Ca(2+) levels. Pretreatment with JTX recovered the CCl4-induced anorexia. In addition, JTX pretreatment decreased CCl4-induced plasma levels of hepatic injury markers. Increased Ca(2+) is a known indicator of the final progression to hepatocyte death, and CCl4-induced hepatotoxicity is mainly caused by oxidative stress. The present study indicated CCl4-induced lipid peroxidation and hepatic Ca(2+) content decreased with JTX pretreatment. Our results suggest that JTX has potential to protect of CCl4-induced anorexia, and the modulation of oxidative stress. PMID:27582337

  9. Protective effects of alisol B 23-acetate from edible botanical Rhizoma alismatis against carbon tetrachloride-induced hepatotoxicity in mice.

    Science.gov (United States)

    Meng, Qiang; Chen, Xinli; Wang, Changyuan; Liu, Qi; Sun, Huijun; Sun, Pengyuan; Huo, Xiaokui; Liu, Zhihao; Liu, Kexin

    2015-04-01

    Carbon tetrachloride (CCl4)-induced hepatotoxicity is a common syndrome with simultaneous severe hepatocyte death and acute cholestasis. The purpose of the present study is to investigate the hepatoprotective effect of alisol B 23-acetate (AB23A), a natural triterpenoid from edible botanical Rhizoma alismatis, on acute hepatotoxicity induced by CCl4 in mice, and further to elucidate the involvement of farnesoid X receptor (FXR), signal transducers and activators of transcription 3 (STAT3) in the hepatoprotective effect. H&E staining, BrdU immunohistochemistry and TUNEL assay were used to identify the amelioration of histopathological changes, hepatocyte proliferation and apoptosis. Real-time PCR and western blot assay were used to elucidate the mechanisms underlying AB23A hepatoprotection. The results indicated that AB23A treatment in a dose-dependent manner resulted in protection against hepatotoxicity induced by CCl4via FXR activation. Through FXR activation, AB23A promoted hepatocyte proliferation via an induction in hepatic levels of FoxM1b, Cyclin D1 and Cyclin B1. AB23A also reduced hepatic bile acids through a decrease in hepatic uptake transporter Ntcp, bile acid synthetic enzymes Cyp7a1, Cyp8b1, and an increase in efflux transporter Bsep, Mrp2 expression. In addition, AB23A induced the expression of STAT3 phosphorylation, and STAT3 target genes Bcl-xl and SOCS3, resulting in decreased hepatocyte apoptosis. In conclusion, AB23A produces a protective effect against CCl4-induced hepatotoxicity, due to FXR and STAT3-mediated gene regulation. PMID:25747392

  10. Antihepatotoxic effect of marrubium vulgare and withania somnifera extracts on carbon tetrachloride-induced hepatotoxicity in rats.

    Science.gov (United States)

    Elberry, Ahmed A; Harraz, Fathalla M; Ghareib, Salah A; Nagy, Ayman A; Gabr, Salah A; Suliaman, Mansour I; Abdel-Sattar, Essam

    2010-09-01

    Marrubium vulgare and Withania somnifera are used in folk medicine of several countries. Many researches showed that they are used for the treatment of variety of diseases due to their antioxidant effects. The present aim of this study was to evaluate the antihepatotoxic and antioxidant activities of the both extracts against carbon tetrachloride (CCl4)-induced hepatic damage in rats. Both extracts were given orally in a dose of 500 mg/kg/day for 4 weeks along with CCl4 started at the 7th week of induction of hepatotoxicity. The antihepatotoxic activity was assessed by measuring aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), reduced glutathione (GSH), tissue content and malondialdehyde (MDA) as well as histopathological examination. Both extracts showed a significant antihepatotoxic effect by reducing significantly the levels of AST, ALT and LDH. However, ALP levels were decreased non-significantly. Regarding the antioxidant activity, they exhibited significant effects by increasing the GPx, GR and GST activities with increased GSH tissue contents and decreased production of MDA level. Furthermore, both extracts alleviated histopathological changes in rats' liver treated with CCl4. M. vulgare and W. somnifera protect the rats' liver against CCl4-induced hepatotoxicity. This effect may be attributed, at least in part, to the antioxidant activities of these extracts. PMID:24825994

  11. The Vitamine D3 Analogue (1α Hydroxyvitamin D3) Aggravates Carbon Tetrachloride-Induced Hepatotoxicity In Albino Rats

    International Nuclear Information System (INIS)

    Provitamin D, cholecalciferol, undergoes hydroxylation at the 25 and the 1α position in the liver and the kidney, respectively, before it turns into a hormonally active form regulating calcium homeostasis. The main purpose of the present study is to assess the potential of the 1α hydroxyvitamin D3 analogue to aggravate the ability of carbon tetrachloride (CCl4) to cause hepatotoxicity in albino rats. For this purpose, four groups of male albino rats, each of five, were used as follow: control group (G 1) received no treatment, CCl4 treated group (G 2) received CCl4 at a dose of 0.2 ml/100 g body weight in sunflower oil (1/1) v/v ratio two times per week for three weeks subcutaneously, 1α hydroxyvitamin D3 treated group (G 3) received a total dose of 5 ng/g body weight of 1α hydroxyvitamin D3 dissolved in propyl alcohol divided into six doses each given twice weekly for three weeks via the subcutaneous route, and CCl4 + 1α hydroxyvitamin D3 treated group (G 4) received the same dose of CCl4 and 1α hydroxyvitamin D3 concomitantly as previously described. Liver tissues from sacrificed animals were fixed in 10% formalin before sectioning and stained with eosin and hematoxyline then were examined histopathologically. Sera from control and treated animals were separated from blood and examined for ALT, AST, alkaline phosphatase and LDH levels. Serum total protein, albumin, globulin, A/G, bilirubin, creatinine, phosphorous and Ca levels were also monitored. Data from the present study showed that administration of 1α hydroxyvitamin D3 aggravated CCl4-induced hepatotoxicity as evidenced by the exacerbation of the rise in serum ALT, AST, alkaline phosphatase levels. The analogue, however, had no effect on serum liver enzymes in CCl4 untreated rats. Though, CCl4 caused significant impairment of kidney function as shown by the rise in serum creatinine and urea levels which were differentially affected by the analogue. In conclusion, the 1α hydroxyvitamin D3 compound

  12. Amelioration of carbon tetrachloride-induced hepatotoxicity and haemotoxicity by aqueous leaf extract of Cnidoscolus aconitifolius in rats.

    Science.gov (United States)

    Saba, A B; Oyagbemi, A A; Azeez, O I

    2010-01-01

    This study was conducted to explore possible protective effect ofCnidoscolus aconitifolius (CA) leaf extract on carbon tetrachloride (CCl4)-induced hepatotoxicity and haemotoxicity in experimental animal models. Thirty six rats of six per group were used in this study. Group I received 10ml/kg normal saline as control. Group II-VI rats were administered with 1.25ml/kg body weight (bwt) of carbon tetrachloride intraperitonealy. Animals in groups III, IV, V and VI were however pre-treated with aqueous extract of Cnidoscolus aconitifolius at 100, 250, 500 and 750mg/kg body weight (bwt) respectively. Administration of CCL4 in untreated rats led to microcytic hypochromic anaemia, thrombocytopenia, increased erythrocyte fragility and stress induced leucocytosis accompanied with significant increase in neutrophils and decrease in lymphocyte counts. CCl4 also led to significant increase in serum transaminases (ALT and AST) and phosphatase (ALP) respectively compared with control animals. Also, CCL4 produced significant increase in serum blood urea nitrogen (BUN) and creatinine compared with normal rats. Pre-treatment with Cnidoscolus aconitifolius leaf extract brought about significant restoration of the haematological parameters to values that were comparable to those of the control with concomitant decrease in the activities of the marker of hepatic damage enzymes (ALT, AST and ALP), in a dose-dependent manner. Similarly, serum levels of blood urea nitrogen (BUN) and creatinine were also brought to near normal by the CA in a dose-dependent manner. From this study, we conclude that pre-exposure to Cnidoscolus aconitifolius leaf extract considerably reduced the effect of CCl4 on the blood parameters and ameliorated hepatic damage by the haloalkane. PMID:22314953

  13. Protective effect of ethyl acetate fraction of Rhododendron arboreum flowers against carbon tetrachloride-induced hepatotoxicity in experimental models

    Directory of Open Access Journals (Sweden)

    Neeraj Verma

    2011-01-01

    Result and Discussion: The substantially elevated serum enzymatic activities of SGOT, SGPT, SALP, γ-GT, and bilirubin due to CCl 4 treatment were restored toward normal in a dose-dependent manner. Meanwhile, the decreased activities of GST and glutathione reductase were also restored toward normal. In addition, ethyl acetate fraction also significantly prevented the elevation of hepatic malondialdehyde formation and depletion of reduced glutathione content in the liver of CCl 4 -intoxicated rats in a dose-dependent manner. Silymarin used as standard reference also exhibited significant hepatoprotective activity on post-treatment against CCl 4 -induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethyl acetate fraction has a potent hepatoprotective action against CCl 4 -induced hepatic damage in rats.

  14. Protective Effect of Ssanghwa-Tang Fermented by Lactobacillus Fermentum Against Carbon Tetrachloride-Induced Acute Hepatotoxicity in Rats

    OpenAIRE

    Eum, Hyun-Ae; Lee, Ji-Hye; Yang, Min-Cheol; Shim, Ki Shuk; Lee, Jae-Hoon; Ma, Jin Yeul

    2011-01-01

    Ssanghwa-tang (SHT) is a traditional herbal medicine formula that has been used for the development of physical strength, relief of pain, and the reduction of fatigue. In this study, we fermented SHT with Lactobacillus fermentum (L. fermentum), Lactobacillus gasseri (L.gasseri), or Lactobacillus casei (L.casei) to investigate the hepatoprotective effects of SHT and fermented SHT with Lactobacillus on carbon tetrachloride (CCl4)-induced liver injury in rats. Rats were given CCl4 (1 ml/kg, 50% ...

  15. ANTIHEPATOTOXIC EFFECT OF MARRUBIUM VULGARE AND WITHANIA SOMNIFERA EXTRACTS ON CARBON TETRACHLORIDE-INDUCED HEPATOTOXICITY IN RATS

    OpenAIRE

    Elberry, Ahmed A; Fathalla M. Harraz; Salah A. Ghareib; Nagy, Ayman A.; Salah A. Gabr; Suliaman, Mansour I.; Abdel-Sattar, Essam

    2010-01-01

    Marrubium vulgare and Withania somnifera are used in folk medicine of several countries. Many researches showed that they are used for the treatment of variety of diseases due to their antioxidant effects. The present aim of this study was to evaluate the antihepatotoxic and antioxidant activities of the both extracts against carbon tetrachloride (CCl4)-induced hepatic damage in rats. Both extracts were given orally in a dose of 500 mg/kg/day for 4 weeks along with CCl4 started at the 7th wee...

  16. Determination of the key innate genes related to individual variation in carbon tetrachloride-induced hepatotoxicity using a pre-biopsy procedure

    International Nuclear Information System (INIS)

    High inter-individual variation in chemical-induced liver injury is a frequent observation with many hepatotoxic chemicals, yet the mechanism underlying it remains poorly understood. Even with carbon tetrachloride (CCl4), a well-known model hepatotoxicant, substantial individual variations are observed in the severity of liver injury. Using microarray, many attempts have been made to identify the key genes in CCl4-induced liver injury but mostly, they examined the gene expression of liver after CCl4 exposure, unable to dissect out the complicating factors from pathological changes secondary to liver injury. To more accurately identify the genes for the individual variation in CCl4-induced hepatotoxicity, we compared the innate gene expression of the individual liver samples pre-biopsied prior to CCl4-treatment with the severity of liver injury after CCl4-treatment. Effect of biopsy procedure and 3 week recovery period on liver function and gene expression were confirmed to be insignificant. Using this design, we found that the expression of genes associated with immunity and defense, lipid metabolism, transport and complement-mediated immunity, which are previously known to be suppressed by CCl4-treatment, were innately lower in the susceptible animals than resistant animals. Moreover, we demonstrated that the genes such as Gsta2, Sult2a1, Fgl1 and C6 were newly found to be innately lower in the susceptible animals to CCl4-hepatotoxicity. These naturally lower gene expression patterns were further confirmed by RT-PCR. We believe that this pre-biopsy design may provide a useful tool for understanding the cause of variability of hepatotoxicity and for the prediction and pre-screening of the susceptible individual to drug-induced hepatotoxicity.

  17. Role of trimetazidine in carbon tetrachloride induced liver damage in rats

    OpenAIRE

    Vijay H. Mate; Vijaya A. Pandit; Dileep B. Wani; Priti P. Dhande

    2014-01-01

    Background: Hepatotoxicity by chemicals and drugs is a common clinical problem. Presently very few drugs are showing effectiveness in prevention and treatment of hepatic damage. So in this study, we evaluated the role of trimetazidine in carbon tetrachloride (CCl4) induced liver damage in rats. Objective of current study is to evaluate effects of prophylactic trimetazidine against carbon tetrachloride induced liver damage in rats. Methods: Liver damage was induced in 30 albino rats by CCl4...

  18. Response Pattern of Antioxidants to Lipid Peroxide Concentration in Carbon Tetrachloride-Induced Hepato-Toxicity Is Tightly Logistic in Rabbits

    OpenAIRE

    Alisi C. S.; Ojiako O. A.; Osuagwu C. G.; Onyeze G. O. C.

    2011-01-01

    Logistic response of antioxidants to lipid peroxide concentration in carbon tetrachloride toxicity in rabbit liver was evaluated. Carbon tetrachloride (CCl4), ethanol extracts of Chromolaena odorata (ETECO), sylimarin (a known hepatoprotective agent) and water, were used to induce variations in the oxidant/antioxidant balance in the test and control animals. This was used as a model to study the delicate balance between the activities and/or the intracellular concentrations of ...

  19. Tratamento homeopático da hepatotoxicose aguda induzida por tetracloreto de carbono em coelhos Homeopatic treatment of acute carbon tetrachloride induced hepatotoxicity in rabbits

    Directory of Open Access Journals (Sweden)

    Maria Cecília Ribeiro Moncorvo

    1998-09-01

    Full Text Available Quinze (15 coelhos (Oryctolagus cuniculus foram submetidos à intoxicação pelo tetracloreto de carbono na dosagem de 0,5 ml/kg de peso corporal, dose única, administrado por sonda gástrica. Foram realizadas as dosagens de alanina amino transferase (ALT, aspartato amino transferase (AST, fosfatase alcalina (FA e gama glutamil transferase (GGT antes e durante o experimento. Vinte e quatro (24 horas após a intoxicação, os coelhos foram divididos aleatoriamente em três grupos de 5 animais. Cada grupo recebeu um tratamento diferente durante 13 dias. O grupo I foi tratado com tetracloreto de carbono diluído na 30ª centesimal hahnemanniana (30 CH, uma vez ao dia. O grupo II recebeu Phosphorus 30 CH, também uma vez ao dia. O grupo III desempenhou o papel de controle, recebendo diariamente uma dose de placebo, pelo mesmo período de tempo que os grupos anteriores. Os resultados das concentrações séricas de ALT, AST, GGT e FA foram submetidos à análise estatística. A variação da concentração de todas as enzimas foi significativa entre os dias, mas nem todas variaram significativamente entre os grupos considerados. O tetracloreto de carbono 30 CH foi capaz de acelerar a recuperação do quadro de hepatite tóxica aguda determinada pela redução dos níveis de ALT. O tratamento com Phosphorus 30 CH mostrou-se incapaz seja de reverter o quadro de hepatite tóxica, seja de acelerar a regeneração hepática.Fithteen (15 New Zeland and Californian rabbits (Oryctolagus cuniculus were submitted to intoxication with carbon tethracloride in a dose 0/0.5 ml/kg, once a day, administred by orogastric sonde. Enzimatic parameters: alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase and gamma-glutamyltransferase of those rabbits were tested before and during the experiment. After the intoxication, the rabbits were divided in three groups of five animals. Each group received differents treatments during 13 days. The

  20. Potential Probiotic Escherichia coli 16 Harboring the Vitreoscilla Hemoglobin Gene Improves Gastrointestinal Tract Colonization and Ameliorates Carbon Tetrachloride Induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Prasant Kumar

    2014-01-01

    Full Text Available The present study describes the beneficial effects of potential probiotic E. coli 16 (pUC8:16gfp expressing Vitreoscilla hemoglobin (vgb gene, associated with bacterial respiration under microaerobic condition, on gastrointestinal (GI colonization and its antioxidant activity on carbon tetrachloride (CCl4 induced toxicity in Charles Foster rats. In vitro, catalase activity in E. coli 16 (pUC8:16gfp was 1.8 times higher compared to E. coli 16 (pUC-gfp control. In vivo, E. coli 16 (pUC8:16gfp not only was recovered in the fecal matter after 70 days of oral administration but also retained antibacterial activities, whereas E. coli 16 (pUC-gfp was not detected. Oral administration of 200 and 500 μL/kg body weight of CCl4 to rats at weekly interval resulted in elevated serum glutamyl pyruvate transaminase (SGPT and serum glutamyl oxalacetate transaminase (SGOT levels compared to controls. Rats prefed with E. coli 16 (pUC8:16gfp demonstrated near to normal levels for SGPT and SGOT, whereas the liver homogenate catalase activity was significantly increased compared to CCl4 treated rats. Thus, pUC8:16gfp plasmid encoding vgb improved the growth and GI tract colonization of E. coli 16. In addition, it also enhanced catalase activity in rats harboring E. coli 16 (pUC8:16gfp, thereby preventing the absorption of CCl4 to GI tract.

  1. The Protective Properties of the Strawberry (Fragaria ananassa) against Carbon Tetrachloride-Induced Hepatotoxicity in Rats Mediated by Anti-Apoptotic and Upregulation of Antioxidant Genes Expression Effects

    Science.gov (United States)

    Hamed, Sherifa S.; AL-Yhya, Nouf A.; El-Khadragy, Manal F.; Al-Olayan, Ebtesam M.; Alajmi, Reem A.; Hassan, Zeinab K.; Hassan, Salwa B.; Abdel Moneim, Ahmed E.

    2016-01-01

    The strawberry (Fragaria ananassa) has been extensively used to treat a wide range of ailments in many cultures. The present study was aimed at evaluating the hepatoprotective effect of strawberry juice on experimentally induced liver injury in rats. To this end, rats were introperitoneally injected with carbon tetrachloride (CCl4) with or without strawberry juice supplementation for 12 weeks and the hepatoprotective effect of strawberry was assessed by measuring serum liver enzyme markers, hepatic tissue redox status and apoptotic markers with various techniques including biochemistry, ELISA, quantitative PCR assays and histochemistry. The hepatoprotective effect of the strawberry was evident by preventing CCl4-induced increase in liver enzymes levels. Determination of oxidative balance showed that strawberry treatment significantly blunted CCl4-induced increase in oxidative stress markers and decrease in enzymatic and non-enzymatic molecules in hepatic tissue. Furthermore, strawberry supplementation enhanced the anti-apoptotic protein, Bcl-2, and restrained the pro-apoptotic proteins Bax and caspase-3 with a marked reduction in collagen areas in hepatic tissue. These findings demonstrated that strawberry (F. ananassa) juice possessed antioxidant, anti-apoptotic and anti-fibrotic properties, probably mediated by the presence of polyphenols and flavonoids compounds. PMID:27547187

  2. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haw-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Huang, Chin-Shiu [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Li, Chien-Chun [School of Nutrition, Chung Shan Medical University, Taichung, Taiwan (China); Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Ai-Hsuan; Huang, Yu-Ju [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Wang, Tsu-Shing [Department of Biomedical Science, Chung Shan Medical University, Taichung, Taiwan (China); Yao, Hsien-Tsung, E-mail: htyao@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Lii, Chong-Kuei, E-mail: cklii@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China)

    2014-10-01

    in various tissues. • Andrographolide ameliorates carbon tetrachloride-induced hepatotoxicity in rats.

  3. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    International Nuclear Information System (INIS)

    tissues. • Andrographolide ameliorates carbon tetrachloride-induced hepatotoxicity in rats

  4. The Potential Protective Effect of Physalis peruviana L. against Carbon Tetrachloride-Induced Hepatotoxicity in Rats Is Mediated by Suppression of Oxidative Stress and Downregulation of MMP-9 Expression

    OpenAIRE

    Al-Olayan, Ebtisam M.; El-Khadragy, Manal F.; Aref, Ahmed M.; Othman, Mohamed S.; Kassab, Rami B.; Ahmed E. Abdel Moneim

    2014-01-01

    The active constituent profile in Cape gooseberry (Physalis peruviana L.) juice was determined by GC-MS. Quercetin and kaempferol were active components in the juice. In this study we have evaluated its potential protective effect on hepatic injury and fibrosis induced by carbon tetrachloride (CCl4). Twenty-eight rats divided into 4 groups: Group I served as control group, and Group II received weekly i.p. injection of 2 mL CCl4/kg bwt for 12 weeks. Group III were supplemented with Physalis j...

  5. The potential protective effect of Physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP-9 expression.

    Science.gov (United States)

    Al-Olayan, Ebtisam M; El-Khadragy, Manal F; Aref, Ahmed M; Othman, Mohamed S; Kassab, Rami B; Abdel Moneim, Ahmed E

    2014-01-01

    The active constituent profile in Cape gooseberry (Physalis peruviana L.) juice was determined by GC-MS. Quercetin and kaempferol were active components in the juice. In this study we have evaluated its potential protective effect on hepatic injury and fibrosis induced by carbon tetrachloride (CCl4). Twenty-eight rats divided into 4 groups: Group I served as control group, and Group II received weekly i.p. injection of 2 mL CCl4/kg bwt for 12 weeks. Group III were supplemented with Physalis juice via the drinking water. The animals of Group IV received Physalis juice as Group III and also were intraperitoneally injected weekly with 2 mL CCl4/kg bwt for 12 weeks. Hepatoprotective effect was evaluated by improvement in liver enzymes serum levels, reduction in collagen areas, downregulation in expression of the fibrotic marker MMP-9, reduction in the peroxidative marker malonaldehyde and the inflammatory marker nitric oxide, and restoration of the activity of antioxidant enzymatic and nonenzymatic systems, namely, glutathione content, superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase activities. The results show that the potential hepatoprotective effects of Physalis peruviana may be due to physalis acts by promotion of processes that restore hepatolobular architecture and through the inhibition of oxidative stress pathway. PMID:24876910

  6. The Potential Protective Effect of Physalis peruviana L. against Carbon Tetrachloride-Induced Hepatotoxicity in Rats Is Mediated by Suppression of Oxidative Stress and Downregulation of MMP-9 Expression

    Directory of Open Access Journals (Sweden)

    Ebtisam M. Al-Olayan

    2014-01-01

    Full Text Available The active constituent profile in Cape gooseberry (Physalis peruviana L. juice was determined by GC-MS. Quercetin and kaempferol were active components in the juice. In this study we have evaluated its potential protective effect on hepatic injury and fibrosis induced by carbon tetrachloride (CCl4. Twenty-eight rats divided into 4 groups: Group I served as control group, and Group II received weekly i.p. injection of 2 mL CCl4/kg bwt for 12 weeks. Group III were supplemented with Physalis juice via the drinking water. The animals of Group IV received Physalis juice as Group III and also were intraperitoneally injected weekly with 2 mL CCl4/kg bwt for 12 weeks. Hepatoprotective effect was evaluated by improvement in liver enzymes serum levels, reduction in collagen areas, downregulation in expression of the fibrotic marker MMP-9, reduction in the peroxidative marker malonaldehyde and the inflammatory marker nitric oxide, and restoration of the activity of antioxidant enzymatic and nonenzymatic systems, namely, glutathione content, superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase activities. The results show that the potential hepatoprotective effects of Physalis peruviana may be due to physalis acts by promotion of processes that restore hepatolobular architecture and through the inhibition of oxidative stress pathway.

  7. Effect of Apitherapy Formulations against Carbon Tetrachloride-Induced Toxicity in Wistar Rats after Three Weeks of Treatment

    Directory of Open Access Journals (Sweden)

    Calin Vasile Andritoiu

    2014-08-01

    Full Text Available The human body is exposed nowadays to increasing attacks by toxic compounds in polluted air, industrially processed foods, alcohol and drug consumption that increase liver toxicity, leading to more and more severe cases of hepatic disorders. The present paper aims to evaluate the influence of the apitherapy diet in Wistar rats with carbon tetrachloride-induced hepatotoxicity, by analyzing the biochemical determinations (enzymatic, lipid and protein profiles, coagulation parameters, minerals, blood count parameters, bilirubin levels and histopathological changes at the level of liver, spleen and pancreas. The experiment was carried out on six groups of male Wistar rats. Hepatic lesions were induced by intraperitoneal injection of carbon tetrachloride (dissolved in paraffin oil, 10% solution. Two mL per 100 g were administered, every 2 days, for 2 weeks. Hepatoprotection was achieved with two apitherapy diet formulations containing honey, pollen, propolis, Apilarnil, with/without royal jelly. Biochemical results reveal that the two apitherapy diet formulations have a positive effect on improving the enzymatic, lipid, and protein profiles, coagulation, mineral and blood count parameters and bilirubin levels. The histopathological results demonstrate the benefits of the two apitherapy diet formulations on reducing toxicity at the level of liver, spleen and pancreas in laboratory animals.

  8. Hepatoprotective activity of Vitex trifolia against carbon tetrachloride-induced hepatic damage

    Directory of Open Access Journals (Sweden)

    Manjunatha B

    2008-01-01

    Full Text Available Aqueous and ethanol extracts of leaf of Vitex trifolia was investigated for hepatoprotective activity against carbon tetrachloride induced liver damage. To assess the hepatoprotective activity of the extracts, various biochemical parameters viz., total bilirubin, total protein, alanine transaminase, aspartate transaminase and alkaline phosphatase activities were determined. Results of the serum biochemical estimations revealed significant reduction in total bilirubin and serum marker enzymes and increase in total protein in the animals treated with ethanol and aqueous extracts. However significant rise in these serum enzymes and decrease in total protein level was noticed in CCl4 treated group indicating the hepatic damage. The hepatoprotective activity is also supported by histological studies of liver tissue. Histology of the liver tissue treated with ethanol and aqueous extracts showed normal hepatic architecture with few fatty lobules. Hence the present study revealed that Vitex trifolia could afford significant protection against CCl 4 induced hepatocellular injury.

  9. In vitro and in vivo protective effects of proteoglycan isolated from mycelia of Ganoderma lucidum on carbon tetrachloride-induced liver injury

    OpenAIRE

    Yang, Xiao-Jun; Liu, Jing; Ye, Lin-Bai; Yang, Fan; Ye, Li; Gao, Jin-Rong; Wu, Zheng-Hui

    2006-01-01

    AIM: To investigate the possible mechanism of the protective effects of a bioactive fraction, Ganoderma lucidum proteoglycan (GLPG) isolated from Ganoderma lucidum mycelia, against carbon tetrachloride-induced liver injury.

  10. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats.

    Science.gov (United States)

    Chen, Haw-Wen; Huang, Chin-Shiu; Li, Chien-Chun; Lin, Ai-Hsuan; Huang, Yu-Ju; Wang, Tsu-Shing; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1μM which peaked at 30min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p<0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl4) at day 6. Andrographolide pretreatment suppressed CCl4-induced plasma aminotransferase activity and hepatic lipid peroxidation (p<0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. PMID:25110055

  11. In vitro and in vivo protective effects of proteoglycan isolated from mycelia of Ganoderma lucidum on carbon tetrachloride-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Xiao-Jun Yang; Jing Liu; Lin-Bai Ye; Fan Yang; Li Ye; Jin-Rong Gao; Zheng-Hui Wu

    2006-01-01

    AIM: To investigate the possible mechanism of the protective effects of a bioactive fraction, Ganoderma lucidum proteoglycan (GLPG) isolated from Ganoderma lucidum mycelia, against carbon tetrachloride-induced liver injury.METHODS: A liver injury model was induced by carbon tetrachloride. Cytotoxicity was measured by MTT assay.The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined with an automatic multifunction-biochemical analyzer and the levels of superoxide dismutase (SOD) and TNF-α were determined following the instructions of SOD kit and TNF radioimmunoassay kit. Liver sections were stained with hematoxylin and eosin (H&E) for histological evaluation and examined under light microscope.RESULTS: We found that GLPG can alleviate the L-02liver cells injury induced by carbon tetrachloride (CCl4)through the measurements of ALT and AST activities and the administration of GLPG to L-02 cells did not display any toxicity. Furthermore, histological analysis of mice liver injury induced by CCl4 with or without GLPG pretreatment indicated that GLPG can significantly suppress the toxicity induced by CCl4 in mice liver. We also found that GLPG reduced TNF-α level induced by CCl4 in the plasma of mice, whereas increased SOD activity in the rat serum.CONCLUSION: GLPG has hepatic protective activity against CCl4-induced injury both in vitro and in vivo. The possible anti-hepatotoxic mechanisms may be related to the suppression of TNF-α level and the free radical scavenging activity.

  12. Hepatoprotective and antioxidant activity of pentagamavunon-0 against carbon tetrachloride-induced hepatic injury in rats

    Institute of Scientific and Technical Information of China (English)

    Arief Nurrochmad; Supardjan Amir Margono; Sardjiman; Arief Rahman Hakim; Ernawati; Erna Kurniawati; Erva Fatmawati

    2013-01-01

    Objective: To investigate the hepatoprotective and antioxidant activity of pentagamavunon-0(PGV-0) against CCl4-induced hepatic injury in rats. Methods: The groups of animals were administered with PGV-0 at the doses 2.5, 5, 10, and 20 mg/kg b.w., p.o. once in a day for 6 days and at day 7 the animals were administrated with carbon tetrachloride (CCl4) (20%, 2 mL/kg b.w. in liquid paraffin (i.p.). The effect of PGV-0 on serum transaminase (SGPT), alkaline phosphates (ALP) and total bilirubin were determined in CCl4-induced hepatotoxicity in rats. Further, the effects of PGV-0 on glutathione (GSH) content, catalase (CAT) and NO free radical scavenging activity also were investigated. Results: The results demonstrated that PGV-0 significantly reduced the activity of SGPT, serum ALP and total bilirubin in CCl4 induced rat hepatotoxicity. PGV-0 has effect on the antioxidant and free radical defense system. It prevented the depletion level of GSH and decrease activity of CAT in CCl4-induced liver injury in rats. PGV-0 also demonstrated the free radical scavenger effects on NO free radical scavenging activity with ES value of 32.32 μM. Conculsion: All of our findings suggests that PGV-0 could protect the liver cells from CCl4-induced liver damages and the mechanism may through the antioxidative effect of PGV-0 to prevent the accumulation of free radicals and protect the liver damage.

  13. Chemopreventive Effect of Cinnamon Extract on Carbon Tetrachloride-Induced Physiological Changes in the Frog, Rana ridibunda

    Science.gov (United States)

    Al-Attar, Atef M.

    The present study examined the preventive influences of an aqueous extract of cinnamon on carbon tetrachloride-induced some physiological alterations in the frog, Rana ridibunda. The experimental animals were divided into five batches. The first batch was untreated and served as control. The other batches were treated for 6 weeks with carbon tetrachloride, cinnamon extract plus carbon tetrachloride, cinnamon and corn oil, respectively. Haematological, biochemical and hepatosomatic index indices were chosen as physiological indicators. These parameters were evaluated at 2, 4 and 6 weeks. In comparison with control and cinnamon plus CCl4 batches, significant decreases of red blood cell count, haemoglobin concentration, haematocrit, mean corpuscular haemoglobin concentration and increases of glutamic pyruvic acid transaminase values were noted in CCl4-exposed batch at all experimental periods. Also, glutamic oxaloacetic acid transaminase and hepatosomatic index levels were significantly elevated, while mean corpuscular haemoglobin values were decreased at second and last periods. Mean cell volume values were only increased at the first period. In comparison with control batch, significant decreases of red blood cell count, haemoglobin concentration, haematocrit, and increases of glutamic oxaloacetic acid transaminase, glutamic pyruvic acid transaminase and hepatosomatic index values were observed in frogs treated with cinnamon plus CCl4 at 2 and 6 weeks. Mean cell volume and mean corpuscular haemoglobin values were statistically elevated at second period. Mean corpuscular haemoglobin concentration values were declined at last period. Moreover, the percentage changes of these parameters in cinnamon plus CCl4 batch tended to be lower than CCl4 treated the experimental animals. In addition, it is conceivable therefore, that the cinnamon aqueous extract exhibits a protective influence against carbon tetrachloride-induced some physiological changes, probably mediated

  14. Toxicological and biochemical studies on Schinus terebinthifolius concerning its curative and hepatoprotective effects against carbon tetrachloride-induced liver injury

    OpenAIRE

    Abdou, Rania H.; Sherif Y Saleh; Khalil, Waleed F.

    2015-01-01

    Background: Recently, many efforts have been made to discover new products of natural origin which can limit the xenobiotic-induced hepatic injury. Carbon tetrachloride (CCl 4 ) is a highly toxic chemical that is widely used to study hepatotoxicity in animal models. Objective: The present study was conducted to investigate the curative and protective effects of Schinus terbenthifolius ethanolic extract against CCl 4 -induced acute hepatotoxicity in rats. Materials and Methods: S. terbenthifol...

  15. Toxicological and biochemical studies on Schinus terebinthifolius concerning its curative and hepatoprotective effects against carbon tetrachloride-induced liver injury

    Directory of Open Access Journals (Sweden)

    Rania H Abdou

    2015-01-01

    Full Text Available Background: Recently, many efforts have been made to discover new products of natural origin which can limit the xenobiotic-induced hepatic injury. Carbon tetrachloride (CCl 4 is a highly toxic chemical that is widely used to study hepatotoxicity in animal models. Objective: The present study was conducted to investigate the curative and protective effects of Schinus terbenthifolius ethanolic extract against CCl 4 -induced acute hepatotoxicity in rats. Materials and Methods: S. terbenthifolius extract was orally administered in a dose of 350 mg dried extract/kg b.wt. before and after intoxication with CCl 4 for curative and protective experiments, respectively. A group of hepatotoxicity indicative enzymes, oxidant-antioxidant capacity, DNA oxidation, and apoptosis markers were measured. Results: CCl 4 increased liver enzyme leakage, oxidative stress, hepatic apoptosis, DNA oxidation, and inflammatory markers. Administration of S. terebinthifolius, either before or after CCl 4 intoxication, significantly decreased elevated serum liver enzymes and reinstated the antioxidant capacity. Interestingly, S. terebinthifolius extract inhibited hepatocyte apoptosis as revealed by approximately 20 times down-regulation in caspase-3 expression when compared to CCl 4 untreated group. On the other hand, there was neither protective nor curative effect of S. terebinthifolius against DNA damage caused by CCl 4 . Conclusion: The present study suggests that S. terebinthifolius extract could be a substantially promising hepatoprotective agent against CCl 4 toxic effects and may be against other hepatotoxic chemical or drugs.

  16. Hepatoprotective Activity of Cassia fistula root against Carbon tetrachloride-Induced Hepatic Injury in rats (Wistar

    Directory of Open Access Journals (Sweden)

    SAGAR DAWADA

    2012-04-01

    Full Text Available The protective effects of the alcoholic extract of Cassia fistula root; against CCl4 induced hepatic failure in male albino rats (wistar strain was investigated. For acute and massive invasion of hepatopathy, CCl4 (s.c injection of CCl4+Olive Oil in 1:1 ratio; 2ml/kg was used and the insidious intoxication was evidenced bysignificant turmoil of various biochemical parameters followed by significant (p<0.001 weight loss in toxic control group. The administration of alcoholic root extract (200mg/kg and 100mg/kg of body weight for 7 days, elicited protective action since the elevated levels of marker enzymes (SGOT, SGPT, ALP of liver functionswere found to be decreasing progressively in a dose dependent manner. The final body weight was also significantly (p<0.001 increased when compared with the toxic control group. The serum total protein and theserum albumin were also approaching normal values. The results found in alcoholic extract 200mg/kg treated rat were quite promising and were comparable with a standard drug Silymarin. In the alcoholic extract 200mg/kg treated rat group all the marker enzymes were analyzed to be decreasing significantly. The statistically processed results support the conclusion, that the alcoholic root extract of Cassia fistula root (200mg/kg and 100mg/kg possesses dose dependent, significant protective activity against CCl4 induced hepatotoxicity.

  17. Restorative effect of (5E, 13E)-5,13-Docosadienoic acid on carbon tetrachloride induced oxidative stress in rats

    Institute of Scientific and Technical Information of China (English)

    Anand Thiru; Gokulakrishnan Kannan; Kalaiselvan Ashokan; Velavan Sivanandam

    2012-01-01

    Objective: To evaluate the restorative effect of (5E, 13E)-5,13-Docosadienoic acid on carbon tetrachloride induced oxidative stress in rats. Methods: Wistar strain male albino rats, weighing 180-200 g/bw were selected for the study. Rats were divided into four groups. Group I animals were served as normal control. Group II was administered with corn oil (3 ml/kg, i.p.) as vehicle control. Group III was given single dose (29th day) of CCl4 in corn oil (1:1 v/v, 3 ml/kg, i.p.). Groups IV was treated with (5E, 13E)-5,13-Docosadienoic acid (DA) (6 mg/kg body weight) for 28 days and given single dose of (29th day) CCl4 in corn oil (1:1 v/v, 3 ml/kg, i.p.). Six hours after CCl4 intoxication, the experimental animals were sacrificed. The blood samples were collected. Liver was excised immediately and immersed in physiological saline. Results: The lipid peroxidation was initiated in CCl4 intoxicated rats which is evidenced by thiobarbituric acid (TBARS) and diminution of GSH content in liver. Super oxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), vitamin C and E in CCl4 intoxicated rats retrieved towards near normalcy. After treating with DA which significantly altered (P<0.001) serum marker enzyme level and antioxidant level near normal against CCl4 treated rats. Conclusions: It was observed that the entire variable tested i.e., SOD, CAT, GPx, reduced glutathione, vitamin C and E recorded a significant decline on CCl4 treatment. However, treatment with DA restored the levels to near normal value, suggesting the therapeutic effect of DA to counter the oxidative stress.

  18. Hepatoprotective effects of berberine on carbon tetrachloride-induced acute hepatotoxicity in rats

    OpenAIRE

    Feng Yibin; Siu Ka-Yu; Ye Xingshen; Wang Ning; Yuen Man-Fung; Leung Chung-Hang; Tong Yao; Kobayashi Seiichi

    2010-01-01

    Abstract Background Berberine is an active compound in Coptidis Rhizoma (Huanglian) with multiple pharmacological activities including antimicrobial, antiviral, anti-inflammatory, cholesterol-lowering and anticancer effects. The present study aims to determine the hepatoprotective effects of berberine on serum and tissue superoxide dismutase (SOD) levels, the histology in tetrachloride (CCl4)-induced liver injury. Methods Sprague-Dawley rats aged seven weeks were injected intraperitoneally wi...

  19. Hepatoprotective activity of Leptadenia reticulata stems against carbon tetrachloride-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Amit Kumar Nema

    2011-01-01

    Conclusion: The ethanolic and aqueous extracts of stems of L. reticulata showed significant hepatoprotective activity. The ethanolic extract is more potent in hepatoprotection in CCl 4 -indiced liver injury model as compared with aqueous extract.

  20. Hepatoprotective Efficacy of Cichorium intybus L. Extract Against Carbon Tetrachloride-induced Liver Damage in Rats.

    Science.gov (United States)

    Elgengaihi, Souad; Mossa, Abdel-Tawab H; Refaie, Amel A; Aboubaker, Doha

    2016-01-01

    The purpose of the study was to assess the phytochemical and hepatoprotective activity of different extracts of dried herb of Cichorium intybus L. against carbon tetrachloride (CCl4) intoxicated male albino rats. The hepatoprotective activity of different extracts at 500 mg/kg body weight was compared with carbon tetrachloride-treated animals. The animals were divided into five groups with six animals in each group. The first group represents control, the second group received carbon tetrachloride, the third received C. intybus, and the fourth group received C. intybus plus carbon tetrachloride. The fifth group received silymarin as hepato-slandered drug. There were significant changes in serum biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, albumin, total protein, and γ-glutamyl transferase (GGT) in carbon tetrachloride intoxicated rats, which were restored towards normal values in C. intybus-treated animals. Histopathological examination of liver tissues further substantiated these findings. In conclusion, of this investigation, the results ascertain that the herb extracts of C. intybus possess significant hepatoprotective activity. PMID:26913368

  1. Yiguanjian decoction and its ingredients inhibit angiogenesis in carbon tetrachloride-induced cirrhosis mice

    OpenAIRE

    Zhou, Ya-Ning; Mu, Yong-Ping; Fu, Wen-Wei; Ning, Bing-Bing; Du, Guang-Li; Chen, Jia-Mei; Sun, Ming-yu; Zhang, Hua; Hu, Yi-yang; Liu, Cheng-Hai; Xu, Lie-Ming; Liu, Ping

    2015-01-01

    Background Cirrhosis is associated with angiogenesis and disruption of hepatic vascular architecture. Yiguanjian (YGJ) decoction, a prescription from traditional Chinese medicine, is widely used for treating liver diseases. We studied whether YGJ or its ingredients (iYGJ) had an anti-angiogenic effect and explored possible mechanisms underlying this process. Methods Cirrhosis was induced with carbon tetrachloride (CCl4) (ip) in C57BL/6 mice for 6 weeks. From week 4 to week 6, cirrhotic mice w...

  2. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice

    OpenAIRE

    Ni Cheng; Liming Wu; Jianbin Zheng; Wei Cao

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antiox...

  3. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice

    Directory of Open Access Journals (Sweden)

    Ni Cheng

    2015-01-01

    Full Text Available Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity.

  4. Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats

    OpenAIRE

    Hou, Ya-Ling; Tsai, Ya-Hui; Lin, Yun-Ho; Chao, Jane C-J

    2014-01-01

    Background Ginsenosides, the major bioactive compounds in ginseng root, have been found to have antioxidant, immunomodulatory and anti-inflammatory activities. This study investigated the effects of ginsenosides on carbon tetrachloride (CCl4)-induced hepatitis and liver fibrosis in rats. Methods Male Sprague–Dawley rats were randomly divided into four groups: control, CCl4, CCl4 + 0.5 g/kg Panax ginseng extract and CCl4 + 0.05 g/kg ginsenoside Rb1 groups. The treated groups were orally given ...

  5. Hepatoprotective mechanism of lycorine against carbon tetrachloride induced toxicity in swiss albino mice - A proteomic approach

    Institute of Scientific and Technical Information of China (English)

    Soundarrajan Ilavenil; Dhanaraj Karthik; Mariadhas Valan Arasu; Mayakrishnan Vijayakumar; Srisesharam Srigopalram; Selvaraj Arokiyaraj; Sivanesan Ravikumar; Ki Choon Choi

    2015-01-01

    Objective: To investigate the differential of protein expression in CCl4 induced mice treated with lycorine. Methods: The present study was carried out to identify the differentially expressed protein in carbon tetrachloride (CCl4) induced oxidative stress mice treated with lycorine (5 mg/kg. bw) using 2D gel and MALDI-TOF. Results: We observed many kinds of differentially expressed protein in experimental liver. Among these, three are much differently expressed protein which is identified as ATP synthase, regucalcin and HSP60; these proteins are involved in the ATP synthesis, calcium regulation and rescue the integrity cellular proteins respectively. Conclusion: This investigation provided a molecular mechanism of the lycorine during CCl4 induced oxidative stress in mice liver.

  6. Hepatoprotective effect of Vernonia cinerea and Cumin seeds on Carbon Tetrachloride Induced Hepatic Oxidative Stress

    Directory of Open Access Journals (Sweden)

    A. Nishadh

    2013-09-01

    Full Text Available In this study, we have examined the protective effect of Vernonia cinerea against carbon tetrachloride (1.0ml / kg b.wt / day administered intraperitoneally for 2 days in male albino Wistar rats. The levels of aspartate transaminase, alanine transaminase, lactate dehydrogenase, alkaline phosphatase, bilirubin, creatinine, and urea were determined. The activities of glutathione, Vitamin C and the levels of lipid peroxides in 10% w/v liver homogenate were also determined. The CCl4 induction resulted a significant elevation in the levels of serum marker enzymes, bilirubin and creatinine with decreased urea. The activities of hepatic glutathione and vitamin C were also significantly depleted with increased lipid peroxides in CCl4 intoxicated rats. The oral administration of herbal drug alone did not show any toxicity in the liver tissue. These results suggest that the herbal drug may probably act as a natural antioxidant against CCl4 induced hepatic oxidative stress.

  7. Total Flavonoids from Mimosa Pudica Protects Carbon Tetrachloride -Induced Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Zhen-qin QIU

    2015-03-01

    Full Text Available Objective: To observe the protective effect of total flavonoids from Mimosa pudica on carbon tetrachloride (CCl4-induced acute liver injury in mice. Methods: CCl4-induced acute liver injury model in mice was established. The activity of ALT and AST, the content of serum albumin (Alb and total antioxidant capacity (T-AOC were determined. The content of malondiadehyde (MDA was measured and the activity of superoxide dismutase (SOD was determined. The histopathological changes of liver were observed.Results: Compared with CCl4 modle group, each dose group of total flavonouida from Mimosa pudica couldreduced the activity of ALT and AST in mice obviously (P<0.01, indicating they had remarkably protective effect on CCl4-induced acute liver injury in mice. high and middle dose groups of total flavonouida from Mimosa pudica couldincrease the content of Alb in mice (P<0.01. Each dose group of total flavonouida from Mimosa pudica could enhance the level of T-AOC (P<0.01. each dose group of total flavonouida from Mimosa pudica could lower the content of liver homogenate MDA but enhance the activity of SOD in a dose-depended manner (P<0.01. Conclusion: Total flavones from Mimosa Pudica have obvious protective effect on CCl4-induced acute liver injury in mice.

  8. Liquiritigenin Protects Rats from Carbon Tetrachloride Induced Hepatic Injury through PGC-1α Pathway

    Directory of Open Access Journals (Sweden)

    Yiping Zhang

    2015-01-01

    Full Text Available The lack of effective treatment for liver cirrhosis and hepatocellular carcinomas imposes serious challenges to the healthcare system. Here, we investigated the efficacy and mechanism of liquiritigenin involved in preventing or retarding the progression of liver diseases in a rat model with chronic carbon tetrachloride (CCl4 exposure. Sprague Dawley rats were given CCl4 and lliquiritigenin alone or simultaneously for 8 weeks before liver was harvested to check histological changes by Hematoxylin and Eosin (H&E staining, apoptosis by TUNEL assay, ROS by dihydroethidium staining, antioxidant enzyme activities and malondialdehyde using specific kits, and gene expression by quantitative real-time PCR and western blot. Chronic CCl4 exposure caused profound changes in liver histology with extensive hepatocyte death (necrosis and apoptosis, fat accumulation, and infiltration of inflammatory cells, accompanied by depressed activities of antioxidant enzymes, increased oxidative stress, elevated expression of inflammation and fibrotic genes, and downregulation of PGC-1α, ND1, and Bcl-x in rat liver. All these changes were abolished or alleviated by lliquiritigenin. The results demonstrated that liquiritigenin is effective in protecting liver from injury or treating chronic liver diseases. The modulation of PGC-1α and its downstream genes might play a critical role in relieving CCl4-induced hepatic pathogenesis by liquiritigenin.

  9. Carbon tetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats.

    Science.gov (United States)

    Yilmaz-Ozden, Tugba; Can, Ayse; Karatug, Ayse; Pala-Kara, Zeliha; Okyar, Alper; Bolkent, Sehnaz

    2016-06-01

    This study was designed to evaluate the protective effect of water extract of Amaranthus lividus L. (A. lividus) (Amaranthaceae) on carbon tetrachloride (CCl4)-induced toxicity in kidneys of rats. For this purpose, male albino Wistar rats were pretreated with A. lividus (250 and 500 mg/kg body weight (b.w.)) daily for 9 days and a single dose of CCl4 was applied intraperitoneally (50% in olive oil; 1.5 mL/kg b.w.) on the 10th day. All rats were killed 24 h after CCl4 administration, and kidneys were excised and used for determination of histopathological and biochemical parameters. CCl4 administration caused a remarkable increase in lipid peroxidation (LPO) and glutathione levels and glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, myeloperoxidase (MPO) activities and a decrease in catalase (CAT) activity when compared to the control group. Pretreatment with A. lividus (250 and 500 mg/kg b.w.) significantly prevented the elevation in LPO level and MPO activity as well as protected the decrease in CAT activity but did not alter other biochemical parameters. The protective effect of A. lividus was further evident through the decreased histological alterations in kidneys. In conclusion, this study has indicated that A. lividus possesses protective and antioxidant effects against CCl4-induced oxidative kidney damage. PMID:25415872

  10. Elucidation of the mechanism of vitamin A potentiation of carbon tetrachloride-induced liver injury

    International Nuclear Information System (INIS)

    Male SD rats were given Vitamin A daily for 7 days by oral gavage. 24 hr after the last dose of Vitamin A, they were then challenged with CCl4. Ethane, as a marker of lipid peroxidation, was measured during the first 2 hr and hepatic injury was assessed at 24 hr after CCl4. There was approximately 5-fold increase in ethane exhalation and 17-fold increase in Plasma GPT activity in Vitamin A/CCl4 group. There was also increase in the incidence of hepatocellular necrosis. Vitamin A pretreatment did not increase the metabolism of 14CCl4 as examined by the amount of exhaled 14CO2, and the covalent binding of 14C-equivalents to liver lipids and proteins. In addition, liver levels of Vitamin E or GSH were not changed by Vitamin A. Electron microscopic analysis of livers from Vitamin A treated rats revealed activated Kupffer cells. To determine if the Kupffer cells were functionally more active, the clearance of intravenously administered colloidal carbon from the blood of Vitamin A treated rats was compared to that of control rats

  11. Protective effect of potato peel extract against carbon tetrachloride-induced liver injury in rats.

    Science.gov (United States)

    Singh, Nandita; Kamath, Vasudeva; Narasimhamurthy, K; Rajini, P S

    2008-09-01

    Our earlier studies have shown that extracts derived from potato peel (PPE) are rich in polyphenols and possess strong antioxidant activity both in vitro and in vivo. The objective of the present study was to investigate its potential to offer protection against acute liver injury in rats. Rats pretreated with PPE (oral, 100mg/kgb.w./day for 7 days) were administered a single oral dose carbon tetrachloride (CCl(4), 3ml/kg b.w., 1:1 in groundnut oil) and sacrificed 8h of post-treatment. Hepatic damage was assessed by employing biochemical parameters (transaminase enzyme levels in plasma and liver [AST-aspartate transaminase; ALT-alanine transaminase, LDH-lactate dehydrogenase]). Further, markers of hepatic oxidative damage were measured in terms of malondialdehyde (MDA), enzymic antioxidants (CAT, SOT, GST, GPX) and GSH (reduced glutathione) levels. In addition, the CCl(4)-induced pathological changes in liver were evaluated by histopathological studies. Our results demonstrated that pretreatment of rats with PPE significantly prevented the increased activities of AST and ALT in serum, prevented the elevation of hepatic MDA formation as well as protected the liver from GSH depletion. PPE pretreatment also restored CCl(4)-induced altered antioxidant enzyme activities to control levels. The protective effect of PPE was further evident through the decreased histological alterations in liver. Our findings provide evidences to demonstrate that PPE pretreatment significantly offsets CCl(4)-induced liver injury in rats, which may be attributable to its strong antioxidant propensity. PMID:21791371

  12. Protection effect of kallistatin on carbon tetrachloride-induced liver fibrosis in rats via antioxidative stress.

    Directory of Open Access Journals (Sweden)

    Xiaoping Huang

    Full Text Available Prolonged inflammation and oxidative stress are emerging as key causes of pathological wound healing and the development of liver fibrosis. We have investigated the effects of recombinant human kallistatin, produced in Pichia. pastoris, on preventing carbon tetrachloride (CCl4-induced liver fibrosis in rats. Daily administration of kallistatin prevented development of CCl4-induced liver fibrosis, which was evidenced by histological study. In all kallistatin treated rats, activation of hepatic stellate cells (HSC as assessed by s-smooth muscle actin staining was attenuated, TGF- β1 expression was inhibited, class I serum biomarkers associated with the process of fibrogenesis, such as hyaluronic acid, laminin, and procollagen III, were lowered, compared with that in the model control group. Furthermore, residual hepatic functional reserve was improved by kallistatin treatment. CCl4 induced elevation of malondialdehyde level and reduced superoxide dismutase activity in the liver, while kallistatin reduced these oxidative parameters. We also investigated the effects of kallistatin on rat primary HSC and LX-2, the human HSC cell line. Kallistatin scavenged H2O2-induced ROS in the LX-2 cells, and suppressed the activation of primary HSC. These results suggest recombinant human kallistatin might be a promising drug candidate for therapeutic intervention of liver fibrosis.

  13. Protection Effect of Kallistatin on Carbon Tetrachloride-Induced Liver Fibrosis in Rats via Antioxidative Stress

    Science.gov (United States)

    Huang, Xiaoping; Wang, Xiao; Lv, Yinghui; Xu, Luli; Lin, Junsheng; Diao, Yong

    2014-01-01

    Prolonged inflammation and oxidative stress are emerging as key causes of pathological wound healing and the development of liver fibrosis. We have investigated the effects of recombinant human kallistatin, produced in Pichia. pastoris, on preventing carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Daily administration of kallistatin prevented development of CCl4-induced liver fibrosis, which was evidenced by histological study. In all kallistatin treated rats, activation of hepatic stellate cells (HSC) as assessed by s-smooth muscle actin staining was attenuated, TGF- β1 expression was inhibited, class I serum biomarkers associated with the process of fibrogenesis, such as hyaluronic acid, laminin, and procollagen III, were lowered, compared with that in the model control group. Furthermore, residual hepatic functional reserve was improved by kallistatin treatment. CCl4 induced elevation of malondialdehyde level and reduced superoxide dismutase activity in the liver, while kallistatin reduced these oxidative parameters. We also investigated the effects of kallistatin on rat primary HSC and LX-2, the human HSC cell line. Kallistatin scavenged H2O2-induced ROS in the LX-2 cells, and suppressed the activation of primary HSC. These results suggest recombinant human kallistatin might be a promising drug candidate for therapeutic intervention of liver fibrosis. PMID:24558397

  14. Possible Protective Effect of Kombucha Tea Ferment on Carbon Tetrachloride Induced Liver Damage in Irradiated Rats

    International Nuclear Information System (INIS)

    This study has shown that administration of kombucha ferment tea (KT) to rats improved the damage caused in livers of animals treated with toxic chemicals such as carbon tetrachloride (CCL4) and/ or exposed to y-irradiation. This work was undertaken to evaluate the possible protective effects of treatment with KT ferment in rat liver after a long-term treatment with CCL4 alone and with subsequent y-irradiation. Hepatic pathological changes observed in the CCL4-treated rats included increased serum alanine transaminase (ALT) , aspartate transaminase (AST), alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT) activities as well as concentration of bilirubin in addition to a decrease in the concentration of serum albumin and total antioxidant capacity (TAC). Consistent with these changes, the increase in oxidative stress markers expressed as malondialdehyde (MDA) concentration and depletion in glutathione (GSH) contents in liver was observed. 24 h after the last dose of KT administration in a group of animals treated with CCL4 and/ or radiation exposure cessation, the pathological changes were recovered. These results demonstrate that most of the pathological alterations in the liver in response to CCL4 and/ or radiation exposure intoxication are recoverable upon treatment with KT ferments

  15. Protective effects of polydatin from Polygonum cuspidatum against carbon tetrachloride-induced liver injury in mice.

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    Full Text Available Polydatin is one of main compounds in Polygonum cuspidatum, a plant with both medicinal and nutritional value. The possible hepatoprotective effects of polydatin on acute liver injury mice induced by carbon tetrachloride (CCl(4 and the mechanisms involved were investigated. Intraperitoneal injection of CCl(4 (50 µl/kg resulted in a significant increase in the levels of serum aspartate aminotransferase (AST, alanine aminotransferase (ALT and hepatic malondialdehyde (MDA, also a marked enhancement in the expression of hepatic tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β, cyclooxygenase-2 (COX-2, inducible nitric oxide synthase (iNOS and nuclearfactor-kappa B (NF-κB. On the other hand, decreased glutathione (GSH content and activities of glutathione transferase (GST, superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GPx were observed following CCl(4 exposure. Nevertheless, all of these phenotypes were evidently reversed by preadministration of polydatin for 5 continuous days. The mRNA and protein expression levels of hepatic growth factor-beta1 (TGF-β(1 were enhanced further by polydatin. These results suggest that polydatin protects mice against CCl(4-induced liver injury through antioxidant stress and antiinflammatory effects. Polydatin may be an effective hepatoprotective agent and a promising candidate for the treatment of oxidative stress- and inflammation-related diseases.

  16. Amelioration of carbon tetrachloride-induced pulmonary toxicity with Oxalis corniculata.

    Science.gov (United States)

    Ahmad, Bushra; Khan, Muhammad Rashid; Shah, Naseer Ali

    2015-12-01

    This research work was planned to investigate the antioxidant potential of methanolic crude extract of Oxalis corniculata (OCME) against lung injuries initiated by carbon tetrachloride (CCl4) in rats at histological and biochemical level. A total of 42 female Sprague Dawley rats were randomly distributed in to seven groups and each group comprised of six rats. Experiment was completed in 22 days (10 doses at alternate days). Group I was not treated (control rats), while group II was administered with vehicles (olive oil and dimethyl sulfoxide), groups III, IV, and V were treated with 1 ml kg(-1) body weight (b.w.) of CCl4 (20% in olive oil). Group III received only CCl4, whereas groups IV and V were administered with 100 and 200 mg kg(-1) b.w. of OCME, respectively. Group VI was administered with OCME (200 mg kg(-1) b.w.) alone. Group VII was treated with sylimarin (50 mg kg(-1) b.w.). CCl4 enhanced the lipid peroxidation while reduced the glutathione in lung samples. Activities of antioxidant enzymes, catalase, peroxidase, superoxide dismutase, and glutathione-S-transferase decreased in lung homogenates with CCl4. Treatment of CCl4 induced deleterious changes in the microanatomy of lungs by rupturing the alveolar septa, thickening of alveolar walls, and damaging the cells with subsequent collapse of blood vessels due to the accumulation of degenerated blood cells. OCME, dose dependently, prevented the alterations in these parameters. These results suggest that OCME protected the lungs due to its intrinsic properties by scavenging of free radicals generated by CCl4. PMID:23796759

  17. Erythropoietin decreases carbon tetrachloride-induced hepatic fibrosis by inhibiting transforming growth factor-beta

    Institute of Scientific and Technical Information of China (English)

    Soo Young Park; Joo Young Lee; Won Young Tak; Young Oh Kweon; Mi Suk Lee

    2012-01-01

    Background In addition to hematopoietic effect,the erythropoietin is known as a multifunctional cytokine with anti-fibrosis and organ-protective activities.The purpose of this study was to evaluate the effect of recombinant human erythropoietin (rhEPO) on hepatic fibrosis and hepatic stellate cells (HSCs).Methods Carbon tetrachloride (CCl4) induced hepatic fibrosis mice models were used for in vivo study and HSCs line for in vitro study.CCl4 and rhEPO (0,200 or 1000 U/kg) was injected intraperitoneally in BALB/c mice three times a week for 4 weeks.Immunohistochemistry and immunoblotting were performed to evaluate expressions of transforming growth factor-β31 (TGF-β1),α-smooth muscle actin (α-SMA),and fibronectin in explanted liver.Immunoblotting of α-SMA,phophorylated Smad-2 and Smad-2/3 was performed in HSCs treated with TGF-β1 and/or rhEPO.Results Expressions of TGF-β1,α-SMA,and fibronectin were increased in CCl4 injected mice livers,but significantly attenuated by co-treatment with CCl4 and rhEPO.Co-treatment of rhEPO markedly suppressed fibrosis in Masson's trichrome compared with treatment of only CCl4.TGF-β1 increased phosphorylated α-SMA,Smad-2 expressions in HSCs,which were decreased by rhEPO co-treatment.Conclusions Treatment of rhEPO effectively suppressed fibrosis in CCl4-induced liver fibrosis mice models.Anti-fibrosis effect of rhEPO could be related to inhibition of TGF-β1 induced activation of HSCs.

  18. Roles of Oxidized Diacylglycerol for Carbon Tetrachloride-induced Liver Injury and Fibrosis in Mouse

    International Nuclear Information System (INIS)

    Since there is a report that an inhibitor of protein kinase C (PKC) effectively suppresses the development of hepatic fibrosis, it is suggested that the PKC signaling pathway plays an important role in the pathogenesis of hepatic fibrosis. We reported that oxidized diacylglycerol (DAG), which is an activator of PKC, had a remarkably stronger PKC-activating action than un-oxidized DAG. In the present study, we explored the roles of oxidized DAG in hepatic fibrogenesis using mice, the livers of which developed fibrosis by long-term administration of carbon tetrachloride (CCl4). Liver fibrosis models were created by 4- or 8-week repetitive subcutaneous injections of CCl4 to the backs of C57BL/6J mice. The amount of oxidized DAG was significantly increased in the CCl4-treated group. Moreover, it was found that PKCα, βI, βII and δ were activated. In the CCl4-treated group, phosphorylation of ERK and JNK, which are downstream signal transmitters in the PKC pathway, was increased. It was also found in this group that there was an increase in TIMP-1, which is a fibrogenesis-promoting factor whose expression is enhanced by activated JNK, and of TNF-α, an inflammatory cytokine. Analysis by quantitative real-time RT-PCR showed that expressions of αSMA, collagen I, TNF-α and IL-10 were remarkably increased in the 8-week CCl4-treated group. The above results strongly suggested that oxidized DAG, which is increased by augmented oxidative stress, activated PKCα, βI, βII and δ molecular species and that these molecular species in turn stimulated the phosphorylation of MAP kinases including ERK and JNK, resulting in enhancement of hepatic fibrogenesis

  19. Effect of Ribavirin Alone or Combined with Silymarin on Carbon Tetrachloride Induced Hepatic Damage in Rats

    Directory of Open Access Journals (Sweden)

    Omar M.E. Abdel Salam

    2007-01-01

    Full Text Available The effect of the antiviral agent ribavirin given alone or in combination with silymarin on the development of liver injury induced in rats with carbon tetrachloride (CCl4; 2.8 ml/kg followed by 1.4 ml/kg after one week was studied. Ribavirin at three dose levels (30, 60 or 90 mg/kg, silymarin (25 mg/kg or combination of ribavirin (60 mg/kg and silymarin (25 mg/kg was administered once daily orally for 14 days, starting at time of administration of CCl4. The administration of ribavirin decreased the elevations in serum alanine aminotransferase (ALT by 78.5, 82.1, 75.1%, aspartate aminotransferase (AST 47.5, 37.4, 38.8%, and alkaline phosphatase (ALP by 23.4, 16, 21.6%, respectively and also prevented the development of hepatic necrosis caused by CCl4. In comparison, the elevated serum ALT, AST and ALP levels decreased to 43.3%, 46%, and 37.5% of controls, respectively by silymarin. When silymarin was combined with ribavirin, the serum activities of AST and ALP were further decreased, indicating a benefi cial additive effect. Morphometric analysis indicated signifi cant reduction in the area of necrosis and fi brosis on ribavirin treatment and this was further reduced after the addition of silymarin. Metabolic pertuberations caused by CCl4 as refl ected in a decrease in intracellular protein content in hepatocytes were improved by ribavirin monotherapy and to higher extent by combined silymarin and ribavirin therapy. Proliferating cell nuclear antigen was reduced in nuclei of hepatocytes by ribavirin montherapy or the combination of ribavirin and silymarin compared with CCl4-control group. The study demonstrates that ribavirin treatment in the model of CCl4- induced liver injury results in less liver damage. Results also indicate that the combined application of ribavirin and silymarin is likely to be a useful additive in reducing liver injury.

  20. Effect of ribavirin alone or combined with silymarin on carbon tetrachloride induced hepatic damage in rats.

    Science.gov (United States)

    Abdel Salam, Omar M E; Sleem, Amany A; Omara, Enayat A; Hassan, Nabila S

    2007-01-01

    The effect of the antiviral agent ribavirin given alone or in combination with silymarin on the development of liver injury induced in rats with carbon tetrachloride (CCl(4); 2.8 ml/kg followed by 1.4 ml/kg after one week) was studied. Ribavirin at three dose levels (30, 60 or 90 mg/kg), silymarin (25 mg/kg) or combination of ribavirin (60 mg/kg) and silymarin (25 mg/kg) was administered once daily orally for 14 days, starting at time of administration of CCl(4). The administration of ribavirin decreased the elevations in serum alanine aminotransferase (ALT) by 78.5, 82.1, 75.1%, aspartate aminotransferase (AST) 47.5, 37.4, 38.8%, and alkaline phosphatase (ALP) by 23.4, 16, 21.6%, respectively and also pre-vented the development of hepatic necrosis caused by CCl(4). In comparison, the elevated serum ALT, AST and ALP levels decreased to 43.3%, 46%, and 37.5% of controls, respectively by silymarin. When silymarin was combined with ribavirin, the serum activities of AST and ALP were further decreased, indicating a beneficial additive effect. Morphometric analysis indicated significant reduction in the area of necrosis and fibrosis on ribavirin treatment and this was further reduced after the addition of silymarin. Metabolic pertuberations caused by CCl(4) as reflected in a decrease in intracellular protein content in hepatocytes were improved by ribavirin monotherapy and to higher extent by combined silymarin and ribavirin therapy. Proliferating cell nuclear antigen was reduced in nuclei of hepatocytes by ribavirin montherapy or the combination of ribavirin and silymarin compared with CCl(4)-control group. The study demonstrates that ribavirin treatment in the model of CCl(4)-induced liver injury results in less liver damage. Results also indicate that the combined application of ribavirin and sily-marin is likely to be a useful additive in reducing liver injury. PMID:21901059

  1. Ferulic acid protects against carbon tetrachloride-induced liver injury in mice

    International Nuclear Information System (INIS)

    Ferulic acid (FA), isolated from the root of Scrophularia buergeriana, is a phenolic compound possessing antioxidant, anticancer, and antiinflammatory activities. Here, we have investigated the hepatoprotective effect of FA against carbon tetrachloride (CCl4)-induced acute liver injury. Mice were treated intraperitoneally with vehicle or FA (20, 40, and 80 mg/kg) 1 h before and 2 h after CCl4 (20 μl/kg) injection. The serum activities of aminotransferases and the hepatic level of malondialdehyde were significantly higher after CCl4 treatment, while the concentration of reduced glutathione was lower. These changes were attenuated by FA. The serum level and mRNA expression of tumor necrosis factor-α significantly increased after CCl4 treatment, and FA attenuated these increases. The levels of inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expression after CCl4 treatment were significantly higher and FA reduced these increases. CCl4-treated mice showed increased nuclear translocation of nuclear factor-κB (NF-κB), and decreased levels of inhibitors of NF-κB in cytosol. Also, CCl4 significantly increased the level of phosphorylated JNK and p38 mitogen-activated protein (MAP) kinase, and nuclear translocation of activated c-Jun. FA significantly attenuated these changes. We also found that acute CCl4 challenge induced TLR4, TLR2, and TLR9 protein and mRNA expression, and FA significantly inhibited TLR4 expression. These results suggest that FA protects from CCl4-induced acute liver injury through reduction of oxidative damage and inflammatory signaling pathways.

  2. Restrictive model of compensated carbon tetrachloride-induced cirrhosis in rats

    Institute of Scientific and Technical Information of China (English)

    Jean-Marc Regimbeau; David Fuks; Niaz Kohneh-Shahri; Benoit Terris; Olivier Soubrane

    2008-01-01

    AIM: To develop a simplified and quick protocol to induce cirrhosis and standardize models of partial liver resection in rats.METHODS: In Fischer F344 rats two modified protocols of phenobarbital-carbon tetrachloride (CCI4) (dilution 50%) gavage to induce cirrhosis (frequency adjusted according to weight, but each subsequent dose was systematically administered) were tested, i.e. the rapid and slow protocols. Prothrombin time (PT) and total bilirubin (TB) were also evaluated. Animals from the rapid group underwent 15% hepatectomy and animals from the slow group underwent 70% hepatectomy.RESULTS: Rapid protocol: This corresponded to 1 garage/4 d over 6 wk (mortality 30%). Mean PT was 35.2±2.8 s (normal: 14.5 s), and mean TB was 1.8±0.2mg/clL (normal: 0.1 mg/dL). Slow protocol: This corresponded to 1 gavage/6 d over 9 wk (mortality 10%).Mean PT was 11.8±0.2 s (normal: 14.5 s), and mean TB was 0.4 ± 0.04 mg/dL (normal: 0.1 mg/dL). Pathological analyses were performed in both protocols which showed persistent cirrhosis at 3 mo. Rat mortality in the rapid garage group who underwent 15% hepatectomy and in the slow garage group who underwent 70%hepatectomy was 50% and 70%, respectively.CONCLUSION: Our modified model is a simplified method to induce cirrhosis which is rapid (6 to 9 wk),efficient and stable up to 3 mo. Using this method, "Child Pugh A" or "Child Pugh BC" cirrhotic rats were obtained.Our models of cirrhosis and hepatectomy can be used in various situations focusing on postoperative survival.

  3. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis.

    Science.gov (United States)

    Kang, Jung-Woo; Hong, Jeong-Min; Lee, Sun-Mee

    2016-05-01

    Liver fibrosis leads to liver cirrhosis and failure, and no effective treatment is currently available. Growing evidence supports a link between mitochondrial dysfunction and liver fibrogenesis and mitochondrial quality control-based therapy has emerged as a new therapeutic target. We investigated the protective mechanisms of melatonin against mitochondrial dysfunction-involved liver fibrosis, focusing on mitophagy and mitochondrial biogenesis. Rats were treated with carbon tetrachloride (CCl4 ) dissolved in olive oil (0.5 mL/kg, twice a week, i.p.) for 8 wk. Melatonin was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 exposure induced collagen deposition, hepatocellular damage, and oxidative stress, and melatonin attenuated these increases. Increases in mRNA and protein expression levels of transforming growth factor β1 and α-smooth muscle actin in response to CCl4 were attenuated by melatonin. Melatonin attenuated hallmarks of mitochondrial dysfunction, such as mitochondrial swelling and glutamate dehydrogenase release. Chronic CCl4 exposure impaired mitophagy and mitochondrial biogenesis, and melatonin attenuated this impairment, as indicated by increases in mitochondrial DNA and in protein levels of PTEN-induced putative kinase 1 (PINK1); Parkin; peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α); nuclear respiratory factor 1 (NRF1); and transcription factor A, mitochondrial (TFAM). CCl4 -mediated decreases in mitochondrial fission- and fusion-related proteins, such as dynamin-related protein 1 (DRP1) and mitofusin 2, were also attenuated by melatonin. Moreover, melatonin induced AMP-activated protein kinase (AMPK) phosphorylation. These results suggest that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti-fibrotic treatment. PMID:26882442

  4. Ameliorative effect of Ganoderma lucidum on carbon tetrachloride-induced liver fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    Wen-Chuan Lin; Wei-Lii Lin

    2006-01-01

    AIM: To investigate the effects of Reishi mushroom,Ganoderma lucidum extract (GLE), on liver fibrosis induced by carbon tetrachloride (CCl4) in rats.METHODS: Rat hepatic fibrosis was induced by CCl4.Forty Wistar rats were divided randomly into 4 groups:control, CCl4, and two GLE groups. Except for rats in control group, all rats were administered orally with CCl4(20%, 0.2 mL/100 g body weight) twice a week for 8weeks. Rats in GLE groups were treated daily with GLE (1 600 or 600 mg/kg) via gastrogavage throughout the whole experimental period. Liver function parameters,such as ALT, AST, albumin, and albumin/globulin (A/G)ratio, spleen weight and hepatic amounts of protein,malondiladehyde (MDA) and hydroxyproline (HP) were determined. Histochemical staining of Sirius red was performed. Expression of transforming growth factor β1(TGF-β1), methionine adenosyltransferase (MAT1) 1A and MAT2A mRNA were detected by using RT-PCR.RESULTS: CCl4 caused liver fibrosis, featuring increase in plasma transaminases, hepatic MDA and HP contents,and spleen weight; and decrease in plasma albumin,A/G ratio and hepatic protein level. Compared with CCl4group, GLE (600, 1 600 mg/kg) treatment significantly increased plasma albumin level and A/G ratio (P< 0.05)and reduced the hepatic HP content (P<0.01). GLE (1600 mg/kg) treatment markedly decreased the activities of transaminases (P< 0.05), spleen weight (P< 0.05) and hepatic MDA content (P<0.05); but increased hepatic protein level (P<0.05). Liver histology in the GLE (1600 mg/kg)-treated rats was also improved (P<0.01).RT-PCR analysis showed that GLE treatment decreased the expression of TGF-β1 (P< 0.05-0.001) and changed the expression of MAT1A (P<0.05-0.01) and MAT2A (P< 0.05-0.001).CONCLUSION: Oral administration of GLE significantly reduces CCl4-induced hepatic fibrosis in rats, probably by exerting a protective effect against hepatocellular necrosis by its free-radical scavenging ability.

  5. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Qing [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Tao, Li [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Zhi-Hui; Liu, Xiao-Qian [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Xu, Yuan-Bao [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Hua [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Li, Jun, E-mail: lijun@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China)

    2013-01-15

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl{sub 4}-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl{sub 4} (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl{sub 4} + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl{sub 4} injection to the end. As expected, PBA significantly attenuated CCl{sub 4}-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl{sub 4}-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl{sub 4}-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl{sub 4}-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl{sub 4}-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl{sub 4}-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl{sub 4}-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl{sub 4} induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl{sub 4}-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl{sub 4}-induced

  6. Hepato protective effect of Spirulina Against Gamma Radiation and Carbon Tetrachloride induced Liver Injury in Rats

    International Nuclear Information System (INIS)

    The vast biodiversity of nature provides bioactive compounds that may be useful in the fight against chronic diseases. Although there are a number of drugs available in the market, long time use may cause a number of side effects. Spirulina is a microscopic and filamentous cyanobacterium that contains essential amino acids, essential fatty acids, vitamins, minerals and anti-oxidative components. In the present study, Spirulina platensis has been investigated as a possible modifier of radiation and carbon tetrachloride (CCl4) induced hepatic damage in albino rats. In the experiment, a total of 60 rats were used and divided into six groups of ten rats each: group 1, normal untreated rats; group 2, animals received only Spirulina (10 mg/kg) for 30 consecutive days; group 3, animals were exposed to 4 Gy whole body gamma radiation as a single shot dose; group 4, animals were injected intraperitoneally with CCl4 in olive oil (5 ml/kg i.p.) twice a week for four weeks ; group 5, rats were given orally Spirulina (10 mg/kg) for 30 days then exposed to 4 Gy gamma radiation as a single shot dose; and group 6, rats were given orally Spirulina (10 mg/kg) for 30 days and injected intraperitoneally with CCl4 in olive oil (5 ml/kg i.p.) twice a week for four weeks. The results revealed that animals treated with CCl4 or exposed to gamma radiation showed significant increase in the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β). Also, a marked increase in the liver tissue thiobarbituric acid reactive substances (TBARS) was observed. On the other hand, decrease in glutathione (GSH), glutathione transferase (GST), superoxide dismutase (SOD) and catalase (CAT) was observed in liver tissues of animal treated with CCl4 or exposed to gamma radiation. Oral pretreatment of rats with aqueous extract of Spirulina counteracted the radiation or CCl4 -induced lipid

  7. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    International Nuclear Information System (INIS)

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl4)-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl4-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl4 (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl4 + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl4 injection to the end. As expected, PBA significantly attenuated CCl4-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl4-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl4-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl4-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl4-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl4-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl4-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl4 induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl4-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl4-induced hepatic NF-κB activation and ERK and JNK phosphorylation. ► PBA effectively protects

  8. Effect of WeiJia on carbon tetrachloride induced chronic liver injury

    Institute of Scientific and Technical Information of China (English)

    Pik-Yuen Cheung; Jay Chun; Hsiang-Fu Kung; Meng-su Yang; Qi Zhang; Ya-Ou Zhang; Gan-Rong Bai; Marie Chia-Mi Lin; Bernard Chan; Chi-Chun Fong; Lin Shi; Yue-Feng Shi

    2006-01-01

    AIM: To study the effect of WeiJia on chronic liver injury using carbon tetrachloride (CCl4) induced liver injury animal model.METHODS: Wistar rats weighing 180-220g were randomly divided into three groups: normal control group (Group A), CCl4 induced liver injury control group (Group B) and CCl4 induction with WeiJia treatment group (Group C). Each group consisted of 14 rats. Liver damage and fibrosis was induced by subcutaneous injection with 40% CCl4 in olive oil at 3 mL/kg body weight twice a week for eight weeks for Groups B and C rats whereas olive oil was used for Group A rats. Starting from the third week,Group C rats also received daily intraperitoneal injection of WeiJia at a dose of 1.25 μg/kg body weight. Animals were sacrificed at the fifth week (4 male, 3 female), and eighth week (4 male, 3 female) respectively. Degree of fibrosis were measured and serological markers for liver fibrosis and function including hyaluronic acid (HA), type Ⅳ collagen (CIV), γ-glutamyl transferase (γ-GT), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Alpha smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) immunohistochemistry were also performed.RESULTS: CCl4 induction led to the damage of liver and development of fibrosis in Group B and Group C rats when compared to Group A rats. The treatment of WeiJia in Group C rats could reduce the fibrosis condition significantly compared to Group B rats. The effect could be observed after three weeks of treatment and was more obvious after eight weeks of treatment. Serum HA, CIV,ALT, AST and Y-GT levels after eight weeks of treatment for Group C rats were 58±22 μg/L (P0.05) respectively, similar to normal control group (Group A), but significantly different from CCl4 induced liver injury control group (Group B). An increase in PCNA and decrease in a-SMA expression level was also observed.CONCLUSION: WeiJia could improve liver function and reduce liver fibrosis

  9. New therapeutic aspect for carvedilol: Antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage

    Energy Technology Data Exchange (ETDEWEB)

    Hamdy, Nadia [Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); El-Demerdash, Ebtehal, E-mail: ebtehal_dm@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-06-15

    Portal hypertension is a common complication of chronic liver diseases associated with liver fibrosis and cirrhosis. At present, beta-blockers such as carvedilol remain the medical treatment of choice for protection against variceal bleeding and other complications. Since carvedilol has powerful antioxidant properties we assessed the potential antifibrotic effects of carvedilol and the underlying mechanisms that may add further benefits for its clinical usefulness using a chronic model of carbon tetrachloride (CCl4)-induced hepatotoxicity. Two weeks after CCl4 induction of chronic hepatotoxicity, rats were co-treated with carvedilol (10 mg/kg, orally) daily for 6 weeks. It was found that treatment of animals with carvedilol significantly counteracted the changes in liver function and histopathological lesions induced by CCl4. Also, carvedilol significantly counteracted lipid peroxidation, GSH depletion, and reduction in antioxidant enzyme activities; glutathione-S-transferase and catalase that was induced by CCl4. In addition, carvedilol ameliorated the inflammation induced by CCl4 as indicated by reducing the serum level of acute phase protein marker; alpha-2-macroglobulin and the liver expression of nuclear factor-kappa B (NF-κB). Finally, carvedilol significantly reduced liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cell (HSC) activation marker; alpha smooth muscle actin. In conclusion, the present study provides evidences for the promising antifibrotic effects of carvedilol that can be explained by amelioration of oxidative stress through mainly, replenishment of GSH, restoration of antioxidant enzyme activities and reduction of lipid peroxides as well as amelioration of inflammation and fibrosis by decreasing collagen accumulation, acute phase protein level, NF-κB expression and finally HSC activation. -- Highlights: ► Carvedilol is a beta blocker with antioxidant and antifibrotic

  10. A proteomic method for analysis of CYP450s protein expression changes in carbon tetrachloride induced male rat liver microsomes

    International Nuclear Information System (INIS)

    Carbon tetrachloride (CCl4) is a well-known model compound for producing chemical hepatic injury. Cytochrome P450 is an important monooxygenase in biology. We investigated the CYP450 protein expression in the in vivo hepatotoxicity of rats induced by CCl4. In this experiment, CCl4 were administered to male rats, and their livers at 24 h post-dosing were applied to the proteomic analysis. Blood biochemistry and histopathology were examined to identify specific changes. At the same time, a novel acetylation stable isotopic labeling method coupled with LTQ-FTICR mass spectrometry was applied to disclose the changes of cytochrome P450 expression amounts. The quantitative proteomics method demonstrated its correlation coefficient was 0.9998 in a 100-fold dynamic range and the average ratio of the labeled peptides was 1.04, which was very close to the theoretical ratio of 1.00 and the standard deviation (S.D.) of 0.21. With this approach, 17 cytochrome P450 proteins were identified and quantified with high confidence. Among them, the expression amount of 2C11, 3A2, and 2 E1 were down-regulated, while that of 2C6, 2B2, and 2B1 were up-regulated

  11. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    Directory of Open Access Journals (Sweden)

    Jung-Chun Lin

    2016-01-01

    Full Text Available In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS in modulating the hepatic response to oxidative stress. Our aim was to investigate the role of the SNS in healthy and oxidatively stressed liver parenchyma. Mice treated with 6-hydroxydopamine hydrobromide were used to realize chemical sympathectomy. Carbon tetrachloride (CCl4 injection was used to induce oxidative liver injury. Sympathectomized animals were protected from CCl4 induced hepatic lipid peroxidation-mediated cytotoxicity and genotoxicity as assessed by 4-hydroxy-2-nonenal levels, morphological features of cell damage, and DNA oxidative damage. Furthermore, sympathectomy modulated hepatic inflammatory response induced by CCl4-mediated lipid peroxidation. CCl4 induced lipid peroxidation and hepatotoxicity were suppressed by administration of an α-adrenergic antagonist. We conclude that the SNS provides a permissive microenvironment for hepatic oxidative stress indicating the possibility that targeting the hepatic α-adrenergic signaling could be a viable strategy for improving outcomes in patients with acute hepatic injury.

  12. Phytochemical analysis, hepatoprotective and antioxidant activity of Alchornea cordifolia methanol leaf extract on carbon tetrachloride-induced hepatic damage in rats

    Institute of Scientific and Technical Information of China (English)

    Patience O Osadebe; Festus BC Okoye; Philip F Uzor; Nneka R Nnamani; Ijeoma E Adiele; Nkemakonam C Obiano

    2012-01-01

    ABSTRACT Objective:To investigate the hepatoprotective and antioxidant activities ofAlchornea cordifolia (A. cordifolia) leaf extract.Methods: Various solvent fractions of the methanol extract of the leaf of the plantA. cordifolia Mull. Arg (Fam: Euphorbiaceae) were evaluated for hepatoprotective activity by carbon tetrachloride-induced liver damage in rats. The degree of protection was measured by using biochemical parameters such as serum glutamate oxalate transaminase(SGOT/AST), serum glutamate pyruvate transaminase(SGPT/ALT), alkaline phosphatase(ALP) and total bilirubin. Thein vitro antioxidant activity of the extract was also evaluated by the 1, 1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging assay. The extract was subjected to preliminary phytochemical screening.Results:The ethyl acetate and chloroform fractions, at a dose of 300mg/kg, produced significant(P<0.05) hepatoprotection by decreasing the activities of the serum enzymes and bilirubin while there were marked scavenging of the DPPH free radicals by the fractions. The effects were comparable to those of the standard drugs used for the respective experiments, silymarin and ascorbic acid. Alkaloids, flavonoids, saponins and tannins were detected in the phytochemical screening.Conclusion: From this study, it was concluded that the plant ofA. cordifolia possesses hepatoprotective as well as antioxidant activities and these activities reside mainly in the ethyl acetate and acetone fractions of methanol leaf extract.

  13. Preliminary studies on antihepatotoxic effect of Physalis peruviana Linn. (Solanaceae) against carbon tetrachloride induced acute liver injury in rats.

    Science.gov (United States)

    Arun, M; Asha, V V

    2007-04-20

    Physalis peruviana is a medicinal herb used by Muthuvan tribes and Tamilian native who reside in the shola forest regions of Kerala, India against jaundice. It was evaluated for its antihepatotoxic, phytochemical analysis and the acute toxicity of the most promising extract in rats. Water, ethanol and hexane extracts of Physalis peruviana (500mg/kg body weight) showed antihepatotoxic activities against CCl(4) induced hepatotoxicity. The ethanol and hexane extracts showed moderate activity compared to water extract, which showed activity at a low dose of 125mg/kg. The results were judged from the serum marker enzymes. Histopathological changes induced by CCl(4) were also significantly reduced by the extract. Further, the extract administration to rats resulted in an increase in hepatic GSH and decrease in MDA. Preliminary phytochemical analysis revealed the presence of various components in the crude aqueous extract. The extract was found to be devoid of any conspicuous acute toxicity in rats. PMID:17161567

  14. Antioxidant and Hepatoprotective Activity of Veronica ciliata Fisch. Extracts Against Carbon Tetrachloride-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Li Yin

    2014-06-01

    Full Text Available Veronica ciliata Fisch. has been traditionally used in Traditional Chinese Medicine prescriptions due to its curative effects for hepatitis, cholecystitis, rheumatism, and urticaria. The present study was focused on investigating the role of ethyl acetate and aqueous extracts of Veronica ciliata Fisch. Furthermore, in vitro antioxidant activity (scavenging of DPPH, ABTS, superoxide, and nitrite radicals; reducing power; β-carotene bleaching and the hepatoprotective effect of the ethyl acetate extract by means of CCl4-induced oxidative stress in mice were investigated. The ethyl acetate extract of Veronica ciliata Fisch. displayed more noteworthy in vitro antioxidant activities than the aqueous extract. Moreover, it significantly prevented the increase in serum T-AOC, ALT, AST and ALP level in acute liver damage induced by CCl4, decreased the extent of MDA formation in liver and elevated the activities of SOD and GSH in liver. This activity was found to be comparable to that of bifendate. Histopathological observation of the liver was also performed to further support the evidence from the biochemical analysis. The results indicated that strong antioxidant activities and a significant protective effect against acute hepatotoxicity induced by CCl4 of Veronica ciliata Fisch. were concentrated in the ethyl acetate extract. The results suggested that this activity may be due to free radical-scavenging and antioxidant properties.

  15. Hepatoprotective effect of the pulp/seed of Aegle marmelos correa ex Roxb against carbon tetrachloride induced liver damage in rats

    OpenAIRE

    Singh Ramnik; Rao Harwinder

    2008-01-01

    A number of herbal preparations are widely used in traditional system of medicine for the management of hepatic disorders. However, many of them have not been investigated for their described effects. Aegle marmelos Roxb is one such drug used in the treatment of hepatitis in folk medicine. Therefore, an attempt has been made to investigate for hepatoprotective effect of fruits of Aegle marmelos against carbon tetrachloride (CCl 4 ) induced hepatotoxicity in rats. Sixty Albino Wistar rats were...

  16. Phytochemical analysis and hepatoprotective properties of Tinospora cordifolia against carbon tetrachloride-induced hepatic damage in rats

    OpenAIRE

    Kavitha, B. T.; Shruthi, S. D.; Rai, S. Padmalatha; Ramachandra, Y. L.

    2011-01-01

    The present study was conducted to evaluate the hepatoprotective activity of different extracts of Tinospora cordifolia against carbon tetrachloride (CCl4) induced liver damage in rats. The pet ether, ethanol and aqueous extracts of various parts of the plant such as leaf, stem and root were tested at the dose of 200mg/kg body weight orally using Wistar albino rats and Silymarin was given as reference standard. Ethanolic extract of all the parts showed significant hepatoprotective effect by r...

  17. Protective Effect of the Total Saponins from Rosa laevigata Michx Fruit against Carbon Tetrachloride-Induced Liver Fibrosis in Rats

    OpenAIRE

    Deshi Dong; Lianhong Yin; Yan Qi; Lina Xu; Jinyong Peng

    2015-01-01

    In this study, the protective effect of the total saponins from Rosa laevigata Michx (RLTS) against liver fibrosis induced by carbon tetrachloride (CCl4) in rats was evaluated. The results showed that RLTS significantly rehabilitated the levels of alanine aminotransferase, aspartate aminotransferase, malondialdehyde, glutathione, glutathione peroxidase, catalase, superoxide dismutase, hydroxyproline, α-smooth muscle actin, collagen I, collagen III and fibronectin, which were confirmed using ...

  18. Inhibitory Effects of Pre and Post Radon Inhalation on Carbon Tetrachloride-induced Oxidative Damage in Mouse Organs

    OpenAIRE

    Nishiyama, Yuichi; Kataoka, Takahiro; Teraoka, Junichi; Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori

    2012-01-01

    Radon inhalation activates antioxidative functions in some organs of mice. We examined the prevention effects of pre radon inhalation and the alleviation effects of post radon inhalation on carbon tetrachloride (CCl4)-induced oxidative damage in the brain, heart, lung, liver, and kidney of mice. In addition, we compared the effect of pre and post radon inhalation on oxidative damage. Mice inhaled radon at a concentration of 18000Bq/m3 for 6hrs before or after CCl4 administration. As a result,...

  19. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of γ-irradiated rat.

    Science.gov (United States)

    Ismail, Amel F M; Salem, Asmaa A M; Eassawy, Mamdouh M T

    2016-07-01

    Carbon tetrachloride (CCl4) and ionizing radiation are well known environmental pollutants that generate free radicals and induce oxidative stress. The liver is the primary and major target organ responsible for the metabolism of drugs, toxic chemicals and affected by irradiation. This study investigated the effect of grape seed oil (GSO) on acute liver injury induced by carbon tetrachloride (CCl4) in γ-irradiated rats (7Gy). CCl4-intoxicated rats exhibited an elevation of ALT, AST activities, IL-6 and TNF-α level in the serum. Further, the levels of MDA, NO, NF-κB and the gene expression of CYP2E1, iNOS and Caspase-3 were increased, and SOD, CAT, GSH-Px, GST activities and GSH content were decreased. Furthermore, silent information regulator protein 1 (SIRT1) gene expression was markedly down-regulated. Additionally, alterations of the trace elements; copper, manganese, zinc and DNA fragmentation was observed in the hepatic tissues of the intoxicated group. These effects were augmented in CCl4-intoxicated-γ-irradiated rats. However, the administration of GSO ameliorated these parameters. GSO exhibit protective effects on CCl4 induced acute liver injury in γ-irradiated rats that could be attributed to its potent antioxidant, anti-inflammatory and anti-apoptotic activities. The induction of the antioxidant enzymes activities, down-regulation of the CYP2E1, iNOS, Caspase-3 and NF-κB expression, up-regulation of the trace elements concentration levels and activation of SIRT1 gene expression are responsible for the improvement of the antioxidant and anti-inflammatory status in the hepatic tissues and could be claimed to be the hepatoprotective mechanism of GSO. PMID:27085796

  20. 3-Alkynyl selenophene protects against carbon-tetrachloride-induced and 2-nitropropane-induced hepatic damage in rats.

    Science.gov (United States)

    Wilhelm, Ethel Antunes; Jesse, Cristiano Ricardo; Prigol, Marina; Alves, Diego; Schumacher, Ricardo Frederico; Nogueira, Cristina Wayne

    2010-12-01

    The aim of this study was to investigate the protective effect of 3-alkynyl selenophene (3-ASP) on acute liver injury induced by carbon tetrachloride (CCl(4)) and 2-nitropropane (2-NP) in rats. On the first day of treatment, the animals received 3-ASP (25 mg/kg, p.o.). On the second day, the rats received CCl(4) (1 mg/kg, i.p.) or 2-NP (100 mg/kg, p.o.). Twenty-four hours after CCl(4) or 2-NP administration, the animals were euthanized, and their plasma and liver were removed for biochemical and histological analyses. The histological analysis revealed extensive injury in the liver of CCl(4)-exposed and 2-NP-exposed rats, which was attenuated by 3-ASP. 3-ASP significantly attenuated (1) the increase in plasmatic aspartate and alanine aminotransferase activities and lipid peroxidation levels induced by CCl(4) and 2-NP; (2) the inhibition of δ-aminolevulinic dehydratase activity caused by 2-NP; and (3) the decrease in ascorbic acid (AA) levels and catalase (CAT) activity caused by CCl(4). AA levels and CAT activity remained unaltered in the liver of rats exposed to 2-NP. The protective effect of 3-ASP on acute liver injury induced by CCl(4) and 2-NP in rats was demonstrated. PMID:20397041

  1. ABHRAK BHASMA MEDIATED ALTERATIONS IN LIVER AND KIDNEY FUNCTIONS IN MALE ALBINO RATS DURING CARBON TETRACHLORIDE INDUCED TOXICITY

    Directory of Open Access Journals (Sweden)

    Teli Parashuram

    2013-10-01

    Full Text Available Abhrak bhasma, an Ayurvedic drug used against many diseases including hepatitis. In present study various doses of abhrak bhasma (10, 20, 30 and 40 mg/kg body wt were tested for hepatoprotective efficacy against carbon tetrachloride (CCl4 intoxicated liver and kidney functions in male albino rat. Administration of CCl4 to the normal rat increased serum levels of AST, ALT, ALP and bilirubin indicated acute damage. Abhrak bhasma treatment counteracted the action of CCl4 on liver and kidney functions. With the administration of increasing doses of abhrak bhasma all activities were dropped progressively and significantly at 40 mg dose as compared with silicate control. Conjugation metabolism and excretion of bilirubin were improved with increasing doses of abhrak bhasma suggesting dose dependent protection of all metabolic steps in bilirubin metabolism. Also CCl4 induced acute toxicity increased serum urea and creatinine content, which was progressively controlled by increasing abhrak bhasma doses. The findings of this study indicated that abhrak bhasma exert dose dependent protective effects in liver and kidneys functions against CCl4 induced toxicity in albino rat.

  2. Fate of biomolecules during carbon tetrachloride induced oxidative stress and protective nature of Ammoniac baccifera Linn.: A natural antioxidant

    Directory of Open Access Journals (Sweden)

    Lavanya G

    2009-01-01

    Full Text Available Ethanol extract of Ammannia baccifera was studied for its protective nature against the oxidative damage of lipids, proteins and DNA in carbon tetrachloride (CCl 4 -induced toxicity in rats. CCl 4 administration to albino Wistar rats increased the levels of lipid peroxidation, protein carbonyls and decreased the levels of total sulfhydryls. CCl 4 also induced the elevation of DNA damage measured by the comet assay. The study revealed that the administration of the ethanol extract of A. baccifera to CCl 4 intoxicated rats could significantly ( P < 0.01 decrease the levels of lipid peroxidation, protein carbonyls and increased the levels of total sulfhydryls in a dose-dependent manner. It was also found that the ethanol extract of A. baccifera prevent the CCl 4 -induced elevation of DNA damage in hepatocytes. These results suggest that treatment with the ethanol extract of A. baccifera can minimize the deleterious effects caused by CCl 4 through its strong antioxidative and free radical scavenging properties.

  3. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats

    Directory of Open Access Journals (Sweden)

    Ebaid Hossam

    2013-02-01

    Full Text Available Abstract This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1, interferon gamma (IFN-γ, programmed cell death-receptor (Fas and Tumor necrosis factor-alpha (TNF-α mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA, cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals.

  4. Protective Effect of the Total Saponins from Rosa laevigata Michx Fruit against Carbon Tetrachloride-Induced Liver Fibrosis in Rats

    Directory of Open Access Journals (Sweden)

    Deshi Dong

    2015-06-01

    Full Text Available In this study, the protective effect of the total saponins from Rosa laevigata Michx (RLTS against liver fibrosis induced by carbon tetrachloride (CCl4 in rats was evaluated. The results showed that RLTS significantly rehabilitated the levels of alanine aminotransferase, aspartate aminotransferase, malondialdehyde, glutathione, glutathione peroxidase, catalase, superoxide dismutase, hydroxyproline, α-smooth muscle actin, collagen I, collagen III and fibronectin, which were confirmed using H&E, Sirius Red and Masson histopathological assays. Further research indicated that RLTS markedly reduced cytochrome P450 2E1 activity, attenuated oxidative stress, and suppressed inflammation. In addition, RLTS facilitated matrix degradation through down-regulation of matrix metalloproteinase2, matrix metalloproteinase 9 and metalloproteinases1, and exerted the anti-fibrotic effects through affecting transforming growth factor β/Smad, focal adhesion kinase/phosphatidylinositol-3-kinase/amino kinase terminal/70-kDa ribosomal S6 Kinase (FAK-PI3K-Akt-p70S6K and mitogen-activated protein kinase (MAPK signaling pathways. Taken together, our data indicate that RLTS can be applied as one effective candidate for the treatment of liver fibrosis in the future.

  5. Duration-dependent hepatoprotective effects of propolis extract against carbon tetrachloride-induced acute liver damage in rats.

    Science.gov (United States)

    Bhadauria, Monika; Nirala, Satendra Kumar; Shukla, Sangeeta

    2007-01-01

    Propolis is a natural product produced by bees that was discovered through the study of traditional cures and knowledge of indigenous people throughout the world. It is rich in vitamins A, B, C, and E, and in amino acids, copper, iron, manganese, and zinc. The investigators studied the duration-dependent hepatoprotective effects of propolis extract (200 mg/kg, orally) against carbon tetrachloride (CCl 4; 1.5 mL/kg, intraperitoneally)-induced liver damage in rats. Administration of CCl 4 caused a sharp elevation in the activity of serum transaminases and serum alkaline phosphatase. A significant depletion in hepatically reduced glutathione was observed with significantly enhanced hepatic lipid peroxidation. After CCl 4 administration, glycogen contents and activities of alkaline phosphatase, adenosine triphosphatase, and succinic dehydrogenase were significantly decreased, whereas total protein contents and activity of acid phosphatase were increased in the liver and kidney. Propolis extract reversed alterations in all parameters when administered within 6, 12, and 24 h of toxicant exposure. Propolis therapy produced duration-dependent protection, with maximal protection achieved at 24 h after CCl 4 exposure. It is believed that propolis in its natural form has general pharmacologic value and marked hepatoprotective potential because of its composition of minerals, flavonoids, and phenolic compounds. PMID:18029340

  6. Protective Effects of Alpha Lipoic Acid on Carbon Tetrachloride-Induced Liver and Kidney Damage in Rats

    Directory of Open Access Journals (Sweden)

    A.O. Morakinyo

    2012-02-01

    Full Text Available Carbon tetrachloride (CCl4 is a well known toxicant and exposure to this chemical is known to induce oxidative stress by the formation of free radicals. The present study investigates the in vivo effects of alpha lipoic acid (ALA on CCl4-induced hepatic and renal toxicities. Twenty-four Sprague-Dawley rats were divided into four groups of 6 animals each and treated for 10 consecutive days. Group 1 was given olive oil only. Group 2 received CCl4 intra-peritoneally (i.p. at a dose of 0.8 mg/kg as a 30% olive oil solution. Group 3 was given ALA only at a dose 25 mg/kg. Group 4 was given both CCl4 and ALA, respectively. At the end of experiment, the antioxidant status in both the liver and kidney tissues were estimated by determining the activities of antioxidant enzymes; reduced glutathione, superoxide dismutase, catalase as well as the level of lipid peroxidation via thiobarbituric reactive substance. The liver and kidney functions tests were also performed in addition to their histopathological evaluation. Results obtained showed significant adverse changes in the levels of all measured parameters in CCl4 treated rats. However, treatment with ALA attenuated the adverse changes in the CCl4-induced rats. Our findings suggest that ALA protects the liver and kidney against CCl4-induced damage through its significant effects on the antioxidant activities.

  7. Doxazosin Treatment Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Hamsters through a Decrease in Transforming Growth Factor β Secretion

    Science.gov (United States)

    Muñoz-Ortega, Martin Humberto; Llamas-Ramírez, Raúl Wiliberto; Romero-Delgadillo, Norma Isabel; Elías-Flores, Tania Guadalupe; de Jesus Tavares-Rodríguez, Edgar; del Rosario Campos-Esparza, María; Cervantes-García, Daniel; Muñoz-Fernández, Luis; Gerardo-Rodríguez, Martin; Ventura-Juárez, Javier

    2016-01-01

    Background/Aims The development of therapeutic strategies for the treatment of cirrhosis has become an important focus for basic and clinical researchers. Adrenergic receptor antagonists have been evaluated as antifibrotic drugs in rodent models of carbon tetrachloride (CCl4)-induced cirrhosis. The aim of the present study was to evaluate the effects of carvedilol and doxazosin on fibrosis/cirrhosis in a hamster animal model. Methods Cirrhotic-induced hamsters were treated by daily administration of carvedilol and doxazosin for 6 weeks. Hepatic function and histological evaluation were conducted by measuring biochemical markers, including total bilirubin, aspartate aminotransferase, alanine aminotransferase and albumin, and liver tissue slices. Additionally, transforming growth factor β (TGF-β) immunohistochemistry was analyzed. Results Biochemical markers revealed that hepatic function was restored after treatment with doxazosin and carvedilol. Histological evaluation showed a decrease in collagen type I deposits and TGF-β-secreting cells. Conclusions Taken together, these results suggest that the decrease in collagen type I following treatment with doxazosin or carvedilol is achieved by decreasing the profibrotic activities of TGF-β via the blockage of α1- and β-adrenergic receptor. Consequently, a diminution of fibrotic tissue in the CCl4-induced model of cirrhosis is achieved. PMID:26573293

  8. Neutralization of ADAM8 ameliorates liver injury and accelerates liver repair in carbon tetrachloride-induced acute liver injury.

    Science.gov (United States)

    Li, San-Qiang; Zhu, Sha; Wan, Xue-Dong; Xu, Zheng-Shun; Ma, Zhao

    2014-04-01

    Although some studies have described the function of ADAM8 (a disintegrin and metalloprotease 8) related with rheumatoid arthritis, cancer and asthma, etc., the concrete role of ADAM8 in acute liver injury is still unknown. So mice respectively received anti-ADAM8 monoclonal antibody (mAb) of 100 μg/100 μl, 200 μg/100 μl or 300 μg/100 μl in PBS or PBS pre-injection. Then acute liver injury was induced in the mice by intraperitoneal (i.p.) injection of carbon tetrachloride (CCl₄). Serum AST and ALT level, Haematoxylin-eosin (H&E) staining, the expression level of vascular endothelial growth factor (VEGF), cytochrome P450 1A2 (CYP1A2) and proliferating cell nuclear antigen (PCNA) were detected in the mice after CCl4 administration. Our results showed that anti-ADAM8 mAb pre-injection could effectively lower AST and ALT levels (P < 0.05 or P < 0.01) and reduce liver injury (P < 0.05 or P <0.01), induce the expression of VEGF, CYP1A2 and PCNA (P <0.05 or P < 0.01) in dose-dependent manner compared with the control mice which received PBS pre-injection. In summary, our study suggested that ADAM8 might promote liver injury by inhibiting the proliferation of hepatocytes, angiogenesis and affecting the metabolism function of liver during acute liver injury induced by CCl₄. Anti-ADAM8 mAb injection might be suitable as a potential method for acute liver injury therapy. PMID:24646716

  9. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    International Nuclear Information System (INIS)

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p 4 displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl4, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage. Highlights: ► After 30-day chronic CCl4 intoxication mitochondria displayed considerable changes. ► The functional parameters of mitochondria were similar to the control values. ► Melatonin + succinate + flavonoids prevented mitochondrial ultrastructure damage. ► The above complex enhanced regenerative processes in the liver.

  10. Electroporative interleukin-10 gene transfer ameliorates carbon tetrachloride-induced murine liver fibrosis by MMP and TIMP modulation

    Institute of Scientific and Technical Information of China (English)

    Wen-ying CHOU; Cheng-nan LU; Tsung-hsing LEE; Chia-ling WU; Kung-sheng HUNG; Allan M CONCEJERO; Bruno JAWAN; Cheng-haung WANG

    2006-01-01

    Aim:Liver fibrosis represents a process of healing and scarring in response to chronic liver injury.Effective therapies for liver fibrosis are lacking.Interleukin-10 (IL-10) is a cytokine that downregulates pro-inflammatory responses and has a modulatory effect on hepatic fibrogenesis.The aim of this study was to investigate whether electroporative IL-10 gene therapy has an hepatic fibrolytic effect on mice.Methods:Hepatic fibrosis was induced by administering carbon tetrachloride (CCl4) for 10 weeks in mice.The human IL-10 expression plasmid was delivered via electroporation after hepatic fibrosis was established.Histopathology,reverse transcription polymerase chain reaction (RT-PCR) ,immunoblotting,and gelatin zymography were used to investigate the possible mechanisms of action of IL-10.Results:Human IL-10 gene therapy reversed CCl4-induced liver fibrosis in mice.RT-PCR revealed that IL-10 gene therapy attenuated liver TGF-β1,collagen αl,fibronectin,and cell adhesion molecule mRNA upregulation.Following gene transfer,both the activation of α-smooth muscle actin and cyclooxygenase-2 were significantly attenuated.Furthermore.IL-10 significantly inhibited matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase (TIMP) activation after CCl4 intoxication.Conclusions:We demonstrated that IL-10 gene therapy attenuated CCl4-induced liver fibrosis in mice.IL-10 prevented upregulated fibrogenic and pro-inflammatory gene responses.Its collagenolytic effect may be attributed to MMP and TIMP modulation.IL-10 gene therapy may be an effective therapeutic modality against liver fibrosis with potential clinical use.

  11. Modulation of gamma-irradiation and carbon tetrachloride induced oxidative stress in the brain of female rats by flaxseed oil.

    Science.gov (United States)

    Ismail, Amel F M; Salem, Asmaa A M; Eassawy, Mamdouh M T

    2016-08-01

    The activity of flaxseed oil (FSO) on gamma-irradiation (7Gy) and/or carbon tetrachloride (CCl4) induced acute neurotoxicity in rats' brain was investigated. The results revealed a significant decrease (poxide (NO), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1-beta (IL-1β), Interleukin-6 (IL-6), transforming growth factor-beta-1 (TGF-β1), iron (Fe), calcium (Ca), copper (Cu) and magnesium (Mg) levels were observed. Furthermore, the relative ratio of xanthine oxidase (XO) and inducible nitric-oxide synthase (iNOS) gene expression levels were elevated in the brain tissues of γ-irradiated and CCl4 intoxicated animals. Those effects were augmented due to the effect of CCl4-induced toxicity in γ-irradiated rats. The treatment of FSO displayed significant amendment of the studied parameters in the brain tissues of γ-irradiated and CCl4 intoxicated animals. FSO has a neuroprotective effect against CCl4-induced brain injury in gamma-irradiated rats. This effect is interrelated to the ability of FSO to scavenges the free radicals, enhances the antioxidant enzymes activity, increases GSH contents, down-regulates the inflammatory responses, ameliorates the iron, calcium, copper, magnesium, manganese levels and inhibiting the gene expression level of XO and iNOS in the brain tissues of intoxicated animals. In conclusion, this study demonstrated that the potent antioxidant and anti-inflammatory activities of FSO have the ability to improve the antioxidant status, suppress the inflammatory responses, and regulate the trace elements in the brain tissues of γ-irradiated, CCl4, and their combined effect in intoxicated animals. Consequently, FSO exhibited neuroprotective activity on γ-irradiated, CCl4, and their combined effect induced brain injury in rats. PMID:27232147

  12. Management of carbon tetrachloride-induced acute liver injury in rats by syngeneic hepatocyte transplantation in spleen and peritoneal cavity

    Institute of Scientific and Technical Information of China (English)

    Charalampos Pilichos; Despina Perrea; Maria Demonakou; Athena Preza; Ismini Donta

    2004-01-01

    AIM: Acute hepatitis may seldom have a fulminant course.In the treatment of this medical emergency, potential liver support measure must provide immediate and sufficient assistance to the hepatic function. The goal of our study was to study the adequacy of hepatocyte transplantation (HCTx) in two different anatomical sites, splenic parenchyma and peritoneal cavity, in a rat model of reversible acute hepatitis induced by carbon tetrachloride (CCl4).METHODS: After CCl4 intoxication, 84 male Wistar rats used as recipients were divided in to four experimental groups accordingly to their treatment: Group A (n=24): intrasplenic transplantation of 10x106 isolated hepatocytes, Group B (n=24):intraperitoneal transplantation of 20xL06 isolated hepatocytes attached on plastic microcarriers, Group C (n= 18): i ntrasplenic injection of 1 mL normal saline (sham-operated controls),Group D (n=18): intraperitoneal injection of 2.5 mL normal saline (sham-operated controls). Survival, liver function tests (LFT) and histology were studied in all four groups, on d 2,5 and 10 post-HCTx.RESULTS: The ten-day survival (and mean survival) in the 4 groups was 72.2% (8.1±3.1), 33.3% (5.4±3.4), 0%(3.1±1.3) and 33.3% (5.4±3.6) in groups A, B, C, D,respectively (PAB<0.05, PAC<0.05, PBD=NS). In the final survivors, LFT (except alkaline phosphatase) and hepatic histology returned to normal, independently of their previous therapy. Viable hepatocytes were identified within splenic parenchyma (in group A on d 2) and both in the native liver and the fatty tissue of abdominal wall (in group B on d 5).CONCLUSION: A significantly better survival of the intrasplenically transplanted animals has been demonstrated.Intraperitoneal hepatocytes failed to promptly engraft. A different timing between liver injury and intraperitoneal HCTx may give better results and merits further investigation.

  13. Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum

    Directory of Open Access Journals (Sweden)

    Zargar Bilal

    2011-02-01

    Full Text Available Abstract Background The present study was conducted to evaluate the in vitro and in vivo antioxidant properties of aqueous extract of Podophyllum hexandrum. The antioxidant potential of the plant extract under in vitro situations was evaluated by using two separate methods, inhibition of superoxide radical and hydrogen peroxide radical. Carbon tetrachloride (CCl4 is a well known toxicant and exposure to this chemical is known to induce oxidative stress and causes tissue damage by the formation of free radicals. Methods 36 albino rats were divided into six groups of 6 animals each, all animals were allowed food and water ad libitum. Group I (control was given olive oil, while the rest groups were injected intraperitoneally with a single dose of CCl4 (1 ml/kg as a 50% (v/v solution in olive oil. Group II received CCl4 only. Group III animals received vitamin E at a concentration of 50 mg/kg body weight and animals of groups IV, V and VI were given extract of Podophyllum hexandrum at concentration dose of 20, 30 and 50 mg/kg body weight. Antioxidant status in both kidney and lung tissues were estimated by determining the activities of antioxidative enzymes, glutathione reductase (GR, glutathione peroxidase (GPX, glutathione-S-transferase (GST and superoxide dismutase (SOD; as well as by determining the levels of reduced glutathione (GSH and thiobarbituric acid reactive substances (TBARS. In addition, superoxide and hydrogen peroxide radical scavenging activity of the extract was also determined. Results Results showed that the extract possessed strong superoxide and hydrogen peroxide radical scavenging activity comparable to that of known antioxidant butylated hydroxy toluene (BHT. Our results also showed that CCl4 caused a marked increase in TBARS levels whereas GSH, SOD, GR, GPX and GST levels were decreased in kidney and lung tissue homogenates of CCl4 treated rats. Aqueous extract of Podophyllum hexandrum successfully prevented the alterations

  14. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    Energy Technology Data Exchange (ETDEWEB)

    Cheshchevik, V.T. [Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Lapshina, E.A.; Dremza, I.K.; Zabrodskaya, S.V. [Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Reiter, R.J. [Department of Cellular and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229–3900 (United States); Prokopchik, N.I. [Grodno State Medical University, Gorkogo - 80, 230015 Grodno (Belarus); Zavodnik, I.B., E-mail: zavodnik_il@mail.ru [Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus)

    2012-06-15

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage

  15. (Z-5-(4-methoxybenzylidenethiazolidine-2,4-dione protects rats from carbon tetrachloride-induced liver injury and fibrogenesis

    Directory of Open Access Journals (Sweden)

    Zhi-Zhi Chen

    2012-01-01

    Full Text Available AIM: To evaluate the hepatoprotective roles of (Z-5-(4-methoxybenzylidenethiazolidine-2,4-dione (SKLB010 against carbon tetrachloride (CCl4-induced acute and chronic liver injury and its underlying mechanisms of action. METHODS: In the first experiment, rats were weighed and randomly divided into 5 groups (five rats in each group to assess the protective effect of SKLB010 on acute liver injury. For induction of acute injury, rats were administered a single intraperitoneal injection of 2 mL/kg of 50% (v/v CCl4 dissolved in olive oil (1:1. Group 1 was untreated and served as the control group; group 2 received CCl4 for induction of liver injury and served as the model group. In groups 3, 4 and 5, rats receiving CCl4 were also treated with SKLB010 at doses of 25, 50 and 100 mg/kg, respectively. Blood samples were collected at 6, 12 and 24 h after CCl4 intoxication to determine the serum activity of alanine amino transferase. Tumour necrosis factor-α (TNF-α, interleukin-1β (IL-1β were determined using enzyme-linked immunosorbent assay. At 24 h after CCl4 injection,liver fibrogenesis was evaluated by hematoxylin-eosin (HE staining and immunohistochemical analyses. Cytokine transcript levels of TNF-α, IL-1β and inducible nitric oxide synthase in the liver tissues of rats were measured using a reverse transcriptase reverse transcription-polymerase chain reaction technique. In the second experiment, rats were randomly divided into 2 groups (15 rats in each group, and liver injury in the CCl4-administered groups was induced by a single intraperitoneal injection of 2 mL/kg of 50% (v/v CCl4 dissolved in olive oil (1:1. The SKLB010-treated groups received oral 100 mg/kg SKLB010 before CCl4 administration. Five rats in each group were sacrificed at 2 h, 6 h, 12 h after CCl4 intoxication and small fortions of livers were rapidly frozen for extraction of total RNA, hepatic proteins and glutathione (GSH assays. In the hepatic fibrosis model group, rats

  16. Hepatoprotective and anti-hepatitis C viral activity of Platycodon grandiflorum extract on carbon tetrachloride-induced acute hepatic injury in mice.

    Science.gov (United States)

    Kim, Tae-Won; Lim, Jong-Hwan; Song, In-Bae; Park, Sang-Jin; Yang, Jae-Won; Shin, Jung Cheul; Suh, Joo-Won; Son, Hwa-Young; Cho, Eun-Sang; Kim, Myoung-Seok; Lee, Sang-Wook; Kim, Jong-Woo; Yun, Hyo-In

    2012-01-01

    The present study aims to evaluate the anti-HCV activity of hotwater extract from Platycodon grandiflorum (BC703) with HCV genotype 1b subgenomic replicon system and investigate its hepatoprotective activity on carbon tetrachloride (CCl(4))-induced acute liver damage in mice. BC703 produced significant hepatoprotective effects against CCl(4)-induced acute hepatic injury by decreasing the activities of serum enzymes, nitric oxide and lipid peroxidation. Histopathological studies further substantiated the protective effect of BC703. Furthermore, BC703 inhibited the HCV RNA replication with an EC(50) value and selective index (CC(50)/EC(50)) of 2.82 µg/mL and above 35.46, respectively. However, digested BC703 using a simulated gastric juice showed poor protective effect against CCl(4)-induced hepatotoxicity in mice and decreased anti-HCV activity as compared to the intact BC703. Although further studies are necessary, BC703 may be a beneficial agent for the management of acute hepatic injury and chronic HCV infection. PMID:22878389

  17. Hepatoprotective effect of the pulp/seed of Aegle marmelos correa ex Roxb against carbon tetrachloride induced liver damage in rats

    Directory of Open Access Journals (Sweden)

    Singh Ramnik

    2008-01-01

    Full Text Available A number of herbal preparations are widely used in traditional system of medicine for the management of hepatic disorders. However, many of them have not been investigated for their described effects. Aegle marmelos Roxb is one such drug used in the treatment of hepatitis in folk medicine. Therefore, an attempt has been made to investigate for hepatoprotective effect of fruits of Aegle marmelos against carbon tetrachloride (CCl 4 induced hepatotoxicity in rats. Sixty Albino Wistar rats were divided into six equal groups of 10. Four groups received extracts of pulp/seeds of Aegle marmelos and intraperitoneal (i.p. CCl 4 (0.2 ml/100 g either before or after administration of pulp/seeds. Two groups were controls, one treated with CCl 4 and one with normal saline. Liver damage was assessed by plasma concentration of bilirubin and enzyme activities of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Treatment with aqueous extract of fruit pulp/seeds significantly reduced CCl 4 -induced elevation in plasma enzyme and bilirubin concentration in rats. This study suggests that CCl 4 -induced liver damage in rats can be ameliorated by treatment of extracts from fruits pulp/seeds.

  18. Evaluation of the effectiveness of Rosmarinus officinalis (Lamiaceae) in the alleviation of carbon tetrachloride-induced acute hepatotoxicity in the rat.

    Science.gov (United States)

    Sotelo-Félix, J I; Martinez-Fong, D; Muriel, P; Santillán, R L; Castillo, D; Yahuaca, P

    2002-07-01

    The effect of oral administration of Rosmarinus officinalis L. (Lamiaceae) on CCl(4)-induced acute liver injury was investigated. Rats were daily treated with the plant extract at a dose of 200 mg/kg corresponding to 6.04 mg/kg of carnosol as determined by reverse phase high-performance liquid chromatography. The treatment was initiated 1 h after CCl(4) administration and Rosmarinus officinalis fully prevented CCl(4) effect on hepatic lipid peroxidation after 24 h of CCl(4) administration. The increase in bilirubin level and alanine aminotransferase activity in plasma induced by CCl(4) was completely normalized by Rosmarinus officinalis. The treatment also produced a significant recovery of CCl(4)-induced decrease in liver glycogen content. CCl(4) did not modify the activity of liver cytosolic glutathione S-transferase (GST) compared with that of control groups. However, Rosmarinus officinalis increased liver cytosolic GST activity and produced an additional increment in plasma GST activity in rats treated with CCl(4). Histological evaluation showed that Rosmarinus officinalis partially prevented CCl(4)-induced inflammation, necrosis and vacuolation. Rosmarinus officinalis might exert a dual effect on CCl(4)-induced acute liver injury, acting as an antioxidant and improving GST-dependent detoxification systems. PMID:12065145

  19. Influence of methyl and isopropyl N-methyl antranilates on carbon tetrachloride-induced changes in rat liver morphology and function

    Directory of Open Access Journals (Sweden)

    Radulović Niko S.

    2013-01-01

    Full Text Available The aim of the present study was to examine potential protective effects of methyl N-methylanthranilate (M and isopropyl N-methylanthranilate (I in a rat model of acute intoxication with carbon tetrachloride (CCl4 by tracking the changes in liver morphology and function. Serum transaminase and bilirubin were significantly elevated in animals treated with CCl4 alone. A pretreatment with M and I prior to the administration of CCl4 significantly prevented the increase of serum levels of liver damage markers. Histopathological evaluation of the livers of the test animals also revealed that M and I reduced the incidence of liver lesions. Our experiments showed that both M and I possess protective effect in CCl4-induced liver damage in rats. The results are of interest due to the presence of natural or synthetic M in the human diet. [Projekat Ministarstva nauke Republike Srbije, br. 172061

  20. Protective effect of compounds from the flowers of Citrus aurantium L. var. amara Engl against carbon tetrachloride-induced hepatocyte injury.

    Science.gov (United States)

    Lu, Qun; Yang, Li; Zhao, Hai-Yan; Jiang, Jian-Guo; Xu, Xi-Lin

    2013-12-01

    5-Hydroxy-6,7,3',4'-tetramethoxyflavone (HTF), limonexic acid (LA) are two compounds isolated from the flowers of Citrus aurantium L. var. amara Engl with various biological activities. This study was designed to investigate their protective effects against carbon tetrachloride (CCl4)-induced hepatocyte injury, using human hepatic cell line HL-7702 to determine the cell cytotoxicity, cell viability, levels of hepatic marker enzymes, malondialdehyde (MDA). Results showed that pretreatment with HTF, LA could significantly reverse CCl4-induced HL-7702 cell viability decrease, LA displayed a higher activity. HTF, LA also showed their capability of decreasing the CCl4-induced leakage of lactate dehydrogenase (LDH), aspartate aminotransferase (AST), inhibiting the lipid peroxidation, HTF showed more significant activity. Given that HTF, LA were not toxic, it is concluded that HTF, LA could effectively protect hepatocyte against CCl4-induced injury. PMID:23985451

  1. Protective action of the immunomodulator ginsan against carbon tetrachloride-induced liver injury via control of oxidative stress and the inflammatory response

    International Nuclear Information System (INIS)

    The aim of the present study was to evaluate immunomodulator ginsan, a polysaccharide extracted from Panax ginseng, on carbon tetrachloride (CCl4)-induced liver injury. BALB/c mice were injected i.p. with ginsan 24 h prior to CCl4 administration. Serum liver enzyme levels, histology, expression of antioxidant enzymes, and several cytokines/chemokines were subsequently evaluated. Ginsan treatment markedly suppressed the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and hepatic histological necrosis increased by CCl4 treatment. Ginsan inhibited CCl4 induced lipid peroxidation through the cytochrome P450 2E1 (CYP2E1) downregulation. The hepatoprotective effect of ginsan was attributed to induction of anti-oxidant protein contents, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) as well as restoration of the hepatic glutathione (GSH) concentration. The marked increase of proinflammatory cytokines (IL-1β, IFN-γ) and chemokines (MCP-1, MIP-2β, KC) in CCl4 treated mice was additionally attenuated by ginsan, thereby preventing leukocyte infiltration and local inflammation. Our results suggest that ginsan effectively prevent liver injury, mainly through downregulation of oxidative stress and inflammatory response.

  2. A virus-like particle-based connective tissue growth factor vaccine suppresses carbon tetrachloride-induced hepatic fibrosis in mice.

    Science.gov (United States)

    Li, Shuang; Lv, Yi-Fei; Su, Hou-Qiang; Zhang, Qian-Nan; Wang, Li-Rong; Hao, Zhi-Ming

    2016-01-01

    Connective tissue growth factor (CTGF) has been recognized as a central mediator and promising therapeutic target in hepatic fibrosis. In this study, we generated a novel virus-like particle (VLP) CTGF vaccine by inserting the 138-159 amino acid (aa) fragment of CTGF into the central c/e1 epitope of C-terminus truncated hepatitis B virus core antigen (HBc, aa 1-149) using a prokaryotic expression system. Immunization of BALB/c mice with the VLP vaccine efficiently elicited the production of anti-CTGF neutralizing antibodies. Vaccination with this CTGF vaccine significantly protected BALB/c mice from carbon tetrachloride (CCl4)-induced hepatic fibrosis, as indicated by decreased hepatic hydroxyproline content and lower fibrotic score. CCl4 intoxication-induced hepatic stellate cell activation was inhibited by the vaccination, as indicated by decreased α-smooth muscle actin expression and Smad2 phosphorylation. Vaccination against CTGF also attenuated the over-expression of some profibrogenic factors, such as CTGF, transforming growth factor-β1, platelet-derived growth factor-B and tissue inhibitor of metalloproteinase-1 in the fibrotic mouse livers, decreased hepatocyte apoptosis and accelerated hepatocyte proliferation in the fibrotic mouse livers. Our results clearly indicate that vaccination against CTGF inhibits fibrogenesis, alleviates hepatocyte apoptosis and facilitate hepatic regeneration. We suggest that the vaccine should be developed into an effective therapeutic measure for hepatic fibrosis. PMID:27562139

  3. Hepatic Progenitor Cells Contribute to the Progression of 2-Acetylaminofluorene/Carbon Tetrachloride-Induced Cirrhosis via the Non-Canonical Wnt Pathway.

    Directory of Open Access Journals (Sweden)

    Jiamei Chen

    Full Text Available Hepatic progenitor cells (HPCs appear to play an important role in chronic liver injury. In this study, cirrhosis was induced in F-344 rats (n = 32 via subcutaneous injection of 50% carbon tetrachloride (CCl4 twice a week for 8 weeks. Then, 30% CCl4 was administered in conjunction with intragastric 2-acetylaminofluorine (2-AAF for 4 weeks to induce activation of HPCs. WB-F344 cells were used to provide direct evidence for differentiation of HPCs to myofibroblasts. The results showed that after administration of 2-AAF, the hydroxyproline content and the expressions of α-SMA, Col I, Col IV, TGF-β1, CD68, TNF-α, CK19 and OV6 were significantly increased. OV6 and α-SMA were largely co-expressed in fibrous septum and the expressions of Wnt5b, frizzled2, frizzled3 and frizzled6 were markedly increased, while β-catenin expression was not statistically different among the different groups. Consistent with the above results, WB-F344 cells, treated with TGF-β1 in vitro, differentiated into myofibroblasts and α-SMA, Col I, Col IV, Wnt5b and frizzled2 expressions were significantly increased, while β-catenin expression was decreased. After blocking the non-canonical Wnt pathway via WIF-1, the Wnt5b level was down regulated, and α-SMA and F-actin expressions were significantly decreased in the WIF-1-treated cells. In conclusion, these results indicate that HPCs appear to differentiate into myofibroblasts and exhibit a profibrotic effect in progressive cirrhosis via activation of the non-canonical Wnt pathway. Blocking the non-canonical Wnt pathway can inhibit the differentiation of HPCs into myofibroblasts, suggesting that blocking this pathway and changing the fate of differentiated HPCs may be a potential treatment for cirrhosis.

  4. Hepatic Progenitor Cells Contribute to the Progression of 2-Acetylaminofluorene/Carbon Tetrachloride-Induced Cirrhosis via the Non-Canonical Wnt Pathway.

    Science.gov (United States)

    Chen, Jiamei; Zhang, Xiao; Xu, Ying; Li, Xuewei; Ren, Shuang; Zhou, Yaning; Duan, Yuyou; Zern, Mark; Zhang, Hua; Chen, Gaofeng; Liu, Chenghai; Mu, Yongping; Liu, Ping

    2015-01-01

    Hepatic progenitor cells (HPCs) appear to play an important role in chronic liver injury. In this study, cirrhosis was induced in F-344 rats (n = 32) via subcutaneous injection of 50% carbon tetrachloride (CCl4) twice a week for 8 weeks. Then, 30% CCl4 was administered in conjunction with intragastric 2-acetylaminofluorine (2-AAF) for 4 weeks to induce activation of HPCs. WB-F344 cells were used to provide direct evidence for differentiation of HPCs to myofibroblasts. The results showed that after administration of 2-AAF, the hydroxyproline content and the expressions of α-SMA, Col I, Col IV, TGF-β1, CD68, TNF-α, CK19 and OV6 were significantly increased. OV6 and α-SMA were largely co-expressed in fibrous septum and the expressions of Wnt5b, frizzled2, frizzled3 and frizzled6 were markedly increased, while β-catenin expression was not statistically different among the different groups. Consistent with the above results, WB-F344 cells, treated with TGF-β1 in vitro, differentiated into myofibroblasts and α-SMA, Col I, Col IV, Wnt5b and frizzled2 expressions were significantly increased, while β-catenin expression was decreased. After blocking the non-canonical Wnt pathway via WIF-1, the Wnt5b level was down regulated, and α-SMA and F-actin expressions were significantly decreased in the WIF-1-treated cells. In conclusion, these results indicate that HPCs appear to differentiate into myofibroblasts and exhibit a profibrotic effect in progressive cirrhosis via activation of the non-canonical Wnt pathway. Blocking the non-canonical Wnt pathway can inhibit the differentiation of HPCs into myofibroblasts, suggesting that blocking this pathway and changing the fate of differentiated HPCs may be a potential treatment for cirrhosis. PMID:26087010

  5. The effect of down-regulation of Smad3 by RNAi on hepatic stellate cells and a carbon tetrachloride-induced rat model of hepatic fibrosis

    Directory of Open Access Journals (Sweden)

    Z.R. Wang

    2011-02-01

    Full Text Available Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs. The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30 and the treated group (N = 20 were injected subcutaneously with 40% (v/v carbon tetrachloride (CCl4-olive oil (3 mL/kg, and the normal control group (N = 30 was injected with olive oil (3 mL/kg. In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS, and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid. The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05 and the serum indices were greatly improved (P < 0.01. These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.

  6. Potentiation of carbon tetrachloride hepatotoxicity by pentosan polysulfate in rats

    Directory of Open Access Journals (Sweden)

    Zim M.C.A.

    2002-01-01

    Full Text Available Few data are available in the literature regarding the effect of pentosan polysulfate (PPS on normal and fibrotic rat livers. In addition, the combination of PPS and carbon tetrachloride (CCl4 has not been studied so far. The objective of this study was to assess the effect of PPS on rat livers treated or not with CCl4 for the induction of liver fibrosis. The study consisted of four stages: 1 hepatic fibrosis induction with CCl4 (N = 36 rats; 2 evaluation of the effect of PPS on CCl4-induced hepatic fibrosis (N = 36 rats; 3 evaluation of the effect of higher doses of PPS in combination with CCl4 (N = 50 rats; 4 evaluation of the presence of an enzymatic inductor effect by PPS (N = 18 rats using the sodium pentobarbital test which indirectly evaluates hepatic microsomal enzyme activity in vivo. Adult (60 to 70 days male Wistar rats weighing 180 to 220 g were used. All animals receiving 0.5 ml 8% CCl4 (N = 36 developed hepatic fibrosis, and after 8 weeks they also developed cirrhosis. No delay or prevention of hepatic fibrosis was observed with the administration of 5 mg/kg PPS (N = 8 and 1 mg/kg PPS (N = 8 1 h after the administration of CCl4, but the increased hepatotoxicity resulting from the combination of the two substances caused massive hepatic necrosis in most rats (N = 45. PPS (40 mg/kg alone caused hepatic congestion only after 8 weeks, but massive hepatic necrosis was again observed in association with 0.5 ml CCl4 after 1 to 4 weeks of treatment. Unexpectedly, sleeping time increased with time of PPS administration (1, 2, or 3 weeks. This suggests that PPS does not function as an activator of the hepatic microsomal enzymatic system. Further studies are necessary in order to clarify the unexpected increase in hepatotoxicity caused by the combination of CCl4 and high doses of PPS, which results in massive hepatic necrosis.

  7. The hepatotoxicity of multi-walled carbon nanotubes in mice

    Science.gov (United States)

    Ji, Zongfei; Zhang, Danying; Li, Ling; Shen, Xizhong; Deng, Xiaoyong; Dong, Ling; Wu, Minhong; Liu, Yuanfang

    2009-11-01

    The hepatotoxicity of two types of multi-walled carbon nanotubes (MWCNTs), acid-oxidized MWCNTs (O-MWCNTs) and Tween-80-dispersed MWCNTs (T-MWCNTs), were investigated with Kunming mice exposed to 10 and 60 mg kg-1 by intravenous injection for 15 and 60 d. Compared with the PBS group, the body-weight gain of the mice decreased and the level of total bilirubin and aspartate aminotransferase increased in the MWCNT-exposed group with a significant dose-effect relationship, while tumor necrosis factor alpha level did not show significant statistical change within 60 d. Spotty necrosis, inflammatory cell infiltration in portal region, hepatocyte mitochondria swelling and lysis were observed with a significant dose-effect relationship in the MWCNT groups. Liver damage of the T-MWCNT group was more severe than that of the O-MWCNT group according to the Roenigk classification system. Furthermore, T-MWCNTs induce slight liver oxidative damage in mice at 15 d, which was recovered at 60 d. Part of the gene expressions of mouse liver in the MWCNT groups changed compared to the PBS group, including GPCRs (G protein-coupled receptors), cholesterol biosynthesis, metabolism by cytochrome P450, natural-killer-cell-mediated cytotoxicity, TNF- α, NF-κB signaling pathway, etc. In the P450 pathway, the gene expressions of Gsta2 (down-regulated), Cyp2B19 (up-regulated) and Cyp2C50 (down-regulated) had significant changes in the MWCNT groups. These results show that a high dose of T-MWCNTs can induce hepatic toxicity in mice while O-MWCNTs seem to have less toxicity.

  8. IFNα-2a对CCl4诱导肝纤维化的作用及影响因素%Interferon α-2a reduces carbon tetrachloride-induced hepatic fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    张伟; 易珍; 叶长根; 刘翠芸; 孙水林; 李金明; 席文娜

    2011-01-01

    目的:观察干扰素α-2a(interferon alfa-2a,IFNα-2a)对CCl4诱导肝纤维化的作用及影响因素.方法:建立CCl4诱导大鼠肝纤维化模型,SD雌性大鼠50只,分成5组,每组10只,即生理盐水对照组(A组)、纤维化模型组(B组)、6×104 U/kg IFNα-2a干预组(C组)、12×104 U/kgIFNα-2a干预组(D组)及6×104 U/kg IFNα-2a对照组(E组).造模8 wk时采集血标本及肝组织标本,分别进行肝功能指标ALT、AST、TBIL、TP,肝纤维化指标HA、LN、PCIII检测,及组织病理形态学观察包括HE染色、Masson染色和网状纤维染色.结果:CCl4腹腔注射成功诱导大鼠肝纤维化模型,表现为汇管区周围纤维化明显,有芒状纤维和纤维间隔形成.血清学检测:B、C、D组ALT、AST、TBiL、HA、LN均明显高于A组(F值分别为14.8,4.4,7.8,51.3,68.9;均P<0.05);C、D组ALT、AST、TBiL均明显低于B组;D组的上述指标又明显低于C组.组织病理:HE染色、Masson染色和网状纤维染色均显示,C、D组肝组织炎症及肝纤维化程度较B组显著减轻,D组较C组肝纤维化程度更轻,A、E组肝组织未见炎症及纤维化.结论:IFNα-2a能够阻断CC14诱导肝纤维化,其作用效果随IFNα-2a剂量增加而增强.%AIM: To observe the effect of IFNα-2a on liver fibrosis induced with carbon tetrachloride (CCL,) in rats.METHODS: Fifty female Sprague-Dawley rats were equally and randomly into five groups: groups A, B, C, D and E. Liver fibrosis was induced in rats of groups B, C and D with CCl4. Group A was treated with normal saline, while groups C, D and E were treated with 60 000, 120 000 and 60 000 U/kg IFNα-2a, respectively. At week 8, blood and liver tissue samples were collected to measure liver function (ALT, AST, TBIL, TP), evaluate liver fibrosis (HA, LN, PCIII) and pathological changes (HE staining, masson staining and reticular fiber staining).RESULTS: Hepatic fibrosis was successfully induced by CCl4 injection, and significant fibrosis around the

  9. Therapeutic effect of arctigenin on carbon tetrachloride-induced liver fibrosis in rats%牛蒡子苷元对四氯化碳致大鼠肝纤维化的治疗作用

    Institute of Scientific and Technical Information of China (English)

    张晓珣; 王俊; 赵宇; 张景耀; 李傲

    2016-01-01

    目的:研究牛蒡子苷元(ATG)对四氯化碳(CCl4)诱导的大鼠肝纤维化的防治作用及可能的作用机制。方法成年Sprague-Dawley大鼠随机分为溶剂对照组、ATG 3.0 mg·kg-1、CCl4模型组、CCl4+ATG 1.0和3.0 mg·kg-1组和CCl4+秋水仙碱(COL)0.1 mg·kg-1阳性对照组,采用sc的方法复制大鼠CCl4肝纤维化模型,造模8周。从第5周开始,ig给予ATG和COL,连续治疗4周。测定各组大鼠血清中谷丙转氨酶(GPT)、谷草转氨酶(GOT)的活性以及白蛋白(ALB)、总胆红素(TBIL)的水平,肝组织中羟脯氨酸(HYP)的含量;HE和Masson染色观察肝组织病理改变,并采用组织免疫荧光法检测活化的肝星状细胞增殖,Western蛋白质印迹法检测细胞周期相关蛋白的表达。结果与CCl4模型组比较,ATG 1.0和3.0 mg·kg-1可显著升高纤维化大鼠血清中ALB含量(P<0.05),降低血清中GPT,AST和TBIL水平(P<0.05),从而降低肝损伤的程度;ATG 1.0和3.0 mg·kg-1还能显著降低纤维化大鼠肝组织中HYP的含量(P<0.05),减少肝内纤维组织的形成。同时,ATG 1.0和3.0 mg·kg-1还能抑制纤维化大鼠肝组织中活化的HSC增殖,显著降低细胞周期相关调控蛋白细胞周期蛋白D1(cyclin D1)、细胞周期蛋白依赖性蛋白激酶(CDK)2和4及增殖细胞核抗原的表达(P<0.05),同时上调细胞周期阻抑物蛋白p27kip1的表达水平(P<0.05)。结论 ATG对CCl4诱导的大鼠肝损伤和肝纤维化具有显著的治疗作用,其作用机制可能与抑制活化的HSC增殖相关。%OBJECTIVE To investigate the effect of arctigenin(ATG) on liver fibrosis in rats induced by carbon tetrachloride(CCl4)and to explore its underlying mechanism. METHODS Sprague-Dawley rats were randomly divided into six groups:vehicle,ATG 3.0 mg · kg-1 group,CCl4 model group,CCl4+ATG 1.0 and 3.0 mg·kg-1 groups,and CCl4+colchicine(COL)0.1 mg·kg-1

  10. Carbon tetrachloride-induced liver injury in the rabbit.

    Science.gov (United States)

    Bernacchi, A. S.; de Castro, C. R.; de Ferreyra, E. C.; Villarruel, M. C.; Fernández, G.; de Fenos, O. M.; Castro, J. A.

    1983-01-01

    CCl4 administration to rabbits leads to early destruction of liver microsomal cytochrome P-450, to depression of glucose 6 phosphatase, to ultrastructurally revealable alterations and to an intense necrosis and fat accumulation in liver. Despite the known resistance of rabbit liver microsomes to lipid peroxidation, CCl4 administration to rabbits promoted lipid peroxidation of their liver microsomal lipids as revealable by the diene hyperconjugation technique, at periods of time from 1 to 12 h. Nevertheless, the intensity of this process is not equivalent to that occurring in rat liver microsomes, since the arachidonic acid content of rabbit liver microsomal lipids does not decrease at either 6 or 24 h after CCl4 administration. Rabbit liver is able to activate CCl4 to reactive metabolites that bind covalently to lipids. Relevance of covalent binding of CCl4 reactive metabolites and CCl4-promoted lipid peroxidation to CCl4-induced rabbit liver injury is analysed. Images Fig. 1 Fig. 2 PMID:6309207

  11. Carbon tetrachloride-induced liver injury in the rabbit.

    OpenAIRE

    Bernacchi, A. S.; de Castro, C. R.; de Ferreyra, E. C.; Villarruel, M. C.; Fernández, G.; de Fenos, O. M.; Castro, J.A.

    1983-01-01

    CCl4 administration to rabbits leads to early destruction of liver microsomal cytochrome P-450, to depression of glucose 6 phosphatase, to ultrastructurally revealable alterations and to an intense necrosis and fat accumulation in liver. Despite the known resistance of rabbit liver microsomes to lipid peroxidation, CCl4 administration to rabbits promoted lipid peroxidation of their liver microsomal lipids as revealable by the diene hyperconjugation technique, at periods of time from 1 to 12 h...

  12. Colchicine antimitosis abolishes resiliency of postnatally developing rats to chlordecone-amplified carbon tetrachloride hepatotoxicity and lethality.

    OpenAIRE

    Dalu, A; Rao, P S; Mehendale, H M

    1998-01-01

    We have previously reported that rats are resilient to the hepatotoxic and lethal combination of chlordecone (CD) and carbon tetrachloride (CCl4) during early postnatal development. The overall findings pointed to stimulated cell division and tissue repair mechanisms as the underlying cause of resistance. The objective of the current study was to investigate if the antimitotic effect of colchicine (CLC) abolishes this resiliency to CD + CCl4 by inhibiting ongoing and stimulated cell division....

  13. Effect of Mallotus Philippensis Muell.-Arg leaves against hepatotoxicity of Carbon tetrachloride in rats

    Directory of Open Access Journals (Sweden)

    Ramakrishna.S,

    2011-02-01

    Full Text Available Liver Toxicity is a major health problem of worldwide proportions. Herbal medicines derived from plant extracts are being increasingly utilized to treat a wide variety of clinical diseases. In the present study MEMP leaves is used to screen the hepatoprotective activity. Hepatotoxicity was induced in experimental animals by administration of carbon tetra chloride (CCl4 (25ml/kg, i.p.. Silymarin (25 mg/kg, p.o. was used as the standard. Functional parameters like onset of sleep and duration of sleep, Biochemical Parameters like serum glutamic oxaloacetic transaminase (SGOT, serum glutamic pyruvic transaminase (SGPT, serum alkaline phosphatase (SALP, total bilirubin and direct bilirubin were measured. Cytotoxicity of CCl4 was estimated by quantitating the release of malondialdehyde (MDA. The activity of tissue antioxidant enzymes namely super oxide dismutase (SOD, catalase (CAT, and the level of total protein (TP were also measured. Histopathological evaluation of liver sections was also done. CCl4 administration in rats elevated the levels of SGPT, SGOT, SALP and bilirubin. Administration of MEMP significantly (P<0.001 prevented this increase. The activity of anti-oxidant enzymes in carbon tetrachloride (CCl4 group was decreased and these enzyme levels were significantly (p<0.001 increased in Mallotus philippensis leaves groups. Histopathological studies revealed that the concurrent administration of MEMP with CCl4 exhibited protection of liver tissue, which further evidenced the above results. Thestudy confirmed the hepatoprotective activity of MEMP, which may be attributed to its antioxidant property.

  14. Ameliorative effects of pomegranate on carbon tetrachloride hepatotoxicity in rats: A molecular and histopathological study.

    Science.gov (United States)

    Ibrahim, Zein Shaban; Nassan, Mohamed Abdo; Soliman, Mohamed Mohamed

    2016-04-01

    The present study aimed to investigate the molecular mechanism underlying the hepatoprotective effects of pomegranate (POM) against oxidative stress in a rat model of carbon tetrachloride (CCl4)-induced liver damage. Injection of rats with CCl4 resulted in hepatic inflammation and lipid accumulation via the upregulation of interleukin (IL)‑6 and sterol regulatory element‑binding protein 1c (SREBP‑1c) mRNA expression. CCl4 induced downregulation of the anti‑inflammatory factors alpha 2‑macroglobulin (α‑2M) and IL‑10 in comparison with the POM treated group. In addition, CCl4 induced downregulation of superoxide dismutase (SOD), glutathione S‑transferase (GST) and catalase (CAT) expression. Conversely, prior administration of POM counteracted the deleterious alterations induced by CCl4. POM downregulated CCl4-induced IL‑6 upregulation, normalized the increase in SREBP‑1c expression, and prevented CCl4‑induced α‑2M downregulation. POM counteracted CCL4‑induced alterations via immunosuppressive, anti‑inflammatory and regenerative effects by upregulating transforming growth factor‑β1, HSP70 and IL-10 mRNA expression. In addition, POM increased reactive oxygen species scavenging activity by augmenting the antioxidant defense mechanism against CCl4 hepatotoxicity, as demonstrated by detecting SOD, CAT and GST expression. These results confirm that, at the molecular level, POM exerts hepatoprotective effects against CCl4‑induced oxidative stress and liver tissue damage. PMID:26936425

  15. EFFECT OF GAVAGE VEHICLE ON HEPATOTOXICITY OF CARBON TETRACHLORIDE IN CD-1 MICE: CORN OIL VERSUS TWEEN-60 AQUEOUS EMULSION (JOURNAL VERSION)

    Science.gov (United States)

    The investigation was conducted to evaluate the effect of corn oil gavage on the subchronic hepatotoxicity of carbon tetrachloride (CCl(4)). Male and female CD-1 mice were gavaged with 0, 1.2, 12, and 120 mg/kg CCl(4) in either corn oil or 1% Tween-60 vehicles once daily for five...

  16. Hepatotoxic Mycotoxins

    Science.gov (United States)

    Mycotoxins are secondary metabolites of fungi. Aflatoxins represent one of the most important classes of hepatotoxic mycotoxins known to adversely affect human health. Aflatoxins are the most potent identified mycotoxins and are produced by three fungal species: the common fungal molds Aspergillus...

  17. DIURNAL RHYTHM OF CARBON TETRACHLORIDE HEPATOTOXICITY IF A LIGHT SYNCHRONIZER IS CHANGED UNNATURALLY

    Directory of Open Access Journals (Sweden)

    Vysotskiy I. Yu.

    2013-07-01

    Full Text Available The experiments were carried out on 72 white male rodents weighing 150-220 g with ad libitum diet during the light and dark periods. These periods were striped in the ratio of 12:12. The toxic damage of liver was caused during the various day periods (at 6am, 10am, 2pm, 6pm, 10pm and 2am by the intramuscular injection of CCl4 solution at a dose of 0.5 ml per 100 g body weight. The samples were gathered in 24 hours after the injection of CCl4. It was pointed that the most significant hepatotoxic influence of CCl4 was at 6pm and 10pm. Perhaps, it is connected to large amount of enzymes contained in the membrane, such as cytochrome P450-3A–reductase and succinate dehydrogenase. The low level of diene conjugates was observed during this period of time, which was the evidence for more serious damages and disruption of the endoplasmic reticulum membranes. Later these membranes were slightly able to metabolize CCl4 to active radicals, which normally induce lipid peroxidation. The significant increase of malondialdehyde level was measured on a background of these conditions. It can be considered as the result of antioxidant system activity exhaustion.

  18. Trifluopromazine late preventive effects on carbon tetrachloride-induced liver necrosis.

    Science.gov (United States)

    de Ferreyra, E C; Bernacchi, A S; San Martin, M F; Castro, G D; Castro, J A

    1995-04-01

    Trifluopromazine (TFPro) administration to rats (50 mg/kg, ip) 30 min before or 6 or 10 hr after CCl4 treatment (1 ml/kg ip in olive oil) partially prevented necrogenic effects of this compound at 24 hr. TFPro has only minor effects on the covalent binding (CB) of CCl4-reactive metabolites to cellular constituents and even an enhancing action on CCl4-promoted lipid peroxidation (LP). Determination of TFPro levels in liver 1 and 3 hr after administration by gas chromatography/mass spectrometry showed its presence in that tissue at concentrations well above those needed for calmodulin (CaM) inhibitory effects of this drug. TFPro lowered body temperature in CCl4-treated animals during the 24-hr observation period. Protective effects of TFPro at 6 or 10 hr, when most of the CB and all of the LP has already occurred, suggest but do not prove a role for CaM in late stages of CCl4-induced necrogenic effects. Decreases in the body temperature of CCl4-poisoned animals provoked by TFPro might also play a role in the preventive actions of this drug. PMID:8549698

  19. Nicotinamide late protective effects against carbon tetrachloride-induced liver necrosis.

    Science.gov (United States)

    de Ferreyra, E C; Bernacchi, A S; San Martín, M F; Castro, G D; Castro, J A

    1994-06-01

    Nicotinamide (NIC) is known to increase the synthesis of pyridine nucleotides and also to inhibit the hydrolysis of them to ADP-ribose, which in turn is involved in Ca2+ release from mitochondria via the ADP ribosylation of crucial mitochondrial proteins. In this work, we test the potential ability of NIC to be a late protective agent against CCl4-induced liver necrosis. We observed that 1 g/kg po NIC, 30 min before or 6 or 10 hr after CCl4 (1 ml/kg), given ip as a 20% (v/v) solution in olive oil, was able to significantly prevent the necrogenic effect of the hepatotoxin at 24 hr as evidenced by determination of isocitric dehydrogenase activity in plasma or by histological observation. NIC administration 6 hr after CCl4 prevented fatty liver induced by hepatotoxin at 24 hr. NIC did not modify CCl4-induced lipid peroxidation process at 1 hr after CCl4 and decreased the covalent binding of 14CCl4 to lipids. NIC decreased the levels of 14CCl4 reaching the liver when given 30 min before hepatotoxin but not when given 6 hr after it. NIC lowered body temperature of rats at 1, 3, and 6 hr and augmented it at 24 hr after CCl4. NIC concentrations in liver as determined by GC/MS/SIM analysis were 21 micrograms/g liver 1 hr after administration and 53 micrograms/g at 3 hr. Late preventive effects of NIC against CCl4 induced liver necrosis when given at 6 or 10 hr after CCl4 are compatible with the hypothesis that NIC restores mitochondrial ability for Ca2+ uptake. This hypothesis remains to be proved and is being further challenged in our laboratory. PMID:7957779

  20. Late protective effects of the anticalmodulin drug fluphenazine on carbon tetrachloride-induced liver necrosis.

    Science.gov (United States)

    de Ferreyra, E C; Bernacchi, A S; San Martin, M F; Castro, G D; Castro, J A

    1995-09-01

    Fluphenazine (FP) treatment (50 mg/kg bw, ip in saline) 30 min before or 6 or 10 h after CCl4 administration (1 ml/kg ip in olive oil) significantly prevented the liver necrosis produced by the hepatotoxin at 24 h. FP had enhancing effects on the covalent binding of CCl4 reactive metabolites to cellular constituents and on CCl4 induced lipid peroxidation. FP lowered body temperature of the CCl4-poisoned animals during the 24 h observation period. The obtained results are compatible but do not prove the hypothesis that calmodulin (CaM) had participation in late occurring events preceding necrosis. FP lowering action on body temperature, however, might also play a role in the effects of this drug on the onset of CCl4 induced liver necrosis. FP levels in liver tissue as determined by gas chromatography-mass spectrometry evidenced the presence of the drug in amounts sufficient to inhibit CaM and that suggests that not all preventive effects of FP are due to its indirect actions on the central nervous system via decreased body temperature. PMID:8561921

  1. Hepatoprotective effects of citric acid and aspartame on carbon tetrachloride-induced hepatic damage in rats

    OpenAIRE

    Omar M. E. Abdel Salam; Shaffie, Nermeen M.; Sleem, Amany A.

    2009-01-01

    The aim of this study was to investigate the effect of citric acid or the sweetening agent aspartame on the CCl4-induced hepatic injury in rats. Citric acid (10 mg/kg, 100 mg/kg or 1000 mg/kg), aspartame (0.625 or 1.25 mg/kg) or silymarin (25 mg/kg) was given once daily orally simultaneously with CCl4 and for one week thereafter. The administration of citric acid at 100 mg/kg or 1000 mg/kg to CCl4-treated rats reduced elevated plasma ALT by 44.1-63.3 %, AST by 47.8-70.6 %, ALP by 41.7-67.2 %,...

  2. Epidermal growth factor protects against carbon tetrachloride-induced hepatic injury.

    Science.gov (United States)

    Berlanga, J; Caballero, M E; Ramirez, D; Torres, A; Valenzuela, C; Lodos, J; Playford, R J

    1998-03-01

    1. Epidermal growth factor (EGF) is known to protect the gastrointestinal tract against various noxious agents. Its potential value in preventing/ treating hepatic injury is, however, largely unexplored. We therefore examined whether EGF could influence CCl4-induced hepatic injury. 2. Female Sprague-Dawley rats (8 per group) received saline or recombinant EGF (500 or 750 micrograms/kg, intraperitoneal) 30 min before CCl4 (20% v/v, in olive oil, intraperitoneal). Eighteen hours later, animals were killed, serum was collected for assay of biochemical markers of hepatic injury and livers were removed for histological analyses. 3. Administration of CCl4 resulted in severe hepatic necrosis and caused a 10-fold rise in plasma alanine aminotransferase levels compared with levels seen in control animals (218 +/- 15 compared with 23 +/- 9 mumol/l in controls, mean +/- SEM, P < 0.01). Serum malondialdehyde levels, used as a marker of lipid peroxidation, showed a 2-fold rise in response to CCl4 treatment (median 4.0, quartile range 3.3-5.8 units/l compared with median 2.3, quartile range 2.1-2.5 units/l in controls, P < 0.05). Administration of EGF at 500 micrograms/kg, before the CCl4, did not protect against injury, as assessed by histology or rise in plasma alanine aminotransferase levels. In contrast, animals given EGF at 750 micrograms/kg, before the CCl4, had only minimal changes in histology, with only a minor rise in alanine aminotransferase levels (37 +/- 4 compared with 23 +/- 9 mumol/l in animals not given CCl4) and had no significant rise in malondialdehyde levels. 4. EGF protects against CCl4-induced hepatic injury and may provide a novel approach to the treatment of liver damage. PMID:9616254

  3. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts

    Science.gov (United States)

    Lin, Bencheng; Zhang, Huashan; Lin, Zhiqing; Fang, Yanjun; Tian, Lei; Yang, Honglian; Yan, Jun; Liu, Huanliang; Zhang, Wei; Xi, Zhuge

    2013-05-01

    The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, and total cholesterol, and in liver pathology, suggesting that SWCNTs clearly have hepatotoxicity in the rat. 1H NMR spectra and pattern recognition analyses from nanomaterial-treated rats showed remarkable differences in the excretion of lactate, trimethylamine oxide, bilineurin, phosphocholine, amylaceum, and glycogen. Indications of amino acid metabolism impairment were supported by increased lactate concentrations and decreased alanine concentrations in plasma. The rise in plasma and liver tissue extract concentrations of choline and phosphocholine, together with decreased lipids and lipoproteins, after SWCNTs treatment indicated a disruption of membrane fluidity caused by lipid peroxidation. Energy, amino acid, and fat metabolism appeared to be affected by SWCNTs exposure. Clinical chemistry and metabonomic approaches clearly indicated liver injury, which might have been associated with an indirect mechanism involving nanomaterial-induced oxidative stress.

  4. Further studies on the late preventive effects of the anticalmodulin trifluoperazine on carbon tetrachloride-induced liver necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.; Bernacchi, A.; Fernandez, G.; Villarruel, M.C.; Ferreyra, E.; Castro, C.; Fenos, O.

    1986-03-01

    The authors previously reported that trifluorperazine (TFP) administration 6 or 10 hr after CCl/sub 4/ is able to partially prevent liver necrosis by the hepatotoxin at 24 hr. Preventive effect is not due to interference by TFP on CCl/sub 4/ metabolic activation to CCl/sub 3/ or its covalent binding to cellular components or of lipid peroxidation. Now the authors report that TFP administration 10 hr after CCl/sub 4/ does not prevent calcium accumulation but increases glycogen content. Increases in glycogen are more marked in livers of animals receiving only TFP. Administration slightly stimulates /sup 14/C-leucine incorporation in liver proteins but it does not modify decay of radioactivity in (/sup 14/C-guanidino) arginine prelabelled liver protein. TFP does not modify decay of radioactivity in /sup 32/P prelabelled phospholipid. Electron microscopy studies of livers from CCl/sub 4/ poisoned rats receiving TFP 10 hr after the hepatoto toxin and sacrificed at 24 hr revealed the presence of glycogen granules in otherwise glycogen-depleted preparations. These preparations showed only slight dilatation of the endoplasmic reticulum or the perinuclear membrane and intact mitochondria. Results might suggest that TFP interaction with calmodulin might interfere with a process of propagation of CCl/sub 4/-induced liver damage sparked by calcium accumulation and requiring the hormone for operation.

  5. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    OpenAIRE

    Jung-Chun Lin; Yi-Jen Peng; Shih-Yu Wang; Mei-Ju Lai; Ton-Ho Young; Salter, Donald M.; Herng-Sheng Lee

    2015-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in m...

  6. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through a-Adrenergic Signaling

    OpenAIRE

    Lin, Jung-Chun; Peng, Yi-Jen; Wang, Shih-Yu; Lai, Mei-Ju; Young, Ton-Ho; Salter, Donald; Lee, Herng-Sheng

    2016-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in m...

  7. Icaritin ameliorates carbon tetrachloride-induced acute liver injury mainly because of the antioxidative function through estrogen-like effects.

    Science.gov (United States)

    Liu, Peng; Jin, Xiang; Lv, Hao; Li, Jing; Xu, Wen; Qian, Hai-hua; Yin, Zhengfeng

    2014-12-01

    To investigate the effects of icaritin, an active ingredient extracted from Epimedium Sagittatum (Sieb. et Zucc.), on CCl4-induced liver injury and its possible mechanisms. Hepatocytes isolated from Sprague-Dawley male rats were treated with 3 mmol/L CCl4 for 24 h to induce acute liver cell injury, then icaritin (0.1, 1, 10, 100 μmol/L, respectively) was administrated to the cells, and estrogen receptor antagonist ICI182,780 (1 μmol/L) was co-treated with 10 μmol/L icaritin. Biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), and superoxide dismutase (SOD)) and cell apoptosis were detected to evaluate the injury degree. Protein expressions of Bax, Bcl-2, liver fatty acid-binding protein (L-FABP), and peroxisome proliferator-activated receptor-α (PPAR-α) as well as reactive oxygen species (ROS) generation were determined by western blot. Icaritin alleviated CCl4-induced liver cell injury in a concentration-dependent manner and 10 μmol/L was the optimal concentration. Icaritin (10 μmol/L) significantly reduced activities of ALT, AST in cell culture medium and MDA level of the impaired liver cells, but increased the intercellular SOD activity. The apoptotic rate of the impaired liver cells was also decreased by icaritin (10 μmol/L) treatment. Icaritin might exert antioxidative and anti-apoptotic functions via estrogen-like effect, as the ratio of Bcl-2/Bax was significantly increased, while protein expressions of L-FABP and PPAR-α were markedly increased, and this function was blocked by the estrogen receptor antagonist ICI182,780 efficiently. Icaritin may be a promising drug candidate for acute liver injury benefiting from the antioxidative and anti-apoptotic functions via estrogen-like effect. PMID:25148823

  8. Evaluation of silymarin and / or ginger effect on induced hepatotoxicity by carbon tetrachloride in male albino rats

    Directory of Open Access Journals (Sweden)

    Hassan H. A.* and EL-Gendy A. M

    2003-09-01

    Full Text Available Liver disease appears to be increase. Part of this increase may be due to our frequent contact with chemicals and other environmental pollutants. The amount of medicne consumed has increased greatly which could be danger to the liver. The hepatoprotective flavonoid, silymarin (7.56 mg/Kg b. wt. and ginger (Zingiber officinale (1% of diet for 4 weeks were used to ameliorate the liver injury in rats intoxicated with carbon tetrachloride (CCL4 , single acute dose 4 ml/ Kg b. wt. of 50% v/v CCL4 in olive oil, subcutaneous. The obtained results showed that CCL4 decreased serum and liver total protein and albumin. Also reduced glutathione content. The antioxidant enzymes; glutathione-S-transferase, superoxide dismutase and catalase activity decreased in the liver of CCL4 toxicity group. On the other hand, CCL4 toxicity increased serum and liver bilirubin, total lipid and total cholestertol levels. In addition, liver function (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase and liver lipid peroxidation content showed significant increase in the CCL4 treated group. Previous parameters turned back to normal values in carbon tetrachloride intoxicated rats after treating with silymarin and/ or ginger for one month. Meanwhile, the most interesting effect was induced by a combination of silymarin and ginger. Hence, the present findings will provide a potential scope for future use of ginger for the treatment of liver disorders.

  9. In vivo antioxidant and hepatoprotective potential of Glycyrrhiza glabra extract on carbon tetra chloride (CCl4 induced oxidative-stress mediated hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Varsha Sharma

    2014-02-01

    Results: The results suggest that, the crude extract of root of G. glabra at the doses of 300 and 600mg/kg body wt. expressed significant hepatoprotective potential against CCl4 induced oxidative stress mediated hepatotoxicity in student ‘t’ test (p [Int J Res Med Sci 2014; 2(1.000: 314-320

  10. Acute hepatotoxicity: a predictive model based on focused illumina microarrays.

    Science.gov (United States)

    Zidek, Nadine; Hellmann, Juergen; Kramer, Peter-Juergen; Hewitt, Philip G

    2007-09-01

    Drug-induced hepatotoxicity is a major issue for drug development, and toxicogenomics has the potential to predict toxicity during early toxicity screening. A bead-based Illumina oligonucleotide microarray containing 550 liver specific genes has been developed. We have established a predictive screening system for acute hepatotoxicity by analyzing differential gene expression profiles of well-known hepatotoxic and nonhepatotoxic compounds. Low and high doses of tetracycline, carbon tetrachloride (CCL4), 1-naphthylisothiocyanate (ANIT), erythromycin estolate, acetaminophen (AAP), or chloroform as hepatotoxicants, clofibrate, theophylline, naloxone, estradiol, quinidine, or dexamethasone as nonhepatotoxic compounds, were administered as a single dose to male Sprague-Dawley rats. After 6, 24, and 72 h, livers were taken for histopathological evaluation and for analysis of gene expression alterations. All hepatotoxic compounds tested generated individual gene expression profiles. Based on leave-one-out cross-validation analysis, gene expression profiling allowed the accurate discrimination of all model compounds, 24 h after high dose treatment. Even during the regeneration phase, 72 h after treatment, CCL4, ANIT, and AAP were predicted to be hepatotoxic, and only these three compounds showed histopathological changes at this time. Furthermore, we identified 64 potential marker genes responsible for class prediction, which reflected typical hepatotoxicity responses. These genes and pathways, commonly deregulated by hepatotoxicants, may be indicative of the early characterization of hepatotoxicity and possibly predictive of later hepatotoxicity onset. Two unknown test compounds were used for prevalidating the screening test system, with both being correctly predicted. We conclude that focused gene microarrays are sufficient to classify compounds with respect to toxicity prediction. PMID:17522070

  11. Hepatotoxicity of amiodarone

    DEFF Research Database (Denmark)

    Rumessen, J J

    1986-01-01

    Amiodarone has proved very effective in the treatment of otherwise resistant cardiac tachyarrhythmias. The use of amiodarone has, however, been limited due to its serious side-effects. A patient with cholestatic hepatitis due to amiodarone treatment is presented below and a review of the...... hepatotoxicity of amiodarone is given. It is concluded that solid evidence exists of hepatic injury due to amiodarone treatment, including steatosis, alterations resembling alcoholic hepatitis, cholestatic hepatitis and micronodular cirrhosis of the liver. Patients receiving amiodarone should be regularly...

  12. In vivo hepatotoxicity study of rats in comparison with in vitro hepatotoxicity screening system.

    Science.gov (United States)

    Kikkawa, Rie; Fujikawa, Masaaki; Yamamoto, Toshinori; Hamada, Yoshimasa; Yamada, Hiroshi; Horii, Ikuo

    2006-02-01

    For the establishment of a high throughput screening system using primary cell cultures, investigation of elucidated toxicities to assess the correlation between in vitro and in vivo hepatotoxicity is necessary in the safety evaluation of the compound. In the previous study, we reported the usability of rat primary cultured hepatocytes for establishment of high throughput screening system. To confirm the reliability of rat primary hepatocytes culture screening system, we conducted a single-dose in vivo study with relatively high dose of hepatotoxicant in rats using 4 reference compounds (acetaminophen, amiodarone, tetracycline, carbon tetrachloride), and investigated histopathological changes and expression of oxidative stress-related proteins by immunohistochemistry. We also carried out a proteomics analysis for estimating the reliable and sensitive biomarkers. Histopathologically, compound-specific hepatotoxicity was detected at 24 hr after administration in all compounds except amiodarone, which is known to induce phospholipidosis. Immunohistochemically, oxidative stress-related proteins were increased within 6 hr after administration in all treated groups. Proteomics analysis revealed several protein biomarkers related to oxidative stress and mitochondrial metabolism-regulation, which had been previously detected by proteomics analysis in in vitro screening system. Oxidative stress-related proteins were considered as useful biomarkers of hepatotoxicity; since they were detected by immunohistochemistry and proteomics analysis prior to appearance of compound-specific histopathological changes detected by light microscopy. Considering the relevance of in vitro system to in vivo system from the aspect of new biomarkers related to the toxicogenomics/toxicoproteomics, in vitro primary cell culture system would be sufficient to detect hepatotoxicity in the early stage of drug discovery. PMID:16538041

  13. Side Effects of HIV Medicines: HIV and Hepatotoxicity

    Science.gov (United States)

    ... the following drug classes can cause hepatotoxicity: Nucleoside reverse transcriptase inhibitors (NRTIs) Hepatotoxicity is a risk with most NRTIs. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) Among NNRTIs, the risk of hepatotoxicity is ...

  14. Enrichment and purification of total flavonoids from Cortex Juglandis Mandshuricae extracts and their suppressive effect on carbon tetrachloride-induced hepatic injury in Mice.

    Science.gov (United States)

    Zhao, Pan; Qi, Chao; Wang, Gang; Dai, Xinpeng; Hou, Xiaohong

    2015-12-15

    In the present work, a simple and efficient chromatographic separation method was developed for preparative separation and enrichment of total flavonoids (TFs) from Cortex Juglandis Mandshuricae (CJM) extracts and then the protective effect of TFs against CCl4-induced acute liver injury in mice was investigated. Enrichment and purification of TFs from CJM extracts were studied using six macroporous resins and HPD-750 resin was selected as the best resin according to its adsorption and desorption properties. The operating parameters of resin column chromatography were optimized. Under the optimal conditions, TFs from CJM with purity larger than 50% were produced and their antioxidant activity was further evaluated in vitro. The mice were orally administrated with the purified TFs for seven days and then given CCl4 (0.3%, 10mL/kg i.p.). The results showed that TFs of CJM significantly attenuated the activities of serum aspartate transaminase (AST) and alanine transaminase (ALT) compared with model group, as well as the relative liver weight. Histopathological observation also revealed that TFs reduced the incidence of liver lesions and improved hepatocyte abnormality. Moreover, oral administration of TFs significantly enhanced antioxidant enzyme activities (superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)) and decreased the content of malondialdehyde (MDA). Histopathological and biochemical results elicited that TFs of CJM had significant hepatoprotective activity comparable to the standard silymarin. This is the first time to reveal the protective actions of the TFs from CJM against CCl4-induced liver damage in mice and this natural product should be developed as a new drug for treatment of live injury in future. PMID:26562802

  15. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts

    OpenAIRE

    Lin, Bencheng; Zhang, Huashan; Lin, Zhiqing; Fang, Yanjun; Tian, Lei; Yang, Honglian; Yan, Jun; Liu, Huanliang; Zhang, Wei; Xi, Zhuge

    2013-01-01

    The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, a...

  16. Paracetamol hepatotoxicity and microsomal function.

    Science.gov (United States)

    Kaushal, R; Dave, K R; Katyare, S S

    1999-03-01

    The effect of paracetamol-induced hepatotoxicity in rats (650 mg/kg) on microsomal function was examined. Paracetamol treatment resulted in lowered Na(+),K(+)-ATPase activity in the microsomes with decrease in V(max) of the low affinity high V(max) component II. However, the temperature kinetics was not influenced significantly. The total phospholipid and cholesterol contents as well as lipid peroxidation in the microsomes were unchanged. However, content of acidic phospholipids: phosphatidylserine and phosphatidylinositol decreased by 50% with a reciprocal increase in the sphingomyelin content; the lysophosphoglyceride content increased by 12-fold. The microsomal membrane appeared to be more fluidized following paracetamol treatment. Paracetamol treatment also resulted in a significant reduction in the sulfhydryl groups content. PMID:21781911

  17. Anabolic androgenic steroid-induced hepatotoxicity.

    Science.gov (United States)

    Bond, Peter; Llewellyn, William; Van Mol, Peter

    2016-08-01

    Anabolic androgenic steroids (AAS) have been abused for decades by both professional and amateur athletes in order to improve physical performance or muscle mass. AAS abuse can cause adverse effects, among which are hepatotoxic effects. These effects include cholestatic icterus and possibly peliosis hepatis and hepatocellular carcinoma or adenoma. In particular, 17α-alkylated AAS appear to be hepatotoxic, whereas nonalkylated AAS appear not to be. The 17α-alkyl substitution retards hepatic metabolism of the AAS rendering it orally bioavailable. The mechanism responsible for the hepatotoxicity induced by 17α-alkylated AAS remains poorly understood. However, oxidative stress has been repeatedly shown to be associated with it. In this manuscript we present a hypothesis which describes a potential mechanism responsible for AAS-induced hepatotoxicity, based on several observations from the literature which suggest oxidative stress being a causal factor. PMID:27372877

  18. Assessment of hepatotoxic liabilities by transcript profiling

    International Nuclear Information System (INIS)

    Male Wistar rats were treated with various model compounds or the appropriate vehicle controls in order to create a reference database for toxicogenomics assessment of novel compounds. Hepatotoxic compounds in the database were either known hepatotoxicants or showed hepatotoxicity during preclinical testing. Histopathology and clinical chemistry data were used to anchor the transcript profiles to an established endpoint (steatosis, cholestasis, direct acting, peroxisomal proliferation or nontoxic/control). These reference data were analyzed using a supervised learning method (support vector machines, SVM) to generate classification rules. This predictive model was subsequently used to assess compounds with regard to a potential hepatotoxic liability. A steatotic and a non-hepatotoxic 5HT6 receptor antagonist compound from the same series were successfully discriminated by this toxicogenomics model. Additionally, an example is shown where a hepatotoxic liability was correctly recognized in the absence of pathological findings. In vitro experiments and a dog study confirmed the correctness of the toxicogenomics alert. Another interesting observation was that transcript profiles indicate toxicologically relevant changes at an earlier timepoint than routinely used methods. Together, these results support the useful application of toxicogenomics in raising alerts for adverse effects and generating mechanistic hypotheses that can be followed up by confirmatory experiments

  19. Hepatotoxicity and the present herbal hepatoprotective scenario

    Directory of Open Access Journals (Sweden)

    Priyankar Dey

    2013-01-01

    Full Text Available Most of the metabolic and physiological processes of our body as well as the detoxification of various drugs and xenobiotic chemicals occur in the liver. During this detoxification process, the reactive chemical intermediates damage the liver severely. There are several commercially available drugs, consumption of which results in idiosyncratic drug reaction mediated hepatotoxicity. Drug induced hepatotoxicity is a burning problem in this regard and several drugs are withdrawn from the market due to their hepatotoxic nature. Today, worldwide search of non-hepatotoxic drugs, especially potent hepatoprotective drugs have led towards the screening of numerous herbal products. Pharmaceutical companies and scientific communities have started to consider the therapeutic efficiency of the plant-based hepatoprotective remedies. Different herbs are mentioned in various ethnopharmacological practices possessing hepatoprotective capacities and around the globe, such herbs are still used by people to cure certain liver diseases. Therefore, we have documented the various aspects of hepatotoxicity and an overview on the current scenario of the hepatoprotective herbal remedies.

  20. Genomic cluster and network analysis for predictive screening for hepatotoxicity.

    Science.gov (United States)

    Fukushima, Tamio; Kikkawa, Rie; Hamada, Yoshimasa; Horii, Ikuo

    2006-12-01

    The present study was undertaken to estimate the usefulness of genomic approaches to predict hepatotoxicity. Male rats were treated with acetaminophen (APAP), carbon tetrachloride (CCL), amiodarone (AD) or tetracycline (TC) at toxic doses. Their livers were extracted 6 or 24 hr after the dosings and were used for subsequent examinations. At 6 hr there were no histological changes noted in any of the groups except for the CCL group, but at 24 hr, such changes were noted in all but the AD group. Regarding genomic analysis, we performed hierarchical cluster analysis using S-plus software. The individual microarray data were clearly classified into 5 treatment-related clusters at 24 hr as well as at 6 hr, even though no morphological changes were noted at 6 hr. In the gene expression analysis using GeneSpring, transcription factor and oxidative stress- and lipid metabolism-related genes were markedly affected in all treatment groups at both time points when compared with the corresponding control values. Finally, we investigated gene networks in the above-affected genes by using Ingenuity Pathway Analysis software. Down-regulation of lipid metabolism-related genes regulated by SREBP1 was observed in all treatment groups at both time points, and up-regulation of oxidative stress-related genes regulated by Nrf2 was observed in the APAP and CCL treatment groups. From the above findings, for the application of genomic approaches to predict hepatotoxicity, we considered that cluster analysis for classification and early prediction of hepatotoxicity and network analysis for investigation of toxicological biomarkers would be useful. PMID:17202758

  1. Hepatotoxicity with antituberculosis drugs: the risk factors

    International Nuclear Information System (INIS)

    To assess the severity and frequency of hepatotoxicity caused by different antituberculosis (ATT) drugs and to evaluate whether concurrence of risk factors influence the antituberculosis drug induced hepatotoxicity. This prospective cohort study was conducted in Medical Unit-V and OPD department of Civil Hospital Karachi from July 2004 to July 2005. A total of 339 patients diagnosed of active tuberculosis infection with normal pretreatment liver function were monitored clinically as well as biochemically. Their data were collected on proforma and patients were treated with Isoniazid, Rifampicin and Pyrazinamide. Duration after which derangement in function, if any, occurred and time taken for normalization was noted. Treatment was altered as needed, with exclusion of culprit drug. Finally data was analyzed by SPSS version 10.0. ATT induced hepatotoxicity was seen in 67 (19.76%) out of 339 patients. Females were more affected as compared to males (26.3% vs. 19.7%). BMI (kg/m2) of 91% of diseased group were less than 18.5 (p<0.01) most of them were anemic having low albumin level suggestive of lean body mass. Hepatotoxicity was more severe in AFB smear positive patients. Concomitant use of alcohol, paracetamol and low serum cholesterol were proved as predisposing factors. Isoniazid (37 patients (55.21%), p<0.01) was the main culprit followed by Rifampicin (23 patients, 34.21%) and Pyrazinamide (7 patients, 10.5%). Most of the patients (61%) developed the hepatotoxicity within two weeks of starting antituberculosis therapy with mild to moderate alteration in ALT and AST. ATT-induced hepatitis is significantly more frequent and more severe in patients with hepatotoxicity risk factors. (author)

  2. Lipidomic profiling reveals protective function of fatty acid oxidation in cocaine-induced hepatotoxicity[S

    OpenAIRE

    Shi, Xiaolei; Yao, Dan; Gosnell, Blake A.; Chen, Chi

    2012-01-01

    During cocaine-induced hepatotoxicity, lipid accumulation occurs prior to necrotic cell death in the liver. However, the exact influences of cocaine on the homeostasis of lipid metabolism remain largely unknown. In this study, the progression of subacute hepatotoxicity, including centrilobular necrosis in the liver and elevation of transaminase activity in serum, was observed in a three-day cocaine treatment, accompanying the disruption of triacylglycerol (TAG) turnover. Serum TAG level incre...

  3. Hepatotoxicity associated with statin use: analysis of the cases included in the Spanish Hepatotoxicity Registry

    Directory of Open Access Journals (Sweden)

    Emilia V. Perdices

    2014-04-01

    Full Text Available Objectives: The hepatotoxic potential of statins is controversial. The objectives of this study were to describe the relative frequency of hepatotoxicity caused by statins and the phenotypes found in Spain. Patients and methods: The incidence of hepatotoxicity attributed to statins in the Spanish Hepatotoxicity Registry (REH were studied and compared with those attributed to other drugs. Results: Between April 1994 and August 2012, the REH included a total of 858 cases of which 47 (5.5 % were attributed to statins. Of these, 16 were due to atorvastatin (34 %; 13 to simvastatin (27.7 %; 12 to fluvastatin (25.5 %; 4 to lovastatin (8.5 % and 2 to pravastatin (4.3 %. Statins represented approximately half of the cardiovascular group which occupied 3.er place (10 %, after anti-infectious agents (37 % and central nervous system drugs (14 %. The hepatocellular pattern was predominant, especially in the simvastatin group (85%, the cholestatic/mixed pattern was more frequent with fluvastatin (66 % and had a similar distribution to atorvastatin. Patients with statin-induced toxicity were older (62 years versus 53 years, p < 0.001 and more often demonstrated an autoimmune hepatitis phenotype (8.5 % versus 1.4 %, p < 0.003. Conclusions: Statins are not a common cause of hepatotoxicity in Spain. Atorvastatin is the statin involved in the greatest number of incidents. The liver injury pattern varies among the different statins. The hepatitis phenotype with autoimmune features appears to be a characteristic signature of statin-induced hepatotoxicity.

  4. Herbal Supplements and Hepatotoxicity: A Short Review.

    Science.gov (United States)

    Haslan, Haszianaliza; Suhaimi, Farihah Haji; Das, Srijit

    2015-10-01

    Herbal products have gained popularity over the past few decades. The reasons attributed to the rise in popularity are cheaper costs, easy availability, patient compliance and fewer side effects. However, liver toxicity following consumption of herbal remedies is on the increase. Thus, there is an urgent need to understand the mechanism of action of the herbal supplements on the liver. Occasionally, herbal supplements may also interact with conventional drugs. The present review focusses on a few herbs such as Aloe barbadensis, Atractylis gummifera, Centella asiatica, Mitragyna speciosa, Morinda citrifolia, Larea tridentata, Symphytum officinale, Teucrium chamaedrys and Xanthium strumarium, which are reported to cause hepatotoxicity in humans and animals. Prior knowledge on hepatotoxicity caused by herbs may be beneficial for clinicians and medical practitioners. PMID:26669124

  5. Large animal hepatotoxic and nephrotoxic plants.

    Science.gov (United States)

    Oladosu, L A; Case, A A

    1979-10-01

    The hepatotoxic and nephrotoxic plants of large domestic animals have been reviewed. The most important ones are those widely distributed as weeds over pastures, negelcted forests and grasslands, those used as ornamentals, the nitrate concentrating forage crops, and the cyanophoric plants. Crotolaria spp, the ragwort (Senecia jacobaea), the lantana spp. and heliotopum are common hepatoxic plants. Amaranthus retroflexus, Datura stramonium, Solanum rostratum, and the castor oil plant (Ricinus communis) are nephrotoxic plants. PMID:516370

  6. Liver hepatotoxicity associated with pantoprazole: a rare case report.

    Science.gov (United States)

    Aslan, Mehmet; Celik, Yilmaz; Karadas, Sevdegul; Olmez, Sehmus; Cifci, Adem

    2014-06-01

    Hepatotoxicity may occasionally develop over the course of treatment with proton pump inhibitors (PPIs). Although skin reactions, interstitial nephritis, pancytopenia, anaphylaxis, and generalized edema have been reported to be associated with PPIs, hepatotoxicity associated with oral pantoprazole is very rare. In this report, we present a case of hepatotoxicity in a 35-year-old man who received pantoprazole (40 mg/day) for acute gastritis. One week after discontinuation of pantoprazole, his liver function began to improve, and the patient gradually fully recovered. Although this toxicity occurs only infrequently, pantoprazole should be considered as a rare hepatotoxic agent in the literature. PMID:24652021

  7. Alpha methyldopa induced hepatotoxicity in pregnancy

    Directory of Open Access Journals (Sweden)

    Padmasri Ramalingappa

    2014-06-01

    Full Text Available We report a case of gestational hepatitis due to alpha-methyldopa and briefly review the literature on alpha-methyldopa-induced hepatotoxicity in pregnancy. A 32 year old woman, primigravida with 34 weeks of gestation with pre eclampsia, presented with symptoms of nausea, dark coloured urine and jaundice. She was on alpha methyldopa (Aldomet 250 mg thrice a day since the last five weeks. Laboratory investigations revealed raised bilirubin, serum aspartate transaminases and serum alanine transaminases. Platelets were normal. Peripheral smear did not show haemolysis. With the exclusion of viral, haemolytic and obstructive causes, drug induced jaundice was considered as a differential diagnosis. Alpha methyldopa was withdrawn and replaced with nifedipine for her pre eclampsia treatment. Her repeat bilirubin level done two weeks later showed a drop. She went into labour at 38 weeks and delivered vaginally. In postpartum follow up her liver tests returned to normal in two weeks, about six weeks after stopping methyldopa. Hepatotoxicity should be considered as one of the adverse drug reaction of alpha methyldopa. It is not possible at present to predict which patients will develop liver disease following the administration of this drug. An awareness of the possibility of methyldopa induced hepatotoxicity should be present in the clinician's mind and liver function tests should be done at regular intervals. The occasional occurrence of this harmful side effect is not a contraindication to the use of this antihypertensive agent. [Int J Reprod Contracept Obstet Gynecol 2014; 3(3.000: 805-807

  8. Hepatotoxicity of Cadmium and Roles of Mitigating Agents

    Directory of Open Access Journals (Sweden)

    Elias Adikwu

    2013-12-01

    Full Text Available There are increasing reports on cadmium associated hepatotoxicity, due to these reports this study reviewed relevant literature on cadmium associated hepatotoxicity with emphasis on doses, route of administration, salt forms (cadmium compounds and the roles of mitigating agents. Reports have shown that continuous exposure of the liver to cadmium has led to hepatotoxicity. Humans are generally exposed to cadmium by two main routes, inhalation and ingestion. In this study, evaluation of relevant literature showed that irrespective of route of administration and salt forms cadmium hepatotoxicity is dose and time dependent. Cadmium associated hepatotoxicity manifested through impaired functions of hepatic biomarkers (transaminases, enzymatic and non enzymatic antioxidants. Histopathological damage to liver architecture manifested as swelling of hepatocytes, focal necrosis, hepatocytes degeneration, dilatation of ribosomes, damage of membrane-bounded lysosomes, nuclear pyknosis and cytoplasm vacuolization. Deterioration of mitochondrial cristae, deposition of collagen fibrils, hypertrophy of kuffer cells, congestion in central veins and sinusoids, infiltration of mixed inflammatory cells and peripheral hemorrhage also occurred. Hepatotoxic effect of cadmium was mitigated by Vitamin C, Vitamin E, Manganese (11 Chloride, N-acetylcysteine and Selenium. Extracts of plant origin including Solanum tuberosum, Calycopteris floribunda Hibiscus sabdariffa mitigated cadmium induced hepatotoxicity. Chemical substances of animal origin including honey and camel milk were reported to have ameliorated cadmium induced hepatotoxicity. One of the mechanisms of cadmium induced hepatotoxicity is reported to be associated with the up regulation of reactive oxygen species (oxidative stress which caused oxidative damage to lipid contents of membranes and direct liver injury. Conclusion cadmium is dose and time dependently hepatotoxic irrespective of route of administration

  9. Idiosyncratic drug hepatotoxicity: a 2008 update.

    Science.gov (United States)

    Andrade, Raúl J; López-Ortega, Susana; López-Vega, M Carmen; Robles, Mercedes; Cueto, Ignacio; Lucena, M Isabel

    2008-03-01

    Pharmaceutical preparations, and also herbal products and dietary supplements, are emerging contributors to severe forms of liver disease. Although acetaminophen intoxication is still the reason for many cases of drug-induced liver injury (DILI) in Western countries, the bulk of hepatic reactions to drugs are idiosyncratic. Only a small fraction of individuals exposed to a drug associated with liver injury will develop hepatotoxicity. Indeed, the rarity of this serious adverse event prevents its detection in clinical trials. The pathogenesis of idiosyncratic DILI is not well known because of a lack of reliable animal models, although it probably involves the metabolism of the drug and/or activation of the immune system. Different databases have described antibiotics, NSAIDs and anticonvulsants as the main group of drugs incriminated in DILI. Clinical presentation of DILI includes predominantly a hepatocellular type of damage, yet cholestatic and mixed types are also common; the determinants of the type of damage induced by a given drug are poorly understood. Analysis of pooled data has recently underlined the influence of older age in the cholestatic/mixed expression of liver injury, as well as the independent association of female gender, older age, aspartate aminotransferase levels with hepatocellular type of damage and high bilirubin levels with the risk of fulminant liver failure/death. In the long term (providing the patient survives the initial episode), persistent damage may occur in at least 6% of patients, with the cholestatic mixed type of damage more prone to becoming chronic, while in the hepatocellular pattern the severity is greater, with further likelihood of evolution to cirrhosis. Cardiovascular and CNS drugs are the main groups leading to chronic liver damage. The diagnosis of hepatotoxicity remains a difficult task owing to the lack of reliable markers for use in general clinical practice. Diagnostic algorithms may add consistency to clinical

  10. Lead hepatotoxicity: Selected aspects of pathobiochemistry

    Directory of Open Access Journals (Sweden)

    Mateusz Labudda

    2013-08-01

    Full Text Available Lead (Pb that belongs to heavy metals is one of the major pollution components of the environment. Occupational and environmental exposure to lead can cause its absorption by the body and consequently exert toxic effects in the liver. In this paper biochemical determinants of hepatotoxicity caused by lead are presented. Generation of reactive oxygen species, disturbances in the cellular antioxidant system, lipid peroxidation, inhibition of enzymatic proteins and intercellular signaling are also discussed. Med Pr 2013;64(4:565–568

  11. Acetaminophen-Induced Hepatotoxicity: a Comprehensive Update.

    Science.gov (United States)

    Yoon, Eric; Babar, Arooj; Choudhary, Moaz; Kutner, Matthew; Pyrsopoulos, Nikolaos

    2016-06-28

    Hepatic injury and subsequent hepatic failure due to both intentional and non-intentional overdose of acetaminophen (APAP) has affected patients for decades, and involves the cornerstone metabolic pathways which take place in the microsomes within hepatocytes. APAP hepatotoxicity remains a global issue; in the United States, in particular, it accounts for more than 50% of overdose-related acute liver failure and approximately 20% of the liver transplant cases. The pathophysiology, disease course and management of acute liver failure secondary to APAP toxicity remain to be precisely elucidated, and adverse patient outcomes with increased morbidity and mortality continue to occur. Although APAP hepatotoxicity follows a predictable timeline of hepatic failure, its clinical presentation might vary. N-acetylcysteine (NAC) therapy is considered as the mainstay therapy, but liver transplantation might represent a life-saving procedure for selected patients. Future research focus in this field may benefit from shifting towards obtaining antidotal knowledge at the molecular level, with focus on the underlying molecular signaling pathways. PMID:27350943

  12. Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Shakir D. AlSharari

    2016-01-01

    Full Text Available Background and Objective. High-cholesterol diet (HCD intends to increase the oxidative stress in liver tissues inducing hepatotoxicity. Rutin is a natural flavonoid (vitamin p which is known to have antioxidative properties. The aim of the present study was to investigate the potential effects of Rutin on hypercholesterolemia-induced hepatotoxicity in rats. Materials and Methods. Male Wistar rats were divided into four groups: G-I control, G-II Rutin, G-III HCD, and G-IV Rutin + HCD. The liver functions and lipid profile were used to evaluate the HCD-induced hepatotoxicity. Quantitative real time-PCR was carried out to evaluate the expression levels of genes in TGF-β/Smad signaling pathway. Results. Rutin in combination with HCD showed a significant protective effect against hepatotoxicity. HCD caused significant increase in the mRNA expression of transforming growth factor beta (TGF-β, Mothers Against Decapentaplegic Homolog 2 (Smad-2, Mothers Against Decapentaplegic Homolog 4 (Smad-4, Bcl-2-binding component 3 (Bbc3, caspase-3, P53 and Interleukin-6 (IL-6 and decrease in the expression levels of Cyclin depended kinase inhibitor (P21 and Interleukin-3 (IL-3 in hepatic cells. Conclusion. TGF-β/Smad signaling pathway is involved in HCD-induced hepatotoxicity and Rutin inhibits the hepatotoxicity via suppressing this pathway. Therefore, Rutin might be considered as a protective agent for hepatotoxicity.

  13. Agaricus blazei Murill as an efficient hepatoprotective and antioxidant agent against CCl4-induced liver injury in rats

    OpenAIRE

    Al-Dbass, Abeer M.; Al- Daihan, Sooad K.; Bhat, Ramesa Shafi

    2012-01-01

    Agaricus blazei Murill is one of the very popular edible medicinal mushrooms. The present study investigated the protective effect of this biologically active mushroom on the tissue peroxidative damage and abnormal antioxidant levels in carbon tetrachloride induced hepatotoxicity in male albino rats. Male albino rats of Sprague–Dawley strain weighting (120–150 g) were categorized into five groups. The first group served as the normal control, the second and the third groups were treated with ...

  14. Evaluation of hepatoprotective activity of Bergamot orange in rats

    OpenAIRE

    Karaca, Mehmet; İLHAN, Fatma; Altan, Hasan; Him, Aydın; TÜTÜNCÜ, Mehmet; Özbek, Hanefi

    2013-01-01

    Abstract. Essential oil extract of Bergamot orange (BO) was investigated for its hepatoprotective effect on carbon tetrachloride-induced hepatotoxicity in rats. Six different groups were established. Silibinin was used as the reference agent. BO significantly reduced the serum ALT level when compared to CCl4 group while it did not affect the serum AST level. The histopathological findings did not show any significant difference between the BO and CCl4 groups. The results suggest that BO has a...

  15. ANTAGONISM OF CHLOROBENZENE-INDUCED HEPATOTOXICITY BY LINDANE

    Science.gov (United States)

    In a 2x2 factorial designed experiment involving chlorobenzene and gamma-hexachlorocyclohexane (lindane), the hepatotoxicity induced by a challenge dose of chlorobenzene was altered by the pretreatments due to selective changes in various metabolic pathways. These changes resulte...

  16. Effect of AND#945;-tocopherol on antitubercular drugs induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Rajiv Nehra

    2016-04-01

    Conclusions: and #945;-tocopherol (200 mg/kg bw, oral was found to have hepatoprotective effect against antitubercular drugs induced hepatotoxicity in albino rabbits. [Int J Res Med Sci 2016; 4(4.000: 1158-1162

  17. Hepatotoxicity caused by montelukast in a paediatric patient

    OpenAIRE

    Lebensztejn, Dariusz M; Bobrus-Chociej, Anna; Kłusek, Monika; Uscinowicz, Miroslawa; Lotowska, Joanna; Sobaniec-Lotowska, Maria; Kaczmarski, Maciej

    2014-01-01

    Montelukast is a selective and competitive cysteinyl leukotriene receptor antagonist (CystLTRA) which is increasingly used for the treatment of allergic asthma. Recently, hepatotoxicity has been reported with this drug in adult patients, but only one letter to the editor has reported a case of probable montelukast-induced hepatotoxicity in a child. We present a case of a 3.5-year-old boy, receiving treatment with montelukast, who developed hepatocellular injury. The exclusion of other causes ...

  18. Herbalife hepatotoxicity: Evaluation of cases with positive reexposure tests

    OpenAIRE

    Rolf Teschke; Christian Frenzel; Johannes Schulze; Alexander Schwarzenboeck; Axel Eickhoff

    2013-01-01

    AIM: To analyze the validity of applied test criteria and causality assessment methods in assumed Herbalife hepatotoxicity with positive reexposure tests. METHODS: We searched the Medline database for suspected cases of Herbalife hepatotoxicity and retrieved 53 cases including eight cases with a positive unintentional reexposure and a high causality level for Herbalife. First, analysis of these eight cases focused on the data quality of the positive reexposure cases, requiring a baseline valu...

  19. Mecanismos de hepatotoxicidade Mechanisms of hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Marcelo Chiara Bertolami

    2005-10-01

    Full Text Available Hepatopatia relacionada ao uso de drogas hipolipemiantes tem sido definida como um dano celular (aumento das enzimas AST e ALT sem alterações colestáticas (aumento de bilirrubinas e/ou fosfatase alcalina. Seis mecanismos são propostos para a hepatopatia: 1. Reações de alta energia no citocromo P450 comprometendo a homeostase do cálcio com a ruptura de fibrilas intracelulares e lise de hepatócitos. 2. Disfunção de proteínas transportadoras relacionadas com o fluxo de ácidos biliares (mecanismo proposto para a toxicidade hepática dos fibratos. 3. Reações imunes geradas pela formação de metabólitos das drogas hipolipemiantes formados no fígado. 4. Hepatoxicidade promovida por células T com inflamação adicional mediada por neutrófilos. 5. Apoptose mediada por TNF e Fas (imune-mediada. 6. Estresse oxidativo gerado por dano a organelas intracelulares. Ainda, idade avançada, consumo excessivo de álcool, altas doses de drogas hipolipemiantes, interação com outros fármacos, e doença hepática ativa prévia podem aumentar a hepatotoxidade.Liver disease following the use of hypolipidemic drugs has been reported as a cellular damage (increases in AST or ALT enzymes without cholestatic alterations (bilirubin and or alkaline phosphatase increases. Six mechanisms were proposed for hepatotoxicity : 1. High energy reactions on P450 cytochrome impairing calcium homestasis with rupture of intracellular fibrils and hepatocyte lysis. 2. Impairment of transporter proteins related to the bile acids flux (mechanism proposed for fibrate liver toxicity. 3. Immune reactions due to the formation of metabolites linked to enzymes following liver metabolism of hypolipidemic drugs. 4. Hepatotoxicity by T cells with additional inflammation mediated by neutrophils. 5. Apoptosis mediated by TNF and Fas (immune mediated. 6. Oxidative stress due to damage of intracellular organelles. In addition, advanced age, alcohol in excess, high doses of

  20. Increased hepatotoxicity of acetaminophen in Hsp70i knockout mice

    International Nuclear Information System (INIS)

    The effect of the inducible forms of 70 kDa heat shock protein (Hsp70i) on acetaminophen (APAP) hepatotoxicity was assessed in an Hsp70i knockout mouse model. Absence of the Hsp70i protein in liver was verified by monitoring Hsp levels in knockout and control mice after heat stress (41.5 oC water bath immersion for 30 min). Hsp70i knockout mice were more susceptible to APAP-induced hepatotoxicity than controls, as indicated by elevated serum alanine aminotransferase activities 24 and 48 h after the APAP dose. Increased APAP hepatotoxicity in knockout mice was verified by morphological evaluation of liver sections. The difference in toxic response to APAP between knockout and control strain mice could not be attributed to differences in APAP bioactivation, assessed by measurement of CYP2E1 and glutathione S-transferase activities, hepatic nonprotein sulfhydryl content, or covalent binding of reactive APAP metabolites to proteins. Pretreatment with transient hyperthermia to produce a general upregulation of Hsps resulted in decreased APAP hepatotoxicity in both the knockout and control strains. Among thermally-pretreated mice, hepatotoxicity of APAP was greater in the knockouts compared with the control strain. These observations suggest that increased Hsp70i expression in response to APAP acts to limit the extent of tissue injury. Results further suggest that other factors related to heat stress can also contribute to protection against APAP toxicity

  1. DIFFERENT MODELS OF HEPATOTOXICITY AND RELATED LIVER DISEASES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Singh Robin

    2012-07-01

    Full Text Available The liver is among the most complex and important organs in the human body. Its primary function is to control the flow and safety of substances absorbed from the digestive system before distribution of these substances to the systemic circulatory system. Hepatotoxicity implies chemical-driven liver damage. Chemicals that cause liver injury are called hepatotoxins. Hepatic injury leads to disturbances in transport function of hepatocytes resulting in leakage of plasma membrane thereby causing an increased enzyme level in serum. There are many diseases that are related with hepatotoxicity caused by certain chemicals or hepatotoxins. Herbal medicines are great demand in various chemicals and drugs disordered hepatic, the developed world for primary health care because of their efficacy, safety, lesser side effects and narrow therapeutic window. This review focus on liver, its function, liver diseases and different models of hepatotoxicity.

  2. Herbal Hepatotoxicity: Clinical Characteristics and Listing Compilation

    Directory of Open Access Journals (Sweden)

    Christian Frenzel

    2016-04-01

    Full Text Available Herb induced liver injury (HILI and drug induced liver injury (DILI share the common characteristic of chemical compounds as their causative agents, which were either produced by the plant or synthetic processes. Both, natural and synthetic chemicals are foreign products to the body and need metabolic degradation to be eliminated. During this process, hepatotoxic metabolites may be generated causing liver injury in susceptible patients. There is uncertainty, whether risk factors such as high lipophilicity or high daily and cumulative doses play a pathogenetic role for HILI, as these are under discussion for DILI. It is also often unclear, whether a HILI case has an idiosyncratic or an intrinsic background. Treatment with herbs of Western medicine or traditional Chinese medicine (TCM rarely causes elevated liver tests (LT. However, HILI can develop to acute liver failure requiring liver transplantation in single cases. HILI is a diagnosis of exclusion, because clinical features of HILI are not specific as they are also found in many other liver diseases unrelated to herbal use. In strikingly increased liver tests signifying severe liver injury, herbal use has to be stopped. To establish HILI as the cause of liver damage, RUCAM (Roussel Uclaf Causality Assessment Method is a useful tool. Diagnostic problems may emerge when alternative causes were not carefully excluded and the correct therapy is withheld. Future strategies should focus on RUCAM based causality assessment in suspected HILI cases and more regulatory efforts to provide all herbal medicines and herbal dietary supplements used as medicine with strict regulatory surveillance, considering them as herbal drugs and ascertaining an appropriate risk benefit balance.

  3. Protective effect of Livactine against CCl4 and paracetamol induced hepatotoxicity in adult Wistar rats

    Directory of Open Access Journals (Sweden)

    Candasamy Mayuren

    2010-10-01

    Full Text Available Background: Liver disease has become one of the serious health problems as it is exposed to many kinds of xenobiotics and therapeutic agents. Moreover the rapidly growing morbidity and mortality from liver disease are attributable to the increasing number of chemical compounds and environmental pollution. Unfortunately, so far, in the modern era of medicine there is no specific treatment to counter the menacing impact of these dreaded diseases. Many polyherbal formulations are used widely to treat these disorders. Livactine is a polyherbal formulation and is claimed to be useful in jaundice and biliary dysfunctions. Most of these formulations do not have standard and approved reports stating their pharmacological action or therapeutic efficacy. Therefore, there is a need for experimental confirmation of the pharmacological effects of this formulation. The rationale behind the selection of carbon tetrachloride is due to its free radical mechanism based liver injury, and paracetamol is consumed widely by the human population and it is also a potential liver hazard. Aim: To evaluate the anti-hepatotoxic activity of Livactine against carbon tetrachloride & paracetamol induced toxicity in rats. Material and Methods: Albino rats of Wistar strain were used to evaluate the hepatoprotective activity of Livactine against carbon tetrachloride & paracetamol induced toxicity. Liver damage was assessed by estimating various biochemical parameters such as serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, lactate dehydrogenase, alkaline phosphatase, acid phosphatase, total bilirubin, and total protein. The results of the rats treated with Livactine were compared with that of Liv-52.Results: Livactine showed significant dose dependent hepatoprotective effect by reducing elevated serum enzyme levels when compared to that of Liv-52.Conclusion: Our findings confirm that the formulation was found to be effective pharmacologically at

  4. Lysosomal Cholesterol Accumulation Sensitizes To Acetaminophen Hepatotoxicity by Impairing Mitophagy

    Science.gov (United States)

    Baulies, Anna; Ribas, Vicent; Núñez, Susana; Torres, Sandra; Alarcón-Vila, Cristina; Martínez, Laura; Suda, Jo; Ybanez, Maria D.; Kaplowitz, Neil; García-Ruiz, Carmen; Fernández-Checa, Jose C.

    2015-01-01

    The role of lysosomes in acetaminophen (APAP) hepatotoxicity is poorly understood. Here, we investigated the impact of genetic and drug-induced lysosomal cholesterol (LC) accumulation in APAP hepatotoxicity. Acid sphingomyelinase (ASMase)−/− mice exhibit LC accumulation and higher mortality after APAP overdose compared to ASMase+/+ littermates. ASMase−/− hepatocytes display lower threshold for APAP-induced cell death and defective fusion of mitochondria-containing autophagosomes with lysosomes, which decreased mitochondrial quality control. LC accumulation in ASMase+/+ hepatocytes caused by U18666A reproduces the susceptibility of ASMase−/− hepatocytes to APAP and the impairment in the formation of mitochondria-containing autolysosomes. LC extraction by 25-hydroxycholesterol increased APAP-mediated mitophagy and protected ASMase−/− mice and hepatocytes against APAP hepatotoxicity, effects that were reversed by chloroquine to disrupt autophagy. The regulation of LC by U18666A or 25-hydroxycholesterol did not affect total cellular sphingomyelin content or its lysosomal distribution. Of relevance, amitriptyline-induced ASMase inhibition in human hepatocytes caused LC accumulation, impaired mitophagy and increased susceptibility to APAP. Similar results were observed upon glucocerebrosidase inhibition by conduritol β-epoxide, a cellular model of Gaucher disease. These findings indicate that LC accumulation determines susceptibility to APAP hepatotoxicity by modulating mitophagy, and imply that genetic or drug-mediated ASMase disruption sensitizes to APAP-induced liver injury. PMID:26657973

  5. Low-dose cyclophosphamide-induced acute hepatotoxicity

    OpenAIRE

    Subramaniam, S. Ravih; Cader, Rizna Abdul; Mohd, Rozita; Yen, Kong Wei; Ghafor, Halim Abdul

    2013-01-01

    Patient: Male, 48 Final Diagnosis: Low dose cyclophosphamide-induced acute hepatotoxicity Symptoms: Epigastric pain Medication: Withdrawal of cyclophosphamide Clinical Procedure: — Specialty: Nephrology • Hepatology • Gastroenterology • Toxicology Objective: Unexpected drug reaction Background: Cyclophosphamide is commonly used to treat cancers, systemic vasculitides, and kidney diseases (e.g., lupus nephritis and focal segmental glomerulosclerosis). Acute adverse effects include bone marrow ...

  6. A CASE REPORT: IMATINIB INDUCED HEPATOTOXICITY IN CHRONIC MYELOGENOUS LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Mohd. Riyaz

    2014-07-01

    Full Text Available 45 Year old female admitted with complains of Body Pains, Generalized Weakness, and Lethargy. On evaluation CBP suggestive of Leukocytosis, Blast cells present. Ultrasound suggestive of Hepatomegaly, Splenomegaly. Bone Marrow suggestive of CML-Accelerated phase, FISH: Positive for BCR/ABL rearrangement (variant loss of ABL/BCR on Derivtive9. Liver Function Test: Normal. Patient was started on Imatinib after getting FISH report. Initially the patient tolerated the drug well with few days patient developed deranged liver enzymes which was not due to infective or inflammatory cause, but the drug was the cause of the deranged liver enzymes. In many trials it has shown that imatinib is hepatotoxic. In 1.5 to 5.2 % of patients develops elevation of transaminases i.e. (grade 3 or 4. In patients who have developed hepatotoxicity the Imatinib dose decrease or stoppage may results in reduction of hepatic dysfunction.in less than 0.5 % of patient imatinib discontinuation was needed in view of hepatotoxicity not reducing even after dose reduction also. It is utmost important to know that imatinib causes Hepatotoxicity. So patients on imatinib should be close follow up for the complication

  7. Possible hepatotoxic effect of rooibos tea: a case report

    OpenAIRE

    Sinisalo, Marjatta; Enkovaara, Anna-Liisa; Kivistö, Kari T.

    2010-01-01

    Possible hepatotoxic effect of rooibos tea: a case report (Kivisto, Kari T.) Department of Internal Medicine, Tampere University Hospital - Tampere - FINLAND (Sinisalo, Marjatta) Department of Pharmacological Sciences, Medical School, University of Tampere - 33014 - Tampere - FINLAND (Sinisalo, Marjatta) Department of Internal Medicine, Tampere University Hospital - Tampere - FINLAND (Enkovaara, Anna-Liisa) Department of Pharmacological Sciences, Medical...

  8. Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats

    Directory of Open Access Journals (Sweden)

    M Anusha

    2011-01-01

    Full Text Available Objective : To investigate the hepatoprotective activity of the aqueous extract of the aerial parts of Portulaca oleracea (P. oleracea in combination with lycopene against carbon tetrachloride induced hepatotoxicity in rats. Materials and Methods : Hepatotoxicity was induced in male Wistar rats by intraperitoneal injection of carbon tetrachloride (0.1 ml/kg b.w for 14 days. The aqueous extract of P. oleracea in combination with lycopene (50 mg/kg b.w was administered to the experimental animals at two selected doses for 14 days. The hepatoprotective activity of the combination was evaluated by the liver function marker enzymes in the serum [aspartate transaminases (AST, alanine transaminases (ALT, alkaline phosphatase (Alk.P, total bilirubin (TB, total protein (TP and total cholesterol (TC], pentobarbitone induced sleeping time (PST and histopathological studies of liver. Results : Both the treatment groups showed hepatoprotective effect against carbon tetrachloride induced hepatotoxicity by significantly restoring the levels of serum enzymes to normal which was comparable to that of silymarin group. Besides, the results obtained from PST and histopathological results also support the study. Conclusions : The oral administration of P. oleracea in combination with lycopene significantly ameliorates CCl 4 hepatotoxicity in rats.

  9. PROTECTIVE EFFECT OF Solanum Pubescens LINN ON CCL4 INDUCED HEPATOTOXICITY IN ALBINO RATS

    Directory of Open Access Journals (Sweden)

    M.Pushpalatha

    2012-01-01

    Full Text Available Ethanol extract of Solanum pubescens Linn was evaluated for hepato protective and antioxidant activities in rats. The plant extract (500mg/kg/day showed a remarkable hepatoprotective and antioxidant activity against Carbon tetrachloride (CCl4-induced hepatotoxicity as judged from the serum marker enzymes and antioxidant levels in liver tissues. CCl4 induced a significant rise in aspartate amino transferase (AST, alanine amino transferase (ALT, alkaline phosphatase (ALP, total bilirubin, LPO with a reduction of total protein, superoxide dismutase (SOD, catalase, and reduced glutathione (GSH. Treatment of rats with plant extract (500 mg/kg significantly (P<0.01 altered serum marker enzymes and antioxidant levels to near normal against CCl4 - treated rats. The activity of the extract at dose of 500 mg/kg was comparable to the standard drug, Silymarin (50 mg/kg, p.o.. Histopathological examination of the liver tissues supported the hepatoprotective activity of plant.

  10. Chicory (Cichorium intybus L.) Root Extract Regulates the Oxidative Status and Antioxidant Gene Transcripts in CCl4-Induced Hepatotoxicity

    OpenAIRE

    El-Sayed, Yasser S.; Lebda, Mohamed A.; Mohammed Hassinin; Neoman, Saad A.

    2015-01-01

    The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injecti...

  11. SlimQuick™ - associated hepatotoxicity in a woman with alpha-1 antitrypsin heterozygosity

    OpenAIRE

    Weinstein, Douglas H; Twaddell, William S.; Raufman, Jean-Pierre; Philosophe, Benjamin; Mindikoglu, Ayse L

    2012-01-01

    Green tea (Camellia sinensis)-associated hepatotoxicity is reported. However, the presence of alpha-1 antitrypsin MZ phenotype as a predisposing factor to green tea-associated drug-induced liver injury (DILI) is unknown. A previously healthy woman with alpha-1 antitrypsin MZ phenotype who took SlimQuick™, an herbal supplement containing green tea extract, developed severe hepatotoxicity requiring corticosteroid treatment. Green tea-associated hepatotoxicity is reviewed and alpha-1 antitrypsin...

  12. Hepatotoxicity by Drugs: The Most Common Implicated Agents

    Directory of Open Access Journals (Sweden)

    Einar S. Björnsson

    2016-02-01

    Full Text Available Idiosyncratic drug-induced liver injury (DILI is an underreported and underestimated adverse drug reaction. Information on the documented hepatotoxicity of drugs has recently been made available by a website that can be accessed in the public domain: LiverTox (http://livertox.nlm.nih.gov. According to critical analysis of the hepatotoxicity of drugs in LiverTox, 53% of drugs had at least one case report of convincing reports of liver injury. Only 48 drugs had more than 50 case reports of DILI. Amoxicillin-clavulanate is the most commonly implicated agent leading to DILI in the prospective series. In a recent prospective study, liver injury due to amoxicillin-clavulanate was found to occur in approximately one out of 2300 users. Drugs with the highest risk of DILI in this study were azathioprine and infliximab.

  13. The Possible Efficacy of Artichoke in Fluconazole Related Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hüseyin Kurt

    2014-01-01

    Full Text Available Although fluconazole related hepatotoxicity (FRH is rare, mortal acute hepatic necrosis and jaundice were reported in immunocompromised states such as acquired immunodeficiency syndrome (AIDS and bone marrow transplant (BMT. We present a case of a patient with multiple sclerosis who developed hepatotoxicity with the use of a single 150 mg fluconazole tablet for fungal vaginitis, 10 days after methylprednisolone pulse treatment. Our patient’s alanine aminotransferase (ALT and aspartate aminotransferase (AST levels were decreased, 1200 U/L and 800 U/L, respectively, and bilirubin levels were consistent at 37 mg/dL. Artichoke which has anticholestatic and antioxidant properties was used by our patient. She consumed a 30 mg artichoke leaf extract tea 3 times a day. The bilirubin levels significantly declined at the end of the first week and all liver function tests were normalized within 2 months.

  14. Food Color Induced Hepatotoxicity in Swiss Albino Rats, Rattus norvegicus

    OpenAIRE

    Saxena, Beenam; Sharma, Shiv

    2015-01-01

    Objective: Certain dietary constituents can induce toxicity and play a critical role in the development of several hepatic disorders. Tartrazine, metanil yellow and sunset yellow are widely used azo dyes in food products, so the present study is aimed to investigate the food color induced hepatotoxicity in Swiss albino rats. Materials and Methods: Swiss albino rats were divided into four groups, each group having six animals. Group I served as control, Group II, Group III and Group IV were ad...

  15. Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics

    OpenAIRE

    Miren García-Cortés; Mercedes Robles-Díaz; Aida Ortega-Alonso; Inmaculada Medina-Caliz; Andrade, Raul J.

    2016-01-01

    Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural r...

  16. Hepatotoxicity of NONI juice: Report of two cases

    OpenAIRE

    Stadlbauer, Vanessa; Fickert, Peter; Lackner, Carolin; Schmerlaib, Jutta; Krisper, Peter; Trauner, Michael; Stauber, Rudolf E

    2005-01-01

    AIM: NONI juice (Morinda citrifolia) is an increasingly popular wellness drink claimed to be beneficial for many illnesses. No overt toxicity has been reported to date. We present two cases of novel hepatotoxicity of NONI juice. Causality of liver injury by NONI juice was asses-sed. Routine laboratory tests and transjugular or percutaneous liver biopsy were performed. The first patient underwent successful liver transplantation while the second patient recovered spontaneously after cessation ...

  17. Type 2 diabetic rats are sensitive to thioacetamide hepatotoxicity

    International Nuclear Information System (INIS)

    Previously, we reported high hepatotoxic sensitivity of type 2 diabetic (DB) rats to three dissimilar hepatotoxicants. Additional work revealed that a normally nonlethal dose of CCl4 was lethal in DB rats due to inhibited compensatory tissue repair. The present study was conducted to investigate the importance of compensatory tissue repair in determining the final outcome of hepatotoxicity in diabetes, using another structurally and mechanistically dissimilar hepatotoxicant, thioacetamide (TA), to initiate liver injury. A normally nonlethal dose of TA (300 mg/kg, ip), caused 100% mortality in DB rats. Time course studies (0 to 96 h) showed that in the non-DB rats, liver injury initiated by TA as assessed by plasma alanine or aspartate aminotransferase and hepatic necrosis progressed up to 48 h and regressed to normal at 96 h resulting in 100% survival. In the DB rats, liver injury rapidly progressed resulting in progressively deteriorating liver due to rapidly expanding injury, hepatic failure, and 100% mortality between 24 and 48 h post-TA treatment. Covalent binding of 14C-TA-derived radiolabel to liver tissue did not differ from that observed in the non-DB rats, indicating similar bioactivation-based initiation of hepatotoxicity. S-phase DNA synthesis measured by [3H]-thymidine incorporation, and advancement of cells through the cell division cycle measured by PCNA immunohistochemistry, were substantially inhibited in the DB rats compared to the non-DB rats challenged with TA. Thus, inhibited cell division and compromised tissue repair in the DB rats resulted in progressive expansion of liver injury culminating in mortality. In conclusion, it appears that similar to type 1 diabetes, type 2 diabetes also increases sensitivity to dissimilar hepatotoxicants due to inhibited compensatory tissue repair, suggesting that sensitivity to hepatotoxicity in diabetes occurs in the absence as well as presence of insulin

  18. Redox Nanoparticle Therapeutics for Acetaminophen-Induced Hepatotoxicity in Mice

    OpenAIRE

    Boonruamkaew, Phetcharat; Chonpathompikunlert, Pennapa; Nagasaki, Yukio

    2016-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of an antioxidative nanoparticle (RNPN) recently developed against APAP-induced hepatotoxicity in mice. The effects of oral administration of RNPN to APAP-treated mice were assessed for various biochemical liver function parameters: alanine transaminase (ALT) activity, aspartate transaminase (AST) activity, alkaline phosphatase (ALP) activity, prothrombin time, and serum albumin (ALB) level. The treatment effects were asses...

  19. Hepatotoxicity of NONI juice: Report of two cases

    Institute of Scientific and Technical Information of China (English)

    Vanessa Stadlbauer; Peter Fickert; Carolin Lackner; Jutta Schmerlaib; Peter Krisper; Michael Trauner; Rudolf E Stauber

    2005-01-01

    NONI juice (Morinda citrifolia) is an increasingly popular wellness drink claimed to be beneficial for many illnesses.No overt toxicity has been reported to date. We present two cases of novel hepatotoxicity of NONI juice. Causality of liver injury by NONI juice was asses-sed. Routine laboratory tests and transjugular or percutaneous liver biopsy were performed. The first patient underwent successful liver transplantation while the second patient recovered spontaneously after cessation of NONI juice.A 29-year-old man with previous toxic hepatitis associated with small doses of paracetamol developed sub-acute hepatic failure following consumption of 1.5 L NONI juice over 3 wk necessitating urgent liver transplantation. A 62-year-old woman without evidence of previous liver disease developed an episode of self-limited acutehepatitis following consumption of 2 L NONI juice for over 3 mo. The most likely hepatotoxic components of Morinda citrifolia were anthraquinones. Physicians should be aware of potential hepatotoxicity of NONI juice.

  20. No evidence demonstrating hepatotoxicity associated with hydroxycitric acid

    Institute of Scientific and Technical Information of China (English)

    Sidney J Stohs; Harry G Preuss; Sunny E Ohia; Gilbert R Kaats; Carl L Keen; Lonnie D Williams; George A Burdock

    2009-01-01

    Although a number of cases of hepatotoxicity are associated with the use of Hydroxycut weight management products,it has been alleged that their effects are primarily due to the presence of hydroxycitric acid (HCA,as Super CitriMax) in the formulations.However,while these products contain up to 20 different ingredients,some do not contain HCA.Case studies reported to date have not considered in depth the literature on the numerous animal and human studies that have been conducted on the safety and efficacy of HCA.No HCAassociated hepatotoxicity or treatment-related adverse effects have been reported in these studies,and thus it is premature to make the assumptions presented in the recent case studies regarding Hydroxycut.If it is established in well controlled studies that the use of these formulations with and/or without HCA can result in the occurrence or progression of hepatotoxicity,additional studies should be conducted to characterize the causative factor(s).

  1. Hepatotoxic potential of asarones: In vitro evaluation of hepatotoxicity and quantitative determination in herbal products

    Directory of Open Access Journals (Sweden)

    Dhavalkumar Narendrabha Patel

    2015-02-01

    Full Text Available α and β asarones are natural constituents of some aromatic plants, especially species of the genus Acorus. In addition to beneficial properties of asarones, genotoxicity and carcinogenicity are also reported. Due to potential toxic effects of β-asarone, a limit of exposure from herbal products of approximately 2 μg/kg body weight/day has been set temporarily until a full benefit/risk assessment has been carried out by the European Medicines Agency. Therefore, it is important to monitor levels of β-asarone in herbal products. In this study, we developed a simple, rapid and validated GC-MS method for quantitative determination of asarones and applied it in 20 pediatric herbal products after detecting high concentrations of β-asarone in a product suspected to be implicated in hepatotoxicity in a 3 month old infant. Furthermore, targeted toxicological effects were further investigated in human hepatocytes (THLE-2 cells by employing various in vitro assays, with the goal of elucidating possible mechanisms for the observed toxicity. Results showed that some of the products contained as much as 4 to 25 times greater amounts of β-asarone than the recommended levels. In 4 of 10 samples found to contain asarones, the presence of asarones could not be linked to the labeled ingredients, possibly due to poor quality control. Cell-based investigations in THLE2 cells confirmed the cytotoxicity of -asarone (IC50 = 40.0 ± 2.0 µg/mL which was associated with significant lipid peroxidation and glutathione depletion. This observed cytotoxicity effect is likely due to induction of oxidative stress by asarones. Overall, the results of this study ascertained the usability of this GC-MS method for the quantitative determination of asarones from herbal products, and shed light on the importance of controlling the concentration of potentially toxic asarones in herbal products to safeguard consumer safety. Further investigations of the toxicity of asarones are

  2. Hepatotoxicity of oral and intravenous voriconazole in relation to cytochrome P450 polymorphisms

    OpenAIRE

    Levin, M.-D.; Hollander, Jan; van der Holt, Bronno; Rijnders, Bart; Vliet, Martin; Sonneveld, Pieter; Van Schaik, Ron,

    2007-01-01

    textabstractObjectives: Voriconazole, like all other antifungals of the azole group, is potentially hepatotoxic. A large interpatient variability of liver enzyme elevations during oral or intravenous (iv) voriconazole administration is observed. This interpatient variability may be explained by differences in voriconazole metabolism because of cytochrome P450 polymorphisms. We examined the relationship between cytochrome P450 polymorphisms and hepatotoxicity in immunocompromised patients pred...

  3. Croton zehntneri Essential oil prevents acetaminophen-induced acute hepatotoxicity in mice

    OpenAIRE

    Maria Goretti R. Queiroz; José Henrique L. Cardoso; Adriana R. Tomé; Roberto C. P. Lima Jr.; Jamile M. Ferreira; Daniel F. Sousa; Felipe C. Lima; Campos, Adriana R.

    2008-01-01

    Hepatoprotective activity of Croton zehntneri Pax & Hoffman (Euphorbiaceae) leaf essential oil (EOCz) was evaluated against single dose of acetaminophen-induced (500 mg/kg, p.o.) acute hepatotoxicity in mice. EOCz significantly protected the hepatotoxicity as evident from the activities of serum glutamate pyruvate transaminase (GPT), serum glutamate oxaloacetate transaminase (GOT) activities, that were significantly (p

  4. Hepatoprotective Activity of Herbal Preparation (HP-4 Against D-Galactosamine Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    P. Padmanabhan

    2014-01-01

    Full Text Available Oxidative stress in mammals results from imbalance between generation of free radicals and the rate of their suppression by antioxidant. Hepatotoxicity may result as an effect of excessive free radical formation due to exogenous chemicals or metabolic reactions. D-Galactosamine (D-GalN is a well known hepatotoxicant. Herbal medicines have been utilized to manage hepatotoxicity according to recent trends. In the present study Herbal Preparation or HP-4 is a combination of 80% alcoholic extract of leaves of Aloe vera, Bacopa monniera, Moringa oleifera and rhizome of Zingiber officinale has been utilized to study its efficacy on mice model of D-GalN hepatotoxicity. D-GalN hepatotoxicity induces liver injury closely resembling human viral hepatitis with necrosis, inflammation and regeneration. Evidenced by biochemical and histopathological studies it is concluded that polyherbal formulation HP-4 offered a synergistic protection due to the phytochemicals present which provide hepatoprotective activity induced by D-GalN hepatotoxicity.

  5. Acute hepatotoxicity of ethylene and halogenated ethylenes after PCB pretreatment.

    Science.gov (United States)

    Conolly, R B; Jaeger, R J

    1977-12-01

    Previous studies from our laboratory have shown that ethylene, vinyl fluoride monomer (VFM), vinyl chloride monomer (VCM), and vinyl bromide monomer (VBM) are all acutely hepatotoxic in rats pretreated with polychlorinated biphenyl (PCB). The time course of hepatic injury development after exposure and several parameters, environmental and chemical, affecting this toxicity were evaluated in the work reported here. Liver injury, as measured by serum alanine-alpha-ketoglutarate transaminase (SAKT) or sorbitol dehydrogenase (SDH), develops progressively over a 24-hr period following a 4-hr inhalation exposure of PCB-pretreated rats to ethylene or VCM. Environmental temperature during exposure to VCM does not affect hepatotoxicity or mortality below 30.3 degrees C. At 33.8 degrees C, however, mortality and SAKT are dramatically increased. Overnight fasting, which depletes hepatic glutathione (GSH) of PCB-pretreated rats before exposure to ethylene or VCM, significantly increases the hepatotoxicity of these compounds as measured by SDH. The combined effects of fasting and of trichloropropane epoxide (TCPE), an inhibitor of epoxide hydrase (EH), were also examined. TCPE treatment of fasted PCB-pretreated rats immediately before exposure was synergistic in increasing the acute toxicity of ethylene and VCM. TCPE increased mortality in fed or fasted rats exposed to VFM, but there was no effect of fasting alone. Both fasting and TCPE increased the sensitivity of PCB-pretreated rats to VBM, but there was not a clearly synergistic effect of fasting plus TCPE. These data suggest that the acute toxicity of these compounds is mediated through epoxide intermediates. PMID:417916

  6. Investigation of proteomic biomarkers in in vivo hepatotoxicity study of rat liver: toxicity differentiation in hepatotoxicants.

    Science.gov (United States)

    Yamamoto, Toshinori; Kikkawa, Rie; Yamada, Hiroshi; Horii, Ikuo

    2006-02-01

    We investigated the overall protein expression profiles in the in vivo hepatotoxicity of rats induced by four well-recognized hepatotoxicants. Acetaminophen (APAP), amiodarone (AMD), tetracycline (TC) and carbon tetrachloride (CTC) were administered to male rats by gavages and the liver at 24 hr post-dosing was applied to the proteomic experiment. Blood biochemistry and histopathology were examined to identify specific changes related to the compounds given. Protein expression in the liver was investigated by 2-dimensional gel electrophoresis (2DE), and spots showing a significantly different expression in treated versus control group were excised from gels and identified by Q-Tof mass spectrometer. They were well characterized based on their functions related to the mechanisms of toxicity of the compounds. Among them, we focused on the 8 proteins that were affected by all 4 compounds examined. Proteins related to oxidative stress response such as carbonic anhydrase III (CA3) and 60kDa heat shock protein (HSP60), and energy metabolism such as adenylate kinase 4 (AK4) were found. Moreover, hierarchical clustering analysis using 2D-gel spots information revealed the possibility to differentiate the groups based on their toxicity levels such as severity of liver damage. These results suggested that assessing the effects of hepatotoxicants on protein expression is worth trying to screen candidate compounds at the developmental stage of drugs. PMID:16538043

  7. Engineered andrographolide nanosystems for smart recovery in hepatotoxic conditions

    Directory of Open Access Journals (Sweden)

    Roy P

    2014-10-01

    Full Text Available Partha Roy,1,2 Suvadra Das,1 Runa Ghosh Auddy,1,3 Arup Mukherjee1,3 1Division of Pharmaceutical and Fine Chemicals Technology, Department of Chemical Technology, University of Calcutta, Kolkata, India; 2Faculty of Technology (Pharmaceutical, Universiti Malaysia, Pahang, Malaysia; 3Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India Abstract: Andrographolide (AG is one of the most potent labdane diterpenoid-type free radical scavengers available from plant sources. The compound is the principal bioactive component in Andrographis paniculata leaf extracts, and is responsible for anti-inflammatory, anticancer, and immunomodulatory activity. The application of AG in therapeutics, however, is severely constrained, due to its low aqueous solubility, short biological half-life, and poor cellular permeability. Engineered nanoparticles in biodegradable polymer systems were therefore conceived as one solution to aid in further drug-like applications of AG. In this study, a cationic modified poly(lactic-co-glycolic acid nanosystem was applied for evaluation against experimental mouse hepatotoxic conditions. Biopolymeric nanoparticles of hydrodynamic size of 229.7±17.17 nm and ζ-potential +34.4±1.87 mV facilitated marked restoration in liver functions and oxidative stress markers. Superior dissolution for bioactive AG, hepatic residence, and favorable cytokine regulation in the liver tissues are some of the factors responsible for the newer nanosystem-assisted rapid recovery. Keywords: andrographolide, engineered nanosystems, poly(lactic-co-glycolic acid, cytokine regulation, hepatotoxicity

  8. Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics

    Science.gov (United States)

    García-Cortés, Miren; Robles-Díaz, Mercedes; Ortega-Alonso, Aida; Medina-Caliz, Inmaculada; Andrade, Raul J.

    2016-01-01

    Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™) while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang). Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs. PMID:27070596

  9. Hepatotoxic Alterations Induced by Inhalation of Trichloroethylene (TCE) in Rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Trichloroethylene (TCE) is one of the most potent organic unsaturated solvents being used in dry cleaning, metal degreasing, thinner for paints varnishes and electroplating, etc. and has been reported to be a hepatotoxicant through oral and dermal exposure. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation toxicity study was carried out for hepatotoxic studies. Method Inhalation toxicity studies was carried out by exposing rats to TCE for 8, 12 and 24 weeks in a dynamically operated whole body inhalation chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results Significant increase in liver weight (liver enlargement) appearance of necrotic lesions with fatty changes and marked necrosis were observed after longer duration (12 and 24 weeks) of TCE exposure. The lysosomal rupture resulted in increased activity of acid and alkaline phosphatase alongwith reduced glutathione content and total increased sulfhydryl content in liver tissue. Conclusion TCE exposure through Inhalation route induces hepatotoxicity in terms of marked necrosis with fatty changes and by modulating the lysosomal enzymes.

  10. Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics

    Directory of Open Access Journals (Sweden)

    Miren García-Cortés

    2016-04-01

    Full Text Available Dietary supplements (DS are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™ while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang. Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs.

  11. Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics.

    Science.gov (United States)

    García-Cortés, Miren; Robles-Díaz, Mercedes; Ortega-Alonso, Aida; Medina-Caliz, Inmaculada; Andrade, Raul J

    2016-01-01

    Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™) while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang). Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs. PMID:27070596

  12. Drug-induced hepatotoxicity in a tertiary care hospital in Rural South India

    Directory of Open Access Journals (Sweden)

    Heethal Jaiprakash

    2012-01-01

    Full Text Available Background: Liver is the main organ for metabolism of drugs and hepatotoxicity is a potential adverse effect for most drugs. Aims: This study was to study the frequency of drug-induced hepatotoxicity and to find the common drugs causing hepatotoxicity. Materials and Methods: The study was conducted at a tertiary care hospital in rural India. It is a study based on case series analysis. All patients with an abnormal liver function report, between July 2006 and July 2007, were included in the study. Results : The study included 411 patients. Among them 141 patients were females and 270 males. The common cause for abnormal liver function was alcoholic liver disease (30.4% followed by drug-induced hepatotoxicity (15.8% and malaria (15.3%. Drug-induced hepatotoxicity was seen in 65 patients. It was common in males (55% compared to females (44%. The mean age of the patients with drug-induced hepatotoxicity was 43±15.9. Antitubercular drugs were the commonly encountered drugs (44% causing hepatotoxicity followed by lipid lowering agents (41%. The others drugs included antiretroviral drugs (6%,steroids (5% and chlorpromazine (2%. Conclusion : A thorough history of drug intake must be taken in all patients presenting with abnormal hepatic function.

  13. Hepatotoxicity Associated with Long-versus Short-Course HIV-Prophylactic Nevirapine Use

    Science.gov (United States)

    McKoy, June M.; Bennett, Charles L.; Scheetz, Marc H.; Differding, Virginia; Chandler, Kevin L.; Scarsi, Kimberly K.; Yarnold, Paul R.; Sutton, Sarah; Palella, Frank; Johnson, Stuart; Obadina, Eniola; Raisch, Dennis W.; Parada, Jorge P.

    2009-01-01

    Background and objective The antiretroviral nevirapine can cause severe hepatotoxicity when used ‘off-label’ for preventing mother-to-child HIV transmission (PMTCT), newborn post-exposure prophylaxis and for pre- and post-exposure prophylaxis among non-HIV-infected individuals. We describe the incidence of hepatotoxicity with short- versus long-course nevirapine-containing regimens in these groups. Methods We reviewed hepatotoxicity cases among non-HIV-infected individuals and HIV-infected pregnant women and their offspring receiving short- (≤4 days) versus long-course (≥5 days) nevirapine prophylaxis. Sources included adverse event reports from pharmaceutical manufacturers and the US FDA, reports from peer-reviewed journals/scientific meetings and the Research on Adverse Drug events And Reports (RADAR) project. Hepatotoxicity was scored using the AIDS Clinical Trial Group criteria. Results Toxicity data for 8216 patients treated with nevirapine-containing regimens were reviewed. Among 402 non-HIV-infected individuals receiving short- (n = 251) or long-course (n = 151) nevirapine, rates of grade 1–2 hepatotoxicity were 1.99%versus 5.30%, respectively, and rates of grade 3–4 hepatotoxicity were 0.00% versus 13.25%, respectively (p < 0.001 for both comparisons). Among 4740 HIV-infected pregnant women receiving short- (n = 3031) versus long-course (n = 1709) nevirapine, rates of grade 1–2 hepatotoxicity were 0.62% and 7.04%, respectively, and rates of grade 3–4 hepatotoxicity were 0.23% versus 4.39%, respectively (p < 0.001 for both comparisons). The rates of grade 3–4 hepatotoxicity among 3074 neonates of nevirapine-exposed HIV-infected pregnant women were 0.8% for those receiving short-course (n = 2801) versus 1.1%for those receiving long-course (n = 273) therapy (p < 0.72). Conclusions Therapy duration appears to significantly predict nevirapine hepatotoxicity. Short-course nevirapine for HIV prophylaxis is associated with fewer hepatotoxic

  14. Nephrotoxic and hepatotoxic effects of chromium compounds in rats

    Energy Technology Data Exchange (ETDEWEB)

    Laborda, R.; Diaz-Mayans, J.; Nunez, A.

    1986-03-01

    The nephrotoxic, hepatotoxic and cardiotoxic actions of hexavalent chromium compounds, as well as their effects on lung, blood and circulation may contribute to the fatal outcome of chromium intoxication. Although trivalent chromium have been regarded as relatively biologically inert, there are a few salts of chromium III that have been found to be carcinogenic when inhaled, ingested or brought in contact with the tissues. Sensitive persons and industry workers have been subjects of dermatitis, respiratory tract injuries and digestive ulcers due to chromium compounds. In this work, the authors have studied the effect of trivalent and hexavalent chromium compounds on rats measuring the transaminases (GOT and GPT), urea and creatinine levels in serum of chromium poisoned animals at different times.

  15. A study of effect of Nigella sativa oil in paracetamol induced hepatotoxicity in albino rats

    Directory of Open Access Journals (Sweden)

    Manik S. Ghadlinge

    2014-06-01

    Conclusion: This study demonstrated that NS oil has hepatoprotective effect. NS oil administration can prevent or reverse the hepatotoxicity induced by paracetamol. [Int J Basic Clin Pharmacol 2014; 3(3.000: 539-546

  16. Hígado y terapia antituberculosa Hepatotoxicity of antituberculosis therapy

    Directory of Open Access Journals (Sweden)

    MIGUEL AGUAYO C

    2011-03-01

    Full Text Available La toxicidad hepática en pacientes tratados con drogas antituberculosas es relativamente infrecuente, Probablemente debido a este hecho no contamos con una buena definición de toxicidad hepática. Existen algunas condiciones de los enfermos en que la hepatotoxicidad es más frecuente, tales como pacientes envejecidos, bebedores de alcohol, desnutrición, uso de ciertas drogas e hipoalbuminemia. Las drogas antituberculosas más frecuentemente involucradas en hepatotoxicidad son la pirazinamida, la isoniacida y la rifampicina. En este artículo analizamos el problema clínico de la hepatotoxicidad de la terapia antituberculosa y proponemos el manejo de diferentes situaciones. Discutimos cuando se debe suspender la administración de una droga, cómo se debe evaluar el daño hepático y qué drogas alternativas pueden usarse durante el tratamiento de la tuberculosis.Liver toxicity in patients being treated with antituberculosis drugs is relatively uncommon, although transient elevation of liver enzymes is very common. Probably because of this there is not a good definition for liver toxicity. There are conditions in which hepatotoxicity is more frequent, such as elderly patients, alcohol consumption, malnutrition, use of certain drugs, and hypoalbuminemia. Pirazinamide, isoniazid and rifampicin are the antituberculosis drugs more commonly involved in liver toxicity. In this article we analyze the clinical problem of hepatotoxicity of antituberculosis therapy and propose the management of different situations. We discuss when a drug administration should be discontinued, how liver damage should be assesed and which alternative drugs should be used during the antituberculosis treatment.

  17. Potential role of caveolin-1 in acetaminophen-induced hepatotoxicity

    International Nuclear Information System (INIS)

    Caveolin-1 (Cav-1) is a membrane scaffolding protein, which functions to regulate intracellular compartmentalization of various signaling molecules. In the present studies, transgenic mice with a targeted disruption of the Cav-1 gene (Cav-1-/-) were used to assess the role of Cav-1 in acetaminophen-induced hepatotoxicity. Treatment of wild-type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was correlated with decreased expression of Cav-1 in the liver. Acetaminophen-induced hepatotoxicity was significantly attenuated in Cav-1-/- mice, an effect that was independent of acetaminophen metabolism. Acetaminophen administration resulted in increased hepatic expression of the oxidative stress marker, lipocalin 24p3, as well as hemeoxygenase-1, but decreased glutathione and superoxide dismutase-1; no differences were noted between the genotypes suggesting that reduced toxicity in Cav-1-/- mice is not due to alterations in antioxidant defense. In wild-type mice, acetaminophen increased mRNA expression of the pro-inflammatory cytokines, interleukin-1β, and monocyte chemoattractant protein-1 (MCP-1), as well as cyclooxygenase-2, while 15-lipoxygenase (15-LOX), which generates anti-inflammatory lipoxins, decreased. Acetaminophen-induced changes in MCP-1 and 15-LOX expression were greater in Cav-1-/- mice. Although expression of tumor necrosis factor-α, a potent hepatocyte mitogen, was up-regulated in the liver of Cav-1-/- mice after acetaminophen, expression of proliferating cell nuclear antigen and survivin, markers of cellular proliferation, were delayed, which may reflect the reduced need for tissue repair. Taken together, these data demonstrate that Cav-1 plays a role in promoting inflammation and toxicity during the pathogenesis of acetaminophen-induced injury.

  18. Nilotinib interferes with the signalling pathways implicated in acetaminophen hepatotoxicity.

    Science.gov (United States)

    Shaker, Mohamed E

    2014-03-01

    Nilotinib, a second-generation tyrosine kinase inhibitor, has been recently approved for the treatment for chronic myeloid leukaemia. The objective of this study was to explore the potential effects of clinically relevant doses of nilotinib against acetaminophen (APAP)-induced hepatotoxicity in mice. To simulate the clinical application in human beings, nilotinib (25 and 50 mg/kg) was administered to mice 2 hr after APAP intoxication (500 mg/kg). The results indicated that nilotinib (25 mg/kg) (i) abolished APAP-induced liver injury and necro-inflammation, (ii) increased hepatic-reduced glutathione (GSH) and its related enzymes synthesis, (iii) suppressed hepatic oxidative/nitrosative stress cascades, (iv) decreased neutrophil accumulation in the liver, and (v) prevented the over-expression of B-cell lymphoma-2 (bcl-2), cyclin-D1 and stem cell factor receptor (c-Kit) proteins in the liver. Although nilotinib (50 mg/kg) acted through the same mechanisms, there was severe depletion in hepatic GSH content by nilotinib itself at that dose level, rather than the potent stimulation observed by using a dose of 25 mg/kg. Consequently, the mortality rate after 18 hr was 100% for nilotinib (50 mg/kg) + APAP (750 mg/kg) versus 60% for APAP (750 mg/kg) and 40% for nilotinib (25 mg/kg) + APAP (750 mg/kg) in the survival analysis experiment. In conclusion, nilotinib can counteract the hepatotoxicity produced by a non-lethal dose of APAP. However, there is a risk of aggravating the mortality for a lethal dose of APAP when nilotinib is co-administered at doses relatively high, or near to the clinical range because of hepatic GSH depletion and c-kit inhibition. PMID:24119297

  19. Effect of anemia on hepatotoxicity of HAART in HIV patients in Benin city

    Directory of Open Access Journals (Sweden)

    Rose A Ugiagbe

    2011-01-01

    Full Text Available Background: Hepatotoxicity is a relevant adverse effect of highly active antiretroviral Treatment owing to its frequency, and it can cause interruption of therapy, hepatitis, and death. There is dearth of information on hepatotoxicity arising from highly active antiretroviral therapy (HAART in anemic patients. Anemia is the most common symptom in human immunodeficiency virus (HIV/acquired immunodeficiency syndrome. We studied the effect of anemia on hepatotoxicity in HIV patients who were about to start HAART, attending clinic, or in the medical wards. Materials and Methods: This was a prospective study in which patients were recruited consecutively and followed up for 24 weeks. Results: In all, 84 patients were recruited and 42 were enrolled as controls. The mean ages of the cases and controls were 35.2΁9.9 and 35.5΁9.0 years, respectively. The age range of the cases was 18-68 years with a median age of 31.5 years, whereas the mean age of the controls was 20-57 years with a median age of 33.5 years. There was no difference (t=0.197, df=124, and P=0.844. There were 61 females (72.6% and 23 males (27.4% in the cases, whereas in the controls, there were 34 females (81.0% and 8 males (19.0%. Among the cases, 30 (35.7% were anemic, while 54 (64.3% were not anemic. Six (20% of the anemic patients had hepatotoxicity, and 9 (16.7% of the patients with normal packed cell volume had hepatotoxicity. Among the controls, all 42 (100% patients had normal packed cell volume. Four (9.5% of the patients had hepatotoxicity. There was no association between hepatotoxicity and anemia (χ2 =3.243, df=2, P=0.198. Conclusion: Anemia did not affect hepatotoxicity of HAART in this study.

  20. Antituberculosis Drug-Induced Hepatotoxicity in IranianTuberculosis Patients: Role of Isoniazid Metabolic Polymorphism

    OpenAIRE

    Sistanizad, Mohammad; Azizi, Ebrahim; KHALILI, Hosein; Hajiabdolbaghi, Mahboobeh; Gholami, Kheirollah; Mahjub, Reza

    2011-01-01

    The aim of this study was to determine the association of n-acetyltransferase-2 polymorphisms and anti-tuberculosis drug-induced hepatotoxicity in Iranian pulmonary tuberculosis patients. Acetylating phenotypes was studied in 50 Iranian pulmonary tuberculosis patients using metabolic ratio of plasma acetyl-Isoniazid to Isoniazid. The association between hepatotoxicity and the n-acetyltransferase-2 phenotype was evaluated by using the chi-square (x2) test. The metabolic ratio had a bimodal dis...

  1. The Relation between Hepatotoxicity and the Total Coumarin Intake from Traditional Japanese Medicines Containing Cinnamon Bark

    OpenAIRE

    Iwata, Naohiro; Kainuma, Mosaburo; Kobayashi, Daisuke; Kubota, Toshio; Sugawara, Naoko; Uchida, Aiko; Ozono, Sahoko; Yamamuro, Yuki; Furusyo, Norihiro; Ueda, Koso; Tahara, Eiichi; Shimazoe, Takao

    2016-01-01

    Cinnamon bark is commonly used in traditional Japanese herbal medicines (Kampo medicines). The coumarin contained in cinnamon is known to be hepatotoxic, and a tolerable daily intake (TDI) of 0.1 mg/kg/day, has been quantified and used in Europe to insure safety. Risk assessments for hepatotoxicity by the cinnamon contained in foods have been reported. However, no such assessment of cinnamon bark has been reported and the coumarin content of Kampo medicines derived from cinnamon bark is not y...

  2. Evaluation of the zebrafish embryo as an alternative model for hepatotoxicity testing

    OpenAIRE

    Driessen, Marja

    2014-01-01

    In this thesis we showed the applicability of the zebrafish embryo as an alternative model for hepatotoxicity testing using analysis of mechanisms through toxicogenomics. By applying a variety of toxicogenomics techniques, we were able to characterize specific responses. NGS revealed that hepatotoxicity-associated gene expression remains detectable even in non-tissue specific analysis in whole body zebrafish embryo homogenates. Gene and protein expression profiling resulted in identification ...

  3. Anti-Tuberculosis Therapy-Induced Hepatotoxicity among Ethiopian HIV-Positive and Negative Patients

    OpenAIRE

    Yimer, Getnet; Aderaye, Getachew; Amogne, Wondwossen; Makonnen, Eyasu; Aklillu, Eleni; Lindquist, Lars; Yamuah, Lawrence; Feleke, Beniyam; Aseffa, Abraham

    2008-01-01

    Background To assess and compare the prevalence, severity and prognosis of anti-TB drug induced hepatotoxicity (DIH) in HIV positive and HIV negative tuberculosis (TB) patients in Ethiopia. Methodology/Principal Findings In this study, 103 HIV positive and 94 HIV negative TB patients were enrolled. All patients were evaluated for different risk factors and monitored biochemically and clinically for development of DIH. Sub-clinical hepatotoxicity was observed in 17.3% of the patients and 8 out...

  4. Hepatoprotective Activity of Herbal Preparation (HP-4) Against D-Galactosamine Induced Hepatotoxicity in Mice

    OpenAIRE

    Padmanabhan, P; S. N. Jangle

    2014-01-01

    Oxidative stress in mammals results from imbalance between generation of free radicals and the rate of their suppression by antioxidant. Hepatotoxicity may result as an effect of excessive free radical formation due to exogenous chemicals or metabolic reactions. D-Galactosamine (D-GalN) is a well known hepatotoxicant. Herbal medicines have been utilized to manage hepatotoxicity according to recent trends. In the present study Herbal Preparation or HP-4 is a combination of 80% alcoholic extrac...

  5. Hibiscus Rosa Sinensis alleviates Thioacetamide induced Acute Hepatotoxicity in Wistar Rats

    OpenAIRE

    Sana Nafees; Shiekh Tanveer Ahmad; Wani Arjumand; Nemat Ali; Summya Rashid; Sarwat Sultana

    2013-01-01

    The plant phenolic compounds such as flavonoids play an important role in the protection of several disorders. Some of the plant derived compounds possess potent hepatoprotective efficacy. The present study was designed to assess the prophylactic effect of Hibiscus rosa sinensis (HRS) extract against thioacetamide (TAA) induced hepatotoxicity in male wistar rats. TAA treated showed noticeable hepatotoxicity symptoms marked by suppression of antioxidant armoury and destruction of liver morphol...

  6. Protective Properties of 2-Acetylcyclopentanone in a Mouse Model of Acetaminophen Hepatotoxicity

    OpenAIRE

    Zhang, Lihai; Gavin, Terrence; Geohagen, Brian C.; Liu, Qiang; Downey, Katherine J.; LoPachin, Richard M.

    2013-01-01

    Our previous research showed that enolates formed from 1,3-dicarbonyl compounds, such as 2-acetylcyclopentanone (2-ACP), could provide protection in cell culture models from electrophile- or oxidative stress-induced toxicity. In the present study, we evaluated the protective abilities of 2-ACP in a mouse model of acetaminophen (APAP) hepatotoxicity. Results show that oral APAP overdose (500 mg/kg) was nearly 90% lethal within 72 hours and that the resulting hepatotoxicity was associated with ...

  7. Hepatotoxicity evaluation of aqueous extract from Scutia buxifolia.

    Science.gov (United States)

    de Freitas, Robson Borba; Rovani, Bruno Tomazele; Boligon, Aline Augusti; de Brum, Thiele Faccim; Piana, Mariana; da Silva Jesus, Roberta; Veloso, Carolina Fantinel; Kober, Helena; Moresco, Rafael Noal; da Costa Araldi, Isabel Cristina; de Freitas Bauermann, Liliane; Athayde, Margareth Linde

    2013-01-01

    Nowadays there is an increase in the number of people taking herbals worldwide. Scutia buxifolia is used for the treatment of hypertension, but little is known about its action on liver. Thirty-two Wistar rats were divided into four groups: control and groups treated during 30 days with 100, 200 and 400 mg of lyophilized aqueous extract of S. buxifolia (SBSB)/kg of body weight. This study was planned to explore hepatotoxic effect of SBSB, which was assessed by serum transaminases (ALT and AST). Thiobarbituric acid reactive substances (TBARS) levels were determined in liver, along with thiols content (NPSH), catalase (CAT) activity and, superoxide dismutase (SOD) enzymes. Histopathological studies of liver tissue were performed. Flavonoids and phenolics were quantified in SBSB by high performance liquid chromatography with diode array detection (HPLC/DAD). We did not observe alterations on redox status (TBARS, NPSH, CAT and, SOD) in the control and experimental groups. An increase on AST activity was only observed at 200 mg of SBSB, whereas ALT score was not affected by SBSB. Moreover, no morphological alterations were observed on the hepatocytes, matching the analysed biochemical parameters. This way, we conclude that SBSB was not toxic. PMID:23812249

  8. Hepatotoxicity Evaluation of Aqueous Extract from Scutia buxifolia

    Directory of Open Access Journals (Sweden)

    Margareth Linde Athayde

    2013-06-01

    Full Text Available Nowadays there is an increase in the number of people taking herbals worldwide. Scutia buxifolia is used for the treatment of hypertension, but little is known about its action on liver. Thirty-two Wistar rats were divided into four groups: control and groups treated during 30 days with 100, 200 and 400 mg of lyophilized aqueous extract of S. buxifolia (SBSB/kg of body weight. This study was planned to explore hepatotoxic effect of SBSB, which was assessed by serum transaminases (ALT and AST. Thiobarbituric acid reactive substances (TBARS levels were determined in liver, along with thiols content (NPSH, catalase (CAT activity and, superoxide dismutase (SOD enzymes. Histopathological studies of liver tissue were performed. Flavonoids and phenolics were quantified in SBSB by high performance liquid chromatography with diode array detection (HPLC/DAD. We did not observe alterations on redox status (TBARS, NPSH, CAT and, SOD in the control and experimental groups. An increase on AST activity was only observed at 200 mg of SBSB, whereas ALT score was not affected by SBSB. Moreover, no morphological alterations were observed on the hepatocytes, matching the analysed biochemical parameters. This way, we conclude that SBSB was not toxic.

  9. Redox Nanoparticle Therapeutics for Acetaminophen-Induced Hepatotoxicity in Mice

    Science.gov (United States)

    Boonruamkaew, Phetcharat; Chonpathompikunlert, Pennapa; Nagasaki, Yukio

    2016-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of an antioxidative nanoparticle (RNPN) recently developed against APAP-induced hepatotoxicity in mice. The effects of oral administration of RNPN to APAP-treated mice were assessed for various biochemical liver function parameters: alanine transaminase (ALT) activity, aspartate transaminase (AST) activity, alkaline phosphatase (ALP) activity, prothrombin time, and serum albumin (ALB) level. The treatment effects were assessed in terms of free radical parameters: malondialdehyde (MDA) accumulation, glutathione peroxidase (GPx) activity, % inhibition of superoxide anion (O2−∙), and histopathological examination. The N-acetylcysteine (NAC)-treated group exhibited an enhanced prothrombin time relative to the control group, while RNPN did not prolong prothrombin time. The RNPN-treated animals exhibited lower levels of ALT, AST, and ALP, while increased ALB levels were measured in these animals compared to those in the other groups. The RNPN-treated animals furthermore exhibited improved MDA levels, GPx activity, and % inhibition of O2−∙, which relate to oxidative damage. Histological staining of liver tissues from RNPN-treated animals did not reveal any microscopic changes relative to the other groups. The findings of this study suggest that RNPN possesses effective hepatoprotective properties and does not exhibit the notable adverse effects associated with NAC treatment. PMID:27073589

  10. Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice.

    Science.gov (United States)

    Barman, P K; Mukherjee, R; Prusty, B K; Suklabaidya, S; Senapati, S; Ravindran, B

    2016-01-01

    Acetaminophen (N-acetyl-para-aminophenol (APAP)) toxicity causes acute liver failure by inducing centrilobular hepatic damage as a consequence of mitochondrial oxidative stress. Sterile inflammation, triggered by hepatic damage, facilitates gut bacterial translocation leading to systemic inflammation; TLR4-mediated activation by LPS has been shown to have a critical role in APAP-mediated hepatotoxicity. In this study, we demonstrate significant protection mediated by chitohexaose (Chtx) in mice challenged with a lethal dose of APAP (400 mg/kg b.w.). Decreased mortality by Chtx was associated with reduced hepatic damage, increased peritoneal migration of neutrophils, decreased mRNA expression of IL-1β as well as inhibition of inflammasome activation in liver. Further, an alternate mouse model of co-administration of a sublethal doses of APAP (200 mg/kg b.w.) and LPS (5 mg/kg b.w.) operating synergistically and mediating complete mortality was developed. Overwhelming inflammation, characterized by increased inflammatory cytokines (TNF-α, IL-1β and so on) in liver as well as in circulation and mortality was demonstrable in this model. Also, Chtx administration mediated significant reversal of mortality in APAP+LPS co-administered mice, which was associated with reduced IL-1β in liver and plasma cytokines in this model. In conclusion, Chtx being a small molecular weight linear carbohydrate offers promise for clinical management of liver failure associated with APAP overdose. PMID:27171266

  11. Treatment of Non-Small-Cell Lung Cancer with Erlotinib following Gefitinib-Induced Hepatotoxicity: Review of 8 Clinical Cases

    Directory of Open Access Journals (Sweden)

    Yukihiro Yano

    2012-01-01

    Full Text Available Objective. Gefitinib often induces liver damage. A few reports have described that the subsequent administration of erlotinib was associated with less hepatotoxicity, but the safety and efficacy of this treatment are still not fully investigated. Therefore, we evaluated retrospectively the patients with erlotinib following gefitinib-induced hepatotoxicity. Methods and Patients. We retrospectively reviewed the medical records between December 2007 and March 2010. The patients were evaluated including the following information: age, gender, histology of lung cancer, performance status, smoking status, epidermal growth factor receptor (EGFR mutation status, liver metastasis, viral hepatitis, alcoholic liver injury, clinical response, and hepatotoxicity due to EGFR tyrosine kinase inhibitors. Results. We identified 8 patients with erlotinib following gefitinib-induced hepatotoxicity. All achieved disease control by gefitinib. Hepatotoxicity was grades 2 and 3 in 3 and 5 patients, respectively. The median duration of treatment with gefitinib was 112.5 days and the median time to gefitinib-induced hepatotoxicity was 51.5 days. The median duration of treatment with erlotinib was 171.5 days. Grade 1 and 2 erlotinib-induced hepatotoxicity was observed in 2 and 1 patient, respectively. Conclusions. Erlotinib administration with careful monitoring is thought to be a good alternative strategy for patients who respond well to gefitinib treatment but experience hepatotoxicity.

  12. Croton zehntneri Essential oil prevents acetaminophen-induced acute hepatotoxicity in mice

    Directory of Open Access Journals (Sweden)

    Maria Goretti R. Queiroz

    2008-10-01

    Full Text Available Hepatoprotective activity of Croton zehntneri Pax & Hoffman (Euphorbiaceae leaf essential oil (EOCz was evaluated against single dose of acetaminophen-induced (500 mg/kg, p.o. acute hepatotoxicity in mice. EOCz significantly protected the hepatotoxicity as evident from the activities of serum glutamate pyruvate transaminase (GPT, serum glutamate oxaloacetate transaminase (GOT activities, that were significantly (p<0.01 elevated in the acetaminophen alone treated animals. Histopathological examinations of liver tissue corroborated well with the biochemical changes. Hepatic steatosis, hydropic degeneration and necrosis were observed in the acetaminophen treated group, while these were completely absent in the standard and EOCz treated groups. In conclusion, these data suggest that the Croton zehntneri essential oil can prevent hepatic injuries from acetaminophen-induced hepatotoxicity in mice.

  13. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    SudinBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, “Toxicity testing in the 21st Century: A Vision and A Strategy”. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular “virtual tissue” model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  14. Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity

    International Nuclear Information System (INIS)

    Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality over subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.

  15. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Neutrophils are recruited into the liver after acetaminophen (AAP) overdose but the pathophysiological relevance of this acute inflammatory response remains unclear. To address this question, we compared the time course of liver injury, hepatic neutrophil accumulation and inflammatory gene mRNA expression for up to 24 h after treatment with 300 mg/kg AAP in C3Heb/FeJ and C57BL/6 mice. Although there was no relevant difference in liver injury (assessed by the increase of plasma alanine aminotransferase activities and the areas of necrosis), the number of neutrophils and the expression of several pro-inflammatory genes (e.g., tumor necrosis factor-α, interleukin-1β and macrophage inflammatory protein-2) was higher in C3Heb/FeJ than in C57BL/6 mice. In contrast, the expression of the anti-inflammatory genes interleukin-10 and heme oxygenase-1 was higher in C57BL/6 mice. Despite substantial hepatic neutrophil accumulation, none of the liver sections from both strains stained positive for hypochlorite-modified proteins, a specific marker for a neutrophil-induced oxidant stress. In addition, treatment with the NADPH oxidase inhibitors diphenyleneiodonium chloride or apocynin or the anti-neutrophil antibody Gr-1 did not protect against AAP hepatotoxicity. Furthermore, although intercellular adhesion molecule-1 (ICAM-1) was previously shown to be important for neutrophil extravasation and tissue injury in several models, ICAM-1-deficient mice were not protected against AAP-mediated liver injury. Together, these data do not support the hypothesis that neutrophils aggravate liver injury induced by AAP overdose

  16. ANTIHEPATOTOXIC EFFECT OF BARLERIA MONTANA LEAVES AGAINST ANTI-TB DRUGS INDUCED HEPATOTOXICITY

    OpenAIRE

    Jyothi Basini; S. Mohana lakshmi; K.Anitha

    2013-01-01

    Introduction: The present study was undertaken to evaluate the protective activity of 95% hydroalcoholic extract of Barleria Montana leaves against anti-TB drugs induced hepatotoxicity. Methods: Hepatotoxicity was induced by anti-TB drugs once daily for 35 days and simultaneously 95% hydroalcoholic extract of Barleria Montana (250 & 500 mg/kg p.o.) was administered one hour prior administration of anti-TB drugs. Silymarin was used as standard drug (100 mg/kg p.o.). Results: Elevated levels of...

  17. Protective effects of pine bark extract against cisplatin-induced hepatotoxicity and oxidative stress in rats

    OpenAIRE

    Ko, Je-Won; Lee, In-Chul; Park, Sung-Hyuk; Moon, Changjong; Kang, Seong-Soo; Kim, Sung-Ho; Kim, Jong-Choon

    2014-01-01

    We investigated the protective effects of pine bark extract (pycnogenol®, PYC) against cisplatin-induced hepatotoxicity and oxidative stress in rats. Twenty-four male rats were divided into the following four groups: (1) vehicle control, (2) cisplatin (7.5 mg/kg), (3) cisplatin & PYC 10 (10 mg/kg/day), and (4) cisplatin & PYC 20 (20 mg/kg/day). A single intraperitoneal injection of cisplatin induced hepatotoxicity, as evidenced by an increase in serum aminotransferase and histopathological al...

  18. Protective effects of 2,4-dihydroxybenzophenone against acetaminophen-induced hepatotoxicity in mice

    OpenAIRE

    Yue-Ying He; Bao-Xu Zhang; Feng-Lan Jia

    2011-01-01

    AIM: To examine the effects of 2,4-dihydroxybenzophenone (BP-1), a benzophenone derivative used as an ultraviolet light absorbent, on acetaminophen (APAP)-induced hepatotoxicity in C57BL/6J mice. METHODS: Mice were administered orally with BP-1 at doses of 200, 400 and 800 mg/kg body weight respectively every morning for 4 d before a hepatotoxic dose of APAP (350 mg/kg body weight) was given subcutaneously. Twenty four hours after APAP intoxication, the serum enzyme including serum alaine ami...

  19. Hepatotoxicity of ingested uranium in albino wistar rats

    International Nuclear Information System (INIS)

    Uranium exhibits both radiotoxic and chemotoxic properties. Common route of contamination is ingestion through drinking water. Uranium is mainly nephrotoxic and is also hepatotoxic to mammals including humans. The dose range at which it affects organs still remains in predicament. To study the effect of ingested uranium on enzymatic and histopathological changes of liver in albino wistar rats. Uranyl nitrate hexahydrate (UN) solutions were prepared at different concentrations in distilled water for administration. Healthy male and female albino wistar rats weighing 120±20 g were randomly divided into six groups, each group with five animals. Group 1 was the control. All the five treatment groups (group 2, group 3, group 4, group 5 and group 6) were orally administered with 0.156, 0.625, 2.5, 10 and 40 mg/kg/day of UN for 28 days duration. Blood samples collected on 29th day were analyzed for γ-glutamyltransferase (GGT), alkaline phosphatase (ALP), serum glutamic pyruvic transaminase (SGPT) and serum glutamic oxaloacetic transaminase (SGOT). In addition, histopathological examination of liver tissue was performed. Significant reduction by 61 and 46 % in GGT levels in female rats of groups 4 and 5 respectively while in male rats, increase of 55, 52 and 40 % in groups 3, 4 and 5 respectively were observed compared to control. In females, ALP levels were decreased by 38 % in group 2 and 29 % in group 4 while no changes were observed in males of control and test groups. SGPT level was decreased by 22 % in group 6 in females but increased by 29 and 35 % in groups 2 and 6 respectively in males, compared to control. In females, 25 % increase in SGOT levels in group 4 was observed, but decreased in group 5 and 6 by 26 and 22 % respectively. A 27 % increase in SGOT level in males was recorded in group 2 compared to control. No histopathological changes were observed in liver tissues of test groups or the control. Uranium causes dose-independent changes in key marker

  20. STUDIES ON INDUCED HEPATOTOXICITY IN MALE ALBINO RATS (RATTUS NORVEGICUS)

    International Nuclear Information System (INIS)

    Levanox, a hepato protective drug, and garlic powder have been considered as safe anti-oxidant agents. The present investigation refers to biochemical and molecular studies to evaluate the protective role of levanox and/or garlic powder toward CCl4-induced toxicity in adult male albino rats. CCl4 intoxication was attempted using a dose of 0.03 ml/kg of rat body weight.Pre-treatment with levanox (one capsule/ kg of rat body weight, each capsule contains 100 mg catechu, 7.5 mg dandelion, 75 mg termiric 2% curcumin, 17.5 mg silymarin, 100 mg lecithin) was more effective than garlic powder (100mg/kg of rat body weight) in reducing CCl4-induced hepatotoxicity as revealed by its higher potency in reducing elevation of aspartate (AST) and alanine (ALT) aminotransferases in serum. Serum of control rats and those treated with levanox or garlic or CCl4 produced 13 types of proteins, differing in the molecular weight (MW) and densities, while those of levanox + garlic or garlic +CCl4 produced 14 bands differing in the MW and densities. The similarity index at the epigenetic level was also studied using the primers under study. The control sample produced one amplified DNA fragment with Rf of 0.73 and a molecular size (MS) of 67 base pair (bp) . Using the same primers, no amplified DNA fragment with the same MS was produced in the sample taken from levanox + garlic treated group.OPA-2 primer of sequence 5?- AGA TGC AGC C-3? produced one amplified DNA band with MS of 292 bp and Rf of 0.46 . However, the same primer produced one amplified DNA characteristic band with a molecular size of 363 bp and Rf of 0.43 in the sample of levanox + garlic group.In the control sample, OPA-4 primer of sequence 5? - ACG CAC AAC C-3? produced one amplified DNA band of MS of 299 bp and Rf of 0.43. The same primer produced one amplified characteristic DNA band with MS of 363 bp and Rf of 0.43 in the sample of levanox + garlic group.Dual treatment with levanox and garlic powder resulted in a

  1. Protective effects of pine bark extract against cisplatin-induced hepatotoxicity and oxidative stress in rats.

    Science.gov (United States)

    Ko, Je-Won; Lee, In-Chul; Park, Sung-Hyuk; Moon, Changjong; Kang, Seong-Soo; Kim, Sung-Ho; Kim, Jong-Choon

    2014-12-01

    We investigated the protective effects of pine bark extract (pycnogenol®, PYC) against cisplatin-induced hepatotoxicity and oxidative stress in rats. Twenty-four male rats were divided into the following four groups: (1) vehicle control, (2) cisplatin (7.5 mg/kg), (3) cisplatin & PYC 10 (10 mg/kg/day), and (4) cisplatin & PYC 20 (20 mg/kg/day). A single intraperitoneal injection of cisplatin induced hepatotoxicity, as evidenced by an increase in serum aminotransferase and histopathological alterations, including degeneration/necrosis of hepatocytes, vacuolation, and sinusoidal dilation. In addition, an increase in the malondialdehyde (MDA) concentration and a decrease in the reduced glutathione (GSH) content and catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) activities were observed in the cisplatin-treated rat hepatic tissues. In contrast, PYC treatment effectively prevented cisplatin-induced hepatotoxicity, including the elevation of aminotransferase and histopathological lesions, in a dosedependent manner. Moreover, PYC treatment also induced antioxidant activity by decreasing MDA level and increasing GSH content and SOD and GST activities in liver tissues. These results indicate that PYC has a protective effect against acute hepatotoxicity induced by cisplatin in rats, and that the protective effects of PYC may be due to inhibiting lipid peroxidation and increasing antioxidant activity. PMID:25628728

  2. Means of evaluation and protection from doxorubicin-induced cardiotoxicity and hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Issam Salouege

    2014-01-01

    Conclusion: We have evaluated the protective effect of trimetazidine on an animal model of doxorubicin-induced cardiotoxicity and hepatotoxicity. The evaluation of these effects were assessed by several means; tissular distribution of doxorubicin, histological examination, assessment of liver function, and EF LV by scintigraphy that characterizes the originality of this study.

  3. Establishment of a Predictive In Vitro Assay for Assessment of the Hepatotoxic Potential of Oligonucleotide Drugs.

    Directory of Open Access Journals (Sweden)

    Sabine Sewing

    Full Text Available Single stranded oligonucleotides (SSO represent a novel therapeutic modality that opens new space to address previously undruggable targets. In spite of their proven efficacy, the development of promising SSO drug candidates has been limited by reported cases of SSO-associated hepatotoxicity. The mechanisms of SSO induced liver toxicity are poorly understood, and up to now no preclinical in vitro model has been established that allows prediction of the hepatotoxicity risk of a given SSO. Therefore, preclinical assessment of hepatic liability currently relies on rodent studies that require large cohorts of animals and lengthy protocols. Here, we describe the establishment and validation of an in vitro assay using primary hepatocytes that recapitulates the hepatotoxic profile of SSOs previously observed in rodents. In vitro cytotoxicity upon unassisted delivery was measured as an increase in extracellular lactate dehydrogenase (LDH levels and concomitant reduction in intracellular glutathione and ATP levels after 3 days of treatment. Furthermore, toxic, but not safe, SSOs led to an increase in miR-122 in cell culture supernatants after 2 days of exposure, revealing the potential use of miR122 as a selective translational biomarker for detection of SSO-induced hepatotoxicity. Overall, we have developed and validated for the first time a robust in vitro screening assay for SSO liver safety profiling which allows rapid prioritization of candidate molecules early on in development.

  4. Establishment of a Predictive In Vitro Assay for Assessment of the Hepatotoxic Potential of Oligonucleotide Drugs.

    Science.gov (United States)

    Sewing, Sabine; Boess, Franziska; Moisan, Annie; Bertinetti-Lapatki, Cristina; Minz, Tanja; Hedtjaern, Maj; Tessier, Yann; Schuler, Franz; Singer, Thomas; Roth, Adrian B

    2016-01-01

    Single stranded oligonucleotides (SSO) represent a novel therapeutic modality that opens new space to address previously undruggable targets. In spite of their proven efficacy, the development of promising SSO drug candidates has been limited by reported cases of SSO-associated hepatotoxicity. The mechanisms of SSO induced liver toxicity are poorly understood, and up to now no preclinical in vitro model has been established that allows prediction of the hepatotoxicity risk of a given SSO. Therefore, preclinical assessment of hepatic liability currently relies on rodent studies that require large cohorts of animals and lengthy protocols. Here, we describe the establishment and validation of an in vitro assay using primary hepatocytes that recapitulates the hepatotoxic profile of SSOs previously observed in rodents. In vitro cytotoxicity upon unassisted delivery was measured as an increase in extracellular lactate dehydrogenase (LDH) levels and concomitant reduction in intracellular glutathione and ATP levels after 3 days of treatment. Furthermore, toxic, but not safe, SSOs led to an increase in miR-122 in cell culture supernatants after 2 days of exposure, revealing the potential use of miR122 as a selective translational biomarker for detection of SSO-induced hepatotoxicity. Overall, we have developed and validated for the first time a robust in vitro screening assay for SSO liver safety profiling which allows rapid prioritization of candidate molecules early on in development. PMID:27442522

  5. Establishment of a Predictive In Vitro Assay for Assessment of the Hepatotoxic Potential of Oligonucleotide Drugs

    Science.gov (United States)

    Sewing, Sabine; Boess, Franziska; Moisan, Annie; Bertinetti-Lapatki, Cristina; Minz, Tanja; Hedtjaern, Maj; Tessier, Yann; Schuler, Franz; Singer, Thomas; Roth, Adrian B.

    2016-01-01

    Single stranded oligonucleotides (SSO) represent a novel therapeutic modality that opens new space to address previously undruggable targets. In spite of their proven efficacy, the development of promising SSO drug candidates has been limited by reported cases of SSO-associated hepatotoxicity. The mechanisms of SSO induced liver toxicity are poorly understood, and up to now no preclinical in vitro model has been established that allows prediction of the hepatotoxicity risk of a given SSO. Therefore, preclinical assessment of hepatic liability currently relies on rodent studies that require large cohorts of animals and lengthy protocols. Here, we describe the establishment and validation of an in vitro assay using primary hepatocytes that recapitulates the hepatotoxic profile of SSOs previously observed in rodents. In vitro cytotoxicity upon unassisted delivery was measured as an increase in extracellular lactate dehydrogenase (LDH) levels and concomitant reduction in intracellular glutathione and ATP levels after 3 days of treatment. Furthermore, toxic, but not safe, SSOs led to an increase in miR-122 in cell culture supernatants after 2 days of exposure, revealing the potential use of miR122 as a selective translational biomarker for detection of SSO-induced hepatotoxicity. Overall, we have developed and validated for the first time a robust in vitro screening assay for SSO liver safety profiling which allows rapid prioritization of candidate molecules early on in development. PMID:27442522

  6. MODULATION OF ACETAMINOPHEN-INDUCED HEPATOTOXICITY BY THE XENOBIOTIC RECEPTOR CAR

    Science.gov (United States)

    We have identified the xenobiotic receptor CAR (constitutive androstane receptor) as a key regulator of acetaminophen metabolism and hepatotoxicity. Known CAR activators as well as high doses of acetaminophen induced expression of three acetaminophen-metabolizing enzymes in wild-type but not in CAR-...

  7. Hepatoprotective Activity of Herbal Preparation (Hp-4 against Alcohol Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    P. Padmanabhan

    2014-03-01

    Full Text Available Free radicals include both Reactive Oxygen Species (ROS and Reactive Nitrogen Species (RNS.When free radicals are produced in a regulated manner in a healthy human body it is scavenged efficiently by antioxidant defense system. But excess generation of pro-oxidants by continuous chain reaction in the form of ROS and RNS cause several human diseases. The shift of the balance in the favour of pro-oxidants results in a condition called “oxidative stress”. Alcohol is primarily metabolized in the liver to generate ROS and RNS, leading to diseases such as cirrhosis, fatty liver and chronic hepatitis. Alcohol induced damage is associated with oxidative stress. The excess generation of prooxidants and reduced antioxidant levels provide an effective model of Hepatotoxicity which is noteworthy. Recent trend is to discover polyherbal formulation of medicinal plants which have hepatoprotective function. In the present study 80% alcoholic extract of leaves of Aloe vera, Bacopa monniera, Moringa oleifera and rhizome of Zingiber officinale were utilized to prepare Herbal Preparation or HP-4.Further the hepatoprotective effects of HP-4 was tested in alcohol induced Hepatotoxicity in mice. Silymarin is a well known hepatoprotective drug was used as a standard for comparison. Biochemical and histopathological studies provided ample evidence that HP-4 provided a hepatoprotective role in alcohol induced hepatotoxicity which was comparable to drug Silymarin. The presence of phytochemicals in HP-4 provided a synergistic, supra-additive and co-operative effects in the hepatoprotective function in alcohol induced hepatotoxicity mice model.

  8. Potential protective effect of etanercept and aminoguanidine in methotrexate-induced hepatotoxicity and nephrotoxicity in rats.

    Science.gov (United States)

    Hafez, Heba M; Ibrahim, Mohamed A; Ibrahim, Salwa A; Amin, Entesar F; Goma, Wafaey; Abdelrahman, Aly M

    2015-12-01

    Methotrexate (MTX), a chemotherapeutic and immunosuppressant drug, is generally well-tolerated by most patients. However, its cytotoxic nature contributes to life-threatening side effects including hepatotoxicity and nephrotoxicity. The present study investigated the possible role of tumor necrosis factor-alpha (TNF-α) inhibitor, etanercept and inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine, on MTX-induced hepatotoxicity and nephrotoxicity in rats. Rats were divided into 7 groups: control group, etanercept group, aminoguanidine group, MTX group, MTX+etanercept group, MTX+aminoguanidine group, and MTX+etanercept+aminoguanidine group. MTX caused hepatotoxicity and nephrotoxicity as evidenced biochemically by significant increase in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea and creatinine, respectively as well as by histopathological changes. Such effects were associated with significant changes in oxidative stress markers (malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), catalase, and glutathione (GSH)) as well as by upregulation of TNF-α, iNOS and caspase-3 expressions in hepatic and renal tissues. Etanercept and aminoguanidine significantly attenuated MTX-hepatotoxicity and nephrotoxicity. The protective effect of either agent was associated with significant improvement in oxidative stress parameters as well as by downregulation of TNF-α, iNOS and caspase-3 expressions in hepatic and renal tissues. The study suggested that inhibitors of either TNF-α and/or iNOS have protective effect in MTX-induced hepatotoxicity and nephrotoxicity. The protective effect of either agent relies, at least partially, on their antioxidant effects and decreased TNF-α, iNOS, and caspase-3 expressions. PMID:26332135

  9. Chicory (Cichorium intybus L.) root extract regulates the oxidative status and antioxidant gene transcripts in CCl4-induced hepatotoxicity.

    Science.gov (United States)

    El-Sayed, Yasser S; Lebda, Mohamed A; Hassinin, Mohammed; Neoman, Saad A

    2015-01-01

    The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx), glutathione reductase, catalase (CAT), paraoxonase-1 (PON1), and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes. PMID:25807561

  10. Chicory (Cichorium intybus L. root extract regulates the oxidative status and antioxidant gene transcripts in CCl4-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Yasser S El-Sayed

    Full Text Available The ability of Cichorium intybus root extract (chicory extract to protect against carbon tetrachloride (CCl4-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control; chicory extract (100 mg/kg body weight daily, given orally for 2 weeks; CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only; or chicory extract (100 mg/kg body weight daily for 2 weeks + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx, glutathione reductase, catalase (CAT, paraoxonase-1 (PON1, and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes.

  11. Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats

    OpenAIRE

    Akbulut, Sami; Elbe, Hulya; Eris, Cengiz; Dogan, Zumrut; Toprak, Gulten; Otan, Emrah; Erdemli, Erman; TURKOZ, Yusuf

    2014-01-01

    AIM: To investigate the potential role of oxidative stress and the possible therapeutic effects of N-acetyl cysteine (NAC), amifostine (AMF) and ascorbic acid (ASC) in methotrexate (MTX)-induced hepatotoxicity.

  12. GENE EXPRESSION PROFILING IN THE LIVER OF CD-1 MICE TO CHARACTERIZE THE HEPATOTOXICITY OF TRIAZOLE FUNGICIDES

    Science.gov (United States)

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...

  13. Effect of Lagenaria siceraria fruit extract (Bottle gourd on hepatotoxicity induced by antitubercular drugs in albino rats

    Directory of Open Access Journals (Sweden)

    Satyajeet K. Funde

    2013-12-01

    Conclusion: Ethanolic extract of Lagenaria siceraria fruit possesses significant hepatoprotective and antioxidant activity in antitubercular drugs induced hepatotoxicity. [Int J Basic Clin Pharmacol 2013; 2(6.000: 728-734

  14. Direct Protection Against Acetaminophen Hepatotoxicity by Propylthiouracil: IN VIVO AND IN VITRO STUDIES IN RATS AND MICE

    OpenAIRE

    Yamada, Tadataka; Ludwig, Shelly; Kuhlenkamp, John; Kaplowitz, Neil

    1981-01-01

    Hepatotoxicity caused by acetaminophen can be prevented by enzyme-catalyzed conjugation of its reactive metabolite with glutathione (GSH). Since we have shown in previous studies that 6-N-propyl-2-thiouracil (PTU) can substitute for GSH as a substrate for the GSH S-transferases, we examined the possibility that PTU might also protect against acetaminophen hepatotoxicity by direct chemical interaction with the reactive metabolite of acetaminophen. In an in vitro system consisting of [3H]acetam...

  15. Hepatoprotection: A Hallmark of Citrullus colocynthis L. against Paracetamol Induced Hepatotoxicity in Swiss Albino Rats

    OpenAIRE

    Suresh Kumar Bansal; Ramesh Chandra Saxena; Arshed Iqbal Dar

    2012-01-01

    Objective: To demonstrate the in-vivo hepatoprotective effect of the ethanolic extracts of Citrullus colocynthis (Linn.) against paracetamol induced hepatotoxicity in albino rats. Animal Model: Swiss Albino rats of either sex were used, divided into six groups with six in each group. Group 1-Normal control: The animals were maintained under normal control, which were given distilled water only. Group 2-Induction of hepatotoxicity: The animals received par...

  16. PROTECTIVE ABILITY OF MOMORDICA CHARANTIA L AGAINST CCL4 INDUCED HEPATIC DAMAGE IN RATS

    Directory of Open Access Journals (Sweden)

    Pingale Shirish S

    2010-12-01

    Full Text Available The aim of this study is to evaluate the efficacy of Momordica charantia on the experimental hepatotoxicity induced by carbon tetrachloride (CCl4. Carbon tetrachloride was administered once and simultaneously suspension of dry fruit powder was prepared in aqueous medium and was daily administered at a dose level of 1mg/kg body weight for 4 days. Silymarin was used as a standard drug for this study. Administration of carbon tetrachloride showed significant changes in the levels of serum aminotransferase, alkaline phosphatase, bilirubin and total proteins levels, however necrosis, collagen deposition and altered hepatic architecture were also observed. Markers of liver injury, altered aminotransferase, alkaline phosphatase, bilirubin etc. and morphological changes such as necrosis and collagen deposition were significantly decreased in the rats treated with Momordica charantia fruit powder. These results suggest that the Momordica charantia showed hepatoprotective effect on carbon tetrachloride induced hepatic damage and may be a potential clinical application for treatment of liver diseases.

  17. Effects of Enzyme Induction and/or Glutathione Depletion on Methimazole-Induced Hepatotoxicity in Mice and the Protective Role of N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2013-12-01

    Full Text Available Purpose: Methimazole is the most convenient drug used in the management of hyperthyroid patients. However, associated with its clinical use is hepatotoxicity as a life threatening adverse effect. The exact mechanism of methimazole-induced hepatotoxicity is still far from clear and no protective agent has been developed for this toxicity. Methods: This study attempts to evaluate the hepatotoxicity induced by methimazole at different experimental conditions in a mice model. Methimazole-induced hepatotoxicity was investigated in different situations such as enzyme-induced and/or glutathione-depleted animals. Results: Methimazole (100 mg/kg, i.p administration caused hepatotoxicity as revealed by increase in serum alanine aminotransferase (ALT activity as well as pathological changes of the liver. Furthermore, a significant reduction in hepatic glutathione content and an elevation in lipid peroxidation were observed in methimazole-treated mice. Combined administration of L-buthionine sulfoximine (BSO, as a glutathione depletory agent, caused a dramatic change in methimazole-induced hepatotoxicity characterized by hepatic necrosis and a severe elevation of serum ALT activity. Enzyme induction using phenobarbital and/or β-naphtoflavone beforehand, deteriorated methimazole-induced hepatotoxicity in mice. N-acetyl cysteine (300 mg/kg, i.p administration effectively alleviated hepatotoxic effects of methimazole in both glutathione-depleted and/or enzyme-induced animals. Conclusion: The severe hepatotoxic effects of methimazole in glutathione-depleted animals, reveals the crucial role of glutathione as a cellular defense mechanism against methimazole-induced hepatotoxicity. Furthermore, the more hepatotoxic properties of methimazole in enzyme-induced mice, indicates the role of reactive intermediates in the hepatotoxicity induced by this drug. The protective effects of N-acetylcysteine could be attributed to its radical/reactive metabolite scavenging

  18. Protective effect of stem bark of Ceiba pentandra linn. against paracetamol-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Nirmal K Bairwa

    2010-01-01

    Full Text Available The present study reports protective activity of ethyl acetate fraction of methanol extract of stem bark of Ceiba pentandra against paracetamol-induced liver damage in rats. The ethyl acetate fraction (400 mg/kg was administered orally to the rats with hepatotoxicity induced by paracetamol (3 gm/kg. Silymarin (100 mg/kg was used as positive control. High performance thin layer chromatography (HPTLC fingerprinting of ethyl acetate fraction revealed presence of its major chemical constituents. A significant (P < 0.05 reduction in serum enzymes GOT (ALT, aspartate aminotransferase (AST, GPT alkaline phosphatase (ALP, total bilirubin content and histopathological screening in the rats treated gave indication that ethyl acetate fraction of methanolic extract of Ceiba pentandra possesses hepatoprotective potential against paracetamol-induced hepatotoxicity in rats.

  19. Scientific and Regulatory Perspectives in Herbal and Dietary Supplement Associated Hepatotoxicity in the United States

    Science.gov (United States)

    Avigan, Mark I.; Mozersky, Robert P.; Seeff, Leonard B.

    2016-01-01

    In the United States (US), the risk of hepatotoxicity linked to the widespread use of certain herbal products has gained increased attention among regulatory scientists. Based on current US law, all dietary supplements sold domestically, including botanical supplements, are regulated by the Food and Drug Administration (FDA) as a special category of foods. Under this designation, regulatory scientists do not routinely evaluate the efficacy of these products prior to their marketing, despite the content variability and phytochemical complexity that often characterizes them. Nonetheless, there has been notable progress in the development of advanced scientific methods to qualitatively and quantitatively measure ingredients and screen for contaminants and adulterants in botanical products when hepatotoxicity is recognized. PMID:26950122

  20. Scientific and Regulatory Perspectives in Herbal and Dietary Supplement Associated Hepatotoxicity in the United States

    Directory of Open Access Journals (Sweden)

    Mark I. Avigan

    2016-03-01

    Full Text Available In the United States (US, the risk of hepatotoxicity linked to the widespread use of certain herbal products has gained increased attention among regulatory scientists. Based on current US law, all dietary supplements sold domestically, including botanical supplements, are regulated by the Food and Drug Administration (FDA as a special category of foods. Under this designation, regulatory scientists do not routinely evaluate the efficacy of these products prior to their marketing, despite the content variability and phytochemical complexity that often characterizes them. Nonetheless, there has been notable progress in the development of advanced scientific methods to qualitatively and quantitatively measure ingredients and screen for contaminants and adulterants in botanical products when hepatotoxicity is recognized.

  1. Role of suppressed hepatocellular regeneration and Ca2+ in chlordecone-potentiated CCl4 hepatotoxicity

    International Nuclear Information System (INIS)

    The mechanism by which the chlorinated pesticide chlordecone (CD; Kepone) potentiates CCl4-induced hepatotoxicity and lethality was investigated. It was hypothesized that perturbations in Ca2+ homeostasis, greater than those observed with a low dose of CCl4 alone, in concert with a suppression of hepatocellular regeneration induced by CD alone or by CD + CCl4 are responsible, at least in part, for CD-potentiated CCl4 hepatotoxicity. Ca2+ homeostasis was evaluated by measuring total cell Ca2+ and 45Ca2+ uptake in viable isolated hepatocyte suspension obtained from normal and CD-pretreated rats receiving CCl4 in vivo. In the normal rats in vivo CCL challenge did not affect 45Ca2+ uptake by viable isolated hepatocytes. In contrast, 45Ca2+ uptake was inhibited in viable isolated hepatocytes obtained from rats exposed to CD + CCl4

  2. Scientific and Regulatory Perspectives in Herbal and Dietary Supplement Associated Hepatotoxicity in the United States.

    Science.gov (United States)

    Avigan, Mark I; Mozersky, Robert P; Seeff, Leonard B

    2016-01-01

    In the United States (US), the risk of hepatotoxicity linked to the widespread use of certain herbal products has gained increased attention among regulatory scientists. Based on current US law, all dietary supplements sold domestically, including botanical supplements, are regulated by the Food and Drug Administration (FDA) as a special category of foods. Under this designation, regulatory scientists do not routinely evaluate the efficacy of these products prior to their marketing, despite the content variability and phytochemical complexity that often characterizes them. Nonetheless, there has been notable progress in the development of advanced scientific methods to qualitatively and quantitatively measure ingredients and screen for contaminants and adulterants in botanical products when hepatotoxicity is recognized. PMID:26950122

  3. Freshly isolated hepatocyte transplantation in acetaminophen-induced hepatotoxicity model in rats

    Directory of Open Access Journals (Sweden)

    Daniela Rodrigues

    2012-12-01

    Full Text Available CONTEXT: Hepatocyte transplantation is an attractive therapeutic modality for liver disease as an alternative for orthotopic liver transplantation. OBJECTIVE: The aim of the current study was to investigate the feasibility of freshly isolated rat hepatocyte transplantation in acetaminophen-induced hepatotoxicity model. METHODS: Hepatocytes were isolated from male Wistar rats and transplanted 24 hours after acetaminophen administration in female recipients. Female rats received either 1x10(7 hepatocytes or phosphate buffered saline through the portal vein or into the spleen and were sacrificed after 48 hours. RESULTS: Alanine aminotransferase levels measured within the experiment did not differ between groups at any time point. Molecular analysis and histology showed presence of hepatocytes in liver of transplanted animals injected either through portal vein or spleen. CONCLUSION: These data demonstrate the feasibility and efficacy of hepatocyte transplantation in the liver or spleen in a mild acetaminophen-induced hepatotoxicity model.

  4. Hepatotoxicity associated with microcystin/ Hepatotoxicidade associada à microcistina

    Directory of Open Access Journals (Sweden)

    Ana Paula Frederico Rodrigues Loureiro Bracarense

    2008-08-01

    Full Text Available Urban and industrial discharges, intense agricultural exploitation and fisheries have been causing the eutrophication in both drinking and recreational waters. A frequent consequence of eutrophication in waters is the massive development of cyanobacteria. The occurrence of these blooms induces a severe problem, as Microcystis aeruginosa, the most widespread distributed cyanobacteria, can produce microcystins (MC. Toxic effects of MC have been described in liver, lungs, stomach, and intestine. Deaths in wildlife, livestock and human beings were also associated with MC exposition. MC exposition can occurs directly by ingestion, inhalation, contact, intravenous inoculation of contaminated water (hemodialysis or indirectly, by the consumption of animals, as fish and mollusks, the majors ingestors of cyanobacteria and its toxins. The most toxic MC, an also the most common is microcystin-LR (MC-LR, that has the liver as the main target organ. Microcystin is taken up specifically into the liver by bile acid transporters and, after entering the cytoplasm, inhibit protein phosphatases 1 and 2A, which leads to the increase in protein phosphorylation. This effect has two main consequences: the destruction of cytoskeleton directly causing cytotoxic effects, and deregulation of cell division, leading to tumor-promoting activity. Acute exposition to MC induces severe intrahepatic hemorrhage, necrosis and apoptosis, while chronic exposure can cause hepatic or intestinal neoplasia. It has been documented that MC hepatotoxicity is closely associated with intracellular reactive oxygen species formation. Natural degradation of microcystins depends on the solar radiation and bacteria. If degradation is insufficient, MC will persist in the freshwater food chain. Microcystin contamination of waters is therefore a hazard to human and animal health, so efforts to avoid eutrophication of waters sources are essential, in order to minimize the risks to public health

  5. A multiple endpoint approach to predict the hepatotoxicity of pharmaceuticals in vitro

    OpenAIRE

    Truisi, Germaine Loredana

    2014-01-01

    A new approach was evaluated to predict the hepatotoxic potential of pharmaceuticals. For this purpose, primary rat and human hepatocytes cultured in an optimised sandwich configuration were used; thus, allowing the long-term, repeat-dosing of drugs. The strategy based on the evaluation of multiple endpoints, including cytotoxicity, biokinetic profiling, transcriptomics and proteomics. Pharmaceuticals with known toxicities and pharmacokinetic properties were used as model compounds.

  6. I-131 remnant ablation after thyroidectomy induced hepatotoxicity in a case of thyroid cancer

    OpenAIRE

    Lin, Rong; Banafea, Omar; Ye, Jin

    2015-01-01

    Background Radioactive iodine (I-131) is routinely used for the treatment of differentiated thyroid cancer following surgery. Drug-induced liver injury (DILI) is a leading cause of acute liver failure. Here we reported a rare case of diffuse hepatic uptake (DHU) of radioactive iodine (I-131) induced hepatotoxicity in patient with I-131 ablation therapy after thyroidectomy. Case presentation A 57-year-old woman was admitted due to jaundice, itching and dark urine with abnormally elevated liver...

  7. Therapeutic effects of Cassia angustifolia in a cadmium induced hepatotoxicity assay conducted in male albino rats

    OpenAIRE

    Haidry, Muhammad Tahir; Malik, Arif

    2016-01-01

    The present study aims to investigate the therapeutic effects of Senna plant (Cassia angustifolia L.) in a cadmium induced hepatotoxicity assay by evaluating the activity of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total protein (TP) in the albino rats’ serum. A total of 30 white albino rats were taken and divided into three groups; each group comprising ten rats. The group A was taken as a control group; group B was given cadmium chloride conce...

  8. Drug-induced Hepatotoxicity of Anti-tuberculosis Drugs and Their Serum Levels

    OpenAIRE

    Jeong, Ina; Park, Jong-Sun; Cho, Young-Jae; Yoon, Ho Il; Song, Junghan; Lee, Choon-Taek; Lee, Jae-Ho

    2015-01-01

    The correlation between serum anti-tuberculosis (TB) drug levels and the drug-induced hepatotoxicity (DIH) remains unclear. The purpose of this study was to investigate whether anti-TB DIH is associated with basal serum drug levels. Serum peak levels of isoniazid (INH), rifampicin (RMP), pyrazinamide (PZA), and ethambutol (EMB) were analyzed in blood samples 2 hr after the administration of anti-TB medication. Anti-TB DIH and mild liver function test abnormality were diagnosed on the basis of...

  9. A fatal case of bupropion (Zyban) hepatotoxicity with autoimmune features: Case report

    OpenAIRE

    Humayun Fawwaz; Shehab Thomas M; Tworek Joseph A; Fontana Robert J

    2007-01-01

    Abstract Background Bupropion is approved for the treatment of mood disorders and as an adjuvant medication for smoking cessation. Bupropion is generally well tolerated and considered safe. Two randomized controlled trials of bupropion therapy for smoking cessation did not report any hepatic adverse events. However, there are three reports of severe but non-fatal bupropion hepatotoxicity published in the literature. Case Presentation We present the case of a 55-year old man who presented with...

  10. Clinical and Laboratory Findings of Lead Hepatotoxicity in the Workers of a Car Battery Manufacturing Factory

    Directory of Open Access Journals (Sweden)

    Bita Dadpour

    2016-02-01

    Full Text Available Background: Occupational lead poisoning is common in workers of some industries, but lead hepatotoxicity has rarely been reported. Several animal studies have revealed lead induced liver damage but clinical studies concerning the manifestations of lead induced liver toxicity in humans are scares. This study was designed to investigate the clinical manifestations and pathological parameters of hepatic dysfunction and its relationship with blood and urine lead concentrations in a car battery-manufacturing workers. Methods: This cross sectional study was carried out in Mashhad, Iran, during April-June 2011. One hundred and twelve workers underwent blood and urine sampling for determination of lead concentrations and liver function tests. Clinical signs and symptoms of possible lead hepatotoxicity were investigated. Results: Mean (±SD age of the workers was 28.78 (±5.17 yr with a daytime work of 8.67 (±1.41 h and mean work duration of 3.89 (±2.40 yr. Mean blood lead concentration (BLC and urine lead concentration (ULC were 398.95 (±177.41 µg/l and 83.67(±50 μg/l, respectively. We found no correlation between the clinical findings and BLC or ULC. A weak correlation (R: 0.27, P=0.087 between serum alkaline phosphatase concentration and BLC was obtained. No significant relationship was found between other liver function tests and BLC or ULC. Conclusion: We found no specific clinical and laboratory abnormalities of liver in the workers of car battery manufacturer who had chronic lead toxicity. Further investigations with more specific laboratory tests such as LDH5 and gamma glutamyl transferase (GGT as well as novel biomarkers of metal induced hepatotoxicity might be helpful in evaluating lead hepatotoxicity.

  11. Hepatotoxicity due to zinc phosphide poisoning in two patients: role of N-acetylcysteine.

    Science.gov (United States)

    Oghabian, Zohreh; Afshar, Arefeh; Rahimi, Hamid Reza

    2016-08-01

    Zinc phosphide (Zn3P2/ZnP) is used as a rodenticide. The most common signs of toxicity are nausea, vomiting, hypotension, and metabolic acidosis; patients presenting such signs are referred to the emergency department (ED) of the hospitals. Therefore, this study aimed to report two cases of hepatotoxicity following accidental and intentional ZnP poisoning and successful management with N-acetylcysteine (NAC). PMID:27525081

  12. Moxifloxacin induced fatal hepatotoxicity in a 72-year-old man: a case report

    OpenAIRE

    Verma, Rajanshu; Dhamija, Radhika; Batts, Donald H.; Stephen C Ross; Loehrke, Mark E

    2009-01-01

    Moxifloxacin is a newer-generation synthetic fluoroquinolone that is used for treatment of acute bacterial sinusitis, acute exacerbation of chronic bronchitis, community acquired pneumonia, intra-abdominal infections and skin/skin structure infections. We describe a case of fatal hepatotoxicity caused by Moxifloxacin in a 72-year-old man. He presented with jaundice and epigastric tenderness that started one week after being treated for acute exacerbation of his chronic bronchitis with Moxiflo...

  13. The effects of Artemisia aucheri extract on hepatotoxicity induced by thioacetamide in male rats

    OpenAIRE

    Azam Rezaei; Shahnaz ShekarForoush; Saeed Changizi Ashtiyani; Hydar Aqababa; Ali Zarei; Maryam Azizi; Hasan Yarmahmodi

    2013-01-01

    Objective: Liver is an important organ that is exposed to many oxidant and carcinogenic agents, thus antioxidant compounds are beneficial for liver health. Artemisia contains flavonoid compounds and anti-diabetic, antioxidant, and anti-inflammatory properties. Due to possessing terpene and sesquiterpene compounds, this plant has antioxidant properties. This study was done to investigate the effects of Artemisia plant extract on thioacetamide-induced hepatotoxicity in Wistar rats. Materials an...

  14. Allopurinol and 5-aminosalicylic acid influence thiopurine-induced hepatotoxicity in vitro

    OpenAIRE

    Broekman, Mark M. T. J.; Roelofs, Hennie M. J.; Wong, Dennis R.; Kerstholt, Mariska; Leijten, Alex; Hoentjen, Frank; Peters, Wilbert H. M.; Geert J A Wanten; de Jong, Dirk J.

    2015-01-01

    Introduction The use of thiopurines is frequently accompanied by hepatotoxicity. Studies on hepatocyte cultures showed a time- and dose-dependent increase of thiopurine toxicity. 5-Aminosalicylic acid (5-ASA) and allopurinol can influence thiopurine metabolism; however, it is unknown whether this affects in vitro cytotoxicity. Methods Human hepatoma cells (Huh7, HepG2 and HepaRG) were incubated with increasing concentrations of thiopurines, 5-ASA or allopurinol. Water-soluble tetrazolium salt...

  15. Means of evaluation and protection from doxorubicin-induced cardiotoxicity and hepatotoxicity in rats

    OpenAIRE

    Issam Salouege; Ridha Ben Ali; Dorra Ben Saïd; Noomen Elkadri; Nadia Kourda; Mohamed Lakhal; Anis Klouz

    2014-01-01

    Objectives: This work is aimed on the study of doxorubicin cardiotoxicity and hepatotoxicity in rats and the evaluation of protective effect of trimetazidine administrated concomitantly with doxorubicin for 3 days. Materials and Methods: Male Wistar rats used were subjected to different types of treatment (3 days); A: Control, B: Doxorubicin treatment and C: Trimetazidine and doxorubicin treatment. After sacrifice, tissular distribution of doxorubicin, cardiac scintigraphy, histological e...

  16. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi

    OpenAIRE

    Henderson, Colin J.; Wolf, C. Roland; Kitteringham, Neil; Powell, Helen; Otto, Diana; Park, B. Kevin

    2000-01-01

    Overdose of acetaminophen, a widely used analgesic drug, can result in severe hepatotoxicity and is often fatal. This toxic reaction is associated with metabolic activation by the P450 system to form a quinoneimine metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), which covalently binds to proteins and other macromolecules to cause cellular damage. At low doses, NAPQI is efficiently detoxified, principally by conjugation with glutathione, a reaction catalyzed in ...

  17. The crucial protective role of glutathione against tienilic acid hepatotoxicity in rats

    International Nuclear Information System (INIS)

    To investigate the hepatotoxic potential of tienilic acid in vivo, we administered a single oral dose of tienilic acid to Sprague-Dawley rats and performed general clinicopathological examinations and hepatic gene expression analysis using Affymetrix microarrays. No change in the serum transaminases was noted at up to 1000 mg/kg, although slight elevation of the serum bile acid and bilirubin, and very mild hepatotoxic changes in morphology were observed. In contrast to the marginal clinicopathological changes, marked upregulation of the genes involved in glutathione biosynthesis [glutathione synthetase and glutamate-cysteine ligase (Gcl)], oxidative stress response [heme oxygenase-1 and NAD(P)H dehydrogenase quinone 1] and phase II drug metabolism (glutathione S-transferase and UDP glycosyltransferase 1A6) were noted after 3 or 6 h post-dosing. The hepatic reduced glutathione level decreased at 3-6 h, and then increased at 24 or 48 h, indicating that the upregulation of NF-E2-related factor 2 (Nrf2)-regulated gene and the late increase in hepatic glutathione are protective responses against the oxidative and/or electrophilic stresses caused by tienilic acid. In a subsequent experiment, tienilic acid in combination with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of Gcl caused marked elevation of serum alanine aminotransferase (ALT) with extensive centrilobular hepatocyte necrosis, whereas BSO alone showed no hepatotoxicity. The elevation of ALT by this combination was observed at the same dose levels of tienilic acid as the upregulation of the Nrf2-regulated genes by tienilic acid alone. In conclusion, these results suggest that the impairment of glutathione biosynthesis may play a critical role in the development of tienilic acid hepatotoxicity through extensive oxidative and/or electrophilic stresses

  18. Hepatoprotective potential of ethanolic extract of Pandanus odoratissimus root against paracetamol-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Garima Mishra

    2015-01-01

    Full Text Available Background: Pandanus odoratissimus (Pandanaceae is popular in the indigenous system of medicines like Ayurveda, Siddha, Unani and Homoeopathy. In the traditional system of medicine various plant parts such as leaves, root, flowers, and oils are used as anthelmintic, tonic, stomachic, digestive and in the treatment of jaundice and various liver disorders. Objective: The aim was to investigate the hepatoprotective activity of ethanolic extract of the root of P. odoratissimus against paracetamol (PCM induced hepatotoxicity in rats. Materials and Methods: Hepatotoxicity was induced in male Wistar rat by PCM (2 g/kg b.w. p.o. for 7 days. The ethanolic extract of P. odoratissimus root was administered at the dose level of 200 mg/kg and 400 mg/kg b.w. orally for 7 days and silymarin (100 mg/kg b.w. p.o. as standard drug was administered once daily for a week. The hepatoprotective effect of ethanolic extract was evaluated by assessment of biochemical parameters such as serum glutamic oxaloacetic transaminase, serum glutamic-pyruvic transaminase, serum alkaline phosphatase, total and direct bilirubin and triglycerides. Histopathological study of rat liver was also done. Results: Experimental findings revealed that the extract at dose level of 200 mg/kg and 400 mg/kg of b.w. showed dose dependant hepatoprotective effect against PCM induced hepatotoxicity by significantly restoring the levels of serum enzymes to normal that was comparable to that of silymarin, but the extract at dose level of 400 mg/kg was found to be more potent when compared to that of 200 mg/kg. Besides, the results obtained from histopathological study also support the study. Conclusion: From the results, it can be concluded that ethanolic extract of the root of P. odoratissimus afforded significant protection against PCM induced hepatotoxicity in rats.

  19. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type.

    Science.gov (United States)

    Kane, Alice E; Mitchell, Sarah J; Mach, John; Huizer-Pajkos, Aniko; McKenzie, Catriona; Jones, Brett; Cogger, Victoria; Le Couteur, David G; de Cabo, Rafael; Hilmer, Sarah N

    2016-01-01

    Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice. PMID:26615879

  20. Hepatotoxicity after liver irradiation in children and adolescents. Results from the RiSK

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate acute and late radiotherapy-associated hepatotoxicity in consideration of dose-volume effects and liver function in childhood and adolescence. Since 2001, irradiated children and adolescents in Germany have been prospectively documented in the ''Register of Treatment-Associated Late Effects After Radiotherapy of Malignant Diseases in Childhood and Adolescence (RiSK)'' using standardized forms. Toxicity was graded according to the Radiation Therapy Oncology Group (RTOG) criteria. Until April 2012, 1,392 children and adolescents from 62 radiotherapy centers were recruited. In all, 216 patients underwent irradiation of the liver (median age 9 years, range 1-18 years, 70 patients with total-body irradiation, TBI). For 75 % of patients without TBI, information on acute toxicity of the liver was available: 24 patients had acute toxicity of grade 1-4 (grade 1, 2, and 4, in 20, 3, and 1 patient, respectively), including five patients receiving simultaneous hepatotoxic chemotherapy. Information on late toxicity was documented in 465 forms from 216 patients, with a median follow-up of 2 years. A maximum grade of toxicity of ≥ 0 occurred in 18 patients over time (with grade 1, 2, and 3 toxicity occurring in 15, 2, and 1 patient, respectively), including three patients (17 %) with TBI. One of them received simultaneous hepatotoxic chemotherapy. In multivariable analysis, volume-dose correlations showed no statistically noticeable effect on acute or chronic toxicity. Only low hepatotoxicity developed in children after irradiation of various abdominal and thoracic tumors. Due to the low radiation doses to the liver (median liver dose = 5 Gy) and the low toxicities that were consecutively observed, dose-volume curves for liver toxicity could not be established. These findings reflect the cautious attitude of radiation oncologists in terms of attributable liver doses in the treatment of the investigated tumor entities. It

  1. Role of membrane transport in hepatotoxicity and pathogenesis of drug-induced cholestasis

    OpenAIRE

    Stieger, Bruno; Kullak-Ublick, Gerd A.

    2013-01-01

    Drug-induced liver injury is an important clinical entity, which can be grouped into cholestatic liver injury, hepatocellular liver injury, and mixed liver injury. Cholestatic liver injury is characterized by a reduction in bile flow and the retention within hepatocytes of cholephilic compounds such as bile salts that cause hepatotoxicity. Bile salts are taken up by hepatocytes in a largely sodium-dependent manner and to a lesser extent in a sodium-independent manner. The former process is...

  2. Use of Arctium lappa Extract Against Acetaminophen-Induced Hepatotoxicity in Rats

    OpenAIRE

    Attalla Farag El-Kott, PhD; Mashael Mohammed Bin-Meferij, PhD

    2015-01-01

    Background: Severe destructive hepatic injuries can be induced by acetaminophen overdose and may lead to acute hepatic failure. Objective: To investigate the ameliorative effects of Arctium lappa root extract on acetaminophen-induced hepatotoxicity. Methods: Rats were divided into 4 groups: normal control group, Arctium lappa extract group, acetaminophen-injected group, and acetaminophen treated with Arctium lappa extract group. Results: The treatment with Arctium lappa extract reduc...

  3. A review of the evidence concerning hepatic glutathione depletion and susceptibility to hepatotoxicity after paracetamol overdose

    Science.gov (United States)

    Kalsi, Sarbjeet S; Dargan, Paul I; Waring, W Stephen; Wood, David M

    2011-01-01

    Paracetamol (acetaminophen) poisoning is common throughout the world. The management of nonstaggered (acute) paracetamol overdose is based on the plasma paracetamol concentration plotted on a treatment nomogram. In the UK there are two treatment lines on this nomogram, with the lower treatment line used for individuals felt to be at ‘high risk’ of paracetamol-related hepatotoxicity either as a result of induction of cytochrome P450 isoenzymes or reduction of intrahepatic glutathione. In this article we review the risk factors that, in current guidelines, are felt to increase risk due to a reduction in intrahepatic glutathione concentrations. Based on our review of the published literature, we feel that cystic fibrosis, acute viral illness, malnutrition, and eating disorders such as anorexia nervosa are likely to be associated with reduction in intrahepatic glutathione concentrations, and that this risk is likely to be related to malnutrition secondary to the disease. Chronic hepatitis C infection is also associated with reduced glutathione concentrations, although this appears to be independent of any associated malnutrition. Ageing and acute fasting are not associated with an increased risk of paracetamol-related hepatotoxicity due to reductions in glutathione concentrations. Finally, the evidence for HIV infection is inconclusive, particularly as the majority of studies were conducted in the pre-anti-viral treatment (HAART) era; however it is likely that patients with symptomatic HIV/AIDS have reduced glutathione concentrations due to associated malnutrition. Although there have been few studies which have specifically investigated whether there is an association between reduced intrahepatic glutathione concentrations and increased risk of paracetamol-related hepatotoxicity, in our opinion, it is likely that the above conditions that are associated with reduced glutathione concentrations, will be associated with an increased risk of paracetamol

  4. Diet Restriction Inhibits Apoptosis and HMGB1 Oxidation and Promotes Inflammatory Cell Recruitment during Acetaminophen Hepatotoxicity

    OpenAIRE

    Antoine, Daniel James; Williams, Dominic P.; Kipar, Anja; Laverty, Hugh; Park, B. Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-depende...

  5. Ipomoea aquatica Extract Shows Protective Action Against Thioacetamide-Induced Hepatotoxicity

    OpenAIRE

    Hadi, A. Hamid A.; Siddig Ibrahim Abdelwahab; Suzy Munir Salama; Salim Said Alkiyumi; Mahmood Ameen Abdullah; Ahmed Salim Alrashdi

    2012-01-01

    In the Indian system of traditional medicine (Ayurveda) it is recommended to consume Ipomoea aquatica to mitigate disorders like jaundice. In this study, the protective effects of ethanol extract of I. aquatica against liver damage were evaluated in thioacetamide (TAA)-induced chronic hepatotoxicity in rats. There was no sign of toxicity in the acute toxicity study, in which Sprague-Dawley (SD) rats were orally fed with ...

  6. Ascorbic acid prevents acetaminophen-induced hepatotoxicity in mice by ameliorating glutathione recovery and autophagy.

    Science.gov (United States)

    Kurahashi, Toshihiro; Lee, Jaeyong; Nabeshima, Atsunori; Homma, Takujiro; Kang, Eun Sil; Saito, Yuka; Yamada, Sohsuke; Nakayama, Toshiyuki; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2016-08-15

    Aldehyde reductase (AKR1A) plays a role in the biosynthesis of ascorbic acid (AsA), and AKR1A-deficient mice produce about 10-15% of the AsA that is produced by wild-type mice. We found that acetaminophen (AAP) hepatotoxicity was aggravated in AKR1A-deficient mice. The pre-administration of AsA in the drinking water markedly ameliorated the AAP hepatotoxicity in the AKR1A-deficient mice. Treatment of the mice with AAP decreased both glutathione and AsA levels in the liver in the early phase after AAP administration, and an AsA deficiency delayed the recovery of the glutathione content in the healing phase. While in cysteine supply systems; a neutral amino acid transporter ASCT1, a cystine transporter xCT, enzymes for the transsulfuration pathway, and autophagy markers, were all elevated in the liver as the result of the AAP treatment, the AsA deficiency suppressed their induction. Thus, AsA appeared to exert a protective effect against AAP hepatotoxicity by ameliorating the supply of cysteine that is available for glutathione synthesis as a whole. Because some drugs produce reactive oxygen species, resulting in the consumption of glutathione during the metabolic process, the intake of sufficient amounts of AsA would be beneficial for protecting against the hepatic damage caused by such drugs. PMID:27288086

  7. A fatal case of bupropion (Zyban hepatotoxicity with autoimmune features: Case report

    Directory of Open Access Journals (Sweden)

    Humayun Fawwaz

    2007-09-01

    Full Text Available Abstract Background Bupropion is approved for the treatment of mood disorders and as an adjuvant medication for smoking cessation. Bupropion is generally well tolerated and considered safe. Two randomized controlled trials of bupropion therapy for smoking cessation did not report any hepatic adverse events. However, there are three reports of severe but non-fatal bupropion hepatotoxicity published in the literature. Case Presentation We present the case of a 55-year old man who presented with jaundice and severe hepatic injury approximately 6 months after starting bupropion for smoking cessation. Laboratory evaluation demonstrated a mixed picture of hepatocellular injury and cholestasis. Liver biopsy demonstrated findings consistent with severe hepatotoxic injury due to drug induced liver injury. Laboratory testing was also notable for positive autoimmune markers. The patient initially had clinical improvement with steroid therapy but eventually died of infectious complications. Conclusion This report represents the first fatal report of bupropion related hepatotoxicity and the second case of bupropion related liver injury demonstrating autoimmune features. The common use of this medication for multiple indications makes it important for physicians to consider this medication as an etiologic agent in patients with otherwise unexplained hepatocellular jaundice.

  8. Synergistic hepatotoxic effects of ethanol on cocaine metabolism and lipid peroxidation

    Energy Technology Data Exchange (ETDEWEB)

    Odeleye, O.; Watson, R.R.; Eskelson, C.D.; Odeleye, A. (Univ. of Arizona, Tucson (United States))

    1991-03-15

    The authors evaluated the contribution of chronic ethanol (EtoH) consumption on cocaine-induced hepatotoxicity and the role lipid peroxidation (LP) plays as part of the toxic mechanisms in EtoH-cocaine induced liver damage. Male C57BL/6 mice were injected i.p. with 10-50 mg cocaine/kg body weight daily, and fed liquid diets containing 5 1/2% (w/v) EtoH for 5 or 9 weeks. Control mice received saline i.p. and an isocaloric diet without EtoH. EtoH and cocaine treatment increased hepatic malondialdehyde (MDA) 3.7 to 8.5 fold, while cocaine treatment during EtoH exposure increased MDA 11-20 fold over controls. Similarly, hepatic lipid fluorescence and conjugated dienes in the cocaine plus EtoH treated mice were 2-8 fold higher than in the cocaine or EtoH treated mice. Liver transaminases (ALT and AST) were higher in the cocaine plus EtoH treated group. Histologic changes including centrilobular necrosis and hepatic lipid infiltration were more pronounced in the EtoH plus cocaine treated mice. This study clearly shows that EtoH and cocaine synergistically enhanced hepatotoxicity and that increased LP is a participating mechanism is this hepatotoxicity.

  9. A critical analysis of the hepatotoxicity cases described in the literature related to Herbalife (r products

    Directory of Open Access Journals (Sweden)

    Flávio Ailton Duque Zambrone

    2015-12-01

    Full Text Available Abstract The aim of this study was to assess the hepatotoxicity cases described in the literature, attributed to the consumption of Herbalife(r products, and to determine whether a causal relationship exists between the reported cases of liver injury and the use of these products. A literature search was performed on the PubMed, LILACS and PAHO databases. Seven publications reporting a total of 53 cases of hepatotoxicity linked to the use of Herbalife(r products were retrieved. All of the studies lacked sufficient information to some degree, whether related to patients' history, concomitant use of medication and/or other compounds (including alcohol, observations on interrupted use (dechallenge, results found with markers, viral serology and autoantibodies or observations concerning re-exposure to the products. In addition to these items, the lack of clear information on the type of products evaluated and their respective composition is an important factor to be considered. Furthermore, data quality was also questionable due to the presence of confounding factors, absence of proper exclusion of alternative explanations, and the use of questionable methods for attributing causality. Hence, an association between hepatotoxicity and consumption of these products cannot be proven based on the data collected and rigorous scientific analysis.

  10. Carvacrol suppresses the expression of inflammatory marker genes in D-galactosamine-hepatotoxic rats

    Institute of Scientific and Technical Information of China (English)

    Balakrishnan Aristatile; Abdullah H Al-Assaf; Kodukkur Viswanathan Pugalendi

    2013-01-01

    Objective:To unravel the mechanism of anti-inflammatory activity of carvacrol in D-galactosamine(D-GalN)-induced hepatotoxic rats.Methods:The mRNA and protein expression levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), inducible nitric oxide synthase(iNOS), cyclooxygenase-2(COX-2) and nuclear factor kappa-B(NF-κB) were assayed by semi-quantitative reverse transcriptase polymerase chain reaction(RTPCR) and western blot analysis.Results:We found that the mRNA and protein expressions ofTNF-α, IL-6, iNOS,COX-2 andNF-κB were significantly up-regulated inD-galactosamine induced hepatotoxic rats and treatment with carvacrol significantly down-regulated the expressions of these genes showing the mechanism behind the anti-inflammatory activity of carvacrol. Conclusions:All above results reveal that the carvacrol well known anti-inflammatory activities inD-galactosamine induced hepatotoxic rats.

  11. Frequency of anti-tuberculous therapy-induced hepatotoxicity in patients and their outcome

    International Nuclear Information System (INIS)

    Tuberculosis (TB) is a very common droplet infection especially in the northern areas. If untreated, the disease may be fatal within 5 years in more than half of cases. To study the frequency of anti-tuberculous therapy (ATT) induced hepato-toxicity was the subject of the present hospital based descriptive study. The study was conducted in Medical Unit, Ayub Teaching Hospital and patients with diagnosed Tuberculosis in whom ATT was initiated were included in the study. The subsequent development of elevated liver enzyme levels and hepatitis, amongst some members of the study group; was diagnosed, with the help of clinical findings and Liver Function Tests (LFT's) and were dealt with according to severity. Out of the 500 patients studied 277 (55.4%) were male and 223 (44.6%) were female, 203 (40.5%) were in age group 21-35 years, 136 (27.1%) in age group 36-50 years, 141 (28.1%) in age group 51-65 years while 20 (4%) were above 65 years of age. Out of them 40 (8%) developed hepatotoxicity, 21 (4.2%) patients amongst the study group developed overt hepatitis, 20 (4%) of them made an uneventful recovery while 1 (0.2%) died of Fulminant Hepatic Failure (FHF). ATT-induced hepato-toxicity, was frequently encountered in patients put on ATT. (author)

  12. The Ameliorative Effects of L-2-Oxothiazolidine-4-Carboxylate on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Jun Ho Shin

    2013-03-01

    Full Text Available The aim of the study was to investigate the ameliorative effects and the mechanism of action of L-2-oxothiazolidine-4-carboxylate (OTC on acetaminophen (APAP-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH production and glutathione peroxidase (GSH-px activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.

  13. Protective effects of 2,4-dihydroxybenzophenone against acetaminophen-induced hepatotoxicity in mice

    Institute of Scientific and Technical Information of China (English)

    Yue-Ying He; Bao-Xu Zhang; Feng-Lan Jia

    2011-01-01

    AIM: To examine the effects of 2,4-dihydroxybenzophenone (BP-1), a benzophenone derivative used as an ultraviolet light absorbent, on acetaminophen (APAP)- induced hepatotoxicity in C57BL/6J mice. METHODS: Mice were administered orally with BP-1 at doses of 200, 400 and 800 mg/kg body weight respectively every morning for 4 d before a hepatotoxic dose of APAP (350 mg/kg body weight) was given subcutaneously. Twenty four hours after APAP intoxication, the serum enzyme including serum alaine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) were measured and liver histopathologic changes were examined. RESULTS: BP-1 administration dramatically reduced serum ALT, AST and LDH levels. Liver histopathological examination showed that BP-1 administration antagonized APAP-induced liver pathological damage in a dose-dependent manner. Further tests showed that APAP-induced hepatic lipid peroxidation was reduced significantly by BP-1 pretreatment, and glutathione depletion was ameliorated obviously. CONCLUSION: BP-1 can effectively protect C57BL/6J mice from APAP-induced hepatotoxicity, and reduction of oxidative stress might be part of the protection mechanism.

  14. FDA proposals to limit the hepatotoxicity of paracetamol (acetaminophen): are they reasonable?

    Science.gov (United States)

    Graham, Garry G; Day, Richard O; Graudins, Andis; Mohamudally, Anthoulla

    2010-04-01

    Hepatotoxicity from paracetamol is of great concern because of the considerable number of patients who develop severe toxicity from this drug. A group of senior medical practitioners, academics and scientists were brought together on June 29 and 30, 2009 by the Food and Drug Administration of USA (FDA) with the aim of providing advice on how to limit the number of cases of hepatotoxicity due to paracetamol in USA. The most contentious recommendations were the reduction in the dose of paracetamol to 650 mg and the elimination of prescription combination products of paracetamol and opiates. The first recommendation indicates that many members of the committee consider, despite much evidence to the contrary, that therapeutic doses of paracetamol (up to 4 g daily) are associated with a significant incidence of hepatotoxicity. The second recommendation, if accepted by FDA, will require major changes in the therapeutic use of paracetamol and opiates. Adoption of these two recommendations may lead to the increased use of NSAIDs with the potential of increasing incidence of NSAIDs-related adverse reactions. PMID:20213329

  15. The Relation between Hepatotoxicity and the Total Coumarin Intake from Traditional Japanese Medicines Containing Cinnamon Bark.

    Science.gov (United States)

    Iwata, Naohiro; Kainuma, Mosaburo; Kobayashi, Daisuke; Kubota, Toshio; Sugawara, Naoko; Uchida, Aiko; Ozono, Sahoko; Yamamuro, Yuki; Furusyo, Norihiro; Ueda, Koso; Tahara, Eiichi; Shimazoe, Takao

    2016-01-01

    Cinnamon bark is commonly used in traditional Japanese herbal medicines (Kampo medicines). The coumarin contained in cinnamon is known to be hepatotoxic, and a tolerable daily intake (TDI) of 0.1 mg/kg/day, has been quantified and used in Europe to insure safety. Risk assessments for hepatotoxicity by the cinnamon contained in foods have been reported. However, no such assessment of cinnamon bark has been reported and the coumarin content of Kampo medicines derived from cinnamon bark is not yet known. To assess the risk for hepatotoxicity by Kampo medicines, we evaluated the daily coumarin intake of patients who were prescribed Kampo medicines and investigated the relation between hepatotoxicity and the coumarin intake. The clinical data of 129 outpatients (18 male and 111 female, median age 58 years) who had been prescribed keishibukuryogankayokuinin (TJ-125) between April 2008 and March 2013 was retrospectively investigated. Concurrent Kampo medicines and liver function were also surveyed. In addition to TJ-125, the patients took some of the other 32 Kampo preparations and 22 decoctions that include cinnamon bark. The coumarin content of these Kampo medicines was determined by high performance liquid chromatography (HPLC). TJ-125 had the highest daily content of coumarin (5.63 mg/day), calculated from the daily cinnamon bark dosage reported in the information leaflet inserted in each package of Kampo medicine. The coumarin content in 1g cinnamon bark decoction was 3.0 mg. The daily coumarin intake of the patients was 0.113 (0.049-0.541) mg/kg/day, with 98 patients (76.0%) exceeding the TDI. Twenty-three patients had an abnormal change in liver function test value, but no significant difference was found in the incidence of abnormal change between the group consuming less than the TDI value (6/31, 19.4%) and the group consuming equal to or greater than the TDI value (17/98, 17.3%). In addition, no abnormal change related to cinnamon bark was found for individual

  16. The Relation between Hepatotoxicity and the Total Coumarin Intake from Traditional Japanese Medicines Containing Cinnamon Bark

    Science.gov (United States)

    Iwata, Naohiro; Kainuma, Mosaburo; Kobayashi, Daisuke; Kubota, Toshio; Sugawara, Naoko; Uchida, Aiko; Ozono, Sahoko; Yamamuro, Yuki; Furusyo, Norihiro; Ueda, Koso; Tahara, Eiichi; Shimazoe, Takao

    2016-01-01

    Cinnamon bark is commonly used in traditional Japanese herbal medicines (Kampo medicines). The coumarin contained in cinnamon is known to be hepatotoxic, and a tolerable daily intake (TDI) of 0.1 mg/kg/day, has been quantified and used in Europe to insure safety. Risk assessments for hepatotoxicity by the cinnamon contained in foods have been reported. However, no such assessment of cinnamon bark has been reported and the coumarin content of Kampo medicines derived from cinnamon bark is not yet known. To assess the risk for hepatotoxicity by Kampo medicines, we evaluated the daily coumarin intake of patients who were prescribed Kampo medicines and investigated the relation between hepatotoxicity and the coumarin intake. The clinical data of 129 outpatients (18 male and 111 female, median age 58 years) who had been prescribed keishibukuryogankayokuinin (TJ-125) between April 2008 and March 2013 was retrospectively investigated. Concurrent Kampo medicines and liver function were also surveyed. In addition to TJ-125, the patients took some of the other 32 Kampo preparations and 22 decoctions that include cinnamon bark. The coumarin content of these Kampo medicines was determined by high performance liquid chromatography (HPLC). TJ-125 had the highest daily content of coumarin (5.63 mg/day), calculated from the daily cinnamon bark dosage reported in the information leaflet inserted in each package of Kampo medicine. The coumarin content in 1g cinnamon bark decoction was 3.0 mg. The daily coumarin intake of the patients was 0.113 (0.049–0.541) mg/kg/day, with 98 patients (76.0%) exceeding the TDI. Twenty-three patients had an abnormal change in liver function test value, but no significant difference was found in the incidence of abnormal change between the group consuming less than the TDI value (6/31, 19.4%) and the group consuming equal to or greater than the TDI value (17/98, 17.3%). In addition, no abnormal change related to cinnamon bark was found for individual

  17. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice

    International Nuclear Information System (INIS)

    Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP+/+ and TIRAP−/− mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24 h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ∼ 3–4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP+/+ mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP−/− mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs. -- Highlights: ► Inflammation augments the toxicity of an idiosyncratic hepatotoxin chlorpromazine. ► Activation of Toll-like receptors by LPS or LTA induces chlorpromazine toxicity. ► Sustained stress kinase (JNK) activation is associated with chlorpromazine toxicity. ► These studies provide novel mechanistic

  18. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Adarsh, E-mail: adarsh.gandhi@nih.gov [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Guo, Tao, E-mail: tguo4@jhu.edu [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Shah, Pranav [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Moorthy, Bhagavatula [Baylor College of Medicine, Department of Pediatrics, 1102 Bates Avenue, Suite 530, Houston, TX 77030 (United States); Ghose, Romi, E-mail: rghose@uh.edu [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States)

    2013-02-01

    Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP{sup +/+} and TIRAP{sup −/−} mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24 h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ∼ 3–4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP{sup +/+} mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP{sup −/−} mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs. -- Highlights: ► Inflammation augments the toxicity of an idiosyncratic hepatotoxin chlorpromazine. ► Activation of Toll-like receptors by LPS or LTA induces chlorpromazine toxicity. ► Sustained stress kinase (JNK) activation is associated with chlorpromazine toxicity. ► These studies

  19. A review of the evidence concerning hepatic glutathione depletion and susceptibility to hepatotoxicity after paracetamol overdose

    Directory of Open Access Journals (Sweden)

    Kalsi SS

    2011-12-01

    Full Text Available Sarbjeet S Kalsi1,2, Paul I Dargan2–4, W Stephen Waring5, David M Wood2–41Emergency Department, Guy’s and St Thomas’ NHS Foundation Trust, London, UK; 2Clinical Toxicology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK; 3King’s Health Partners, London, UK; 4King’s College London, London, UK; 5York Teaching Hospital NHS Foundation Trust, York, UKAbstract: Paracetamol (acetaminophen poisoning is common throughout the world. The management of nonstaggered (acute paracetamol overdose is based on the plasma paracetamol concentration plotted on a treatment nomogram. In the UK there are two treatment lines on this nomogram, with the lower treatment line used for individuals felt to be at ‘high risk’ of paracetamol-related hepatotoxicity either as a result of induction of cytochrome P450 isoenzymes or reduction of intrahepatic glutathione. In this article we review the risk factors that, in current guidelines, are felt to increase risk due to a reduction in intrahepatic glutathione concentrations. Based on our review of the published literature, we feel that cystic fibrosis, acute viral illness, malnutrition, and eating disorders such as anorexia nervosa are likely to be associated with reduction in intrahepatic glutathione concentrations, and that this risk is likely to be related to malnutrition secondary to the disease. Chronic hepatitis C infection is also associated with reduced glutathione concentrations, although this appears to be independent of any associated malnutrition. Ageing and acute fasting are not associated with an increased risk of paracetamol-related hepatotoxicity due to reductions in glutathione concentrations. Finally, the evidence for HIV infection is inconclusive, particularly as the majority of studies were conducted in the pre-anti-viral treatment (HAART era; however it is likely that patients with symptomatic HIV/AIDS have reduced glutathione concentrations due to associated malnutrition. Although

  20. Investigation of a hepatotoxicity screening system in primary cell cultures --"what biomarkers would need to be addressed to estimate toxicity in conventional and new approaches?".

    Science.gov (United States)

    Kikkawa, Rie; Yamamoto, Toshinori; Fukushima, Tamio; Yamada, Hiroshi; Horii, Ikuo

    2005-02-01

    High throughput toxicological estimation is required for safety evaluation in the early stage of drug discovery. In this context, establishment of an in vitro screening system reflecting in vivo toxicity is demanded for earlier safety assessment. We investigated LDH release and mitochondrial respiration (WST-1 reduction assay; WST-1) to detect cytotoxicity, morphological evaluation, and proteomics for estimating the reliable and sensitive biomarkers by using rat primary hepatocytes exposed to the compounds (acetaminophen, amiodarone, tetracycline and carbon tetrachloride) that are known to induce hepatotoxicity. In LDH release, no significant difference was detected between the control and compound exposed cells after exposure for 3 or 6 hr, but a dose-dependent increase was observed after exposure for 24 hr. Regarding the WST-1 assay, a dose-dependent reduction was detected after exposure for 6 and 24 hr to all of the compounds evaluated. In the proteomics analysis, 31 candidate proteins were identified from among the 103 demonstrating altered expression spots after exposure to acetaminophen. It was concluded that the cytotoxicity was detected earlier by measuring WST-1 than by measuring LDH release because the reduction of mitochondrial respiration is an expressions of earlier toxicity for cellular function, while the measured increase in the LDH release occurs after the failure of the cell membrane. Mitochondrial respiration ability was a useful parameter for cytotoxicity in in vitro hepato-toxicity screening, as cytotoxicity can be detected during the early stage of exposure. In addition to the conventional biomarkers, several protein biomarkers which relate to oxidative stress and metabolism-regulation were detected. Further comprehensive analysis of defined proteins would be necessary to estimate the more sensitive toxicology biomarker. PMID:15800402

  1. Hepatoprotective effects of solanum nigrum extracts on carbon tetrachloride (CCl4) induced hepatotoxicity in rats

    International Nuclear Information System (INIS)

    Effects of aqueous and alcoholic extracts of Solanum nigrum were investigated against CCl4 induced hepatic damage in male albino rats of Sprague Dowley Strain. Enzymatic activities i.e. Aspartate Transaminase, Alanine Transaminase and Alkaline Phosphatase, and gross microscopic appearance of liver were used as parameters and hepato protective studies were performed. In case of hepato protective study i.e. pre-treatment of rats with aqueous extracts of plant (500 mg orally, two doses with 24 hours interval) prevented (p <0.001) CCl4 induced rise in activity of serum Transaminases (ALT and AST) and ALP, whereas the alcoholic extract did not prevent the rise of same enzymes, compared to the sham control group in which liver was damaged by CCI4, no treatment given. Histological examination of the liver of animals treated with aqueous extract of plant showed that change in fatty acids was less in comparison to the sham control group. In the treated group, reduction in body-weight was minimal and liver enlargement was also less, as compared to the animals in sham control group. These results indicate that only aqueous extract of Solanum nigrum exhibits hepatoprotective effects, at least within the parameters of the present study. (author)

  2. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.

    Science.gov (United States)

    Burel, Sebastien A; Hart, Christopher E; Cauntay, Patrick; Hsiao, Jill; Machemer, Todd; Katz, Melanie; Watt, Andy; Bui, Huynh-Hoa; Younis, Husam; Sabripour, Mahyar; Freier, Susan M; Hung, Gene; Dan, Amy; Prakash, T P; Seth, Punit P; Swayze, Eric E; Bennett, C Frank; Crooke, Stanley T; Henry, Scott P

    2016-03-18

    High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation. PMID:26553810

  3. Study Liver Cytochrome P450 3A4 Inhibition and Hepatotoxicity Using DMSO-Differentiated HuH-7 Cells.

    Science.gov (United States)

    Liu, Yitong

    2016-01-01

    Metabolically competent, inexpensive, and robust in vitro cell models are needed for studying liver drug-metabolizing enzymes and hepatotoxicity. Human hepatoma HuH-7 cells develop into a differentiated in vitro model resembling primary human hepatocytes after a 2-week dimethyl sulfoxide (DMSO) treatment. DMSO-treated HuH-7 cells express elevated cytochrome P450 3A4 (CYP3A4) enzyme gene expression and activity compared to untreated HuH-7 cells. This cell model could be used to study CYP3A4 inhibition by reversible and time-dependent inhibitors, including drugs, food-related substances, and environmental chemicals. The DMSO-treated HuH-7 model is also a suitable tool for investigating hepatotoxicity. This chapter describes a detailed methodology for developing DMSO-treated HuH-7 cells, which are subsequently used for CYP3A4 inhibition and hepatotoxicity studies. PMID:27518624

  4. The Role of RAAS Inhibition by Aliskiren on Paracetamol-Induced Hepatotoxicity Model in Rats.

    Science.gov (United States)

    Karcioglu, Saliha Sena; Palabiyik, Saziye Sezin; Bayir, Yasin; Karakus, Emre; Mercantepe, Tolga; Halici, Zekai; Albayrak, Abdulmecit

    2016-03-01

    Paracetamol is one of the most popular and widely used analgesic and antipyretic agents, but an overdose can cause hepatotoxicity and lead to acute liver failure. Aliskiren directly inhibits renin which downregulates the renin-angiotensin-aldosterone system (RAAS). Recent findings suggest that RAAS system takes part in the pathogenesis of liver fibrosis. We aimed to reveal the relationship between hepatotoxicity and the RAAS by examining paracetamol induced hepatotoxicity. Rats were separated into five groups as follows: control, 100 mg/kg aliskiren (p.o.), 2 g/kg paracetamol (per os (p.o.)), 2 g/kg paracetamol + 50mg/kg aliskiren (p.o.), and 2 g/kg paracetamol + 100 mg/kg aliskiren(p.o.). Samples were analyzed at the biochemical, molecular, and histopathological levels. Paracetamol toxicity increased alanine aminotransferases (ALT), aspartate aminotransferases (AST), renin, and angiotensin II levels in the serum samples. In addition, the SOD activity and glutathione (GSH) levels decreased while Lipid Peroxidation (MDA) levels increased in the livers of the rats treated with paracetamol. Paracetamol toxicity caused a significant increase in TNF-α and TGF-β. Both aliskiren doses showed an improvement in ALT, AST, oxidative parameters, angiotensin II, and inflammatory cytokines. Only renin levels increased in aliskiren treatment groups due to its pharmacological effect. A histopathological examination of the liver showed that aliskiren administration ameliorated the paracetamol-induced liver damage. In immunohistochemical staining, the expression of TNF-α in the cytoplasm of the hepatocytes was increased in the paracetamol group but not in other treatment groups when compared to the control group. In light of these observations, we suggest that the therapeutic administration of aliskiren prevented oxidative stress and cytokine changes and also protected liver tissues during paracetamol toxicity by inhibiting the RAAS. PMID:26280784

  5. Prevention of hepatotoxicity due to anti tuberculosis treatment: A novel integrative approach

    Institute of Scientific and Technical Information of China (English)

    Meghna R Adhvaryu; Narsimha M Reddy; Bhasker C Vakharia

    2008-01-01

    AIM: To evaluate the ability of Curcuma longa (CL) and Tinospora cordifolia (TC) formulation to prevent anti-tuberculosis (TB) treatment (ATT) induced hepatotoxicity.METHODS: Patients with active TB diagnosis were randomized to a drug control group and a trial group on drugs plus an herbal formulation.Isoniazid,rifampicin,pyrazinamide and ethambutol for first 2 mo followed by continuation phase therapy excluding Pyrazinamide for 4 mo comprised the anti-tuberculous treatment.Curcumin enriched (25%) CL and a hydro-ethanolic extract enriched (50%) TC 1 g each divided in two doses comprised the herbal adjuvant.Hemogram,bilirubin and liver enzymes were tested initially and monthly till the end of study to evaluate the result.RESULTS: Incidence and severity of hepatotoxicity was significantly lower in trial group (incidence: 27/192 vs 2/316,P < 0.0001).Mean aspartate transaminase (AST) (195.93 ± 108.74 vs 85 ± 4.24,P < 0.0001),alanine transaminase (ALT) (75.74 ± 26.54 vs 41 ±1.41,P < 0.0001) and serum bilirubin (5.4 ± 3.38 vs 1.5± 0.42,P < 0.0001).A lesser sputum positivity ratio at the end of 4 wk (10/67 vs 4/137,P = 0.0068) and decreased incidence of poorly resolved parenchymal lesion at the end of the treatment (9/152 vs 2/278,P = 0.0037) was observed.Improved patient compliance was indicated by nil drop-out in trial vs 10/192 in control group (P < 0.0001).CONCLUSION: The herbal formulation prevented hepatotoxicity significantly and improved the disease outcome as well as patient compliance without any toxicity or side effects.

  6. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Chun-Hung Chiu

    2016-07-01

    Full Text Available Lipopolysaccharide (LPS-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST, a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10 for seven days and then were LPS-challenged (i.p., 5 mg/kg. The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT, glutamic oxaloacetic transaminase (GOT, blood urea nitrogen (BUN, creatinine (CRE, hepatic malondialdehyde (MDA and glutathione peroxidase (GSH-Px, IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS, suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day. Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity.

  7. Melphalan antitumor efficacy and hepatotoxicity: the effect of variable infusion duration in the hepatic artery.

    Science.gov (United States)

    Rothbarth, Joost; Woutersen, Ruud A; Sparidans, Rolf W; van de Velde, Cornelis J H; Mulder, Gerard J

    2003-06-01

    The optimum conditions (duration and concentration) of a fixed dose, intra-arterial melphalan infusion in relation to its antitumor effect and toxicity in the liver were investigated in a rat colon tumor model (CC531) of liver metastases. We studied the difference in tumor and liver uptake, as well as antitumor effect and hepatotoxicity after 5- and 20-min hepatic arterial infusion (HAI) of a fixed melphalan dose. Melphalan content in perfusate, liver, and tumor tissue was analyzed by high-performance liquid chromatography. The antitumor effect and hepatotoxicity in rats treated either systemically or with 5- and 20-min HAI, with a fixed dose melphalan (4.4 micromol), were assessed 2 weeks after treatment. No difference in melphalan content of tumor/liver tissue or antitumor effect was observed between rats treated with 5- and 20-min HAI. Hepatotoxicity was strongly affected by perfusion duration/concentration, however. Rats treated with 5-min HAI weighed significantly less, and liver toxicity parameters were significantly increased compared with those of all other groups; eight of nine rats showed severe cholangiofibrosis. Body weights and liver toxicity parameters of the rats treated with 20-min HAI were not statistically different from the control group. In conclusion, duration of HAI with 4.4 micromol of fixed dose melphalan did not affect tumor uptake and antitumor effect, but the resulting increase in melphalan concentration had major impact on hepatobiliary toxicity. Therefore, in a clinical setting, caution should be taken when infusion duration and concentration of melphalan are changed. PMID:12606622

  8. Attenuating Oxidative Stress by Paeonol Protected against Acetaminophen-Induced Hepatotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Yi Ding

    Full Text Available Acetaminophen (APAP overdose is the most frequent cause of drug-induced acute liver failure. The purpose of this study was to investigate whether paeonol protected against APAP-induced hepatotoxicity. Mice treated with paeonol (25, 50, 100 mg/kg received 400 mg/kg acetaminophen intraperitoneally (i.p. and hepatotoxicity was assessed. Pre-treatment with paeonol for 6 and 24 h ameliorated APAP-induced hepatic necrosis and significantly reduced the serum alanine aminotransferase (ALT and aspartate transaminase (AST levels in a dose-dependent manner. Post-treatment with 100 mg/kg paeonol ameliorated APAP-induced hepatic necrosis and reduced AST and ALT levels in the serum after APAP administration for 24 h. Western blot revealed that paeonol inhibited APAP-induced phosphorylated JNK protein expression but not p38 and Erk1/2. Moreover, paeonol showed anti-oxidant activities with reducing hepatic MDA contents and increasing hepatic SOD, GSH-PX and GSH levels. Paeonol dose-dependently prevented against H2O2 or APAP-induced LDH releasing and ROS production in primary mouse hepatocytes. In addition, the mRNA levels of pro-inflammatory genes such as TNF-α, MCP-1, IL-1β and IL-6 in the liver were dose-dependently reduced by paeonol pre-treatment. Pre-treatment with paeonol significantly inhibited IKKα/β, IκBα and p65 phosphorylation which contributed to ameliorating APAP-induced hepatic inflammation. Collectively, the present study demonstrates paeonol has a protective ability against APAP-induced hepatotoxicity and might be an effective candidate compound against drug-induced acute liver failure.

  9. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2

    International Nuclear Information System (INIS)

    The transcription factor NFE2-related factor 2 (Nrf2) mediates detoxification and antioxidant gene transcription following electrophile exposure and oxidative stress. Mice deficient in Nrf2 (Nrf2-null) are highly susceptible to acetaminophen (APAP) hepatotoxicity and exhibit lower basal and inducible expression of cytoprotective genes, including NADPH quinone oxidoreductase 1 (Nqo1) and glutamate cysteine ligase (catalytic subunit, or Gclc). Administration of toxic APAP doses to C57BL/6J mice generates electrophilic stress and subsequently increases levels of hepatic Nqo1, Gclc and the efflux multidrug resistance-associated protein transporters 1-4 (Mrp1-4). It was hypothesized that induction of hepatic Mrp1-4 expression following APAP is Nrf2 dependent. Plasma and livers from wild-type (WT) and Nrf2-null mice were collected 4, 24 and 48 h after APAP. As expected, hepatotoxicity was greater in Nrf2-null compared to WT mice. Gene and protein expression of Mrp1-4 and the Nrf2 targets, Nqo1 and Gclc, was measured. Induction of Nqo1 and Gclc mRNA and protein after APAP was dependent on Nrf2 expression. Similarly, APAP treatment increased hepatic Mrp3 and Mrp4 mRNA and protein in WT, but not Nrf2-null mice. Mrp1 was induced in both genotypes after APAP, suggesting that elevated expression of this transporter was independent of Nrf2. Mrp2 was not induced in either genotype at the mRNA or protein levels. These results show that Nrf2 mediates induction of Mrp3 and Mrp4 after APAP but does not affect Mrp1 or Mrp2. Thus coordinated regulation of detoxification enzymes and transporters by Nrf2 during APAP hepatotoxicity is a mechanism by which hepatocytes may limit intracellular accumulation of potentially toxic chemicals

  10. Attenuating Oxidative Stress by Paeonol Protected against Acetaminophen-Induced Hepatotoxicity in Mice

    Science.gov (United States)

    Chen, Yuning; Deng, Yue; Zhi, Feng; Qian, Ke

    2016-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. The purpose of this study was to investigate whether paeonol protected against APAP-induced hepatotoxicity. Mice treated with paeonol (25, 50, 100 mg/kg) received 400 mg/kg acetaminophen intraperitoneally (i.p.) and hepatotoxicity was assessed. Pre-treatment with paeonol for 6 and 24 h ameliorated APAP-induced hepatic necrosis and significantly reduced the serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels in a dose-dependent manner. Post-treatment with 100 mg/kg paeonol ameliorated APAP-induced hepatic necrosis and reduced AST and ALT levels in the serum after APAP administration for 24 h. Western blot revealed that paeonol inhibited APAP-induced phosphorylated JNK protein expression but not p38 and Erk1/2. Moreover, paeonol showed anti-oxidant activities with reducing hepatic MDA contents and increasing hepatic SOD, GSH-PX and GSH levels. Paeonol dose-dependently prevented against H2O2 or APAP-induced LDH releasing and ROS production in primary mouse hepatocytes. In addition, the mRNA levels of pro-inflammatory genes such as TNF-α, MCP-1, IL-1β and IL-6 in the liver were dose-dependently reduced by paeonol pre-treatment. Pre-treatment with paeonol significantly inhibited IKKα/β, IκBα and p65 phosphorylation which contributed to ameliorating APAP-induced hepatic inflammation. Collectively, the present study demonstrates paeonol has a protective ability against APAP-induced hepatotoxicity and might be an effective candidate compound against drug-induced acute liver failure. PMID:27144271

  11. Protective properties of 2-acetylcyclopentanone in a mouse model of acetaminophen hepatotoxicity.

    Science.gov (United States)

    Zhang, Lihai; Gavin, Terrence; Geohagen, Brian C; Liu, Qiang; Downey, Katherine J; LoPachin, Richard M

    2013-08-01

    Our previous research showed that enolates formed from 1,3-dicarbonyl compounds, such as 2-acetylcyclopentanone (2-ACP), could provide protection in cell culture models from electrophile- or oxidative stress-induced toxicity. In the present study, we evaluated the protective abilities of 2-ACP in a mouse model of acetaminophen (APAP) hepatotoxicity. Results show that oral APAP overdose (500 mg/kg) was nearly 90% lethal within 72 hours and that the resulting hepatotoxicity was associated with substantial changes in plasma liver enzyme activities, histopathological indices, and markers of hepatocyte oxidative stress. 2-ACP administered intraperitoneally 20 minutes before APAP completely prevented lethality over a 7-day observation period. This effect was dose-dependent (0.80-2.40 mmol/kg) and was correlated with normalization of measured parameters. Nearly complete protection was afforded when 2-ACP was administered 20 minutes post-APAP, but not 60 minutes after intoxication. Although intraperitoneal administration of N-acetylcysteine (NAC) was not effective over a broad dose range (2.40-7.20 mmol/kg), temporal studies indicated that intraperitoneal NAC was hepatoprotective when injected 60 minutes after APAP intoxication. Because of a loss of function in stomach acid, oral administration of 2-ACP was associated with modest APAP protection. In contrast, NAC administered orally provided dose-dependent (0.80-2.40 mmol/kg) protection against APAP hepatotoxicity. In chemico studies and quantum mechanical calculations indicated that 2-ACP acted as a surrogate nucleophilic target for the reactive electrophilic APAP metabolite N-acetyl-p-benzoquinone imine. Our findings suggest that 2-ACP or a derivative might be useful in treating acquired toxicities associated with electrophilic drugs and metabolites or environmental toxicants. PMID:23759509

  12. Effects of treatment with enalapril on hepatotoxicity induced by acetaminophen in mice.

    Science.gov (United States)

    Betto, Mariel R B; Lazarotto, Lais F; Watanabe, Tatiane T N; Driemeier, David; Leite, Carlos E; Campos, Maria M

    2012-09-01

    There is a current need for new therapeutic options for acetaminophen (APAP)-induced hepatotoxicity. Herein, we assessed the effects of prophylactic and therapeutic treatment with the angiotensin-converting enzyme (ACE) inhibitor, enalapril, on APAP-caused hepatotoxicity. Male and female C57BL/6 J mice were used, and hepatotoxicity was induced by a single application of APAP (400 mg/kg, i.p.). Macroscopic and histological liver alterations, serum alanine transaminase (ALT) and aspartate transaminase (AST) activity, liver catalase activity (CAT), reduced glutathione concentrations (GSH), hepatic measurement of neutrophil migration (myeloperoxidase, MPO activity), and caspase-3 liver expression were evaluated. The prophylactic and the therapeutic treatments with enalapril were able to markedly reduce the macroscopic and histological liver alterations as well as the caspase-3 immunopositivity. Both schedules of treatment were also effective in reducing GSH concentrations as well as neutrophil migration. Conversely, only the pre-treatment (but not the post-administration) with enalapril significantly reversed APAP-induced CAT decrease. Furthermore, the pre- or the post-treatment with enalapril largely reduced ALT and AST serum activity in APAP-intoxicated mice. The hepatoprotective effects of enalapril were comparable to those obtained with the clinically used compound N-acetylcysteine (NAC) when given in a therapeutic regimen. Data obtained with the prophylactic protocol of treatment might indicate that individuals under treatment with ACE inhibitors are less susceptible to the toxic effects of APAP. Additionally, the therapeutic approach allows us to suggest that enalapril might represent an innovative tool for treating APAP intoxication. PMID:22752270

  13. Effects of White Radish (Raphanus sativus) Enzyme Extract on Hepatotoxicity.

    Science.gov (United States)

    Lee, Sang Wha; Yang, Kwang Mo; Kim, Jung Ki; Nam, Byung Hyouk; Lee, Chang Min; Jeong, Min Ho; Seo, Su Yeong; Kim, Gi Yong; Jo, Wol-Soon

    2012-09-01

    Raphanus sativus (Cruciferaceae), commonly known as radish is widely available throughout the world. From antiquity it has been used in folk medicine as a natural drug against many toxicants. The present study was designed to evaluate the hepatoprotective activity of radish (Raphanus sativus) enzyme extract (REE) in vitro and in vivo test. The IC50 values of REE in human liver derived HepG2 cells was over 5,000 μg/ml in tested maximum concentration. The effect of REE to protect tacrine-induced cytotoxicity in HepG2 cells was evaluated by MTT assay. REE showed their hepatoprotective activities on tacrineinduced cytotoxicity and the EC50 value was 1,250 μg/ml. Silymarin, an antihepatotoxic agent used as a positive control exhibited 59.7% hepatoprotective activitiy at 100 μg/ml. Moreover, we tested the effect of REE on carbon tetrachloride (CCl4)-induced liver toxicity in rats. REE at dose of 50 and 100 mg/kg and silymarin at dose of 50 mg/kg were orally administered to CCl4-treated rats. The results showed that REE and silymarin significantly reduced the elevated levels of serum enzyme markers induced by CCl4. The biochemical data were supported by evaluation with liver histopathology. These findings suggest that REE, can significantly diminish hepatic damage by toxic agent such as tacrine or CCl4. PMID:24278606

  14. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity

    International Nuclear Information System (INIS)

    Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by an attenuated mRNA expression of tumor necrosis factor alpha (TNFα) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline

  15. Hepatoprotective activity of Ficus religiosa leaves against isoniazid+rifampicin and paracetamol induced hepatotoxicity

    OpenAIRE

    Sundaramoorthi Angala Parameswari; Challa Madhusudhana Chetty; Kothapalli Bannoth Chandrasekhar

    2013-01-01

    Background: The present study was designed to investigate the hepato protective effect of methanolic extract of Ficus religisoa L., Moraceae, on isoniazid-rifampicin and paracetamol induced hepatotoxicity in rats. Materials and Methods: Male Wistar albino rats were divided into six groups; group 1 served as a control received vehicle (Distilled water), group 2 served as a toxic control, received isoniazid-rifampicin (100 mg/ kg, i.p.) or paracetamol 200mg/kg, p.o in sterile water, groups 3, 4...

  16. Hydroxycut hepatotoxicity: A case series and review of liver toxicity from herbal weight loss supplements

    Institute of Scientific and Technical Information of China (English)

    Lily Dare; Jennifer Hewett; Joseph Kartaik Lim

    2008-01-01

    Dietary supplements represent an increasingly common source of drug-induced liver injury. Hydroxycut is a popular weight loss supplement which has previously been linked to hepatotoxiciLy, although the individual chemical components underlying liver injury remain poorly understood. We report two cases of acute hepatitis in the seLLing of Hydroxycut exposure and describe possible mechanisms of liver injury. We also comprehensively review and summarize the existing literature on commonly used weight loss supplements,and their individual components which have demonstrated potential for liver toxicity. An increased effort to screen for and educate patients and physicians about supplement-associated hepatotoxicity is warranted.

  17. EFFECT OF VIMLIV ON LIPID PEROXIDES AND ANTIOXIDANTS IN ETHANOL INDUCED HEPATOTOXICITY IN ALBINO WISTER RATS

    OpenAIRE

    M. Samundeeswari and M. Rajadurai*

    2012-01-01

    This study was carried out to investigate the hepatoprotective and antioxidant properties of vimliv in ethanol-induced hepatotoxicity in rats. The liver toxicity was induced by the administration of ethanol to the animals at dose of 3 g/kg orally for 35 days. During the period of vimliv was co-administered to the rats at doses of 25 and 50 mg/kg for 35 days. The levels of lipidperoxidative products significantly increased and the levels of antioxidants decreased in ethanol induced rats. Co-ad...

  18. Amelioration of lead induced hepatotoxicity by Allium sativum extracts in Swiss albino mice

    OpenAIRE

    Sharma, Arti; Sharma, Veena; Kansal, Leena

    2010-01-01

    Lead is a blue-gray and highly toxic divalent metal that occurs naturally in the earth’s crust and is spread throughout the environment by various human activities. The efficacy of garlic (Allium sativum) to reduce hepatotoxicity induced by lead nitrate was evaluated experimentally in male mice. Oral treatment with lead nitrate at a dose of 50 mg/kg body weight daily for 40 days (1/45 of LD50) induced a significant increase in the levels of hepatic aspartate aminotransferase, alanine am...

  19. Interaction between nitric oxide synthase and cyclooxygenase in the development of acetaminophen-induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Meltem Kolgazi

    2015-03-01

    Results: AG and KET prevented the increase in liver malondialdehyde levels due to APAP toxicity. Decreased liver glutathione in APAP group was prevented by all treatments except NIM. Stimulated liver myeloperoxidase activity in APAP group was attenuated by all treatments except INDO and NIM. Elevation of liver chemiluminescence, nuclear factor (NF- and #61547;B expression and serum alanine transferase level due to APAP overdose were also suppressed by all treatments. Conclusions: NOS and COX pathways interact in the development of hepatotoxicity due to APAP overdose. [J Exp Integr Med 2015; 5(1.000: 16-22

  20. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, Christian [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf (Germany); Huelsenbeck, Johannes; Huelsenbeck, Stefanie [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Grösch, Sabine [Institute of Clinical Pharmacology, Johann Wolfgang Goethe University Frankfurt, Theodor Stern Kai 7, D-60590 Frankfurt/Main (Germany); Schad, Arno [Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Lackner, Karl J. [Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Kaina, Bernd [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Fritz, Gerhard, E-mail: fritz@uni-duesseldorf.de [Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz (Germany); Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf (Germany)

    2012-05-15

    Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by an attenuated mRNA expression of tumor necrosis factor alpha (TNFα) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline

  1. Ketoconazole hepatotoxicity in a patient treated for environmental illness and systemic candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Brusko, C.S.; Marten, J.T. (Purdue University School of Pharmacy and Pharmacal Sciences, Lafayette, IN (United States))

    1991-12-01

    Environmental illness, a hypothesized disease caused by exposure to substances such as combustion products, pesticides, food additives, and Candida albicans, is discussed. The case of a patient with environmental illness and systemic candidiasis for six weeks with ketoconazole, liver enzyme concentrations increased. One month after discontinuation of ketoconazole, the liver enzyme concentrations decreased; however, over the next five months, liver enzymes and bilirubin increased. The patient developed encephalopathy and eventually was transferred to a medical center for possible liver transplant. A review of the literature pertaining to ketoconazole hepatotoxicity is also presented.16 references.

  2. Hepatotoxicity of anti-inflammatory and analgesic drugs:ultrastructural aspects

    Institute of Scientific and Technical Information of China (English)

    Irena MANOV; Helen MOTANIS; Idan FRUMIN; Theodore C IANCU

    2006-01-01

    With the increasing incidence of drug-induced liver disease,attempts are being made to better understand the mechanisms behind these frequently life-endangering reactions.Analgesics and anti-inflammatory drugs are a major group exhibiting hepatotoxicity.We review research relating to these reactions,focusing on ultrastructural findings,which may contribute to the comprehension and possible avoidance of drug-induced liver disease.We also present some original observations on clinical material and cultured cells exposed to acetaminophen alone or in combination with the antioxidant N-acetylcysteine or the P-glycoprotein inhibitor verapamil.

  3. Lycium barbarum extract provides effective protection against paracetamol-induced acute hepatotoxicity in rats

    OpenAIRE

    Gündüz, Ercan; Dursun, Recep; Zengin, Yılmaz; İçer, Mustafa; Durgun, Hasan Mansur; Kanıcı, Ayşe; KAPLAN, İbrahim; Alabalık, Ulaş; GÜRBÜZ, Hüseyin; Güloğlu, Cahfer

    2015-01-01

    The aim of the present study was to investigate the hepatoprotective and antioxidant effects of Lycium barbarum (LB) extract against paracetamol-induced acute oxidative stress and hepatotoxicity in rats. The subjects were divided into 6 groups of 8 rats each. The rats in the LB group were administered a dose of 100 mg/kg LB extract dissolved in saline via the intraperitoneal route for 7 days. Subsequently, after last dose of LB, PCT was given in a single dose of 1 g/kg diluted in saline via t...

  4. Hepatoprotective potential of ethanolic extract of Caesalpenia crista leaves against paracetamol induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Garima Mishra

    2015-01-01

    Full Text Available Objective: To investigate the hepatoprotective activity of ethanolic extract of leaves of Caesalpenia crista (C. crista against paracetamol induced hepatotoxicity in rats. Methods: Paracetamol (2 g/kg body weight was used to induce hepatotoxicity in albino rats. Ethanolic extract of leaves of C. crista was administered at the dose levels of 200 and 400 mg/kg body weight orally for 7 d. Silymarin (100 mg/kg was used as standard drug. The hepatoprotective effect of ethanolic extract was evaluated by assessment of biochemical parameters such as serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, serum alkaline phosphatase, bilirubin (total and direct, and triglycerides content. Histopathological study of rat liver was also done. Results: Administration of ethanolic extract at doses 200 mg/kg and 400 mg/kg body weight exhibited significant reduction in elevated level of serum marker enzymes, bilirubin (total and direct and triglycerides when compared to positive control group. Conclusions: It is concluded that the ethanolic extract of C. crista leaves seems to justify the promising hepatoprotective effect on paracetamol induced liver damage in rats.

  5. Hypericum perforatum-induced hepatotoxicity with possible association with copaiba (Copaifera langsdorffii Desf):case report.

    Science.gov (United States)

    Agollo, Marjorie Costa; Miszputen, Sender Jankiel; Diament, Jayme

    2014-09-01

    We report a case of liver damage in an elderly patient after the use of herbal products of Hypericum perforatum and copaiba (Copaifera langsdorffii Desf). Hepatotoxicity related to Hypericum perforatum is anecdotally known, but for copaiba, widely used as anti-inflammatory, there is just experimental data in the national literature. This report aimed to draw attention to the possible toxic effects of this association as well as to the clinical recovery of the patient after discontinuing their use. There is a tendency to suspect of the action of drugs to justify a non-viral acute liver injury, because of the large number of drugs responsible for hepatotoxicity. There are experiments and clinical reports in the literature describing some herbal products, including Hypericum perforatum, as the causative agents of this aggression, and are considered innocuous and used with no restrictions. We must remember that adverse reactions also occur with these substances; hence, they should be investigated when collecting the patient´s history, for leading to severe liver failure. PMID:25167337

  6. ANTIHEPATOTOXIC EFFECT OF BARLERIA MONTANA LEAVES AGAINST ANTI-TB DRUGS INDUCED HEPATOTOXICITY

    Directory of Open Access Journals (Sweden)

    Jyothi Basini

    2013-06-01

    Full Text Available Introduction: The present study was undertaken to evaluate the protective activity of 95% hydroalcoholic extract of Barleria Montana leaves against anti-TB drugs induced hepatotoxicity. Methods: Hepatotoxicity was induced by anti-TB drugs once daily for 35 days and simultaneously 95% hydroalcoholic extract of Barleria Montana (250 & 500 mg/kg p.o. was administered one hour prior administration of anti-TB drugs. Silymarin was used as standard drug (100 mg/kg p.o.. Results: Elevated levels of SGOT, SGPT, ALP, TB & total cholesterol and decreased total HDL following anti-TB drugs administration. Pretreatment of 95% hydroalcoholic extract of Barleria Montana with anti-TB drugs were significantly reduced biochemical markers and increased total HDL. In vivo antioxidant parameters such as SOD, CAT, GSH, GPx and GRx were suppressed in hepatic control animals. Pre treatment of 95% hydroalcoholic extract of Barleria Montana with anti-TB drugs significantly reduced lipid per oxidation and increased antioxidant activities. Conclusion: The result of the present study was indicated that Barleria Montana showed protective effect on liver toxicity induced by anti-TB drugs might be attributed to its antioxidant activity.

  7. Influence of Moxifloxacin on Hepatic Redox Status and Plasma Biomarkers of Hepatotoxicity and Nephrotoxicity in Rat

    Directory of Open Access Journals (Sweden)

    Ayokanmi Ore

    2015-01-01

    Full Text Available Moxifloxacin is a broad spectrum fluoroquinolone antibacterial agent. We examined the hepatic redox status and plasma biomarkers of nephrotoxicity and hepatotoxicity in rat following administration of moxifloxacin (MXF. Twenty-four Wistar rats, 180–200 g, were randomized into four groups (I–IV. Animals in group I (control received 1 mL of distilled water, while animals in groups II, III, and IV received 1 mL each of MXF equivalent to 4 mg/kg b.w., 8 mg/kg b.w., and 16 mg/kg b.w., respectively. After seven days, plasma urea, bilirubin, and creatinine were significantly (P<0.05 elevated in the MXF-treated animals. Activities of alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase were significantly increased in the plasma of MXF-treated animals compared to control. Also plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides increased significantly in the MXF-treated groups relative to control. Moreover, MXF triggered a significant decrease in hepatic catalase, superoxide dismutase, and glutathione-S transferase activities. Likewise, MXF caused a decrease in the hepatic levels of glutathione and vitamin C. A significant increase in hepatic MDA content was also observed in the MXF-treated animals relative to control. Overall, our data suggest that the half-therapeutic, therapeutic, and twice the therapeutic dose of MXF induced nephrotoxicity, hepatotoxicity, and altered hepatic redox balance in rats.

  8. Identification of oxidative stress-related proteins for predictive screening of hepatotoxicity using a proteomic approach.

    Science.gov (United States)

    Yamamoto, Toshinori; Kikkawa, Rie; Yamada, Hiroshi; Horii, Ikuo

    2005-08-01

    We investigated the effects of three hepatotoxicants, acetaminophen (APAP), amiodarone (AD) and tetracycline (TC), on protein expression in primary cultured rat hepatocytes with toxicoproteomic approach, which is two-dimensional gel electrophoresis (2DE) and mass spectrometry. The objectives of this study were to search for alternative toxicity biomarkers which could be detected with high sensitivity prior to the appearance of morphological changes or alterations of analytical conventional biomarkers. The related proteins in the process of cell degeneration/necrosis such as cell death, lipid metabolism and lipid/carbohydrate metabolism were mainly affected under exposure to APAP, AD and TC, respectively. Among the differentially expressed proteins, several oxidative stress-related proteins were clearly identified after 24-hr exposure, even though they were not affected for 6-hr exposure. They were glutathione peroxidase (GPX) as a down-regulated protein as well as peroxiredoxin 1 (PRX1) and peroxiredoxin 2 (PRX2) as up-regulated proteins, which are known to serve as antioxidative enzymes in cells. These findings suggested that the focused proteins, GPX and PRXs, could be utilized as biomarkers of hepatotoxicity, and they were useful for setting high throughput screening methods to assess hepatotoxicity in the early stage of drug discovery. PMID:16141655

  9. The protective effects of vitamin C on hepatotoxicity induced by radiation

    International Nuclear Information System (INIS)

    This study was carried out to determine the protective effects of vitamin C on the hepatotoxicity induced by radiation. The Spraque Dawley rats were randomly divided into 3 groups; the control group, the radiation exposed group, and the radiation and vitamin C-treated group. SOD activity catalase, malondialdehyde and liver enzymes were analyzed to assess the antioxidant effects of vitamin C. The increased level of malondialdehyde and the decreased catalase activity that were induced by radiation were improved after vitamin C but were was no statistical significance among three groups. The superoxide dismutase activity of the liver was increased by vitamin C, but there were no statistically significant differences between the vitamin C-treated group and the non vitamin C-treated group. The level of liver enzymes in sera such as glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, lactate dehyrogenase and alkaline phosphatase were remarkably elevated by radiation. The levels of those enzymes were decreased in the vitamin C-treated group and statistical significance was noted for the GPT level (ρ < 0.01). On the electromicrographic findings, the hepatic cell destruction was considerably decreased in the vitamin C-treated group. Vitamin C is thought to be an effective antioxidant against the hepatotoxicity induced by radiation

  10. Protective effects of grape seeds proanthocyanidins against Naphthalene-Induced Hepatotoxicity in rats

    International Nuclear Information System (INIS)

    Oxidative stress with subsequent production of reactive oxygen species has been postulated as one of the mechanisms of naphthalene toxicity. In the present study, the effect of oral administration of the natural antioxidant and free radical scavenger, proanthociyanidins present in the grape seeds (GSP, 10 or 50 mg/kg, p.o.) has been investigated in rats following the concomitant administration of naphthalene (1g kg, p.o., 15 days) and the measurements of selective parameters indicative of liver function and oxidative stress. Serum aminotransferase (ALT and AST), alkaline phosphates (AP) activities and total bilirubin (T Bil) concentrations were measured as hepatic tissue lipid peroxidation (MDA), DNA fragmentation and glutathione (GSH) contents. The effects of GSP on naphthalene-evoked changes in the above mentioned parameters were compared with the known hepatoprotectant agent, silymarin. Naphthalene hepatotoxicity was evident by the significant elevation of rat serum activities of ALT, AST, AP and T Bil concentration. This effect was accompanied with significant increase in MDA and DNA fragmentation plus the depletion of GSH in hepatic tissues. Concurrent administration of GSP significantly attenuated the nephtahlene induced disturbances in serum liver function enzymes and markedly antagonized the lipid peroxidation, DNA fragmentation and GSH depletion induced by naphthalene in hepatic tissues. In conclusion, GSP appears to be a potent candidate to ameliorate the oxidative stress and hepatotoxicity associated with naphthalene in rats. (author)

  11. A Case of Hepatotoxicity Induced by Adulterated "Tiger King", a Chinese Herbal Medicine Containing Sildenafil.

    Science.gov (United States)

    Nissan, Ran; Poperno, Alina; Stein, Gideon Y; Shapira, Barak; Fuchs, Shmuel; Berkovitz, Ronny; Hess, Zipora; Arieli, Mickey

    2016-01-01

    Detection of Phosphodiesterase Type 5 (PDE-5) inhibitors and their analogues in "100% natural" or "herbal" supplements have been described in numerous reports. However, few reports have been published in relation to actual harm caused by counterfeit erectile dysfunction herbal supplements. We describe a case of a 65-year old male admitted to a tertiary hospital with acute liver toxicity, possibly induced by adulterated "Chinese herbal" supplement "Tiger King" for sexual enhancement. Chemical analysis of the tablets discovered the presence of therapeutic doses of sildenafil with no other herbal components. Other medications were excluded as potential causes of the hepatic impairment. According to the Naranjo adverse drug reaction scale and the Roussel Uclaf Causality Assessment Method (RUCAM) the probability of association of Hepatotoxicity with Sildenafil was "possible" and "probable" respectively (Naranjo score of 4, RUCAM score of 7). Within three days of admission, the patient's clinical status and liver function improved without any specific treatment. His liver function tests normalized 30 days post discharge. Further pharmacovigilance actions should be taken by regulatory authorities and pharmaceutical companies in order to determine the relation between sildenafil and hepatotoxicity. This case emphasizes the importance of raising public awareness on the potential dangers of "Tiger king" in particular, and other counterfeit medications or herbal supplements of unknown origin. PMID:26560492

  12. Hepatoprotective potential of ethanolic extract of Caesalpenia crista leaves against paracetamol induced hepatotoxicity in rats

    Institute of Scientific and Technical Information of China (English)

    Garima Mishra; Ratan Lal Khosa; Pradeep Singh; Keshri Kishor Jha

    2015-01-01

    Objective:To investigate the hepatoprotective activity of ethanolic extract of leaves of Caesalpenia crista (C. crista) against paracetamol induced hepatotoxicity in rats. Methods:Paracetamol (2 g/kg body weight) was used to induce hepatotoxicity in albino rats. Ethanolic extract of leaves of C. crista was administered at the dose levels of 200 and 400 mg/kg body weight orally for 7 d. Silymarin (100 mg/kg) was used as standard drug. The hepatoprotective effect of ethanolic extract was evaluated by assessment of biochemical parameters such as serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, serum alkaline phosphatase, bilirubin (total and direct), and triglycerides content. Histopathological study of rat liver was also done. Results:Administration of ethanolic extract at doses 200 mg/kg and 400 mg/kg body weight exhibited significant reduction in elevated level of serum marker enzymes, bilirubin (total and direct) and triglycerides when compared to positive control group. Conclusions:It is concluded that the ethanolic extract of C. crista leaves seems to justify the promising hepatoprotective effect on paracetamol induced liver damage in rats.

  13. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity

    International Nuclear Information System (INIS)

    Hepatotoxicity and nephrotoxicity are two major reasons that drugs are withdrawn post-market, and hence it is of major concern to both the FDA and pharmaceutical companies. The number of cases of serious adverse effects (SAEs) in marketed drugs has climbed faster than the number of total drug prescriptions issued. In some cases, preclinical animal studies fail to identify the potential toxicity of a new chemical entity (NCE) under development. The current clinical chemistry biomarkers of liver and kidney injury are inadequate in terms of sensitivity and/or specificity, prompting the need to discover new translational specific biomarkers of organ injury. Metabolomics along with genomics and proteomics technologies have the capability of providing translational diagnostic and prognostic biomarkers specific for early stages of liver and kidney injury. Metabolomics has several advantages over the other omics platforms such as ease of sample preparation, data acquisition and use of biofluids collected through minimally invasive procedures in preclinical and clinical studies. The metabolomics platform is reviewed with particular emphasis on applications involving drug-induced hepatotoxicity and nephrotoxicity. Analytical platforms for metabolomics, chemometrics for mining metabolomics data and the applications of the metabolomics technologies are covered in detail with emphasis on recent work in the field.

  14. Effects of Lawsonia inermis L. (Henna Leaves' Methanolic Extract on CCl4-induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Musab Awad Mohamed

    2016-03-01

    Background: Natural products with therapeutic properties such as plants, minerals and animal products, for many years, were the main sources of drugs for treatment of numerous diseases; hence selection of Lawsonia inermis L. (Henna in order to study its hepatoprotective activity was considered. Objectives: This was an attempt to evaluate the hepatoprotective effect of Lawsonia inermis leaves' methanolic extract on CCl4-induced hepatotoxicity in rats. Methods: The L. inermis leaves' methanolic extract, which obtained by maceration, was orally administered in doses of 100mg/kg and 200mg/kg to the tested animals in order to assess it's effects on serum levels of hepatotoxicity parameters, alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, bilirubin and total proteins along with histopathological liver sections examination, while silymarin (25mg/kg, a potent hepatoprotective drug, was used as standard control. Results: The two doses of the plant extract showed dose-dependent hepatoprotective effect, as evident by the significant reduction (P < 0.05 in serum levels of AST, ALT, ALP and bilirubin along with the improvement in histopathological liver sections compared to CCl4-only treated animals. Conclusion: As experimentally evident, it could be concluded that, this plant material could provide a hepatoprotective effect which could be attributed to its antioxidant properties. [J Intercult Ethnopharmacol 2016; 5(1.000: 22-26

  15. Traditional Chinese Medicine and herbal hepatotoxicity: a tabular compilation of reported cases.

    Science.gov (United States)

    Teschke, Rolf; Zhang, Li; Long, Hongzhu; Schwarzenboeck, Alexander; Schmidt-Taenzer, Wolfgang; Genthner, Alexander; Wolff, Albrecht; Frenzel, Christian; Schulze, Johannes; Eickhoff, Axel

    2015-01-01

    Traditional Chinese Medicine (TCM) with its focus on herbal use became popular worldwide. Treatment was perceived as safe, with neglect of rare adverse reactions including liver injury. To compile worldwide cases of liver injury by herbal TCM, we undertook a selective literature search in the PubMed database and searched for the items Traditional Chinese Medicine, TCM, Traditional Asian Medicine, and Traditional Oriental Medicine, also combined with the terms herbal hepatotoxicity or herb induced liver injury. The search focused primarily on English-language case reports, case series, and clinical reviews. We identified reported hepatotoxicity cases in 77 relevant publications with 57 different herbs and herbal mixtures of TCM, which were further analyzed for causality by the Council for International Organizations of Medical Sciences (CIOMS) scale, positive reexposure test results, or both. Causality was established for 28/57 different herbs or herbal mixtures, Bai Xian Pi, Bo He, Ci Wu Jia, Chuan Lian Zi, Da Huang, Gan Cao, Ge Gen, Ho Shou Wu, Huang Qin, Hwang Geun Cho, Ji Gu Cao, Ji Xue Cao, Jin Bu Huan, Jue Ming Zi, Jiguja, Kudzu, Ling Yang Qing Fei Keli, Lu Cha, Rhen Shen, Ma Huang, Shou Wu Pian, Shan Chi, Shen Min, Syo Saiko To, Xiao Chai Hu Tang, Yin Chen Hao, Zexie, and Zhen Chu Cao. In conclusion, this compilation of liver injury cases establishes causality for 28/57 different TCM herbs and herbal mixtures, aiding diagnosis for physicians who care for patients with liver disease possibly related to herbal TCM. PMID:25536637

  16. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening.

    Science.gov (United States)

    Gómez-Lechón, María José; Tolosa, Laia

    2016-09-01

    Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages. PMID:27325232

  17. Piperine, an active ingredient of black pepper attenuates acetaminophen-induced hepatotoxicity in mice

    Institute of Scientific and Technical Information of China (English)

    Evan Prince Sabina; Annie Deborah Harris Souriyan; Deborah Jackline; Mahaboob Khan Rasool

    2010-01-01

    Objective: To explore the hepatoprotective and antioxidant effects of piperine against acetaminophen-induced hepatotoxicity in mice. Methods: In mice, hepatotoxicity was induced by a single dose of acetaminophen (900 mg/kg b.w. i.p.). Piperine (25 mg/kg b.w. i.p.) and standard drug silymarin (25 mg/kg b.w. i.p.) were given to mice, 30 min after the single injection of acetaminophen. After 4 h, the mice were decapitated. Activities of liver marker enzymes [(aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP)] and inflammatory mediator tumour necrosis factor-alpha (TNF-α) were estimated in serum, while lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-s-transferase and glutathione) were determined in liver homogenate of control and experimental mice. Results: Acetaminophen induction (900 mg/kg b.w. i.p.) significantly increased the levels of liver marker enzymes, TNF-α, and lipid peroxidation, and caused the depletion of antioxidant status. Piperine and silymarin treatment to acetaminophen challenged mice resulted in decreased liver marker enzymes activity, TNF-α and lipid peroxidation levels with increase in antioxidant status. Conclusions: The results clearly demonstrate that piperine shows promising hepatoprotective effect as comparable to standard drug silymarin.

  18. Ameliorative Influence of Green Tea Extract on Copper Nanoparticle-Induced Hepatotoxicity in Rats

    Science.gov (United States)

    Ibrahim, Marwa A.; Khalaf, A. A.; Galal, Mona K.; Ogaly, Hanan A.; H. M. Hassan, Azza

    2015-09-01

    The potential toxicity of copper nanoparticles (CNPs) to the human health and environment remains a critical issue. In the present study, we investigated the protective influence of an aqueous extract of green tea leaves (GTE) against CNPs-induced (20-30 nm) hepatotoxicity. Four different groups of rats were used: group I was the control, group II received CNPs (40 mg/kg BW), group III received CNPs plus GTE, and group IV received GTE alone. We highlighted the hepatoprotective effect of GTE against CNPs toxicity through monitoring the alteration of liver enzyme activity, antioxidant defense mechanism, histopathological alterations, and DNA damage evaluation. The rats that were given CNPs only had a highly significant elevation in liver enzymes, alteration in oxidant-antioxidant balance, and severe pathological changes. In addition, we detected a significant elevation of DNA fragmentation percentage, marked DNA laddering, and significance over expression of both caspase-3 and Bax proteins. The findings for group III clarify the efficacy of GTE as a hepatoprotectant on CNPs through improving the liver enzyme activity, antioxidant status, as well as suppressing DNA fragmentation and the expression of the caspase-3 and Bax proteins. In conclusion, GTE was proved to be a potential hepatoprotective additive as it significantly ameliorates the hepatotoxicity and apoptosis induced by CNPs.

  19. Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice.

    Science.gov (United States)

    El-Sayed, Wael M; Al-Kahtani, Mohamed A; Abdel-Moneim, Ashraf M

    2011-08-30

    Aluminum is a well known neurotoxin and a possible candidate of hepatotoxins to humans. Using natural antioxidants against metal-induced hepatotoxicity is a modern approach. In the present study, Aluminum (AlCl(3)) intoxication (a single injection of 25mg Al(3+)/kg, i.p.) for 24h in mice resulted in elevations in serum alanine aminotransferase activity and serum tumor necrosis factor and hepatic malondialdehyde levels. Aluminum reduced the activities of glutathione peroxidase, glutathione S-transferase, quinone oxidoreductase, and catalase in liver. In addition, Al caused hepatic hemorrhage, cellular degeneration as well as necrosis of hepatocytes. Ultrastructure examination showed swelling of mitochondria, derangement of rough endoplasmic reticulum cisternae and pleomorphic nuclei with abnormal chromatin distribution. Taurine, a sulfur-containing amino acid was administered to mice daily for 5 days before (at 100mg/kg, i.p.) or 2h after (a single dose of 1g/kg, i.p.) aluminum administration. Treating mice with taurine at either dosing regimens, pre- or post-aluminum administration alleviated aluminum oxidative damaging effects. The rate of recovery was better when taurine was administered prior to Al. Taurine had anaphylactic and therapeutic activity against hepatotoxicity induced by aluminum in mice. PMID:21703760

  20. Relationship Between Structural Alerts in NSAIDs and Idiosyncratic Hepatotoxicity : An Analysis of Spontaneous Report Data from the WHO Database

    NARCIS (Netherlands)

    Jessurun, Naomi; van Puijenbroek, Eugene

    2015-01-01

    BACKGROUND: Idiosyncratic drug reactions such as hepatotoxicity and blood dyscrasias represent one of the major causes of drug withdrawal from the market. According to the reactive metabolite (RM) concept, this may be due to the metabolic activation of structural alerts (SAs), functionalities in the

  1. Modulatory effects of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity and oxidative stress in rats

    Institute of Scientific and Technical Information of China (English)

    Adedayo O Ademiluyi; Ganiyu Oboh; Tosin R Owoloye; Oluwaseun J Agbebi

    2013-01-01

    To investigate the ameliorative effect of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity in rats. Methods: Adult male rats were randomly divided into four groups with six animals in each group. Groups 1 and 2 were fed basal diet while Groups 3 and 4 were fed diets containing 2% and 4% garlic respectively for 27 d prior to gentamycin administration. Hepatotoxicity was induced by the intraperitoneal administration of gentamycin (100 mg/kg body weight) for 3 d. The liver and plasma were studied for hepatotoxicity and antioxidant indices. Results: Gentamycin induces hepatic damage as revealed by significant (P<0.05) elevation of liver damage marker enzymes (aspartate transaminase and alanine aminotransferase) and reduction in plasma albumin level. Gentamycin also caused a significant (P<0.05) alteration in plasma and liver enzymatic (catalase, glutathione and super oxygen dehydrogenises) and non-enzymatic (glutathione and vitamin C) antioxidant indices with concomitant increase in the malondialdehyde content; however, there was a significant (P<0.05) restoration of the antioxidant status coupled with significant (P<0.05) decrease in the tissues’ malondialdehyde content, following consumption of diets containing garlic. Conclusions: These results suggest that dietary inclusion of garlic powder could protect against gentamycin-induced hepatotoxicity, improve antioxidant status and modulate oxidative stress; a function attributed to their phenolic constituents.

  2. Comparative Proteomic Analysis Shows an Elevation of Mdh1 Associated with Hepatotoxicity Induced by Copper Nanoparticle in Rats

    Institute of Scientific and Technical Information of China (English)

    DONG Shu-wei; GAO Zhao-hui; SHEN Xiao-yun; XUE Hui-wen; LI Xia

    2014-01-01

    Copper nanoparticle is a new material widely used in biological medicine, animal husbandry and industrial areas, but its potential toxicity to human health and environment remains unclear. In order to study the hepatotoxic mechanisms of nanoparticles copper, two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of lfight mass spectrometry (MALDI/TOF MS) of proteomics technology were used to isolate and identify the differentially expressed proteins from liver, which associated with hepatotoxicity induced by copper nanoparticle in rats. In this study, we have screened 15 kinds of proteins related with hepatotoxicity, of which spot8212 was identiifed as Malate dehydrogenase (Mdh1). The mRNA expression trend of Mdh1 was consistent with the result of 2-DE by RT-PCR validation. Bioinformatics analysis showed that Mdh1 was stable and no signal peptides, subcellular location was in endoplasmic reticulum;it contained many functional sites such as malate dehydrogenase activity signal sites 155LTRLDHNRAKSQI167; α helixes and random coils were the two main elements. Homologous analysis demonstrated high homologous of Mdh1 in rats with mouse and human, and the phylogenetic tree of Mdh1 was constructed. The result indicated that copper nanoparticle could regulate up the Mdh1 protein expression so as to compensate the energy deifcit. Energy metabolic disturbance may be a pathway for copper nanoparticle particles to exert the hepatotoxic effects in rats.

  3. DILI (drug induced liver injury in a 9-month-old infant: a rare case of phenobarbital-induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Anna Paola Pinna

    2013-04-01

    Full Text Available Phenobarbital is one of the most commonly prescribed antiepileptic drugs in childhood, but it can rarely cause serious adverse effects, such as hepatotoxicity that includes a broad clinical spectrum (from isolate hypertransaminasemia to acute liver failure. We describe a case of DILI in a 9-month-old infant caused by chronic therapy with phenobarbital.

  4. Association of the CYP2B6 gene with anti-tuberculosis drug-induced hepatotoxicity in a Brazilian Amazon population

    OpenAIRE

    Débora Christina Ricardo Oliveira Fernandes; Ney Pereira Carneiro Santos; Milene Raiol Moraes; Ana Cristina Oliveira Braga; Cleonardo Augusto Silva; Andrea Ribeiro-dos-Santos; Sidney Santos

    2015-01-01

    Objectives: The treatment of tuberculosis (TB) remains a challenge owing to the high incidence of drug-induced hepatotoxicity. The aim of this study was to examine the effect of two gene polymorphisms, one in the CYP2B6 (rs3745274) gene and one in the CYP3A5 (rs776746) gene, on the development of hepatotoxicity in patients treated with anti-TB drugs in a Brazilian Amazon population. Methods: TB patients who were treated with anti-TB drugs were examined for hepatotoxicity, an adverse effect...

  5. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats

    International Nuclear Information System (INIS)

    A metabonomic approach using 1H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. 1H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary 1H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.

  6. Uniform procedure of (1)H NMR analysis of rat urine and toxicometabonomics Part II: comparison of NMR profiles for classification of hepatotoxicity.

    Science.gov (United States)

    Schoonen, Willem G E J; Kloks, Cathelijne P A M; Ploemen, Jan-Peter H T M; Smit, Martin J; Zandberg, Pieter; Horbach, G Jean; Mellema, Jan-Remt; Thijssen-Vanzuylen, Carol; Tas, Albert C; van Nesselrooij, Joop H J; Vogels, Jack T W E

    2007-07-01

    A procedure of nuclear magnetic resonance (NMR) urinalysis using pattern recognition is proposed for early detection of toxicity of investigational compounds in rats. The method is applied to detect toxicity upon administration of 13 toxic reference compounds and one nontoxic control compound (mianserine) in rats. The toxic compounds are expected to induce necrosis (bromobenzene, paracetamol, carbon tetrachloride, iproniazid, isoniazid, thioacetamide), cholestasis (alpha-naphthylisothiocyanate (ANIT), chlorpromazine, ethinylestradiol, methyltestosterone, ibuprofen), or steatosis (phenobarbital, tetracycline). Animals were treated daily for 2 or 4 days except for paracetamol and bromobenzene (1 and 2 days) and carbon tetrachloride (1 day only). Urine was collected 24 h after the first and second treatment. The animals were sacrificed 24 h after the last treatment, and NMR data were compared with liver histopathology as well as blood and urine biochemistry. Pathology and biochemistry showed marked toxicity in the liver at high doses of bromobenzene, paracetamol, carbon tetrachloride, ANIT, and ibuprofen. Thioacetamide and chlorpromazine showed less extensive changes, while the influences of iproniazid, isoniazid, phenobarbital, ethinylestradiol, and tetracycline on the toxic parameters were marginal or for methyltestosterone and mianserine negligible. NMR spectroscopy revealed significant changes upon dosing in 88 NMR biomarker signals preselected with the Procrustus Rotation method on principal component discriminant analysis (PCDA) plots. Further evaluation of the specific changes led to the identification of biomarker patterns for the specific types of liver toxicity. Comparison of our rat NMR PCDA data with histopathological changes reported in humans and/or rats suggests that rat NMR urinalysis can be used to predict hepatotoxicity. PMID:17420222

  7. The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity.

    Science.gov (United States)

    Gerin, Fethullah; Erman, Hayriye; Erboga, Mustafa; Sener, Umit; Yilmaz, Ahsen; Seyhan, Hatice; Gurel, Ahmet

    2016-08-01

    This study was designed to elucidate the protective effects of ferulic acid (FA) on formaldehyde-induced hepatotoxicity by measuring some routine biochemical parameters, cytokine levels, and oxidative stress-related parameters in addition to YKL-40 in male Wistar albino rats. Tissue superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and tissue malondialdehyde (MDA) levels were measured. Also, serum YKL-40, TNF-α, IL-6, IL-1β, IL-8, total protein, albumin, total bilirubin concentrations, and AST, ALT, ALP, and LDH activities were measured. Histological specimens were examined in light microscopy. Formaldehyde significantly increased tissue MDA, and serum cytokine levels and also decreased activities of antioxidant enzymes. FA treatment decreased MDA and cytokine levels and increased activities of antioxidant enzymes. FA also alleviated degeneration due to formaldehyde toxicity. We suggested that FA can be used as a promising hepatoprotective agent against formaldehyde toxicity because of the obvious beneficial effects on oxidative stress parameters. PMID:27235018

  8. Ameliorative effect of vitamin E on potassium dichromate-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Ali A. Shati

    2014-07-01

    There was a significant accumulation of Cr in the livers of the Cr group compared with the control group. In addition, exposure to K2Cr2O7 induced significant increases in the level of thiobarbituric-reactive substances (TBARS and significant decreases in glutathione (GSH content and superoxide dismutase (SOD activity in the Cr group compared with the control group. Moreover, livers of the Cr group showed major histological alterations, such as severe necrosis, increased lymphocytic infiltration, and a significant decrease in the DNA content. Oral vitamin E administration concomitant with K2Cr2O7 ameliorated all these changes and resulted in normal hepatic histological and cellular contents. In conclusion, oral vitamin E administration has a hepatoprotective role against K2Cr2O7-induced hepatotoxicity in rats.

  9. Hepatotoxicity after liver irradiation in children and adolescents. Results from the RiSK

    Energy Technology Data Exchange (ETDEWEB)

    Roesler, Pascal; Christiansen, Hans [Medical School Hannover, Department of Radiotherapy and Special Oncology, Hannover (Germany); Kortmann, Rolf-Dieter [University of Leipzig, Department of Radiotherapy, Leipzig (Germany); Martini, Carmen [University Hospital of Freiburg, Department of Radiotherapy, Freiburg im Breisgau (Germany); Matuschek, Christiane [Heinrich-Heine University of Duesseldorf, Department of Radiotherapy, Medical Faculty, Duesseldorf (Germany); Meyer, Frank [Hospital Augsburg, Department of Radiotherapy, Augsburg (Germany); Ruebe, Christian [University Hospital of Homburg/Saar, Department of Radiotherapy, Homburg/Saar (Germany); Langer, Thorsten [University Hospital of Schleswig-Holstein, Department of Pediatrics, Pediatric Oncology, Campus Luebeck (Germany); Koch, Raphael [University of Muenster, Institute of Biostatistics and Clinical Research, Muenster (Germany); Eich, Hans Theodor; Willich, Normann [University Hospital of Muenster, Department of Radiotherapy, Muenster (Germany); Steinmann, Diana [Medical School Hannover, Department of Radiotherapy and Special Oncology, Hannover (Germany); University Hospital of Muenster, Department of Radiotherapy, Muenster (Germany)

    2015-05-01

    The aim of this study was to evaluate acute and late radiotherapy-associated hepatotoxicity in consideration of dose-volume effects and liver function in childhood and adolescence. Since 2001, irradiated children and adolescents in Germany have been prospectively documented in the ''Register of Treatment-Associated Late Effects After Radiotherapy of Malignant Diseases in Childhood and Adolescence (RiSK)'' using standardized forms. Toxicity was graded according to the Radiation Therapy Oncology Group (RTOG) criteria. Until April 2012, 1,392 children and adolescents from 62 radiotherapy centers were recruited. In all, 216 patients underwent irradiation of the liver (median age 9 years, range 1-18 years, 70 patients with total-body irradiation, TBI). For 75 % of patients without TBI, information on acute toxicity of the liver was available: 24 patients had acute toxicity of grade 1-4 (grade 1, 2, and 4, in 20, 3, and 1 patient, respectively), including five patients receiving simultaneous hepatotoxic chemotherapy. Information on late toxicity was documented in 465 forms from 216 patients, with a median follow-up of 2 years. A maximum grade of toxicity of ≥ 0 occurred in 18 patients over time (with grade 1, 2, and 3 toxicity occurring in 15, 2, and 1 patient, respectively), including three patients (17 %) with TBI. One of them received simultaneous hepatotoxic chemotherapy. In multivariable analysis, volume-dose correlations showed no statistically noticeable effect on acute or chronic toxicity. Only low hepatotoxicity developed in children after irradiation of various abdominal and thoracic tumors. Due to the low radiation doses to the liver (median liver dose = 5 Gy) and the low toxicities that were consecutively observed, dose-volume curves for liver toxicity could not be established. These findings reflect the cautious attitude of radiation oncologists in terms of attributable liver doses in the treatment of the investigated tumor entities. It

  10. Role of neutrophils in hepatotoxicity induced by oral acetaminophen administration in rats.

    Science.gov (United States)

    Smith, G S; Nadig, D E; Kokoska, E R; Solomon, H; Tiniakos, D G; Miller, T A

    1998-12-01

    Acetaminophen (APAP) is a common analgesic and antipyretic compound which, when administered in high doses, has been associated with significant morbidity and mortality, secondary to hepatic toxicity. To date, the mechanism(s) whereby APAP induces liver injury remains to be delineated. This study investigated the potential role of neutrophils as contributors to liver injury in rats administered sublethal doses of APAP. Oral APAP administration (650 mg/kg) was associated with increases in serum alanine transaminase (ALT) levels indicating biochemical evidence of significant liver damage. Furthermore, histological analyses verified significant hepatocellular necrosis as well as enhanced myeloperoxidase staining in these liver specimens. However, if animals were pretreated with antineutrophil sera prior to APAP administration, neutrophil counts remained depressed, ALT levels were significantly decreased, and the degree of liver injury was attenuated on a histological level. Taken together these data suggest that neutrophils mediate, at least in part, the hepatotoxic effects of oral acetaminophen administration in rats. PMID:9878321

  11. Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice

    International Nuclear Information System (INIS)

    Background: There are about 600 million betel quid chewers in the world. Betal quid chewing is one of the major risk factors of hepatocarcinoma, oropharyngeal and esophagus cancers. Arecoline, the main Areca alkaloid of the betel nut is reported to have cytotoxic, genotoxic and mutagenic effects in various cells. It shows strong correlation to the incidence of oral submucosal fibrosis, leukoplakia and oral cancer, and has also been found to impose toxic manifestations in immune, hepatic and other defense systems of the recipient. Aim: The precise molecular mechanisms underlying the toxic effects of arecoline deserve investigation. To clarify the action of arecoline on defense systems, immune, hepatic and detoxification system were studied in mice. Method: Cell count and cell cycle of the splenocytes were studied for evaluating cell immunity. Liver function test (LFT) was followed by assaying different enzyme systems from serum (SGPT, SGOT and ALP) and liver (GST for detoxication enzyme, SOD and catalase for antioxidant enzymes and GSH for non-enzymatic antioxidant) and by ultrastructural studies of hepatocytes. Results: Here we report that arecoline arrested splenic lymphocyte cell cycle at lower concentration with induced apoptosis at higher concentration thereby causing immunosuppression in arecoline recipients. Besides, it resulted in hepatotoxicity in arecoline recipient mice by disrupting the hepatocyte ultrastructure, as judged by liver ultrastructural studies that showed decreased nuclear size, RER with profusely inflated cysternae and abundance of lipid droplets, and by up regulating hepatotoxic marker enzymes (SGOT and SGPT) in serum. Arecoline also caused depression of antioxidants, i.e., superoxide dismutase (SOD), catalase, reduced glutathione (GSH) and glutathione-S-transferase (GST) that are known to neutralize reactive oxygen species. Conclusion: All these above-mentioned results led us to conclude that arecoline attacks multiple targets to finally

  12. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    The severity of ethanol-induced liver injury is associated with oxidative stress and lipid accumulation in the liver. Core circadian clock is known to mediate antioxidative enzyme activity and lipid metabolism. However, the link between circadian clock and ethanol-induced hepatotoxicity remains unclear. Here we showed that extents of acute ethanol-induced liver injury and steatosis in mice exhibit circadian variations consistent with hepatic expression of Period (Per) genes. Mice lacking clock gene Per1 displayed less susceptible to ethanol-induced liver injury, as evidenced by lower serum transaminase activity and less severe histopathological changes. Ethanol-induced lipid peroxidation was alleviated in Per1−/− mice. However, Per1 deletion had no effect on antioxidants depletion caused by ethanol administration. Ethanol-induced triglycerides (TG) accumulation in the serum and liver was significantly decreased in Per1−/− mice compared with that in wild-type (WT) mice. Analysis of gene expression in the liver revealed peroxisome proliferators activated receptor-gamma (PPARγ) and its target genes related to TG synthesis are remarkably down-regulated in Per1−/− mice. HepG2 cells were treated with ethanol at 150 mM for 3 days. Per1 overexpression augmented lipid accumulation after treatment with ethanol in HepG2 cells, but had no effect on ethanol-induced oxidative stress. Expression of genes related to lipogenesis, including PPARγ and its target genes, was up-regulated in cells overexpressing Per1. In conclusion, these results indicated that circadian rhythms of ethanol-induced hepatotoxicity are controlled by clock gene Per1, and deletion of Per1 protected mice from ethanol-induced liver injury by decreasing hepatic lipid accumulation

  13. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    International Nuclear Information System (INIS)

    Extracellular Ca2+ influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca2+ entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca2+ overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca2+ and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases

  14. Characterizing the mechanism of thiazolidinedione-induced hepatotoxicity: An in vitro model in mitochondria

    International Nuclear Information System (INIS)

    Objective: To characterize the mechanism of action of thiazolidinedione (TZD)-induced liver mitochondrial toxicity caused by troglitazone, rosiglitazone, and pioglitazone in HepaRG cells. Methods: Human hepatoma cells (HepaRG) were treated with troglitazone, rosiglitazone, or pioglitazone (12.5, 25, and 50 μM) for 48 h. The Seahorse Biosciences XF24 Flux Analyzer was used to measure mitochondrial oxygen consumption. The effect of TZDs on reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected by flow cytometry. The mitochondrial ultrastructure of HepaRG cells was observed under a transmission electrical microscope (TEM). mtDNA content was evaluated by real-time PCR, and ATP content and mitochondrial respiratory chain (MRC) complex I, II, III, IV activity were measured via chemiluminescence. Results were considered statistically significant at p < 0.05. Results: Among the three drugs, troglitazone exhibited the highest potency, followed by rosiglitazone, and then pioglitazone. The TZDs caused varying degrees of mitochondrial respiratory function disorders including decreases in oxygen consumption, MRC activity, and ATP level, and an elevation in ROS level. TZD treatment resulted in mtDNA content decline, reduction in MMP, and alterations of mitochondrial structure. Conclusion: All investigated TZDs show a certain degree of mitochondrial toxicity, with troglitazone exhibiting the highest potency. The underlying mechanism of TZD-induced hepatotoxicity may be associated with alterations in mitochondrial respiratory function disorders, oxidative stress, and changes in membrane permeability. These parameters may be used early in drug development to further optimize risk:benefit profiles. - Highlights: • We compared three TZD mitochondrial toxicity characteristics in HepaRG cells. • TZD induced respiratory disorders and mitochondrial structural damage. • Mitochondrial toxicity evaluation presents guidance value for hepatotoxicity

  15. Characterizing the mechanism of thiazolidinedione-induced hepatotoxicity: An in vitro model in mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dan; Wu, Chun-qi [State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850 (China); Li, Ze-jun [State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850 (China); Guang Dong Pharmaceutical University, Guangzhou 510006 (China); Liu, Yue; Fan, Xing [State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850 (China); Wang, Quan-jun, E-mail: wangquanjunbeijing@163.com [State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850 (China); Ding, Ri-gao, E-mail: dingrigao@nic.bmi.ac.cn [State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850 (China)

    2015-04-15

    Objective: To characterize the mechanism of action of thiazolidinedione (TZD)-induced liver mitochondrial toxicity caused by troglitazone, rosiglitazone, and pioglitazone in HepaRG cells. Methods: Human hepatoma cells (HepaRG) were treated with troglitazone, rosiglitazone, or pioglitazone (12.5, 25, and 50 μM) for 48 h. The Seahorse Biosciences XF24 Flux Analyzer was used to measure mitochondrial oxygen consumption. The effect of TZDs on reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected by flow cytometry. The mitochondrial ultrastructure of HepaRG cells was observed under a transmission electrical microscope (TEM). mtDNA content was evaluated by real-time PCR, and ATP content and mitochondrial respiratory chain (MRC) complex I, II, III, IV activity were measured via chemiluminescence. Results were considered statistically significant at p < 0.05. Results: Among the three drugs, troglitazone exhibited the highest potency, followed by rosiglitazone, and then pioglitazone. The TZDs caused varying degrees of mitochondrial respiratory function disorders including decreases in oxygen consumption, MRC activity, and ATP level, and an elevation in ROS level. TZD treatment resulted in mtDNA content decline, reduction in MMP, and alterations of mitochondrial structure. Conclusion: All investigated TZDs show a certain degree of mitochondrial toxicity, with troglitazone exhibiting the highest potency. The underlying mechanism of TZD-induced hepatotoxicity may be associated with alterations in mitochondrial respiratory function disorders, oxidative stress, and changes in membrane permeability. These parameters may be used early in drug development to further optimize risk:benefit profiles. - Highlights: • We compared three TZD mitochondrial toxicity characteristics in HepaRG cells. • TZD induced respiratory disorders and mitochondrial structural damage. • Mitochondrial toxicity evaluation presents guidance value for hepatotoxicity.

  16. Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice.

    Science.gov (United States)

    Aubert, Jacinthe; Begriche, Karima; Delannoy, Matthieu; Morel, Isabelle; Pajaud, Julie; Ribault, Catherine; Lepage, Sylvie; McGill, Mitchell R; Lucas-Clerc, Catherine; Turlin, Bruno; Robin, Marie-Anne; Jaeschke, Hartmut; Fromenty, Bernard

    2012-09-01

    Clinical investigations suggest that hepatotoxicity after acetaminophen (APAP) overdose could be more severe in the context of obesity and nonalcoholic fatty liver disease. The pre-existence of fat accumulation and CYP2E1 induction could be major mechanisms accounting for such hepatic susceptibility. To explore this issue, experiments were performed in obese diabetic ob/ob and db/db mice. Preliminary investigations performed in male and female wild-type, ob/ob, and db/db mice showed a selective increase in hepatic CYP2E1 activity in female db/db mice. However, liver triglycerides in these animals were significantly lower compared with ob/ob mice. Next, APAP (500 mg/kg) was administered in female wild-type, ob/ob, and db/db mice, and investigations were carried out 0.5, 2, 4, and 8 h after APAP intoxication. Liver injury 8 h after APAP intoxication was higher in db/db mice, as assessed by plasma transaminases, liver histology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In db/db mice, however, the extent of hepatic glutathione depletion, levels of APAP-protein adducts, c-Jun N-terminal kinase activation, changes in gene expression, and mitochondrial DNA levels were not greater compared with the other genotypes. Furthermore, in the db/db genotype plasma lactate and β-hydroxybutyrate were not specifically altered, whereas the plasma levels of APAP-glucuronide were intermediary between wild-type and ob/ob mice. Thus, early APAP-induced hepatotoxicity was greater in db/db than ob/ob mice, despite less severe fatty liver and similar basal levels of transaminases. Hepatic CYP2E1 induction could have an important pathogenic role when APAP-induced liver injury occurs in the context of obesity and related metabolic disorders. PMID:22647274

  17. Oxidative Stress Alleviation by Sage Essential Oil in Co-amoxiclav induced Hepatotoxicity in Rats.

    Science.gov (United States)

    El-Hosseiny, L S; Alqurashy, N N; Sheweita, S A

    2016-06-01

    Clinical studies have shown that several classes of antibiotics are evidenced in drug induced liver injury. The combination of amoxicillin with clavulanic acid is commonly cited in such cases. Accordingly, the present study investigated the potential hepatoprotective and in vivo antioxidant efficacy of sage essential oil in Co-amoxiclav induced hepatotoxicity in rats. Sage essential oil was hydrodistilled from the aerial parts of Salvia officinalis L. and its compositional analysis was characterized by Gas chromatography-Mass spectroscopy. Rats were treated singly or concomitantly with Co-amoxiclav and sage essential oil for a period of seven days. The major components of sage oil as identified by GC-MS were 1,8-cineole, β-pinene, camphor, β-caryophyllene, α-pinene and α-caryophyllene comprising 26.3%, 14.4%, 10.9%, 7.8%, 6% and 2.5% respectively. The in vivo exposure of rats to Co-amoxiclav resulted in hepatotoxicity biochemically evidenced by the significant elevation of serum AST, ALT, ALP, γ-GT, total bilirubin and histologically conveyed by hydropic, inflammatory and cholestatic changes in rats' liver. Oxidative stress mediated the hepatic injury as indicated by the significant escalation in lipid peroxidation, as well as, the significant depletion of both glutathione level and glutathione dependent enzymes' activities. The concomitant administration of sage essential oil with Co-amoxiclav exerted a hepatoprotective effect via inducing an in vivo antioxidant defense response eventually regressing, to some extent, the hepatoarchitectural changes induced by Co-amoxiclav. Results suggest that sage essential oil is a potential candidate for counteracting hepatic injury associating Co-amoxiclav and this effect is in part related to the complexity of its chemical composition. PMID:27493593

  18. A prospective, randomized study on hepatotoxicity of anastrozole compared with tamoxifen in women with breast cancer

    Science.gov (United States)

    Lin, Ying; Liu, Jianlun; Zhang, Xiaohua; Li, Li; Hu, Rui; Liu, Jian; Deng, Yongchuan; Chen, Dedian; Zhao, Yangbing; Sun, Shengrong; Ma, Rong; Zhao, Ying; Liu, Jinping; Zhang, Yang; Wang, Xijing; Li, Yafen; He, Pingqing; Li, Enxiao; Xu, Zheli; Wu, Yaqun; Tong, Zhongsheng; Wang, Xiaojia; Huang, Tao; Liang, Zhongxiao; Wang, Shui; Su, Fengxi; Lu, Yunfei; Zhang, Helong; Feng, Guosheng; Wang, Shenming

    2014-01-01

    Tamoxifen and anastrozole are widely used as adjuvant treatment for early stage breast cancer, but their hepatotoxicity is not fully defined. We aimed to compare hepatotoxicity of anastrozole with tamoxifen in the adjuvant setting in postmenopausal breast cancer patients. Three hundred and fifty-three Chinese postmenopausal women with hormone receptor-positive early breast cancer were randomized to anastrozole or tamoxifen after optimal primary therapy. The primary end-point was fatty liver disease, defined as a liver–spleen ratio <0.9 as determined using a computed tomography scan. The secondary end-points included abnormal liver function and treatment failure during the 3-year follow up. The cumulative incidence of fatty liver disease after 3 years was lower in the anastrozole arm than that of tamoxifen (14.6% vs 41.1%, P < 0.0001; relative risk, 0.30; 95% CI, 0.21–0.45). However, there was no difference in the cumulative incidence of abnormal liver function (24.6% vs 24.7%, P = 0.61). Interestingly, a higher treatment failure rate was observed in the tamoxifen arm compared with anastrozole and median times to treatment failure were 15.1 months and 37.1 months, respectively (P < 0.0001; HR, 0.27; 95% CI, 0.20–0.37). The most commonly reported adverse events were ‘reproductive system disorders’ in the tamoxifen group (17.1%), and ‘musculoskeletal disorders’ in the anastrozole group (14.6%). Postmenopausal women with hormone receptor-positive breast cancer receiving adjuvant anastrozole displayed less fatty liver disease, suggesting that this drug had a more favorable hepatic safety profile than tamoxifen and may be preferred for patients with potential hepatic dysfunction. PMID:24975596

  19. Diet restriction inhibits apoptosis and HMGB1 oxidation and promotes inflammatory cell recruitment during acetaminophen hepatotoxicity.

    Science.gov (United States)

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  20. Role of galectin-3 in acetaminophen-induced hepatotoxicity and inflammatory mediator production.

    Science.gov (United States)

    Dragomir, Ana-Cristina; Sun, Richard; Mishin, Vladimir; Hall, LeRoy B; Laskin, Jeffrey D; Laskin, Debra L

    2012-06-01

    Galectin-3 (Gal-3) is a β-galactoside-binding lectin implicated in the regulation of macrophage activation and inflammatory mediator production. In the present studies, we analyzed the role of Gal-3 in liver inflammation and injury induced by acetaminophen (APAP). Treatment of wild-type (WT) mice with APAP (300 mg/kg, ip) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was associated with increased hepatic expression of Gal-3 messenger RNA and protein. Immunohistochemical analysis showed that Gal-3 was predominantly expressed by mononuclear cells infiltrating into necrotic areas. APAP-induced hepatotoxicity was reduced in Gal-3-deficient mice. This was most pronounced at 48-72 h post-APAP and correlated with decreases in APAP-induced expression of 24p3, a marker of inflammation and oxidative stress. These effects were not due to alterations in APAP metabolism or hepatic glutathione levels. The proinflammatory proteins, inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, macrophage inflammatory protein (MIP)-2, matrix metalloproteinase (MMP)-9, and MIP-3α, as well as the Gal-3 receptor (CD98), were upregulated in livers of WT mice after APAP intoxication. Loss of Gal-3 resulted in a significant reduction in expression of iNOS, MMP-9, MIP-3α, and CD98, with no effects on IL-1β. Whereas APAP-induced increases in MIP-2 were augmented at 6 h in Gal-3(-/-) mice when compared with WT mice, at 48 and 72 h, they were suppressed. Tumor necrosis factor receptor-1 (TNFR1) was also upregulated after APAP, a response dependent on Gal-3. Moreover, exaggerated APAP hepatotoxicity in mice lacking TNFR1 was associated with increased Gal-3 expression. These data demonstrate that Gal-3 is important in promoting inflammation and injury in the liver following APAP intoxication. PMID:22461450

  1. Lycium barbarum extract provides effective protection against paracetamol-induced acute hepatotoxicity in rats.

    Science.gov (United States)

    Gündüz, Ercan; Dursun, Recep; Zengin, Yılmaz; İçer, Mustafa; Durgun, Hasan Mansur; Kanıcı, Ayşe; Kaplan, İbrahim; Alabalık, Ulaş; Gürbüz, Hüseyin; Güloğlu, Cahfer

    2015-01-01

    The aim of the present study was to investigate the hepatoprotective and antioxidant effects of Lycium barbarum (LB) extract against paracetamol-induced acute oxidative stress and hepatotoxicity in rats. The subjects were divided into 6 groups of 8 rats each. The rats in the LB group were administered a dose of 100 mg/kg LB extract dissolved in saline via the intraperitoneal route for 7 days. Subsequently, after last dose of LB, PCT was given in a single dose of 1 g/kg diluted in saline via the oral route. Twenty-four hours later, blood samples were drawn from all of the subjects for serum Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Total antioxidant status (TAS) and Total oxidant status (TOS) tests, and liver tissue samples were obtained for histopathological evaluation. The mean TAS level of the group that was subjected to PCT intoxication was significantly lower than those of the other groups. Additionally, the mean TOS, Oxidative stress index (OSI), ALT and AST values were significantly higher in this group. Though the mean TAS level in the PCT + LB group was significantly higher than that of the PCT group, the TOS, OSI, ALT, and AST levels were significantly lower. When the PCT + LB group and the PCT only group were compared in terms of liver damage during the histopathological evaluation, a statistically significant difference was observed in Grade I and Grade III damage (P=0.013 and P=0.038, respectively). We conclude that Lycium barbarum extract leads to a significant improvement in PCT-induced acute hepatotoxicity in terms of the histopathological results, serum oxidative stress parameters, and serum liver function marker enzymes. PMID:26221346

  2. Computational Models for Human and Animal Hepatotoxicity with a Global Application Scope.

    Science.gov (United States)

    Mulliner, Denis; Schmidt, Friedemann; Stolte, Manuela; Spirkl, Hans-Peter; Czich, Andreas; Amberg, Alexander

    2016-05-16

    Hepatic toxicity is a key concern for novel pharmaceutical drugs since it is difficult to anticipate in preclinical models, and it can originate from pharmacologically unrelated drug effects, such as pathway interference, metabolism, and drug accumulation. Because liver toxicity still ranks among the top reasons for drug attrition, the reliable prediction of adverse hepatic effects is a substantial challenge in drug discovery and development. To this end, more effort needs to be focused on the development of improved predictive in-vitro and in-silico approaches. Current computational models often lack applicability to novel pharmaceutical candidates, typically due to insufficient coverage of the chemical space of interest, which is either imposed by size or diversity of the training data. Hence, there is an urgent need for better computational models to allow for the identification of safe drug candidates and to support experimental design. In this context, a large data set comprising 3712 compounds with liver related toxicity findings in humans and animals was collected from various sources. The complex pathology was clustered into 21 preclinical and human hepatotoxicity endpoints, which were organized into three levels of detail. Support vector machine models were trained for each endpoint, using optimized descriptor sets from chemometrics software. The optimized global human hepatotoxicity model has high sensitivity (68%) and excellent specificity (95%) in an internal validation set of 221 compounds. Models for preclinical endpoints performed similarly. To allow for reliable prediction of "truly external" novel compounds, all predictions are tagged with confidence parameters. These parameters are derived from a statistical analysis of the predictive probability densities. The whole approach was validated for an external validation set of 269 proprietary compounds. The models are fully integrated into our early safety in-silico workflow. PMID:26914516

  3. Hepatotoxicity of kaurene glycosides from Xanthium strumarium L. fruits in mice.

    Science.gov (United States)

    Wang, Yang; Han, Ting; Xue, Li-Ming; Han, Ping; Zhang, Qiao-Yan; Huang, Bao-Kang; Zhang, Hong; Ming, Qian-Liang; Peng, Wei; Qin, Lu-Ping

    2011-06-01

    The fruit of Xanthium strumarium L. (Cang-Er-Zi) is a traditional Chinese medicine that is used in curing nasal diseases and headache according to the Chinese Pharmacopoeia. However, clinical utilization of Xanthium strumarium is relatively limited because of its toxicity. The present investigation was carried out to evaluate the toxic effects on acute liver injury in mice of the two kaurene glycosides (atractyloside and carbxyatractyloside), which are main toxic constituents isolated from Fructus Xanthii on acute liver injury in mice. Histopathological examinations revealed that there were not obviously visible injury in lungs, heart, spleen, and the central nervous system in the mice by intraperitoneal injection of atractyloside (ATR, at the doses 50,125 and 200 mg/kg) and carbxyatractyloside (CATR, at the doses 50,100 and 150 mg/kg) for 5 days. However, it revealed extensive liver injuries compared with the normal group. In the determination of enzyme levels in serum, intraperitoneal injection of ATR and CATR resulted in significantly elevated serum alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP) activities compared to controls. In the hepatic oxidative stress level, antioxidant-related enzyme activity assays showed that ATR and CATR administration significantly increased hepatic malondialdehyde (MDA) concentration, as well as decreased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) concentration, and this was in good agreement with the results of serum aminotransferase activity and histopathological examinations. Taken together, our results demonstrate that kaurene glycosides induce hepatotoxicity in mice by way of its induction of oxidative stress as lipid peroxidation in liver, which merited further studies. Therefore, these toxic constituents explain, at least in part, the hepatotoxicity of X. strumarium L. in traditional medicine. PMID:21699085

  4. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruibing [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Lihui [Shandong Normal University, Jinan, Shandong Province 250012 (China); Luo, Zheng; Guo, Xiaolan [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Ming, E-mail: ymylh@163.com [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China)

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  5. Expression levels of pituitary tumor transforming 1 and glutathione-S-transferase theta 3 are associated with the individual susceptibility to D-galactosamine-induced hepatotoxicity

    International Nuclear Information System (INIS)

    Although drug-induced liver injury (DILI) is frequently observed, individual variation in the susceptibility to DILI is hard to predict. Intrinsic genetic variation is considered a key element for this variation but little is known about the identity of the genes associated with DILI. In this study, pre-biopsy method was applied to uncover the key genes for D-galactosamine (GalN)-induced liver injury and a cause and effect study was conducted to elucidate the correlation between the expression of uncovered genes and GalN-induced hepatotoxicity. To identify the genes determining the susceptibility to GalN-induced hepatotoxicity, we compared the innate gene expression profiles in the liver tissue pre-biopsied before GalN treatment of the SD rats susceptible and resistant to GalN-induced hepatotoxicity, using microarray. Eight genes including Pttg1, Ifit1 and Gstt3 were lower or higher in the susceptible animals than the resistant and RT-PCR analysis confirmed it. To determine if these genes are associated with the susceptibility to GalN-induced hepatotoxicity indeed, expression levels were measured using real-time PCR in a new set of animals and the correlation with GalN-induced hepatotoxicity were analyzed. Notably, the expression of Pttg1 was significantly correlated with the severity of GalN-induced hepatotoxicity (p < 0.01) and the animals with lowest and highest level of Gstt3 turned out to be the most susceptible and resistant, respectively, demonstrating that the expression of Pttg1 and Gstt3 could predict inter-individual susceptibility to GalN-induced hepatotoxicity. More importantly, this study showed the utility of pre-biopsy method in the identification of the gene for the chemical-induced hepatotoxicity.

  6. Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity

    International Nuclear Information System (INIS)

    Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF, IFNγ, IL-1α, and IL-6. Using this assay, we observed drug-cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug-cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1α, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug-cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.

  7. Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Youssef Dgachi

    2016-05-01

    Full Text Available We report herein the straightforward two-step synthesis and biological assessment of novel racemic benzochromenopyrimidinones as non-hepatotoxic, acetylcholinesterase inhibitors with antioxidative properties. Among them, compound 3Bb displayed a mixed-type inhibition of human acetylcholinesterase (IC50 = 1.28 ± 0.03 μM, good antioxidant activity, and also proved to be non-hepatotoxic on human HepG2 cell line.

  8. Expression of bax and bcl2 Genes in MDMA-induced Hepatotoxicity on Rat Liver Using Quantitative Real-Time PCR Method through Triggering Programmed Cell Death

    OpenAIRE

    2015-01-01

    Background: 3-4methylenedioxymethamphetamine (MDMA) is a synthetic and psychoactive drug, which is known popularly as Ecstasy and has toxic effects on human organs. Objectives: Considering the potential toxic interaction, this study was performed to quantify the expression of bax and bcl2 genes in MDMA-induced hepatotoxicity on rat liver. Subsequently, we evaluated pentoxifylline as a possible protective drug on hepatotoxicity. Materials and Methods: Adult male Wistar rats weighting 250 - 300...

  9. Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes Hepatic Inflammation and Leads to Hepatotoxicity in Zebrafish

    Science.gov (United States)

    Liu, Chunsheng; Su, Guanyong; Giesy, John P.; Letcher, Robert J.; Li, Guangyu; Agrawal, Ira; Li, Jing; Yu, Liqin; Wang, Jianghua; Gong, Zhiyuan

    2016-01-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been frequently detected in environmental media and has adverse health effect on wildlife and humans. It has been implicated to have hepatotoxicity, but its molecular mechanisms remain unclear. In the present study, adult male zebrafish were exposed to TDCIPP and global hepatic gene expression was examined by RNA-Seq and RT-qPCR in order to understand the molecular mechanisms of TDCIPP-induced hepatotoxicity. Our results indicated that TDCIPP exposure significantly up-regulated the expression of genes involved in endoplasmic reticulum stress and Toll-like receptor (TLR) pathway, implying an inflammatory response, which was supported by up-regulation of inflammation-related biomaker genes. Hepatic inflammation was further confirmed by histological observation of increase of infiltrated neutrophils and direct observation of liver recruitment of neutrophils labeled with Ds-Red fluorescent protein of Tg(lysC:DsRed) zebrafish upon TDCIPP exposure. To further characterize the hepatotoxicity of TDCIPP, the expression of hepatotoxicity biomarker genes, liver histopathology and morphology were examined. The exposure to TDCIPP significantly up-regulated the expression of several biomarker genes for hepatotoxicity (gck, gsr and nqo1) and caused hepatic vacuolization and apoptosis as well as increase of the liver size. Collectively, our results suggest that exposure to TDCIPP induces hepatic inflammation and leads to hepatotoxicity in zebrafish.

  10. Protective and curative effect of poly herbal formulation containing indigenous medicinal plants against various hepatotoxic agents in rats

    Institute of Scientific and Technical Information of China (English)

    Sunil Mistry; Kunduri Rajeswar Dutt; Sashi Bhusan Biswal; Jyotirmoyee Jena

    2012-01-01

    Objective: To evaluate the protective and curative potential of PHF, a polyherbal formulation, against two experimentally induced hepatotoxicity models in rats. Methods: Hepatoprotective activity of the PHF containing three indigenous medicinal plants extracts Coccinia indica, Sidacordata and Scoparia dulcis, was screened against CCl4 and paracetamol induced hepatotoxicity in rats. Result: Administration of hepatotoxins (CCl4 and paracetamol) shows significant morphological, biochemical and histopathological deteriorations in the liver of experimental animals. Pretreatment with PHF had significant protection against hepatic damage by maintaining the morphological parameters within normal range and normalizing the elevated levels of biochemical parameters (SGPT, SGOT, ALP and total bilirubin), which were evidently showed in histopathological study. Conclusions: The PHF has highly significant hepatoprotective effect at 100 and 200 mg/kg, p.o. on the liver of all the two experimental animal models. The liver protection due to combined action of all plant extracts along with their phytoconstituents.

  11. Imidazopyranotacrines as Non-Hepatotoxic, Selective Acetylcholinesterase Inhibitors, and Antioxidant Agents for Alzheimer′s Disease Therapy

    Directory of Open Access Journals (Sweden)

    Houssem Boulebd

    2016-03-01

    Full Text Available Herein we describe the synthesis and in vitro biological evaluation of thirteen new, racemic, diversely functionalized imidazo pyranotacrines as non-hepatotoxic, multipotent tacrine analogues. Among these compounds, 1-(5-amino-2-methyl-4-(1-methyl-1H-imidazol-2-yl-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinolin-3-ylethan-1-one (4 is non-hepatotoxic (cell viability assay on HepG2 cells, a selective but moderately potent EeAChE inhibitor (IC50 = 38.7 ± 1.7 μM, and a very potent antioxidant agent on the basis of the ORAC test (2.31 ± 0.29 μmol·Trolox/μmol compound.

  12. Nevirapine-associated early hepatotoxicity: incidence, risk factors, and associated mortality in a primary care ART programme in South Africa.

    OpenAIRE

    Chu, Kathryn M.; Boulle, Andrew M; Ford, Nathan; Goemaere, Eric; ASSELMAN, Valerie; van Cutsem, Gilles

    2010-01-01

    BACKGROUND: The majority of antiretroviral treatment programmes in sub-Saharan Africa are scaling up antiretroviral treatment using a fixed dose first-line antiretroviral regimen containing stavudine, lamivudine, and nevirapine. One of the primary concerns with the use of this regimen is nevirapine-associated hepatotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: Study participants were 1809 HIV-infected, antiretroviral naïve adults initiating nevirapine-based antiretroviral therapy between November...

  13. Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity.

    Science.gov (United States)

    Lampson, Benjamin L; Kasar, Siddha N; Matos, Tiago R; Morgan, Elizabeth A; Rassenti, Laura; Davids, Matthew S; Fisher, David C; Freedman, Arnold S; Jacobson, Caron A; Armand, Philippe; Abramson, Jeremy S; Arnason, Jon E; Kipps, Thomas J; Fein, Joshua; Fernandes, Stacey; Hanna, John; Ritz, Jerome; Kim, Haesook T; Brown, Jennifer R

    2016-07-14

    Idelalisib is a small-molecule inhibitor of PI3Kδ with demonstrated efficacy for the treatment of relapsed/refractory chronic lymphocytic leukemia (CLL). To evaluate idelalisib as front-line therapy, we enrolled 24 subjects in a phase 2 study consisting of 2 months of idelalisib monotherapy followed by 6 months of combination therapy with idelalisib and the anti-CD20 antibody ofatumumab. After a median follow-up period of 14.7 months, hepatotoxicity was found to be a frequent and often severe adverse event. A total of 19 subjects (79%) experienced either grade ≥1 ALT or AST elevation during the study, and 13 subjects (54%) experienced grade ≥3 transaminitis. The median time to development of transaminitis was 28 days, occurring before ofatumumab introduction. Younger age and mutated immunoglobulin heavy chain status were significant risk factors for the development of hepatotoxicity. Multiple lines of evidence suggest that this hepatotoxicity was immune mediated. A lymphocytic infiltrate was seen on liver biopsy specimens taken from 2 subjects with transaminitis, and levels of the proinflammatory cytokines CCL-3 and CCL-4 were higher in subjects experiencing hepatotoxicity. All cases of transaminitis resolved either by holding the drug, initiating immunosuppressants, or both, and rates of recurrent toxicity were lower in patients taking steroids when idelalisib was reinitiated. A decrease in peripheral blood regulatory T cells was seen in patients experiencing toxicity on therapy, which is consistent with an immune-mediated mechanism. These results suggest that caution should be taken as drugs within this class are developed for CLL, particularly in younger patients who have not received prior disease-specific therapy. This study was registered at www.clinicaltrials.gov as #NCT02135133. PMID:27247136

  14. Discernment of possible mechanisms of hepatotoxicity via biological processes over-represented by co-expressed genes

    OpenAIRE

    Chou Jeff W; Bushel Pierre R

    2009-01-01

    Abstract Background Hepatotoxicity is a form of liver injury caused by exposure to stressors. Genomic-based approaches have been used to detect changes in transcription in response to hepatotoxicants. However, there are no straightforward ways of using co-expressed genes anchored to a phenotype or constrained by the experimental design for discerning mechanisms of a biological response. Results Through the analysis of a gene expression dataset containing 318 liver samples from rats exposed to...

  15. High Dose Atorvastatin Associated with Increased Risk of Significant Hepatotoxicity in Comparison to Simvastatin in UK GPRD Cohort.

    Directory of Open Access Journals (Sweden)

    Alan T Clarke

    Full Text Available Occasional risk of serious liver dysfunction and autoimmune hepatitis during atorvastatin therapy has been reported. We compared the risk of hepatotoxicity in atorvastatin relative to simvastatin treatment.The UK GPRD identified patients with a first prescription for simvastatin [164,407] or atorvastatin [76,411] between 1997 and 2006, but with no prior record of liver disease, alcohol-related diagnosis, or liver dysfunction. Incident liver dysfunction in the following six months was identified by biochemical value and compared between statin groups by Cox regression model adjusting for age, sex, year treatment started, dose, alcohol consumption, smoking, body mass index and comorbid conditions.Moderate to severe hepatotoxicity [bilirubin >60μmol/L, AST or ALT >200U/L or alkaline phosphatase >1200U/L] developed in 71 patients on atorvastatin versus 101 on simvastatin. Adjusted hazard ratio [AHR] for all atorvastatin relative to simvastatin was 1.9 [95% confidence interval 1.4-2.6]. High dose was classified as 40-80mg daily and low dose 10-20mg daily. Hepatotoxicity occurred in 0.44% of 4075 patients on high dose atorvastatin [HDA], 0.07% of 72,336 on low dose atorvastatin [LDA], 0.09% of 44,675 on high dose simvastatin [HDS] and 0.05% of 119,732 on low dose simvastatin [LDS]. AHRs compared to LDS were 7.3 [4.2-12.7] for HDA, 1.4 [0.9-2.0] for LDA and 1.5 [1.0-2.2] for HDS.The risk of hepatotoxicity was increased in the first six months of atorvastatin compared to simvastatin treatment, with the greatest difference between high dose atorvastatin and low dose simvastatin. The numbers of events in the analyses were small.

  16. Gene expression profiling in the liver of CD-1 mice to characterize the hepatotoxicity of triazole fungicides

    International Nuclear Information System (INIS)

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and hypotheses on potential mechanisms of action for this class of chemicals. Adult male CD-1 mice were exposed daily for 14 days to fluconazole, myclobutanil, propiconazole, or triadimefon at three dose levels by oral gavage. Doses were based on previous studies that resulted in liver hypertrophy or hepatotoxicity. All four triazoles caused hepatocyte hypertrophy, and all except triadimefon increased relative liver/body weight ratios at the middle and high dose levels. CYP enzyme activities were also induced by all four triazoles at the middle and high doses as measured by the dealkylations of four alkoxyresorufins, although some differences in substrate specificity were observed. Consistent with this common histopathology and biochemistry, several CYP and xenobiotic metabolizing enzyme (XME) genes were differentially expressed in response to all four (Cyp2d26 and Cyp3a11), or three of the four (Cyp2c40, Cyp2c55, Ces2, Slco1a4) triazoles. Differential expression of numerous other CYP and XME genes discriminated between the various triazoles, consistent with differences in CYP enzyme activities, and indicative of possible differences in mechanisms of hepatotoxicity or dose response. Multiple isoforms of Cyp1a, 2b, 2c, 3a, and other CYP and XME genes regulated by the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) were differentially expressed following triazole exposure. Based on these results, we expanded on our original hypothesis that triazole hepatotoxicity was mediated by CYP induction, to include additional XME genes, many of which are modulated by CAR and PXR

  17. Effect of adrenergic blockers, carvedilol, prazosin, metoprolol and combination of prazosin and metoprolol on paracetamol-induced hepatotoxicity in rabbits

    Directory of Open Access Journals (Sweden)

    Maysaa B Zubairi

    2014-01-01

    Full Text Available Objectives: To evaluate hepatoprotective potential of carvedilol, prazosin, metoprolol and prazosin plus metoprolol in paracetamol-induced hepatotoxicity. Materials and Methods : Thirty-six male rabbits were divided into six groups, six in each, group 1 received distilled water, group 2 were treated with paracetamol (1 g/kg/day, orally, group 3, 4,5 and 6 were treated at a dose in (mg/kg/day of the following: Carvedilol (10 mg, prazosin (0.5 mg, metoprolol (10 mg, and a combination of metoprolol (10 mg and prazosin (0.5 mg respectively 1 h before paracetamol treatment. All treatments were given for 9 days; animals were sacrificed at day 10. Liver function tests, malondialdehyde (MDA and glutathione (GSH in serum and liver homogenates were estimated. Histopathological examinations of liver were performed. Results: Histopathological changes of hepatotoxicity were found in all paracetamol-treated rabbits. The histopathological findings of paracetamol toxicity disappeared in five rabbits on prazosin, very mild in one. In carvedilol group paracetamol toxicity completely disappeared in three, while mild in three rabbits. Paracetamol hepatotoxicity was not changed by metoprolol. In metoprolol plus prazosin treated rabbits, moderate histopathological changes were observed. Serum liver function tests and MDA in serum and in liver homogenate were elevated; GSH was depleted after paracetamol treatment and returned back to the control value on prior treatment with prazosin. MDA in serum and liver homogenate, alkaline phosphatase, total bilirubin were significantly decreased after carvedilol and prazosin plus metoprolol treatments. Conclusion : Carvedilol and prazosin are hepatoprotective in paracetamol hepatotoxicity, combination of prazosin and metoprolol have moderate, and metoprolol has a little hepatoprotection.

  18. Chemical Diversity Investigation of Hepatotoxic Pyrrolizidine Alkaloids in Qianliguang (Senecio scandens and Related Species by UHPLC-QTOF-MS

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    2015-04-01

    Full Text Available Objective: Qianliguang (Senecio scandens is a common Chinese medicinal herb. Qianliguang-containing herbal proprietary products are registered as over-the-counter remedies in China and exported to Western countries. The presence of hepatotoxic pyrrolizidine alkaloids (PAs has raised concerns about the safety of using Qianliguang and its products. The present study aims at investigation of different types of PAs present in Qianliguang collected from representative locations in China.

  19. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPARα with clofibrate

    International Nuclear Information System (INIS)

    The objective was to investigate if the hepatotoxic sensitivity in nonalcoholic steatohepatitic mice to acetaminophen (APAP) is due to downregulation of nuclear receptor PPARα via lower cell division and tissue repair. Male Swiss Webster mice fed methionine and choline deficient diet for 31 days exhibited NASH. On the 32nd day, a marginally toxic dose of APAP (360 mg/kg, ip) yielded 70% mortality in steatohepatitic mice, while all non steatohepatitic mice receiving the same dose survived. 14C-APAP covalent binding, CYP2E1 protein, and enzyme activity did not differ from the controls, obviating increased APAP bioactivation as the cause of amplified APAP hepatotoxicity. Liver injury progressed only in steatohepatitic livers between 6 and 24 h. Cell division and tissue repair assessed by 3H-thymidine incorporation and PCNA were inhibited only in the steatohepatitic mice given APAP suggesting that higher sensitivity of NASH liver to APAP-induced hepatotoxicity was due to lower tissue repair. The hypothesis that impeded liver tissue repair in steatohepatitic mice was due to downregulation of PPARα was tested. PPARα was downregulated in NASH. To investigate whether downregulation of PPARα in NASH is the critical mechanism of compromised liver tissue repair, PPARα was induced in steatohepatitic mice with clofibrate (250 mg/kg for 3 days, ip) before injecting APAP. All clofibrate pretreated steatohepatitic mice receiving APAP exhibited lower liver injury, which did not progress and the mice survived. The protection was not due to lower bioactivation of APAP but due to higher liver tissue repair. These findings suggest that inadequate PPARα expression in steatohepatitic mice sensitizes them to APAP hepatotoxicity

  20. Anti-tuberculosis drug induced hepatotoxicity among TB/HIV co-infected patients at Jimma University Hospital, Ethiopia: nested case-control study.

    Directory of Open Access Journals (Sweden)

    Alima Hassen Ali

    Full Text Available BACKGROUND: This study was carried out to determine the incidence and predictors of anti-tuberculosis drug induced hepatotoxicity among TB/HIV co-infected patients at Jimma University Hospital, Ethiopia. METHODS/PRINCIPAL FINDINGS: A nested case-control study was conducted by reviewing charts of all TB/HIV co-infected patients who commenced anti-TB treatment from January 2008 to December 2011 at Jimma University Hospital. Patients who had developed hepatotoxicity after at least 5 days of standard doses of anti-TB drug therapy were labeled as "cases" and those without hepatotoxicity were "controls". Each case with anti-TB drug induced hepatotoxicity was compared with 3 controls selected randomly from the cohort. From a cohort of 296 TB/HIV co-infected patients 8 were excluded from the study as the causality between anti-TB drugs and hepatotoxicity was not confirmed, 33 had developed hepatotoxicity. On bivariate logistic regression analysis, body mass index (BMI <18.5 Kg/m(2 [P = 0.01; OR (95%CI: 3.6 (1.4-9.5], disseminated pulmonary TB [P = 0.00; OR (95%CI: 5.6 (2.2-14.6], CD4 count ≤50 [P = 0.016; OR (95%CI: 3.6(1.27-10.23] and WHO stage 4 [P = 0.004, OR (95%CI: 3.8 (1.68-8.77] were significantly associated with anti-TB drug induced hepatotoxicity. Predictor variables with p-value <0.05 by bivariate analysis were analyzed using multivariable logistic regression analysis and identified disseminated pulmonary TB [P = 0.001; AOR (95%CI = 5.6 (2.1-15.0] and BMI <18.5 [P = 0.014; AOR (95%CI= 3.6 (1.3-10.1] as independent predictors of anti-TB drug induced hepatotoxicity. CONCLUSIONS: The incidence of anti-TB drug induced hepatotoxicity was 11.5%. The results suggest that in the presence of disseminated pulmonary TB and/or BMI <18.5 Kg/m(2, TB/HIV co-infected patients should be closely followed for the occurrence of hepatotoxicity during the intensive phase of TB treatment to prevent morbidity and mortality.

  1. Synergistic activity of curcumin with methotrexate in ameliorating Freund's Complete Adjuvant induced arthritis with reduced hepatotoxicity in experimental animals.

    Science.gov (United States)

    Banji, David; Pinnapureddy, Jyothi; Banji, Otilia J F; Saidulu, A; Hayath, Md Sikinder

    2011-10-01

    Methotrexate is employed in low doses for the treatment of rheumatoid arthritis. One of the major drawbacks with methotrexate is hepatotoxicity resulting in poor compliance of therapy. Curcumin is an extensively used spice possessing both anti-arthritic and hepatoprotective potential. The present study was aimed at investigating the effect of curcumin (30 and 100 mg/kg) in combination with subtherapeutic dose of methotrexate (1 mg/kg) is salvaging hepatotoxicity, oxidative stress and producing synergistic anti-arthritic action with methotrexate. Wistar albino rats were induced with arthritis by subplantar injection of Freund's Complete Adjuvant and pronounced arthritis was seen after 9 days of injection. Groups of animals were treated with subtherapeutic dose of methotrexate followed half an hour later with 30 and 100mg/kg of curcumin from day 9 up to days 45 by intraperitoneal route. Methotrexate treatment in Freund's Complete Adjuvant induced arthritic animals produced elevation in the levels of aminotransferases, alkaline phosphatase, total and direct bilirubin. Enhanced oxidative stress in terms of measured lipid peroxides was observed in the methotrexate treated group. Curcumin significantly circumvented hepatotoxicity induced by methotrexate as evidenced by a change in biochemical markers possibly due to its strong anti-oxidant action. Hepatoprotective potential of curcumin was also confirmed from histological evaluation. Sub-therapeutic dose of methotrexate elicited substantial anti-arthritic action when used in combination with curcumin implying that the latter potentiated its action. Concomitant administration of curcumin with methotrexate was also found to minimize liver damage. PMID:21693118

  2. Hepatotoxicity by bosentan in a patient with portopulmonary hypertension: a case-report and review of the literature.

    Science.gov (United States)

    Eriksson, Carl; Gustavsson, Anders; Kronvall, Thomas; Tysk, Curt

    2011-03-01

    Bosentan is an endothelin receptor antagonist approved for treatment of pulmonary arterial hypertension. Mild liver reactions occur in about 10% of treated patients but severe hepatotoxicity is rare. We present clinical data and treatment outcome of a severe drug induced liver injury due to bosentan in a patient with non-cirrhotic portopulmonary hypertension. After 18 months of uncomplicated therapy with bosentan 125 mg b.i.d., the patient developed a severe mixed hepatic injury. Serum levels of bilirubin were 316 µmol/l (ref. value ambrisentan for pulmonary arterial hypertension was well tolerated and liver function tests have remained normal during 12 months' follow-up. A review of the literature revealed three other women with severe hepatotoxicity due to bosentan. Bosentan may cause severe liver injury, even after long uneventful therapy, and current recommendations on regular monitoring of liver function tests are reinforced. Ambrisentan may be a therapeutic alternative in patients with pulmonary arterial hypertension and hepatotoxicity by bosentan. PMID:21451802

  3. Effect of captopril and telmisartan on methotrexate-induced hepatotoxicity in rats: impact of oxidative stress, inflammation and apoptosis.

    Science.gov (United States)

    Kelleni, Mina T; Ibrahim, Salwa A; Abdelrahman, Aly M

    2016-06-01

    Methotrexate (MTX) is a commonly used antineoplastic and anti-rheumatoid drug whose efficacy is limited by its hepatotoxicity. The aim of this study was to investigate the possible protective role of captopril (100 mg/kg/day, p.o. for seven days), an angiotensin converting enzyme inhibitor, and telmisartan (10 mg/kg/day p.o. for seven days), an angiotensin II receptor blocker with peroxisome proliferative receptor gamma (PPARγ) agonism, in a model of MTX (single dose 20 mg/kg i.p. at the fifth day) induced hepatotoxicity in rats. Results of the present study revealed MTX-induced hepatotoxicity as demonstrated by increased level of liver enzymes and confirmed by histopathology. Pretreatment with captopril or telmisartan produced a significant hepatic protection manifested as a significant (p nitrites and nitrates (NOx) levels; as well as a significant increase in hepatic superoxide dismutase (SOD) activity. In addition, there was a remarkable improvement in the histopathological features and a significant reduction in the expression of COX-2, iNOS and caspase-3 enzymes as compared with the MTX group. We recommend considering captopril/Telmisartan, if tolerated and not contraindicated, as preferable antihypertensive agents in patients receiving MTX in their chemotherapy protocols. PMID:27269004

  4. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity

    Science.gov (United States)

    Yang, Xia; Shao, Huali; Liu, Weirong; Gu, Weizhong; Shu, Xiaoli; Mo, Yiqun; Chen, Xuejun; Zhang, Qunwei; Jiang, Mizu

    2015-01-01

    Zinc oxide nanoparticles (Nano-ZnO) are widely used in sunscreens, clothes, medicine and electronic devices. However, the potential risks of human exposure and the potential for adverse health impacts are not well understood. Previous studies have demonstrated that exposure to Nano-ZnO caused liver damage and hepatocyte apoptosis through oxidative stress, but the molecular mechanisms that are involved in Nano-ZnO-induced hepatotoxicity are still unclear. Endoplasmic reticulum (ER) is sensitive to oxidative stress, and also plays a crucial role in oxidative stress-induced damage. Previous studies showed that ER stress was involved in many chemical-induced liver injuries. We hypothesized that exposure to Nano-ZnO caused oxidative stress and ER stress that were involved in Nano-ZnO-induced liver injury. To test our hypothesis, mice were gavaged with 200 mg/kg or 400 mg/kg of Nano-ZnO once a day for a period of 90 days, and blood and liver tissues were obtained for study. Our results showed that exposure to Nano-ZnO caused liver injury that was reflected by focal hepatocellular necrosis, congestive dilation of central veins, and significantly increased alanine transaminase (ALT) and aspartate transaminase (AST) levels. Exposure to Nano-ZnO also caused depletion of glutathione (GSH) the liver tissues. In addition, our electron microscope results showed that ER swelling and ribosomal degranulation were observed in the liver tissues from mice treated with Nano-ZnO. The mRNA expression levels of ER stress-associated genes (grp78, grp94, pdi-3, xbp-1) were also up-regulated in Nano-ZnO-treated mice. Nano-ZnO caused increased phosphorylation of RNA-dependent protein kinase-like ER kinase (PERK) and eukaryotic initiation factor 2α (eIF2α). Finally, we found that exposure to Nano-ZnO caused increased ER stress-associated apoptotic protein levels, such as caspase-3, caspase-9, caspase-12, phosphorylation of JNK, and CHOP/GADD153, and up-regulation of pro-apoptotic genes (chop

  5. Hemizygosity of transsulfuration genes confers increased vulnerability against acetaminophen-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    The key mechanism for acetaminophen hepatotoxicity is cytochrome P450 (CYP)-dependent formation of N-acetyl-p-benzoquinone imine, a potent electrophile that forms protein adducts. Previous studies revealed the fundamental role of glutathione, which binds to and detoxifies N-acetyl-p-benzoquinone imine. Glutathione is synthesized from cysteine in the liver, and N-acetylcysteine is used as a sole antidote for acetaminophen poisoning. Here, we evaluated the potential roles of transsulfuration enzymes essential for cysteine biosynthesis, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), in acetaminophen hepatotoxicity using hemizygous (Cbs+/− or Cth+/−) and homozygous (Cth−/−) knockout mice. At 4 h after intraperitoneal acetaminophen injection, serum alanine aminotransferase levels were highly elevated in Cth−/− mice at 150 mg/kg dose, and also in Cbs+/− or Cth+/− mice at 250 mg/kg dose, which was associated with characteristic centrilobular hepatocyte oncosis. Hepatic glutathione was depleted while serum malondialdehyde accumulated in acetaminophen-injected Cth−/− mice but not wild-type mice, although glutamate–cysteine ligase (composed of catalytic [GCLC] and modifier [GCLM] subunits) became more activated in the livers of Cth−/− mice with lower Km values for Cys and Glu. Proteome analysis using fluorescent two-dimensional difference gel electrophoresis revealed 47 differentially expressed proteins after injection of 150 mg acetaminophen/kg into Cth−/− mice; the profiles were similar to 1000 mg acetaminophen/kg-treated wild-type mice. The prevalence of Cbs or Cth hemizygosity is estimated to be 1:200–300 population; therefore, the deletion or polymorphism of either transsulfuration gene may underlie idiosyncratic acetaminophen vulnerability along with the differences in Cyp, Gclc, and Gclm gene activities. - Highlights: • Cbs+/−, Cth+/−, and especially Cth−/− mice were susceptible to APAP hepatic injury.

  6. Hemizygosity of transsulfuration genes confers increased vulnerability against acetaminophen-induced hepatotoxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Hagiya, Yoshifumi; Kamata, Shotaro; Mitsuoka, Saya; Okada, Norihiko; Yoshida, Saori; Yamamoto, Junya; Ohkubo, Rika [Department of Biochemistry, Keio University School of Pharmaceutical Sciences, Tokyo 105-8512 (Japan); Abiko, Yumi [Environmental Biology Laboratory, School of Medicine, University of Tsukuba, Ibaraki 305-8575 (Japan); Yamada, Hidenori [Jobu Hospital for Respiratory Diseases, Maebashi 371-0048 (Japan); Akahoshi, Noriyuki [Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543 (Japan); Kasahara, Tadashi [Department of Biochemistry, Keio University School of Pharmaceutical Sciences, Tokyo 105-8512 (Japan); Kumagai, Yoshito [Environmental Biology Laboratory, School of Medicine, University of Tsukuba, Ibaraki 305-8575 (Japan); Ishii, Isao, E-mail: isao-ishii@umin.ac.jp [Department of Biochemistry, Keio University School of Pharmaceutical Sciences, Tokyo 105-8512 (Japan)

    2015-01-15

    The key mechanism for acetaminophen hepatotoxicity is cytochrome P450 (CYP)-dependent formation of N-acetyl-p-benzoquinone imine, a potent electrophile that forms protein adducts. Previous studies revealed the fundamental role of glutathione, which binds to and detoxifies N-acetyl-p-benzoquinone imine. Glutathione is synthesized from cysteine in the liver, and N-acetylcysteine is used as a sole antidote for acetaminophen poisoning. Here, we evaluated the potential roles of transsulfuration enzymes essential for cysteine biosynthesis, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), in acetaminophen hepatotoxicity using hemizygous (Cbs{sup +/−} or Cth{sup +/−}) and homozygous (Cth{sup −/−}) knockout mice. At 4 h after intraperitoneal acetaminophen injection, serum alanine aminotransferase levels were highly elevated in Cth{sup −/−} mice at 150 mg/kg dose, and also in Cbs{sup +/−} or Cth{sup +/−} mice at 250 mg/kg dose, which was associated with characteristic centrilobular hepatocyte oncosis. Hepatic glutathione was depleted while serum malondialdehyde accumulated in acetaminophen-injected Cth{sup −/−} mice but not wild-type mice, although glutamate–cysteine ligase (composed of catalytic [GCLC] and modifier [GCLM] subunits) became more activated in the livers of Cth{sup −/−} mice with lower K{sub m} values for Cys and Glu. Proteome analysis using fluorescent two-dimensional difference gel electrophoresis revealed 47 differentially expressed proteins after injection of 150 mg acetaminophen/kg into Cth{sup −/−} mice; the profiles were similar to 1000 mg acetaminophen/kg-treated wild-type mice. The prevalence of Cbs or Cth hemizygosity is estimated to be 1:200–300 population; therefore, the deletion or polymorphism of either transsulfuration gene may underlie idiosyncratic acetaminophen vulnerability along with the differences in Cyp, Gclc, and Gclm gene activities. - Highlights: • Cbs{sup +/−}, Cth{sup +/−}, and

  7. In Vitro Antioxidant Activity and Hepatoprotective Effects of Lentinula edodes against Paracetamol-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Sreenivasan Sasidharan

    2010-06-01

    Full Text Available Background: The objective of this study was to investigate the antioxidant and hepatoprotective effects of methanolic extracts of L. edodes and the determination of their total phenolics content. Results: The amount of total phenolics was estimated to be 70.83 mg Gallic Acid Equivalent (GAE per gram of dry extract. The antioxidant activity of the L. edodes extract was 39.0% at a concentration of 1 mg/mL and was also concentration dependant, with an EC50 value of 4.4 mg/mL. Different groups of animals (Wister albino mice were administered paracetamol (1 g/kg, p.o.. L. edodes extract at a dose of 200 mg/kg was administered to the paracetamol treated mice for seven days. The effects of L. edodes extract on serum transaminases (SGOT, SGPT, alkaline phosphatase (ALP and bilirubin were measured in the paracetamol-induced hepatotoxic mice. L. edodes extract produced significant (p < 0.05 hepatoprotective effects by decreasing the activity of serum enzymes and bilirubin. Conclusions: From these results, it was suggested that L. edodes extract could perhaps protect liver cells from paracetamol-induced liver damage by its antioxidative effect on hepatocytes, hence diminishing or eliminating the harmful effects of toxic metabolites of paracetamol.

  8. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge

    Directory of Open Access Journals (Sweden)

    T. Scott Devera

    2015-06-01

    Full Text Available Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI, and hepatic alanine aminotransferase (ALT, and aspartate aminotransferase (AST, it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.

  9. Anti-hepatotoxic potential of Hedyotis corymbosa against D-galactosamine-induced hepatopathy in experimental rodents

    Institute of Scientific and Technical Information of China (English)

    Ramesh Kr Gupta; Rajnish Kr Singh; Sudhansu Ranjan Swain; Talib Hussain; Chandana Venkateswara Rao

    2012-01-01

    Objective: To evaluate hepatoprotective potential of the methanolic extract of Hedyotis corymbosa against D-galactosamine-induced hepatopathy in experimental animals. Methods: In the present study, in- vivo hepatoprotective effect of 50% methanolic extract of Hedyotis corymbosa (HCE, 100 and 200 mg/kg body weight) was evaluated using experimental models D-Galactosamine (D-GalN) (200 mg/kg, body weight i.p.) induced hepatotoxicity in experimental animals. The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatise (ALP), γ-glutamyl transferase (γ-GT) and total bilirubin. Meanwhile, in vivo antioxidant activities as lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were screened along with histopathological studies. Results: Obtained results demonstrated that the treatment with HCE signi-cantly (P<0.05-P<0.001) and dose-dependently prevented chemically induced increase in serum levels of hepatic enzymes. Furthermore, HCE signi-cantly (up to P<0.001) reduced the lipid peroxidation in the liver tissue and restored activities of defence antioxidant enzymes GSH, SOD and catalase towards normal levels. Histopathology of the liver tissue showed that HCE attenuated the hepatocellular necrosis and led to reduction of in ammatory cells in-ltration. Conclusions: The results of this study strongly indicate the protective effect of HCE against acute liver injury which may be attributed to its hepatoprotective activity, and there by scienti-cally support its traditional use.

  10. Modelling Hepatotoxicity of Antiretroviral Therapy in the Liver during HIV Monoinfection

    Directory of Open Access Journals (Sweden)

    Hasifa Nampala

    2014-01-01

    Full Text Available Liver related complications are currently the leading cause of morbidity and mortality among human immunodeficiency virus (HIV infected individuals. In HIV monoinfected individuals on therapy, liver injury has been associated with the use of antiretroviral agents as most of them exhibit some degree of toxicity. In this study we proposed a mathematical model with the aim of investigating hepatotoxicity of combinational therapy of antiretroviral drugs. Therapy efficacy and toxicity were incorporated in the model as dose-response functions. With the parameter values used in the study, protease inhibitors-based regimens were found to be more toxic than nonnucleoside reverse transcriptase inhibitors-based regimens. In both regimens, the combination of stavudine and zidovudine was the most toxic baseline nucleoside reverse transcriptase inhibitors followed by didanosine with stavudine. However, the least toxic combinations were zidovudine and lamivudine followed by didanosine and lamivudine. The study proposed that, under the same second line regimens, the most toxic first line combination gives the highest viral load and vice versa.

  11. Protective effect of Genistein against N-nitrosodiethylamine (NDEA)-induced hepatotoxicity in Swiss albino rats

    Institute of Scientific and Technical Information of China (English)

    Fahad Ali; Rahul; Falaq Naz; Smita Jyoti; Yasir Hasan Siddique

    2015-01-01

    In the present study, we studied the effect of Genistein against the hepatotoxicity induced by N-nitrosodiethylamine (NDEA). NDEA is present in almost all kinds of food stuff and has been reported to be a hepatocarcinogen. The male rats were exposed to NDEA (0.1 mg/mL) dissolved in drinking water separately and along with 25, 50, 100 mg/mL of Genistein for 21 days. The activities of serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were measured in blood serum. Lipid peroxidation, protein carbonyl content, micronucleus frequency and DNA damage (Comet assay) were performed on rat hepatocytes. The results of the study reveal that the treatment of NDEA along with Genistein showed a significant dose-dependent decrease in the levels of blood serum enzymes i.e., SGOT, SGPT, ALP and LDH (Po0.05). The HE staining of histological sections of the liver also revealed a protective effect of Genistein. A significant dose-dependent reduction in the lipid peroxidation and protein carbonyl content was observed in rats exposed to NDEA (0.1 mg/mL) along with Genistein (Po0.05). The results obtained for the comet assay in rat hepatocytes showed a significant dose-dependent decrease in the mean tail length (Po0.05). Thus the present study supports the hepatoprotective role of Genistein.

  12. Protective Effects of Captopril against Aflatoxin B1-Induced Hepatotoxicity in Isolated Perfused Rat Liver

    Directory of Open Access Journals (Sweden)

    Amir Moghadam- Jafari

    2014-02-01

    Full Text Available 8TBackground: The liver is the major target organ for aflatoxin B1 (AFB1. Ingestion of aflatoxin causes hepatotoxicty. In this study, captopril as new agent to help the hepatotoxicity induced by aflatoxin was suggested. 8TMaterials and Methods: The isolated perfused rat liver (IPRL was chosen for evaluating hepatic function. Sixteen rats were divided randomly into four experimental groups: control, captopril, AFB1 and AFB1 + captopril. The level of glutathione content and lipid peroxidation, as marker of oxidative stress and lactate dehydrogenase (LDH, alanine transaminase (ALT and aspartate transaminase (AST activities and pH of the perfusate medium were measured. 8TResults: There was a significant decrease in lipid peroxidation and same increase was observed in glutathione level. Treatment with captopril also modulated the enzymes activity and pH of perfusate. 8TConclusion: This study showed that captopril protects the hepatotoxicty induced by AFB1. Therefore, this drug may provide an effective new strategy to reduce of aflatoxins toxicity.

  13. Hepatotoxic Seafood Poisoning (HSP Due to Microcystins: A Threat from the Ocean?

    Directory of Open Access Journals (Sweden)

    Evangelos Briasoulis

    2013-08-01

    Full Text Available Cyanobacterial blooms are a major and growing problem for freshwater ecosystems worldwide that increasingly concerns public health, with an average of 60% of blooms known to be toxic. The most studied cyanobacterial toxins belong to a family of cyclic heptapeptide hepatotoxins, called microcystins. The microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cell damage following cellular uptake via organic anion-transporting proteins (OATP. Their intracellular biologic effects presumably involve inhibition of catalytic subunits of protein phosphatases (PP1 and PP2A and glutathione depletion. The microcystins produced by cyanobacteria pose a serious problem to human health, if they contaminate drinking water or food. These toxins are collectively responsible for human fatalities, as well as continued and widespread poisoning of wild and domestic animals. Although intoxications of aquatic organisms by microcystins have been widely documented for freshwater ecosystems, such poisonings in marine environments have only occasionally been reported. Moreover, these poisonings have been attributed to freshwater cyanobacterial species invading seas of lower salinity (e.g., the Baltic or to the discharge of freshwater microcystins into the ocean. However, recent data suggest that microcystins are also being produced in the oceans by a number of cosmopolitan marine species, so that Hepatotoxic Seafood Poisoning (HSP is increasingly recognized as a major health risk that follows consumption of contaminated seafood.

  14. Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity.

    Science.gov (United States)

    Fouad, Amr A; Qureshi, Habib A; Yacoubi, Mohamed T; Al-Melhim, Walid N

    2009-11-01

    The hepatoprotective effect of carnosine was investigated against cadmium-induced acute liver injury in mice. Hepatotoxicity was induced by a single i.p. injection of cadmium chloride (6.5mg/kg). Carnosine treatment (10mg/kg/day, i.p.) was applied for three consecutive days, starting one day before cadmium administration. Carnosine significantly decreased the cadmium-induced elevations in serum aminotransferases. Carnosine suppressed lipid peroxidation and restored the deficits in the antioxidant defense mechanisms (reduced glutathione level, and catalase and superoxide dismutase activities) in liver tissue resulted from cadmium administration. Also, the reductions in hepatic nitric oxide and zinc ion levels, and the increases in hepatic cadmium ion concentration, and myeloperoxidase and caspase-3 activities following cadmium exposure were significantly attenuated by carnosine treatment. In addition, carnosine markedly ameliorated cadmium-induced liver tissue damage as evidenced by light and electron microscopic examinations. It was concluded that carnosine can be considered a potential candidate to protect the liver against the deleterious effect of acute cadmium intoxication. PMID:19748544

  15. Chemical composition and hepatotoxic effect of Geranium schiedeanum in a thioacetamide-induced liver injury model

    Directory of Open Access Journals (Sweden)

    Juan Gayosso-De-Lucio

    2014-01-01

    Full Text Available One of the major components of some geraniums is geraniin, described by its discoverer as crystallizable tannin, well known as an excellent antioxidant, and also found in fruits such as pomegranate. Recently, natural antioxidants have attracted great attention from consumers over the world due to their lower toxicity than synthetics. But geraniin is not a stable compound, and also is difficult to obtain, that is why in the present study we obtained acetonylgeraniin from Geranium schideanum (Gs, a stable acetone condensate of geraniin. In the present study the effect of Gs acetone-water extract was studied in reference to postnecrotic liver regeneration induced by thioacetamide (TA in rats. Two months male rats were pretreated with daily dose of Gs extract for 4 days (300 mg/kg and the last day also were intraperitoneally injected with TA (6.6 mmol/kg. Samples of blood were obtained from rats at 0, 24, 48, 72 and 96 h following TA intoxication. The pre-treatment with the crude extract in the model of thioacetamide-induced hepatotoxicity in rats decreased and delayed liver injury by 66% at 24 h. This result suggests that Gs extract may be used as an alternative for reduction of liver damage. On the other hand, acute toxicity study revealed that the LD 50 value of the Gs extract is more than the dose 5000 mg/kg in rats, according to the Lorke method.

  16. Imbalance of the antioxidative system by plumbagin and Plumbago indica L. extract induces hepatotoxicity in mice

    Science.gov (United States)

    Sukkasem, Nadta; Chatuphonprasert, Waranya; Tatiya-aphiradee, Nitima; Jarukamjorn, Kanokwan

    2016-01-01

    Background/Aim: Plumbago indica (PI) L. and its active constituent, plumbagin, has been traditionally claimed for several pharmacological activities; however, there is little information regarding their toxicity. The present study aims to examine the effects of plumbagin and PI extract (PI) on hepatic histomorphology and antioxidative system in mice. Materials and Methods: Adult male intelligent character recognition mice were intragastrically administered plumbagin (1, 5, and 15 mg/kg/day) or PI (20, 200, and 1,000 mg/kg/day) consecutively for 14 days. Hepatic histomorphology was examined. Plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, hepatic lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and the ratio of reduced to oxidized glutathione (GSH/GSSG) were determined. Results: Plumbagin and PI concentration-dependently induced hepatic injury based on histopathological changes via imbalance of antioxidative system. Plumbagin and PI significantly increased plasma ALT and AST levels, hepatic lipid peroxidation, and GPx activity but significantly decreased hepatic SOD and CAT activities. The GSH/GSSG ratio was significantly reduced by plumbagin. Conclusion: Plumbagin and PI caused hepatotoxic effects in the mice by unbalancing of the redox defense system. Therefore, plumbagin and PI-containing supplements should be used cautiously, especially when consumed in high quantities or for long periods. PMID:27104034

  17. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes.

    Science.gov (United States)

    Liu, Cong; Sekine, Shuichi; Ito, Kousei

    2016-07-01

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. PMID:27095095

  18. Dideoxynucleoside HIV reverse transcriptase inhibitors and drug-related hepatotoxicity: a case report

    Directory of Open Access Journals (Sweden)

    Lapadula Giuseppe

    2007-05-01

    Full Text Available Abstract This report regards the case of a 43 year-old HIV-positive woman who developed an episode of serious transaminase elevation during stavudine-including antiretroviral therapy. Diagnostic assessment ruled out hepatitis virus co-infection, alcohol abuse besides other possible causes of liver damage. No signs of lactic acidosis were present. Liver biopsy showed portal inflammatory infiltrate, spotty necrosis, vacuoles of macro- and micro-vesicular steatosis, acidophil and foamy hepatocytes degeneration with organelles clumping, poorly formed Mallory bodies and neutrophil granulocytes attraction (satellitosis. A dramatic improvement in liver function tests occurred when stavudine was discontinued and a new antiretroviral regimen with different nucleoside reverse transcriptase inhibitors was used. The importance of considering hepatotoxicity as an adverse event of HAART including stavudine, even in absence of other signs of mitochondrial toxicity should therefore be underlined. Liver biopsy may provide further important information regarding patients with severe transaminase elevation, for a better understanding of the etiology of liver damage.

  19. Hepatotoxic pyrrolizidine alkaloids in pollen and drying-related implications for commercial processing of bee pollen.

    Science.gov (United States)

    Boppré, Michael; Colegate, Steven M; Edgar, John A; Fischer, Ottmar W

    2008-07-23

    Using HPLC-ESI-MS, several saturated and 1,2-dehydropyrrolizidine alkaloids were detected, mainly as their N-oxides, in fresh pollen collected from flowers of the pyrrolizidine alkaloid-producing plants Echium vulgare, E. plantagineum, Senecio jacobaea, S. ovatus, and Eupatorium cannabinum, and/or pollen loads from bees (bee pollen) that foraged on those plants. A major alkaloidal metabolite in S. ovatus was tentatively identified, using its mass spectrometric data and biogenic considerations, as the previously unreported, saturated alkaloid, 2-hydroxysarracine. Heating had very little effect on the 1,2-dehydropyrrolizidine alkaloids and their N-oxides from a variety of sources. Considered in conjunction with international concerns about the adverse effects of these alkaloids, the results strongly indicate a need for monitoring pollen supplies intended for human consumption, at least until conditions for processing and/or selection are clearly defined such as to significantly reduce the hepatotoxic (and potentially carcinogenic and genotoxic) pyrrolizidine alkaloid content of bee pollen. PMID:18553916

  20. Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice.

    Science.gov (United States)

    Woolbright, Benjamin L; Li, Feng; Xie, Yuchao; Farhood, Anwar; Fickert, Peter; Trauner, Michael; Jaeschke, Hartmut

    2014-07-01

    Lithocholic acid (LCA) supplementation in the diet results in intrahepatic cholestasis and bile infarcts. Previously we showed that an innate immune response is critical for cholestatic liver injury in the bile duct ligated mice. Thus, the purpose of this study was to investigate the role of neutrophils in the mechanism of liver injury caused by feeding mice a diet containing LCA. C57BL/6 mice were given control or 1% LCA containing diet for 24-96 h and then examined for parameters of hepatotoxicity. Plasma ALT levels were significantly increased by 48 h after LCA feeding, which correlated with both neutrophil recruitment to the liver and upregulation of numerous pro-inflammatory genes. The injury was confirmed by histology. Deficiency in intercellular adhesion molecule-1 (ICAM-1) expression or inhibition of neutrophil function failed to protect against the injury. Bile acid levels were quantified in plasma and bile of LCA-fed mice after 48 and 96 h. Only the observed biliary levels of taurochenodeoxycholic acid and potentially tauro-LCA caused direct cytotoxicity in mouse hepatocytes. These data support the conclusion that neutrophil recruitment occurs after the onset of bile acid-induced necrosis in LCA-fed animals, and is not a primary mechanism of cell death when cholestasis occurs through accumulation of hydrophobic bile acids. PMID:24742700

  1. Hepatotoxicity of piperazine designer drugs: Comparison of different in vitro models.

    Science.gov (United States)

    Dias-da-Silva, D; Arbo, M D; Valente, M J; Bastos, M L; Carmo, H

    2015-08-01

    Piperazine derived drugs emerged on the drug market in the last decade. The aim of this study was to investigate in vitro the potential hepatotoxicity of the designer drugs N-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl)piperazine (TFMPP), 1-(4-methoxyphenyl)piperazine (MeOPP) and 1-(3,4-methylenedioxybenzyl)piperazine (MDBP) in two human hepatic cell lines (HepaRG and HepG2) and in primary rat hepatocytes. Cell death was evaluated by the MTT assay, after 24 h-incubations. Among the tested drugs, TFMPP was the most cytotoxic. HepaRG cells and primary hepatocytes revealed to be the most and the least resistant cellular models, respectively. To ascertain whether the CYP450 metabolism could explain their higher susceptibility, primary hepatocytes were co-incubated with the piperazines and the CYP450 inhibitors metyrapone and quinidine, showing that CYP450-mediated metabolism contributes to the detoxification of these drugs. Additionally, the intracellular contents of reactive species, ATP, reduced (GSH) and oxidized (GSSG) glutathione, changes in mitochondrial membrane potential (Δψm) and caspase-3 activation were further evaluated in primary cells. Overall, an increase in reactive species formation, followed by intracellular GSH and ATP depletion, loss of Δψm and caspase-3 activation was observed for all piperazines, in a concentration-dependent manner. In conclusion, piperazine designer drugs produce hepatic detrimental effects that can vary in magnitude among the different analogues. PMID:25863214

  2. Ursodeoxycholic Acid Can Improve Liver Transaminase Quantities in Children with Anticonvulsant Drugs Hepatotoxicity: a Pilot Study.

    Directory of Open Access Journals (Sweden)

    Masoumeh Asgarshirazi

    2015-06-01

    Full Text Available The present study has been directed to investigate Ursodeoxycholic Acid (UDCA effect in children, to reduce the high Liver transaminases induced by Anticonvulsant drugs (drug induced hepatitis. This idea has been driven from Cytoprotective and antioxidant properties of UDCA to be used in drug induced inflammation in Liver. Twenty two epileptic patients aged between 4 mo - 3 yr whom were under anticonvulsant therapy with drugs such as valperoic acid, primidone, levetiracetam, Phenobarbital or any combination of them and had shown Liver transaminases rise , after rule out of Viral-Autoimmune, Metabolic and Anatomic causes, have been prescribed UDCA in dose of 10-15 mg/kg/day, at least for 6 months. Any patient who have shown confusing factors such as genetic disorders with liver involvement or spontaneous decline in enzymes or had not treatment compliance has been excluded from the study. Transaminases range changes as well as Probable side effects of the drug have been monitored. The results indicated that UDCA is effective and well tolerable in the children with drug induced hyper transaminasemia. No side effect has been seen and recorded in this study. Based on this study and its results, we recommend UDCA as a safe and effective choice in drug induced hepatotoxicities.

  3. Amelioration of ferric nitrilotriacetate-induced hepatotoxicity in Wistar rats by diallylsulfide.

    Science.gov (United States)

    Ansar, S; Iqbal, M

    2016-03-01

    Garlic contains diallylsulfide (DAS) and other structurally related compounds that are widely believed to be active agents in preventing cancer. This study shows the effect of DAS (a phenolic antioxidant used in foods, cosmetics, and pharmaceutical products) on ferric nitrilotriacetate (Fe-NTA)-induced hepatotoxicity in rats. Male albino rats of Wistar strain weighing 125-150 g were given a single dose of Fe-NTA (9 mg kg(-1) body weight, intraperitoneally) after 1 week of treatment with 100 and 200 mg kg(-1) DAS in corn oil respectively administered through the gavage. Fe-NTA administration led to 2.5-fold increase in the values of both alanine transaminase and aspartate aminotransferase, respectively, and 3.2-fold increase in the activity of lactate dehydrogenase, microsomal lipid peroxidation to approximately 2.0-fold compared to saline-treated control. The activities of glutathione (GSH) and other antioxidant enzymes decreased to a range of 2.2-2.5-fold. These changes were reversed significantly (p rats. PMID:25904316

  4. Hepatoprotective effect of Cissus quadrangularis stem extract against rifampicin-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    A. H. M. Viswanatha Swamy

    2012-01-01

    Full Text Available The study was designed to investigate the hepatoprotective activity of methanol extract of Cissus quadrangularis against rifampicin-induced hepatotoxicity in rats.The coarse powder of the shade dried stem of Cissus quadrangularis was subjected to successive extraction in a Soxhlet apparatus using solvents petroleum ether (60-80° and methanol. Liver damage was induced in Wistar rats by administering rifampicin (54 mg/kg, p.o. once daily for 30 days. Methanol extract of Cissus quadrangularis (500 mg/kg, p.o was administered 1 h prior to the administration of rifampicin (54 mg/kg, p.o. once daily for 30 days. Silymarin (50 mg/kg p.o used as reference drug. Elevated levels of aspartate transaminase, alanine transaminase, alkaline posphatase and bilirubin following rifampicin induction were significantly lowered due to pretreatment with methanol extract of Cissus quadrangularis. Rifampicin administration significantly increased lipid peroxidation and decreased antioxidant activities like reduced glutathione, superoxide dismutas and catalase. Pretreatment of rats with methanol extract of Cissus quadrangularis significantly decreased lipid peroxidation and increased the antioxidant activities. Histology of the liver section of the animals treated with the methanol extract of Cissus quadrangularis further confirms the hepatoprotective activity. The results of the present study indicated the hepatoprotective effect of methanol extract of Cissus quadrangularis which might be ascribable to its antioxidant property due to the presence of β-carotene.

  5. Hepatotoxicity evaluation of dextran stabilized iron oxide nanoparticles in Wistar rats.

    Science.gov (United States)

    Easo, Sheeja Liza; Mohanan, P V

    2016-07-25

    Cellular and organ responses to nanoparticles are relevant in the context of use of nanoparticles for biomedical applications. The purpose of the present study was to determine the potential of dextran stabilized iron oxide nanoparticles (DIONPs) to influence hepatic uptake and consequently induce hepatotoxic response in rats following intravenous administration. Inductively coupled plasma atomic emission spectroscopy analysis revealed that DIONPs are rapidly taken up into the liver, progressively broken down to iron constituents and exported into blood, with a part of it being retained in the liver. The potential of DIONPs to induce oxidative stress response was determined by evaluating the time-dependent redox defense status. Maximum alterations in antioxidant activities were observed to occur within a period of 7days. However, this effect was not followed by significant increase in lipid peroxidation or modulation of hepatic enzymes such as alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and bilirubin levels. Overall, these data imply that the liver retains functional integrity with a dose of 10mg/kg DIONPs, although with brief activation of redox defenses. PMID:27188646

  6. Be Careful, Mom and Doc: Hepatotoxicity Associated with Prescribed Medications in Young Infants

    Directory of Open Access Journals (Sweden)

    Kam-Lun Ellis Hon

    2009-01-01

    Full Text Available Accidental poisonings in young infants are relatively uncommon, and the careless caregiver is usually the culprit. We report two cases of hepatotoxicity due to prescribed medications. An infant was given 15 mL instead of 1.5 mL of paracetamol by his mother because she omitted the decimal point on the label of the drug bottle. The infant became symptomatic, and liver enzyme and clotting profile were abnormal, necessitating treatment with N-acetyl cysteine. Another infant was prescribed oral ketoconazole for thrush, resulting in elevation of liver enzymes. The serum alanine aminotransferase levels were transiently elevated but returned to normal, and both infants recovered uneventfully. This report serves to alert the doctor to avoid using decimal points in drug labeling and to avoid prescribing excessive amount of drug for trivial acute illness. Thrush in infancy is common and usually treated with oral nystatin. Other oral antifungals such as ketoconazole may be associated with liver derangement and should be avoided in infants.

  7. Anti-hepatotoxic and anti-oxidant defense potential of Tridax procumbens

    Directory of Open Access Journals (Sweden)

    Hemalatha Reddipalli

    2008-01-01

    Full Text Available Tridax procumbens is a widely occurring medicinal herb used by ethnomedical practitioners. With increased use of chemicals and alcohol besides growing incidence of viruses and autoimmune diseases, the incidence of liver injury is growing for which conventional drugs used for treatment are often inadequate. Various models are adopted in pharmological studies for inducing hepatitis/ liver injury similar to those observed in human viral hepatitis, diabetes and oxidative stress. D-galactosamine with lipopolysacchride (LPS, carbontetrachloride (CCl 4 and paracetamol intoxication, diabetes induced with alloxan are widely used on rodents for this purpose. In vitro studies on Tridax procumbens (TP revealed the anti-oxidant potential of the herb with chloroform fraction of the ethanolic extract showing maximum activity. It is also reported to possess anti-oxidant minerals such as iron, magnesium, copper and zinc. In vivo studies on rodents on the anti-oxidant potential of TP induced through LPS, CCl 4, alloxan and paracetamol intoxication induced hepatitis confirmed the results from in vitro studies as a potential anti-hepatotoxic herb.

  8. Multicenter study of trimethoprim/sulfamethoxazole-related hepatotoxicity: incidence and associated factors among HIV-infected patients treated for Pneumocystis jirovecii pneumonia.

    Directory of Open Access Journals (Sweden)

    Jen-Jia Yang

    Full Text Available The incidence of hepatotoxicity related to trimethoprim/sulfamethoxazole (TMP/SMX administered at a therapeutic dose may vary among study populations of different ethnicities and hepatotoxic metabolites of TMP/SMX may be decreased by drug-drug interaction with fluconazole. We aimed to investigate the incidence of hepatotoxicity and the role of concomitant use of fluconazole in HIV-infected patients receiving TMP/SMX for Pneumocystis jirovecii pneumonia. We reviewed medical records to collect clinical characteristics and laboratory data of HIV-infected patients who received TMP/SMX for treatment of P. jirovecii pneumonia at 6 hospitals around Taiwan between September 2009 and February 2013. Hepatotoxicity was defined as 2-fold or greater increase of aminotransferase or total bilirubin level from baselines. Roussel UCLAF Causality Assessment Method (RUCAM was used to analyze the causality of drug-induced liver injuries. NAT1 and NAT2 acetylator types were determined with the use of polymerase-chain-reaction (PCR restriction fragment length polymorphism to differentiate common single-nucleotide polymorphisms (SNPs predictive of the acetylator phenotypes in a subgroup of patients. During the study period, 286 courses of TMP/SMX treatment administered to 284 patients were analyzed. One hundred and fifty-two patients (53.1% developed hepatotoxicity, and TMP/SMX was considered causative in 47 (16.4% who had a RUCAM score of 6 or greater. In multivariate analysis, concomitant use of fluconazole for candidiasis was the only factor associated with reduced risk for hepatotoxicity (adjusted odds ratio, 0.372; 95% confidence interval, 0.145-0.957, while serostatus of hepatitis B or C virus, NAT1 and NAT2 acetylator types, or receipt of combination antiretroviral therapy was not. The incidence of hepatotoxicity decreased with an increasing daily dose of fluconazole up to 4.0 mg/kg. We conclude that the incidence of TMP/SMX-related hepatotoxicity was 16.4% in

  9. Multicenter study of trimethoprim/sulfamethoxazole-related hepatotoxicity: incidence and associated factors among HIV-infected patients treated for Pneumocystis jirovecii pneumonia.

    Science.gov (United States)

    Yang, Jen-Jia; Huang, Chung-Hao; Liu, Chun-Eng; Tang, Hung-Jen; Yang, Chia-Jui; Lee, Yi-Chien; Lee, Kuan-Yeh; Tsai, Mao-Song; Lin, Shu-Wen; Chen, Yen-Hsu; Lu, Po-Liang; Hung, Chien-Ching

    2014-01-01

    The incidence of hepatotoxicity related to trimethoprim/sulfamethoxazole (TMP/SMX) administered at a therapeutic dose may vary among study populations of different ethnicities and hepatotoxic metabolites of TMP/SMX may be decreased by drug-drug interaction with fluconazole. We aimed to investigate the incidence of hepatotoxicity and the role of concomitant use of fluconazole in HIV-infected patients receiving TMP/SMX for Pneumocystis jirovecii pneumonia. We reviewed medical records to collect clinical characteristics and laboratory data of HIV-infected patients who received TMP/SMX for treatment of P. jirovecii pneumonia at 6 hospitals around Taiwan between September 2009 and February 2013. Hepatotoxicity was defined as 2-fold or greater increase of aminotransferase or total bilirubin level from baselines. Roussel UCLAF Causality Assessment Method (RUCAM) was used to analyze the causality of drug-induced liver injuries. NAT1 and NAT2 acetylator types were determined with the use of polymerase-chain-reaction (PCR) restriction fragment length polymorphism to differentiate common single-nucleotide polymorphisms (SNPs) predictive of the acetylator phenotypes in a subgroup of patients. During the study period, 286 courses of TMP/SMX treatment administered to 284 patients were analyzed. One hundred and fifty-two patients (53.1%) developed hepatotoxicity, and TMP/SMX was considered causative in 47 (16.4%) who had a RUCAM score of 6 or greater. In multivariate analysis, concomitant use of fluconazole for candidiasis was the only factor associated with reduced risk for hepatotoxicity (adjusted odds ratio, 0.372; 95% confidence interval, 0.145-0.957), while serostatus of hepatitis B or C virus, NAT1 and NAT2 acetylator types, or receipt of combination antiretroviral therapy was not. The incidence of hepatotoxicity decreased with an increasing daily dose of fluconazole up to 4.0 mg/kg. We conclude that the incidence of TMP/SMX-related hepatotoxicity was 16.4% in HIV

  10. Enhanced hepatotoxicity induced by repeated exposure to polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin in combination in male rats

    Institute of Scientific and Technical Information of China (English)

    Yimei Wang; Chunfeng Lu; Zhiguo Sheng; Gang Liu; Ze Fu; Benzhan Zhu; Shuangqing Peng

    2011-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are among persistent polyhalogenated aromatic hydrocarbons that exist as complex mixtures in the environment worldwide. The present study was attempted to investigate the hepatotoxicity following repeated exposure to TCDD and PCBs in combination in male rats, and to reveal the involvement of potential mechanisms. Male Sprague-Dawley rats were exposed to TCDD (10 μg/kg) and Aroclor 1254 (10 mg/kg, a representative mixture of PCBs) alone or in combination by intragastric administration. After 12-day exposure, all treatments produced significant hepatotoxicity as characterized by changes of plasma biochemistry and histopathological changes. These effects were more prominent in the combined group. Furthermore, all treatments induced hepatic cytochrome P450 1A1 (CYP1A1) expression, and the maximal level of CYP1A1 expression was observed in the combined group, as in the case of the most severe hepatotoxicity evoked by the combined exposure.These findings indicated that the hepatotoxicity induced by TCDD and Aroclor 1254 might be ascribed to the high expression of hepatic CYP1A1. The present study demonstrates the enhanced hepatotoxicity after exposure to TCDD and PCBs in combination in rats.

  11. Hepatoprotective effects of Quercus infectoria gall extract against carbon tetrachloride treated liver injury in rats

    OpenAIRE

    Gaurav Lodhi; Singh, Hemant K.; PANT, KAMLESH K.; Rao, Ch V; Zeashan Hussain

    2012-01-01

    Summary. In the present study, galls of Quercus infectoria possessing potent antioxidant and antiinflammatory properties were evaluated for their hepatoprotective effect against carbon tetrachloride (CCl4) induced hepatotoxicity in rats. Subcutaneous injection of CCl4, administered twice a week, produced a marked elevation in the serum levels of aspartate transaminase (AST), alanine transaminase (ALT) and tumor necrosis factor alpha (TNF-α). Histological analysis of the liver of these rats re...

  12. Use of {sup 99m}Tc-mercaptoacetyltriglycine (MAG3)-biocytin hepatobiliary scintigraphy to study the protective effect of a synthetic enzyme inhibitor on acute hepatotoxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Meyoung-kon; Song, Byoung J.; Seidel, Juergen; Soh, Yunjo; Jeong, Kyu-Shik; Kim, In Sook; Kobayashi, Hisataka; Green, Michael V.; Carrasquillo, Jorge A.; Paik, Chang H. E-mail: paik@nmdhst.cc.nih.gov

    1998-08-01

    Recent data suggest that inhibitors of ethanol-inducible cytochrome P450 (CYP2E1) can protect the liver from injury caused by various substrates of CYP2E1. In this study, we measured the protective effect of isopropyl-2-(1,3-dithioetane-2-ylidene)-2[N-(4-methylthiazol-2-yl) -carbamoyl]acetate (YH439), a transcriptional inhibitor of CYP2E1, against carbon tetrachloride (CCl{sub 4})-induced hepatotoxicity by using various conventional methods and dynamic scintigraphy with {sup 99m}Tc-mercaptoacetyltriglycine (MAG3)-biocytin, a recently developed scintigraphic agent. Balb/c mice were pretreated with two doses of YH439 (50 or 150 mg/kg per day) at 48 h and 24 h and one dose of CCl{sub 4} (0.25 mL/kg) at 18 h before scintigraphy. The results were compared with those of two other groups, one that received CCl{sub 4} but not YH439, and the other that received neither (control). Scintigraphic images were acquired continuously at 15-sec intervals for 30 min. Pharmacokinetic parameters, such as peak liver/heart ratio (r{sub max}), peak liver uptake time (t{sub max}), and hepatic half-clearance time (HCT), were obtained from time-activity curves derived from regions-of-interest (ROI) over the liver and the heart. Acute administration of CCl{sub 4} alone caused centrilobular necrosis and serum transaminase levels to rise more than 5 times higher than those of the control group. Pharmacokinetic parameters also changed significantly from those of the control group. Administration of YH439 prevented centrilobular necrosis and significantly improved pharmacokinetic parameters. This study demonstrates for the first time that hepatobiliary scintigraphy can be used to study in vivo biochemistry of the CYP2E1 inhibitor (YH439) against liver toxicity.

  13. Use of 99mTc-mercaptoacetyltriglycine (MAG3)-biocytin hepatobiliary scintigraphy to study the protective effect of a synthetic enzyme inhibitor on acute hepatotoxicity in mice.

    Science.gov (United States)

    Kim, M K; Song, B J; Seidel, J; Soh, Y; Jeong, K S; Kim, I S; Kobayashi, H; Green, M V; Carrasquillo, J A; Paik, C H

    1998-08-01

    Recent data suggest that inhibitors of ethanol-inducible cytochrome P450 (CYP2E1) can protect the liver from injury caused by various substrates of CYP2E1. In this study, we measured the protective effect of isopropyl-2-(1,3-dithioetane-2-ylidene)-2[N-(4-methylthiazol -2-yl)-carbamoyl]acetate (YH439), a transcriptional inhibitor of CYP2E1, against carbon tetrachloride (CCl4)-induced hepatotoxicity by using various conventional methods and dynamic scintigraphy with 99mTc-mercaptoacetyltriglycine (MAG3)-biocytin, a recently developed scintigraphic agent. Balb/c mice were pretreated with two doses of YH439 (50 or 150 mg/kg per day) at 48 h and 24 h and one dose of CCl4 (0.25 mL/kg) at 18 h before scintigraphy. The results were compared with those of two other groups, one that received CCl4 but not YH439, and the other that received neither (control). Scintigraphic images were acquired continuously at 15-sec intervals for 30 min. Pharmacokinetic parameters, such as peak liver/heart ratio (r(max)), peak liver uptake time (t(max)), and hepatic half-clearance time (HCT), were obtained from time-activity curves derived from regions-of-interest (ROI) over the liver and the heart. Acute administration of CCl4 alone caused centrilobular necrosis and serum transaminase levels to rise more than 5 times higher than those of the control group. Pharmacokinetic parameters also changed significantly from those of the control group. Administration of YH439 prevented centrilobular necrosis and significantly improved pharmacokinetic parameters. This study demonstrates for the first time that hepatobiliary scintigraphy can be used to study in vivo biochemistry of the CYP2E1 inhibitor (YH439) against liver toxicity. PMID:9751424

  14. The Protective Effect of Liquorice Plant Extract on CCl4-Induced Hepatotoxicity in Common Carp (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Hassan Malekinejad

    2010-12-01

    Full Text Available The protective effect of liquorice plant extract (LPE on CCl4-induced hepatotoxicity in common carp was evaluated using fifty adult carps. The fish were cultured in a standard environment in terms of water flow rate, oxygen, pH, food and temperature. The fish were assigned into 5 groups (N = 10 as control, sham, and tests. The test groups were pre-treated for 3 h with various concentrations of LPE, 3 days before CCl4 exposure. The control and sham groups received normal saline before and after CCl4 exposure. To induce hepatotoxicity, animals in the sham and test groups were exposed against 100 l L-1 CCl4 for 45 min. The fish in all groups 1 h after CCl4 exposure were anesthetized and the blood samples were collected. Immediately the liver specimens were dissected out and were stored in 10 % formalin for further pathological studies. Determination of serum level of ALP and SGOT revealed that acute form of CCl4 exposure elevated significantly (P < 0.05 the serum level of either tested hepatic marker enzymes. While 3 days pretreatment with LPE prevented from ALP and SGOT enhancement. The pathological evaluation revealed that the CCl4 exposure resulted in a minor pathologic manifestation such as slight congestion, which the LPE pretreated groups showed the remarkable improvement. The anti-oxidant capacity of LPE was assayed by FRAP and DPPH methods. Both provided techniques showed that LPE exerts an excellent anti-oxidant effect. This data suggest that LPE exerts protective effect against CCl4-induced hepatotoxicity. Moreover, the hepatoprotective effect of LPE may attribute to its antioxidant capacity.

  15. Hepatotoxicity in Obese Versus Nonobese Patients With Acetaminophen Poisoning Who Are Treated With Intravenous N-Acetylcysteine.

    Science.gov (United States)

    Radosevich, John J; Patanwala, Asad E; Erstad, Brian L

    2016-01-01

    There is limited information regarding the outcomes associated with acetaminophen (APAP) poisoning in obese individuals. It is possible that patients who are obese are more susceptible to APAP-induced liver injury, thereby diminishing the efficacy of antidotes such as N-acetylcysteine (NAC). We evaluated the outcomes associated with APAP poisoning in obese versus nonobese adults who are treated with intravenous (IV) NAC. This was a retrospective cohort study conducted in a tertiary care, academic medical center. Adult patients with APAP toxicity, who were treated with IV NAC between June 2005 and August 2012, were included. The patients were categorized into 2 groups based on their body mass index (BMI): (1) obese (BMI ≥ 30.0 kg/m) versus (2) nonobese (BMI 18.5-24.9 kg/m). The primary outcome measure was the proportion of patients who developed hepatotoxicity (aspartate aminotransferase or alanine aminotransferase >1000 IU/L). A total of 80 patients were included in the final cohort (40 in each group). The median BMI for the obese and nonobese groups was 34.5 kg/m [interquartile range (IQR) 31.4-40.2] and 22.4 kg/m (IQR 21.2-23.9), respectively (P < 0.001). Other than more white patients being present in the nonobese group, there were no other baseline differences between groups with regard to demographics, liver function tests, or coagulation studies. Obese patients received a median IV NAC dose of 291.5 mg/kg (IQR 270.8-300.7) compared with 300 mg/kg (IQR 287.8-301.9) in the nonobese group (P = 0.07). Hepatotoxicity occurred in 27.5% of the obese patients and 37.5% of the nonobese patients (P = 0.34). No adverse drug effects were noted in either group. Obese and nonobese patients being treated with IV NAC for APAP toxicity experienced similar rates of hepatotoxicity. PMID:24263163

  16. Construction and analysis of a human hepatotoxicity database suitable for QSAR modeling using post-market safety data

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: Drug-induced liver injury (DILI) is one of the most common drug-induced adverse events (AEs) leading to life-threatening conditions such as acute liver failure. It has also been recognized as the single most common cause of safety-related post-market withdrawals or warnings. Efforts to develop new predictive methods to assess the likelihood of a drug being a hepatotoxicant have been challenging due to the complexity and idiosyncrasy of clinical manifestations of DILI. The FDA adverse event reporting system (AERS) contains post-market data that depict the morbidity of AEs. Here, we developed a scalable approach to construct a hepatotoxicity database using post-market data for the purpose of quantitative structure–activity relationship (QSAR) modeling. A set of 2029 unique and modelable drug entities with 13,555 drug-AE combinations was extracted from the AERS database using 37 hepatotoxicity-related query preferred terms (PTs). In order to determine the optimal classification scheme to partition positive from negative drugs, a manually-curated DILI calibration set composed of 105 negatives and 177 positives was developed based on the published literature. The final classification scheme combines hepatotoxicity-related PT data with supporting information that optimize the predictive performance across the calibration set. Data for other toxicological endpoints related to liver injury such as liver enzyme abnormalities, cholestasis, and bile duct disorders, were also extracted and classified. Collectively, these datasets can be used to generate a battery of QSAR models that assess a drug's potential to cause DILI

  17. Energy metabolism and biotransformation as endpoints to pre-screen hepatotoxicity using a liver spheroid model

    International Nuclear Information System (INIS)

    The current study investigated liver spheroid culture as an in vitro model to evaluate the endpoints relevant to the status of energy metabolism and biotransformation after exposure to test toxicants. Mature rat liver spheroids were exposed to diclofenac, galactosamine, isoniazid, paracetamol, m-dinitrobenzene (m-DNB) and 3-nitroaniline (3-NA) for 24 h. Pyruvate uptake, galactose biotransformation, lactate release and glucose secretion were evaluated after exposure. The results showed that pyruvate uptake and lactate release by mature liver spheroids in culture were maintained at a relatively stable level. These endpoints, together with glucose secretion and galactose biotransformation, were related to and could reflect the status of energy metabolism and biotransformation in hepatocytes. After exposure, all of the test agents significantly reduced glucose secretion, which was shown to be the most sensitive endpoint of those evaluated. Diclofenac, isoniazid, paracetamol and galactosamine reduced lactate release (P < 0.01), but m-DNB increased lactate release (P < 0.01). Diclofenac, isoniazid and paracetamol also reduced pyruvate uptake (P < 0.01), while galactosamine had little discernible effect. Diclofenac, galactosamine, paracetamol and m-DNB also reduced galactose biotransformation (P < 0.01), by contrast, isoniazid did not. The metabolite of m-DNB, 3-NA, which served as a negative control, did not cause significant changes in lactate release, pyruvate uptake or galactose biotransformation. It is concluded that pyruvate uptake, galactose biotransformation, lactate release and glucose secretion can be used as endpoints for evaluating the status of energy metabolism and biotransformation after exposure to test agents using the liver spheroid model to pre-screen hepatotoxicity

  18. Hepatoprotective activity of Ficus religiosa leaves against isoniazid+rifampicin and paracetamol induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Sundaramoorthi Angala Parameswari

    2013-01-01

    Full Text Available Background: The present study was designed to investigate the hepato protective effect of methanolic extract of Ficus religisoa L., Moraceae, on isoniazid-rifampicin and paracetamol induced hepatotoxicity in rats. Materials and Methods: Male Wistar albino rats were divided into six groups; group 1 served as a control received vehicle (Distilled water, group 2 served as a toxic control, received isoniazid-rifampicin (100 mg/ kg, i.p. or paracetamol 200mg/kg, p.o in sterile water, groups 3, 4 and 5 received 100, 200 and 300mg/kg bw, p.o. methanolic extract of F. religisoa along with INH+RIF or paracetamol and group 6 received Liv 52 as reference standard. All the treatment protocols followed 21 days for INH+RIF model and seven days for paracetamol model, after treatment rats were sacrificed and blood was used for biochemical and liver was used for histological studies. Results: Administration of INH+RIF and paracetamol caused a significant elevation in the levels of liver marker enzymes (P < 0.05 and P < 0.01 and thiobarbituric acid reactive substances (P < 0.001 in experimental rats. Administration of methanolic extracts of F. religisoa significantly prevented isoniazid-rifampicin and paracetamol induced elevation in the levels of serum diagnostic liver marker enzymes and TBARS level in experimental groups of rats. Moreover, total protein and reduced glutathione levels were significantly (P < 0.001 increased in treatment group. The effect of extract was compared with a standard drug, Liv 52. The changes in biochemical parameters were supported by histological profile. Conclusion: The methanolic extract of F. religisoa protects against isoniazid- rifampicin and paracetamol induced oxidative liver injury in rats.

  19. Engineering EMT using 3D micro-scaffold to promote hepatic functions for drug hepatotoxicity evaluation.

    Science.gov (United States)

    Wang, Jingyu; Chen, Fengling; Liu, Longwei; Qi, Chunxiao; Wang, Bingjie; Yan, Xiaojun; Huang, Chenyu; Hou, Wei; Zhang, Michael Q; Chen, Yang; Du, Yanan

    2016-06-01

    Accompanied by decreased hepatic functions, epithelial-mesenchymal transition (EMT) was observed in two dimensional (2D) cultured hepatocytes with elongated morphology, loss of polarity and weakened cell-cell interaction, while upgrading to 3D culture has been considered as significant improvement of its 2D counterpart for hepatocyte maintenance. Here we hypothesize that 3D culture enhances hepatic functions through regulating the EMT status. Biomaterial-engineered EMT was achieved by culturing HepaRG as 3D spheroids (SP-3D) or 3D stretched cells (ST-3D) in non-adherent and adherent micro-scaffold respectively. In SP-3D, constrained EMT of HepaRG, a hepatic stem cell line, as represented by increased epithelial markers and decreased mesenchymal markers, was echoed by improved hepatic functions. To investigate the relationship between EMT status and hepatic functions, time-series RNA-Seq and gene network analysis were used for comparing different cell culture models, which identified histone deacetylases (HDACs) as key mediating factors. Protein analysis confirmed that high HDAC activity was correlated with high expression of Cadherin-1 (CDH1) and hepatic function genes, which were decreased upon HDAC inhibitor treatment in SP-3D, suggesting HDACs may play positive role in regulating EMT and hepatic functions. To illustrate the application of 3D micro-scaffold culture in drug safety evaluation, hepatotoxicity and metabolism assays of two hepatotoxins (i.e. N-acetyl-p-aminophenol and Doxorubicin) were performed and SP-3D showed more biomimetic toxicity response, indicating regulation of EMT as a vital consideration in designing 3D hepatocyte culture configuration. PMID:26994875

  20. Biochemical and Histological Effects of Thiamine Pyrophosphate against Acetaminophen-Induced Hepatotoxicity.

    Science.gov (United States)

    Uysal, Hilal Bektas; Dağlı, Bekir; Yılmaz, Mustafa; Kahyaoğlu, Fadime; Gökçimen, Alparslan; Ömürlü, İmran Kurt; Demirci, Buket

    2016-01-01

    The aim of this study was to investigate whether thiamine pyrophosphate (TPP) has biochemical and histological preventive effects on oxidative liver damage induced by paracetamol (APAP). Rats were divided into the following groups: healthy control (HG), APAP (AG, 1500 mg/kg, orally), thiamine pyrophosphate (TPPG, 100 mg/kg, intraperitoneally), APAP+NAC (ANAC, 100 mg/kg, intraperitoneally), APAP+TPP (ATPG) and APAP+NAC+TPP (ANTG). Oxidant, antioxidant parameters, liver function tests and histological assessment were performed between groups. Malondialdehyde levels in the AG, HG, TPPG, ANAC, ATPG and ANTG groups were 0.470 ± 0.210, 0.213 ± 0.004, 0.194 ± 0.001, 0.197 ± 0.06, 0.199 ± 0.008 and 0.173 ± 0.010 μmol/g protein, respectively. Total glutathione levels were 7.787 ± 0.395, 14.925 ± 0.932, 13.200 ± 0.984, 13.162 ± 0.486, 13.287 ± 0.787 and 13.500 ± 0.891 μm/g protein, respectively. In the AG group, marked liver damage occurred with the elevation of liver function tests and oxidative stress markers, such as malondialdehyde, myeloperoxidase and nitric oxide (p TPP significantly reduced oxidant parameter levels in the ATPG group and simultaneously increased the antioxidant parameter levels of catalase and glutathione. The histological changes were improved to almost normal hepatic structure. Moreover, TPP had nearly the same hepatoprotective effect as NAC, and there was statistically no additional benefit with NAC co-treatment. There was no statistically significant difference (p > 0.05) among the ANAC, ANTG and ATPG groups in terms of oxidant/antioxidant levels. TPP proved to be as efficacious as standard therapy and may be beneficial in APAP-induced hepatotoxicity. PMID:26432613

  1. Acute systemic exposure to silver-based nanoparticles induces hepatotoxicity and NLRP3-dependent inflammation.

    Science.gov (United States)

    Ramadi, Khalil B; Mohamed, Yassir A; Al-Sbiei, Ashraf; Almarzooqi, Saeeda; Bashir, Ghada; Al Dhanhani, Aisha; Sarawathiamma, Dhanya; Qadri, Shahnaz; Yasin, Javed; Nemmar, Abderrahim; Fernandez-Cabezudo, Maria J; Haik, Yousef; Al-Ramadi, Basel K

    2016-10-01

    Nanoparticles (NPs) are increasingly being commercialized for use in biomedicine. NP toxicity following acute or chronic exposure has been described, but mechanistic insight into this process remains incomplete. Recent evidence from in vitro studies suggested a role for NLRP3 in NP cytotoxicity. In this study, we investigated the effect of systemic administration of composite inorganic NP, consisting of Ag:Cu:B (dose range 1-20 mg/kg), on the early acute (4-24 h post-exposure) and late phase response (96 h post-exposure) in normal and NLRP3-deficient mice. Our findings indicate that systemic exposure (≥2 mg/kg) was associated with acute liver injury due to preferential accumulation of NP in this organ and resulted in elevated AST, ALT and LDH levels. Moreover, within 24 h of NP administration, there was a dose-dependent increase in intraperitoneal neutrophil recruitment and upregulation in gene expression of several proinflammatory mediators, including TNF-α, IL-1β and S100A9. Histological analysis of liver tissue revealed evidence of dose-dependent hepatocyte necrosis, increase in sinusoidal Kupffer cells, lobular granulomas and foci of abscess formation which were most pronounced at 24 h following NP administration. NP deposition in the liver led to a significant upregulation in gene expression of S100A9, an endogenous danger signal recognition molecule of phagocytes, IL-1β and IL-6. The extent of proinflammatory cytokine activation and hepatotoxicity was significantly attenuated in mice deficient in the NLRP3 inflammasome, demonstrating the critical role of this innate immune system recognition receptor in the response to NP. PMID:26956548

  2. Physiological changes due to hepatotoxicity and the protective role of some medicinal plants

    Directory of Open Access Journals (Sweden)

    Howida S. Abou Seif

    2016-06-01

    Full Text Available The liver is the largest, important organ and the site for essential biochemical reactions in the human body. It has the function to detoxify toxic substances and synthesize useful biomolecules. Therefore, damage to the liver leads to grave consequences. This damage resulted from chronic alcoholic abuse, viral hepatitis or inherited metabolic disease. Liver damage is associated with cellular necrosis, fibrosis, and increase in tissue lipid peroxidation and depletion in tissue glutathione level. Most of the hepatotoxic chemicals damage liver cells mainly by inducing lipid peroxidation and other oxidative damages in the liver. Natural antioxidants are found in many compounds classified as secondary plant metabolites, e.g. polyphenols (phenolic acids and flavonoids and terpenoids (carotenoids, and the consumption of foods that contain these compounds in large quantities seems to play an important role in prophylaxis against many diseases. Herbal medicines derived from plant extracts are being increasingly utilized to treat a wide variety of clinical disease. More attention has been paid to the protective effects of natural antioxidants against drug induced toxicities especially whenever free radical generation is involved. Popularity of herbal remedies is increasing and at least one quarter of patients with liver disease use botanicals. The World Health Organization (WHO estimates that 80 percent of the population of some Asian and African countries presently use herbal medicine for some aspect of primary health care. Some medicinal herbs have proven hepatoprotective potential. Silybum marianum (milk thistle has been used to treat liver diseases since the 16th century. Its major constituents are the flavonoids silibinin, silydianin, silychristin, and isosilibinin, of which silibinin is the biologically most active compound and used for standardization of pharmaceutical products.

  3. Protective effect of mycophenolate mofetil against nephrotoxicity and hepatotoxicity induced by tacrolimus in Wistar rats.

    Science.gov (United States)

    Ferjani, Hanen; El Arem, Amira; Bouraoui, Aicha; Achour, Abedellatif; Abid, Salwa; Bacha, Hassen; Boussema-Ayed, Imen

    2016-06-01

    Tacrolimus (TAC), a calcineurin inhibitor (CNI), is clinically used as an immunosuppressive agent in the transplant recipient; however, the use of TAC is greatly limited by its nephrotoxicity and hepatotoxicity. Mycophenolate mofetil (MMF), an inhibitor of the purine synthesis, has been used in combination with many immunosuppressive drugs such as TAC. The association TAC/MMF was used in organ transplantation to increase the efficiency and reduce acute rejection rates, but the effects of MMF on TAC-induced kidney and liver injuries are still not well investigated. The aims of this study are to explore whether MMF co-administration with TAC has a renoprotective and hepatoprotective effect against TAC-induced renal and hepatic injuries and to check the implication of oxidative stress in the MMF's possible protective effect. Our results showed that MMF (at 50 mg kg(-1) body weight (b.w.)) restored creatinine, in addition to increased AST and ALT levels by TAC (at 60 mg kg(-1) b.w.). Furthermore, MMF decreased DNA damage induced by TAC in the kidney and liver of rats as assessed by comet assay. This renoprotective and hepatoprotective effect of MMF was associated with an antioxidant effect. In fact, MMF co-treatment with TAC decreased oxidative damage induced by TAC. It reduced malondialdehyde (MDA) and protein carbonyl (PC) levels as well as catalase and superoxide dismutase (SOD) activities. We conclude that the co-administration MMF with TAC protect liver and kidney against TAC toxicity via an antioxidant process. PMID:26746208

  4. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Lake, April D. [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States); Novak, Petr [Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice 37001 (Czech Republic); Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Lu, Zhenqiang [The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lehman-McKeeman, Lois D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Cherrington, Nathan J., E-mail: cherrington@pharmacy.arizona.edu [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States)

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  5. Lycopene attenuates dichlorvos-induced oxidative damage and hepatotoxicity in rats.

    Science.gov (United States)

    El-Saad, Am Abu; Ibrahim, M M; Hazani, A A; El-Gaaly, G A

    2016-06-01

    Because of the widespread use of dichlorvos (DDVP) for domestic applications, evaluation of their toxic effects is of major concern to public health. Lycopene may lower oxidative stress by a mechanism that is not fully elucidated. The present study was undertaken to evaluate the protective efficacy of lycopene in terms of normalization of altered biochemical parameters following DDVP treatment in rats. Animals were divided into four groups. The first group was used as control, while groups 2, 3, and 4 were orally treated with lycopene (10 mg kg(-1) body weight (b.w.)), DDVP (1.6 mg kg(-1) b.w.), and DDVP plus lycopene, respectively. Results showed that oral administration of DDVP for 30 days increased the levels of lipid peroxidation markers such as malondialdehyde, 4-hydroxynonanal, and protein carbonyl content in liver. Also, a decrease in levels of vitamin C, vitamin E, and reduced glutathione was detected due to DDVP administration. These were accompanied by a decrease in the activities of antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase in the liver tissue. Moreover, DDVP increased the activities of serum transaminases, alkaline phosphatase, lactate dehydrogenase, and lipoxygenase, and the levels of bilirubin, total cholesterol, low-density lipoprotein cholesterol, triglyceride and DNA-protein crosslinks, and 8-hydroxy-2-deoxyguanosine, while decreased the level of high-density lipoprotein cholesterol. Our results provide new insights into the biochemical studies of relation between DDVP hepatotoxicity and lycopene treatment. Administration of lycopene to DDVP-treated rats reverted the status of hepatic markers to near-normal levels. These data suggest that lycopene can protect against the liver damage induced by DDVP. PMID:26231422

  6. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  7. GARLIC AMELIORATES THE HEPATOTOXIC EFFECT INDUCED BY THIOACETAMIDE IN FEMALE RATS

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the pretreatment effect of garlic on hepatotoxicity and oxidative stress induced by thioacetamide (TAA) in female albino rats.Sixty female adult albino rats were assigned equally into four groups; control group: animals without treatment, group ?: rats given daily oral dose of 250 mg/ kg garlic for 28 days, group ??: rats injected intraperitonealy by thioacetamide 20 mg ? kg for two weeks and group III: rats given 250 mg / kg garlic orally for 28 day followed by intrapertoneal injection of 20 mg / kg thioacetamide for two weeks. Liver enzymes were evaluated by measurements of AST, ALT and alkaline phosphatase and also trace elements (Cu and Zn) were estimated. Superoxide dismutase, glutathione peroxidase, malondialdehyde and thyroid hormones (T3 and T4) were assessed. Also, histological studies on liver and stomach were carried out. The results indicated that treatment with garlic significantly decreased liver enzymes (AST, ALT and ALP). Cu showed high significant increase in groups treated with garlic and also garlic + TAA, while Zn was increased significantly in TAA group. Superoxide dismutase (SOD) was increased significantly in group I while TAA decreased it significantly. Glutathione peroxidase was decreased significantly in group II while its level in group IV reached near the control value. Similarly, malondialdehyde was decreased significantly in garlic group and garlic ameliorated the thioacetamide effect in garlic + TAA group. The treatment with TAA led to significant increase in T3 and significant decrease in T4 hormones. Garlic ameliorated T3 level to reach the control level. Histologically, pre-treatment with garlic induced a prophylactic activity against the thioacetamide in liver and stomach tissues.According to the obtained results, it could be conclude that garlic treatment may act as antioxidant or pro-oxidant in TAA treated animals besides decreasing the TAA toxic effects on liver enzymes, liver and

  8. Ipomoea aquatica extract shows protective action against thioacetamide-induced hepatotoxicity.

    Science.gov (United States)

    Alkiyumi, Salim Said; Abdullah, Mahmood Ameen; Alrashdi, Ahmed Salim; Salama, Suzy Munir; Abdelwahab, Siddig Ibrahim; Hadi, A Hamid A

    2012-01-01

    In the Indian system of traditional medicine (Ayurveda) it is recommended to consume Ipomoea aquatica to mitigate disorders like jaundice. In this study, the protective effects of ethanol extract of I. aquatica against liver damage were evaluated in thioacetamide (TAA)-induced chronic hepatotoxicity in rats. There was no sign of toxicity in the acute toxicity study, in which Sprague-Dawley (SD) rats were orally fed with I. aquatica (250 and 500 mg/kg) for two months along with administration of TAA (i.p injection 200 mg/kg three times a week for two months). The results showed that the treatment of I. aquatica significantly lowered the TAA-induced serum levels of hepatic enzyme markers (ALP, ALT, AST, protein, albumin, bilirubin and prothrombin time). The hepatic content of activities and expressions SOD and CAT that were reduced by TAA were brought back to control levels by the plant extract supplement. Meanwhile, the rise in MDA level in the TAA receiving groups also were significantly reduced by I. aquatica treatment. Histopathology of hepatic tissues by H&E and Masson trichrome stains displayed that I. aquatica has reduced the incidence of liver lesions, including hepatic cells cloudy swelling, infiltration, hepatic necrosis, and fibrous connective tissue proliferation induced by TAA in rats. Therefore, the results of this study show that the protective effect of I. aquatica in TAA-induced liver damage might be contributed to its modulation on detoxification enzymes and its antioxidant and free radical scavenger effects. Moreover, it confirms a scientific basis for the traditional use of I. aquatica for the treatment of liver disorders. PMID:22617138

  9. Ipomoea aquatica Extract Shows Protective Action Against Thioacetamide-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    A. Hamid A. Hadi

    2012-05-01

    Full Text Available In the Indian system of traditional medicine (Ayurveda it is recommended to consume Ipomoea aquatica to mitigate disorders like jaundice. In this study, the protective effects of ethanol extract of I. aquatica against liver damage were evaluated in thioacetamide (TAA-induced chronic hepatotoxicity in rats. There was no sign of toxicity in the acute toxicity study, in which Sprague-Dawley (SD rats were orally fed with I. aquatica (250 and 500 mg/kg for two months along with administration of TAA (i.p injection 200 mg/kg three times a week for two months. The results showed that the treatment of I. aquatica significantly lowered the TAA-induced serum levels of hepatic enzyme markers (ALP, ALT, AST, protein, albumin, bilirubin and prothrombin time. The hepatic content of activities and expressions SOD and CAT that were reduced by TAA were brought back to control levels by the plant extract supplement. Meanwhile, the rise in MDA level in the TAA receiving groups also were significantly reduced by I. aquatica treatment. Histopathology of hepatic tissues by H&E and Masson trichrome stains displayed that I. aquatica has reduced the incidence of liver lesions, including hepatic cells cloudy swelling, infiltration, hepatic necrosis, and fibrous connective tissue proliferation induced by TAA in rats. Therefore, the results of this study show that the protective effect of I. aquatica in TAA-induced liver damage might be contributed to its modulation on detoxification enzymes and its antioxidant and free radical scavenger effects. Moreover, it confirms a scientific basis for the traditional use of I. aquatica for the treatment of liver disorders.

  10. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Meeghan A., E-mail: meeghan.oconnor@boehringer-ingelheim.com [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368 (United States); Koza-Taylor, Petra, E-mail: petra.h.koza-taylor@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Campion, Sarah N., E-mail: sarah.campion@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Aleksunes, Lauren M., E-mail: aleksunes@eohsi.rutgers.edu [Rutgers University, Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854 (United States); Gu, Xinsheng, E-mail: xinsheng.gu@uconn.edu [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Enayetallah, Ahmed E., E-mail: ahmed.enayetallah@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Lawton, Michael P., E-mail: michael.lawton@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Manautou, José E., E-mail: jose.manautou@uconn.edu [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States)

    2014-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430{sub 2} GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct gene

  11. Comparison of hepatotoxicity and metabolism of butyltin compounds in the liver of mice, rats and guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Shunji; Kashimoto, Takashige; Susa, Nobuyuki; Ishii, Masamitsu; Chiba, Toshikazu [Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, 034-8628, Towada-shi, Aomori (Japan); Mutoh, Ken-ichiro [Laboratory of Veterinary Anatomy, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, 034-8628, Towada-shi, Aomori (Japan); School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, 034-8628, Towada-shi, Aomori (Japan); Hoshi, Fumio [Laboratory of Veterinary Anatomy, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, 034-8628, Towada-shi, Aomori (Japan); Suzuki, Takashi [Laboratory of Environmental Health and Toxicology, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, 606-5822, Kyoto (Japan); Sugiyama, Masayasu [Sugiyama Pharmacy, 1335-1 Shimotama, Tamagawa-cho, 759-3112, Yamaguchi (Japan)

    2003-03-01

    The hepatotoxicity of tributyltin chloride (TBTC) and dibutyltin dichloride (DBTC) was compared among mice, rats and guinea pigs in vivo. Further, the metabolism of these butyltin compounds in the liver was also investigated in these species. The oral administration of TBTC and DBTC to mice induced obvious liver injury, as demonstrated by both serodiagnosis and histopathological diagnosis. The concentrations of TBTC and DBTC that induced hepatotoxicity in mice at 24 h after oral administration were 180 and 60 {mu}mol/kg, respectively. In the case of rats, the liver injury induced by TBTC and DBTC was detected at 24 h by the serodiagnosis, but not by histopathological diagnosis. On the other hand, in guinea pigs, TBTC and DBTC administration did not produce any clear liver injury at 24 h, as evaluated by these two diagnostic methods. Thus, the following ranking was obtained with regard to increasing order of sensitivity to liver injury caused by TBTC and DBTC: mice, rats and guinea pigs. The total butyltin contents in the liver of mice were equivalent at 3 h and 24 h after the administration of TBTC or DBTC; however, the contents in the liver of rats and guinea pigs were relatively lower at 3 h and higher at 24 h than those of mice, although there were no differences between rats and guinea pigs in the total liver butyltin content. Concerning the liver metabolism of these butyltin compounds, the main form of butyltin compounds in these animals treated with TBTC was DBTC within 3 h after oral administration, while the main metabolites at 24 h were different in each species, indicating that the liver metabolism of TBTC might vary by animal type. When the animals were treated with DBTC orally, DBTC was hardly metabolized in the livers of these animals even at 24 h, and the liver levels of DBTC were two times greater in mice and guinea pigs than in rats at 3 h and were lower in mice at 24 h than in rats and guinea pigs. The analysis of cellular distributions of DBTC in

  12. Evaluation of Hepatotoxicity with Off-Label Oral-Treatment Doses of Voriconazole for Invasive Fungal Infections ▿

    OpenAIRE

    Gorski, Elizabeth; Esterly, John S.; Postelnick, Michael; Trifilio, Steven; Fotis, Michael; Scheetz, Marc H.

    2010-01-01

    The approved treatment dose of intravenous voriconazole is a weight-based dose of 4 mg/kg of body weight twice daily; the approved oral dosing is fixed at 200 mg twice daily. In our institution, patients frequently receive oral high-dose voriconazole at 4 mg/kg twice daily. It is unknown if higher doses are associated with increased hepatotoxicity. A retrospective cohort study of patients treated with oral voriconazole for presumed invasive fungal infection for ≥7 days was completed. Patients...

  13. Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation

    Directory of Open Access Journals (Sweden)

    Mathavan Sinnakaruppan

    2010-03-01

    Full Text Available Abstract Background Mercury is a prominent environmental contaminant that causes detrimental effects to human health. Although the liver has been known to be a main target organ, there is limited information on in vivo molecular mechanism of mercury-induced toxicity in the liver. By using transcriptome analysis, phenotypic anchoring and validation of targeted gene expression in zebrafish, mercury-induced hepatotoxicity was investigated and a number of perturbed cellular processes were identified and compared with those captured in the in vitro human cell line studies. Results Hepato-transcriptome analysis of mercury-exposed zebrafish revealed that the earliest deregulated genes were associated with electron transport chain, mitochondrial fatty acid beta-oxidation, nuclear receptor signaling and apoptotic pathway, followed by complement system and proteasome pathway, and thereafter DNA damage, hypoxia, Wnt signaling, fatty acid synthesis, gluconeogenesis, cell cycle and motility. Comparative meta-analysis of microarray data between zebrafish liver and human HepG2 cells exposed to mercury identified some common toxicological effects of mercury-induced hepatotoxicity in both models. Histological analyses of liver from mercury-exposed fish revealed morphological changes of liver parenchyma, decreased nucleated cell count, increased lipid vesicles, glycogen and apoptotic bodies, thus providing phenotypic evidence for anchoring of the transcriptome analysis. Validation of targeted gene expression confirmed deregulated gene-pathways from enrichment analysis. Some of these genes responding to low concentrations of mercury may serve as toxicogenomic-based markers for detection and health risk assessment of environmental mercury contaminations. Conclusion Mercury-induced hepatotoxicity was triggered by oxidative stresses, intrinsic apoptotic pathway, deregulation of nuclear receptor and kinase activities including Gsk3 that deregulates Wnt signaling

  14. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage

    OpenAIRE

    Adeyemi, David O; Ukwenya, Victor O; Obuotor, Efere M; Adewole, Stephen O

    2014-01-01

    Background Flavonoid-rich aqueous fraction of methanolic extract of Hibiscus sabdariffa calyx was evaluated for its anti-hepatotoxic activities in streptozotocin-induced diabetic Wistar rats. Methods Diabetes Mellitus was induced in Wistar rats by a single i.p injection of 80 mg/kg b.w. streptozotocin (STZ) dissolved in 0.1 M citrate buffer (pH 6.3). Results The ameliorative effects of the extract on STZ-diabetes induced liver damage was evident from the histopathological analysis and the bio...

  15. Effect of adrenergic blockers, carvedilol, prazosin, metoprolol and combination of prazosin and metoprolol on paracetamol-induced hepatotoxicity in rabbits

    OpenAIRE

    Zubairi, Maysaa B.; Jawad H. Ahmed; Al-Haroon, Sawsan S.

    2014-01-01

    Objectives: To evaluate hepatoprotective potential of carvedilol, prazosin, metoprolol and prazosin plus metoprolol in paracetamol-induced hepatotoxicity. Materials and Methods : Thirty-six male rabbits were divided into six groups, six in each, group 1 received distilled water, group 2 were treated with paracetamol (1 g/kg/day, orally), group 3, 4,5 and 6 were treated at a dose in (mg/kg/day) of the following: Carvedilol (10 mg), prazosin (0.5 mg), metoprolol (10 mg), and a combination o...

  16. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    International Nuclear Information System (INIS)

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU4302 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct gene expression

  17. Anti-Tuberculosis Drug Induced Hepatotoxicity among TB/HIV Co-Infected Patients at Jimma University Hospital, Ethiopia: Nested Case-Control Study

    OpenAIRE

    Alima Hassen Ali; Tefera Belachew; Alemeshet Yami; Wubeante Yenet Ayen

    2013-01-01

    BACKGROUND: This study was carried out to determine the incidence and predictors of anti-tuberculosis drug induced hepatotoxicity among TB/HIV co-infected patients at Jimma University Hospital, Ethiopia. METHODS/PRINCIPAL FINDINGS: A nested case-control study was conducted by reviewing charts of all TB/HIV co-infected patients who commenced anti-TB treatment from January 2008 to December 2011 at Jimma University Hospital. Patients who had developed hepatotoxicity after at least 5 days of stan...

  18. Development and evaluation of hepatoprotective polyherbal formulation containing some indigenous medicinal plants

    Directory of Open Access Journals (Sweden)

    Dandagi P

    2008-01-01

    Full Text Available The present study explores the hepatoprotective activity of various extracts of Ferula asafoetida , Momordica charantia Linn and Nardostachys jatamansi against experimental hepatotoxicity. Polyherbal suspensions were formulated using extracts showing significant activity and evaluated for both physicochemical and hepatoprotective activity in comparison with LIV-52 as standard. Petroleum ether (60-80°, chloroform, benzene, ethanol and aqueous extracts of Ferula asafetida , Momordica charantia Linn and Nardostachys jatamansi were evaluated for hepatoprotective activity against carbon tetrachloride-induced liver toxicity in Wistar rats. Polyherbal suspensions were prepared by the trituration method using a suspending agent and other excipients. Formulation F3 has shown significant hepatoprotective effect by reducing the elevated serum enzyme levels such as glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and alkaline phosphatase. These biochemical observations were supplemented by histopathological examination of liver sections. Various parameters evaluated for all formulations were within the official specifications. Experimental data suggested that treatment with formulation F3 enhances the recovery from carbon tetra chloride-induced hepatotoxicity. From these results it may be concluded that the F3 formulation (containing chloroform, petroleum ether and aqueous extracts of Ferula asafetida , petroleum ether and ethanol extracts of Momordica charantia Linn. and petroleum ether and ethanol extracts of Nardostachys jatamansi demonstrated significant hepatoprotective activity, that might be due to combined effect of all these extracts.

  19. Amelioration of Paracetamol-Induced Hepatotoxicity in Rat by the Administration of Methanol Extract of Muntingia calabura L. Leaves

    Science.gov (United States)

    Mahmood, N. D.; Mamat, S. S.; Kamisan, F. H.; Yahya, F.; Kamarolzaman, M. F. F.; Nasir, N.; Mohtarrudin, N.; Tohid, S. F. Md.; Zakaria, Z. A.

    2014-01-01

    Muntingia calabura L. is a tropical plant species that belongs to the Elaeocarpaceae family. The present study is aimed at determining the hepatoprotective activity of methanol extract of M. calabura leaves (MEMC) using two models of liver injury in rats. Rats were divided into five groups (n = 6) and received 10% DMSO (negative control), 50 mg/kg N-acetylcysteine (NAC; positive control), or MEMC (50, 250, and 500 mg/kg) orally once daily for 7 days and on the 8th day were subjected to the hepatotoxic induction using paracetamol (PCM). The blood and liver tissues were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) and superoxide anion-radical scavenging assays. At the same time, oxygen radical antioxidant capacity (ORAC) and total phenolic content were also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of hepatic structure was observed in group pretreated with N-acetylcysteine and MEMC. Hepatotoxic rats pretreated with NAC or MEMC exhibited significant decrease (P < 0.05) in ALT and AST enzymes level. Moreover, the extract also exhibited good antioxidant activity. In conclusion, MEMC exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and, thus warrants further investigations. PMID:24868543

  20. Hepatotoxic Alterations Induced by Subchronic Exposure of Rats to Formulated Fenvalerate (20% EC) by Nose Only Inhalation

    Institute of Scientific and Technical Information of China (English)

    U. MANI; A. K. PRASAD; V. SURESHKUMAR; P. KUMAR; KEWAL LAL; B. K. MAJI; K. K. DUTTA

    2004-01-01

    Fenvalerate (20% EC) is a synthetic pyrethroid, which is commonly used in India by farmers for the protection of many food and vegetable crops against a wide variety of insects. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation exposure was carried out to investigate the hepatotoxic effects. Method Adult male rats were exposed to fen for 4 h/day, 5 days a week for 90 days by using Flow Past Nose Only Inhalation Chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results The results indicated hepatomegaly, increased activities of serum clinical enzymes (indicative of liver damage/dysfunction) along with pronounced histopathological damage of liver. Conclusion The hepatotoxic potential of formulated Fen (20% EC) in rats exposed by nose only inhalation is being reported for the first time and warrant adequate safety measures for human beings exposed to this insecticide, particularly by inhalation route.

  1. Potentiation in the intact rat of the hepatotoxicity of acetaminophen by 1,3-bis(2-chloroethyl)-1-nitrosourea.

    Science.gov (United States)

    Nakae, D; Oakes, J W; Farber, J L

    1988-12-01

    Studies of the killing of cultured hepatocytes by acetaminophen indicate that the cells are injured by an oxidative stress that accompanies the metabolism of the toxin (J. L. Farber et al. (1988) Arch. Biochem. Biophys. 267, 640-650). The present report documents that the essential features of the killing of cultured hepatocytes by acetaminophen are reproduced in the intact animal. Male rats had no evidence of liver necrosis 24 h after administration of up to 1000 mg/kg of acetaminophen. Induction of mixed function oxidase activity by 3-methylcholanthrene increased the hepatotoxicity of acetaminophen. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) potentiated the hepatotoxicity of acetaminophen in male rats induced with 3-methylcholanthrene. Whereas the pretreatment with BCNU reduced the GSH content by 40%, a comparable depletion of GSH by diethylmaleate did not potentiate the toxicity of acetaminophen. The antioxidant diphenylphenylenediamine (25 mg/kg) and the ferric iron chelator deferoxamine (1000 mg/kg) prevented the liver necrosis produced by 500 mg/kg acetaminophen in rats pretreated with BCNU. Neither protective agent prevented the fall in GSH produced by acetaminophen. It is concluded the conditions of the irreversible injury of cultured hepatocytes by acetaminophen previously reported are not necessarily different from those that obtain in the intact rat with this toxin. PMID:3214175

  2. Fish/flaxseed oil protect against nitric oxide-induced hepatotoxicity and cell death in the rat liver.

    Science.gov (United States)

    Khan, M W; Priyamvada, S; Khan, S A; Khan, S; Gangopadhyay, A; Yusufi, A N K

    2016-03-01

    Sodium nitroprusside (SNP) is an antihypertensive drug with proven toxic effects attributed mainly to the production of nitric oxide (NO). Polyunsaturated fatty acids (PUFAs) are widely regarded as functional foods and have been shown to ameliorate the harmful effects of many toxicants. This study examined whether feeding of fish oil (FO)/flaxseed oil (FXO) would have any protective effect against SNP-induced hepatotoxicity and cell death. Male Wistar rats were fed either on normal diet or with 15% FO/FXO for 15 days, following which SNP (1.5 mg/kg body weight) was administered intraperitoneally for 7 days. Animals were killed after treatment, and livers were collected for further analysis. We observed that SNP significantly elevated tissue nitrite levels and lipid peroxidation (LPO) with concomitant perturbation in antioxidant defense systems accompanied with dysregulated glucose metabolism and pronounced cellular death. FO/FXO supplementation to SNP-treated rats caused reversal of tissue injury/cell death and markedly decreased LPO and improved antioxidant defense systems. FO/FXO appear to protect against SNP-induced hepatotoxicity by improving energy metabolism and antioxidant defense mechanism. PMID:25964379

  3. The mitigative effect of Raphanus sativus oil on chromium-induced geno- and hepatotoxicity in male rats.

    Science.gov (United States)

    Elshazly, M O; Morgan, Ashraf M; Ali, Merhan E; Abdel-Mawla, Essam; Abd El-Rahman, Sahar S

    2016-05-01

    To study the impact of radish oil on the possible genotoxic and hepatotoxic effects of hexavalent chromium, male rats were divided into 4 groups. Group 1 served as control, group 2 received radish oil at the recommended human therapeutic dose (0.07 mL/kg) by gavage, group 3 received sodium dichromate dihydrate (SDD) 520 mg/L in drinking water, and group 4 received both SDD and radish oil as previously mentioned in groups 2 and 3. All treatments were continued for six months. The results revealed that chromium exposure promoted oxidative stress with a consequently marked hepatic histopathological alterations, increased serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities, alfa fetoprotein (AFP) levels, and micronucleated erythrocytes (MNE) % in peripheral blood. Moreover, COMET assay of hepatic DNA revealed that SDD exposure significantly decreased the intact cells %, head diameter, and head DNA % compared to control, indicating DNA damage. However, radish oil co-administration with SDD resulted in marked amendment in the altered parameters as detected by improved liver function markers (ALT and ALP) and AFP level, decreased lipid peroxidation, increased antioxidant markers, inhibited hepatic DNA damage and restored the hepatic histology by preventing the appearance of the altered hepatocytes' foci and decreasing chromium induced histopathological lesions. It could be concluded that radish oil was able to provide a convergent complete protection against the geno- and hepatotoxicity of chromium by its potent antioxidant effect. PMID:27222746

  4. Efficacy of free glutathione and niosomal glutathione in the treatment of acetaminophen-induced hepatotoxicity in cats

    Directory of Open Access Journals (Sweden)

    L.A. Denzoin Vulcano

    2013-06-01

    Full Text Available Acetaminophen (APAP administration results in hepatotoxicity and hematotoxicity in cats. The response to three different treatments against APAP poisoning was evaluated. Free glutathione (GSH (200mg/kg, niosomal GSH (14 mg/kg and free amino acids (180 mg/kg of N-acetylcysteine and 280 mg/kg of methionine were administered to cats that were intoxicated with APAP (a single dose of 150 mg/kg, p.o.. Serum concentration of alanine aminotransferase (ALT along with serum, liver and erythrocyte concentration of GSH and methemoglobin percentage were measured before and 4, 24 and 72 hours after APAP administration. Free GSH (200 mg/kg and niosomal GSH (14 mg/kg were effective in reducing hepatotoxicity and hematotoxicity in cats intoxicated with a dose of 150 mg/kg APAP. We conclude that both types of treatments can protect the liver and haemoglobin against oxidative stress in APAP intoxicated cats. Furthermore, our results showed that treatment with niosomal GSH represents an effective therapeutic approach for APAP poisoning.

  5. Influence of mercuric chloride on the metabolism and hepatotoxicity of bromobenzene in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, S.; Brodeur, J.

    1986-01-01

    When male Sprague-Dawley rats were treated with 1 mg mercuric chloride (HgCl/sub 2/)/kg, sc 6 hr prior to or simultaneously with a single 2.5-mmole/kg ip dose of bromobenzene and sacrificed 48 hr after the bromobenzene dose, the activities of serum transaminases (SGOT and SGPT) were found to be significantly reduced when compared with those obtained in bromobenzene-alone-treated rats. Similar phenomena were observed when rats were treated simultaneously with 1 or 2 mg HgCl/sub 2//kg and 1 mmole bromobenzene/kg, but not when bromobenzene was given 6 hr prior to HgCl/sub 2/ injection. When 5 mmole bromobenzene/kg and 1 mg HgCl/sub 2//kg were given simultaneously to the animals, such an apparent reduction in bromobenzene toxicity was again observed. In each case, HgCl/sub 2/ alone had no effect on the transaminase activities. HgCl/sub 2/ (1 mg/kg, sc) treatment reduced the hepatic microsomal cytochrome P-450 content. Treatment with 1 mg HgCl/sub 2/ 6 hr prior to bromobenzene injection (2.5 mmole/kg) significantly reduced the urinary excretion of para- and metabromophenols, and parabromocatechol during 0 to 24-hr period without affecting the urinary thioethers. These data suggest a possible reduction in the rate of formation of bromobenzene epoxide intermediate due to mercury pretreatment, resulting in a lowering of the steady state level of this epoxide so that an inhibition of hepatotoxicity due to bromobenzene could occur. However, simultaneous treatments of HgCl/sub 2/ and bromobenzene failed to modify the urinary metabolic excretion pattern of bromobenzene. When rats were given 10, 50, and 100 ppm of HgCl/sub 2/ in drinking water daily for 4 weeks prior to an ip injection of 2.5 mmole bromobenzene/kg and were sacrificed 48 hr after the dose, no changes in SGOT and SGPT activities were observed.

  6. Ethephon, an organophosphorus, a fruit and vegetable ripener: Has potential hepatotoxic effects.

    Directory of Open Access Journals (Sweden)

    Pooja Bhadoria

    2015-01-01

    serious hepatotoxic potential. Thus a habit of thorough cleaning and washing of fruits and vegetables, before consumption, should be adopted to prevent the ingestion of this potential hepatotoxin.

  7. Hepatotoxicidade induzida por sulfassalazina: relato de caso Hepatotoxicity induced by sulfasalazine: case report

    Directory of Open Access Journals (Sweden)

    Rodrigo Rocha Batista

    2011-06-01

    Full Text Available A sulfassalazina é ainda muito utilizada nas doenças inflamatórias intestinais, sobretudo na retocolite ulcerativa leve e moderada. Entretanto, seu uso é relacionado a vários efeitos colaterais, incluindo disfunção hepática grave.Este é um relato do caso de paciente masculino, 21 anos, portador de retocolite ulcerativa moderada, com queixa de inapetência, febre, artralgia e icterícia, há sete dias. Antecedente pessoal de uso de sulfassalazina 4 g/dia há seis semanas. Ao exame físico apresentava-se ictérico, com exantema em membros e edema de membros inferiores. Exames complementares mostravam aumento de bilirrubinas, enzimas hepáticas e canaliculares e da proteína C reativa. Com o diagnóstico de hepatotoxicidade por sulfassalazina, foi suspensa a medicação e introduzido prednisona 20 mg/dia e ciprofloxacino 1 g/dia. Recebeu alta no terceiro dia de internação após melhora clínica e laboratorial. Atualmente encontra-se assintomático e em uso de azatioprina 150 mg/dia.The sulfasalazine is widely used in inflammatory bowel disease, especially in mild and moderate ulcerative rectocolitis. However, its use is related to several side effects, including severe liver dysfunction. We report the case of male patient, 21 years, with the moderate ulcerative rectocolitis, complaining of inappetence, fever, arthralgia and jaundice for seven days. Personal history includes use of sulfasalazine 4 g/day during six weeks. The physical examination revealed jaundiced, with members in rash and lower extremity edema. Laboratory exams showed an increase in bilirubin, liver enzymes and canalicular and C-reactive protein. With the diagnosis of hepatotoxicity by sulfasalazine, this medication was suspended, and introduced prednisone 20 mg/day and ciprofloxacin 1g/day. He was discharged on the third day of admission after clinical and laboratorial improvement. Currently, he is asymptomatic and in use of azathioprine 150 mg/day.

  8. Tolerance to Acetaminophen Hepatotoxicity in the Mouse Model of Autoprotection is Associated with Induction of Flavin-containing Monooxygenase-3 (FMO3) in Hepatocytes

    Science.gov (United States)

    Acetaminophen (APAP) pretreatment with a low hepatotoxic dose in mice results in resistance to a second, higher dose of APAP (APAP autoprotection). Recent microarray work by our group showed a drastic induction of liver flavin containing monooxygenase-3 (Fmo3) mRNA expression in...

  9. Hepatitis C virus co-infection increases the risk of anti-tuberculosis drug-induced hepatotoxicity among patients with pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Nino Lomtadze

    Full Text Available BACKGROUND: The country of Georgia has a high prevalence of tuberculosis (TB and hepatitis C virus (HCV infection. PURPOSE: To determine whether HCV co-infection increases the risk of incident drug-induced hepatitis among patients on first-line anti-TB drug therapy. METHODS: Prospective cohort study; HCV serology was obtained on all study subjects at the time of TB diagnosis; hepatic enzyme tests (serum alanine aminotransferase [ALT] activity were obtained at baseline and monthly during treatment. RESULTS: Among 326 study patients with culture-confirmed TB, 68 (21% were HCV co-infected, 14 (4.3% had chronic hepatitis B virus (HBV infection (hepatitis B virus surface antigen positive [HBsAg+], and 6 (1.8% were HIV co-infected. Overall, 19% of TB patients developed mild to moderate incident hepatotoxicity. In multi-variable analysis, HCV co-infection (adjusted Hazards Ratio [aHR]=3.2, 95% CI=1.6-6.5 was found to be an independent risk factor for incident anti-TB drug-induced hepatotoxicity. Survival analysis showed that HCV co-infected patients developed hepatitis more quickly compared to HCV seronegative patients with TB. CONCLUSION: A high prevalence of HCV co-infection was found among patients with TB in Georgia. Drug-induced hepatotoxicity was significantly associated with HCV co-infection but severe drug-induced hepatotoxicity (WHO grade III or IV was rare.

  10. Incidence and risk factors of skin rashes and hepatotoxicity in HIV-infected patients receiving nevirapine-containing combination antiretroviral therapy in Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Tseng

    2014-12-01

    Conclusions: Abnormal liver function at baseline was significantly associated with skin rashes, while a higher CD4 count and the concurrent use of trimethoprim/sulfamethoxazole were associated with hepatotoxicity after the initiation of nevirapine-containing cART in HIV-infected Taiwanese patients.

  11. Commentary on prevention a possible drug-drug interaction: Is concurrent administration of orlistat and pioglitazone increase the risk of durg-induced hepatotoxicity?

    Directory of Open Access Journals (Sweden)

    Marjan Emzhik

    2015-01-01

    Conclusions: Revealing the significant loss of viability of HepG2 cells in the combination use of pioglitazone and orlistat indicates these two drugs should not be administered at the same time to prevent their hepatotoxic effects especially in patients with liver dysfunction.

  12. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    International Nuclear Information System (INIS)

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes

  13. Computed tomography of the brain, hepatotoxic drugs and high alcohol consumption in male alcoholic patients and a random sample from the general male population

    International Nuclear Information System (INIS)

    Computed tomography (CT) of the brain was performed in a random sample of a total of 195 men and 211 male alcoholic patients admitted for the first time during a period of two years from the same geographically limited area of Greater Stockholm as the sample. Laboratory tests were performed, including liver and pancreatic tests. Toxicological screening was performed and the consumption of hepatotoxic drugs was also investigated. The groups were then subdivided with respect to alcohol consumption and use of hepatotoxic drugs: group IA, men from the random sample with low or moderate alcohol consumption and no use of hepatotoxic drugs; IB, men from the random sample with low or moderate alcohol consumption with use of hepatotoxic drugs; IIA, alcoholic inpatients with use of alcohol and no drugs; and IIB, alcoholic inpatients with use of alcohol and drugs. Group IIB was found to have a higher incidence of cortical and subcortical changes than group IA. Group IB had a higher incidence of subcortical changes than group IA, and they differed only in drug use. Groups IIN and IIA only differed in drug use, and IIB had a higher incidence of brian damage except for anterior horn index and wide cerebellar sulci indicating vermian atrophy. Significantly higher serum levels of bilirubin, GGT, ASAT, ALAT, CK LD, and amylase were found in IIB. The results indicate that drug use influences the incidence of cortical and subcortical aberrations, except anterior horn index. It is concluded that the groups with alcohol abuse who used hepatotoxic drugs showed a picture of cortical changes (wide transport sulci and clear-cut of high-grade cortical changes) and also of subcortical aberrations, expressed as an increased widening on the third ventricle

  14. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    Energy Technology Data Exchange (ETDEWEB)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Novik, Eric I. [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Gerets, Helga H. [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Parekh, Amit [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Delatour, Claude; Cardenas, Alvaro [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); MacDonald, James [Chrysalis Pharma Consulting, LLC, 385 Route 24, Suite 1G, Chester, NJ 07930 (United States); Yarmush, Martin L. [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 (United States); Dhalluin, Stéphane [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium)

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  15. A lab-on-a-chip system integrating tissue sample preparation and multiplex RT-qPCR for gene expression analysis in point-of-care hepatotoxicity assessment.

    Science.gov (United States)

    Lim, Geok Soon; Chang, Joseph S; Lei, Zhang; Wu, Ruige; Wang, Zhiping; Cui, Kemi; Wong, Stephen

    2015-10-21

    A truly practical lab-on-a-chip (LOC) system for point-of-care testing (POCT) hepatotoxicity assessment necessitates the embodiment of full-automation, ease-of-use and "sample-in-answer-out" diagnostic capabilities. To date, the reported microfluidic devices for POCT hepatotoxicity assessment remain rudimentary as they largely embody only semi-quantitative or single sample/gene detection capabilities. In this paper, we describe, for the first time, an integrated LOC system that is somewhat close to a practical POCT hepatotoxicity assessment device - it embodies both tissue sample preparation and multiplex real-time RT-PCR. It features semi-automation, is relatively easy to use, and has "sample-in-answer-out" capabilities for multiplex gene expression analysis. Our tissue sample preparation module incorporating both a microhomogenizer and surface-treated paramagnetic microbeads yielded high purity mRNA extracts, considerably better than manual means of extraction. A primer preloading surface treatment procedure and the single-loading inlet on our multiplex real-time RT-PCR module simplify off-chip handling procedures for ease-of-use. To demonstrate the efficacy of our LOC system for POCT hepatotoxicity assessment, we perform a preclinical animal study with the administration of cyclophosphamide, followed by gene expression analysis of two critical protein biomarkers for liver function tests, aspartate transaminase (AST) and alanine transaminase (ALT). Our experimental results depict normalized fold changes of 1.62 and 1.31 for AST and ALT, respectively, illustrating up-regulations in their expression levels and hence validating their selection as critical genes of interest. In short, we illustrate the feasibility of multiplex gene expression analysis in an integrated LOC system as a viable POCT means for hepatotoxicity assessment. PMID:26329655

  16. Discernment of possible mechanisms of hepatotoxicity via biological processes over-represented by co-expressed genes

    Directory of Open Access Journals (Sweden)

    Chou Jeff W

    2009-06-01

    Full Text Available Abstract Background Hepatotoxicity is a form of liver injury caused by exposure to stressors. Genomic-based approaches have been used to detect changes in transcription in response to hepatotoxicants. However, there are no straightforward ways of using co-expressed genes anchored to a phenotype or constrained by the experimental design for discerning mechanisms of a biological response. Results Through the analysis of a gene expression dataset containing 318 liver samples from rats exposed to hepatotoxicants and leveraging alanine aminotransferase (ALT, a serum enzyme indicative of liver injury as the phenotypic marker, we identified biological processes and molecular pathways that may be associated with mechanisms of hepatotoxicity. Our analysis used an approach called Coherent Co-expression Biclustering (cc-Biclustering for clustering a subset of genes through a coherent (consistency measure within each group of samples representing a subset of experimental conditions. Supervised biclustering identified 87 genes co-expressed and correlated with ALT in all the samples exposed to the chemicals. None of the over-represented pathways related to liver injury. However, biclusters with subsets of samples exposed to one of the 7 hepatotoxicants, but not to a non-toxic isomer, contained co-expressed genes that represented pathways related to a stress response. Unsupervised biclustering of the data resulted in 1 four to five times more genes within the bicluster containing all the samples exposed to the chemicals, 2 biclusters with co-expression of genes that discerned 1,4 dichlorobenzene (a non-toxic isomer at low and mid doses from the other chemicals, pathways and biological processes that underlie liver injury and 3 a bicluster with genes up-regulated in an early response to toxic exposure. Conclusion We obtained clusters of co-expressed genes that over-represented biological processes and molecular pathways related to hepatotoxicity in the rat. The

  17. Fatal case of sorafenib-associated idiosyncratic hepatotoxicity in the adjuvant treatment of a patient with renal cell carcinoma

    International Nuclear Information System (INIS)

    Sorafenib is an orally available kinase inhibitor with activity at Raf, PDGFβ and VEGF receptors that is licensed for the treatment of advanced renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). Current evidence-based post-nephrectomy management of individuals with localized RCC consists of surveillance-based follow up. The SORCE trial is designed to investigate whether treatment with adjuvant sorafenib can reduce recurrence rates in this cohort. Here we report an idiosyncratic reaction to sorafenib resulting in fatal hepatotoxicity and associated renal failure in a 62 year-old man treated with sorafenib within the SORCE trial. This is the first reported case of sorafenib exposure associated fatal toxicity in the adjuvant setting and highlights the unpredictable adverse effects of novel adjuvant therapies

  18. Fatal case of sorafenib-associated idiosyncratic hepatotoxicity in the adjuvant treatment of a patient with renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Fairfax BP

    2012-12-01

    Full Text Available Abstract Background Sorafenib is an orally available kinase inhibitor with activity at Raf, PDGFβ and VEGF receptors that is licensed for the treatment of advanced renal cell carcinoma (RCC and hepatocellular carcinoma (HCC. Current evidence-based post-nephrectomy management of individuals with localized RCC consists of surveillance-based follow up. The SORCE trial is designed to investigate whether treatment with adjuvant sorafenib can reduce recurrence rates in this cohort. Case presentation Here we report an idiosyncratic reaction to sorafenib resulting in fatal hepatotoxicity and associated renal failure in a 62 year-old man treated with sorafenib within the SORCE trial. Conclusion This is the first reported case of sorafenib exposure associated fatal toxicity in the adjuvant setting and highlights the unpredictable adverse effects of novel adjuvant therapies.

  19. The Role of Urotensin Receptors in the Paracetamol-Induced Hepatotoxicity Model in Mice: Ameliorative Potential of Urotensin II Antagonist.

    Science.gov (United States)

    Palabiyik, Saziye S; Karakus, Emre; Akpinar, Erol; Halici, Zekai; Bayir, Yasin; Yayla, Muhammed; Kose, Duygu

    2016-02-01

    We aimed to evaluate the possible protective effect of a UTR antagonist and to determine the effect of the antagonist on ALT and AST levels in serum, the mRNA expression level of UTR, tumour necrosis factor-alpha (TNF-α) and IL-1β and SOD activity, GSH and MDA levels in liver tissues, which are important mediators or markers for the hepatotoxicity animal model in mice. Animals fasted overnight and were divided into seven equal groups (n = 12). The first group was the healthy group (administered 0.1% DMSO intraperitoneally). Group 2 received only paracetamol (PARA) (administered orally at a dosage of 300 mg/kg). Groups 3 and 4 were treated with only AGO (AC7954, UTR agonist) 15 and 30 mg/kg intraperitoneally, respectively. Groups 5 and 6 were treated with only ANTA (SB657510, UTR antagonist) 30 and 60 mg/kg intraperitoneally, respectively. Group 7 was treated with AGO 30 mg/kg and ANTA 60 mg/kg intraperitoneally. One hour after the pre-treatment drugs were administered, groups 3 through 7 were given PARA. After the experimental period, the mice were killed 6 and 24 hr after PARA was administered. Antagonist administration significantly decreased the ALT and AST levels, while agonist administration did not. In addition, SOD activity and GSH levels increased, and the MDA level decreased with the pre-treatment of two antagonist doses. The increased UTR gene expression through PARA was significantly lower in both doses of the antagonist groups at 24 hr when compared with the agonist and PARA groups. This study showed that UTR antagonists have hepatoprotective and anti-inflammatory effects on high-dose PARA-induced hepatotoxicity in mice. PMID:26176337

  20. Necrostatin-1 protects against reactive oxygen species (ROS-induced hepatotoxicity in acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    2014-01-01

    Full Text Available Excessive acetaminophen (APAP use is one of the most common causes of acute liver failure. Various types of cell death in the damaged liver are linked to APAP-induced hepatotoxicity, and, of these, necrotic cell death of hepatocytes has been shown to be involved in disease pathogenesis. Until recently, necrosis was commonly considered to be a random and unregulated form of cell death; however, recent studies have identified a previously unknown form of programmed necrosis called receptor-interacting protein kinase (RIPK-dependent necrosis (or necroptosis, which is controlled by the kinases RIPK1 and RIPK3. Although RIPK-dependent necrosis has been implicated in a variety of disease states, including atherosclerosis, myocardial organ damage, stroke, ischemia–reperfusion injury, pancreatitis, and inflammatory bowel disease. However its involvement in APAP-induced hepatocyte necrosis remains elusive. Here, we showed that RIPK1 phosphorylation, which is a hallmark of RIPK-dependent necrosis, was induced by APAP, and the expression pattern of RIPK1 and RIPK3 in the liver overlapped with that of CYP2E1, whose activity around the central vein area has been demonstrated to be critical for the development of APAP-induced hepatic injury. Moreover, a RIPK1 inhibitor ameliorated APAP-induced hepatotoxicity in an animal model, which was underscored by significant suppression of the release of hepatic enzymes and cytokine expression levels. RIPK1 inhibition decreased reactive oxygen species levels produced in APAP-injured hepatocytes, whereas CYP2E1 expression and the depletion rate of total glutathione were unaffected. Of note, RIPK1 inhibition also conferred resistance to oxidative stress in hepatocytes. These data collectively demonstrated a RIPK-dependent necrotic mechanism operates in the APAP-injured liver and inhibition of this pathway may be beneficial for APAP-induced fulminant hepatic failure.

  1. Investigation of hepatoprotective activity of Cyathea gigantea (Wall. ex. Hook.) leaves against paracetamol-induced hepatotoxicity in rats

    Institute of Scientific and Technical Information of China (English)

    P Madhu Kiran; A Vijaya Raju; B Ganga Rao

    2012-01-01

    Objective: To investigate the hepatoprotective activity of methanolic leaf extract of Cyatheagigantea (C. gigantea) against paracetamol induced liver damage in rats. Methods: The hepatoprotective activity for plant extract was investigated for paracetamol induced hepatoxicity in rats. Wistar albino rats of either sex were divided into five groups of 6 animals each and are given orally the following treatment for seven days. The normal control group was given 1% Na.CMC 1 mL/kg bw, p.o. Paracetamol at dose of 1 g/kg bw, p.o. was given as toxic dose for inducing hepatotoxicity. Silymarin (50 mg/kg, p.o.) was given as reference standard. Two doses of C.gigantea extract i.e., 100 mg/kg, p.o. and 200 mg/kg, p.o. were tested for hepatoprotective activity. The treatment was given for seven days and after 24 h of last treatment blood was collected from retro-orbital plexus and analysed for various serum parameters like serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP), total bilirubin (TB) and total protein (TP) in different groups. Results: The paracetamol intoxication lead to histological and biochemical deteriorations. The treatment with methanolic leaf extract of C. gigantea reduced the elevated levels of SGOT, SGPT, ALP, TB and also reversed the hepatic damage towards normal which further supports the hepatoprotective activity of leaf extract of C. gigantea. Conclusions: The methanolic extract of leaves of C. gigantea at doses of 100 mg/kg bw and 200 mg/kg bw have significant effect on liver of paracetamol induced hepatotoxicity model in rats.

  2. Diazinon-induced hepatotoxicity and protective effect of vitamin E on some biochemical indices and ultrastructural changes

    International Nuclear Information System (INIS)

    Diazinon, an organophosphate insecticide has been used in agriculture and domestic for several years. The aim of present study was to analyze the hepatotoxic effect of diazinon which caused biochemical and ultrastructural changes in adult male Wistar rats and to evaluate the possible protective effect of vitamin E. Vitamin E (200 mg/kg, twice a week), diazinon (10 mg/kg per day, once a day in corn oil) and vitamin E (200 mg/kg, twice a week) + diazinon (10 mg/kg per day, once a day in corn oil) combination were given to rats (n = 8) orally via gavage for 7 weeks. Biochemical indices in serum [total protein, albumin, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol, triglyceride and low density lipoprotein cholesterol (VLDL-cholesterol)] and ultrastructural changes were investigated at the end of the 1st, 4th and 7th weeks comparatively with control group (n = 8). It was observed that; at the end of 1st week, there was a statistically significance in all parameters except total protein and albumin, and at the end of 4th and 7th weeks, there was a statistically significance in all parameters when diazinon-treated group compared to control group (P < 0.01). At the end of 1st week, ALP, ALT, total cholesterol and triglyceride, at the end of 4th week, all parameters except VLDL-cholesterol, at the end of 7th week, all parameters were statistically significant when vitamin E + diazinon-treated group compared with diazinon-treated group (P < 0.01). In our electron microscopic investigations, while swelling of mitochondria and breaking up of the mitochondrial cristae of hepatocytes in diazinon-treated groups were observing, no pathological findings were observed in vitamin E + diazinon-treated groups. We conclude that vitamin E decreases diazinon hepatotoxicity, but vitamin E does not protect completely

  3. Secretory phospholipase A2-mediated progression of hepatotoxicity initiated by acetaminophen is exacerbated in the absence of hepatic COX-2

    International Nuclear Information System (INIS)

    We have previously reported that among the other death proteins, hepatic secretory phospholipase A2 (sPLA2) is a leading mediator of progression of liver injury initiated by CCl4 in rats. The aim of our present study was to test the hypothesis that increased hepatic sPLA2 released after acetaminophen (APAP) challenge mediates progression of liver injury in wild type (WT) and COX-2 knockout (KO) mice. COX-2 WT and KO mice were administered a normally non lethal dose (400 mg/kg) of acetaminophen. The COX-2 KO mice suffered 60% mortality compared to 100% survival of the WT mice, suggesting higher susceptibility of COX-2 KO mice to sPLA2-mediated progression of acetaminophen hepatotoxicity. Liver injury was significantly higher at later time points in the KO mice compared to the WT mice indicating that the abatement of progression of injury requires the presence of COX-2. This difference in hepatotoxicity was not due to increased bioactivation of acetaminophen as indicated by unchanged cyp2E1 protein and covalently bound 14C-APAP in the livers of KO mice. Hepatic sPLA2 activity and plasma TNF-α were significantly higher after APAP administration in the KO mice. This was accompanied by a corresponding fall in hepatic PGE2 and lower compensatory liver regeneration and repair (3H-thymidine incorporation) in the KO mice. These results suggest that hindered compensatory tissue repair and poor resolution of inflammation for want of beneficial prostaglandins render the liver very vulnerable to sPLA2-mediated progression of liver injury. These findings are consistent with the destructive role of sPLA2 in the progression and expansion of tissue injury as a result of continued hydrolytic breakdown of plasma membrane phospholipids of perinecrotic hepatocytes unless mitigated by sufficient co-induction of COX-2.

  4. Bioactive peptide carnosin protects against lead acetate-induced hepatotoxicity by abrogation of oxidative stress in rats.

    Science.gov (United States)

    Hasanein, Parisa; Kazemian-Mahtaj, Azam; Khodadadi, Iraj

    2016-08-01

    Context Oxidative stress is a common mechanism of liver injury. Carnosine is a dipeptide having strong antioxidant effects. Objectives We investigated the effects of carnosine on lead-induced hepatotoxicity and oxidative stress in rats. Materials and methods Animals received an aqueous solution of lead acetate (500 mg Pb/L in the drinking water) and/or daily oral gavage of carnosine (10 mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical (commercial kits), molecular (standard chemical methods) and histological (microscopic) evaluations. Results Lead-induced oxidative stress in liver tissue was indicated by a significant increase in the level of malondialdehyde (MDA) (8.25 ± 0.15 nmol/mg) as well as decrease in the level of total antioxidant capacity (TAC) (1.72 ± 0.25 μmol/g) and total thiol (SH) groups) 1.9 ± 0.22 μmol/g). Carnosine treatment decreased MDA (4 ± 0.08 nmol/mg), whereas it increased the contents of total thiol (3.25 ± 0.04 μmol/g) and TAC (3.44 ± 0.32 μmol/g) in the lead group. Carnosine also prevented the decreased body weight (p carnosine attenuates liver damage by decreasing necrosis and infiltration of inflammatory cells. Conclusion Carnosine prevented lead-induced hepatotoxicity, indicated by molecular, biochemical and histopathological analyses through inhibiting lipid peroxidation and enhancing antioxidant defence systems. Therefore, carnosine makes a good candidate to protect against the deleterious effect of chronic lead intoxication. PMID:26808926

  5. The protective potential and possible mechanism of Phyllanthus amarus Schum. & Thonn. aqueous extract on paracetamol-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Apichat Muso

    2006-05-01

    Full Text Available The hepatoprotective potential of Phyllanthus amarus Schum. & Thonn. was studied on paracetamolinduced hepatotoxicity in rats by measuring the levels of serum transaminase (SGOT and SGPT, alkaline phosphatase (ALP and bilirubin, as well as by histopathological examination of the liver. Furthermore, the hepatoprotective mechanisms were investigated by determining the amount of paracetamol and its metabolites (glucuronide, sulfate, cysteine and mercapturic acid conjugates in urine and pentobarbital-induced sleeping time to indicate the inhibition on cytochrome P450. The involvement of glutathione was evaluated by determining hepatic reduced glutathione. Its radical scavenging activity, iron chelating activity and total phenolic content were also determined. P. amarus aqueous extracts (0.8, 1.6 or 3.2 g/kg were orally administered twice daily for 7 days prior, for 2 days after, or for 7 days prior and followed by 2 days after a single oral dose of paracetamol (3 g/kg. The results showed that the extract at the doses of 1.6 and 3.2 g/kg decreased the paracetamol-induced hepatotoxicity as indicated by the decrease in SGOT, SGPT, bilirubin and histopathological score while the ALP did not change. Moreover, it is suggested that the hepatoprotective mechanism of this plant was related neither to the inhibition on cytochrome P450, nor to the induction on sulfate and/or glucuronide conjugation pathways of paracetamol, but partly due to the protective effect on the depletion of hepatic reduced glutathione and also its antioxidant activity, especially the radical scavenging and iron chelating activity, which might be related to the high polyphenolic contents. These results support the value of P. amarus, which has been used in Thai folk medicine for the treatment of liver diseases.

  6. NAT2*6A,a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate an association between N-acetyltransferase 2 (NAT2)-haplotypes/diplotypes and adverse effects in apanese pulmonary tuberculosis patients.METHODS: We studied 100 patients with pulmonary TB treated with anti-TB drugs including INH. The frequencies and distributions of single nucleotide polymorphisms, haplotypes, and diplotypes of NAT2 were determined by the PCR-restriction fragment length polymorphism method, and the results were compared between TB patients with and without adverse effect,using multivariate logistic regression analysis.RESULTS: Statistical analysis revealed that the frequency of a variant haplotype, NAT2*6A, was significantly increased in TB patients with hepatotoxicity,compared with those without hepatotoxicity [P = 0.001,odds ratio (OR) = 3.535]. By contrast, the frequency of a wild-type (major) haplotype,"NAT2*4″, was significantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P < 0.001, OR = 0.265).There was no association between NAT2-haplotypes and skin rash or eosinophilia.CONCLUSION: The present study shows that NAT2 is one of the determinants of anti-TB drug-induced hepatotoxicity. Moreover, the haplotypes, NAT2*4 and NAT2*6A, are useful new biomarkers for predicting antiTB drug-induced hepatotoxicity.

  7. Lupus-prone NZBWF1/J mice, defective in cytokine signaling, are resistant to fumonisin hepatotoxicity despite accumulation of liver sphinganine

    International Nuclear Information System (INIS)

    Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides, commonly present in corn and other cereals. Exposure to FB1 causes organ-specific diseases in various species, e.g., equine leukoencephalomalacia and porcine pulmonary edema; in mice the response is hepatotoxicity. We earlier reported that ceramide synthase inhibition by FB1, the initial biochemical effect of this mycotoxin, results in modulation of cytokine network in response to accumulated free sphingoid bases. In the current study we used NZB/NZW-F1 (NZBW) mice that have modified cytokine expression and develop lupus beginning at 5 months of age. The NZBW and C57BL/6J (CBL) mice (appropriate control) were given five daily subcutaneous injections of either saline or 2.25 mg FB1/kg/day and euthanized 24 h after the last treatment. Peripheral leukocyte counts were higher after exposure to FB1 in CBL but not in NZBW. FB1 treatment caused increases of plasma alanine aminotransferase and aspartate aminotransferase activity in CBL mice indicating hepatotoxicity; no elevation of circulating liver enzymes was recorded in NZBW mice. Hepatotoxic responses were confirmed by microscopic evaluation of apoptotic cells. The FB1-induced proliferation of cells observed in CBL strain was abolished in NZBW animals. The sphinganine accumulation in liver after FB1 was equal in both strains of mice. The NZBW strain lacked the FB1-induced increases in the expression of liver tumor necrosis factor α, interferon γ, receptor interacting protein (RIP), and tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL), observed in CBL. Results confirmed our hypothesis that initial altered sphingolipid metabolism caused by FB1 leads to perturbation of liver cytokine network and ultimate cellular injury; the mice deficient in cytokine signaling are refractory to FB1 hepatotoxicity

  8. Modulation of Tinospora rumphii and Zinc Salt on DNA Damage in Quinoline-Induced Genotoxicity and Hepatotoxicity in Male Albino Mice

    OpenAIRE

    Roger Salvacion Tan; Bajo, Lydia M.

    2014-01-01

    Tinospora rumphii (T. rumphii) is a folkloric medicinal plant that is widely distributed in Asia and Africa. It has been widely used by locals to treat many diseases including jaundice, which is a manifestation of liver damage. We investigated the action of T. rumphii crude extract together with zinc sulphate, a known tumor modulator, on hepatic injuries induced by intraperitoneal (i.p) injections of quinoline on albino mice. The hepatotoxic effect was assessed by bilirubin concentration in t...

  9. Protective effect of pomegranate (Punica granatum Linn.) juice against hepatotoxicity and testicular toxicity induced by ethanol in mice

    OpenAIRE

    Ampa Luangpirom; Thanaree Junaimuang; Watchara Kourchampa; Pichet Somsapt; Opass Sritragool

    2013-01-01

    Ethanol commonly causes hepatotoxicity and testicular toxicity after chronic consumption. Silymarin, a commercial drug for protective and curative treatment of liver disease, was used as a standard drug. This study aimed to evaluate the protective activities of pomegranate juice on liver damage and sperm quality impairment caused by ethanol consumption. The experiment was conducted on 5 groups of male mice. Group I as negative control received distilled water, group II as positive...

  10. Prediction of dose-hepatotoxic response in humans based on toxicokinetic/toxicodynamic modeling with or without in vivo data: A case study with acetaminophen

    OpenAIRE

    Péry, Alexandre R. R.; Brochot, Céline; Zeman, Florence A.; Mombelli, Enrico; Desmots, Sophie; Pavan, Manuela; Fioravanzo, Elena; Zaldívar, José-Manuel

    2013-01-01

    In the present legislations, the use of methods alternative to animal testing is explicitly encouraged, to use animal testing only 'as a last resort' or to ban it. The use of alternative methods to replace kinetics or repeated dose in vivo tests is a challenging issue. We propose here a strategy based on in vitro tests and QSAR (Quantitative Structure Activity Relationship) models to calibrate a dose-response model predicting hepatotoxicity. The dose response consists in calibrating and coupl...

  11. Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice[S

    OpenAIRE

    Cheng, Jie; Fang, Zhong-Ze; Kim, Jung-Hwan; Krausz, Kristopher W.; Tanaka, Naoki; Chiang, John Y. L.; Frank J. Gonzalez

    2014-01-01

    Vitamin D receptor (VDR) mediates vitamin D signaling involved in bone metabolism, cellular growth and differentiation, cardiovascular function, and bile acid regulation. Mice with an intestine-specific disruption of VDR (VdrΔIEpC) have abnormal body size, colon structure, and imbalance of bile acid metabolism. Lithocholic acid (LCA), a secondary bile acid that activates VDR, is among the most toxic of the bile acids that when overaccumulated in the liver causes hepatotoxicity. Because cytoch...

  12. Protective Effects of Kaempferol on Isoniazid- and Rifampicin-Induced Hepatotoxicity

    OpenAIRE

    Shih, Tung-Yuan; Young, Ton-Ho; Lee, Herng-Sheng; Hsieh, Chung-Bao; Hu, Oliver Yoa-Pu

    2013-01-01

    Isoniazid (INH) and rifampicin (RIF) are the first-line drugs for antituberculosis (anti-TB) chemotherapy. The levels of serum transaminases [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)] are abnormal in 27% of patients undergoing INH and RIF treatments and in 19% of patients undergoing treatment with INH alone. Cytochrome P450 2E1 (CYP2E1) metabolizes many toxic substrates, including ethanol, carbon tetrachloride, and INH, which ultimately results in liver injury. The ...

  13. Study of acute hepatotoxicity of Equisetum arvense L. in rats Estudo da hepatotoxicidade aguda da Equisetum arvense L. em ratos

    Directory of Open Access Journals (Sweden)

    Nilo César do Vale Baracho

    2009-12-01

    Full Text Available PURPOSE: To evaluate the acute hepatotoxicity of Equisentum arvense L. in rats. METHODS: Fifty Wistar rats were used, these being divided in four groups, one being the control (receiving only water and the other groups receiving graded doses of Equisentum arvense L. (30, 50, and 100mg/kg respectively for 14 days. Blood samples were obtained to determine TGO, TGP, FA, DHL and GT-gamma activities. After that, hepatic tissue samples were collected for the anatomopathologic analysis. RESULTS: The anatomopathologic exam of the hepatic tissue showed organ with preserved lobular structure. In the same way, there was no significant change in the seric activities of the hepatic enzymes when compared to control group. CONCLUSION: The oral treatment with graded doses of Equisentum arvense L. was not able to produce hepatic changes. Further studies are necessary to evaluate the chronic hepatotoxicity of Equisentum arvense L. in rats.OBJETIVO: Investigar a hepatotoxicidade aguda da Equisetum arvense L. em ratos. MÉTODOS: foram utilizados 50 ratos Wistar, os quais foram divididos em quatro grupos, sendo um controle (recebendo apenas água e os outros grupos recebendo doses crescentes de cavalinha (30, 50 e 100mg/Kg, respectivamente por 14 dias. Foram coletadas amostras de sangue para determinação da atividade sérica de TGO, TGP, FA, DHL e gama-GT. Em seguida, foram obtidas amostras de tecido hepático para análise anatomopatológica. RESULTADOS: O exame anatomopatológico de tecido hepático demonstrou órgão com estrutura lobular preservada. Da mesma forma, não houve alteração significativa na atividade sérica das enzimas hepáticas, quando comparado ao grupo controle. CONCLUSÃO: O tratamento com doses crescentes de Equisetum arvense L., não induziu hepatotoxicidade aguda em ratos. Novos estudos são necessários para avaliar a hepatoxicidade crônica de Equisetum arvense L. em ratos.

  14. Protective effect of binaphthyl diselenide, a synthetic organoselenium compound, on 2-nitropropane-induced hepatotoxicity in rats.

    Science.gov (United States)

    Ibrahim, Mohammad; Prigol, Marina; Hassan, Waseem; Nogueira, Cristina W; Rocha, Joao B T

    2010-06-01

    Organoselenides have been documented as promising pharmacological agents against a number of diseases associated with oxidative stress. Here we have investigated, for the first time, the potential antioxidant activity of binaphthyl diselenide ((NapSe)(2); 50 mg kg(-1), p.o.) against the 2-nitropropane (2-NP)-induced hepatoxicity in rats, using different end points of toxicity (liver histopathology, plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatinine). In addition, in view of the association of oxidative stress with 2-NP exposure, hepatic lipid peroxidation, ascorbic acid levels, delta-aminolevulinate dehydratase (delta-ALA-D) and catalase (CAT) activities were evaluated. 2-NP caused an increase of AST, ALT and hepatic lipid peroxidation. 2-NP also caused hepatic histopathological alterations and delta-ALA-D inhibition. (NapSe)(2) (50 mg kg(-1)) prevented 2-NP-induced changes in plasmatic ALT and AST activities and also prevented changes in hepatic histology, delta-ALA-D and lipid peroxidation. Results presented here indicate that the protective mechanism of (NapSe)(2) against 2-NP hepatotoxicity is possibly linked to its antioxidant activity. PMID:20517888

  15. Possible protective role of pregnenolone-16 alpha-carbonitrile in lithocholic acid-induced hepatotoxicity through enhanced hepatic lipogenesis.

    Science.gov (United States)

    Miyata, Masaaki; Nomoto, Masahiro; Sotodate, Fumiaki; Mizuki, Tomohiro; Hori, Wataru; Nagayasu, Miho; Yokokawa, Shinya; Ninomiya, Shin-ichi; Yamazoe, Yasushi

    2010-06-25

    Lithocholic acid (LCA) feeding causes both liver parenchymal and cholestatic damages in experimental animals. Although pregnenolone-16 alpha-carbonitrile (PCN)-mediated protection against LCA-induced hepatocyte injury may be explained by induction of drug metabolizing enzymes, the protection from the delayed cholestasis remains incompletely understood. Thus, the PCN-mediated protective mechanism has been studied from the point of modification of lipid metabolism. At an early stage of LCA feeding, an imbalance of biliary bile acid and phospholipid excretion was observed. Co-treatment with PCN reversed the increase in serum alanine aminotransferase (ALT) as well as alkaline phosphatase (ALP) activities and hepatic hydrophobic bile acid levels. LCA feeding decreased hepatic mRNA levels of several fatty acid- and phospholipid-related genes before elevation of serum ALT and ALP activities. On the other hand, PCN co-treatment reversed the decrease in the mRNA levels and hepatic levels of phospholipids, triglycerides and free fatty acids. PCN co-treatment also reversed the decrease in biliary phospholipid output in LCA-fed mice. Treatment with PCN alone increased hepatic phospholipid, triglyceride and free fatty acid concentrations. Hepatic fatty acid and phosphatidylcholine synthetic activities increased in mice treated with PCN alone or PCN and LCA, compared to control mice, whereas these activities decreased in LCA-fed mice. These results suggest the possibility that PCN-mediated stimulation of lipogenesis contributes to the protection from lithocholic acid-induced hepatotoxicity. PMID:20359477

  16. A new method for identifying causal genes of schizophrenia and anti-tuberculosis drug-induced hepatotoxicity.

    Science.gov (United States)

    Huang, Tao; Liu, Cheng-Lin; Li, Lin-Lin; Cai, Mei-Hong; Chen, Wen-Zhong; Xu, Yi-Feng; O'Reilly, Paul F; Cai, Lei; He, Lin

    2016-01-01

    Schizophrenia (SCZ) may cause tuberculosis, the treatments for which can induce anti-tuberculosis drug-induced hepatotoxicity (ATDH) and SCZ-like disorders. To date, the causal genes of both SCZ and ATDH are unknown. To identify them, we proposed a new network-based method by integrating network random walk with restart algorithm, gene set enrichment analysis, and hypergeometric test; using this method, we identified 500 common causal genes. For gene validation, we created a regularly updated online database ATDH-SCZgenes and conducted a systematic meta-analysis of the association of each gene with either disease. Till now, only GSTM1 and GSTT1 have been well studied with respect to both diseases; and a total of 23 high-quality association studies were collected for the current meta-analysis validation. Finally, the GSTM1 present genotype was confirmed to be significantly associated with both ATDH [Odds Ratio (OR): 0.71, 95% confidence interval (CI): 0.56-0.90, P = 0.005] and SCZ (OR: 0.78, 95% CI: 0.66-0.92, P = 0.004) according to the random-effect model. Furthermore, these significant results were supported by "moderate" evidence according to the Venice criteria. Our findings indicate that GSTM1 may be a causal gene of both ATDH and SCZ, although further validation pertaining to other genes, such as CYP2E1 or DRD2, is necessary. PMID:27580934

  17. Is 2-propyl-4-pentenoic acid, a hepatotoxic metabolite of valproate, responsible for valproate-induced hyperammonemia?

    Science.gov (United States)

    Kondo, T; Ishida, M; Kaneko, S; Hirano, T; Otani, K; Fukushima, Y; Muranaka, H; Koide, N; Yokoyama, M; Nakata, S

    1992-01-01

    To investigate the association between valproate metabolism (VPA) and VPA-induced hyperammonemia together with the contribution of VPA hepatotoxicity risk factors such as young age, polypharmacy, and high serum VPA levels to VPA-induced hyperammonemia, plasma ammonia (NH3) levels, serum levels of VPA and its metabolites, and biochemical parameters were determined in 98 patients treated with VPA (53 monopharmacy cases and 45 polypharmacy cases). In monopharmacy patients, plasma NH3 levels did not depend on age, VPA dosage or serum levels. Serum level of 2-propyl-4-pentenoic acid (4-en) showed a negative correlation with plasma NH3 level in the monopharmacy group. In polypharmacy patients, plasma NH3 levels, serum glutamic pyruvic transaminase, and gamma-glutamyl-transpeptidase were significantly higher, while level/dose VPA ratio, 2-en-VPA serum level, and bilirubin were significantly lower than those in monopharmacy patients. These results suggest that young age and relatively high VPA serum levels within the therapeutic range were unlikely to be risk factors for common hyperammonemia associated with VPA therapy and that 4-en was not causally related to this adverse effect. The decreased serum level of 2-en-VPA in polypharmacy patients may be a reflection of a certain mitochondrial dysfunction, which might be a mechanism of the increased NH3 levels. The changes in biochemical parameters in polypharmacy patients were considered results of the enzyme-inducing activity of coadministered antiepileptic drugs (AEDs). PMID:1350534

  18. Chemical Diversity Investigation of Hepatotoxic Pyrrolizidine Alkaloids in Qianliguang (Senecio scandens) and Related Species by UHPLC-QTOF-MS1

    Institute of Scientific and Technical Information of China (English)

    Lin Zhua; Na Li; Jian-Qing Ruan; Peter P. Fu; Zhong-Zhen Zhao; Ge Lina

    2015-01-01

    Objective: Qianliguang (Senecio scandens) is a common Chinese medicinal herb. Qianliguang-containing herbal proprietary products are registered as over-the-counter remedies in China and exported to Western countries. The presence of hepatotoxic pyrrolizidine alkaloids (PAs) has raised concerns about the safety of using Qianliguang and its products. The present study aims at investigation of different types of PAs present in Qianliguang collected from representative locations in China. Methods: In this study, a simple but specific UHPLC-QTOF-MS method for the determination of toxic PAs was developed, based on the characteristic fragment ions specific to different types of PAs. It was successfully applied for the identification and distinguishing of PAs present in Qianliguang and related Senecio species growing in different locations of China. Results: Significant diversity of the PA types and quantities were revealed among the samples tested. The estimated total amounts of toxic PAs in three of the samples exceed the toxic limits of PA intake restricted by WHO, demonstrating the timely and highly demand for regulating both types and quantities of PAs present in Qianliguang. Conclusions: This study provides the methodology for simultaneous identification and quantification of PAs present in herbs without requiring corresponding standards, which could be further used for more systematic investigations of the PA distribution in Qianliguang and other PA-containing herbs.

  19. Exaggerated hepatotoxicity of acetaminophen in mice lacking tumor necrosis factor receptor-1 Potential role of inflammatory mediators

    International Nuclear Information System (INIS)

    Transgenic mice with a targeted disruption of the tumor necrosis factor receptor 1 (TNFR1) gene were used to analyze the role of TNF-α in pro- and anti-inflammatory mediator production and liver injury induced by acetaminophen. Treatment of wild-type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis. This was correlated with expression of inducible nitric oxide synthase (NOS II) and nitrotyrosine staining of the liver. Expression of macrophage chemotactic protein-1 (MCP-1), KC/gro, interleukin-1β (IL-1β), matrix metalloproteinase-9 (MMP-9), and connective tissue growth factor (CTGF), inflammatory mediators known to participate in tissue repair, as well as the anti-inflammatory cytokine, interleukin-10 (IL-10), also increased in the liver following acetaminophen administration. TNFR1-/- mice were found to be significantly more sensitive to the hepatotoxic effects of acetaminophen than wild-type mice. This was correlated with more rapid and prolonged induction of NOS II in the liver and changes in the pattern of nitrotyrosine staining. Acetaminophen-induced expression of MCP-1, IL-1β, CTGF, and MMP-9 mRNA was also delayed or reduced in TNFR1-/- mice relative to wild-type mice. In contrast, increases in IL-10 were more rapid and more pronounced. These data demonstrate that signaling through TNFR1 is important in inflammatory mediator production and toxicity induced by acetaminophen

  20. The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway.

    Science.gov (United States)

    Wu, Jing; Xue, Xia; Zhang, Bin; Jiang, Wen; Cao, Hongmei; Wang, Rongmei; Sun, Deqing; Guo, Ruichen

    2016-01-25

    Epirubicin is widely used for the treatment of various breast cancers; however, it has serious adverse side effects, such as hepatotoxicity, which require dose-adjustment or therapy substitution. Paeonol, an active component from Moutan Cortex, has a variety of biological activities, including preventing or reducing various toxicities induced by antineoplastics. Protection by paeonol against hepatotoxicity induced by epirubicin and the underlying mechanism of action were investigated in this study. Cytosolic enzymes in the serum and oxidative stress indices in the liver were determined. The protective effects were determined using the MTT assay in vitro or by evaluating the expression of apoptotic factors and crucial proteins in the PI3K/Akt/NF-kB pathway using western blot analysis. It is concluded that paeonol alleviates epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice by inhibiting the PI3K/Akt/NF-kB pathway. PMID:26646421

  1. The Antitumor Effect and Hepatotoxicity of a Hexokinase II Inhibitor 3-Bromopyruvate: In Vivo Investigation of Intraarterial Administration in a Rabbit VX2 Hepatoma Model

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Hwan Jun; Chung, Jin Wook; Park, Hee Sun; Lee, Min Jong; Lee, Ki Chang; Kim, Hyo Cheol; Yoon, Jung Hwan; Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of); Chung, He Son [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2009-12-15

    The purpose of this study was to compare the antitumor effect and hepatotoxicity of an intraarterial delivery of low-dose and high-dose 3-bromopyruvate (3-BrPA) and those of a conventional Lipiodol-doxorubicin emulsion in a rabbit VX2 hepatoma model. This experiment was approved by the animal care committee at our institution. VX2 carcinoma was implanted in the livers of 36 rabbits. Transcatheter intraarterial administration was performed using low dose 3- BrPA (25 mL in a 1 mM concentration, n = 10), high dose 3-BrPA (25 mL in a 5 mM concentration, n = 10) and Lipiodol-doxorubicin emulsion (1.6 mg doxorubicin/ 0.4 mL Lipiodol, n = 10), and six rabbits were treated with normal saline alone as a control group. One week later, the proportion of tumor necrosis was calculated based on histopathologic examination. The hepatotoxicity was evaluated by biochemical analysis. The differences between these groups were statistically assessed with using Mann-Whitney U tests and Kruskal-Wallis tests. The tumor necrosis rate was significantly higher in the high dose group (93% +- 7.6 [mean +- SD]) than that in the control group (48% +- 21.7) (p = 0.0002), but the tumor necrosis rate was not significantly higher in the low dose group (62% +- 20.0) (p = 0.2780). However, the tumor necrosis rate of the high dose group was significantly lower than that of the Lipiodol-doxorubicin treatment group (99% +- 2.7) (p = 0.0015). The hepatotoxicity observed in the 3-BrPA groups was comparable to that of the Lipiodol-doxorubicin group. Even though intraarterial delivery of 3-BrPA shows a dose-related antitumor effect, single session treatment seems to have limited efficacy when compared with the conventional method

  2. A Comparative Study on the Effects of Glutathione and Green Tea Extract (Camellia sinensis L. on Thioacetamide-induced Hepatotoxicity in Male Adult Wistar Rats

    Directory of Open Access Journals (Sweden)

    Shahnaz Shekarforoush

    2014-12-01

    Full Text Available Background: Flavonoids play significant role in the treatment of many diseases. Green tea (Camellia Sinensis L. is a common beverage all over the world with antioxidant and detoxification effects related to the presence of flavonoids and catchins. This study aimed to investigate the protective effect of green tea on thioacetamide-induced hepatotoxicity. Materials and Methods: In this experimental study, 64 male Wistar rats were allocated to eight groups. The control group received a normal diet alone, sham group received normal saline, hepatotoxic group received thioacetamide (50 mg/kg thioacetamide for three days, other groups received a thioacetamide for three days and the alcoholic extract of bgreen tea, at minimum (50 mg/kg, moderate (100 mg/kg, and maximum (200 mg/kg doses, glutathione (250 mg/kg, green tea (200 mg/kg with glutathione (250 mg/kg for 21 days (i.p.. After that, blood samples were drawn and the levels of serum alanine aminotransferase, aspartate aminotransferase, Alkaline phosphatase, total protein and albumin, as liver injury indices, were measured. Results: The decrease of aminotransferase and alkaline phosphatase activity in the receptors of different dosages of green tea and glutathione was significant compared with the group treated by thioacetamide. Also, a significant increase was observed in total protein and albumin of serum in green tea receptors compared with thioacetamide group. Conclusion: The study results show the protective effect of green tea on thioacetamide-induced hepatotoxicity which is likely caused by the antioxidant effect of polyphenol compounds controlling thioacetamide activity which in turn controls the cytochrome P450 activity and neutralization of free radicals.

  3. Carbon Carbon Composites: An Overview .

    OpenAIRE

    G. Rohini Devi; K. Rama Rao

    1993-01-01

    Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several indust...

  4. N-Methyl-3,4-methylenedioxyamphetamine-induced hepatotoxicity in rats: Oxidative stress after acute and chronic administration

    Directory of Open Access Journals (Sweden)

    Ninković Milica

    2004-01-01

    Full Text Available Background. The underlying mechanisms of N-Methyl-3,4-methylenedioxyamphetamine-MDMA-induced hepatotoxicity are still unknown. The aim of this study was to evaluate hepatic oxido-reductive status in the rats liver after the single and repeated administration of MDMA. Methods. MDMA was dissolved in distilled water and administered in the doses of 5 mg, 10 mg, 20 mg, and 40 mg/kg. The animals from the acute experiment were treated per os with the single dose of the appropriate solution, through the orogastric tube. The animals from the chronic experiment were treated per os, with the doses of 5, 10, or 20 mg/kg of MDMA every day during 14 days. The control groups were treated with water only. Eight hours after the last dose, the animals were sacrificed, dissected their livers were rapidly removed, frozen and stored at -70°C until the moment of analysis. The parameters of oxidative stress in the crude mitochondrial fractions of the livers were analyzed. Results. Superoxide dismutase (SOD activity increased in the livers of the animals that were treated with single doses of MDMA. Chronically treated animals showed the increased SOD activity only after the highest dose (20 mg/kg. The content of reduced glutathione decreased in both groups, but the depletion was much more expressed after the single administration. Lipid peroxidation index increased in dose-dependent manner in both groups, being much higher after the single administration. Conclusion. The increased index of lipid peroxidation and the decreased reduced glutathione levels suggested that MDMA application induced the state of oxidative stress in the liver. These changes were much more expressed after the single administration of MDMA.

  5. Barium chloride induces redox status unbalance, upregulates cytokine genes expression and confers hepatotoxicity in rats-alleviation by pomegranate peel.

    Science.gov (United States)

    Elwej, Awatef; Grojja, Yousri; Ghorbel, Imen; Boudawara, Ons; Jarraya, Raoudha; Boudawara, Tahia; Zeghal, Najiba

    2016-04-01

    The present study was performed to establish the therapeutic efficacy of pomegranate peel against barium chloride induced liver injury. Adult rats were divided into four groups of six animals each: group I, serving as controls, received distilled water; group II received by their drinking water 67 ppm of BaCl2; group III received both 67 ppm of BaCl2 by the same way than group II and 5 % of pomegranate peel (PP) via diet; group IV received 5 % of PP. Analysis by HPLC/MS of PP showed its rich composition in flavonoids such as gallic acid, castalin, hyperin, quercitrin, syringic acid, and quercetin. The protective effects of pomegranate peel against hepatotoxicity induced by barium chloride were assessed using biochemical parameters and histological studies. Exposure of rats to barium caused oxidative stress in the liver as evidenced by an increase in malondialdehyde (MDA), lipid hydroperoxides (LOOHs), H2O2 and advanced oxidation protein product (AOPP) levels, and lactate dehydrogenase (LDH), gamma glutamyl transpeptidase (GGT), alanine aminotransferase (AST) and aspartate aminotransferase (ALT) activities, a decrease in catalase (CAT) and glutathione peroxidase (GPx) activities, glutathion (GSH), non-protein thiol (NPSH), vitamin C levels, and Mn-SOD gene expression. Liver total MT levels, MT-1, and MT-2 and pro-inflammatory cytokine genes expression like TNF-α, IL-1β and IL-6 were increased. Pomegranate peel, supplemented in the diet of barium-treated rats, showed an improvement of all the parameters indicated above.The present work provided ethnopharmacological relevance of pomegranate peel against the toxic effects of barium, suggesting its beneficial role as a potential antioxidant. PMID:26732703

  6. Traditional Chinese Medicine (TCM and Herbal Hepatotoxicity: RUCAM and the Role of Novel Diagnostic Biomarkers Such as MicroRNAs

    Directory of Open Access Journals (Sweden)

    Rolf Teschke

    2016-07-01

    Full Text Available Background: Traditional Chinese Medicine (TCM with its focus on herbal use is popular and appreciated worldwide with increased tendency, although its therapeutic efficacy is poorly established for most herbal TCM products. Treatment was perceived as fairly safe but discussions emerged more recently as to whether herb induced liver injury (HILI from herbal TCM is a major issue; Methods: To analyze clinical and case characteristics of HILI caused by herbal TCM, we undertook a selective literature search in the PubMed database with the search items Traditional Chinese Medicine, TCM, alone and combined with the terms herbal hepatotoxicity or herb induced liver injury; Results: HILI caused by herbal TCM is rare and similarly to drugs can be caused by an unpredictable idiosyncratic or a predictable intrinsic reaction. Clinical features of liver injury from herbal TCM products are variable, and specific diagnostic biomarkers such as microsomal epoxide hydrolase, pyrrole-protein adducts, metabolomics, and microRNAs are available for only a few TCM herbs. The diagnosis is ascertained if alternative causes are validly excluded and causality levels of probable or highly probable are achieved applying the liver specific RUCAM (Roussel Uclaf Causality Assessment Method as the most commonly used diagnostic tool worldwide. Case evaluation may be confounded by inappropriate or lacking causality assessment, poor herbal product quality, insufficiently documented cases, and failing to exclude alternative causes such as infections by hepatotropic viruses including hepatitis E virus infections; Conclusion: Suspected cases of liver injury from herbal TCM represent major challenges that deserve special clinical and regulatory attention to improve the quality of case evaluations and ascertain patients’ safety and benefit.

  7. Protective effects of fullerenol against chronic doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Injac Rade

    2009-01-01

    Full Text Available Since the introduction of Doxorubicin (Dox for the treatment of cancer in 1969, this compound has demonstrated high antitumor efficacy. Dox's use in chemotherapy has been limited largely due to its diverse toxicities, including cardiac, liver, renal, pulmonary, hematological and testicular toxicity. Various attempts have been made to reduce Dox-induced toxicity. These include dosage optimization, synthesis and use of analogues. Moreover, a number of agents have been investigated as protective agents during Dox therapy. Polyhydroxilated derivatives of fullerene, named fullerenols C60(OHn, are being extensively studied due to their great potential as antioxidants. It is proposed that they might act as free radical scavengers in biological systems, in xenobiotics-induced oxidative stress as well as against radioactive irradiation. We have investigated the effects of fullerenol C60(OH24 (Frl at doses of 25, 50 and 100 mg kg-1 week (for a time-span of three weeks on heart and liver tissue after Doxorubicin (Dox-induced toxicity in rats with colorectal cancer. In the present study, in vivo Wistar male rat model was used to explore whether Frl could protect against Dox-induced (1.5 mg/kg/week for three weeks chronic cardio- and hepatotoxicity and compared the effect with a well-known antioxidant, vitamin C (100 mg/kg/week for three weeks. Commercially available methods were used for blood and pathohystological analysis and for the measurement of enzyme activity (SOD, MDA, GSH, GSSH, GPx, GR, CAT, CK, LDH, α-HBDH, AST, ALT in serum and homogenate samples of heart and liver tissues. According to macroscopic, microscopic, hematological, biochemical, physiological, pharmacological, and pharmacokinetic results, we confirmed that, at all examined doses, Frl exhibits a protective influence on the heart and liver tissue against chronic toxicity induced by Dox.

  8. Evaluation of hepatotoxicity potential of cinnabar-containing An-Gong-Niu-Huang Wan, a patent traditional Chinese medicine.

    Science.gov (United States)

    Lu, Yuan-Fu; Wu, Qin; Liang, Shi-Xia; Miao, Jia-Wei; Shi, Jing-Shan; Liu, Jie

    2011-07-01

    An-Gong-Niu-Huang Wan (AGNH) is a patent traditional Chinese medicine for brain disorders. It contains 10% cinnabar (HgS). Hg is known to produce toxicity to the kidney, brain and liver. Is AGNH safe? Liver is a major organ for drug metabolism, whether the long-term use of AGNH would affect hepatic P450 enzymes is unknown. To address these concerns, mice were given orally cinnabar (300mg/kg), cinnabar-containing AGNH daily for 44days, and liver toxicity was examined and compared with that of methylmercury (MeHg, 2.6mg/kg) and mercuric chloride (HgCl(2), 32mg/kg). Serum aminotransferases were increased by MeHg and HgCl(2) only. Histopathology showed more severe liver damage in MeHg- and HgCl(2)-treated mice than in the cinnabar and AGNH groups. Accumulation of Hg in MeHg- and HgCl(2)-treated mice was 96- and 71-fold higher than controls, respectively, but was only 2-fold after cinnabar and AGNH administration. Expressions of metallothionein-1 and heme oxygenase-1, biomarkers for Hg toxicity, were increased by MeHg and HgCl(2,) but were not altered in cinnabar- and AGNH-treated mice. Expression of hepatic cytochrome P450 genes, such as Cyp1a1, Cyp1b1 and Cyp4a10 was increased only after MeHg and HgCl(2), and the expressions of Cyp3a11and Cyp3a25 were increased by all treatments, indicating the potential Hg-drug interactions after long-term use of cinnabar-containing traditional medicines. Taken together, the results demonstrate that AGNH is much less hepatotoxic than common mercurials, and that the use of total Hg content to evaluate the toxicity of cinnabar-containing traditional Chinese medicines appears to be inappropriate. PMID:21435368

  9. 2-substituted thiazolidine-4(R)-carboxylic acids as prodrugs of L-cysteine. Protection of mice against acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    A number of 2-alkyl- and 2-aryl-substituted thiazolidine-4(R)-carboxylic acids were evaluated for their protective effect against hepatotoxic deaths produced in mice by LD90 doses of acetaminophen. 2(RS)-Methyl-, 2(RS)-n-propyl-, and 2(RS)-n- pentylthiazolidine -4(R)-carboxylic acids (compounds 1b,d,e, respectively) were nearly equipotent in their protective effect based on the number of surviving animals at 48 h as well as by histological criteria. 2(RS)-Ethyl-, 2(RS)-phenyl-, and 2(RS)-(4-pyridyl)thiazolidine-4(R)-carboxylic acids (compounds 1c,f,g) were less protective. The enantiomer of 1b, viz., 2(RS)- methylthiazolidine -4(S)-carboxylic acid (2b), was totally ineffective in this regard. Thiazolidine-4(R)-carboxylic acid (1a), but not its enantiomer, 2a, was a good substrate for a solubilized preparation of rat liver mitochondrial proline oxidase [K/sub m/ 1.1 x 10(-4) M; V/sub max/ . 5.4 mumol min-1 (mg of protein)-1]. Compound 1b was not a substrate for proline oxidase but dissociated to L-cysteine in this system. At physiological pH and temperature, the hydrogens on the methyl group of 1b underwent deuterium exchange with solvent D2O (k1 . 2.5 X 10(-5) s), suggesting that opening of the thiazolidine ring must have taken place. Indeed, 1b labeled with 14C in the 2 and methyl positions was rapidly metabolized by the rat to produce 14CO2, 80% of the dose being excreted in this form in the expired air after 24 h. It is suggested that these 2-substituted thiazolidine-4(R)-carboxylic acids are prodrugs of L-cysteine that liberate this sulfhydryl amino acid in vivo by nonenzymatic ring opening, followed by solvolysis

  10. Hepatoprotective effect of ethanolic extract of Crocus sativus L. (Saffron) stigma in comparison with silymarin against rifampin induced hepatotoxicity in rats

    OpenAIRE

    Daryoush Mohajeri; Yousef Doustar; Ali Rezaei

    2011-01-01

    Background: Anti-tuberculous drug Rifampin is a potent hepatotoxicant. The aim of the present study was to evaluate the protective effect of ethanolic extract of Crocus sativus L. stigma (EECSL.S) in comparison with standard drug silimarin against rifampin-induced hepatotoxicity in the rats. Materials and Method: 40 male Wistar rats with the mean body weight of 200±20 gr and age of 10 weeks were randomly assigned into 5 groups of 8 animals and kept in specific cages with 12/12 h light/dark cy...

  11. The Antitumor Effect and Hepatotoxicity of a Hexokinase II Inhibitor 3-Bromopyruvate: In Vivo Investigation of Intraarterial Administration in a Rabbit VX2 Hepatoma Model

    OpenAIRE

    Jae, Hwan Jun; Chung, Jin Wook; Park, Hee Sun; Lee, Min Jong; LEE, Ki Chang; Kim, Hyo-Cheol; Yoon, Jung Hwan; Chung, Hesson; Park, Jae Hyung

    2009-01-01

    Objective The purpose of this study was to compare the antitumor effect and hepatotoxicity of an intraarterial delivery of low-dose and high-dose 3-bromopyruvate (3-BrPA) and those of a conventional Lipiodol-doxorubicin emulsion in a rabbit VX2 hepatoma model. Materials and Methods This experiment was approved by the animal care committee at our institution. VX2 carcinoma was implanted in the livers of 36 rabbits. Transcatheter intraarterial administration was performed using low dose 3-BrPA ...

  12. Distinct roles of NF-κB p50 in the regulation of acetaminophen-induced inflammatory mediator production and hepatotoxicity

    International Nuclear Information System (INIS)

    Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. In addition to inducing direct cellular damage, oxidants can activate transcription factors including NF-κB, which regulate the production of inflammatory mediators implicated in hepatotoxicity. Here, we investigated the role of APAP-induced oxidative stress and NF-κB in inflammatory mediator production. Treatment of mice with APAP (300 mg/kg, i.p.) resulted in centrilobular hepatic necrosis and increased serum aminotransferase levels. This was correlated with depletion of hepatic glutathione and CuZn superoxide dismutase (SOD). APAP administration also increased expression of the proinflammatory mediators, interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), macrophage chemotactic protein-1 (MCP-1), and KC/gro, and the anti-inflammatory cytokine, interleukin-10 (IL-10). Pretreatment of mice with the antioxidant, N-acetylcysteine (NAC) prevented APAP-induced depletion of glutathione and CuZnSOD, as well as hepatotoxicity. NAC also abrogated APAP-induced increases in TNFα, KC/gro, and IL-10, but augmented expression of the anti-inflammatory cytokines interleukin-4 (IL-4) and transforming growth factor-β (TGFβ). No effects were observed on IL-1β or MCP-1 expression. To determine if NF-κB plays a role in regulating mediator production, we used transgenic mice with a targeted disruption of the gene for NF-κB p50. As observed with NAC pretreatment, the loss of NF-κB p50 was associated with decreased ability of APAP to upregulate TNFα, KC/gro, and IL-10 expression and increased expression of IL-4 and TGFβ. However, in contrast to NAC pretreatment, the loss of p50 had no effect on APAP-induced hepatotoxicity. These data demonstrate that APAP-induced cytokine expression in the liver is influenced by oxidative stress and that this is dependent, in part, on NF-κB. However, NF-κB p50-dependent responses do not appear to play a major role in the pathogenesis of toxicity

  13. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity

    International Nuclear Information System (INIS)

    The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such as Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl4, fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices

  14. Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI

    Directory of Open Access Journals (Sweden)

    Victoria Kegel

    2015-01-01

    Full Text Available Drug induced liver injury (DILI is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2±0.9×106 cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay and cell activity (XTT assay. The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production.

  15. Bibliometric analysis on hepatotoxicity due to antifungal drugs%抗真菌药肝毒性的文献计量学分析

    Institute of Scientific and Technical Information of China (English)

    白艳; 李悦; 刘斌; 王昆; 梅和坤; 张颖; 王瑾; 王睿

    2014-01-01

    Objective To investigate the research progress of hepatotoxicity due to antifungal drugs, in order to provide a reference for clinical safety use of antifungal drugs. Methods "Antifungal drugs" and"hepatotoxicity" were selected as the keywords,and PubMed,Embase,Web of Science,Chinese Academic Periodical Full-text Database China HowNet Chinese Academic Journal( CNKI ) and Chinese Biomedical Literature database( CBMdisc)were searched. All literature on hepatotoxicity due to antifungal drugs were selected. A database of literature accepted for final bibliometric study was established by using Microsoft Excel. The parameters of bibliometrics such as published time( years),the top 5 countries and institutes in publishing,literature′s type,published time( years),top 5 journals in publishing number,top 10 articles in terms of cited frequency were studied. The main content and hotspot of literature were analyzed. The clinical manifestations, mechanism, incidence and prophylactico-therapeutic measures of hepatotoxicity due to antifungal drugs were summarized. Results A total of 221 articals(193 in English,28 in Chinese)were enrolled in the study,of which 116 were original articles,49 reviews and 56 case reports. The published time of first original publication of hepatotoxicity due to antifungal drugs were 1976. The journal which published largest number of articles was Mycoses. The highest citation number of individual article was 531. The main clinical manifestations were weak,right upper quadrant pain,diarrhea,jaundice,cholestasis and fever. The severe cases could cause liver failure. Laboratory examination showed elevated serum transaminases,bilirubin, and alkaline phosphatase. The incidence of liver toxicity due to azole antifungals was higher,the incidence of liver toxicity due to amphotericin B was lower. The antifungal drugs should be used with caution in patients with hypohepatia. For the patients who used antifungal drugs for long time,the liver function should

  16. Application of Cell-Based Assay Systems for the Early Screening of Human Drug Hepatotoxicity in the Discovery Phase of Drug Development

    Directory of Open Access Journals (Sweden)

    Jalal Pourahmad

    2005-01-01

    Full Text Available While drug toxicity (especially hepatotoxicity is the most frequent reason cited for withdrawal of an approved drug, no simple solution exists to adequately predict such adverse events. Simple cytotoxicity assays in HepG2 cells are relatively insensitive to human hepatotoxic drugs in a retrospective analysis of marketed pharmaceuticals. In comparison, a panel of pre-lethal mechanistic cellular assays hold the promise to deliver a more sensitiveapproach to detect endpoint-specific drug toxicities. The panel of assays covered by this review includes steatosis, cholestasis, phospholipidosis, reactive intermediates, mitochondria membrane function, oxidative stress, and drug interactions. In addition, the use of metabolically competent cells or the introduction of major human hepatocytes in these in-vitro studies allow a more complete picture of potential drug side effect. Since inter-individual therapeutic index (TI may differ from patient to patient, the rational use of one or more of these cellular assay and targeted in-vivo exposure data may allow pharmaceutical scientists to select drugcandidates with a higher TI potential in the drug discovery phase.

  17. Role of CYP3A in regulating hepatic clearance and hepatotoxicity of triptolide in rat liver microsomes and sandwich-cultured hepatocytes.

    Science.gov (United States)

    Shen, Guolin; Zhuang, Xiaomei; Xiao, Weibin; Kong, Linglei; Tan, Yan; Li, Hua

    2014-09-01

    Triptolide (TP) is an active component of Tripterygium wilfordii Hook. F and widely used to treat autoimmune and inflammatory diseases. It has been demonstrated that cytochrome P450 (CYP) are involved in the metabolism of TP. However, the underlying mechanisms of TP-induced toxicity mediated by hepatic CYP have not been well delineated. In this study, rat liver microsomes (RLM) and sandwich-cultured rat hepatocytes (SCRH) were used to identify the mechanism involving the CYP3A inhibition by TP and to evaluate TP-induced liver damage after CYP3A modulation by the known inhibitor, ketoconazole, and the known inducer, dexamethasone. The results showed that TP itself had a time- and concentration-dependent inhibitory effect on CYP3A. When the CYP3A inhibitor and inducer were added, the enzyme activity and hepatotoxicity changed significantly. The enzyme inducer increased CYP3A activity and decreased the metabolic half life (t1/2) of TP when compared to the control group, while the enzyme inhibitor had an opposite effect. Our findings reveal that TP is a weak CYP3A inhibitor involving the time-dependent inhibition mechanism. The induction or inhibition of CYP3A played an important role in TP-induced hepatotoxicity. Clinicians should be aware of the metabolic characteristics of TP to maximize therapeutic efficacy and reduce TP-induced toxicity. PMID:24910460

  18. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  19. Elucidating Differences in the Hepatotoxic Potential of Tolcapone and Entacapone With DILIsym(®), a Mechanistic Model of Drug-Induced Liver Injury.

    Science.gov (United States)

    Longo, D M; Yang, Y; Watkins, P B; Howell, B A; Siler, S Q

    2016-01-01

    Tolcapone and entacapone are catechol-O-methyltransferase (COMT) inhibitors developed as adjunct therapies for treating Parkinson's disease. While both drugs have been shown to cause mitochondrial dysfunction and inhibition of the bile salt export protein (BSEP), liver injury has only been associated with the use of tolcapone. Here we used a multiscale, mechanistic model (DILIsym(®)) to simulate the response to tolcapone and entacapone. In a simulated population (SimPops™) receiving recommended doses of tolcapone (200 mg t.i.d.), increases in serum alanine transaminase (ALT) >3× the upper limit of normal (ULN) were observed in 2.2% of the population. In contrast, no simulated patients receiving recommended doses of entacapone (200 mg 8× day) experienced serum ALT >3× ULN. Further, DILIsym(®) analyses revealed patient-specific risk factors that may contribute to tolcapone-mediated hepatotoxicity. In summary, the simulations demonstrated that differences in mitochondrial uncoupling potency and hepatic exposure primarily account for the difference in hepatotoxic potential for tolcapone and entacapone. PMID:26844013

  20. Protective Effects of Rooibos (Aspalathus linearis and/or Red Palm Oil (Elaeis guineensis Supplementation on tert-Butyl Hydroperoxide-Induced Oxidative Hepatotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Olawale R. Ajuwon

    2013-01-01

    Full Text Available The possible protective effects of an aqueous rooibos extract (Aspalathus linearis, red palm oil (RPO (Elaeis guineensis, or their combination on tert-butyl-hydroperoxide-(t-BHP-induced oxidative hepatotoxicity in Wistar rats were investigated. tert-butyl hydroperoxide caused a significant (P<0.05 elevation in conjugated dienes (CD and malondialdehyde (MDA levels, significantly (P<0.05 decreased reduced glutathione (GSH and GSH : GSSG ratio, and induced varying changes in activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase in the blood and liver. This apparent oxidative injury was associated with histopathological changes in liver architecture and elevated levels of serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, and lactate dehydrogenase (LDH. Supplementation with rooibos, RPO, or their combination significantly (P<0.05 decreased CD and MDA levels in the liver and reduced serum level of ALT, AST, and LDH. Likewise, changes observed in the activities of antioxidant enzymes and impairment in redox status in the erythrocytes and liver were reversed. The observed protective effects when rooibos and RPO were supplemented concomitantly were neither additive nor synergistic. Our results suggested that rooibos and RPO, either supplemented alone or combined, are capable of alleviating t-BHP-induced oxidative hepatotoxicity, and the mechanism of this protection may involve inhibition of lipid peroxidation and modulation of antioxidants enzymes and glutathione status.

  1. A strategy to improve the detection of drug-induced hepatotoxicity Una estrategia para mejorar la detección de hepatotoxicidad por medicamentos

    Directory of Open Access Journals (Sweden)

    A. Ruiz Montero

    2005-03-01

    Full Text Available Aims: to report a new strategy for the detection of hepatotoxic adverse drug reactions (ADRs in hospitalized patients improving the results obtained with other methods. Design: the model is based on the identification of a single alert signal in various target clinical departments over a 12-month period. Each patient was later interviewed following a set protocol. The main results analyzed were the drugs suspected of ADR; causal relationship between suspected drugs and ADRs; ADR severity, and incidence of hepatotoxic ADR/100,000 inhabitants. Subjects: population served by a university-affiliated urban teaching hospital (519,381 inhabitants. Results: The overall ratio of confirmed/suspected ADRs was high (35/80. The most commonly reported drug was amoxicillin-clavulanic acid (4 cases. With regard to causality, 2 suspected cases were classified as definite and 14 as probable. The distribution according to the severity of hepatotoxicity was 6 severe and 29 mild cases. The incidence of hepatotoxic ADRs/100,000 inhabitants as revealed by our method was much higher versus voluntary report (6.74 and 1.79, respectively. Conclusions: our method has proven effective for improving the detection of hepatotoxic ADRs, and may be extended to other types of adverse reactions.Objetivos: comunicar una nueva estrategia para la detección de reacciones hepatotóxicas por medicamentos que mejora los resultados obtenidos con otros métodos utilizados. Diseño: el modelo se basa en la identificación de una señal de alerta simple en los pacientes de varios servicios diana, durante 12 meses. Cada paciente fue posteriormente entrevistado siguiendo un protocolo específico. Se analizaron: los fármacos sospechosos de producir hepatotoxicidad, la relación de causalidad entre el fármaco sospechoso y la hepatotoxicidad, la gravedad y la incidencia de hepatotoxicidad medicamentosa/100.000 habitantes. Pacientes: la población del área de influencia de nuestro hospital

  2. Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice.

    Science.gov (United States)

    Kaur, Gurpreet; Jabbar, Zoobi; Athar, Mohammad; Alam, M Sarwar

    2006-07-01

    Most pomegranate (Punica granatum Linn., Punicaceae) fruit parts are known to possess enormous antioxidant activity. The present study evaluated antioxidant and hepatoprotective activity of pomegranate flowers. Alcoholic (ethanolic) extract of flowers was prepared and used in the present study. The extract was found to contain a large amount of polyphenols and exhibit enormous reducing ability, both indicative of potent antioxidant ability. The extract showed 81.6% antioxidant activity in DPPH model system. The ability of extract to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) was tested and it was found to significantly scavenge superoxide (O(2)(.-)) (by up to 53.3%), hydrogen peroxide (H(2)O(2)) (by up to 30%), hydroxyl radicals (()OH) (by up to 37%) and nitric oxide (NO) (by up to 74.5%). The extract also inhibited (.)OH induced oxidation of lipids and proteins in vitro. These results indicated pomegranate flower extract to exert a significant antioxidant activity in vitro. The efficacy of extract was tested in vivo and it was found to exhibit a potent protective activity in acute oxidative tissue injury animal model: ferric nitrilotriacetate (Fe-NTA) induced hepatotoxicity in mice. Intraperitoneal administration of 9 mg/kg body wt. Fe-NTA to mice induced oxidative stress and liver injury. Pretreatment with pomegranate flower extract at a dose regimen of 50-150 mg/kg body wt. for a week significantly and dose dependently protected against Fe-NTA induced oxidative stress as well as hepatic injury. The extract afforded up to 60% protection against hepatic lipid peroxidation and preserved glutathione (GSH) levels and activities of antioxidant enzymes viz., catalase (CAT), glutathione peroxidase (GPX) glutathione reductase (GR) and glutathione-S-transferase (GST) by up to 36%, 28.5%, 28.7%, 40.2% and 42.5% respectively. A protection against Fe-NTA induced liver injury was apparent as inhibition in the modulation of liver markers viz

  3. A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action

    International Nuclear Information System (INIS)

    profiling using an in vitro assay may offer pertinent biological data to support predictions of in vivo hepatotoxicity potential

  4. Chlordecone potentiates hepatic fibrosis in chronic liver injury induced by carbon tetrachloride in mice.

    Science.gov (United States)

    Tabet, Elise; Genet, Valentine; Tiaho, François; Lucas-Clerc, Catherine; Gelu-Simeon, Moana; Piquet-Pellorce, Claire; Samson, Michel

    2016-07-25

    Chronic liver damage due to viral or chemical agents leads to a repair process resulting in hepatic fibrosis. Fibrosis may lead to cirrhosis, which may progress to liver cancer or a loss of liver function, with an associated risk of liver failure and death. Chlordecone is a chlorinated pesticide used in the 1990s. It is not itself hepatotoxic, but its metabolism in the liver triggers hepatomegaly and potentiates hepatotoxic agents. Chlordecone is now banned, but it persists in soil and water, resulting in an ongoing public health problem in the Caribbean area. We assessed the probable impact of chlordecone on the progression of liver fibrosis in the population of contaminated areas, by developing a mouse model of chronic co-exposure to chlordecone and a hepatotoxic agent, carbon tetrachloride (CCl4). After repeated administrations of chlordecone and CCl4 by gavage over a 12-week period, we checked for liver damage in the exposed mice, by determining serum liver transaminase (AST, ALT) levels, histological examinations of the liver and measuring the expression of genes encoding extracellular matrix components. The co-exposure of mice to CCl4 and chlordecone resulted in significant increases in ALT and AST levels. Chlordecone also increased expression of the Col1A2, MMP-2, TIMP-1 and PAI-1 genes in CCl4-treated mice. Finally, we demonstrated, by quantifying areas of collagen deposition and alpha-SMA gene expression, that chlordecone potentiated the hepatic fibrosis induced by CCl4. In conclusion, our data suggest that chlordecone potentiates hepatic fibrosis in mice with CCl4-induced chronic liver injury. PMID:26853152

  5. HEPATOTOXICITY OF EUGENOL

    OpenAIRE

    Soundran, Vijaya; Namagiri, Tara; Manonayaki, S.; Vanithakumari, G.

    1994-01-01

    EUGENOL a widely used pharmaceutical agent proceeds toxicity on inhalation in rats. Two different doses 20 & 30 μg/100g body weight/ day of eugenol were given intramuscularly to male albino rats for 10 days and the liver function was assessed by measuring the specific enzyme activities, and total and differential bilirubin concentration. There was an appreciable increase in total as well as differential bilirubin fractions and a dose dependent increase was noticed in the activities of alkalin...

  6. Oral contraceptives induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    B. Akshaya Srikanth

    2013-02-01

    Full Text Available Oral Contraceptives are the pharmacological agents used to prevent pregnancy. These are divided as the combined and progestogen methods and are administered orally, transdermally, systemically and via vaginal route. All these methods contain both oestrogen and progestogen. Vigorous usage of oral contraceptives and anabolic steroids as associated with cholestasis, vascular lesions and hepatic neoplasm. Benign hepatic neoplasms are clearly associated with oral contraceptives. In this article we discuss the various hepatocellular complications like cholestasis, benign neoplasm and hepatocellular carcinoma occurred by oral contraceptives. [Int J Basic Clin Pharmacol 2013; 2(1.000: 91-93

  7. Methotrexate induced chronic hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hemalatha Thiyagarajan

    2016-06-01

    Full Text Available 55 year old male patient diagnosed to have psoriasis 2.5 years ago and was started on methotrexate 5 mg thrice weekly. Patient was symptomatically better and continued methotrexate without proper follow up. 2 months ago patient experienced abdominal pain and distension. Skin lesions worsened on discontinuing methotrexate but later subsided with treatment. 1 week ago, patient had abdominal pain, bleeding and ascites. Cumulative dose of methotrexate 1.8g; Liver function tests: total bilirubin- 2.0; direct - 1.0; platelet count: 58,000 cells/cu.mm; ascitic tap done and fresh frozen plasma was infused. [Int J Basic Clin Pharmacol 2016; 5(3.000: 1138-1139

  8. A New Isoflavonoid from Seeds of Lepidium sativum L. and Its Protective Effect on Hepatotoxicity Induced by Paracetamol in Male Rats

    Directory of Open Access Journals (Sweden)

    Mohamed Sakran

    2014-09-01

    Full Text Available A new isoflavonoid, 5,6-dimethoxy-2',3'-methylenedioxy-7-C-β-d-gluco-pyranosyl isoflavone was isolated from the seeds of Lepidium sativum L. along with two known isoflavonoids, 7-hydroxy-4',5,6-trimethoxyisoflavone and 7-hydroxy-5,6-dimethoxy-2',3'-methylenedioxyisoflavone. The structures of all compounds were elucidated with NMR spectrometry. Compounds 1, 2 and the new isoflavonoid 3 were evaluated for their ability to reduce the hepatotoxicity induced by paracetamol in male rats by reducing the damage and toxicity effects on liver cells with a significant improvement of total antioxidant capacity, normalizing the levels of liver enzymes GSH, SOD, GPX, CAT and GST compared to control group.

  9. Safety Evaluation of Chinese Medicine Injections with a Cell Imaging-Based Multiparametric Assay Revealed a Critical Involvement of Mitochondrial Function in Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2015-01-01

    Full Text Available The safety of herbal medicine products has been a widespread concern due to their complex chemical nature and lack of proper evaluation methods. We have adapted a sensitive and reproducible multiparametric cell-based high-content analysis assay to evaluate the hepatic-safety of four Chinese medicine injections and validated it with classical animal-based toxicity assays. Our results suggested that the reported hepatotoxicity by one of the drugs, Fufangkushen injection, could be attributed at least in part to the interference of mitochondrial function in human HepG2 cells by some of its constituents. This method should be useful for both preclinical screen in a drug discovery program and postclinical evaluation of herbal medicine preparations.

  10. Hepatoprotective effect of ethanolic extract of Crocus sativus L. (Saffron stigma in comparison with silymarin against rifampin induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Daryoush Mohajeri

    2011-01-01

    Full Text Available Background: Anti-tuberculous drug Rifampin is a potent hepatotoxicant. The aim of the present study was to evaluate the protective effect of ethanolic extract of Crocus sativus L. stigma (EECSL.S in comparison with standard drug silimarin against rifampin-induced hepatotoxicity in the rats. Materials and Method: 40 male Wistar rats with the mean body weight of 200±20 gr and age of 10 weeks were randomly assigned into 5 groups of 8 animals and kept in specific cages with 12/12 h light/dark cycle at 21±2οC. Group I as normal control received normal saline (10 ml/kg and group II as toxicant control received rifampin (500 mg/kg. Group Ш as positive control received silymarin plus rifampin (500 mg/kg and groups IV and V (50 mg/kg received EECSL.S at 40 mg/kg and 80 mg/kg plus rifampin, respectively. All the treatments were carried out through the gavage dissolving in 10 ml/kg normal saline daily for 1 month. At the end of experiment, levels of liver function marker enzymes (Aspartate aminotransferase, Alanine aminotransferase and Alkaline Phosphatase, total bilirubin, albumin and total proteins were assessed in serum of the rats. Moreover, histopathological observation was assayed at the degree of hepatic injury. Results: In rifampin-treated rats, silymarin and EECSL.S (40 and 80 mg/kg significantly decreased the levels of serum biomarker of hepathic injury and total bilirubin and elevated the levels of albumin and total proteins. Histopathologically, silymarin and EECSL.S ameliorated rifampin induced hepatic injury. Histopathological changes were in agreement with biochemical findings.Conclusion: Results indicated that EECSL.S (80 mg/kg equals with silymarin as standard drug, point of view hepatoprotective effects against rifampin-induced hepatotoxicity

  11. Impact of glutathione S-transferase M1 and T1 on anti-tuberculosis drug-induced hepatotoxicity in Chinese pediatric patients.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available Anti-tuberculosis drug induced hepatotoxicity (ATDH is a major adverse drug reaction associated for anti-tuberculosis therapy. The glutathione S-transferases (GST plays a crucial role in the detoxification of hepatotoxic metabolites of anti-tuberculosis drugs.An association between GSTM1/GSTT1 null mutations and increased risk of ATDH has been demonstrated in adults. Given the ethnic differences and developmental changes, our study aims to investigate the potential impacts of GSTM1/GSTT1 genotypes on the development of ATDH in Han Chinese children treated with anti-tuberculosis therapy.Children receiving anti-tuberculosis therapy with or without evidence of ATDH were considered as the cases or controls, respectively. The GSTM1 and GSTT1 genotyping were performed using the polymerase chain reaction.One hundred sixty-three children (20 cases and 143 controls with a mean age of 4.7 years (range: 2 months-14.1 years were included. For the GSTM1, 14 (70.0% cases and 96 (67.1% controls had homozygous null mutations. For the GSTT1, 13 (65.0% cases and 97 (67.8% controls had homozygous null mutations. Neither the GSTM1, nor the GSTT1 polymorphism was significantly correlated with the occurrence of ATHD.Our results did not support the GSTM1 and GSTT1 polymorphisms as the predictors of ADTH in Chinese Han children treated with anti-tuberculosis drugs. An age-related association between pharmacogenetics and ATHD need to be confirmed in the further study.

  12. Effect of silibinin and vitamin E on the ASK1-p38 MAPK pathway in D-galactosamine/lipopolysaccharide induced hepatotoxicity.

    Science.gov (United States)

    Hashem, Reem M; Hassanin, Kamel Ma; Rashed, Laila A; Mahmoud, Mohamed O; Hassan, Mohamed G

    2016-06-01

    Apoptosis signal-regulating kinase 1 (ASK1), a redox-sensor mitogen-activated protein kinase kinase kinase (MAPKKK) that activates p38 MAPK pathways in oxidative stress-induced hepatotoxicity in D-galactosamine/lipopolysaccharide (D-GalN/LPS) model, is a key central pathway in which specific targeting of ASK1 deactivation is of a great therapeutic potential. We tested the effect of silibinin and vitamin E in curative and prophylactic manner of treatment on the negative modulators of ASK1, thioredoxin1 (Trx1), thioredoxin reductase1 (TrxR1), and the protein phosphatase (PP5), whereas they have previously proven to have hepatoprotective effect. Either curative or prophylactic silibinin and vitamin E groups significantly decreased ASK1 and p38 MAPK levels through increasing the gene expression of Trx1, TrxR1, and PP5 to reduce the oxidative stress as demonstrated by decreasing the levels of NADPH oxidase 4 (NOX4), TBARS and conjugated diene with a concomitant increase in the levels of GSH, CAT, and SOD. These results were confirmed by histopathology examination which illustrated progressive degenerative changes of hepatocytes such as hydropic degeneration, vacuolation, pyknosis, karyolysis, and loss of architecture of some cells in D-GalN/LPS treatment, and these features were alleviated with silibinin and vitamin E administration. In conclusion, silibinin and vitamin E decreased ASK1-p38 MAPK pathway through deactivating the upstream signalling ASK1 molecule via increasing the levels of Trx1 and TrxR1 as well as the PP5 to alleviate in D-GalN/LPS induced hepatotoxicity. PMID:26941058

  13. Comparison of the anti-inflammatory active constituents and hepatotoxic pyrrolizidine alkaloids in two Senecio plants and their preparations by LC-UV and LC-MS.

    Science.gov (United States)

    Chen, Pinghong; Wang, Yi; Chen, Lulin; Jiang, Wei; Niu, Yan; Shao, Qing; Gao, Lu; Zhao, Quancheng; Yan, Licheng; Wang, Shufang

    2015-11-10

    Two Senecio plants, Senecio cannabifolius Less. and its variety S. cannabifolius Less. var. integrifolius (Kiodz.) Kidam., were both used as the raw material of Feining granule, a traditional Chinese medicine product for treating respiratory diseases. In this study, the chemical profiles of these two plants were investigated and compared by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). A total number of 83 constituents, including 55 organic acids, 11 flavonoids, 4 alkaloids, 3 terpenes and 10 other types of compounds, were characterized. The results indicated that the levels of most flavonoids were higher in S. cannabifolius than in S. cannabifolius var. integrifolius, however, the levels of hepatotoxic pyrrolizidine alkaloids (PAs) were higher in S. cannabifolius var. integrifolius than in S. cannabifolius. Fifteen constituents were evaluated on lipopolysaccharides (LPS) induced RAW 264.7 cells, and eleven of them showed inhibition effect against nitric oxide (NO) production. Finally, the levels of ten major constituents (including seven anti-inflammatory active ones) and two PAs in Feining granule from two Senecio plants were determined and compared by the LC-UV and LC-MS methods, respectively. It was found that one organic acid (homogentisic acid) and two PAs (seneciphylline and senecionine) had higher contents in the preparation of S. cannabifolius var. integrifolius than in that of S. cannabifolius, however, the situations were inverse for the levels of four organic acids and flavonoids (chlorogenic acid, hyperoside, isoquercitrin, and isochlorogenic acid B). Based on the above results, S. cannabifolius might be a better raw material for Feining granule than S. cannabifolius var. integrifolius, because it contained more anti-inflammatory constituents and less hepatotoxic PAs than the latter. However, more pharmacological evaluations should be carried out to support the selection. The results in this study were helpful

  14. Protection of rats against 3-butene-1,2-diol-induced hepatotoxicity and hypoglycemia by N-acetyl-L-cysteine

    International Nuclear Information System (INIS)

    3-Butene-1,2-diol (BDD), an allylic alcohol and major metabolite of 1,3-butadiene, has previously been shown to cause hepatotoxicity and hypoglycemia in male Sprague-Dawley rats, but the mechanisms of toxicity were unclear. In this study, rats were administered BDD (250 mg/kg) or saline, ip, and serum insulin levels, hepatic lactate levels, and hepatic cellular and mitochondrial GSH, GSSG, ATP, and ADP levels were measured 1 or 4 h after treatment. The results show that serum insulin levels were not causing the hypoglycemia and that the hypoglycemia was not caused by an enhancement of the metabolism of pyruvate to lactate because hepatic lactate levels were either similar (1 h) or lower (4 h) than controls. However, both hepatic cellular and mitochondrial GSH and GSSG levels were severely depleted 1 and 4 h after treatment and the mitochondrial ATP/ADP ratio was also lowered 4 h after treatment relative to controls. Because these results suggested a role for hepatic cellular and mitochondrial GSH in BDD toxicity, additional rats were administered N-acetyl-L-cysteine (NAC; 200 mg/kg) 15 min after BDD administration. NAC treatment partially prevented depletion of hepatic cellular and mitochondrial GSH and preserved the mitochondrial ATP/ADP ratio. NAC also prevented the severe depletion of serum glucose concentration and the elevation of serum alanine aminotransferase activity after BDD treatment without affecting the plasma concentration of BDD. Thus, depletion of hepatic cellular and mitochondrial GSH followed by the decrease in the mitochondrial ATP/ADP ratio was likely contributing to the mechanisms of hepatotoxicity and hypoglycemia in the rat

  15. Formation of novel non-cyclooxygena