WorldWideScience

Sample records for carbon storage interim

  1. Interim storage study report

    Energy Technology Data Exchange (ETDEWEB)

    Rawlins, J.K.

    1998-02-01

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  2. Corrosion behavior of carbon steel containers with organic coating during interim storage and disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    In the Federal Republic of Germany low and intermediate level wastes (e.g., solids, concentrates) are conditioned in carbon steel canisters with organic coating. For this purpose waste drums and steel sheet containers are used. They serve as unshielded packagings during interim storage, transport and disposal in the Konrad mine or in the Gorleben salt dome. Considering the licensing situation for the planned repositories, interim storage periods of up to 20 years are possible. During this period, the transport to the repository and in the operation phase of the repository, the integrity of the waste packaging must be guaranteed. Therefore, special attention must be paid to the corrosion behavior of the steel sheet packagings described in this report. For these reasons, corrosion studies were made on epoxy resin coated or polyurethane coated and uncoated stell sheet specimens. In the investigations design details of the containers (e.g., roundings, screwed connections, gaps, welded seams) as well as damage due to handling (cracks in the organic coating) were taken into account. The specimens were stored for six and twelve months, respectively, both in waste form simulates (inner corrosion of container) and under simulated conditions of an interim storage (storage hall) and of a repository (storage galeries in Konrad and Asse, salt brines) in order to be able to describe external container corrosion. Under simplifying boundary conditions an extrapolation is made of the test results. It has been possible to show that the carbon steel containers described here, provided with a 150 μm epoxy resin coating on the inner and external sides, fulfil the requirements imposed on them as regards their corrosion behavior. (orig.)

  3. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    International Nuclear Information System (INIS)

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  4. Glass packages in interim storage

    International Nuclear Information System (INIS)

    This report summarize the current state of knowledge concerning the behavior of type C waste packages consisting of vitrified high-level solutions produced by reprocessing spent fuel. The composition and the physical and chemical properties of the feed solutions are reviewed, and the vitrification process is described. Sodium alumino-borosilicate glass compositions are generally employed - the glass used at la Hague for LWR fuel solutions, for example, contains 45 % SiO2. The major physical, chemical, mechanical and thermal properties of the glass are reviewed. In order to allow their thermal power to diminish, the 3630 glass packages produced (as of January 1993) in the vitrification facilities at Marcoule and La Hague are placed in interim storage for several decades. The actual interim storage period has not been defined, as it is closely related to the concept and organization selected for the final destination of the packages: a geological repository. The glass behavior under irradiation is described. Considerable basic and applied research has been conducted to assess the aqueous leaching behavior of nuclear containment glass. The effects of various repository parameters (temperature, flow rate, nature of the environmental materials) have been investigated. The experimental findings have been used to specify a model describing the kinetics of aqueous corrosion of the glass. More generally all the ''source term'' models developed in France by the CEA or by ANDRA are summarized. (author). 152 refs., 33 figs

  5. CANDU spent fuel dry storage interim technique

    International Nuclear Information System (INIS)

    CANDU heavy water reactor is developed by Atomic Energy of Canada (AECL) it has 40 years of design life. During operation, the reactor can discharge a lot of spent fuels by using natural uranium. The spent fuel interim storage should be considered because the spent fuel bay storage capacity is limited with 6 years inventory. Spent fuel wet interim storage technique was adopted by AECL before 1970s, but it is diseconomy and produced extra radiation waste. So based on CANDU smaller fuel bundle dimension, lighter weight, lower burn-up and no-critical risk, AECL developed spent fuel dry interim storage technique which was applied in many CANDU reactors. Spent fuel dry interim storage facility should be designed base on critical accident prevention, decay heat removal, radiation protection and fissionable material containment. According to this introduction, analysis spent fuel dry interim storage facility and equipment design feature, it can be concluded that spent fuel dry interim storage could be met with the design requirement. (author)

  6. Design review report FFTF interim storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.L.

    1995-01-03

    Final Design Review Report for the FFTF Interim Storage Cask. The Interim Storage Cask (ISC) will be used for long term above ground dry storage of FFTF irradiated fuel in Core Component Containers (CCC)s. The CCC has been designed and will house assemblies that have been sodium washed in the IEM Cell. The Solid Waste Cask (SWC) will transfer a full CCC from the IEM Cell to the RSB Cask Loading Station where the ISC will be located to receive it. Once the loaded ISC has been sealed at the RSB Cask Loading Station, it will be transferred by facility crane to the DSWC Transporter. After the ISC has been transferred to the Interim Storage Area (ISA), which is yet to be designed, a mobile crane will be used to place the ISC in its final storage location.

  7. Design review report FFTF interim storage cask

    International Nuclear Information System (INIS)

    Final Design Review Report for the FFTF Interim Storage Cask. The Interim Storage Cask (ISC) will be used for long term above ground dry storage of FFTF irradiated fuel in Core Component Containers (CCC)s. The CCC has been designed and will house assemblies that have been sodium washed in the IEM Cell. The Solid Waste Cask (SWC) will transfer a full CCC from the IEM Cell to the RSB Cask Loading Station where the ISC will be located to receive it. Once the loaded ISC has been sealed at the RSB Cask Loading Station, it will be transferred by facility crane to the DSWC Transporter. After the ISC has been transferred to the Interim Storage Area (ISA), which is yet to be designed, a mobile crane will be used to place the ISC in its final storage location

  8. Choosing a spent fuel interim storage system

    International Nuclear Information System (INIS)

    The Transnucleaire Group has developed different modular solutions to address spent fuel interim storage needs of NPP. These solutions, that are present in Europe, USA and Asia are metal casks (dual purpose or storage only) of the TN 24 family and the NUHOMS canister based system. It is not always simple for an operator to sort out relevant choice criteria. After explaining the basic designs involved on the examples of the TN 120 WWER dual purpose cask and the NUHOMS 56 WWER for WWER 440 spent fuel, we shall discuss the criteria that govern the choice of a given spent fuel interim storage system from the stand point of the operator. In conclusion, choosing and implementing an interim storage system is a complex process, whose implications can be far reaching for the long-term success of a spent fuel management policy. (author)

  9. Interim Storage Facility decommissioning. Final report

    International Nuclear Information System (INIS)

    Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel

  10. 200 Area Interim Storage Area Technical Safety Requirements

    International Nuclear Information System (INIS)

    The 200 Area Interim Storage Area Technical Safety Requirements define administrative controls and design features required to ensure safe operation during receipt and storage of canisters containing spent nuclear fuel. This document is based on the 200 Area Interim Storage Area, Annex D, Final Safety Analysis Report which contains information specific to the 200 Area Interim Storage Area

  11. Interim storage facility for spent fuel

    International Nuclear Information System (INIS)

    The spent fuel generated from the operation of a nuclear power plant is to be treated in the reprocessing plant in Rokkasho, Aomori. At present, spent fuel is stored in the nuclear power plant until it is reprocessed. However the amount of spent fuel generated exceeds the capacity of the reprocessing plant. Hence an additional spent fuel storage facility is needed for the nuclear fuel cycle. The spent fuel interim storage facility is the first institution in Japan that stores spent fuel outside of the nuclear power plant site. Our company has received an order for internal equipment for this facility. This paper introduces an overview of the interim storage facility for spent fuel. (author)

  12. The Federal interim storage facility for radioactive waste under construction

    International Nuclear Information System (INIS)

    A short description of the design of the Federal interim storage facility for radioactive waste, the security aspects and the storage material is given. The interim storage facility is currently under construction in Wuerenlingen at the Paul Scherrer Institute. figs., tabs., 27 refs

  13. Transuranic storage and assay facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    Porten, D.R., Fluor Daniel Hanford

    1997-02-12

    The Transuranic Waste Storage and Assay Facility (TRUSAF) Interim Safety Basis document provides the authorization basis for the interim operation and restriction on interim operations for the TRUSAF. The TRUSAF ISB demonstrates that the TRUSAF can be operated safely, protecting the workers, the public, and the environment. The previous safety analysis document TRUSAF Hazards Identification and Evaluation (WHC 1987) is superseded by this document.

  14. The interim fuel storage facility of the PBMR

    International Nuclear Information System (INIS)

    The PBMR's spent fuel and partially burnt fuel are stored in the sphere storage system (SSS), which acts as the interim fuel storage facility of the plant. It is unique in the world since the fuel is stored in bulk containers (called storage tanks), each capable of holding more than 500,000 spheres for a period of about 80 years. The SSS has the ability to transfer the contents of one tank to another tank, and to return partially burnt fuel back to the reactor core for re-fuelling. The storage tanks are individually sealed carbon steel pressure vessels. They form the final barrier of any fission products that have diffused from the fuel spheres. Sub-criticality is achieved through the geometric cross-section of the tank, and by taking credit for fuel burn-up. Protection from the corrosive environment where the PBMR Demonstration plant will be built is achieved by actively cooling the tank with clean dry air. In the event of an active cooling failure, louvres open automatically and cooling is done passively via natural convection making use of the chimney-effect. Sufficient radiation protection is provided around each tank to facilitate maintenance and inspection operations where needed. The design of the SSS is nearing the end of its basic design phase, and for some components, detail design work has already commenced. The design complies with all spent fuel storage requirements and is seen as a cost-effective solution for the interim storage of PBMR spent fuel

  15. Transport and interim storage casks in Switzerland

    International Nuclear Information System (INIS)

    Full text: The Swiss utilities have chosen two different ways for the management of their spent fuel after initial on-site cooling: either reprocessing at La Hague plant (COGEMA) and Sellafield plant (COGEMA); or interim storage at the Central Interim Storage Facility called 'Zwischenlager Wuerenlingen AG' ( ZWILAG). Following international call for tenders, COGEMA LOGISTICS were awarded contracts for the supply of dual-purpose transport and storage casks for the interim storage of various spent fuel assemblies. All these casks belong to the family of the TN 24 dual purpose spent fuel storage casks in operation in the USA and in Belgium as well. They offer utilities a modular solution for the interim storage of spent fuel in robust metal casks which are fully suitable for off site transports. This flexible product can be readily adapted to suit individual user needs. The Leibstadt Nuclear Power Plant (KKL) has purchased six licensed dual-purpose TN97L spent fuel casks (97 BWR type fuel assemblies capacity). Three of them are already in operation at ZWILAG. COGEMA LOGISTICS has also delivered a dual-purpose TN52L spent fuel casks (52 BWR type fuel assemblies capacity) presently used for transport of spent fuel for reprocessing. The Goesgen Nuclear Power Plant (KKG) has purchased four licensed dual-purpose TN24G spent fuel casks (37 PWR type fuel assemblies capacity). They are all in operation at ZWILAG. The Muehleberg Nuclear Power Plant (BKW/KKM) has purchased 2 TN24BH spent fuel casks (69 BWR type fuel assemblies capacity). At the time of this abstract, cold trials are carried out involving the shuttle transport cask TN9/4 procured by COGEMA LOGISTICS as well. This paper will present the main features of these casks and the main steps of their development and implementation: 1) Main features of the casks: - The basic structure is a thick steel cylindrical forging with a welded on forged bottom and two forged steel lids. Containment and gamma shielding features of

  16. Spent Fuel Behaviour During Interim Storage

    International Nuclear Information System (INIS)

    Objective: Review of spent fuel data relevant for future storage in Spain Perform destructive and non-destructive examinations on irradiated and non-irradiated fuel rods relevant to Spanish spent fuel management. Research approach: Among the programmes initiated in the last years (finished or about to be finished) one may highlight the following ones: • Isotopic measurements on high burnup fuels: up to 75 GW·d·t(U)-1 PWR and 53 GW·d·t(U)-1 BWR peak values; • Mechanical tests on high burnup PWR (ZIRLO) cladding and BWR (Zry-2) cladding samples; • Mechanical tests on unirradiated ZIRLO rods. Influence of hydrides content; • Modelling of mechanical tests with unirradiated claddings; • Interim storage creep modelling; • Burnup measurement equipment; • Fuel database

  17. Technical bases for interim storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    The experience base for water storage of spent nuclear fuel has evolved since 1943. The technology base includes licensing documentation, standards, technology studies, pool operator experience, and documentation from public hearings. That base reflects a technology which is largely successful and mundane. It projects probable satisfactory water storage of spent water reactor fuel for several decades. Interim dry storage of spent water reactor fuel is not yet licensed in the US, but a data base and documentation have developed. There do not appear to be technological barriers to interim dry storage, based on demonstrations with irradiated fuel. Water storage will continue to be a part of spent fuel management at reactors. Whether dry storage becomes a prominent interim fuel management option depends on licensing and economic considerations. National policies will strongly influence how long the spent fuel remains in interim storage and what its final disposition will be

  18. Fire Hazards Analysis for the 200 Area Interim Storage Area

    International Nuclear Information System (INIS)

    This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards

  19. Packaging, transportation and interim storage of unconditioned and conditioned wastes

    International Nuclear Information System (INIS)

    The methods and experiences for packaging, transport and possibilities for interim storage of unconditioned wastes are described. After the waste treatment and immobilization, it is packaged for transport and final disposal following the requirements of the IAEA transport regulations and national regulations. The characteristics of some common types of containe and shielding systems, and some techniques for interim storage of conditioned wastes, are presented. (Author)

  20. Model for low temperature oxidation during long term interim storage

    International Nuclear Information System (INIS)

    Low-alloyed steels or carbon steels are considered as candidate materials for the fabrication of some nuclear waste package containers for long term interim storage. The containers are required to remain retrievable for centuries. One factor limiting their performance on this time scale is corrosion. The estimation of the metal thickness lost by dry oxidation over such long periods requires the construction of reliable models from short-time experimental data. In a first step, models based on simplified oxidation theories have been derived from experimental data on iron and a low-alloy steel oxidation. Their extrapolation to long oxidation periods confirms that the expected damage due to dry oxidation could be small. In order to improve the reliability of these predictions advanced models taking into account the elementary processes involved in the whole oxidation mechanism, are under development. (authors)

  1. System Specification for Immobilized High-Level Waste Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    CALMUS, R.B.

    2000-12-27

    This specification establishes the system-level functional, performance, design, interface, and test requirements for Phase 1 of the IHLW Interim Storage System, located at the Hanford Site in Washington State. The IHLW canisters will be produced at the Hanford Site by a Selected DOE contractor. Subsequent to storage the canisters will be shipped to a federal geologic repository.

  2. System Specification for Immobilized High-Level Waste Interim Storage

    International Nuclear Information System (INIS)

    This specification establishes the system-level functional, performance, design, interface, and test requirements for Phase 1 of the IHLW Interim Storage System, located at the Hanford Site in Washington State. The IHLW canisters will be produced at the Hanford Site by a Selected DOE contractor. Subsequent to storage the canisters will be shipped to a federal geologic repository

  3. Permitting plan for the high-level waste interim storage

    International Nuclear Information System (INIS)

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist

  4. Radioactive waste interim storage in Germany; Zwischenlagerung von radioaktiven Abfaellen in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-12-15

    The short summary on the radioactive waste interim storage in Germany covers the following issues: importance of interim storage in the frame of radioactive waste management, responsibilities and regulations, waste forms, storage containers, transport of vitrified high-level radioactive wastes from the reprocessing plants, central interim storage facilities (Gorleben, Ahaus, Nord/Lubmin), local interim storage facilities at nuclear power plant sites, federal state collecting facilities, safety, radiation exposure in Germany.

  5. Interim Dry Storage of Spent Fuel in Casks

    International Nuclear Information System (INIS)

    French option for the back end of the fuel cycle is reprocessing of used fuel and recycling the fissile material, except some very specific fuel stored in vaults (dry conditions). Used fuel management solutions studied by AREVA for various countries allow for either direct transport to the reprocessing plant, or interim storage and transport after storage of used fuel. Interim storage solutions are wet storage or dry storage (DSC, metal casks or vault systems). When the decision on used fuel management has been postponed, some extension of interim storage duration is considered, therefore it becomes necessary to study used fuel and cask material behaviour and deterioration mechanisms. One objective of this R&D was to review research efforts on spent fuel behaviour and Dry storage experience in casks. Particularly we were interested in the assessment of retrievability of fuel after storage for further use. A review therefore, was made of the effect of storage time/ temperatures and of loading/ drying operation on used fuel integrity. R&D programmes were also carried out on the evaluation of cask materials in long term, especially materials susceptible to degradation

  6. Radiation analysis for a generic centralized interim storage facility

    International Nuclear Information System (INIS)

    This paper documents the radiation analysis performed for the storage area of a generic Centralized Interim Storage Facility (CISF) for commercial spent nuclear fuel (SNF). The purpose of the analysis is to establish the CISF Protected Area and Restricted Area boundaries by modeling a representative SNF storage array, calculating the radiation dose at selected locations outside the storage area, and comparing the results with regulatory radiation dose limits. The particular challenge for this analysis is to adequately model a large (6000 cask) storage array with a reasonable amount of analysis time and effort. Previous analyses of SNF storage systems for Independent Spent Fuel Storage Installations at nuclear plant sites (for example in References 5.1 and 5.2) had only considered small arrays of storage casks. For such analyses, the dose contribution from each storage cask can be modeled individually. Since the large number of casks in the CISF storage array make such an approach unrealistic, a simplified model is required

  7. 105-H Reactor Interim Safe Storage Project Final Report

    International Nuclear Information System (INIS)

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D and D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  8. Dry storage of spent fuel elements: interim facility

    International Nuclear Information System (INIS)

    Apart from the existing facilities to storage nuclear fuel elements at Argentina's nuclear power stations, a new interim storage facility has been planned and projected by the Argentinean Atomic Energy Commission (CNEA) that will be constructed by private group. This article presents the developments and describes the activities undertaken until the national policy approach to the final decision for the most suitable alternative to be adopted. (B.C.A.). 09 refs, 01 fig, 09 tabs

  9. Loss of approval for interim storage by time schedule

    International Nuclear Information System (INIS)

    The Act ''Gesetz zur Suche und Auswahl eines Standortes fuer ein Endlager fuer Waerme entwickelnde radioaktive Abfaelle'' on the search and selection of a site for a repository for heat-generating radioactive waste as also other acts insert a new topic for interim site storage. The operation should be restricted for 40 years. This part of the act is analysed with respect to future requirements for the storage of waste.

  10. Advantages on dry interim storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, L.S. [Centro Tecnologico da Marinha em Sao Paulo, Av. Professor Lineu Prestes 2468, 05508-900 Sao Paulo (Brazil); Rzyski, B.M. [IPEN/ CNEN-SP, 05508-000 Sao Paulo (Brazil)]. e-mail: romanato@ctmsp.mar.mil.br

    2006-07-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  11. Wet spent fuel interim storage facility

    International Nuclear Information System (INIS)

    The article deals with the Spent Fuel Complementary Storage Unit, which was designed for the Almirante Alvaro Alberto Nuclear Power Station situated near Rio de Janeiro. The aim of the article is to present the technical solution of complementary storage. The design deals with different reactor technologies made by Areva and Westinghouse. The article also deals with the technically interesting solution of the storage tank heat removal and its dimensioning. (author)

  12. Conditioning of radioactive waste for long - term interim storage

    International Nuclear Information System (INIS)

    There are currently 4800 drums of treated radioactive waste originating from the operation and subsequent decommissioning of Siemens' former nuclear fuel fabrication plant in Hanau (Siemens RB) that are in interim storage at two sites in Germany. Some of this waste is in an interim store at the Karlsruhe Research Center operated by its Decontamination Division (HDB). The store also contains around 30,000 drums of radwaste from the research center itself as well as local institutions. Germany's Federal Government anticipates that interim storage will be necessary for a further 30 years until a suitable final repository goes into operation. However, since the waste drums were not designed for such a long period of storage, other steps must now be taken to ensure safe interim storage in the long term. The objective is to condition the existing waste drums as well as future waste arisings in accordance with the 1989 regulatory guideline on non-heat-generating radioactive waste such that they satisfy the acceptance criteria applicable since 1995 for final disposal at the Konrad repository. The drums are to be immobilized in concrete inside Konrad containers designed for long-term corrosion resistance in order to obtain waste packages that can be safely stored for a prolonged period without maintenance. If the activity limit for the container is not reached, low-level waste can be added as an aggregate to the concrete, which occupies around half the volume of each container, in order to save storage capacity at the repository. This waste conditioning, to be performed at HDB and Siemens RB, will convert around 65% of all non-heat-generating waste in Germany to a form that is suitable for final storage and is maintenance-free. (orig.)

  13. Interim storage and transport casks in Switzerland. COGEMA logistics experience

    International Nuclear Information System (INIS)

    The Swiss utilities have chosen two different ways for the management of their spent fuel after initial on-site cooling: (1) reprocessing at La Hague plant (COGEMA) and Sellafield plant (BNFL); (2) interim storage at the Central Interim Storage Facility called 'Zwischenlager Wuerenlingen AG' ( ZWILAG). Following international call for tenders by Swiss utilities, COGEMA LOGISTICS has been awarded several contracts for the supply of dual-purpose transport and storage casks for the interim storage of various spent fuel assemblies. All these casks belong to the family of the TN 24 dual purpose spent fuel storage casks in operation in the USA and in Belgium as well. They offer utilities a modular solution for the interim storage of spent fuel in robust metal casks which are fully suitable for off site transports. This flexible product can be readily adapted to suit individual user needs. The Leibstadt Nuclear Power Plant (KKL) has purchased nine licensed dual-purpose TN 97L spent fuel casks (97 BWR type fuel assemblies capacity). Three of them are already in operation at ZWILAG. COGEMA LOGISTICS has also delivered a dual-purpose TN 52L spent fuel casks (52 BWR type fuel assemblies capacity) presently used for transport of spent fuel for reprocessing. The Goesgen Nuclear Power Plant (KKG) has purchased four licensed dual-purpose TN 24G spent fuel casks (37 PWR type fuel assemblies capacity). They are all in operation at ZWILAG. The Muehleberg Nuclear Power Plant (BKW/KKM) has purchased two TN 24BH spent fuel casks (69 BWR type fuel assemblies capacity). At the time of this abstract, cold trials are carried out involving the shuttle transport cask TN 9/4 procured by COGEMA LOGISTICS as well. (author)

  14. Licensing Procedures for Interim Storage of Spent Fuel in Germany

    International Nuclear Information System (INIS)

    In accordance with the waste management concept in Germany spent fuel is stored in interim storage facilities for 40 years until disposal in a geological repository. The storage concept bases on dry storage of the spent fuel in metallic transport and storage casks, standing upright in halls of reinforced concrete. Storage of spent fuel as well as significant modifications of the storage require a license according to art. 6 of the Atomic Energy Act. The Federal Office for Radiation Protection (Bundesamt für Strahlenschutz - BfS) is the competent licensing authority. The mode of the licensing procedure — whether formalized or non-formalized — depends on the necessity to carry out an environmental impact assessment. Formalized licensing procedures include a public participation procedure. In the following, the licensing prodecures are illustrated and a short overview over the current licensing procedures conducted by BfS is given. (author)

  15. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  16. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  17. Safety concept for interim storage facilities in Fukushima

    International Nuclear Information System (INIS)

    The Ministry of the Environment is planning to construct the Interim Storage Facility for soil and waste generated in Fukushima prefecture, due to the accident of Fukushima Daiichi Nuclear Power Plant. This paper describes the result of study for the safety concepts. Concrete components are estimation of soil/waste generation, soil characterization, structure and location of facilities, radioactive safety assessment, operational management, approach for transportation concept, basic principle of environmental conservation measures. (author)

  18. Interim dry storage system technologies and innovations VARNA 2002

    International Nuclear Information System (INIS)

    The main concepts of the TN24 Family and NUHOMS System are explained in the paper. It is discussed how the NPPs specific requirements and economics trends contributes to the growing families of interim dry storage systems delivered under COGEMA LOGICTICS license. It is concluded that modular solutions are currently dominating because they are derived from main concepts evolved over time, benefited from both the transport aspects with internationally recognised stringent regulations, and various specific ISFSI requirements and economic trends

  19. Taipower's spent fuel interim storage program

    International Nuclear Information System (INIS)

    Taipower has three twin-unit nuclear power stations in operation-2 BWR stations and one PWR station. The spent fuel pool reracking project at the Maanshan Nuclear Power Station (PWR) is scheduled to be completed by 1993. Its pool storage capacity will be expanded to accommodate storage of spent fuel generated throughout the plant's 40-year operation. For the Chinshan and Kuosheng Nuclear Power Stations (all BWRS), reracking operation at Chinshan spent fuel pools was completed in 1987 while the other is scheduled to be completed by end 1991. In summary, after reracking, the time of losing the full core dump (FCR) capacity will be extended to about the year 1999, 2004 and 2016 for Chinshan, Kuosheng and Maanshan plants respectively

  20. US PRACTICE FOR INTERIM WET STORAGE OF RRSNF

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2010-08-05

    Aluminum research reactor spent nuclear fuel is currently being stored or is anticipated to be returned to the United States and stored at Department of Energy storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper summarizes the current practices to provide for continued safe interim wet storage in the U.S. Aluminum fuel stored in poor quality water is subject to aggressive corrosion attack and therefore water chemistry control systems are essential to maintain water quality. Fuel with minor breaches are safely stored directly in the basin. Fuel pieces and heavily damaged fuel is safely stored in isolation canisters.

  1. Nuclear waste: Is there a need for federal interim storage

    International Nuclear Information System (INIS)

    The Congress created the Monitored Retrievable Storage Review Commission to provide a report on the need for a Federal monitored retrievable storage facility (MRS) as part of the Nation's nuclear waste management system. The Commission concludes that the MRS as presently described in the law, which links the capacity and schedule of operation of the MRS to a permanent geologic repository, cannot be justified. The Commission finds, however, that while no single factor would favor an MRS over the No-MRS option, cumulatively the advantages of an MRS would justify the building of an MRS if: there were no linkages between the MRS and the repository; the MRS could be constructed at an early date; and the opening of the repository were delayed considerably beyond its presently scheduled date of operation. The Commission therefore recommends that the Congress take the following actions: Authorize construction of a Federal Emergency Storage facility with a capacity limit of 2,000 metric tons of uranium; Authorize construction of a User-Funded Interim Storage facility with a capacity limit of 5,000 metric tons of uranium; Reconsider the subject of interim storage by the year 2000

  2. Interim report on hydrogen storage system

    International Nuclear Information System (INIS)

    Hydrogen can be stored in the form of a metal hydride. The formation of the hydride is highly exothermic. Hence the rate at which hydrogen can be added to or removed from the storage system is limited by the rate of heat transfer. Heat transfer is facilitated by displaying the hydride on a metal support that conducts heat. The task was to find a binder to make hydride stay put on a metal support through at least 2500 cycles of hydriding-dehydriding and to measure the rate of hydrogen uptake. 1 tab

  3. Immobilized high-level waste interim storage alternatives generation and analysis and decision report

    International Nuclear Information System (INIS)

    This report presents a study of alternative system architectures to provide onsite interim storage for the immobilized high-level waste produced by the Tank Waste Remediation System (TWRS) privatization vendor. It examines the contract and program changes that have occurred and evaluates their impacts on the baseline immobilized high-level waste (IHLW) interim storage strategy. In addition, this report documents the recommended initial interim storage architecture and implementation path forward

  4. Immobilized high-level waste interim storage alternatives generation and analysis and decision report

    Energy Technology Data Exchange (ETDEWEB)

    CALMUS, R.B.

    1999-05-18

    This report presents a study of alternative system architectures to provide onsite interim storage for the immobilized high-level waste produced by the Tank Waste Remediation System (TWRS) privatization vendor. It examines the contract and program changes that have occurred and evaluates their impacts on the baseline immobilized high-level waste (IHLW) interim storage strategy. In addition, this report documents the recommended initial interim storage architecture and implementation path forward.

  5. 78 FR 40199 - Draft Spent Fuel Storage and Transportation Interim Staff Guidance

    Science.gov (United States)

    2013-07-03

    ... COMMISSION Draft Spent Fuel Storage and Transportation Interim Staff Guidance AGENCY: Nuclear Regulatory... Regulatory Commission (NRC) requests public comment on Draft Spent Fuel Storage and Transportation Interim... given in NUREG-1927 ``Standard Review Plan for Renewal of Spent Fuel Dry Cask Storage System...

  6. The interim storage facility at the Beznau nuclear power plant

    International Nuclear Information System (INIS)

    In Switzerland, the nuclear power plants (NPPs) are responsible for storage of their own wastes. In addition to the centralised ZWILAG facility at Wuerenlingen, which is planned jointly by the five operating plants, each NPP has its own on-site storage capacity. The example considered in this article is the interim storage facility at the Beznau power plant. At Beznau, the first stage of the ZWIBEZ project involved the opening of a store for low-level waste in March 1993. Future stages will provide additional capacity for intermediate-level and high-level wastes (and spent fuel elements). The store for intermediate-level waste will not be constructed, provided there is no further delay in the realisation of the ZWILAG facility. (author) 5 figs., 1 tab

  7. Interim storage of CANDU spent fuel and safety performance

    International Nuclear Information System (INIS)

    'Full text:' Pickering Waste Management Facility (PWMF) is operational since November 1995 and safely storing spent fuel from Pickering 8 CANDU reactors. To date, equivalent to 22 reactor-years worth of spent fuel have been loaded, processed and stored in Dry Storage Containers (DSC). One DSC contains spent fuel from approximately one reactor-month of full power operation. The design life for the storage containers is 50 years. A Nuclear Waste Management Organization (NWMO) has been formed to advise on the long-term Canadian strategy for management of spent fuel. This paper will present the DSC processing steps, radiological hazard magnitude experienced during the DSC loading and processing for interim storage. A brief description of environmental and occupational safety performance will be presented. (author)

  8. Dosimetry at an interim storage for spent nuclear fuel.

    Science.gov (United States)

    Králík, M; Kulich, V; Studeny, J; Pokorny, P

    2007-01-01

    The Czech nuclear power plant Dukovany started its operation in 1985. All fuel spent from 1985 up to the end of 2005 is stored at a dry interim storage, which was designed for 60 CASTOR-440/84 casks. Each of these casks can accommodate 84 fuel assemblies from VVER 440 reactors. Neutron-photon mixed fields around the casks were characterized in terms of ambient dose equivalent measured by standard area dosemeters. Except this, neutron spectra were measured by means of a Bonner sphere spectrometer, and the measured spectra were used to derive the corresponding ambient dose equivalent due to neutrons. PMID:17526479

  9. Cost estimation of interim dry storage for Atucha I NPP

    International Nuclear Information System (INIS)

    A joint effort between NASA and CNEA has been performed in order to evaluate and fix the strategy of interim spent fuel storage for Atucha I nuclear power plant. In this work the cost estimation on the proposed system was performed in order to fix the parameter and design criteria for the next engineering step. The main results achieved show that both alternatives are all in the same range of costs per unit of mass to be stored, the impact on electricity cost is less than 1 US mills/KWh and the scaling factor achieved is 0.85. (author)

  10. On-site interim storage of spent nuclear fuel: Emerging public issues

    International Nuclear Information System (INIS)

    Failure to consummate plans for a permanent repository or above- ground interim Monitored Retrievable Storage (MRS) facility for spent nuclear fuel has spurred innovative efforts to ensure at-reactor storage in an environmentally safe and secure manner. This article examines the institutional and socioeconomic impacts of Dry Cask Storage Technology (DCST)-an approach to spent fuel management that is emerging as the preferred method of on-site interim spent fuel storage by utilities that exhaust existing storage capacity

  11. Worldwide survey of dry interim storage of fuel elements from power reactors

    International Nuclear Information System (INIS)

    Spent fuel elements with approx. 10,500 t of heavy metal are discharged annually from power reactors worldwide. The total amount existing is approximately 220,000 t. The capacity increase of decay storage pools by compact storage is about to meet limits in technical terms and with respect to licensing. External interim storage of spent fuel elements is becoming more and more important. There is a certain tendency worldwide to use interim stores on the sites of nuclear power plants in order to overcome the need for transports on public traffic routes. In Germany, this trend is enforced by the lack of central stores accessible where and when the need arises. Most interim stores use dry interim storage. In Central and Western Europe, casks are employed almost exclusively; in the United States, more canisters than casks are used. More and more systems are employed which allow both storage and transports (dual purpose systems). In the future, multipurpose systems could well become the systems of choice which, in addition, allow direct disposal of the inventory in the packages used for transport and interim storage. In Germany, important preconditions have been created in the development of the POLLUX trademark cask. No safety-related problems are expected to arise for either wet or dry interim storage. As a consequence, interim storage periods of up to 100 years seem to be possible without any technical problems especially for dry interim storage. Tentative plans along these lines are being developed in France and in the United States. (orig.)

  12. Glass packages in interim storage; Les verres dans les stockages

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet-Francillon, N.

    1994-10-01

    This report summarize the current state of knowledge concerning the behavior of type C waste packages consisting of vitrified high-level solutions produced by reprocessing spent fuel. The composition and the physical and chemical properties of the feed solutions are reviewed, and the vitrification process is described. Sodium alumino-borosilicate glass compositions are generally employed - the glass used at la Hague for LWR fuel solutions, for example, contains 45 % SiO{sub 2}. The major physical, chemical, mechanical and thermal properties of the glass are reviewed. In order to allow their thermal power to diminish, the 3630 glass packages produced (as of January 1993) in the vitrification facilities at Marcoule and La Hague are placed in interim storage for several decades. The actual interim storage period has not been defined, as it is closely related to the concept and organization selected for the final destination of the packages: a geological repository. The glass behavior under irradiation is described. Considerable basic and applied research has been conducted to assess the aqueous leaching behavior of nuclear containment glass. The effects of various repository parameters (temperature, flow rate, nature of the environmental materials) have been investigated. The experimental findings have been used to specify a model describing the kinetics of aqueous corrosion of the glass. More generally all the ``source term`` models developed in France by the CEA or by ANDRA are summarized. (author). 152 refs., 33 figs.

  13. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Enos, David G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be present through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.

  14. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    International Nuclear Information System (INIS)

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis

  15. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Burgard, K.C.

    1998-06-02

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  16. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  17. Realization of the German Concept for Interim Storage of Spent Nuclear Fuel - Current Situation and Prospects

    International Nuclear Information System (INIS)

    The German government has determined a phase out of nuclear power. With respect to the management of spent fuel it was decided to terminate transports to reprocessing plants by 2005 and to set up interim storage facilities on power plant sites. This paper gives an overview of the German concept for spent fuel management focused on the new on-site interim storage concept and the applied interim storage facilities. Since the end of the year 1998, the utilities have applied for permission of on-site interim storage in 13 storage facilities and 5 storage areas; one application for the interim storage facility Stade was withdrawn due to the planned final shut down of Stade nuclear power plant in autumn 2003. In 2001 and 2002, 3 on-site storage areas and 2 on-site storage facilities for spent fuel were licensed by the Federal Office for Radiation Protection (BfS). A main task in 2002 and 2003 has been the examination of the safety and security of the planned interim storage facilities and the verification of the licensing prerequisites. In the aftermath of September 11, 2001, BfS has also examined the attack with a big passenger airplane. Up to now, these aircraft crash analyses have been performed for three on-site interim storage facilities; the fundamental results will be presented. It is the objective of BfS to conclude the licensing procedures for the applied on-site interim storage facilities in 2003. With an assumed construction period for the storage buildings of about two years, the on-site interim storage facilities could then be available in the year 2005

  18. Safety aspects of spent nuclear fuel interim storage installations

    International Nuclear Information System (INIS)

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  19. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  20. Radiological characterisation of waste in interim storage building of COVRA

    International Nuclear Information System (INIS)

    At COVRA spatial dose rate distribution measurements were performed in December 2004 and December 2006 in the interim L/ILW storage building (LOG). This storage facility consists out of four large storage halls (height x width x depth 7 m x 40 m x 70 m) each with a volume of about 20000 m3. The scope of this study is to investigate the benefits of the waste storage strategy and procedures for minimization of the dose to the workers and the public. The main aim of the measurements in 2004 was: to validate the applied L/ILW storage strategy - to examine, if spatial collected data can be used to detect unforeseen differences in radiation level. The results of these measurements of spatial dose showed a number of unforeseen hotspots at different locations, so that it could be concluded that the applied storage strategy and procedures has to be improved. Further the dose rate at the height of 6 m, mainly responsible for the sky-shine dose rate, being an important part of the dose rate to the public at the site boundary, has to be reduced by more shielding. In December 2006 a second serial of spatial radiological and non-radiological data have been collected. The applied nondestructive INDSS-R (Indoor Survey System-Radiation ) method has been improved, so that the following 3-dimensional data could be collected between 0.5 m and 5.5 m: - dose rate (by pressurized ionisation chamber). nuclide depended gamma photon flux (3 x 3 NaI). - temperature and relative humidity. These last two non-radiological parameters were measured to verify the storage conditions of the waste. The main aim of these 3 dimensional collection was to verify the second stated aim of 2004. (authors)

  1. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  2. Criticality safety evaluation for long term storage of FFTF fuel in interim storage casks

    International Nuclear Information System (INIS)

    It has been postulated that a degradation phenomenon, referred to as ''hot cell rot'', may affect irradiated FFTF mixed plutonium-uranium oxide (MOX) fuel during dry interim storage. ''Hot cell rot'' refers to a variety of phenomena that degrade fuel pin cladding during exposure to air and inert gas environments. It is thought to be a form of caustic stress corrosion cracking or environmentally assisted cracking. Here, a criticality safety analysis was performed to address the effect of the ''hot cell rot'' phenomenon on the long term storage of irradiated FFTF fuel in core component containers. The results show that seven FFTF fuel assemblies or six Ident-69 pin containers stored in core component containers within interim storage casks will remain safely subcritical

  3. Introducing Systematic Aging Management for Interim Storage Facilities in Germany

    International Nuclear Information System (INIS)

    In Germany twelve at-reactor and three central (away from reactor) dry storage facilities are in operation, where the fuel is stored in combined transport-and-storage casks. The safety of the storage casks and facilities has been approved and is licensed for up to 40 years operating time. If the availability of a final disposal facility for the stored wastes (spent fuel and high-level wastes from reprocessing) will be further delayed the renewal of the licenses can become necessary in future. Since 2001 Germany had a regulatory guideline for at-reactor dry interim storage of spent fuel. In this guideline some elements of ageing were implemented, but no systematic approach was made for a state-of-the-art ageing management. Currently the guideline is updated to include all kind of storage facilities (central storages as well) and all kinds of high level waste (also waste from reprocessing). Draft versions of the update are under discussion. In these drafts a systematic ageing management is seen as an instrument to upgrade the available technical knowledge base for possible later regulatory decisions, should it be necessary to prolong storage periods to beyond the currently approved limits. It is further recognized as an instrument to prevent from possible and currently unrecognized ageing mechanisms. The generation of information on ageing can be an important basis for the necessary safety-relevant verifications for long term storage. For the first time, the demands for a systematic monitoring of ageing processes for all safety-related components of the storage system are described. In addition, for inaccessible container components such as the seal system, the neutron shielding, the baskets and the waste inventory, the development of a monitoring program is recommended. The working draft to the revised guideline also contains recommendations on non-technical ageing issues such as the long-term preservation of knowledge, long term personnel planning and long term

  4. Interim storage is not long-term disposal

    International Nuclear Information System (INIS)

    Starting in June 30, 1994 South Carolina enforced an embargo on regular shipments of low-level radioactive waste to the Barnwell repository. The failure of 31 states and their respective compacts to provide access to a long-term disposal facility as stipulated by the low-level radioactive Waste Policy Act of 1980 promotes waste disposal gridlock and anticipates another waste disposal crisis. This article discusses the problem using the following topics: Appalachian Compact Users of Radioactive Isotopes (ACURI) Association's interest; the problem of denial of access to Barnwell; pro and contra interim storage; vital services and benefits at risk; issues at the ACURI meeting; nobel Prize winners use radioactive materials; if perception is reality, politics is prevalent

  5. Corrosion behaviour of metallic containers during long term interim storages

    International Nuclear Information System (INIS)

    Two main corrosion phenomena are encountered in long term interim storage conditions: dry oxidation by the air when the temperature of high level nuclear wastes containers is high enough (roughly higher than 100 C) and corrosion phenomena as those encountered in outdoor atmospheric corrosion when the temperature of the container wall is low enough and so condensation is possible on the container walls. Results obtained with dry oxidation in air lead to predict small damages (less than 1μm on steels over 100 years at 100 C) and no drastic changes with pollutants. For atmospheric corrosion, first developments deal with a pragmatic method that gives assessments of the indoor atmospheric corrosivities. (author)

  6. Integrated system of safety features for spent fuel interim storage

    International Nuclear Information System (INIS)

    The design of the spent fuel interim storage facility (SFISF) must meet the applicable safety requirements in order to ensure radiological protection of the personnel, public and environment during all phases of the facility. To elaborate the safety documentation necessary for licensing, we were trying to chose the most appropriate approach related to safety features for SFISF, based on national and international regulations, standards and recommendations, as well as on the experience of other countries with similar facilities and finally, on our own experience in designing other nuclear objectives in Romania. The paper presents the issues that we consider important for the safety evaluation and are developed as a detailed diagram. The diagram contains in a logical succession the following issues: - fundamental principles of radioprotection; - fundamental safety principles of radioactive waste management; - safety objectives of SFISF; - safety criteria for SFISF; - safety requirements for SFISF; - siting criteria for SFISF; - siting requirements for SFISF. (authors)

  7. The interim storage facility with dry storage casks and its safeguards activity

    International Nuclear Information System (INIS)

    Recyclable-Fuel Storage Company (RFS) is constructing an interim storage facility of spent fuel at Recyclable-Fuel Storage Center (RFSC) in Aomori Prefecture. Metallic dry casks are employed to contain the spent fuel from nuclear power plants and to serve for about 50 years in RFSC. Metallic dry casks have already been used for dry cask storage facility at Tokai No.2 power station of Japan Atomic Power Company. But, RFSC is not exactly the same as the dry cask storage facility at Tokai No.2 power station, for example, cask transportation between facilities and no hot cells. Therefore, additional safeguards activities are necessary. The outline of the design and handling of metallic dry casks at RFSC and the currently developing status of safeguards activity such as containment and surveillance for the cask receipt and storage at RFSC, etc are described. (author)

  8. Long-term interim storage of low and medium level radioactive waste causes additional radiation exposure

    International Nuclear Information System (INIS)

    In contrast to immediate final disposal prolongued interim storage of low and intermediate level radioactive waste which is currently envisaged in Germany causes additional radiation exposure for the waste handling workers. Additional exposure from short time intermediate storage is inevitable because presently there is no operating final repository in Germany. Significant radiation exposure contributions resulting from long term interim storage are encountered by the operating personal waste conditioning and the interim storage facility. They result from additional procedures to enhance the resistance of waste containers against degradation and the surveillance procedures during storage phase. Examples for such additional exposure are shown from different German waste disposal plants. For technical reasons the final repository for negligible heat generating waste KONRAD could start up its operation at least 2010 after finishing the licensing procedure. Thus the necessity for long term interim storage and the resulting additional radiation exposure can be avoided. (orig.)

  9. The challenges facing the long term interim storage

    International Nuclear Information System (INIS)

    In France electricity generation by means of commercial nuclear power plants has come to a point where it contributes to the national demand at a level of 80%. The safety performance of the production system has also reached a high level of both maturity and reliability taking advantage of the cumulative effect of a 30 years long learning experience and ever more stringent safety requirements. The policy to reprocess spent fuel has been overriding but no final decision has yet been made regarding the ultimate disposition of the waste streams. Although studies on deep geological disposal are ongoing, France is also looking at whether and under which conditions a long-term interim storage may provide an effective flexibility to the fuel cycle back-end. We discuss thereafter the needs and the paramount objectives of this latter R and D program. Results are being framed as potential guiding criteria for decision makers and various stakeholders. In first part, we propose a general analysis which emphasises that a long term interim storage is more than a classical nuclear facility because it explicitly requires long-lasting control and creates a burden for Society during many generations. Then, in second part, we offer an overview of the technical results from the R and D program as they stand at the time of writing. As an answer to the Government request, a strong emphasis has been put on this research for three years. Conclusion is an attempt to outline the societal context in which future decisions will have to be made. (author)

  10. Conceptual design of interim storage facility for CNAI

    International Nuclear Information System (INIS)

    The reduced storage capacity available in the two spent fuel pools of argentine PHWR Atucha-1 power plant, the current plans for extending the reactor operation beyond its design lifetime, and the government decision on Atucha-2 NPP construction ending, have motivated the evaluation of a dry storage option for the interim management of spent fuel assemblies. Two different designs are presently being analyzed by an expert working group, from both technical and economical points of views. Authors are proposing a modular system consisting of an arrangement of reinforced concrete structures into which welded metallic canisters loaded with 37 spent fuel assemblies each stored in horizontal position. The reinforced concrete module is designed to provide the necessary physical protection and biological shielding to the loaded canisters during long-term storage, as well as passive means to remove the spent fuel decay heat by a combination of radiation, conduction and natural air convection. In this works are presented advances in the conceptual designs for a spent nuclear fuel system to Atucha I nuclear power plant. (author)

  11. Project management plan for Reactor 105-C Interim Safe Storage project

    International Nuclear Information System (INIS)

    Reactor 105-C (located on the Hanford Site in Richland, Washington) will be placed into an interim safe storage condition such that (1) interim inspection can be limited to a 5-year frequency; (2) containment ensures that releases to the environmental are not credible under design basis conditions; and (3) final safe storage configuration shall not preclude or significantly increase the cost for any decommissioning alternatives for the reactor assembly.This project management plan establishes plans, organizational responsibilities, control systems, and procedures for managing the execution of Reactor 105-C interim safe storage activities to meet programmatic requirements within authorized funding and approved schedules

  12. Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system

    International Nuclear Information System (INIS)

    The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule

  13. Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, D.E.

    1982-12-01

    The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule.

  14. The dry storage cask in interim storage facility and safeguards activity

    International Nuclear Information System (INIS)

    The Japan Atomic Power Company (JAPC) is preparing for interim storage of spent fuel at Recyclable-Fuel Storage Center (RFSC) in Aomori Prefecture. Metallic dry casks are employed to contain the spent fuel and to serve for about 50 years in RFSC. Metallic dry casks have already been used for spent fuel dry storage at Tokai No.2 power station. But, RFSC is not exactly the same as the dry storage facility in Tokai No.2 power station, for example, casks are transported out side of the reactor site and RFSC has no fuel handling system. Therefore, additional implementation of safeguards is necessary. This report introduces the design and handling of metallic dry casks for RFSC and the currently developing status of the safeguards activity such as containment and surveillance for the fuel loading at the power station, the cask receipt and storage at RFSC, etc. (author)

  15. Decommissioning and dismantling of nuclear reactors and nuclear spent fuel interim storage in Germany

    International Nuclear Information System (INIS)

    The authors visited Germany in April 2013 to investigate state of reactor decommissioning and dismantling and interim storage of spent fuels reflecting nuclear power phaseout policy after the Fukushima accident. They visited interim storage facilities of radioactive wastes (ZLN, Zwischenlanger Nord) and central active workshop (ZAW, Zentrale Aktive Werkstatt) at Greifswald, and interim storage facilities of spent fuels at Philippsburg. CASTOR (Cask for Storage and Transport of Radioactive Material) was used for interim storage of spent fuels and high-level wastes for 40 years. Amount of wastes produced by decommissioning and dismantling was estimated 1800 ktons consisting of 1200 ktons non-radioactive and 600 ktons radioactive wastes, 500 ktons of which could be decontaminated less than clearance level and 100 ktons of which were obliged to be stored as radioactive wastes. New geological repository site for high level radioactive wastes should be found and developed. (T. Tanaka)

  16. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  17. Comparison of cask and dry well storage concepts for a stand-alone monitored retrievable storage/interim storage system

    International Nuclear Information System (INIS)

    Metal storage casks are compared with surface dry wells for storage of spent fuel or solidified high-level wastes. Conceptual designs of monitored retrievable storage/interim storage (MRS/IS) facilities are described and evaluated for both storage concepts. The MRS/IS facilities include systems and storage facilities for transuranic (TRU) waste. The impact of TRU waste on the MRS/IS facility is evaluated. Comparisons of the storage concepts were made for three cases for which different reprocessing and disposal schedules were assumed, thus affecting the size and handling rate of the MRS/IS facility. In all cases, dry wells were more economical than metal storage casks. 6 references, 51 figures, 51 tables

  18. Expansion of storage capacity of interim spent fuel storage (MSVP) Bohunice

    International Nuclear Information System (INIS)

    This article describes modifications of Interim spent fuel storage, performed with aim of storage capacity expansion, seismic stability enhancement, and overall increase of service life as well as assuring of MSVP safe operation. Uniqueness of adopted technical solutions is based upon the fact that mentioned innovations and modifications were performed without any changes, neither in ground plan nor architecture of MSVP structure. It also important to mention that all modifications were performed during continual operation of MSVP without any breaks of limits or operational regulations. Reconstruction and innovation of existing construction and technological systems of MSVP has assured required quality standard comparable with actual trends. (authors)

  19. Development of Accident Scenario for Interim Spent Fuel Storage Facility Based on Fukushima Accident

    International Nuclear Information System (INIS)

    700 MTU of spent nuclear fuel is discharged from nuclear fleet every year and spent fuel storage is currently 70.9% full. The on-site wet type spent fuel storage pool of each NPP(nuclear power plants) in Korea will shortly exceed its storage limit. Backdrop, the Korean government has rolled out a plan to construct an interim spent fuel storage facility by 2024. However, the type of interim spent fuel storage facility has not been decided yet in detail. The Fukushima accident has resulted in more stringent requirements for nuclear facilities in case of beyond design basis accidents. Therefore, there has been growing demand for developing scenario on interim storage facility to prepare for beyond design basis accidents and conducting dose assessment based on the scenario to verify the safety of each type of storage

  20. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    International Nuclear Information System (INIS)

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  1. Behavior of spent nuclear fuel and storage system components in dry interim storage. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1983-02-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom; organic-cooled reactor (OCR) fuel (clad with a zirconium alloy) in silos in Canada; and boiling water reactor (BWR) fuel (clad with Zircaloy) in a metal storage cask in Germany. Dry storage demonstrations are under way for Zircaloy-clad fuel from BWRs, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions. 110 refs., 22 figs., 28 tabs.

  2. Final hazard classification and auditable safety analysis for the 105-C Reactor Interim Safe Storage Project

    International Nuclear Information System (INIS)

    This document summarizes the inventories of radioactive and hazardous materials present in the 105-C Reactor Facility and the operations associated with the Interim Safe Storage Project which includes decontamination and demolition and interim safe storage of the remaining facility. This document also establishes a final hazard classification and verifies that appropriate and adequate safety functions and controls are in place to reduce or mitigate the risk associated with those operations

  3. 76 FR 9381 - Notice of Availability of Interim Staff Guidance Documents for Spent Fuel Storage Casks

    Science.gov (United States)

    2011-02-17

    ... COMMISSION Notice of Availability of Interim Staff Guidance Documents for Spent Fuel Storage Casks AGENCY... Gordon, Structural Mechanics and Materials Branch, Division of Spent Fuel Storage and Transportation... performing technical reviews of spent fuel storage and transportation packaging licensing actions.'' This...

  4. Model for low temperature oxidation during long term interim storage

    International Nuclear Information System (INIS)

    For high-level nuclear waste containers in long-term interim storage, dry oxidation will be the first and the main degradation mode during about one century. The metal lost by dry oxidation over such a long period must be evaluated with a good reliability. To achieve this goal, modelling of the oxide scale growth is necessary and this is the aim of the dry oxidation studies performed in the frame of the COCON program. An advanced model based on the description of elementary mechanisms involved in scale growth at low temperatures, like partial interfacial control of the oxidation kinetics and/or grain boundary diffusion, is developed in order to increase the reliability of the long term extrapolations deduced from basic models developed from short time experiments. Since only few experimental data on dry oxidation are available in the temperature range of interest, experiments have also been performed to evaluate the relevant input parameters for models like grain size of oxide scale, considering iron as simplified material. (authors)

  5. Behavior of spent nuclear fuel and storage-system components in dry interim storage

    International Nuclear Information System (INIS)

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions

  6. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  7. Transuranic waste storage and assay facility (TRUSAF) interim safety basis

    International Nuclear Information System (INIS)

    The TRUSAF ISB is based upon current facility configuration and procedures. The purpose of the document is to provide the basis for interim operation or restrictions on interim operations and the authorization basis for the TRUSAF at the Hanford Site. The previous safety analysis document TRUSAF hazards Identification and Evaluation (WHC 1977) is superseded by this document

  8. Safeguards for spent nuclear fuel in transfer from wet storage to dry storage in on-site interim storage facilities

    International Nuclear Information System (INIS)

    Full text: In Germany, the current approach for spent fuel management is on-site interim storage in transport and storage casks as part of a political agreement between the German government and the nuclear operators on the future use of nuclear energy. Recent legislation has triggered the construction of on-site dry storage facilities at nuclear power plants. A reason behind this is to avoid transportation of spent fuel that is determined for direct final disposal via public road or rail systems to away-from-reactor storage facilities, as they had been built at Gorleben and Ahaus. Spent fuel will be loaded into shielding casks, e.g., of the CASTOR-type, and transferred out of the reactor containment into the associated on-site dry storage facility. On-site interim storage of spent nuclear fuel has a strong political relevance for the nuclear debate in Germany. On-site interim storage facilities are being taken into operation on a step-by-step basis. The intention is to develop acceptable safeguards concepts for both transfer and dry storage of spent fuel, ideally, a standard safeguards concept that would match all German nuclear power plant sites without ignoring technical and organisational differences. From the State's point of view the safeguards concepts have to comply with requirements related to operational safety, radiation protection, and physical protection. Furthermore, they have to take into account the political and technical boundary conditions as well as the time schedule for spent fuel transfers that has been coordinated between all the nuclear power plant operators. From a safeguards point of view material balance areas have to be defined and basic technical characteristics (design information) of the on-site interim storage facilities have to be reported to the Euratom Safeguards Office for re-transfer of this information to the International Atomic Energy Agency (IAEA). Furthermore, plant operators have to announce to Euratom, in advance, dates

  9. Safeguards for spent nuclear fuel in transfer from wet storage to dry storage in on-site interim storage facilities

    International Nuclear Information System (INIS)

    Germany initially planned to store spent nuclear fuel in the two away-from-reactor interim storage facilities built at Ahaus and Gorleben. The current approach for spent fuel management is on-site interim storage in transport and storage casks as part of a political agreement between the German government and the nuclear operators on the future use of nuclear energy. A reason for this is to avoid near term transportation of spent fuel determined for direct final disposal via public road or rail systems to away-from-reactor storage facilities. Recent legislation has triggered the construction of 12 on-site dry storage facilities at nuclear power plants. Currently, such facilities are being taken into operation on a step-by-step basis. There is a strong need to develop acceptable safeguards concepts for both transfer and dry storage of spent fuel, ideally, a standard safeguards concept that would match all German nuclear power plant sites without ignoring technical and organisational differences. The paper will address the relevant issues and give an overview of the status of safeguards implementation. (author)

  10. Colonie Interim Storage Site: Annual environmental report for calendar year 1990, Colonie, New York

    International Nuclear Information System (INIS)

    Environmental monitoring of the US Department of Energy's (DOE) Colonie Interim Storage Site (CISS) and surrounding area began in 1984. CISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sties where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The routine environmental monitoring program at CISS includes sampling networks for external gamma radiation exposures and for radium-226, throium-232, an total uranium concentrations in surface water, sediment, and groundwater. Additionally, the nonradiological parameters volatile and semivolatile organics, pesticides/polychlorinated biphenyls (PCBs), metals, total organic carbon (TOC), total organic halides (TOX), specific conductivity, and pH are measured in groundwater. 14 refs., 20 figs., 25 tabs

  11. Dry oxidation behaviour of metallic containers during long term interim storages

    International Nuclear Information System (INIS)

    Low-alloyed steels or carbon steels are considered candidate materials for the fabrication of some nuclear waste package containers for long term interim storage. The containers are required to remain retrievable for centuries. One factor limiting their performance on this time scale is corrosion. The estimation of the metal thickness lost by dry oxidation over such long periods requires the construction of reliable models from short-time experimental data. Two complementary approaches for modelling dry oxidation have been considered. First, basic models following simple analytical laws from classical oxidation theories have been adjusted on the apparent activation energy of oxidation deduced from experimental data. Their extrapolation to long oxidation periods confirms that the expected damage due to dry oxidation could be small. Second, a numerical model able to take in consideration several mechanisms controlling the oxide scale growth is under development. Several preliminary results are presented. (authors)

  12. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    CARRELL, R D

    2002-07-16

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  13. Development of a novel interim bulk fuel storage facility for the PBMR / W.F. Fuls

    OpenAIRE

    Fuls, Wilhelm Franz

    2004-01-01

    The PBMR is the first High Temperature Reactor being designed for commercial power generation in South Africa. It makes use of spherical fuel elements, containing coated uranium oxide particles encapsulated in a graphite matrix. The spent fuel generated from the reactor is stored in a storage system before final disposal. Such storage systems are called interim storage facilities, and normally make use of small transportable containers. The PBMR design makes use of bulk storage containers...

  14. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage

  15. Retrieval of plutonium-contaminated waste materials from interim storage

    International Nuclear Information System (INIS)

    Plutonium-contaminated solid waste materials (PCM) (contact-handled transuranic waste) originating from the early UK defence program were placed for interim storage in existing structures at Drigg, a site some 6km (4 miles) from Sellafield (formerly known as Windscale), the UK reprocessing and plutonium production site. The waste was contained within steel drums of up to 205 liters (55 US gallons) capacity or was contained in larger timber and plastic cuboid containment, known as 'crates'. The paper will describe the typical constituents of the drummed waste and of the crated waste, a proportion of which consists of redundant glove box facilities from the early production lines themselves. British Nuclear Fuels pie (BNFL) became responsible for the Drigg site and waste stored on it at Company formation in 1971. In the mid-1970s, a commitment was given that PCM would be removed from the Drigg site leaving it to fulfil its role as the principal site in the UK for the disposal of solid low level radioactive waste from Sellafield and from elsewhere. Following a program of design and procurement of necessary facilities, retrieval of drummed PCM began in 1976. A team of operators, not full-time on this task, removed all drummed PCM from the existing storage structures, known as magazines, by 1986. This work is briefly reviewed in the paper. Five of the magazines contain about 200 non-drummed packages which remain to be removed. Facilities to permit the retrieval of that waste have been designed and are now being procured and installed so that first retrieval can begin during this year. The project team has addressed all aspects of safety and has needed to obtain necessary consents and authorizations from Her Majesty's Inspectorate of Pollution, so far as the safety of the environment and of members of the public is concerned, from Her Majesty's Nuclear Installations Inspectorate, so far as the safety of the workforce is concerned, and from the Department of Transport, so

  16. Radiological aspects and behaviour of spent fuel considering long-term interim storage

    International Nuclear Information System (INIS)

    For spent nuclear fuel management in Germany, the concept of dry interim storage in dual purpose casks before direct disposal is applied. Currently operation licenses for storage facilities have been granted for a storage time of 40 years associated with the first emplacement of a cask. Operation licenses are based on safety demonstrations for all relevant safety issues as safe enclosure, shielding, sub-criticality and decay heat removal under consideration of operation conditions. In addition, transportability of the casks for the whole storage period has to be provided. Due to current delay in site selection and exploration of a disposal site, an extension of the storage time beyond 40 years seems inevitable. Relevant aspects for licensing of extended storage time will be discussed. Furthermore, an overview about current national and international activities on the safety of long-term interim storage will be given. (orig.)

  17. The Study on Regulations of Interim Spent Fuel Storage Facility in Japan

    International Nuclear Information System (INIS)

    The expansion of nuclear power generation inevitably result in the increase of spent nuclear fuel generation. Every year ∼700t of spent nuclear fuels are accumulated and total of 10,761t of spent nuclear fuels generated from 20 reactors are stored within the reactor sites by the end of 2009. If this trend is maintained, it is expected that Korea will have ∼30,000t of spent nuclear fuel by 2030. The capacity of pools in reactor sites is expected to be reached from 2016 and Korea need to prepare measures including the introduction of interim storage facility urgently. Considering the domestic situation described so far, it is be very necessary to survey and analyze the regulations of interim storage facilities of advanced countries. This report excerpts and analyzes the report of Japanese Nuclear Energy Safety Organization (JNES) on the regulations of interim storage facilities which was issues before the construction of the Mutz Interim Storage Facility. This report will be effectively used for the preparation of interim storage facility of Korea

  18. Long-term interim storage concepts with conditioning strategies ensuring compatibility with subsequent disposal or reprocessing

    International Nuclear Information System (INIS)

    The objective of the CEA studies carried out under research topic 3 (long-term interim storage) of the 1991 French radioactive waste management law is to demonstrate the industrial feasibility of a comprehensive, flexible interim storage facility by thoroughly evaluating and comparing all the basic components of various interim storage concepts. In this context, the CEA is considering reference solutions or concepts based on three primary components (the package, the interim storage facility and the site) suitable for determining the specifications of a very long-term solution. Some aspects are examined in greater detail, such as the implementation of long-term technologies, conditioning processes ensuring the absence of water and contamination in the facility, or allowance for radioactive decay of the packages. The results obtained are continually compiled in reports substantiating the design options. These studies should also lead to an overall economic assessment in terms of the capital and operating cost requirements, thereby providing an additional basis for selecting the design options. The comparison with existing industrial facilities highlights the technical and economic progress represented by the new generation of interim storage units. (authors)

  19. Assuring safe interim storage of Hanford high-level tank wastes

    International Nuclear Information System (INIS)

    The federal government established the Hanford Site in South-Eastern Washington near the City of Richland in 1943 to produce plutonium for national defense purposes. The Hanford Site occupies approximately 1,450 square kilometers (560 square miles) of land North of the City of Richland. The production mission ended in 1988, transforming the Hanford Site mission to waste management, environmental restoration, and waste disposal. Thus the primary site mission has shifted from production to the management and disposal of radioactive, hazardous, and mixed waste that exist at the Hanford Site. This paper describes the focus and challenges facing the Tank Waste Remediation System (TWRS) Program related to the dual and parallel missions of interim safe storage and disposal of the tank associated waste. These wastes are presently stored in 2.08E+05 liters (55,000) to 4.16E+06 liters (1,100,000) gallon low-carbon steel tanks. There are 149 single- and 28 double-shell radioactive underground storage tanks, as well as approximately 40 inactive miscellaneous underground storage tanks. In addition, the TWRS mission includes the storage and disposal of the inventory of 1,929 cesium and strontium capsules created as part of waste management efforts. Tank waste was a by-product of producing plutonium and other defense related materials. From 1944 through 1990, four (4) different major chemical processing facilities at the Hanford Site processed irradiated (spent) fuel from defense reactors to separate and recover plutonium for weapons production. As new and improved processes were developed over the last 50 years, the processing efficiency improved and the waste compositions sent to the tanks for storage changed both chemically and radiologically. The earliest separation processes (e.g., bismuth phosphate coprecipitation) carried out in T Plant (1944-1956) and B Plant (1945-1952) recovered only plutonium

  20. Dedicated-site, interim storage of high-level nuclear waste as part of the management system

    OpenAIRE

    Zen, E-an

    1980-01-01

    Dedicated-site interim storage of high-level reprocessed nuclear waste and of spent fuel rods is proposed as a long-term integral part of the systems approach of the national nuclear waste isolation program. Separation of interim sites for retrievable storage from permanent-disposal repositories should enhance ensurance of the performance of the latter; maintenance of retrievability at separate sites also has many advantages in both safety and possible use of waste as resources. Interim stora...

  1. Safety of interim storage solutions of used nuclear fuel during extended term

    International Nuclear Information System (INIS)

    In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage

  2. 1987 Federal interim storage fee study: A technical and economic analysis

    International Nuclear Information System (INIS)

    This document is the latest in a series of reports that are published annually by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This information in the report, which was prepared by E.R. Johnson Associates under subcontract to PNL, will be used by the DOE to establish a payment schedule for interim storage of spent nuclear fuel under the Federal Interim Storage (FIS) Program, which was mandated by the Nuclear Waste Policy Act of 1982. The information in this report will be used to establish the schedule of charges for FIS services for the year commencing January 1, 1988. 13 tabs

  3. Immobilized High Level Waste (HLW) Interim Storage Alternative Generation and analysis and Decision Report 2nd Generation Implementing Architecture

    Energy Technology Data Exchange (ETDEWEB)

    CALMUS, R.B.

    2000-09-14

    Two alternative approaches were previously identified to provide second-generation interim storage of Immobilized High-Level Waste (IHLW). One approach was retrofit modification of the Fuel and Materials Examination Facility (FMEF) to accommodate IHLW. The results of the evaluation of the FMEF as the second-generation IHLW interim storage facility and subsequent decision process are provided in this document.

  4. Interim Storage of Spent Nuclear Fuel before Final Disposal in Germany - Regulator's view

    International Nuclear Information System (INIS)

    For spent nuclear fuel management in Germany the concept of dry interim storage in dual purpose casks before direct disposal is applied. The Federal Office for Radiation Protection (BfS) is the competent authority for licensing of interim storage facilities. The competent authority for surveillance of operation is the responsible authority of the respective federal state (Land). Currently operation licenses for storage facilities have been granted for a storage time of 40 years and are based on safety demonstrations for all safety issues as safe enclosure, shielding, sub-criticality and decay heat removal under consideration of operation conditions. In addition, transportability of the casks for the whole storage period has to be provided. Due to current delay in site selection and exploration of a disposal site, an extension of the storage time beyond 40 years could be needed. This will cause appropriate actions by the licensee and the competent authorities as well. A brief description of the regulatory base of licensing and surveillance of interim storage is given from the regulators view. Furthermore the current planning for final disposal of spent nuclear fuel and high level waste and its interconnections between storage and disposal concepts are shortly explained. Finally the relevant aspects for licensing of extended storage time beyond 40 years will be discussed. Current activities on this issue, which have been initiated by the Federal Government, will be addressed. On the regulatory side a review and amendment of the safety guideline for interim storage of spent fuel has been performed and the procedure of periodic safety review is being implemented. A guideline for implementing an ageing management programme is available in a draft version. Regarding safety of long term storage a study focussing on the identification and evaluation of long term effects as well as gaps of knowledge has been finished in 2010. A continuation and update is currently underway

  5. Carbon storage in forest soil

    International Nuclear Information System (INIS)

    The article reviews research on short and long term carbon storage. A Norwegian programme with the objective of increasing knowledge of key processes which govern the carbon storage and loss of CO2 from forest soil in Norway is mentioned. Topics that will be studied are: The production and loss of CO2 from the soil, root ecology, the microorganism ability of degrading organic compounds, transport and loss of organic compounds through the soil to creeks and lakes and the modelling of carbon currents and storage in various forest ecosystems both in the soil and above

  6. Development of Thermal Analysis Capability of Dry Storage Cask for Spend Fuel Interim Storage

    International Nuclear Information System (INIS)

    As most of the nuclear power plants, on-site spent fuel pools (SFP) of Taiwan's plants were not originally designed with a storage capacity for all the spent fuel generated over the operating life by their reactors. For interim spent fuel storage, dry casks are one of the most reliable measures to on-site store over-filled assemblies from SFPs. The NUHOMSR-52B System consisting of a canister stored horizontally in a concrete module is selected for thermal evaluation in this paper. The performance of each cask in criticality, radioactive, material and thermal needs to be carefully addressed to ensure its enduring safety. Regarding the thermal features of dry storage casks, three different kinds of heat transfer mechanisms are involved, which include natural convection heat transfer outside and/or inside the canister, radiation heat transfer inside and outside the canister, and conduction heat transfer inside the canister. To analyze the thermal performance of dry storage casks, RELAP5-3D is adopted to calculate the natural air convection and radiation heat transfer outside the canister to the ambient environment, and ANSYS is applied to calculate the internal conduction and radiation heat transfer. During coupling iteration between codes, the heat energy across the canister wall needs to be conserved, and the inner wall temperature of the canister needs to be converged. By the coupling of RELAP5-3D and ANSYS, the temperature distribution within each fuel assembly inside canisters can be calculated and the peaking cladding temperature can be identified. (authors)

  7. Neutron spectrometry at the interim storage facility for spent nuclear fuel

    CERN Document Server

    Králik, M; Studeny, J

    2002-01-01

    Dosimetric characteristics of neutron and photon components of mixed fields around casks for spent nuclear fuel have been determined at various places at the dry interim storage facility. The results obtained with metrological grade instruments were compared with data provided by usual survey meters for both neutrons and photons.

  8. Geotechnical and environmental aspects of underground interim storage of spent nuclear fuel

    Czech Academy of Sciences Publication Activity Database

    Šňupárek, Richard

    New Delhi : Central Board of Irrigation and Power, 2002 - (Ramamurthy, T.; Narasimhan, S.), s. 44-51 [Advancing Rock Mechanics Frontiers to meet the Challenges of 21st Century. New Delhi (IN), 24.09.2002-27.09.2002] R&D Projects: GA AV ČR KSK3012103 Keywords : underground interim storage Subject RIV: DB - Geology ; Mineralogy

  9. Interim storage for spent fuel elements. Bavarian Higher Administrative Court, judgement of February 7, 1985

    International Nuclear Information System (INIS)

    Spent fuel, which can be reprocessed under the conditions of sec. 9 a (1) Atomic Energy Act, is not classified as radioactive waste but as radioactive residues. Their interim storage is not subject to the provisions for waste disposal of sec. 9 a et seq. Atomic Energy Act, but to those of sec. 5 et seq. Atomic Energy Act. The construction and operation of a compact fuel storage in a cooling pond for the purpose of interim storage of irradiated fuel is subject to a licence pursuant to sec. 7 (1) Atomic Energy Act. External effects on a compact storage due to an incident 'plane crash' are to be attributed to the scope of residual risk because of the special precautions already considered within the design criteria and because of the comparatively favourable site of the plant Isar 1 at Ohu. (orig./HSCH)

  10. Repacking of Cobalt 60 spent sources in the central interim storage

    International Nuclear Information System (INIS)

    After the transfer of the responsibility for the management of the Central interim storage for waste from small producers, located at the reactor centre in Brinje near Ljubljana, Slovenia, the national Agency for radwaste management (ARAO) started with most urgent activities to improve the utilization of the storage facility. One of the main tasks has also been the rearrangement of the already stored radioactive waste in order to reduce volume of the waste and to collect same radioisotopes in the containers. The latest campaign, performed in 2002/2003, was repacking of all Co-60 spent sealed sources in the storage facility and also at the producer's premises which were after conditioning put into two drums with concrete matrix and stored back to the Central interim storage. The preparation works together with the implementation are described in the paper. (author)

  11. Interim storage packagings for spent fuels : how to optimize an universal design to local needs

    International Nuclear Information System (INIS)

    For the last ten years, the interim storage market for spent fuels issued from Nuclear Power Plants has significantly increased all over the world: there are presently many storage projects either in Asia, in North America and in Europe. Even if there is no international regulation on that field, there is a big concern from all the nuclear industry to try to harmonise the specification for the definition of the Interim Storage Systems. One example of this harmonisation is the common and general wish to develop systems, which allow to be easily transportable either to a final repository or to a reprocessing plant. As this destination is generally not yet known, the storage system should be able to be transported all over the world. On the other hand, the specific requirement for the storage facility and its associated equipment are subject to local and/or national regulation. COGEMA LOGISTICS Group has developed two different technologies which are compatible with this principle of harmonisation: dual purpose metallic cask represented by the TN24 family and the concrete storage system NUHOMS(R). For both technologies, basic designs can be adapted to the local needs in term of performance and of national regulation. To cover all the world, COGEMA LOGISTICS Group has its own subsidiaries, in Asia, in North America and in Europe with their own autonomous engineers teams for designing, licensing, manufacturing and delivering the transport/storage products. COGEMA LOGISTICS Group is presently the leader on the dry interim storage market. The purpose of the present paper is to show how it is possible to optimise a basic existing design of a dual purpose metallic cask for a local need of storage. Taking into account the national rules for storage and the international regulation for transport, the designer shall minimise the development cost for a completely new design and maximise the capacity of the packaging regarding the allowable limits in the Nuclear Power Plant, in

  12. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    Energy Technology Data Exchange (ETDEWEB)

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The

  13. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISCs)

    International Nuclear Information System (INIS)

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is (le) 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified

  14. Development of dual-purpose metal cask for interim storage of spent nuclear fuel (1). Outline of cask structure

    International Nuclear Information System (INIS)

    Spent fuels discharged from nuclear power plants in Japan are planed to be reprocessed at the nuclear fuel recycle plant under construction at Rokkasho-mura. Since the amount of the spent fuels exceeds that of recycled fuel, the spent fuels have to be properly stored and maintained as recycle fuel resource until the beginning of the reprocessing. For that sake, interim storage installations are being constructed outside the nuclear power plants by 2010. The storage dry casks have been practically used as the interim storage in the nuclear power plants. From this reason, the storage system using the storage dry casks is promising as the interim storage installations away form the reactors, which are under discussion. In the interim storage facilities, the storage using the dry cask of the storage metal cask with business showings, having the function of transportation is now under discussion. By employing transportation and storage dual-purpose cask, the repack equipments can be exhausted, and the reliability of the interim storage installations can be increased. Hitachi, Ltd. has been developing the high reliable and economical transportation and storage dry metal cask. In this report, the outline of our developing transportation and storage dry cask is described. (author)

  15. Research on HLW and ILW Interim Storage Complementary to Deep Geological Disposal

    International Nuclear Information System (INIS)

    According to the Act (28 June 2006), interim storage is a research route for the sustainable management of HLW and intermediate level long lived radioactive waste (ILW) in France, along with partitioning/transmutation and reversible disposal in a deep geological formation. Interim storage is intended to play a complementary role to the geological reversible repository. ANDRA is responsible for defining and coordinating the research on both interim storage and reversible disposal of HLW/ILW. A long storage duration as considered before 2006 (up to 300 years) is no more an objective for the research. The paper details the role of interim storage complementary to the reversible repository, with respect to the origin and characteristics of various HLW and ILW to be considered. In particular, it will make it possible for HLW to benefit of thermal decay. ANDRA cooperates with the operators of existing storage facilities at production sites. Working groups have been created. The objectives are the following: - to learn from the experience gained at designing, building and operating the facilities, - to check the capability of existing and projected facilities to meet with the requirements of the National plan for the management of the radioactive matters and waste. In 2008, French waste producers updated the National inventory of radioactive waste and matters. According to the Act, they have incorporated an inventory of their storage facilities. ANDRA has made a review of these inventories to provide the Government with an evaluation of needs for new facilities. ANDRA has also investigated new design options of storage facilities on both production and disposal sites. On the repository site, interim storage above ground and in shallow geological formation have been studied. The waste packages are stored as produced, eventually secured in handling cask, or over-packed for disposal in steel (HLW) or concrete containers (ILW). A service life as long as one hundred years may

  16. Dry interim spent fuel storage casks. Licensing, evaluation and operational experience

    International Nuclear Information System (INIS)

    The German concept for the external dry interim storage of spent fuel and high level wastes is based on the used of monolithic ductile iron casks which are licensed according to the transport regulations and the national Atomic Energy Act. The casks ensure the safe confinement of the radioactive inventory over long term storage periods of up to 40 years. Essential for that purpose is the double barrier containment system, consisting of two independent lids sealed with long term resistant metallic gaskets and equipped with an interspace pressure monitoring device. Since the establishment of this dry interim storage concept in Germany in the early 1980s, a great deal of experience has been accumulated and now spent fuel elements from the THTR reactor at Hamm-Uentrop and from the AVR research reactor at Juelich are loaded into CASTOR-THTR/AVR casks under dry conditions and stored in the licensed external dry interim storage facilities in Ahaus and Juelich. These are now routine procedures that started in 1992 and has so far comprise more than 200 casks. A great deal of operational experience exists and has also been gained in process optimization without any serious problems. Much more difficult are the drying and evacuation procedures for casks loaded under wet conditions in the spent fuel storage pond of a nuclear power plant. In this case, special operational procedures involving humidity measurements are applied. Different loading operations in several German power plants have been carried out since 1982 and the first wet loaded cask proposed for storage in the licensed external dry interim storage facility at Gorleben came into operation in July 1994. (author). 4 refs, 5 figs, 1 tab

  17. Safety features of proposed concepts for spent fuel dry interim storage

    International Nuclear Information System (INIS)

    Whichever solution is selected for the back-end of the fuel cycle, increasing quantities of spent fuel have often to be stored interim for rather long periods of time. Public acceptance of the corresponding storage facilities becomes more and more an important concern for all involved utilities in various countries. The fact that several governments have already issued sets of storage criteria which show significant differences with each other constitutes a weakness for all of them in front of their own population which no longer knows whom to believe. Therefore the need of an international consensus on basic rules and criteria for the safe interim storage of spent fuel has now become really urgent. The paper gives a brief view on this problem. (author)

  18. The Time Needed to Implement the Blue Ribbon Commission Recommendation on Interim Storage - 13124

    International Nuclear Information System (INIS)

    The report of the Blue Ribbon Commission on America's Nuclear Future [1] makes a number of important recommendations to be considered if Congress elects to redirect U.S. high-level radioactive waste disposal policy. Setting aside for the purposes of this discussion any issues related to political forces leading to stopping progress on the Yucca Mountain project and driving the creation of the Commission, an important recommendation of the Commission was to institute prompt efforts to develop one or more consolidated storage facilities. The Blue Ribbon Commission noted that this recommended strategy for future storage and disposal facilities and operations should be implemented regardless of what happens with Yucca Mountain. It is too easy, however, to focus on interim storage as an alternative to geologic disposal. The Blue Ribbon Commission report does not go far enough in addressing the magnitude of the contentious problems associated with reopening the issues of relative authorities of the states and federal government with which Congress wrestled in crafting the Nuclear Waste Policy Act [2]. The Blue Ribbon Commission recommendation for prompt adoption of an interim storage program does not appear to be fully informed about the actions that must be taken, the relative cost of the effort, or the realistic time line that would be involved. In essence, the recommendation leaves to others the details of the systems engineering analyses needed to understand the nature and details of all the operations required to reach an operational interim storage facility without derailing forever the true end goal of geologic disposal. The material presented identifies a number of impediments that must be overcome before the country could develop a centralized federal interim storage facility. In summary, and in the order presented, they are: 1. Change the law, HJR 87, PL 107-200, designating Yucca Mountain for the development of a repository. 2. Bring new nuclear waste

  19. Interface Between the Storage of Spent Fuels at Japan’s Interim Storage Facility and the Transport There of after Storage in Japan. Annex VII

    International Nuclear Information System (INIS)

    The Recyclable-Fuel Storage Company (RFS) plans to construct Japan’s first interim storage facility for spent fuels of light water reactors. This facility is designed to have no equipment to refill spent fuels. It stores transported casks as they are. After storage, casks are carried out from the facility without opening their lids and transported to a reprocessing facility and others. Spent fuels are planned to be stored for 50 years. In other words, as spent fuels are transported after storage in the same state as they are carried into the interim storage facility, it is necessary to consider the transportation 50 years later in designing the cask. Here, we examined the points to be taken into account for storage in consideration of transportation 50 years later

  20. Assessment of Hanford burial grounds and interim TRU storage

    International Nuclear Information System (INIS)

    A review and assessment is made of the Hanford low level solid radioactive waste management sites and facilities. Site factors considered favorable for waste storage and disposal are (1) limited precipitation, (2) a high deficiency of moisture in the underlying sediments (3) great depth to water table, all of which minimize radionuclide migration by water transport, and (4) high sorbtive capacity of the sediments. Facilities are in place for 20 year retrievable storage of transuranic (TRU) wastes and for disposal of nontransuranic radioactive wastes. Auxiliary facilities and services (utilities, roads, fire protection, shops, etc.) are considered adequate. Support staffs such as engineering, radiation monitoring, personnel services, etc., are available and are shared with other operational programs. The site and associated facilities are considered well suited for solid radioactive waste storage operations. However, recommendations are made for study programs to improve containment, waste package storage life, land use economy, retrievability and security of TRU wastes

  1. Assessment of Hanford burial grounds and interim TRU storage

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, J.F.; Brown, D.J.; Isaacson, R.E.

    1977-08-01

    A review and assessment is made of the Hanford low level solid radioactive waste management sites and facilities. Site factors considered favorable for waste storage and disposal are (1) limited precipitation, (2) a high deficiency of moisture in the underlying sediments (3) great depth to water table, all of which minimize radionuclide migration by water transport, and (4) high sorbtive capacity of the sediments. Facilities are in place for 20 year retrievable storage of transuranic (TRU) wastes and for disposal of nontransuranic radioactive wastes. Auxiliary facilities and services (utilities, roads, fire protection, shops, etc.) are considered adequate. Support staffs such as engineering, radiation monitoring, personnel services, etc., are available and are shared with other operational programs. The site and associated facilities are considered well suited for solid radioactive waste storage operations. However, recommendations are made for study programs to improve containment, waste package storage life, land use economy, retrievability and security of TRU wastes.

  2. The role of interim storage facilities in the nuclear waste management policy of Germany

    International Nuclear Information System (INIS)

    The article discusses the role of interim storage of spent fuel elements in the current nuclear waste management policy in Germany, and possible demand for additional interim storage facilities in the future, as a consequence of the shift in the radioactive waste disposal concept and the nuclear power opt-out policy of the Federal Government. Success or failure of the consensus on the nuclear power phase-out strategy, agreed between the Federal Government and the nuclear power industry on 14 June 2000, hinges not only but essentially on the availability of sufficient interim storage facilities for spent fuel elements accrued over the negotiated remaining operating periods of nuclear power plants. The NPP operators say the present radioactive waste management concept has to be put on a different basis and needs amending in response to the change in energy policy. For the electric utilities, the crucial test is whether the Federal Government will be able to fulfill their promise made during the consensus negotiations, namely that there will be no premature shutdowns of nuclear power plants because of a bottleneck in spent fuel storage capacity. (orig./CB)

  3. Safety report for Central Interim Storage facility for radioactive waste from small producers

    International Nuclear Information System (INIS)

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage (CIS) in Brinje, intended only for radioactive waste from industrial, medical and research applications. With the transfer of the responsibilities for the storage operation, ARAO, the new operator of the facility, received also the request from the Slovenian Nuclear Safety Administration for refurbishment and reconstruction of the storage and for preparation of the safety report for the storage with the operational conditions and limitations. In order to fulfill these requirements ARAO first thoroughly reviewed the existing documentation on the facility, the facility itself and the stored inventory. Based on the findings of this review ARAO prepared several basic documents for improvement of the current conditions in the storage facility. In October 2000 the Plan for refurbishment and modernization of the CIS was prepared, providing an integral approach towards remediation and refurbishment of the facility, optimization of the inventory arrangement and modernization of the storage and storing utilization. In October 2001 project documentation for renewal of electric installations, water supply and sewage system, ventilation system, the improvements of the fire protection and remediation of minor defects discovered in building were completed according to the Act on Construction. In July 2003 the safety report was prepared, based on the facility status after the completion of the reconstruction works. It takes into account all improvements and changes introduced by the refurbishment and reconstruction of the facility according to project documentation. Besides the basic characteristics of the location and its surrounding, it also gives the technical description of the facility together with proposed solutions for the renewal of electric installations, renovation of water supply and sewage system, refurbishment of the ventilation system, the improvement of fire

  4. The experiences from interim spent fuel storage operation with CASTOR 440/84 CASKS in NPP Dukovany

    International Nuclear Information System (INIS)

    In this lecture are presented: principles of the CASTOR 440/84 design; design development works; commissioning of interim spent fuel storage facility; international transports of spent fuel utilising CASTOR 440/84 casks

  5. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  6. Federal interim storage fee study for civilian spent nuclear fuel: a technical and economical analysis

    International Nuclear Information System (INIS)

    This report describes the study conducted by the Department of Energy (the Department) regarding payment charges for the federal interim storage (FIS) of spent fuel and presents the details of the study results. It describes the selection of a methodology for calculating a FIS fee schedule, sets forth the estimates of cost for construction and operation of FIS facilities, provides a range of estimates for the fee for FIS services, and identifies special contractual considerations associated with providing FIS services to authorized users. The fee is structured for a range of spent fuel capacities because of uncertainties regarding the schedule of availability and amount of spent fuel that may require and qualify for FIS. The results set forth in the report were used as a basis for development of the report entitled Payment Charges for Federal Interim Storage of Spent Nuclear Fuel from Civilian Nuclear Power Plants in the United States, dated July 1983

  7. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  8. Operations and Maintenance Concept Plan for the Immobilized High-Level Waste (IHLW) Interim Storage Facility

    International Nuclear Information System (INIS)

    This OandM Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design

  9. The Gorleben situation. Radwaste interim storage facility, conditioning pilot plant, exploration mine

    International Nuclear Information System (INIS)

    The radwaste interim storage facility has been in operation since 1983, the conditioning pilot plant is under construction, and exploration work is well under way in the mine for preparing the site for service as a radwaste repository. The name Gorleben practically has become a synonym term for ultimate radwaste disposal strategy, and for determined opposition against atomic energy. Dagmar Roehrlich has been on site on behalf of Energie Spektrum and reports the current situation. (orig.)

  10. The public response to Monitored Retrievable Storage: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-22

    This report describes public opinion concerning the proposed monitored retrievable storage facility to be located in the vicinity of Oak Ridge, Tennessee. The majority of individuals who did express an opinion opposed the facility due to transport/safety concerns and environmental/health concerns. (CBS)

  11. Physical protection of a nuclear waste interim storage against interference by third parties

    International Nuclear Information System (INIS)

    Full text: The nuclear power plant (NPP) Lubmin/Greifswald was shut down in 1990. As there exists no final storage for radioactive waste in Germany it is necessary to store the spent nuclear fuel elements and the radioactive waste of the decommissioning on the NPP site. Therefore the Interim Storage North (ISN) was erected. The spent fuel elements are dry stored in massive iron casks from type CASTOR-440/84. The physical protection of the ISN is determined by the storage of spent nuclear fuel. It must realize the prevention of danger to life and health due to release of a substantial amount of radioactive material and of stealing nuclear fuels in such amounts that critical accumulations can be produced. The concept of physical protection against interference by third parties consists of three barriers. The first is the CASTOR cask itself, the second is the storage building and the third the fence around the storage site. In the paper the systems of physical protection of the Interim Storage North are presented. (author)

  12. INTERIM STORAGE AND LONG TERM DISPOSAL OF RESEARCH REACTOR SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D

    2006-08-22

    Aluminum clad research reactor spent nuclear fuel (SNF) is currently being consolidated in wet storage basins (pools). Approximately 20 metric tons (heavy metal) of aluminum-based spent nuclear fuel (Al-SNF) is being consolidated for treatment, packaging, interim storage, and preparation for ultimate disposal in a geologic repository. The storage and disposal of Al-SNF are subject to requirements that provide for safety and acceptable radionuclide release. The options studied for interim storage of SNF include wet storage and dry storage. Two options have also been studied to develop the technical basis for the qualification and repository disposal of aluminum spent fuel. The two options studied include Direct Disposal and Melt-Dilute treatment. The implementation of these options present relative benefits and challenges. Both the Direct Disposal and the Melt-Dilute treatment options have been developed and their technical viability assessed. Adaptation of the melt-dilute technology for the treatment of spent fuel offers the benefits of converting the spent fuel into a proliferation resistant form and/or significantly reducing the volume of the spent fuel. A Mobile Melt-Dilute system concept has emerged to realize these benefits and a prototype system developed. The application of the melt-dilute technology for the treatment of legacy nuclear materials has been evaluated and also offers the promise for the safe disposal of these materials.

  13. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    International Nuclear Information System (INIS)

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  14. Release of radionuclides following severe accident in interim storage facility. Source term determination

    International Nuclear Information System (INIS)

    Among the severe accidents that can cause the release of radionuclides from an interim storage facility, with a consequent relevant radiological impact on the population, there is the impact of an aircraft on the facility. In this work, a safety assessment analysis for the case of an aircraft crash into an interim storage facility is tackled. To this aim a methodology, based upon DOE, IAEA and NUREG standard procedures and upon conservative yet realistic hypothesis, has been developed in order to evaluate the total radioactivity, source term, released to the biosphere in consequence of the impact, without recurring to the use of complicated numerical codes. The procedure consists in the identification of the accidental scenarios, in the evaluation of the consequent damage to the building structures and to the waste packages and in the determination of the total release of radionuclides through the building-atmosphere interface. The methodology here developed has been applied to the case of an aircraft crash into an interim storage facility currently under design. Results show that in case of perforation followed by a fire incident the total released activity would be greater of some orders of magnitude with respect to the case of mere perforation. (author)

  15. Conditioning and interim storage of spent radium sources

    International Nuclear Information System (INIS)

    This report is of main interest to waste management operators and regulators in Member States where spent radium sources are still being collected for conditioning and stored for eventual disposal in a deep geological repository. The methods and procedures proposed can also serve as guidance to IAEA experts assisting developing Member States in managing their radioactive waste, especially spent radium sources. It discusses infrastructure, source, transportation, source conditioning process, storage and quality assurance of radium sources. 17 refs, 14 figs, 6 tabs

  16. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    International Nuclear Information System (INIS)

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear Regulation Authority (NRA: which controls the regulations for Spent Fuel Interim Storage Facilities). In 2012 fiscal year, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel under cask drop accidents, and preparation for PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be also carried out in 2013 fiscal year and after. (author)

  17. Meet the Challenges of Spent Fuel Interim Storage by Using Intensive Innovation

    International Nuclear Information System (INIS)

    AREVA Logistics Business Unit, through its entities TN International in France, Transnuclear Inc. in the USA and Transnuclear Ltd. in Japan, has proposed for more than 2 decades the leading dry storage systems of spent fuel in use today. These systems have mainly been sold in Europe, in the US and in Japan. The PWR, BWR or VVER fuel characteristics may have various enrichment values up to 5%, various cooling time down to 2 years and various burnups up to 65,000 MWd/tU. Facing the current international trend towards expanding Spent Fuel Interim Storage capabilities and the unpredictable market prices of steel large forged components, AREVA Logistics Business Unit has launched an extensive innovation process to create the new generation of dry interim storage systems: i) the TN®DUO cask is an innovative and cost effective dual purpose cask; and ii) the TN®NOVA system is an innovative canister system based on the NUHOMS® cask system, the US industry leading spent fuel storage solution. These two innovative solutions can naturally be transported to the storage facilities as well as other sites such as reprocessing facilities or geological repositories depending of the national strategy for the back-end of the nuclear fuel cycle. In addition to these innovative dry interim storage systems and based on 40 years experience in design, licensing and fabrication of baskets for transportation cask, AREVA Logistics Business Unit has developed new innovative designs for Underwater Fuel Storage Racks which includes the use of Metal Matrix Composite (MMC) material as a neutron absorbing material. This kind of material allows proposing a cost efficient solution with a reduced rack weight and a significant improvement of the criticality performance. Furthermore, AREVA Logistics Business Unit Rack Design remains flexible and evolutionary linked to fuel characteristics evolution and it can include other neutron absorbing materials commonly used in the nuclear industry as borated

  18. Dedicated-site, interim storage of high-level nuclear waste as part of the management system.

    Science.gov (United States)

    Zen, E A

    1980-11-01

    Dedicated-site interim storage of high-level reprocessed nuclear waste and of spent fuel rods is proposed as a long-term integral part of the systems approach of the national nuclear waste isolation program. Separation of interim sites for retrievable storage from permanent-disposal repositories should enhance ensurance of the performance of the latter; maintenance of retrievability at separate sites also has many advantages in both safety and possible use of waste as resources. Interim storage sites probably will not be needed beyond about 100 years from now, so the institutional and technical considerations involved in their choice should be much less stringent than those for the selection of permanent sites. Development of interim sites must be concurrent with unabated effort to identify and to develop permanent repositories. PMID:16592904

  19. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    International Nuclear Information System (INIS)

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal

  20. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  1. Classification methodology for tritiated waste requiring interim storage

    Energy Technology Data Exchange (ETDEWEB)

    Cana, D.; Dall' ava, D. [CEA/DEN/DADN, Centre de Saclay, Gif-sur-Yvette (France); Decanis, C.; Liger, K. [CEA/DEN, Centre de Cadarache, Saint-Paul-lez-Durance (France); Pamela, J. [CEA, Agence ITER-France, Saint-Paul-lez-Durance (France)

    2015-03-15

    Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommends setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)

  2. Prospects of interim storage in the Netherlands of irradiated fuel elements and fission products

    International Nuclear Information System (INIS)

    The search for temporary and ultimate storage techniques for radioactive wastes in the Netherlands is co-ordinated by the Planning Board 'Integraal Landelijk Onderzoek Nucleair Afval' (ILONA). One of its tasks is to investigate the interim storage of high-level radioactive wastes, especially those of irradiated fuel elements and fission products. In this report, an overview is given of various storage techniques appropriate to the Netherlands, like storage in water bassins, in vaults and in silos. Radiation protection and environmental aspects are discussed. The following wastes are considered: fuel elements; high-level radioactive solid wastes from reprocessing plants; and fission wastes from reprocessing plants. Data of the Borssele reactor and the Dodewaard reactor and reactors to be built yet, good for 3000 MWe are taken into account. (G.J.P.)

  3. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    International Nuclear Information System (INIS)

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear and Industrial Safety Agency (NISA: which prepares necessary regulations for Spent Fuel Interim Storage Facilities). In 2010 fiscal year, JNES completed technical evaluation of the standard (prepared by Atomic Energy Society of Japan) used for the storage facility (dual purpose cask system) being constructed in Mutsu-City and R and D for UT test of welded canister lids which is required for concrete cask storage facilities. And also, JNES is preparing dynamic test of spent fuel to examine the integrity of spent fuel at cask drop accidents and PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. The results of these tests will be reported in 2011 and 2012 fiscal year. (author)

  4. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    International Nuclear Information System (INIS)

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank's highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format

  5. Interim Storage of RH-TRU 72B Canisters at the DOE Oak Ridge Reservation

    International Nuclear Information System (INIS)

    This paper describes an evaluation performed by the Department of Energy (DOE) Oak Ridge Operations (ORO) office for potential interim storage of remote-handled (RH) transuranic (TRU) 72B waste canisters at the Oak Ridge National Laboratory (ORNL). The evaluation included the conceptual design of a devoted canister storage facility and an assessment of the existing RHTRU waste storage facilities for storage of canisters. The concept for the devoted facility used modular concrete silos located on an above-grade storage pad. The assessment of the existing facilities considered the potential methods, facility modifications, and conceptual equipment that might be used for storage of 400 millisievert per hour (mSv/hr) canisters. The results of the evaluation indicated that the initial investment into a devoted facility was relatively high as compared to the certainty that significant storage capacity was necessary prior to the Waste Isolation Pilot Plant (WIPP) accepting RH-TRU waste for disposal. As an alternative, the use of individual concrete overpacks provided an incremental method that could be used with the existing storage facilities and outside storage pads. For the concrete overpack concepts considered, the cylindrical design stored in a vertical orientation was determined to be the most effective

  6. GNS Experience on the Long-Term Storage at Dry Interim Storage Facilities Especially in Ahaus and Gorleben

    International Nuclear Information System (INIS)

    This presentation provides a general overview on the operation experience of the dry interim storage facilities in Ahaus and Gorleben (later referred to as TBL-A and TBL-G). GNS is solely in charge of the operation and maintenance of both facilities licensed for a dry storage period of 40 years. The amount of different cask types stored to date which are loaded with spent fuel and reprocessing waste and the cask specific information such as heat capacity, heat flow and dose rate are shown. A presentation of the transport and storage operation experience (e. g. statistics of the monitoring system) follows as well as an outlook on future activities. The associated licensing procedures are outlined in view of pre-existing licenses together with present or future licensing activities. This includes cask approval procedures according to the international safety requirements for transport and licensing procedures as laid down in the German Atomic Act. Both facilities have been operated, to a large extent, independently of nuclear power plants. Different casks have been stored there for more than ten years. In terms of best practices the vast operational experience gathered at these interim storage facilities is shown on practical examples i.e. the 10-year cask inspection, the pilot process for the periodical safety review as well as the ageing management demonstrating the robustness of the dry cask storage concept. The key aspects of the GNS expertise and a summary of the GNS position as well as perspectives for the long-term dry storage complete the presentation. (authors)

  7. Carbon storage in Amazonian podzols

    Science.gov (United States)

    Montes, Celia; Lucas, Yves; Pereira, Osvaldo; Merdy, Patricia; Santin, Roberta; Ishida, Débora; du Gardin, Beryl; Melfi, Adolpho

    2014-05-01

    It has recently been discovered that Amazonian podzols may store much larger quantities of carbon than previously thought, particularly in their deep Bh horizons (over 13.6 Pg for Brazilian Amazonia alone [1]). Similarly high carbon stocks are likely to exist in similar climate/soil areas, mainly in Africa and in Borneo. Such carbon stocks raise the problem of their stability in response to changes in land use or climate. Any significant changes in vegetation cover would significantly alter the soil water dynamics, which is likely to affect organic matter turnover in soils. The direction of the change, however, is not clear and is likely to depend on the specific conditions of carbon storage and properties of the soils. It is reasonable to assume that the drying of the Bh horizons of equatorial podzols, which are generally saturated, will lead to an increase in C mineralization, although the extent of this increase has not yet been determined. These unknowns resulted in research programs, granted by the Brazilian FAPESP and the French Région PACA-ARCUS and ANR, dedicated improving estimates of the Amazonian podzol carbon stocks and to an estimate of its mineralisability. Eight test areas were determined from the analysis of remote sensing data in the larger Amazonian podzol region located in the High Rio Negro catchment and studied in detail. Despite the extreme difficulties in carrying out the field work (difficulties in reaching the study sites and extracting the soils), more than a hundred points were sampled. In all podzols the presence of a thick deep Bh was confirmed, sometimes to depths greater than 12 m. The Bh carbon was quantified, indicating that carbon stocks in these podzols are even higher than estimated recently [1]. References 1- Montes, C.R.; Lucas, Y.; Pereira, O.J.R.; Achard, R.; Grimaldi, M.; Mefli, A.J. Deep plant?derived carbon storage in Amazonian podzols. Biogeosciences, 8, 113?120, 2011.

  8. Ocean carbon uptake and storage

    International Nuclear Information System (INIS)

    Full text: The ocean contains about 95% of the carbon in the atmosphere, ocean and land biosphere system, and is of fundamental importance in regulating atmospheric carbon dioxide concentrations. In the 1990s an international research effort involving Australia was established to determine the uptake and storage of anthropogenic C02 for all major ocean basins. The research showed that about 118 of the 244 + 20 billion tons of the anthropogenic carbon emitted through fossil fuel burning and cement production has been stored in the ocean since preindustrial times, thus helping reduce the rate of increase in atmospheric C02. The research also showed the terrestrial biosphere has been a small net source of C02 (39 ± 28 billion tons carbon) to the atmosphere over the same period. About 60% of the total ocean inventory of the anthropogenic C02 was found in the Southern Hemisphere, with most in the 300S to 500S latitude band. This mid-latitude band is where surface waters are subducted as Mode and Intermediate waters, which is a major pathway controlling ocean C02 uptake. High storage (23% of the total) also occurs in the North Atlantic, associated with deep water formation in that basin. The ocean uptake and storage is expected to increase in the coming decades as atmospheric C02 concentrations rise. However, a number of feedback mechanisms associated with surface warming, changes in circulation, and biological effects are likely to impact on the uptake capacity. The accumulation or storage-of the C02 in the ocean is also the major driver of ocean acidification with potential to disrupt marine ecosystems. This talk will describe the current understanding of the ocean C02 uptake and storage and a new international research strategy to detect how the ocean uptake and storage will evolve on interannual through decadal scales. Understanding the ocean response to increasing atmospheric C02 will be a key element in managing future C02 increases and establishing stabilisation

  9. Safety Aspects of Long-Term Interim Storage of Spent Nuclear Fuel in Germany

    International Nuclear Information System (INIS)

    For spent nuclear fuel management in Germany the concept of dry interim storage in dual purpose casks before direct disposal is being pursued. The current operation licenses for existing storage facilities have been granted for a storage time of 40 years. In addition, transportability of the casks must be assured. Due to current delay in the selection of a disposal site the probability increases, that an extension of the storage time will be needed. Therefore additional safety analyses will be required, as the current licenses are based on safety evaluations for 40 years. This is valid for the performance of the transport and storage casks as well as for the stored fuel. Under this point of view basic aspects of the safety demonstration for long-term interim storage with regard to casks and stored fuel will be presented in the paper. For spent nuclear fuel it has to be demonstrated, that no systematic failure of the fuel rods during storage will occur and the fuel structure remains intact. Relevant parameters are the pressure build-up inside the fuel rods, the temperature in the cask and the hoop tension acting on the cladding. In GRS, generic studies and analyses on this issue have been performed for storage times up to 100 years, based on burn-up and depletion calculation for up to 50 GWd/tHM some years ago under conservative assumptions. This work is now being continued in order to improve the calculation model for burn-up values of UO2 and MOX fuels up to 70 GWd/tHM. Results from the analyses will be presented. For casks all safety demonstrations have been performed for storage periods of up to 40 years. Extended storage periods require additional safety demonstrations for all relevant safety issues as safe enclosure, shielding, sub-criticality and decay heat removal under consideration of operation conditions during storage. Thus has to consider material degradation affects by aging mechanisms. On the other hand, radiation levels and decay heat decrease during

  10. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    International Nuclear Information System (INIS)

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear and Industrial Safety Agency (NISA: which prepares necessary regulations for Spent Fuel Interim Storage Facilities). In 2011 fiscal year, JNES carried out R and D for UT test of welded canister lids which is required for concrete cask storage facilities. And also, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel at cask drop accidents and PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be carried out in 2012 fiscal year and after. (author)

  11. Cna 1 spent fuel element interim dry storage system thermal analysis

    International Nuclear Information System (INIS)

    At the moment, the Atucha I Nuclear Power Plant (Cnea-I) located in the city of Lima, has enough room to store its spent fuel (Sf) in their two pools spent fuel until about 2015.In case of life extension a spend fuel element interim dry storage system is needed.Nucleolectrica Argentina S.A. (N A-S A) and the Comision Nacional de Energia Atomica (Cnea), have proposed different interim dry storage systems.These systems have to be evaluated in order to choose one of them.The present work's objective is the thermal analysis of one dry storage alternative for the Sf element of Cna 1.In this work a simple model was developed and used to perform the thermal calculations corresponding to the system proposed by Cnea.This system considers the store of sealed containers with 37 spent fuels in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.Fulfill the maximum cladding temperature requirement (<200 degrade C) for a total 2140 W thermal power

  12. Maywood Interim Storage Site environmental report for calendar year 1989, Maywood, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    The environmental monitoring program, which began in 1984, was continued in 1989 at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. MISS is currently used for storage of soils contaminated with low-level radioactivity. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials are present. The monitoring program at MISS measures thoron and radon concentrations in air; external gamma radiation levels; and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. The radiation dose was calculated for a hypothetical maximally exposed individual to verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess its potential effects on public health. This report presents the results of the environmental monitoring program conducted at the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) during calendar year 1989. Environmental monitoring began at MISS in 1984. 19 refs., 23 figs., 14 tabs.

  13. Maywood Interim Storage Site environmental report for calendar year 1989, Maywood, New Jersey

    International Nuclear Information System (INIS)

    The environmental monitoring program, which began in 1984, was continued in 1989 at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. MISS is currently used for storage of soils contaminated with low-level radioactivity. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials are present. The monitoring program at MISS measures thoron and radon concentrations in air; external gamma radiation levels; and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. The radiation dose was calculated for a hypothetical maximally exposed individual to verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess its potential effects on public health. This report presents the results of the environmental monitoring program conducted at the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) during calendar year 1989. Environmental monitoring began at MISS in 1984. 19 refs., 23 figs., 14 tabs

  14. The licensing process of Cernavoda NPP interim spent fuel dry storage

    International Nuclear Information System (INIS)

    The first 12,000 spent fuel bundles capacity of a new modular interim spent fuel dry storage facility is in operation at the Cernavoda NPP site, since May 2003. The facility consists of a preparation station, a shielded transfer flask and a concrete monolith module of the MACSTOR type, a system designed by Atomic Energy of Canada Limited. The capacity can be extended to accommodate 300 000 spent fuel bundles, which represent the entire production of spent fuel during the lifetime of two CANDU-6 units. The project was implemented by Nuclearelectrica based on the licenses and permits granted by the National Commission for Nuclear Activities Control (CNCAN) for each step: the siting, construction, commissioning and operation. According to the specific Romanian regulations, the interim dry storage facility is also subject to the licensing process by the Environmental and Public Health authorities. The public involvement has been an important step of the environmental licensing procedure. Cernavoda NPP used different legal procedures for the public debate, including announcements in local and national newspapers and public hearings. No objections against the storage facility have been raised. (author)

  15. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  16. Evaluation of Equivalent Dose Rate of Interim Dry Storage Casks Loaded with Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Equivalent dose rate calculations of the CASTOR RBMK-1500 and CONSTOR RBMK-1500 casks were performed using SCALE 4.3 computer codes system. These casks are planned for an interim storage of spent nuclear fuel at Ignalina NPP. The dose rate calculations were made on the sidelong, upper and lower surface of the cask and at the certain distance. Results show that dose rate values on the surface of the cask are much less then permissible value 1000 μSv/h when average burnup of fuel assembly is 20 GWd/tU. (author)

  17. Durability design of heated concrete structures. Methodology and application to long-term interim storage

    International Nuclear Information System (INIS)

    The operation of civil engineering structures subjected to thermal and mechanical loading has led the CEA to examine temperature-dependent variations in the concrete properties and the processes affecting the durability of these structures. A new approach has been undertaken to specify the thermal, hydraulic and mechanical history of these structures. This technical approach is based on three areas of research: material characterization, modelling to identify weaknesses in the structure and validation by experimental tests on heavily instrumented structures subjected to representative loads. The procedure adopted for long-term interim storage facilities can also be applied to other domains. (authors)

  18. Uses of the waste heat from the interim fuel storage facility

    International Nuclear Information System (INIS)

    It was the objective of this study to investigate the possibilities of a convenient use of the waste heat from the designed interim fuel storage at Ahaus. In this sense the following possibilities have been investigated: district heating, heat for industrial processes, fish-production, green house-heating, production of methane from original waste, agrotherm (agricultur field heating). It has been shown, that an economical behaviour for nearly all variations is not given without the financial help of the government, because of the high costs for heat transport and out-put. The most economical project is the intensive fish production plant. (orig.)

  19. Hydrogen combustion in an MCO during interim storage (fauske and associates report 99-14)

    Energy Technology Data Exchange (ETDEWEB)

    PLYS, M.G.

    1999-05-12

    Flammable conditions are not expected to develop in an MCO during interim storage. This report considers potential phenomena which, although not expected t o occur, could lead t o flammable conditions. For example, reactions of hydrogen w i t h fuel over decades a r e postulated t o lead t o flammable atmospheric mixtures. For the extreme cases considered in this report, the highest attainable post-combustion pressure is about 13 atmospheres absolute, almost a factor of two and a half below the MCO design pressure of 31 atmospheres.

  20. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  1. Activities Related to Safety Regulations of Spent Fuel Interim Storage at Japan Nuclear Energy Safety Organization

    International Nuclear Information System (INIS)

    Major research activities in safety regulation of spent fuel interim storage at JNES are presented. In Japan, the first license application was approved by the government in May 2010 and the design and construction method will be submitted to the regulatory authority NISA soon. A commencement of its operation is expected at December 2012. In its plan, dual purpose metal casks for storage and transport will be stored in a concrete building for about 50 years, and then they will be transported to a spent fuel reprocessing facility. When they will be shipped out after the storage, no visual inspection for cask internals will be scheduled. Major reason of no visual inspection is to avoid any radiation exposure from contingent incident during opening the casks lid. JNES as TSO has conducted research activities to support NISA. Before the license application, those activities focused on three areas. The first area was to investigate fundamental safety function of the cask, that is, confinement, shielding, heat removal and subcriticality. Especially, a long term performance of the safety function was key issues. The second one was to confirm integrity of spent fuel cladding during the storage. The third one was to improves and verify the computer codes and/or methods for safety evaluation of the spent fuel interim storage facilities. In usual safety review process in Japan, NISA sometimes asks JNES to perform independent analysis and check the adequacy of the safety analysis conducted by licensees. After the approval of the license application, the applicant should have approvals of “design and construction method”, the welding inspection of the cask and the pre-service inspection. JNES is now supporting to prepare the criteria of the design and construction method. (author)

  2. Interim storage technology of spent fuel and high-level waste in Germany

    International Nuclear Information System (INIS)

    The idea of using casks for interim storage of spent fuel arose at GNS after a very controversial political discussion in 1978, when total passive safety features (including aircraft crash conditions) were required for an above ground spent fuel storage facility. In the meantime, GNS has loaded more than 1000 casks at 25 different storage sites in Germany. GNS cask technology is used in 13 countries. Spent fuel assemblies of PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high level waste containers are stored in full metal casks of the CASTORR type. Also MOX fuel of PWR and BWR has been stored. More than two decades of storage have shown that the basic requirements (safe confinement, criticality safety, sufficient shielding and appropriate heat transfer) have been fulfilled in any case - during normal operation and in case of severe accidents, including aircraft crash. There is no indication of problems arising in the future. Of course, the experience of more than 20 years has resulted in improvements of the cask design. The CASTORR casks have been thoroughly investigated by many experiments. There have been approx. 50 full and half scale drop tests and a significant number of fire tests, simulations of aircraft crash, investigations with anti tank weapons, and an explosion of a railway tank with liquid gas neighbouring a loaded CASTORR cask. According to customer and site specific demands, different types of storage facilities are realized in Germany. Firstly, there are facilities for long-term storage, such as large ventilated central storage buildings away from reactor or ventilated storage buildings at the reactor site, ventilated underground tunnels or concrete platforms outside a building. Secondly, there are facilities for temporary storage, where casks have been positioned in horizontal orientation under a ventilated shielding cover outside a building. (authors)

  3. Wayne Interim Storage Site environmental report for calendar year 1989, Wayne, New Jersey

    International Nuclear Information System (INIS)

    The environmental monitoring program, begun in 1984, was continued in 1989 at the Wayne Interim Storage Site (WISS), a US Department of Energy (DOE) facility located in Wayne Township, New Jersey. The WISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive material remains from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The monitoring program at WISS measures radon and thoron concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. The radiation dose was calculated for a hypothetical maximally exposed individual to verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess its potential effects on public health. This report presents the findings of the environmental monitoring program conducted at the Wayne Interim Storage Site (WISS) during calendar year 1989. 26 refs., 12 figs., 16 tabs

  4. Project management plan for the 105-C Reactor interim safe storage project. Revision 1

    International Nuclear Information System (INIS)

    In 1942, the Hanford Site was commissioned by the US Government to produce plutonium. Between 1942 and 1955, eight water-cooled, graphite-moderated reactors were constructed along the Columbia River at the Hanford Site to support the production of plutonium. The reactors were deactivated from 1964 to 1971 and declared surplus. The Surplus Production Reactor Decommissioning Project (BHI 1994b) will decommission these reactors and has selected the 105-C Reactor to be used as a demonstration project for interim safe storage at the present location and final disposition of the entire reactor core in the 200 West Area. This project will result in lower costs, accelerated schedules, reduced worker exposure, and provide direct benefit to the US Department of Energy for decommissioning projects complex wide. This project sets forth plans, organizational responsibilities, control systems, and procedures to manage the execution of the Project Management Plan for the 105-C Reactor Interim Safe Storage Project (Project Management Plan) activities to meet programmatic requirements within authorized funding and approved schedules. The Project Management Plan is organized following the guidelines provided by US Department of Energy Order 4700.1, Project Management System and the Richland Environmental Restoration Project Plan (DOE-RL 1992b)

  5. Maywood Interim Storage Site: Annual environmental report for calendar year 1990, Maywood, New Jersey

    International Nuclear Information System (INIS)

    Environmental monitoring of the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) and surrounding area began in 1984. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The MISS Environmental monitoring programs was established to accommodate facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, extent and use of affected land and water, and local public interest or concern. The environmental monitoring program at MISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium, radium-226, and thorium-232 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards; federal, state, and local applicable or relevant and appropriate requirements (ARARs); and/or DOE derived concentration guidelines (DCGs). Environmental standards, ARARs, and DCGs are established to protect public health and the environment. Results from the 1990 environmental monitoring program show that concentrations of the contaminants of concern were all below applicable standards. Because the site is used only for interim storage and produces no processing effluents, all monitoring, except for radon and direct gamma radiation, was done on a quarterly basis. 18 refs., 17 figs., 28 tabs

  6. Methods for assessing environmental impacts of a FUSRAP property-cleanup/interim-storage remedial action

    International Nuclear Information System (INIS)

    This document provides a description of a property-cleanup/interim-storage action, explanation of how environmental impacts might occur, comprehensive treatment of most potential impacts that might occur as a result of this type of action, discussion of existing methodologies for estimating and assessing impacts, justification of the choice of specific methodologies for use in FUSRAP environmental reviews, assessments of representative impacts (or expected ranges of impacts where possible), suggested mitigation measures, and some key sources of information. The major topical areas covered are physical and biological impacts, radiological impacts, and socioeconomic impacts. Some project-related issues were beyond the scope of this document, including dollar costs, specific accident scenarios, project funding and changes in Congressional mandates, and project management (contracts, labor relations, quality assurance, liability, emergency preparedness, etc.). These issues will be covered in other documents supporting the decision-making process. Although the scope of this document covers property-cleanup and interim-storage actions, it is applicable to other similar remedial actions. For example, the analyses discussed herein for cleanup activities are applicable to any FUSRAP action that includes site cleanup

  7. Does the radiation from the interim storage in Gorleben affect the sex ratio of newborn children?

    International Nuclear Information System (INIS)

    In the professional world but especially in public, the question is discussed whether ionizing radiation from nuclear facilities has a significant impact on the secondary sex ratio of newborn children in the vicinity of the plants. This issue is of exceptional importance in the region around Gorleben, where the opposition to nuclear facilities and activities for decades is particularly strong. At the site borders of the interim storage facility (TBL-G) of GNS the effective individual dose is about 0.2 mSv per year, mainly caused by neutron irradiation from 108 casks with high-level radioactive waste from reprocessing. In the surrounding villages there is no radiation measurable. Statistical studies allegedly have shown evidence that in some villages in the area and during certain periods, proportionately fewer girls were born in comparison to the average for the Federal Republic of Germany. Based on these purely statistical results henceforward was also alleged that neutron-induced secondary effects such as activation or secondary gamma radiation would be responsible for it. Monte Carlo calculations and special measurements yielded values of the dose at the plant border for activation products less than E-04 mSv/a and for secondary gamma radiation of about E-03 mSv/a. These results indicate that the ionizing radiation from the Gorleben interim storage facility cannot be held accountable for shifts of the secondary sex ratio.

  8. Maywood interim storage site. Annual site environmental report, calendar year 1985

    International Nuclear Information System (INIS)

    During 1985, the environmental monitoring program was continued at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. The MISS is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the MISS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable guides have been revised since the 1984 environmental monitoring report was published. The guides applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the guides applied for 1985 are based on a standard of 100 mrem/yr

  9. Colonie Interim Storage Site annual site environmental report, calendar year 1985

    International Nuclear Information System (INIS)

    During 1985, the environmental monitoring program continued at the Colonie Interim Storage Site (CISS), Colonie, New York. The CISS is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the CISS is in compliance with DOE concentration guides and radiation standards. DOE Derived Concentration guides represent the concentrations of radionuclides in air or water that would limit the radiation dose to an individual to 100 mrem/year. The applicable limits have been revised since the 1984 monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/y; the limits applied for 1985 are based on a standard of 100 mrem/y

  10. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  11. Study of hydride re orientation and mechanical property to evaluate spent fuel integrity during interim Dry storage

    International Nuclear Information System (INIS)

    The operating condition of modern PWRs is getting severer for the nuclear fuel cladding to meet the needs for an economical power generation. As the operating condition, oxide and the subsequent hydrogen caused by the waterside corrosion are generated in the cladding, which decreases the initial ductility of the cladding. Such an oxide and hydrogen act as a negative effect on the cladding safety under the Back End Fuel Cycle. In Korea, 23 nuclear power plants are in operation and lots of spent fuels are on the onsite storage. The onsite storage capacity in Korea is supposed to be full around at the year of 2016 and interim storage facilities could be considered to be constructed before 2016. Therefore, the dry storage concept is becoming a major technical consideration for intermediate spent fuel storage at present. In relation to this, studies on the effects of interim dry storage conditions to spent fuel integrity have recently been initiated in Korea. During the interim dry storage condition, the fuel cladding failure is affected by oxide thickness, hydride content and hydride re-orientation, among that the most important factor of the fuel cladding failure is the hydride reorientation, because the hydride reorientation behavior is shown by decrease cladding temperature in dry storage. however, the hydride reorientation mechanism was not clearly defined. To achieve this, it should be secured that the base technology for integrity assessment in dry storage. In this study, the hydride re orientation and its effect on the mechanical property of fuel cladding was studied

  12. Progress and future direction for the interim safe storage and disposal of Hanford high level waste (HLW)

    International Nuclear Information System (INIS)

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the US DOE and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described

  13. 1984 Federal Interim Storage fee study: a technical and economic analysis

    International Nuclear Information System (INIS)

    JAI examined alternative methods for structuring charges for Federal Interim Storage (FIS) services were examined and the conclusion reached that the combined interests of the Department and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, and (4) impact aid payments made in accordance with section 136(e) of the Act. The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under-or over-estimation in the costs used to calculate the Initial Payment of the fee including savings due to rod consolidation), (2) module costs (i.e., storage casks, drywells, or silos), and (3) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at cost since these will be specific to each reactor site and destination

  14. Good Practice of Interim Storage of RRSNF1 inside Castor MTR-2 Flasks in Ahaus, Germany

    International Nuclear Information System (INIS)

    In Germany the interim storage of RRSNF (Research Reactor Spent Nuclear Fuel) in away-from-reactor facilities is subject to the Atomic Act, as it is the case for the storage of commercial reactor spent nuclear fuels too. The central storage facilities in Germany, such as Ahaus, are usually licensed in accordance to the atomic law for a period of 40 years, after having undergone a thorough application procedure referring to all applicable nuclear safety aspects and subsidiary regulations. The Ahaus facility was built between 1984 and 1989. It was first licensed in 1987, and in 1997, it successfully underwent a re-licensing procedure, obtaining a valid licence until 2036. It is a dry storage facility for spent nuclear fuel loaded in transport and storage flasks. It has been designed and licensed for a capacity of 420 LWR flasks. In 2005, 18 CASTOR MTR2 flasks with RRSNF from VKTA Rossendorf were shipped to Ahaus. They were stored amongst 305 CASTOR THTR/AVR flasks containing spherical fuel elements from the decommissioned Thorium-High-Temperature-Reactor from Hamm-Uentrop. The CASTOR MTR2 is a smaller version of the dual purpose flask concept suitable for transport and storage, specially designed for research reactor spent fuel elements. It fulfils the long term storage as well as the international transportation safety requirements. Particular attention is paid to quality assurance during flask manufacturing and surveillance also on quality control of the proper technical function during the entire storage phase, and of course on safeguards. Furthermore, an integrated management system, that covers all aspects of quality, safety and the protection of health and environment has been established, and supports the management by the classical structural organization and personal responsibilities. Internal and external audits contribute to a high level management performance. In 2007, the facility took part in a WENRA (Western European Nuclear Regulator's Association

  15. Radiation shielding and dose rate evaluation at the interim storage facility for spent fuel from Cernavoda NPP

    International Nuclear Information System (INIS)

    At present studies necessary to license the Interim Storage Facility for the Spent Fuel (CANDU type) from Cernavoda NPP are developed in our country.The spent fuel from Cernavoda NPP is discharged into Spent Fuel Bay in Service Building of the plant, where it remains several years for cooling. After this period, the bundles of spent fuel are to be transferred to the Interim Storage Facility.The dry interim storage solution seems to be the most appropriate variant for Cernavoda NPP.The design of the Spent Fuel Interim Storage Facility must meet the applicable safety requirements in order to ensure radiological protection of the personnel, public and environment during all phases of the facility achievement. In this paper we intend to present the calculation of radiation shielding at the spent fuel interim storage facility for two technical solutions: - Concrete Monolithic Module and Concrete Storage Cask. In order to quantify the fuel composition after irradiation, the isotope generation and depletion code ORIGEN 2.1 has been used, taking into account a cooling time of 7 years and 9 years, respectively, for these two variants. The shielding calculations have been performed using the computer codes QAD-5K and MICROSHIELD-4. The evaluations refer only to gamma radiation because the resulting neutron source (from (α,n) reactions and spontaneous fission) is insignificant as compared to the gamma source. The final results consist in the minimum thickness of the shielding and the corresponding external dose rates, ensuring a design average dose rate based on national and international regulations. (authors)

  16. Defaunation affects carbon storage in tropical forests

    OpenAIRE

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro

    2015-01-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are ...

  17. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    International Nuclear Information System (INIS)

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  18. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  19. Design requirements document for Project W-465, immobilized low-activity waste interim storage

    International Nuclear Information System (INIS)

    The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project

  20. Interim storage pool for spent fuel basic outsets, operating results and safety of the ''PEGASE'' plant

    International Nuclear Information System (INIS)

    The Cea use a facility, known as Pegase, in which spent fuel can be stored for a few decade, until favourable conditions prevail for its disposal. This facility was at the beginning (1964) an experimental reactor which was cut out, with full-scale and true working conditions, for testing fuel elements of the graphite gas-cooled reactors. It worked without significant troubles down to 1975, date where this type of reactors was stopped in France. Then it became possible to use it in the view of a interim storage for experimental spent fuel of the Cea. This paper reviews the basic design data of the facility, outlines the main techniques used for its construction, draws the safety concepts and presents the experience feedback

  1. Wayne Interim Storage Site: Annual environmental report for calendar year 1990, Wayne, New Jersey

    International Nuclear Information System (INIS)

    Environmental monitoring of the US Department of Energy's (DOE) Wayne Interim Storage Site (WISS) (a National Priorities List site) and surrounding area began in 1984. WISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Sediment samples were also analyzed for thorium-230, and several nonradiological parameters were measured in groundwater. 16 refs., 12 figs., 23 tabs

  2. Analysis of removal of residual decay heat from interim storage facilities by means of the CFD program FLUENT

    International Nuclear Information System (INIS)

    Within the scope of nuclear licensing procedures of on-site interim storage facilities for dual purpose casks it is necessary, among other things, to provide proof of sufficient removal of the residual decay heat emitted by the casks. The results of the analyses performed for this purpose define e.g. the boundary conditions for further thermal analyses regarding the permissible cask component temperatures or the maximum permissible temperatures of the fuel cladding tubes of the fuel elements stored in the casks. Up to now, for the centralized interim storage facilities in Germany such analyses were performed on the basis of experimental investigations using scaled-down storage geometries. In the engineering phase of the Lingen on-site interim storage facility, proof was furnished for the first time using the CFD (computational fluid dynamics) program FLUENT. The program FLUENT is an internationally recognized and comprehensively verified program for the calculation of flow and heat transport processes. Starting from a brief discussion of modeling and the different boundary conditions of the computation, this contribution presents various results regarding the temperatures of air, cask surfaces and storage facility components, the mass flows through the storage facility and the heat transfer at the cask surface. The interface point to the cask-specific analyses is defined to be the cask surface

  3. 1986 Federal Interim Storage fee study: a technical and economic analysis

    International Nuclear Information System (INIS)

    JAI examined alternative methods for structuring charges for federal interim storage (FIS) services and concluded that the combined interests of the Department and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with Section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under- or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination

  4. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    In the back-end issues of nuclear fuel cycle, selection of reprocessing or one-through is a big issue. For both of the cases, a reasonable interim storage and transportation system is required. This study proposes an advanced practical monitoring and evaluation system. The system features the followings: (l) Storage racks and transportation casks taking credit for burnup. (2) A burnup estimation system using a compact monitor with Cd- Te detectors and fission chambers. (3) A neutron emission-rate evaluation methodology, especially important for high burnup MOX fuels. (4) A nuclear materials management system for safeguards. Current storage system and transport casks are designed on the basis of a fresh fuel assumption. The assumption is too conservative. Taking burnup credit gives a reasonable design while keeping conservatism. In order to establish a reasonable burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of some modules such as TGBLA, ORIGEN, CITATION, MCNP and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. The code takes operational history such as, power density, void fraction into account. This code is applied to the back-end issues for a more accurate design of a storage and a transportation system. The ORIGEN code is well-known one-point isotope depletion code. In the calculation system, the code calculates isotope compositions using libraries generated from the TGBLA code. The CITATION code, the MCNP code, and the KENO code are three dimensional diffusion code, continuous energy Monte Carlo code, discrete energy Monte Carlo code, respectively. Those codes calculate k- effective of the storage and transportation systems using isotope compositions generated from the ORIGEN code. The CITATION code and the KENO code are usually used for practical designs. The MCNP code is used for reference

  5. Final Safety Report for Central Interim Storage Facility for Radioactive Waste from Small Producers in Brinje near Ljubljana

    International Nuclear Information System (INIS)

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage for radioactive waste from small producers in Brinje. At the same time in accordance with a Decree on the Mode, Subject and Terms of Performing the Public Service of Radioactive Waste Management (Official Gazette of RS, 32/99) the ARAO agency was appointed to perform the public service of radioactive waste management for waste produced in Slovenia in industry, medicine and research. After taking over responsibility for the storage the ARAO thoroughly reviewed the facility and the stored inventory. Based on the findings of this review the ARAO agency prepared a basic document for the facility i.e. Final Safety Report for the Central Interim Storage for radioactive waste from small producers in Brinje. The safety report is based on the present state of the facility, its location, stored inventory and present operation. The latter is limited to storing of already stored waste, acceptance of new waste only in emergency cases, and internal transport of the accepted waste with a forklift or manually. The Final Safety Report is prepared in accordance with the requirements of Regulation E2 and deals with the following areas: The safety approach to LILW storage, Description and location analysis of the Central interim storage, Technical features of the Central interim storage, Safety analysis of the Central interim storage, Organisational measures for normal operation of the Central interim storage, Operational conditions and limitations, Ionising radiation protection service, its methods and equipment, Radioactive waste management and disposal, Review of the plans, measures and procedures to prevent radiological accidents, Quality assurance programme, Review of the measures for physical protection of the LILW storage and stored radioactive waste, Planned measures and necessary equipment for the closure of the Central interim storage. Safety analysis proves that the facility

  6. Adapting the NUHOMS Interim Storage System for international spent fuel storage needs

    International Nuclear Information System (INIS)

    NUHOMS systems are well established in USA and Europe as a reliable, safe and well proven option for dry storage of spent fuel. These systems can be used for either on-site storage or away from reactor storage because the canisters cab be transported in a B9U0 packaging. The proven NUHOMS flexibility can readily be adapted to meet new consumer needs in terms of handling limitations (size and weight), fuel characteristics, local regulation ect. As a licensee for the NUHOMS technology, Framatome - ANP has supplied a NUHOMS systems for storing WWER fuel assemblies at Metzamor in Armenia and also for storing RBMK fuel at Chernobyl in Ukraine. Discussion with potential clients are in progress and new design concepts are in preparation, including a vertical version of the NUHOMS system. (authors)

  7. Carbon allocation in underground storage organs

    OpenAIRE

    Turesson, Helle

    2014-01-01

    By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve such crops, the competitiveness of these types of storage organs can be strengthened. Starch is the most common storage compound in tubers and roots, but some crops accumulate compounds other than starch. This thesis examined representative underground storage organs accumulating starch, oil and sugars. These were: the oil-accumulating nutsedge (Cyperus esculentus), a half-grass whic...

  8. Thermal-hydraulic experiment and analysis for interim dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    The experimental and numerical studies of interim storages for nuclear spent fuels have been performed to investigate thermal-hydraulic characteristics of the dry storage systems and to propose new methodologies for the analysis and the design. Three separate researches have been performed in the present study: (a) Development of a scaling methodology and thermal-hydraulic experiment of a single spent fuel assembly simulating a dry storage cask: (b) Full-scope simulation of a dry storage cask by the use of Computational Fluid Dynamics (CFD) code: (c) Thermal-hydraulic design of a tunnel-type interim storage facility. In the first study, a scaling methodology has been developed to design a scaled-down canister. The scaling was performed in two steps. For the first step, the height of a spent fuel assembly was reduced from full height to half height. In order to consider the effect of height reduction on the natural convection, the scaling law of Ishii and Kataoka (1984) was employed. For the second step, the quantity of spent fuel assemblies was reduced from multiple assemblies to a single assembly. The scaling methodology was validated through the comparison with the experiment of the TN24P cask. The Peak Cladding Temperature (PCT), temperature gradients, and the axial and radial temperature distribution in the nondimensional forms were in good agreement with the experimental data. Based on the developed methodology, we have performed a single assembly experiment which was designed to simulate the full scale of the TN24P cask. The experimental data was compared with the CFD calculations. It turns out that their PCTs were less than the maximum allowable temperature for the fuel cladding and that the differences of their PCTs were agreed within 3 .deg. C, which was less than measurement uncertainty. In the second study, the full-scope simulations of the TN24P cask were performed by FLUENT. In order to investigate the sensitivity of the numerical and physical

  9. TK-26 transport and storage packaging for interim storage of spent fuels

    International Nuclear Information System (INIS)

    The safety requirements for the dry storage of spent fuel have become increasingly stringent. This change has led to the development of the TK-26 transport and storage package, based on its predecessor, the TN24. The TK-26 has a new structure that ensures greater safety, while maintaining a large fuel storage capacity and excellent economic advantage. The TK-26 structure features a borated aluminum basket that has been newly developed focusing on pressurized water reactor (PWR) fuels. This has enabled the designing of a new basket that is compact, ensures sub-criticality and has higher structural strength with sufficient heat transfer capability. The TK-26 structure also includes measures against the multiplying effect of impact acceleration by slap-down testing and the delayed impact of contents in vertical drop testing, including the 9m drop tests required by the regulations. The effectiveness of these measures has been confirmed through a drop test using a 1/3 scale model, which has verified the validity of the structural safety analysis. The demand for the transport and storage casks is expected to grow. A study is being conducted to standardize the design of the packages and thus to ensure the flexibility and stability of their supply. (author)

  10. Interim storage of solidified fission products from fuel element reprocessing with utilization of obtaining post-decay heat

    International Nuclear Information System (INIS)

    It is noted that the out-lined interim store for HRW with industrial utilization of decay heat (production of saturated steam and hydrogen) does include a certain risk potential like any technical plant but that it does not represent a danger to the population living nearby. All internal and external impacts on the store result in safely triggering natural convection cooling. A further emergency cooling system is provided by the water irrigation facility so that obtaining after-heat can be safely removed under all circumstances. Therefore, there are no safety-technology arguments against any realization of the concept presented for interim storage of solidified high-level radio-active wastes. An interim store of this type may be built and operated even in densely populated regions and urban agglomerations. (orig./HP)

  11. Experience from the operation of the Swedish Central Interim Storage Facility for Spent Nuclear Fuel, CLAB

    International Nuclear Information System (INIS)

    Currently, about 50% of the electric power in Sweden is generated by means of nuclear power. The Swedish nuclear programme comprises 12 plants. According to political decisions, no more nuclear power plants will be built and the existing plants will not be operated beyond the year 2010. The programme will give rise to not more than 7800 t U of spent fuel, which will be directly disposed of in the crystalline bedrock without reprocessing. A keystone in the spent fuel management strategy is the Central Interim Storage Facility for Spent Nuclear Fuel, CLAB. After intensive pre-project work, the licensing of CLAB according to the Building, Environment Protection and Atomic Energy Acts took place in 1978-1979. After a total licensing time of about 20 months, the last permit was obtained in August 1979. By August 1994, CLAB had received and unloaded some 720 fuel transport casks, corresponding to about 2000 t U, and 60 casks containing highly active core components. The performance of the plant has been very satisfactory and with increasing experience it has been possible to reduce the operating and maintenance costs. The extensive efforts during the design phase have resulted in a collective dose of 25-30% of the dose calculated in the final safety report. Owing to a low activity release from the fuel and optimized management of the used water filtering agents, the number of waste packages emanating from CLAB has been less than 10% of what was originally expected. The activity release to air and water from the facility during the first five years of operation has been around 0.01% of the permissible release. In order to postpone the building of additional storage pools, new storage canisters have been developed which has increased the storage capacity from 3000 to 5000 t U. (author). 1 fig

  12. Korean interim storage issues and R and D activities on spent fuel management

    International Nuclear Information System (INIS)

    Korea has witnessed over a decade of vicissitudes in the issue of radioactive waste management due mainly to the problem of site acquisition. As the major mission of the nation at radioactive waste management programme was to provide a center for disposal of low-level radwaste and for interim storage of spent nuclear fuel from nuclear power plants, the question of site securing has had a big impact on the implement action of overall programme. The site problem has resulted in, as an aftermath, restructuring of the overall programme for radioactive waste management. Missions of NEMAC (Nuclear Environment Management Center), originally established as a subsidiary of Korea Atomic Energy Research Institute (KAERI), for the national programme was dissolved as of the end of last year. Beginning of this year, a new entity NETEC (Nuclear Environment Technology Center) as a subsidiary of KEPCO (Korea Electric Power Co.) has taken over major tasks of the past NEMAC, while the R and D work associated with the past task of NEMAC is transferred back to KAERI. This paper gives a review on the past background which has driven the radioactive waste management in Korea to the current state of the affairs, with special emphasis on R and D activities associated with spent nuclear fuel transportation, handling, and storage. (author)

  13. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  14. Performance testing of aged hydrogen getters against criteria for interim safe storage of plutonium bearing materials.

    Energy Technology Data Exchange (ETDEWEB)

    Shepodd, Timothy J.; Nissen, April; Buffleben, George M.

    2006-01-01

    Hydrogen getters were tested for use in storage of plutonium-bearing materials in accordance with DOE's Criteria for Interim Safe Storage of Plutonium Bearing Materials. The hydrogen getter HITOP was aged for 3 months at 70 C and tested under both recombination and hydrogenation conditions at 20 and 70 C; partially saturated and irradiated aged getter samples were also tested. The recombination reaction was found to be very fast and well above the required rate of 45 std. cc H2h. The gettering reaction, which is planned as the backup reaction in this deployment, is slower and may not meet the requirements alone. Pressure drop measurements and {sup 1}H NMR analyses support these conclusions. Although the experimental conditions do not exactly replicate the deployment conditions, the results of our conservative experiments are clear: the aged getter shows sufficient reactivity to maintain hydrogen concentrations below the flammability limit, between the minimum and maximum deployment temperatures, for three months. The flammability risk is further reduced by the removal of oxygen through the recombination reaction. Neither radiation exposure nor thermal aging sufficiently degrades the getter to be a concern. Future testing to evaluate performance for longer aging periods is in progress.

  15. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  16. Hazelwood Interim Storage Site environmental report for calendar year 1989, Hazelwood, Missouri

    International Nuclear Information System (INIS)

    The environmental monitoring program, begun in 1984, was continued during 1989 at the Hazelwood Interim Storage Site (HISS), a US Department of Energy (DOE) facility located in the City of Hazelwood, Missouri. HISS is currently used for storage of soils contaminated with residual radioactive material. HISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive material remains from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The monitoring program at HISS measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. This report presents the findings of the environmental monitoring conducted at HISS during calendar year 1989. 19 refs., 14 figs., 13 tabs

  17. Research Advance on Carbon Storage of Artificial Grassland in China

    Institute of Scientific and Technical Information of China (English)

    Fuping; TIAN; Yongjie; SHI; Yu; HU; Zixuan; CHEN; Yuan; LU; Xiaofu; ZHANG; Runlin; LI

    2013-01-01

    As an essential part of the grassland ecological system,study on the carbon storage has great significances to the carbon reduction in grassland ecological system.The carbon storage in biomass,carbon storage in soil and soil respiration are summarized in this paper to provide scientific reference for the evaluation of carbon storage in artificial grassland.

  18. Integrity assessment of dual-purpose metal CASK after long term interim storage - seal performance under transport conditions

    International Nuclear Information System (INIS)

    Spent fuels generated in nuclear power plants (NPPs) shall be stored until reprocessing as recyclable energy resources in Japan. The quantity of spent fuels stored at each NPP site is increasing, and early realization of the interim storage is expected. Dual-purpose metal cask will be used there and will not be reopened until it is delivered to a reprocessing plant in order to for example minimize personal exposure of radiation. Japan Nuclear Energy Safety Organization (JNES) was established on October in 2003 with the mission to ensure the public safety from the potential hazard of nuclear energy. Study of ''Metal Cask Storage Technology Verification'' was originally initiated in 1999 at Nuclear Power Engineering Corporation with Japanese government funds, and transferred to JNES and conducted up to the end of FY2003. In the study, many tests were conducted to investigate material property change for main components relating to safety of cask due to degradation during interim storage, furthermore, to verify containment safety during the subsequent transport because there was a possibility of providing the cask with degraded metal gasket for the transport after interim storage and the such cask should be considered fragileness of lid containment system, especially for transport that cask would be provided external force. This paper presents the results and consideration on seal performance during the subsequent transport

  19. Defaunation affects carbon storage in tropical forests.

    Science.gov (United States)

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  20. Static strain aging effects on structural integrity of containers for long term interim storage

    International Nuclear Information System (INIS)

    In the frame of the 91-1381 law voted in December 1991 by the French Parliament, it is envisaged for the conditioning, long term interim storage of nuclear reactor fuel waste, to use cladding and containers made of austenitic stainless steels and ferritic steels respectively. These containers will be stored for several centuries and should not be subject to any mechanical loading; however, due to disintegration of radioactive elements during this period and the consequent heating, they will be subject to temperatures up to 450 C for the stainless steel of the cladding and 250 C for the ferritic steels of the container. Moreover, taking into account manipulation of the packages during recovery at the end of the storage must consider the risks of collision and falling of the containers. These risks must be taken into account in the structural integrity assessment. However, these analyses can be conducted only if the mechanical behaviour of the materials after several hundreds of years of storage can be forecast. From the metallurgical and mechanical points of view, the potential phenomena leading to a loss of strength at these temperatures are: reheat cracking of stainless steels in the heat affected zones (HAZ) of welds, impurities segregation in coarse grain HAZ (e.g. due to phosphorus), strain aging and especially static strain aging. The ''Service de Recherches Metallurgiques Appliquees'' of the ''Commissariat a l'Energie Atomique'' is in charge of evaluating the effect of this last phenomenon on the integrity of the containers. Starting from a bibliographic review of the static strain aging of ferritic and stainless steels, thermo-mechanical testing of representative materials are performed in order to be able to forecast long term effects of static strain aging. (author)

  1. Methane storage in a commercial activated carbon.

    Directory of Open Access Journals (Sweden)

    K. Wang

    2008-06-01

    Full Text Available A commercial activated carbon was examined for possible methane storage application. The structural and surface propertiesof the carbon were characterized by Nitrogen adsorption isotherm at 77 oK. It was found that the carbon is largelymicroporous with a surface area of approximately 860 m2/g. Adsorption test shows the carbon is able to achieve a methanestorage capacity of approximately 70/cc.

  2. Criticality safety assessment of a cask for IRT-2000 spent fuel interim storage at Kozloduy NPP AFR basin

    International Nuclear Information System (INIS)

    The problem of providing conditions for interim storage of spent nuclear fuel from the research reactor IRT-2000, Sofia at the Away-from-reactor (AFR) basin of the NPP Kozloduy is presented in this paper. The aim of the work is to find a technical solution of the problem and to ground this solution from the nuclear safety point of view. The technical possibility for using the WWER-440 spent fuel transport cask including basket with 19 tight panels for interim storage of all spent fuel assemblies from IRT-2000 Sofia is analysed. For criticality safety analysis two world well-known and used program systems (MCNP4B H SCALE4.4) have been applied. The results obtained show that for all analysed configurations the values of Keff are less than 0.34, which is in compliance with the nuclear safety requirements. Also the economical assessment of the proposed variant is given. (author)

  3. Last chance for carbon capture and storage

    OpenAIRE

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, Stuart

    2013-01-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No...

  4. Pre-conceptual study on the review framework for the radiation shielding safety of the PWR spent fuel cask interim storage in Korea

    International Nuclear Information System (INIS)

    In Korea, 20 nuclear power plants are in operation and lots of spent fuels are on the onsite storage. The onsite storage capacity in Korea is supposed to be full around at the year of 2016 and interim storage facilities could be considered to be constructed before 2016. A review framework to evaluate the radiation shielding safety of the interim storage facilities is developed in this study. It includes acceptance criteria, review procedures and activities of independent analyses. A case study is performed to apply the review framework. Modeling the review reference storage, evaluating the source terms and calculating the photon fluxes are performed. It is shown that the application of the review framework could satisfy the regulatory demand that would arise in the near future in the review area of the radiation shielding safety of the interim storage in Korea. (author)

  5. Nanostructural activated carbons for hydrogen storage

    Science.gov (United States)

    Li, Suoding

    A series of nanostructured activated carbons have been synthesized from poly(ether ether ketone) (PEEK), and its derivatives. These carbons, with surface area exceeding 3000 m2/g and with average pore diameters of ≤ 20 A, are proven to be superior hydrogen storage materials, with hydrogen storage capacities up to 5.5 wt% at 77 K and 45 atm. The porous texture of these carbons was controlled via optimizing three synthetic steps: thermo-oxidation of PEEK in air, pyrolysis or carbonization of the oxidized PEEK in an inert atmosphere, and activation of the pre-carbonized PEEK with metal hydroxide. Thermo-oxidation of PEEK and carbonization process were thoroughly studied. These processes have been investigated by MDSC, FTIR, TGA and Py-MS. The pyrolysis or carbonization of PEEK involves the degradation of PEEK chains in three stages. Carbon morphology, including crystallinity and porous texture, is readily controlled by adjusting carbonization temperature. Activation of PEEK carbons, using inorganic bases and other activation agents, produces microporous carbons having a very narrow pore size distribution and an average pore diameter of ≤ 20 A. The activation control parameters including activation agent, activation temperature, time and carbon morphology have been investigated extensively. High surface area activated carbon is obtained by activating a highly amorphous carbon with a high activation agent/carbon ratio at 800°C. Theoretical calculations show that the pores with smaller diameter, especially smaller than 7 A, favor hydrogen adsorption. The experimental results confirm this fact and show that: (1) the hydrogen adsorption capacity per unit surface area at 77 K and 1 bar is larger in the smaller pores, (2) gravimetric hydrogen storage capacity (W(H2)) is directly proportional to the ultramicropore (< 7 A) volume; and (3) the volumetric hydrogen storage capacity is directly proportional to the volume fraction of ultramicropores in carbon. Hydrogen

  6. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey

    International Nuclear Information System (INIS)

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment

  7. Hazelwood Interim Storage Site annual environmental report for calendar year 1990, Hazelwood, Missouri

    International Nuclear Information System (INIS)

    Environmental monitoring of the US Department of Energy's (DOE) Hazelwood Interim Storage Site (HISS) and surrounding area began in 1984. This document describes the environmental monitoring program, the program's implementation, and the monitoring results for 1990. HISS was assigned to DOE as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program, a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. Environmental monitoring programs have been established at DOE-managed sites to confirm adherence to DOE environmental protection policies; to monitor the potential effects of site operations on human health and the environment; and to ensure compliance with legal and regulatory requirements imposed by federal, state, and local agencies. Environmental monitoring programs are developed and implemented on a site-specific basis to reflect facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, extent and use of affected land and water, and local public interest or concern

  8. Hazelwood Interim Storage Site environmental report for calendar year 1992, 9200 Latty Avenue, Hazelwood, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Hazelwood Interim storage Site (HISS) and surrounding area, provides the results for 1992, and discusses applicable environmental standards and requirements with which the results were compared. HISS is located in eastern Missouri in the City of Hazelwood (St. Louis County) and occupies approximately 2.2 ha (5.5 acres). Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), which was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. In 1992 there were no environmental occurrences or unplanned contaminant releases as defined in DOE requirements and in the Superfund Amendment and Reauthorization Act (SARA) Title III of CERCLA.

  9. Hazelwood Interim Storage Site environmental surveillance report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report summarizes the results of environmental surveillance activities conducted at the Hazelwood Interim Storage Site (HISS) during calendar year 1993. It includes an overview of site operations, the basis for monitoring for radioactive and non-radioactive parameters, summaries of environmental program at HISS, a summary of the results, and the calculated hypothetical radiation dose to the offsite population. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. The US Department of Energy (DOE) began environmental monitoring of HISS in 1984, when the site was assigned to DOE by Congress through the energy and Water Development Appropriations Act and subsequent to DOE`s Formerly Utilized Sites Remediation Action Program (FUSRAP). Contamination at HISS originated from uranium processing work conducted at Mallinckrodt Chemical Works at the St. Louis Downtown Site (SLDS) from 1942 through 1957.

  10. Colonie interim storage site: Annual site environmental report: Calendar year 1988

    International Nuclear Information System (INIS)

    The monitoring program at the Colonie Interim Storage Site (CISS) measures external gamma radiation levels and uranium and radium-226 concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess the potential effect of the site on public health, the potential radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in the report, this hypothetical individual would receive an annual external exposure approximately equivalent to 3 percent of the DOE radiation protection standard. This is also approximately equivalent to the exposure a person would receive during a round-trip flight from New York to Los Angeles (because of the greater amounts of cosmic radiation present at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of CISS that results from radioactive materials present at the site is distinguishable from the dose the same population receives from naturally occurring radioactive sources. Results of 1988 monitoring show that the CISS is in compliance with the DOE radiation protection standard. 18 refs., 15 figs., 11 tabs

  11. Colonie Interim Storage Site environmental surveillance report for calendar year 1993

    International Nuclear Information System (INIS)

    This report summarizes the results of environmental surveillance activities conducted at the Colonie Interim Storage Site (CISS) during calendar year 1993. It includes an overview of site operations, the basis for radiological and nonradiological monitoring, dose to the offsite population, and summaries of environmental programs at CISS. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. Appendix A contains a discussion of the nature of radiation, the way it is measured, and common sources of it. The primary environmental guidelines and limits applicable to CISS are given in US Department of Energy (DOE) orders and mandated by six federal acts: the Clean Air Act; the Clean Water Act; the Resource Conservation and Recovery Act (RCRA); the Toxic Substances Control Act; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); and the National Environmental Policy Act (NEPA). DOE began environmental monitoring of CISS in 1984 when DOE was authorized by Congress through the Energy and Water Development Appropriations Act to conduct a decontamination research and development program at the site. The site was subsequently assigned to DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP)

  12. Final Hazard Classification and Auditable Safety Analysis for the 105-F Building Interim Safe Storage Project

    International Nuclear Information System (INIS)

    The auditable safety analysis (ASA) documents the authorization basis for the partial decommissioning and facility modifications to place the 105-F Building into interim safe storage (ISS). Placement into the ISS is consistent with the preferred alternative identified in the Record of Decision (58 FR). Modifications will reduce the potential for release and worker exposure to hazardous and radioactive materials, as well as lower surveillance and maintenance (S ampersand M) costs. This analysis includes the following: A description of the activities to be performed in the course of the 105-F Building ISS Project. An assessment of the inventory of radioactive and other hazardous materials within the 105-F Building. Identification of the hazards associated with the activities of the 105-F Building ISS Project. Identification of internally and externally initiated accident scenarios with the potential to produce significant local or offsite consequences during the 105-F Building ISS Project. Bounding evaluation of the consequences of the potentially significant accident scenarios. Hazard classification based on the bounding consequence evaluation. Associated safety function and controls, including commitments. Radiological and other employee safety and health considerations

  13. Sampling and analysis plan for Wayne Interim Storage Site (WISS), Wayne, New Jersey

    International Nuclear Information System (INIS)

    This field sampling plan describes the methodology to perform an independent radiological verification survey and chemical characterization of a remediated area of the subpile at the Wayne Interim Storage Site, Wayne, New Jersey.Data obtained from collection and analysis of systematic and biased soil samples will be used to assess the status of remediation at the site and verify the final radiological status. The objective of this plan is to describe the methods for obtaining sufficient and valid measurements and analytical data to supplement and verify a radiological profile already established by the Project Remediation Management Contractor (PMC). The plan describes the procedure for obtaining sufficient and valid analytical data on soil samples following remediation of the first layer of the subpile. Samples will be taken from an area of the subpile measuring approximately 30 m by 80 m from which soil has been excavated to a depth of approximately 20 feet to confirm that the soil beneath the excavated area does not exceed radiological guidelines established for the site or chemical regulatory limits for inorganic metals. After the WISS has been fully remediated, the Department of Energy will release it for industrial/commercial land use in accordance with the Record of Decision. This plan provides supplemental instructions to guidelines and procedures established for sampling and analysis activities. Procedures will be referenced throughout this plan as applicable, and are available for review if necessary

  14. Wayne Interim Storage Site annual environmental report for calendar year 1991, Wayne, New Jersey

    International Nuclear Information System (INIS)

    This document describes the envirormental monitoring program at the Wayne Interim Storage Site (WISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of WISS and surrounding area began in 1984 when Congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. WISS is a National Priorities List site. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment

  15. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri

    International Nuclear Information System (INIS)

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment

  16. Hazelwood Interim Storage Site environmental report for calendar year 1992, 9200 Latty Avenue, Hazelwood, Missouri

    International Nuclear Information System (INIS)

    This report describes the environmental surveillance program at the Hazelwood Interim storage Site (HISS) and surrounding area, provides the results for 1992, and discusses applicable environmental standards and requirements with which the results were compared. HISS is located in eastern Missouri in the City of Hazelwood (St. Louis County) and occupies approximately 2.2 ha (5.5 acres). Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), which was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. In 1992 there were no environmental occurrences or unplanned contaminant releases as defined in DOE requirements and in the Superfund Amendment and Reauthorization Act (SARA) Title III of CERCLA

  17. Environmental surveillance results for 1995 for the Hazelwood Interim Storage Site

    International Nuclear Information System (INIS)

    This memorandum presents and interprets analytical results and measurements obtained as part of the 1995 environmental surveillance program for the Hazelwood Interim Storage Site (HISS) under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The discussion provides a comparative analysis of average historical background conditions and applicable regulatory criteria to the 1995 results reported for external gamma radiation and for samples from the media investigated (air, surface water, sediment, groundwater, and stormwater). Results from the 1995 environmental surveillance program at HISS indicate that, with the exception of thorium-230 in streambed sediment, applicable US Department of Energy (DOE) guidelines were not exceeded for any measured parameter or for any dose calculated for potentially exposed members of the general public. In the absence of sediment guidelines, DOE soil guidelines serve as a standard of comparison for data obtained from stream bed sediment; two samples from downstream locations contained concentrations of thorium-230 that exceeded DOE soil guidelines. All stormwater sample results were in compliance with permit-specified limits. Other radioactive materials include radium 226 and natural uranium

  18. Hazelwood interim storage site: Annual site environmental report, Hazelwood, Missouri, Calendar Year 1988

    International Nuclear Information System (INIS)

    The monitoring program at Hazelwood Interim Storage Site (HISS) measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium, concentrations in surface water, groundwater and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect or public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the scenario described in this report, this hypothetical individual at HISS would receive an annual external exposure approximately equivalent to 1 percent of the DOE radiation protection standard. This exposure is less than the exposure a person receives during a flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of HISS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. The results of 1988 monitoring show that HISS is in compliance with the DOE radiation protection standard. 15 refs., 16 figs., 13 tabs

  19. Environmental surveillance results for 1995 for the Hazelwood Interim Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    McCague, J.C.

    1996-06-01

    This memorandum presents and interprets analytical results and measurements obtained as part of the 1995 environmental surveillance program for the Hazelwood Interim Storage Site (HISS) under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The discussion provides a comparative analysis of average historical background conditions and applicable regulatory criteria to the 1995 results reported for external gamma radiation and for samples from the media investigated (air, surface water, sediment, groundwater, and stormwater). Results from the 1995 environmental surveillance program at HISS indicate that, with the exception of thorium-230 in streambed sediment, applicable US Department of Energy (DOE) guidelines were not exceeded for any measured parameter or for any dose calculated for potentially exposed members of the general public. In the absence of sediment guidelines, DOE soil guidelines serve as a standard of comparison for data obtained from stream bed sediment; two samples from downstream locations contained concentrations of thorium-230 that exceeded DOE soil guidelines. All stormwater sample results were in compliance with permit-specified limits. Other radioactive materials include radium 226 and natural uranium.

  20. ROE Carbon Storage - Percent Change

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset depicts the percentage change in the amount of carbon stored in forests in counties across the United States, based on the difference in carbon...

  1. Hazelwood Interim Storage Site annual site environmental report: Calendar year 1986

    International Nuclear Information System (INIS)

    During 1986, the environmental monitoring program was continued at the Hazelwood Interim Storage Site (HISS), a US Department of Energy (DOE) facility located in the City of Hazelwood, Missouri. Originally known as the Cotter Corporation site on Latty Avenue in Hazelwood, the HISS is presently used for the storage of soils contaminated with residual radioactive material. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring program are being conducted at the site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the HISS measures radon gas concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the scenario described in this report, the maximally exposed individual at the HISS would receive an annual external exposure approximately equivalent to 2% of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles. The cumulative dose to the population within an 80-km (50-mi) radius of the HISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the HISS is in compliance with the DOE radiation protection standard. 11 refs., 6 figs., 10 tabs

  2. Wyoming Carbon Capture and Storage Institute

    Energy Technology Data Exchange (ETDEWEB)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  3. Activated carbon monoliths for methane storage

    Science.gov (United States)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  4. Thermal Modeling and Performance Analysis of Interim Dry Storage and Geologic Disposal Facilities for Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Thermal models are constructed and analyses are performed of aluminum-based spent nuclear fuel (Al-SNF) in interim dry storage and geologic disposal configurations. Two models are developed, referred to as the interim storage model and the codisposal waste package (WP) model. Time-dependent source terms of Al-SNF forms and the defense high-level waste (DHLW) canisters are also developed for thermal performance analysis of the geologic codisposal WP.The interim storage model is a three-dimensional conduction-convection conjugate model to investigate the natural convection cooling of a sealed dry storage canister with vertical orientation in a dry storage vault. The analysis is made for various decay heat sources (equivalent to 25 to 35 kW/m3) using various boundary conditions around the canister wall and with backfilled nitrogen or helium gas. Based on the data obtained from the Savannah River Site experimental work and available from the literature, an improved dimensionless correlation for the external heat transfer of the canister by the airflow crossing normal to the staggered tubes is developed.The codisposal WP model considers heat transfer driven by conduction and convection processes combined with radiation for the thermal performance study of an enclosed WP containing one Al-SNF canister and five DHLW glass canisters. Two-dimensional analysis for a representative cross-sectional area of the codisposal WP is performed because each component has a large aspect ratio of package length to diameter and the package is laid down horizontally in a drift tunnel repository. The results showed that the codisposal disposition options for the helium- and air-filled WPs satisfied the present waste acceptance criteria for the WP design under the reference conditions

  5. Thermal Modeling and Performance Analysis of Interim Dry Storage and Geologic Disposal Facilities for Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Thermal models were constructed and analyses were performed of Aluminum-based Spent Nuclear Fuel (Al-SNF) in interim dry storage and geologic disposal configurations. The analysis was performed to support design studies and to demonstrate fuel peak temperature would be maintained within limits.Computational fluid dynamics methods were applied to analyze the thermal performance of Al-SNF in a dry interim storage canister and in a canister within a repository codisposal Waste Package (WP). Two models were developed which are referred to as the interim storage model and the codisposal WP model. The interim storage model is three-dimensional conduction-convection conjugate model to investigate the natural convection cooling of a sealed dry storage canister with vertical orientation in a dry storage vault. The analysis was made for various decay heat sources (equivalent to 25 to 35 kW/m3) using various boundary conditions around the canister wall and with back-filled gas (nitrogen or helium ) by using a three-dimensional conduction-convection coupled model. The results were also compared with the test data obtained from a full-scale heat transfer experiment. Comparison of the model predictions with the test data can be used to predict reasonably accurate flow and thermal behavior of Al-SNF stored in enclosed dry storage facilities. Based on the data obtained from the SRS experimental work and available from the literature, an improved dimensionless correlation for the heat transfer of the airflow crossing normal to the staggered tubes is developed.The codisposal model considers heat transfer driven by conduction and convection processes combined with radiation for the thermal performance study of an enclosed WP containing one Al-SNF canister and five Defense High-Level Waste (DHLW) glass canisters. Analysis of the two-dimensional thermal processes within a representative cross-sectional area of the codisposal WP was performed since each component has the large aspect

  6. Carbon cycle: storage beneath mangroves

    OpenAIRE

    BOUILLON, S

    2011-01-01

    In the face of continued deforestation, the high carbon stocks in mangrove forests unveiled by Donato et al. provide a strong incentive to consider mangrove ecosystems as priority areas for conservation. Furthermore, these results highlight the need for scientists and funding agencies to address uncertainties regarding the fate of the carbon after land clearance. Only a handful of studies have quantified the loss of sediment carbon after mangrove clear-cutting – but all suggest that these los...

  7. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    International Nuclear Information System (INIS)

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996

  8. High Density Methane Storage in Nanoporous Carbon

    Science.gov (United States)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  9. Colonie Interim Storage Site annual environmental report for calendar year 1991, Colonie, New York

    International Nuclear Information System (INIS)

    This document describes the environmental monitoring program at the Colonie Interim Storage Site (CISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at CISS began in 1984 when Congress added the site to the US Department of Energy's Formerly Utilized Sites Remedial Action Program. CISS property and surrounding areas were radioactively contaminated by operations conducted by National Lead Industries, which manufactured various components from uranium and thorium from 1958 to 1984. The environmental monitoring program at CISS includes sampling networks for external gamma radiation exposure and for radium-226, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. In 1992 the program will also include sampling networks for radioactive and chemical contaminants in stormwater to meet permit application requirements under the Clean Water Act. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE.orders. Environmental standards are established to protect public health and the environment. Results of environmental monitoring during 1991 indicate that average concentrations of radioactive contaminants of concern were well below applicable standards and DCGS. Concentrations of some chemical contaminants in groundwater were above-the New York State Department of Environmental Conservation (Class GA) and EPA guidelines for drinking water. The potential annual radiation exposure (excluding background) calculated for a hypothetical maximally exposed individual is 0.23 mrem (milliroentgen equivalent man), which is less than an individual would receive while traveling in an airplane at 12,000 meters (39,000 feet) for one hour

  10. Underground storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi [Univ. of Tokyo, Hongo, Bunkyo-ku (Japan)

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  11. Briefing: Carbon capture and storage in Scotland

    OpenAIRE

    Haszeldine, R Stuart; Scott, Vivian; Littlecott, Chris

    2013-01-01

    With world-leading decarbonisation targets, a large and mature hydrocarbon sector, existing pipeline infrastructure and extensive opportunities for geological CO2 storage under the North Sea, Scotland is uniquely placed to deliver and benefit from carbon capture and storage (CCS). CCS has the potential to enable major Scottish emissions reductions towards the 2050 target – it can directly address over 50% of current total emissions from energy and industry. With world-leading decarbonisati...

  12. Green Carbon : The role of natural forests in carbon storage

    OpenAIRE

    Keith, Heather; Lindenmayer, David B; Mackey, Brendan; Berry, Sandra L.

    2008-01-01

    The colour of carbon matters. Green carbon is the carbon stored in the plants and soil of natural ecosystems and is a vital part of the global carbon cycle. This report is the first in a series that examines the role of natural forests in the storage of carbon, the impacts of human land use activities, and the implications for climate change policy nationally and internationally. REDD (“reducing emissions from deforestation and degradation”) is now part of the agenda for the “Bali Action Plan...

  13. Carbon cycling and storage in mangrove forests.

    Science.gov (United States)

    Alongi, Daniel M

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests. PMID:24405426

  14. Carbon Cycling and Storage in Mangrove Forests

    Science.gov (United States)

    Alongi, Daniel M.

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y-1) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y-1) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.

  15. Engineering and planning for reactor 105-C interim safe storage project subcontract no. 0100C-SC-G0001 conceptual design report. Volume 1

    International Nuclear Information System (INIS)

    The 105-C Reactor, one of eight surplus production reactors at the Hanford Site, has been proposed by the U.S. Department of Energy, Richland, Operations Office to be the first large-scale technology demonstration project in the decontamination and decommissioning (D ampersand D) focus area as part of the project for dismantlement and interim safe storage. The 105-C Reactor will be placed in an interim safe storage condition, then undergo the decontamination and decommissioning phase. After D ampersand D, the reactor will be placed in long- term safe storage. This report provides the conceptual design for these activities

  16. Carbon Capture and Storage: Realising the potential?

    OpenAIRE

    Ghaleigh, Navraj Singh; Haszeldine, Stuart; Rossati, David; Kern, Florian; Gross, Matt; Gross, Rob; Heptonstall, Phil; Jones, Felicity; Ascui, Francisco; Chalmers, Hannah; Gibbins, Jon; Markusson, Nils; Marsden, Wendy; Russell, Stewart; Winskel, Mark

    2012-01-01

    The aim of the research is to assess the technical, economic, financial and social uncertainties facing carbon capture and storage (CCS) technologies, and to analyse the potential role they could play in the UK power sector between now and 2030. CCS technologies are often highlighted as a crucial component of future low carbon energy systems – in the UK and internationally. However, it is unclear when these technologies will be technically proven at full scale, and whether their costs will be...

  17. Management Programme for Research Reactor Spent Nuclear Fuel Storage and Interim Storage Facilities at Nuclear Research Institute Rez Plc, Czech Republic

    International Nuclear Information System (INIS)

    LVR-15 is a research reactor that operates in NRI Rez plc, Czech Republic since 1957. From the first criticality of the reactor until 2007, more than 600 fuel assemblies have been used in the reactor core, resulting in a large quantity of spent fuel. This paper describes the management of Research Reactor Spent Nuclear Fuel (RRSNF) storage at NRI Rez plc. Characteristics of fuel types used (EK-10, IRT-2M 80% enriched and IRT-2M 36% enriched), and characteristics of interim storage facilities and infrastructure available are described. The paper emphasizes the experience gained during the preparatory works for the SNF shipment (facility and equipment modification, cask licenses) and the preparation of the SNF for transport, in particular its checking, repackaging in a hot cell, loading into the VPVR/M casks, drying, manipulation, completion of the transport documentation, etc. including its transport to the High Level Waste Storage facility before its transportation to the Russian Federation. Future Russian Federation options for the spent fuel management at NRI Rez plc, including possibility of additional shipments to the Russian Federation, or interim storage in SKODA VPVR/M cask systems at NRI Rez is also discussed. (author)

  18. Carbon nanotube materials from hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  19. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: defense waste processing facility

    International Nuclear Information System (INIS)

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built at the Savannah River Plant (SRP). High level waste is produced when SRP reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld-sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The present document compares the risks associated with the manufacture and interim storage of these two forms in the DWPF. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information. To perform the comparative risk assessments, consequences of the postulated accidents are calculated in terms of: (1) the maximum dose to an off-site individual; and (2) the dose to off-site population within 80 kilometers of the DWPF, both taken in terms of the 50-year inhalation dose commitment. The consequences are then multiplied by the estimated accident probabilities to obtain the risks. The analyses indicate that the maximum exposure risk to an individual resulting from the accidents postulated for both the production and interim storage of either waste form represents only an insignificant fraction of the natural background radiation of about 90 mrem per year per person in the local area. They also show that there is no disaster potential to the off-site population. Therefore, the risks from abnormal events in the production and the interim storage of the DWPF waste forms should not be considered as a dominant factor in the selection of the final waste form

  20. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  1. Interim storage of power reactor spent nuclear fuel (SNF) and its potential application to SNF separations and closed fuel cycle

    International Nuclear Information System (INIS)

    Interim, centralized, engineered (dry cask) storage facilities for USA light water power reactor spent nuclear fuel (SNF) should be implemented to complement and to offer much needed flexibility while the Nuclear Regulatory Commission is funded to complete its evaluation of the Yucca Mountain License and to subject it to public hearings. The interim sites should use the credo reproduced in Table 1 [Bunn, M., 2001. Interim Storage of Spent Nuclear Fuel. Harvard University and University of Tokyo] and involve both the industry and government. The sites will help settle the 50 pending lawsuits against the government and the $11 billion of potential additional liabilities for SNF delay damages if Yucca Mountain does not being operation in 2020 [DOE, 2008a. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Stations (December)]. Under the developing consensus to proceed with closed fuel cycles, it will be necessary to develop SNF separation facilities with stringent requirements upon separation processes and upon generation of only highly resistant waste forms. The location of such facilities at the interim storage sites would offer great benefits to those sites and assure their long term viability by returning them to their original status. The switch from once-through to closed fuel cycle will require extensive time and development work as illustrated in 'The Path to Sustainable Nuclear Energy' [DOE, 2005. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles. DOE (September)]. A carefully crafted long term program, funded for at least 5 years, managed by a strong joint government-industry team, and subjected to regular independent reviews should be considered to assure the program stability and success. The new uncertainty about Yucca Mountain role raises two key issues: (a) what to do with the weapons and other high level government wastes

  2. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  3. North American Carbon Program (NACP) Regional Interim Synthesis: Terrestrial Biospheric Model Intercomparision

    Energy Technology Data Exchange (ETDEWEB)

    Huntzinger, Deborah [University of Michigan; Post, Wilfred M [ORNL; Michalak, Anna [University of Michigan; West, Tristram O. [Joint Global Change Research Institute, PNNL; Jacobson, Andrew [NOAA ESRL and CIRES; Baker, Ian [Colorado State University, Fort Collins; Chen, Jing M. [University of Toronto; Davis, Kenneth [Pennsylvania State University; Hayes, Daniel J [ORNL; Hoffman, Forrest M [ORNL; Jain, Atul [University of Illinois, Urbana-Champaign; Liu, Shuguang [United States Geological Survey, Center for Earth Resources Observation and Science (USGS EROS); Mcguire, David [University of Alaska; Neilson, Ronald [Oregon State University, Corvallis; Poulter, Ben [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Tian, Hanqin [Auburn University, Auburn, Alabama; Thornton, Peter E [ORNL; Tomelleri, Enrico [Max Planck Institute for Biogeochemistry; Viovy, Nicolas [National Center for Scientific Research, Gif-sur-Yvette, France; Xiao, Jingfeng [Purdue University; Cook, Robert B [ORNL

    2012-01-01

    Understanding of carbon exchange between terrestrial ecosystems and the atmosphere can be improved through direct observations and experiments, as well as through modeling activities. Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding to much larger terrestrial regions. Although models vary in their specific goals and approaches, their central role within carbon cycle science is to provide a better understanding of the mechanisms currently controlling carbon exchange. Recently, the North American Carbon Program (NACP) organized several interim-synthesis activities to evaluate and inter-compare models and observations at local to continental scales for the years 2000-2005. Here, we compare the results from the TBMs collected as part of the regional and continental interim-synthesis (RCIS) activities. The primary objective of this work is to synthesize and compare the 19 participating TBMs to assess current understanding of the terrestrial carbon cycle in North America. Thus, the RCIS focuses on model simulations available from analyses that have been completed by ongoing NACP projects and other recently published studies. The TBM flux estimates are compared and evaluated over different spatial (1{sup o} x 1{sup o} and spatially aggregated to different regions) and temporal (monthly and annually) scales. The range in model estimates of net ecosystem productivity (NEP) for North America is much narrower than estimates of productivity or respiration, with estimates of NEP varying between -0.7 and 2.2 PgC yr{sup -1}, while gross primary productivity and heterotrophic respiration vary between 12.2 and 32.9 PgC yr{sup -1} and 5.6 and 13.2 PgC yr{sup -1}, respectively. The range in estimates from the models appears to be driven by a combination of factors, including the representation of photosynthesis, the source and of environmental driver data and the temporal variability of those data, as well as

  4. TGC36 a dual purpose cask for the transport and interim storage of compacted waste (CSD-C)

    International Nuclear Information System (INIS)

    According to contractual and international obligations, the German Utilities have to return the residues resulting from the reprocessing of nuclear fuel assemblies (compacted hulls and ends) to Germany. The new dual purpose cask TGC36 is a joint product from the two leading companies in the field development and manufactory of nuclear casks in Europe, GNS and TN International, is intended for the transport to the interim storage facility Ahaus and to be stored there for up several years. For the development and the delivery of the TGC36 cask, GNS and TN International formed the AGC Consortium based on German law to combine the special know how of both partners in the most efficient way. The design and the licensing strategy of the TGC36 are introduced in this paper. In conclusions: GNS and TNI have formed a consortium named AGC to design, license and manufacture an innovative cask for the transport and the interim storage of the compacted wastes resulting from the reprocessing of the German spent fuel. This cask has been optimized in order to offer a high capacity of loading, and allows a payload of 36 canisters, leading to a total mass of approximately 116 Mg in transport configuration. The success of this project requires a special effort from both partner companies, members of the consortium, and implies also an efficient management of simultaneous tasks during the licensing period and the manufacturing time of the first items of the cask. (authors)

  5. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO2 transport options, the geological storage of the CO2 and Total commitments in the domain. (A.L.B.)

  6. Carbon dioxide capture and geological storage

    OpenAIRE

    2013-01-01

    Sustainable Carbon dioxide Capture and Storage, or CCS, can be achieved using geological means, an approach that differs in many ways from CO2 capture and storage in vegetation. Firstly, it differs because this latter approach enables CO2 to be stored only temporarily – for less than one year in annual plants or for several centuries in tree phytomass. Secondly, CO2 capture is associated with bioconversion of the sun’s energy which is then stored in biochemical form in the phytomass. As the t...

  7. Calculation of radiation exposure of the environment of interim storage facilities for the dry storage of spent fuel in dual-purpose casks

    International Nuclear Information System (INIS)

    Acceptance problems in the public concerning the transport of spent nuclear fuel elements and a new political objective of the Federal Government have forced the German utilities to embark on on-site interim storage projects for the temporary storage of spent nuclear fuel elements. STEAG encotec GmbH, Essen, Germany, was awarded contracts for the conceptual planning including necessary shielding calculations for the majority of the 13 nuclear sites which opted for the dry storage concept. The capacity of the storage facilities ranges from 80 to 100 casks, according to the storage needs of the plants. The average dose rate at the surface of each cask was limited to 0.5 mSv/h, independent of the type of radiation. These new buildings should not significantly increase the exposure of the public to radiation already originating from the existing nuclear power plant. The layout of the storage building therefore has to ensure that additional target values of 10-20 Sv/y are not exceeded. These very low target values as well as the requirement to avoid high mechanical impacts to the casks in case of external events led to a thickness of walls and ceilings of between 1.2 m and 1.3 m. To remove the decay heat from the casks by natural convection sufficient cross sections of the air inlet and outlet ducts are required

  8. Attitudes towards Carbon and Storage in Norway

    OpenAIRE

    Berg-Hansen, Anders

    2011-01-01

    This study presents the results of a 2010 Internet survey conducted on 999 Norwegian citizens aiming to investigate and explain the main determinants of public attitudes towards carbon dioxide capture and storage (CCS), a technology considered crucial for mitigating adverse consequences of global climate change. The results confirmed the main hypothesis, in line with previous research based on risk psychology and the risk-benefit model: Attitudes towards CCS were positively related to benefit...

  9. Storage and release of carbon in soils

    OpenAIRE

    Sierra, Jorge

    2011-01-01

    The organic matter (OM) contains between 50 and 60% of carbon (C). Among its functions, theOM helps to preserve the structure and porosity of the soil (thus influencing water storage, aeration,and the risk of erosion), to stimulate biological activity and preserve the soil biodiversity, tosupply nutrients to the plant (nitrogen, phosphorus, sulphur etc.) and to retain certain micropollutants(thus affecting water quality)...

  10. Tracking Progress in Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    At the second Clean Energy Ministerial in Abu Dhabi, April 2011 (CEM 2), the Carbon Capture, Use and Storage Action Group (CCUS AG) presented seven substantive recommendations to Energy Ministers on concrete, near-term actions to accelerate global carbon capture and storage (CCS) deployment. Twelve CCUS AG governments agreed to advance progress against the 2011 recommendations by the third Clean Energy Ministerial (London, 25-26 April 2012) (CEM 3). Following CEM 2, the CCUS AG requested the IEA and the Global CCS Institute to report on progress made against the 2011 recommendations at CEM 3. Tracking Progress in Carbon Capture and Storage: International Energy Agency/Global CCS Institute report to the third Clean Energy Ministerial responds to that request. The report considers a number of key questions. Taken as a whole, what advancements have committed CCUS AG governments made against the 2011 recommendations since CEM 2? How can Energy Ministers continue to drive progress to enable CCS to fully contribute to climate change mitigation? While urgent further action is required in all areas, are there particular areas that are currently receiving less policy attention than others, where efforts could be redoubled? The report concludes that, despite developments in some areas, significant further work is required. CCS financing and industrial applications continue to represent a particularly serious challenge.

  11. 46 CFR 95.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  12. 46 CFR 76.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  13. Functional Carbon Materials for Electrochemical Energy Storage

    Science.gov (United States)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  14. Social acceptance of carbon dioxide storage

    International Nuclear Information System (INIS)

    This article discusses public acceptance of carbon capture and storage (CCS). Responses by citizens are described in relation to responses by professionally involved actors. Interviews with members of the government, industry and environmental NGOs showed that these professional actors are interested in starting up storage projects, based on thorough evaluation processes, including discussions on multi-actor working groups. As appeared from a survey among citizens living near a potential storage site (N=103), public attitudes in general were slightly positive, but attitudes towards storage nearby were slightly negative. The general public appeared to have little knowledge about CO2-storage, and have little desire for more information. Under these circumstances, trust in the professional actors is particularly important. NGOs were found to be trusted most, and industry least by the general public. Trust in each of the three actors appeared to depend on perceived competence and intentions, which in turn were found to be related to perceived similarity of goals and thinking between trustee and trustor. Implications for communication about CCS are discussed

  15. Soil Organic Carbon Storage in China

    Institute of Scientific and Technical Information of China (English)

    XIE Xian-Li; SUN Bo; ZHOU Hui-Zhen; LI An-Bo

    2004-01-01

    Soil organic carbon (SOC) storage under different types of vegetations in China were estimated using measured data of 2 440 soil profiles to compare SOC density distribution between different estimates, to map the soil organic carbon stocks under different types of vegetation in China, and to analyze the relationships between soil organic carbon stocks and environmental variables using stepwise regression analyses. Soil organic carbon storage in China was estimated at 69.38 Gt (10 15 g). There was a big difference in SOC densities for various vegetation types, with SOC distribution closely related to climatic patterns in general. Stepwise regression analyses of SOC against environmental variables showed that SOC generally increased with increasing precipitation and elevation, while it decreased with increasing temperature.Furthermore, the important factor controlling SOC accumulation for forests was elevation, while for temperate steppes mean annual temperature dominated. The more specific the vegetation type used in the regression analysis, the greater was the effect of environmental variables on SOC. However, compared to native vegetation, cultivation activities in the croplands reduced the influence of environmental variables on SOC.

  16. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Jones, K.M.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  17. Carbon Capture and Storage: legal issues

    Energy Technology Data Exchange (ETDEWEB)

    Mace, M.J.

    2006-10-15

    Carbon dioxide Capture and Storage (CCS) describes the process of capturing CO2 emissions from industrial and energy-related processes, compressing the gas to a liquid form, transporting it to a storage site (by pipeline, ship, truck or rail), and injecting it into a geological cavity – to isolate it from the atmosphere. CCS has been described as one option in the 'portfolio' of mitigation options - useful as a bridging technology to address the most prevalent greenhouse gases by volume in the short term, while economies make the shift from fossil fuels to low-carbon energy sources, including renewables. The IPCC has estimated that CCS has the potential to contribute 15-55% of the cumulative mitigation effort worldwide until 2100. However, for this to occur, the IPCC estimates that several hundreds or thousands of CO2 capture systems would need to be installed over the next century. Such a prospect raises a host of legal and regulatory issues and concerns. CCS activities will have to be undertaken in a manner consistent with the range of existing regulatory frameworks developed at the national level to address environmental and health and safety risks. But consistency with international law will also be essential where transboundary impacts are possible, transboundary transportation is involved, or offshore storage activities are contemplated.

  18. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  19. Gamma dose rate calculations for conceptual design of a shield system for spent fuel interim dry storage in CNA 1

    International Nuclear Information System (INIS)

    After completing the rearrangement of the Spent Fuel Elements (SFE) into a compact arrangement in the two storage water pools, Atucha Nuclear Reactor 1 (ANR 1) will leave free position for the wet storage of the SFE discharged until December 2014. Even, in two possible scenarios, such as extending operation from 2015 or the cessation of operation after that date, it will be necessary to empty the interim storage water pools transferring the SFE to a temporary dry storage system. Because the law 25.018 'Management of Radioactive Wastes' implies for the first scenario - operation beyond 2015 - that Nucleoelectrica Argentina S.A. will still be in charge of the dry storage system and for the second - the cessation of operation after 2015 - the National Commission of Atomic Energy (CNEA) will be in charge by the National Management Program of Radioactive Wastes, the interim dry storage system of SNF is an issue of common interest which justifies go forward together. For that purpose and in accordance with the criticality and shielding calculations relevant to the project, in this paper we present the dose rate calculations for shielding conceptual design of a system for dry interim storage of the SFE of ANR 1. The specifications includes that the designed system must be suitable without modification for the SFE of the ANR 2. The results for the calculation of the photon dose rate, in touch and at one meter far, for the Transport Module and the Container of the SFE, are presented, which are required and controlled by the National Regulatory Authority (NRA) and the International Atomic Energy Agency (IAEA). It was used the SAS4 module of SCALE5.1 system and MCNP5. As a design tool for the photon shielding in order to meet current standards for allowable dose rates, a radial and axial parametric analysis were developed based on the thickness of lead of the Transport Module. The results were compared and verified between the two computing systems. Before this

  20. Investigation of exposure dose of residents and standards for the interim storage of wastes from the restricted area

    International Nuclear Information System (INIS)

    Remediation in the restricted area around the Fukushima Daiichi Nuclear Power Plant is being planned. JNES conducted the investigation to support controlling the exposure pathway for exposure of residents. Prototype dose evaluation tool for the residents in the restricted area was developed. Residents would be externally and internally exposed. Monitoring data of concentration of radioactive material in the air, soil, water, agricultural products and fish, and exposure scenario were compiled to be used in the dose evaluation tool. Upon requests from the Local Nuclear Emergency Response Headquarters (LNERH), JNES has conducted investigations of the exposure dose for local residents, car mechanics, drivers, fire fighters, workers of incineration plant, seawage plant and final disposal of waste in their activities. Preliminary investigation of the safety of interim storage for wastes from decontamination was also conducted. (author)

  1. Payment charges for federal interim storage of spent nuclear fuel from civilian nuclear power plants in the United States

    International Nuclear Information System (INIS)

    This report describes the study conducted by the Department of Energy (the Department) regarding payment charges for the federal interim storage (FIS) of spent fuel and presents the study results. It describes the methodology proposed for calculating the FIS fee schedule, provides a range of estimates for the fee, and describes a proposed method of payment. The fee is structured for a range of spent fuel capacities because of uncertainties regarding the schedule of availability and amount of spent fuel that may require and qualify for FIS. The Department is currently determining how best to provide FIS for commercial spent fuel, and it expects to publish in the Federal Register a fee schedule to be effective on or before January 1, 1984. An additional report to Congress describing specific plans for deploying FIS facilities will be provided by January 7, 1984, in accordance with the requirements of the Act. 3 references, 3 tables

  2. Carbon Storage in Soils: Climate vs. Geology

    International Nuclear Information System (INIS)

    In a recently published Nature Geoscience article, scientists took a closer look at the much-discussed topic of carbon storage in soils under Climate Change. In a large-scale study across Chile and the Antarctic Peninsula, they showed that the role of precipitation and temperature in controlling carbon dynamics in soils is less than currently considered in Global Ecosystem Models. Soils are important for carbon (C) storage and thus for atmospheric CO2 concentrations. Whether soils act as a sink or source for atmospheric C generally depend on climatic factors, as they control plant growth (driving the incorporation of C into the soil), the activity of soil microorganism (driving the release of C from the soil to the atmosphere), as well as several other chemical processes in soils. However, we still do not fully understand the response of soil C to Climate Change. An international team of researchers led by Pascal Boeckx and Sebastian Doetterl from Ghent University, Belgium and Erick Zagal from University of Concepcion in Chile, have been investigating the interaction between climate, different types of soil minerals, and soil as sink or source for C. They studied this interaction by sampling soils from numerous locations representing different vegetation types in Chile and the Antarctic Peninsula

  3. Need for relevant timescales when crediting temporary carbon storage

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky

    2013-01-01

    carbon storage in carbon footprinting. Methods: Implications of using a 100-year accounting period is evaluated via a literature review study of the global carbon cycle, as well as by analysing the crediting approaches that are exemplified by the PAS 2050 scheme for crediting temporary carbon storage...... mitigation of the rise in atmospheric greenhouse gas concentration is required and in this perspective, shorter storage times may still provide climatic benefits. Conclusions: Both short- and long-term perspectives should be considered when crediting temporary carbon storage, addressing both acute effects on...

  4. Investigation on Interim Storage of Spent Fuel for PWR NPP%压水堆乏燃料中间贮存技术研究

    Institute of Scientific and Technical Information of China (English)

    刘彦章; 王鑫; 袁呈煜; 莫怀森

    2015-01-01

    The spent fuel interim storage and treatment status of pressurized water reactor in main nuclear power countries was investigated and the recent trends in the spent fuel interim storage of the pressurized water reactor were analyzed. Dry storage technology of nuclear spent fuel will be the main stream of interim storage for future PWR spent fuel storage. Suggestions were made for nuclear spent fuel storage and processing combined with the status of China's nuclear spent fuel in pressurized water reactor.%本文通过调研主要核电国家的压水堆核电站乏燃料中间贮存与处理现状,分析研究近年来在压水堆核电站乏燃料中间贮存方面的趋势,明确乏燃料干式贮存技术将是未来压水堆核电站乏燃料中间贮存的主流。结合我国压水堆核电站乏燃料的现状并对未来核电站乏燃料贮存与处理工作提出建议。

  5. Criticality and shielding calculations of an interim dry storage system for the spent fuel from Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    The Atucha I Nuclear Power Plant (CNA-I) has enough room to store its spent fuel (SF) in damp in its two pool houses until the middle of 2015.Before that date there is the need to have an interim dry storage system for spent fuel that would make possible to empty at least one of the pools, whether to keep the plant operating if its useful life is extended, or to be able to empty the reactor core in case of decommissioning.Nucleolectrica Argentina S.A. (NA-SA) and the Comision Nacional de Energia Atomica (CNEA), due to their joint responsibility in the management of the SF, have proposed interim dry storage systems.These systems have to be evaluated in order to choose one of them by the end of 2006.In this work the Monte Carlo code MCNP was used to make the criticality and shielding calculations corresponding to the model proposed by CNEA.This model suggests the store of sealed containers with 36 or 37 SF in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.The results of the criticality calculations indicates that the solutions of SF proposed have widely fulfilled the requirements of subcriticality, even in supposed extreme accidental situations.Regarding the transference cask, the SF dose rate estimations allow us to make a feedback for the design aiming to the geometry and shielding improvements.Regarding the store modules, thicknesses ranges of concrete walls are suggested in order to fulfill the dose requirements stated by the Autoridad Regulatoria Nuclear Argentina

  6. Carbon storage potential in natural fiber composites

    International Nuclear Information System (INIS)

    The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO2 emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84-154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO2 emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO2 emissions (4.3% of total USA industrial emissions) and 1.19 million m3 crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing, interfacial bonding and

  7. Carbon dioxide storage. EU legal framework for carbon capture and storage

    International Nuclear Information System (INIS)

    In the correct opinion of the EU Commission, fossil fuels are going to remain the most important energy source worldwide also in the decades to come. The intention of the EU to reduce by 50% the 1990 level of greenhouse gas emission by 2050 can become reality, in the light of worldwide developments, only if the energy potential of coal can be tapped without multiplying emissions. The EU therefore initiated measures to make carbon capture and storage a standard technology in new fossil fired power plants. The CCS technology is to be demonstrated so as to make it available commercially for plant renewal after 2020 (CCS = Carbon Capture and Storage). To outline the future legal framework in the European Union, the EU Commission on January 23, 2008 presented the proposal of a Directive on Geologic Storage of Carbon Dioxide (CO2). That proposal mainly focuses on the storage of CO2 and the removal of obstacles in the way of CO2 storage. The capture and pipeline transport of CO2 are taken into account in the appropriate amendments to existing directives. (orig.)

  8. Interface Issues Arising in Interim Storage Facilities Using Storage/Transport Dual Purpose Dry Metal Casks in Japan. Annex VIII

    International Nuclear Information System (INIS)

    The annual amount of spent fuels (SFs) discharged by the operation of commercial reactors nowadays is estimated to be around 10 000 tU level worldwide. While the amount of SFs already reprocessed account about one-third, the rest are currently stored in storage facilities, typically, in wet pools attached to nuclear power plants (NPPs). Cumulative amount of SFs stored is estimated to be about 250 000 tU by 2010 (I. Hanaki, Japan). While wet pool system is dominant in storage facility designs, new design concepts for storage facilities have been continuously developed. One of these new designs is that using dual purpose dry metal casks. “Dual” here means that the casks are not only designed as storage containers, but also designed as transport containers that will satisfy relevant regulatory requirements for transport of radioactive materials such as TS-R-1. Advantage of adopting such “dual” design in storage facilities lies in that this could contribute to reduce the burden associated with handling operations, because, under such designs, SFs once loaded into casks can easily be “transported” to storage facilities, and after storage of several decades, they can again be “transported” to their destinations, regardless they are reprocessing facilities or final disposal sites. Other than these, adopting this kind of design can reduce the amount of radioactive wastes discharged through storage operation, thus can reduce operation costs while maintaining safety level. In Japan, where 53 commercial NPPs are now in operation and with the annual amount of SFs produced sums up to about 1000 tU, keen needs are perceived among SFs producers (namely, utilities) to secure adequate SFs storage capacity. Therefore, a new application for constructing storage facility of 3000 tU scale in Mutsu city, located in northern part of Aomori prefecture, has been submitted in March 2007 by a subsidiary company of utilities named RFS (Recyclable Fuel Storage Company), using

  9. Prerequisites for Geological Carbon Storage as a Climate Policy Option

    OpenAIRE

    Torvanger, Asbjørn; Kallbekken, Steffen; Rypdal, Kristin

    2004-01-01

    Carbon storage is increasingly being considered as an important climate change mitigation option. This paper explores provisions for including geological carbon storage in climate policy. The storage capacity of Norway’s Continental Shelf is alone sufficient to store a large share of European CO2 emissions for many decades. If carbon dioxide is injected into oil reservoirs there is an additional benefit in terms of enhanced oil recovery. However, there are significant technical and economic c...

  10. Hydrogen storage in carbon derived from solid endosperm of coconut

    OpenAIRE

    Dixit, Viney; Bhatnagar, Ashish; Shahi, R. R.; Yadav, T. P.; O.N. Srivastava

    2014-01-01

    Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen adsorption kinetics and cost effectiveness. However, these materials suffer from low hydrogen storage capacity, particularly at room temperature. The aim of the present study is to develop carbon-based material from natural bio-precursor which shows at least moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of carbon derived from solid endo...

  11. Final environmental assessment and Finding-of-No-Significant-Impact - drum storage facility for interim storage of materials generated by environmental restoration operations

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0995, for the construction and operation of a drum storage facility at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for construction of the facility was generated in response to current and anticipated future needs for interim storage of waste materials generated by environmental restoration operations. A public meeting was held on July 20, 1994, at which the scope and analyses of the EA were presented. The scope of the EA included evaluation of alternative methods of storage, including no action. A comment period from July 5, 1994 through August 4, 1994, was provided to the public and the State of Colorado to submit written comment on the EA. No written comments were received regarding this proposed action, therefore no comment response is included in the Final EA. Based on the analyses in the EA, DOE has determined that the proposed action would not significantly affect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an Environmental Impact Statement is not required and the Department is issuing this Finding of No Significant Impact

  12. Development of Aircraft Impact Scenario on a Concrete Cask in Interim Storage Facility

    International Nuclear Information System (INIS)

    This paper provides a method for determining the failure criteria in global and local damage responses for the concrete cask under extreme mechanical impact condition. IAEA safety guide No. SSG-15 mentions the hypothetical initiating events of SNF storage. Among the external initiating events, the aircraft strike on a storage cask is considered one of the dominant contributions to the risk during storage phase. Although the probability of aircraft crash on ISF is extremely small, it is important to develop the accident scenario caused by an intentional malicious acts launched towards the storage facility in terms to improve inherent security. Thus, the probabilistic approach to develop aircraft impact scenarios on a storage cask is needed

  13. Risk-based prioritization for the interim remediation of inactive low-level liquid radioactive waste underground storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The paper presents a risk-based approach for rapid prioritization of low-level liquid radioactive waste underground storage tanks (LLLW USTs), for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at Oak Ridge National Laboratory were pumped out when the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include the radionuclides 90Sr, 137Cs, and 233U and the chemicals carbon tetrachloride, trichloroethane, tetrachloroethene, methyl ethyl ketone, mercury, lead, and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank, (2) location of the tanks, and (3) toxic potential of the tank contents. Leaking characteristics of LLLW USTs will aid in establishing the potential for the release of contaminants to environmental media. In this study, only the liquid phase was assumed to be released to the environment. Scoring criteria for release potential of LLLW USTs was determined after consideration of the magnitude of any known leaks and the tank type for those that are not known to leak

  14. Containment integrity evaluation of MSF-type cask for interim storage and transport of PWR spent fuel

    International Nuclear Information System (INIS)

    Many spent fuel storage pools in nuclear plant facilities are now reaching their full capacity in Japan. As a solution of this issue, Mitsubishi Heavy Industries, ltd. (MHI) has developed a high integrity dual purpose cask for interim storage and transport of PWR spent fuel. As for the dual purpose cask, the conformity with the requirements for leak-tightness during transport specified in IAEA Safety Standards (Safety Requirements No. TS-R-1) has to be verified by drop tests and/or numerical simulations. A Full-scale drop test is a valid and feasible way for demonstrating a containment performance because it is difficult to scale down a closure system, especially the dimensions and characteristics of the metallic O-rings attached to the lids, according to the scaling law. Therefore, MHI conducted full-scale drop tests and demonstrated the conformity with the leak-tightness requirements. The closure system of the MSF-21P cask has been designed on the basis of the full-scale drop test results and its containment integrity has been verified by dynamic Finite Element (FE) analyses based on the full-scale drop test results

  15. Integrity Assessment of CANDU Spent Fuel During Interim Dry Storage in MACSTOR

    International Nuclear Information System (INIS)

    This paper presents an assessment of the integrity of CANDU spent fuel during dry storage in MACSTOR. Based on review of the safety requirements for sheath integrity during dry storage, a fuel temperature limit for spent CANDU fuel stored in MACSTOR is specified. The spent fuel conditions prior to, and during dry storage are assessed. The safety margin for spent CANDU fuel stored in MACSTOR is assessed against various failure mechanisms using the probabilistic estimation approach derived from US LWR fuel data set. (author)

  16. Hydrogen storage in single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Claims have emerged recently, of high hydrogen storage capacities at room temperature and above, for carbons such as single-wall and multi-walled nanotubes. We have been unable to verify any claims of high capacities at room temperature and low pressure. For (10,10) single wall carbon nanotubes, we used a computer controlled Sievert's apparatus to measure an adsorption at RT of 0.07 wt% gravimetric density at 1 bar, typical of what is expected on the basis of BET surface area measurements for carbons. At high pressures of > 60 bar and temperatures of 80K gravimetric densities up to ∼ 8 wt% are obtained, but more typically ∼ 7 wt% after a few adsorption desorption cycles. These values and isotherm shapes can be attributed to rearrangement of the rope structure that is formed by condensed nanotubes. Certain fullerites can also exhibit adsorption/desorption cycle dependent capacity, ranging from 2.5 to 4 wt% at 80K and 120 bar. (author)

  17. Carbon capture and storage (CCS): the boundary dam story

    International Nuclear Information System (INIS)

    This paper discusses the carbon capture and storage project at the Boundary Dam Power Station in Saskatchewan. Carbon capture and storage is a transitional process for future, low carbon footprint, electrical generation. The reduction of greenhouse gas emissions requires the reduction of carbon dioxide from coal-fired electricity. There has been a significant reduction in coal usage across Canada and this trend is expected to continue.

  18. Calculation methods for demonstration of cladding tube integrity during dry long-term interim storage of fuel elements in CASTOR registered V casks

    International Nuclear Information System (INIS)

    The interim storage of spent fuel elements at the plant site of German nuclear power plants is using CASTOR registered V casks. In the frame of inventory extension fuel elements with higher burn-up are stored that result in higher decay heat und higher EOL pressures. For demonstration of heat removal of the CASTOR registered V cask during the interim storage it has to be shown that the reached temperatures comply with the limiting values to ensure the safety objective. To exclude cladding tuve failure two criteria have to be fulfilled during the interim storage: (A) the maximum tangential stress in the cladding must not surmount 120 MPa. (B) the persistent tangential strain at the cladding at the end of the storage time must not surmount 1%. The authors describe the calculation methodology for the temperatures in the casks taking into account the heat removal from the cask surface by radiant heat transfer and convection, the maximum allowable internal pressure and the resulting tangential strain in the cladding tube.

  19. Airborne source-term modeling of past and future interim storage practices of Hanford Site waste treatment facilities using AIRSOURCE model

    International Nuclear Information System (INIS)

    Westinghouse Hanford Company functions as the operations and engineering contractor at the Hanford Site US Department of Energy (DOE) facilities. A major mission of this responsibility is to process the chemical and radioactive wastes from former weapons material production and other activities into a form suitable for permanent storage or disposal. These processing activities involve waste reduction which separates solid wastes from effluents that have trace concentrations of chemical and radioactive materials. This water had been previously disposed of in soil column cribs which sometimes resulted in a local below-surface contamination. As a result of timing commitments and processing schedules, a facility that will remove and permanently store the trace contamination materials from the contaminated effluent water will not be available for several years. It is necessary to provide interim storage of the effluent water in order to keep the waste processing functions operating until these effluent treatment facilities are made available. In order to operate this interim storage facility, the State of Washington required a demonstration that atmospheric releases from the future practices interim storage would be less than those of the past practices operations involving the soil column disposal of effluents. To achieve this objective, a description of equipment items and processes in the past practices and proposed future practices interim storage was made. This description involved concentrations, flow rates, temperatures, and parameters such as surface areas, ventilation rates, and filtration efficiencies which affect the atmospheric source-term releases. Several design variables were considered and evaluated before a design was finalized. At the beginning of this project, 72 inorganic, organic, and radioactive materials were considered in the effluent stream. Provision was required for possible addition to this list. 2 figs., 2 tabs

  20. Interim nuclear spent fuel storage facility - From complete refusal to public acceptance

    International Nuclear Information System (INIS)

    Full text: As usual in P.R., there was a complicated, politically sensitive situation we had to face at the beginning and it wasn't easy to create the right P.R. programme with the right targets: CEZ needed a new storage facility for the nuclear spent fuel from its two NPPs - Dukovany and Temelin. Firstly, CEZ preferred to build an on-site facility for the Dukovany NPP to last until the year 2004; secondly, a facility for the Temelin NPP several years later. But the Czech Government decided to limit Dukovany's storage capacity during a public discussion in 1992. Therefore, at the end of 1993, CEZ started the site selection process for a central storage facility targeted at ten regions in the country. In P.R. we decided on two main goals: 1. To gain public acceptance of a central storage facility at least at one site, and hopefully at more. 2. To change public opinion (especially around the Dukovany NPP) in order to create the proper atmosphere for changing the government's decision to limit storage capacity. We wanted to prove that we could choose the fight technical and economical solution without political limits. This obviously presented a challenge as it would be problematic for CEZ to be very visible in the campaign: We wanted people to know that the government had made a bad decision, but we also had to make it clear that our objections were based not on questions of momentary corporate advantage but instead on solid technical grounds. Most would only see self interest. We wanted to show them the facts. Of course, some times it wasn't easy to hit both targets at the same time. There was a lot of hard work in the middle. We gained new experience and we learned a lot trying to get public confidence in nuclear safety, in our company's reliability and in some local profits for a storage site: Firstly none of those regions was excited by the idea o a storage facility in its backyard. Most of them were very strongly and actively against it and did not want to

  1. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  2. Licensing framework of interim storage for spent fuel installation in Indonesia

    International Nuclear Information System (INIS)

    Currently, Indonesia operates three research reactors. While being operated for the research activities, reactors produce spent fuel that has the potential for radiation hazard. The utilities collect spent fuel temporarily throughout the lifetime of reactor. To control the spent fuel storage, BAPETEN has, in the year 2000, established some regulations based on the act No. 10 of 1997, Government Regulation No. 64, Government Regulation No. 63, 26 and 27. This paper addresses present regulations related to the spent fuel storage, including the regulation on the licensing system. (author)

  3. Global ocean storage of anthropogenic carbon

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2013-04-01

    Full Text Available The global ocean is a significant sink for anthropogenic carbon (Cant, absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air–sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty. This estimate includes a

  4. Global ocean storage of anthropogenic carbon

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2012-07-01

    Full Text Available The global ocean is a significant sink for anthropogenic carbon (Cant, absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data-assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on ocean forward models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of

  5. Global ocean storage of anthropogenic carbon

    Science.gov (United States)

    Khatiwala, S.; Tanhua, T.; Mikaloff Fletcher, S.; Gerber, M.; Doney, S. C.; Graven, H. D.; Gruber, N.; McKinley, G. A.; Murata, A.; Ríos, A. F.; Sabine, C. L.

    2013-04-01

    The global ocean is a significant sink for anthropogenic carbon (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty). This estimate includes a broad range of

  6. Spatial dynamics of carbon storage: a case study from Turkey.

    Science.gov (United States)

    Sivrikaya, Fatih; Baskent, Emin Zeki; Bozali, Nuri

    2013-11-01

    Forest ecosystems have an important role in carbon cycle at both regional and global scales as an important carbon sink. Forest degradation and land cover changes, caused by deforestation and conversion to non-forest area, have a strong impact on carbon storage. The carbon storage of forest biomass and its changes over time in the Hartlap planning unit of the southeastern part of Turkey have been estimated using the biomass expansion factor method based on field measurements of forests plots with forest inventory data between 1991 and 2002. The amount of carbon storage associated with land use and land cover changes were also analyzed. The results showed that the total forested area of the Hartlap planning unit slightly increased by 2.1%, from 27,978.7 ha to 28,282.6 ha during the 11-year period, and carbon storage increased by 9.6%, from 390,367.6 to 427,826.9 tons. Carbon storage of conifer and mixed forests accounted for about 70.6% of carbon storage in 1991, and 67.8% in 2002 which increased by 14,274.6 tons. Land use change and increasing forest area have a strong influence on increasing biomass and carbon storage. PMID:23771281

  7. Plutonium Finishing Plan (PFP) Treatment and Storage Unit Interim Status Closure Plan

    International Nuclear Information System (INIS)

    This document describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) Treatment and Storage Unit. The PFP Treatment and Storage Unit is located within the 234-52 Building in the 200 West Area of the Hanford Facility. Although this document is prepared based upon Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the PFP Treatment and Storage Unit manages transuranic mixed (TRUM) waste, there are many controls placed on management of the waste. Based on the many controls placed on management of TRUM waste, releases of TRUM waste are not anticipated to occur in the PFP Treatment and Storage Unit. Because the intention is to clean close the PFP Treatment and Storage Unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. The PFP Treatment and Storage Unit will be operated to immobilize and/or repackage plutonium-bearing waste in a glovebox process. The waste to be processed is in a solid physical state (chunks and coarse powder) and will be sealed into and out of the glovebox in closed containers. The containers of immobilized waste will be stored in the glovebox and in additional permitted storage locations at PFP. The waste will be managed to minimize the potential for spills outside the glovebox, and to preclude spills from reaching soil. Containment surfaces will be maintained to ensure

  8. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  9. Carbon footprint reductions via grid energy storage systems

    Directory of Open Access Journals (Sweden)

    Trevor S. Hale, Kelly Weeks, Coleman Tucker

    2011-07-01

    Full Text Available This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

  10. Experience and results on the storage of spent AVR fuel elements and their technical utilization for interim and final storage

    International Nuclear Information System (INIS)

    This paper describes and evaluates the data and results currently available on the storage of spent AVR fuel elements. Water basin and dry storage facilities as well as the extensive experimental and development work are taken into consideration. Only slight quantities of krypton 85 and tritium can be released from the fuel element. Unlike existing casks made of nodular graphite cast iron, a new AVR cask has been developed which is formed of mild steel R St 37-2 and a special heavy concrete. The cask does not have a leak-tightness function but rather only the function of shielding and mechanical protecting the two cans (type B(U), IAEA). The manufacturing costs are low so that a storage of 15 years involves costs to the amount of 35 DM/fuel element. The cost estimate for spent fuel disposal in the year 2000 results in a value of 25 DM/fuel element. Costs of 0.8 - 0.9 Dpf/kWh are calculated for the complete disposal of AVR fuel elements. (orig./HP)

  11. [Estimation for vegetation carbon storage in Tiantong National Forest Park].

    Science.gov (United States)

    Guo, Chun-Zi; Wu, Yang-Yang; Ni, Jian

    2014-11-01

    Based on the field investigation and the data combination from literature, vegetation carbon storage, carbon density, and their spatial distribution were examined across six forest community types (Schima superba--Castanopsis fargesii community, S. superba--C. fargesii with C. sclerophylla community, S. superba--C. fargesii with Distylium myricoides community, Illicium lanceolatum--Choerospondias axillaris community, Liquidambar formosana--Pinus massoniana community and Hedyotis auricularia--Phylostachys pubescens community) in Tiantong National Forest Park, Zhejiang Province, by using the allometric biomass models for trees and shrubs. Results showed that: Among the six communities investigated, carbon storage and carbon density were highest in the S. superba--C. fargesii with C. sclerophylla community (storage: 12113.92 Mg C; density: 165.03 Mg C · hm(-2)), but lowest in the I. lanceolatum--C. axillaris community (storage: 680.95 Mg C; density: 101.26 Mg C · hm(-2)). Carbon storage was significantly higher in evergreen trees than in deciduous trees across six communities. Carbon density ranged from 76.08 to 144.95 Mg C · hm(-2), and from 0. 16 to 20. 62 Mg C · hm(-2) for evergreen trees and deciduous trees, respectively. Carbon storage was highest in stems among tree tissues in the tree layer throughout communities. Among vegetation types, evergreen broad-leaved forest had the highest carbon storage (23092.39 Mg C), accounting for 81.7% of the total carbon storage in all forest types, with a car- bon density of 126.17 Mg C · hm(-2). Total carbon storage for all vegetation types in Tiantong National Forest Park was 28254.22 Mg C, and the carbon density was 96.73 Mg C · hm(-2). PMID:25898604

  12. The construction and operation experience of the interim spent fuel storage facility at the Zaporizhzhya nuclear power plant

    International Nuclear Information System (INIS)

    Six nuclear power units of the Zaporizhzhya NPP (ZNPP), which had been put into operation from 1984 to 1995, have no performance capabilities to extend their at-reactor (AR) spent fuel (SF) pools. Without SF removal [for reprocessing or away-from-reactor (AFR) interim spent fuel storage] SF pools are overburdened with nuclear SF assemblies in 5 (with compact reracking - in 9) years of their operation. In 1993 after triennial blocking of spent fuel removal due to erroneous interpretation of the Russian Radwaste Low the Zaporizhzhya NPP management undertook active measures with respect to the construction of on-site interim spent fuel storage facility (ISFSF). In 1994 the official decision was made to build the ISFSF on the basis of a ventilated storage cask (VSC-24) system, which was developed by US Sierra Nuclear Corporation (SNC) and licensed by US NRC. This year the Zaporizhzhya NPP signed a contract agreement with the engineering company 'Duke Engineering and Services' (DE and S) to perform the design of the storage containers for the WWER-1000 spent fuel, the technology transfer and the service support of the ISFSF construction. The designing of the remaining components was carried out by Kharkov Design Institute 'Energoproject', which performed functions of the general designer for the Zaporizhzhya NPP. The project implementation came across a great number of various difficulties. The most complicated ones arose with some licensing issues of technology. The creation difficulties of the ZNPP's ISFSF can be grouped into five areas: - Occurrence of the most safety-significant issues related to the project quality after weld cracking events in ventilated storage cask systems (VSC-24) at Palisades (March 1995) and Arkansas Nuclear One (December 1996) as well as ignition of hydrogen gas occurred while a worker was welding a closure lid at Palisades (May 1996); - Lack of data on WWER-1000 spent fuel behavior during long-term storage in the dry environment and dry

  13. Wayne Interim Storage Site environmental report for calendar year 1992, 868 Black Oak Ridge Road, Wayne, New Jersey

    International Nuclear Information System (INIS)

    This report describes the environmental surveillance program at the Wayne Interim Storage Site (WISS) and provides the results for 1992. The fenced, site, 32 km (20 mi) northwest of Newark, New Jersey, was used between 1948 and 1971 for commercial processing of monazite sand to separate natural radioisotopes - predominantly thorium. Environmental surveillance of WISS began in 1984 in accordance with Department of Energy (DOE) Order 5400.1 when Congress added the site to DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP). The environmental surveillance program at WISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; radium-226, radium-228, thorium-230, thorium-232, total uranium, and several chemicals in surface water and sediment; and total uranium, radium-226, radium-228, thorium-230, thorium-232, and organic and inorganic chemicals in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. This monitoring program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results for environmental surveillance in 1992 show that the concentrations of all radioactive and most chemical contaminants were below applicable standards

  14. Maywood Interim Storage Site environmental report for calendar year 1992, 100 West Hunter Avenue, Maywood, New Jersey

    International Nuclear Information System (INIS)

    This report describes the environmental surveillance program at the Maywood Interim Storage Site (MISS) and provides the results for 1992. Environmental monitoring of MISS began in 1984, when the site was assigned to DOE by Congress through the Energy and Water Development Appropriations Act and was placed under DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. MISS is part of a National Priorities List (NPL) site. The environmental surveillance program at MISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analysis includes metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling the DOE objective of measuring and monitoring effluents from DOE activities and calculating hypothetical doses to members of the general public. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Environmental standards are established to protect public health and the environment. The radiological data for all media sampled support the conclusion that doses to the public are not distinguishable from natural background radiation

  15. Automatic operation of radioactive solid waste interim storage system in nuclear power plants

    International Nuclear Information System (INIS)

    Mitsubishi Heavy Industries, Ltd. (MHI) has developed an automatic system to transport and store on site the low-level radioactive wastes generated in nuclear power plants. This system consists mainly of palletizing equipment, unmanned forklift trucks and a data control system. The system has realized the unmanned and labour-saving operations in storage facilities with minimized radiation exposure and maximized operation and storage efficiencies. As for the unmanned forklift trucks, the inertia guidance system, which is superior in performance, maintainability and economy, has been newly developed and applied in addition to the previously actualized wire-guided forklift trucks. Moreover, an automatic drum data reader using an image processing technique and full automatic inspection equipment for drummed wastes, which are in the final stages of their development, are introduced. (author)

  16. 1985 Federal Interim Storage Fee Study: a technical and economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    JAI examined alternative methods for structuring charges for FIS services and concluded that the combined interests of the Deaprtment and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under-or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination.

  17. 1985 Federal Interim Storage Fee Study: a technical and economic analysis

    International Nuclear Information System (INIS)

    JAI examined alternative methods for structuring charges for FIS services and concluded that the combined interests of the Deaprtment and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under-or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination

  18. Report on the performance monitoring system for the interim waste containment at the Niagara Falls Storage Site, Lewiston, New York

    International Nuclear Information System (INIS)

    The Niagara Falls Storage Site (NFSS) is an interim storage site for low-level radioactive waste, established by the US Department of Energy (DOE) at Lewiston, New York. The waste containment structure for encapsulating low-level radioactive waste at the NFSS has been designed to minimize infiltration of rainfall, prevent pollution of groundwater, preclude formation of leachate, and prevent radon emanation. Accurately determining the performance of the main engineered elements of the containment structure will be important in establishing confidence in the ability of the structure to retain the wastes. For this purpose, a waste containment performance monitoring system has been developed to verify that these elements are functioning as intended. The key objective of the performance monitoring system is the early detection of trends that could be indicative of weaknesses developing in the containment structure so that corrective action can be taken before the integrity of the structure is compromised. Consequently, subsurface as well as surface monitoring techniques will be used. After evaluating several types of subsurface instrumentation, it was determined that vibrating wire pressure transducers, in combination with surface monitoring techniques, would satisfactorily monitor the parameters of concern, such as water accumulation inside the containment facility, waste settlement, and shrinkage of the clay cover. Surface monitoring will consist of topographic surveys based on predetermined gridlines, walkover surveys, and aerial photography to detect vegetative stress or other changes not evident at ground level. This report details the objectives of the performance monitoring system, identifies the elements of the containment design whose performance will be monitored, describes the monitoring system recommended, and outlines the costs associated with the monitoring system. 5 refs., 4 figs., 3 tabs

  19. Maywood Interim Storage Site: Annual site environmental report, Maywood, New Jersey, Calendar year 1986: Formerly Utilized Sites Remedial Action Program

    International Nuclear Information System (INIS)

    During 1986, the environmental monitoring program was continued at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. The MISS is presently used for the storage of low-level radioactively contaminated soils. The MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring programs are being conducted at this site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the MISS measures thoron and radon gas concentrations in air; external gamma radiation levels; and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/y) and to assess the potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, the maximally exposed individual would receive an annual external exposure approximately equivalent to 1% of the DOE radiation protection standard of 100 mrem/y. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles (due to greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the MISS that would result from radioactive materials present at the site would be indistinguishable from the dose the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the MISS is in compliance with the DOE radiation protection standard. 16 refs., 8 figs., 15 tabs

  20. An information management system for a spent nuclear fuel interim storage facility.

    Energy Technology Data Exchange (ETDEWEB)

    Finch, Robert J.; Chiu, Hsien-Lang (Taiwan Power Co., Taipei, 10016 Taiwan); Giles, Todd; Horak, Karl Emanuel; Jow, Hong-Nian (Jow International, Kirkland, WA)

    2010-12-01

    We describe an integrated information management system for an independent spent fuel dry-storage installation (ISFSI) that can provide for (1) secure and authenticated data collection, (2) data analysis, (3) dissemination of information to appropriate stakeholders via a secure network, and (4) increased public confidence and support of the facility licensing and operation through increased transparency. This information management system is part of a collaborative project between Sandia National Laboratories, Taiwan Power Co., and the Fuel Cycle Materials Administration of Taiwan's Atomic Energy Council, which is investigating how to implement this concept.

  1. An information management system for a spent nuclear fuel interim storage facility

    International Nuclear Information System (INIS)

    We describe an integrated information management system for an independent spent fuel dry-storage installation (ISFSI) that can provide for (1) secure and authenticated data collection, (2) data analysis, (3) dissemination of information to appropriate stakeholders via a secure network, and (4) increased public confidence and support of the facility licensing and operation through increased transparency. This information management system is part of a collaborative project between Sandia National Laboratories, Taiwan Power Co., and the Fuel Cycle Materials Administration of Taiwan's Atomic Energy Council, which is investigating how to implement this concept.

  2. A study on Japanese experience to secure the interim storage facility for nuclear spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Min [Hannyang University, Seoul (Korea, Republic of)

    2007-12-15

    The Japanese Government selected Mutsu, Aomori Prefecture as a provisional spent-fuel repository site. This comes as a result of the prefecture's five-year campaign to host the site since 2000. Korea stores spent nuclear fuel within sites of nuclear power plants, and expects the storage capacity to reach its limit by the year 2016. This compels Korea to learn the cases of Japan. Having successfully hosted Gyeongju as a site for low-to-intermediate-level nuclear waste repository, Korea has already learned the potential process of hosting spent fuel storage site. The striking difference between the two countries in the process of hosting the site is that the Korean government had to offer the local city a large amount of subsidy for hosting through competitive citizens' referendum among candidate cities while it was the leadership of the local municipality that enabled the controversial decision in Japan. It is also a distinguishable characteristics of Japan that not a huge subsidy is provided to the local host city. I hope this study offers an idea to Korea's future effort to select a spent-fuel host site.

  3. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    Energy Technology Data Exchange (ETDEWEB)

    COVEY, L.I.

    2000-11-28

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

  4. A study on Japanese experience to secure the interim storage facility for nuclear spent fuel

    International Nuclear Information System (INIS)

    The Japanese Government selected Mutsu, Aomori Prefecture as a provisional spent-fuel repository site. This comes as a result of the prefecture's five-year campaign to host the site since 2000. Korea stores spent nuclear fuel within sites of nuclear power plants, and expects the storage capacity to reach its limit by the year 2016. This compels Korea to learn the cases of Japan. Having successfully hosted Gyeongju as a site for low-to-intermediate-level nuclear waste repository, Korea has already learned the potential process of hosting spent fuel storage site. The striking difference between the two countries in the process of hosting the site is that the Korean government had to offer the local city a large amount of subsidy for hosting through competitive citizens' referendum among candidate cities while it was the leadership of the local municipality that enabled the controversial decision in Japan. It is also a distinguishable characteristics of Japan that not a huge subsidy is provided to the local host city. I hope this study offers an idea to Korea's future effort to select a spent-fuel host site

  5. Radioprotection considerations on the expansion project of an interim storage facility for radioactive waste

    International Nuclear Information System (INIS)

    The Radioactive Waste Management (GRR) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) receives, treats, packs, characterizes and stores institutional radioactive wastes generated at IPEN-CNEN/SP and also those received from several radiological facilities in the country. The current storage areas have been used to store the treated radioactive waste since the early 1980's and their occupation is close to their full capacity, so a storage area expansion is needed. The expansion project includes the rebuilding of two sheds and the enlargement of the third one in the area currently occupied by the GRR and in a small adjacent area. The civil works will be in controlled area, where the waste management operations will be maintained, so all the steps of this project should be planned and optimized, from the radioprotection point of view. The civil construction will be made in steps. During the project implementation there will be transfer operations of radioactive waste packages to the rebuilt area. After these transfer operations, the civil works will proceed in the vacant areas. This project implies on radiological monitoring, dose control of the involved workers, decontamination and clearance of areas and it is also envisaged the need for repacking of some radioactive waste. The objective this paper is to describe the radioprotection study developed to this expansion project, taking into account the national radioprotection and civil construction regulations. (author)

  6. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    International Nuclear Information System (INIS)

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, 90Sr and 137Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the 137Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF

  7. Project B-589, 300 Area transuranic waste interim storage project engineering study

    International Nuclear Information System (INIS)

    The purpose of the study was to look at various alternatives of taking newly generated, remote-handled transuranic waste (caisson waste) in the 300 Area, performing necessary transloading operations and preparing the waste for storage. The prepared waste would then be retrieved when the Waste Isolation Pilot Plant becomes operational and transshipped to the repository in New Mexico with a minimum of inspection and packaging. The scope of this study consisted of evaluating options for the transloading of the TRU wastes for shipment to a 200 Area storage site. Preconceptual design information furnished as part of the engineering study is listed below: produce a design for a clean, sealed waste canister; hot cell loadout system for the waste; in-cell loading or handling equipment; determine transshipment cask options; determine assay system requirements (optional); design or specify transport equipment required; provide a SARP cost estimate; determine operator training requirements; determine waste compaction equipment needs if desirable; develop a cost estimate and approximate schedule for a workable system option; and update the results presented in WHC Document TC-2025

  8. Technology Roadmaps: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Carbon capture and storage (CCS) is an important part of the lowest-cost greenhouse gas (GHG) mitigation portfolio. IEA analysis suggests that without CCS, overall costs to reduce emissions to 2005 levels by 2050 increase by 70%. This roadmap includes an ambitious CCS growth path in order to achieve this GHG mitigation potential, envisioning 100 projects globally by 2020 and over 3000 projects by 2050. This roadmap's level of project development requires an additional investment of over USD 2.5-3 trillion from 2010 to 2050, which is about 6% of the overall investment needed to achieve a 50% reduction in GHG emissions by 2050. OECD governments will need to increase funding for CCS demonstration projects to an average annual level of USD 3.5 to 4 billion (bn) from 2010 to 2020. In addition, mechanisms need to be established to incentivise commercialisation beyond 2020 in the form of mandates, GHG reduction incentives, tax rebates or other financing mechanisms.

  9. Subsurface barrier technologies as potential interim actions for Department of Energy underground storage tanks

    International Nuclear Information System (INIS)

    Westinghouse Hanford Company administers the US Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID) Program, which is designed to demonstrate technologies for the retrieval, treatment, and closure to DOE USTs and tank waste at five facilities throughout the US. In February 1992, Bovay Northwest conducted an UST workshop for Westinghouse Hanford. The scope of the workshop included a variety of applied subsurface barrier technologies that could be installed around an UST or series of USTs. This paper summarizes the information presented in the workshop. Once selected, screened technologies will be tested in the field in a full-scale demonstration and development project (also funded by the UST-ID program)

  10. Formerly Utilized Sites Remedial Action Program: Wayne Interim Storage Site: Annual site environmental report, Wayne, New Jersey, Calendar year 1986

    International Nuclear Information System (INIS)

    During 1986, the environmental monitoring program was continued at the Wayne Interim Storage Site (WISS), a US Department of Energy (DOE) facility located in the Township of Wayne, New Jersey. The WISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive material remains from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has mandated DOE to remedy. As part of the decontamination research and development decontamination program authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action is being conducted at the site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the WISS measures radon and thoron gas concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/y) and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 1% of the DOE radiation protection standard. By comparison, the average American receives a dose of 1 mrem/y from watching color television. The cumulative dose to the population within an 80-km radius of the WISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the WISS is in compliance with the DOE radiation protection standard. 22 refs., 8 figs., 17 tabs

  11. Carbon capture and storage-Investment strategies for the future?

    International Nuclear Information System (INIS)

    The following article deals with real options modeling for investing into carbon capture and storage technologies. Herein, we derive two separate models. The first model incorporates a constant convenience yield and dividend for the investment project. In the second model, the convenience yield is allowed to follow a mean reverting process which seems to be more realistic, but also increases the model's complexity. Both frameworks are to be solved numerically. Therefore, we calibrate our model with respect to empirical data and provide insights into the models' sensitivity toward the chosen parameter values. We found that given the recently observable prices for carbon dioxide, an investment into C O2-storage facilities is not profitable. - Highlights: → Real options modeling for investing into carbon capture and storage technologies. → Given the recently observable prices for carbon dioxide, an investment into CO2-storage facilities is not profitable. → Investment decision is mainly affected by risk free rate and volatility.

  12. Water Quality Analysis Study Pond and Interim Storage for Spent Fuel

    International Nuclear Information System (INIS)

    Purification system of Storage facility of spent fuel which there is in Indonesia is integrated purification system. Reservoir pond of fuel contains approximately 995 m3 demin water and in pond equipped with some of reservoir racks of spent fuel which must always avoid from factor-factor causing corrosion. In process of this purification system, water impurity which has been activation and also which is not is activation before will filtered and catch by passing of ion exchange so that will reduce conductivity and fuel coolant water activity. Water quality pond and canals links must fulfill specifications, among other: degree of acidity (pH) primary cooling water ranges from 5.5 and 6.5 ; its conductivity 1 - 8 μ S/cm, content analysis CI 0.03 - 0.06 ppm and NO3 0.1 - 0.2 ppm, radionuclide activity Cs137 742 Bq/l and Co60 657 Bq/l and the temperature be kept of less than 40℃ to avoid from corrosion speed. (author)

  13. Carbon footprint reductions via grid energy storage systems

    OpenAIRE

    Trevor S. Hale, Kelly Weeks, Coleman Tucker

    2011-01-01

    This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be tota...

  14. The Indonesia Carbon Capture Storage Capacity Building Program

    OpenAIRE

    World Bank

    2015-01-01

    In order to meet the growing Indonesian demand for electricity, while also constraining carbon dioxide (CO2) emissions, future coal power plants may have to include CO2 capture equipment with storage of that CO2. This study set out to define and evaluate the conditions under which fossil fuel power plants can be deemed as carbon capture and storage (CCS) ready (CCS-R). It considers the tec...

  15. Prospects for Carbon Capture and Storage in Southeast Asia

    OpenAIRE

    Asian Development Bank

    2013-01-01

    This report was produced under the Technical Assistance Grant: Determining the Potential for Carbon Capture and Storage (CCS) in Southeast Asia (TA 7575-REG), and is focused on an assessment of the CCS potential in Thailand, Viet Nam, and specific regions of Indonesia (South Sumatra) and the Philippines (CALABARZON). It contains inventories of carbon dioxide emission sources, estimates of overall storage potential, likely source-sink match options for potential CCS projects, and an analysis o...

  16. SETIS Magazine - Carbon Capture Utilisation and Storage issue

    OpenAIRE

    TZIMAS Evangelos; PEREZ FORTES MARIA DEL MAR

    2016-01-01

    The SETIS magazine aims at delivering timely information and analysis on the state of play of energy technologies, related research and innovation efforts in support of the implementation of the European Strategic Energy Technology Plan (SET-Plan). The current issue is dedicated to Carbon Capture Utilisation and Storage. The editorial for the Carbon Capture Utilisation and Storage issue is provided by A.SPIRE Executive Director Loredana Ghinea. The issue also includes contributions by:...

  17. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    OpenAIRE

    Yongfeng Luo; Xi Li; Jianxiong Zhang; Chunrong Liao; Xianjun Li

    2014-01-01

    This review summarizes recent studies on carbon nanotube (CNT) fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including lo...

  18. Hydrogen storage in carbon materials—preliminary results

    Science.gov (United States)

    Jörissen, Ludwig; Klos, Holger; Lamp, Peter; Reichenauer, Gudrun; Trapp, Victor

    1998-08-01

    Recent developments aiming at the accelerated commercialization of fuel cells for automotive applications have triggered an intensive research on fuel storage concepts for fuel cell cars. The fuel cell technology currently lacks technically and economically viable hydrogen storage technologies. On-board reforming of gasoline or methanol into hydrogen can only be regarded as an intermediate solution due to the inherently poor energy efficiency of such processes. Hydrogen storage in carbon nanofibers may lead to an efficient solution to the above described problems.

  19. Monte Carlo simulations of hydrogen storage in carbon nanotubes

    International Nuclear Information System (INIS)

    The storage capacities of porous materials made up of carbon nanotubes are estimated by Monte Carlo simulations for the specific case of hydrogen in the pressure domain from 0.1 to 20 MPa at temperatures of 293, 150 and 77 K. The use of these materials in devices for hydrogen storage is discussed on the basis of the simulation results. (author)

  20. Design report for the interim waste containment facility at the Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection

  1. Research Reactor Spent Nuclear Fuel, National Practice for Interim Storage in the Netherlands

    International Nuclear Information System (INIS)

    In the Netherlands radioactive waste is managed by COVRA, the Central Organisation for Radioactive Waste. COVRA was set up in 1982 as a joint initiative of the government and the larger waste producers at that time. COVRA N.V. is a private company with limited liability. The statutory task of COVRA is to take care of all kinds and categories of radioactive waste in the Netherlands on the basis of governmental policy. The shares of the company are held by the State of the Netherlands, i.e. the Ministry of Finance. In the national management system for radioactive waste in the Netherlands an integral approach has been chosen to process all kinds and categories of waste. For the small volume, but broad spectrum of radioactive waste, a management system has been developed based on the principle to isolate, to control, and to monitor the waste. Long term storage is an important element in this management strategy. The policy implies that there is one integral solution for all kinds of radioactive waste, regardless of its origin and composition. The decision to store for a long time was well considered and was not taken as a 'wait and see' option. This is clearly demonstrated by the fact that integral parts of the policy are: the establishment of a capital growth fund and a clear choice for the ownership of the waste, i.e. a complete transfer of liability to COVRA. This policy does not leave an undue burden of waste generated today to future generations. Only the execution of the disposal is left as a task for the future. All the waste will be kept at one site, well isolated from the environment, well controlled and well monitored. The waste is fully retrievable, a disposal solution is available in principle (geological disposition), and the money needed will become available in the capital growth fund. Also new disposal options, multilateral solutions or even complete new techniques can be applied when available and feasible. (author)

  2. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  3. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science; Wierschke, Jonathan Brett [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  4. Assessment Of Radiation And Criticality Safety For Keeping 106 Spent HEU Fuel Assemblies At Interim Storage Support To Full Core Conversion Of The Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    The paper presents calculation results of gamma dose rate and other parameters of Dalat Nuclear Research Reactor (DNRR) to evaluate radiation and criticality safety with the changing of water level in reactor tank and cooling time of burnt High Enriched Uranium (HEU) fuel assemblies (FAs) when keeping in interim storages. Before using ORIGEN code to calculate spent fuel photon source and decay heat, the library was modified with WWR-M2 burn-up dependent cross-sections of actinides generated by WIMS-ANL. The MCNP was used to estimate gamma dose rate and multiplication coefficient of spent fuel storages. The calculation was also benchmarked to measured gamma dose rate of a HEU burnt FA to affirm the calculation method. To obtain the conservative results of criticality safety, the all burnt FAs were assumed to be fresh ones. The calculation results show that retention 106 burnt HEU FAs at interim storage along with new LEU core 92 LEU FAs is met all requirements about radiation and criticality safety. (author)

  5. COMMISSIONING AND START-UP TESTS OF ALPHA-CONTAMINATED SOLID WASTE SORTING, CEMENTING, AND INTERIM STORAGE FACILITIES AT BELGOPROCESS (BELGIUM)

    International Nuclear Information System (INIS)

    The alpha-contaminated solid waste generated in Belgium results from past activities in the fuel cycle (R and D +Reprocessing and MOX fabrication pilot plants) and present operation of BELGONUCLEAIRE's MOX fuel fabrication plant. After the main steps in the management of alpha-contaminated solid waste were established, BELGONUCLEAIRE, with the backing of BELGOPROCESS and ONDRAF/NIRAS, started the design and construction of the T and C and interim-storage facilities for this alpha waste. The accumulated solid alpha radwaste containing a mixture of combustible and non-combustible material will be sorted. After sorting, both the accumulated and recently-generated non-combustible alpha waste will be embedded in a cement matrix. The erection of the sorting and cementing units which include glove-boxes and the interim storage building for conditioned packages was completed at BELGOPROCESS, at the beginning of year 2002. Start-up operations for both facilities have been performed. Operating tests of the sorting and cementing units were completed in July 2002 and inactive operation campaigns were started in August 2002. The results of the tests and inactive campaigns are given. Overall testing of the storage building supervised by the Safety Authorities was successfully performed at the end of 202 after completion of the operating tests on the equipment. The present paper summarizes the main information collected during the tests and campaigns, some of which has led to modifications of the equipment originally installed

  6. Carbon storage and recycling in short-rotation energy crops

    International Nuclear Information System (INIS)

    Short-rotation energy crops can play a significant role in storing carbon compared to the agricultural land uses they would displace. However, the benefits from these plantations in avoiding further use of fossil fuels and in taking pressure off native forests for energy uses provides longer term carbon benefits than the plantation carbon sequestration itself. The fast growth and harvest frequency of plantations tends to limit the amount of above- and below-ground carbon storage in them. The primary components of plantation carbon sequestering compared to sustained agricultural practices involve above ground wood, possible increased soil carbon, litter layer formation, and increased root biomass. On the average, short-rotation plantations in total may increase carbon inventories by about 10 to 40 tonnes per hectare over about a 20 to 50 year period when displacing cropland. This is about doubling in storage over cropland and about one-half the storage in human-impacted forests. The sequestration benefit of wood energy crops over cropland would be negated in about 75 to 100 years by the use of fossil fuels to tend the plantations and handle biomass. Plantation interactions with other land uses and total landscape carbon inventory is important in assessing the relative role plantations play in terestrial and atmospheric carbon dynamics. It is speculated that plantations, when viewed in this context, could generate a global levelling of net carbon emissions for approximately 10 to 20 years. 16 refs., 7 figs

  7. Carbon storage and recycling in short-rotation energy crops

    International Nuclear Information System (INIS)

    Short-rotation energy crops can play a significant role in storing carbon compared to the agricultural land uses they would displace. However, the benefits from these plantations in avoiding further use of fossil fuel and in taking pressure off of native forests for energy uses provides longer term carbon benetfits than the plantation carbon sequestration itself. The fast growth and harvest frequency of plantations tends to limit the amount of above and below-ground carbon storage in them. The primary components of plantation carbon sequestering compared to sustained agricultural practices involve above-ground wood, possible increased soil carbon, litter layer formation, and increased root biomass. On the average, short-rotation plantations in total may increase carbon inventories by about 30 to 40 tonnes per hectare over about a 20- to 56-year period when displacing cropland. This is about doubling in storage over cropland and about one-half the storage in human-impacted forests. The sequestration benefit of wood energy crops over cropland would be negated in about 75 to 100 years by the use of fossil fuels to tend the plantations and handle biomass. Plantation interactions with other land uses and total landscape carbon inventory is important in assessing the relative role plantations play in terrestrial and atmospheric carbon dynamics. It is speculated that plantations, when viewed in this context. could trencrate a global leveling of net carbon emissions for approximately 10 to 20 years

  8. The underground storages of carbon dioxide. Juridical aspects

    International Nuclear Information System (INIS)

    In the framework of the reduction of the carbon dioxide emissions in the air, the underground storage of the CO2 is studied. Some experimentation are already realized in the world and envisaged in France. This document aims to study the juridical aspects of these first works in France. After a presentation of the realization conditions and some recalls on the carbon dioxide its capture and storage, the natural CO2 underground storages and the first artificial storages are discussed. The CO2 waste qualification, in the framework of the environmental legislation is then detailed with a special task on the Lacq region. The problem of the sea underground storages is also presented. (A.L.B.)

  9. Consultation Report. Consultation under the Environmental Act sixth chapter 4 paragraph for interim storage, encapsulation and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    This consultation report is an appendix to the Environmental Impact Assessment (EIA) which in turn is an appendix to SKB's application under the Environmental Code for the continued operation of CLAB (Central interim storage for spent Nuclear Fuel, located on the Simpevarp Peninsula in Oskarshamn municipality), to build the encapsulation plant and operate it integrated with CLAB and to construct and operate the disposal facility in Soederviken at Forsmark in Oesthammar municipality, and SKB's application for a license under the Nuclear Activities Act to construct and operate the disposal facility at Forsmark. The aim of the consultation report is to give an overall picture of the consultations

  10. Thermal analysis of the unloading cell of the Spanish centralized interim storage facility (CISF); Analisis termico de la celda de desarga del almacen temporal centralizado (ATC)

    Energy Technology Data Exchange (ETDEWEB)

    Perez Dominguez, J. R.; Perez Vara, R.; Huelamo Martinez, E.

    2016-08-01

    This article deals with the thermal analysis performed for the Untoading Cell of Spain Centralized Interim Storage Facility, CISF (ATC, in Spanish). The analyses are done using computational fluid dynamics (CFD) simulation, with the aim of obtaining the air flow required to remove the residual heat of the elements stored in the cell. Compliance with the admissible heat limits is checked with the results obtained in the various operation and accident modes. The calculation model is flexible enough to allow carrying out a number of sensitivity analyses with the different parameters involved in the process. (Author)

  11. Shielding and criticality safety analyses of a Latin American cask for transportation and interim storage of spent fuel from research reactors

    International Nuclear Information System (INIS)

    Shielding and criticality safety calculations carried out for the Latin American interim storage and transportation cask are presented. Such a dual purpose cask is being designed for the spent fuel elements of research reactors in the region. The Monte Carlo transport code MCNP4B was utilized for the criticality safety analysis part, and SCALE4.4A for shielding. The analyses considered two types of fuel assemblies utilized in the region and the results show that both types can be loaded in the designed cask baskets in compliance with the safety criteria. (author)

  12. Word protocol of the public hearing concerning the projected interim storage facility at Ahaus, June 21-29, 1983. Pt. 1-3

    International Nuclear Information System (INIS)

    According to the procedural regulations under atomic law (Sect. 9, Atomic Energy Act; Sect. 3, Radiation Protection Ordinance, Federal Construction Act), a public hearing concerning the projected interim storage facility at Ahaus was not mandatory. It was held, however, for political reasons in order to assure public acceptance of the project. The word protocol of the controversial discussions is presented in three volumes. The discussions covered the whole spectrum of the 15-year-old nuclear controversy in West Germany including the effects of low radiation doses and nuclear waste management. (HP)

  13. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  14. Analysis of an Integrated Carbon Cycle for Storage of renewables

    OpenAIRE

    Martin Streibel; Natalie Christine Nakaten; Thomas Kempka; Michael Kühn

    2013-01-01

    Excess electricity from wind and sun can be transformed into hydrogen and with carbon dioxide subsequently into methane. When needed, electricity is regained in a combined cycle plant burning the methane. To close the carbon cycle carbon dioxide is captured on site. Two subsurface storage formations for both gases are required for the technology. Our regional showcase of two German cities, Potsdam and Brandenburg/Havel, demonstrates that about 30% of their electricity demand can be provided i...

  15. Global congruence of carbon storage and biodiversity in terrestrial ecosystems

    OpenAIRE

    Strassburg, BBN; Kelly, A; Balmford, A.; Davies, RG; Gibbs, HK; Lovett, A.; Miles, L; Orme, CDL; Price, J.; Turner, RK; Rodrigues, ASL

    2010-01-01

    Deforestation is a main driver of climate change and biodiversity loss. An incentive mechanism to reduce emissions from deforestation and forest degradation (REDD) is being negotiated under the United Nations Framework Convention on Climate Change. Here we use the best available global data sets on terrestrial biodiversity and carbon storage to map and investigate potential synergies between carbon and biodiversity-oriented conservation. A strong association (rS= 0.82) between carbon stocks a...

  16. Annual Report: Carbon Storage (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Strazisar, Brian; Guthrie, George

    2013-11-07

    Activities include laboratory experimentation, field work, and numerical modeling. The work is divided into five theme areas (or first level tasks) that each address a key research need: Flow Properties of Reservoirs and Seals, Fundamental Processes and Properties, Estimates of Storage Potential, Verifying Storage Performance, and Geospatial Data Resources. The project also includes a project management effort which coordinates the activities of all the research teams.

  17. Mechanisms of soil carbon storage in experimental grasslands

    Science.gov (United States)

    Steinbeiss, S.; Temperton, V. M.; Gleixner, G.

    2007-10-01

    We investigated the fate of root and litter derived carbon into soil organic matter and dissolved organic matter in soil profiles, in order to explain unexpected positive effects of plant diversity on carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment. In addition to the main biodiversity experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m-2 and 263 g C m-2 to 20 cm depth, while 71 g C m-2 and 393 g C m-2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 11 and 15% of soil organic carbon were derived from plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of carbon newly stored in soil, whereas with double litter this corresponds to twice the amount of stored carbon. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution and contributed to the observed carbon storage in deeper horizons.

  18. Carbon Storage in Urban Areas in the USA

    Science.gov (United States)

    Churkina, G.; Brown, D.; Keoleian, G.

    2007-12-01

    It is widely accepted that human settlements occupy a small proportion of the landmass and therefore play a relatively small role in the dynamics of the global carbon cycle. Most modeling studies focusing on the land carbon cycle use models of varying complexity to estimate carbon fluxes through forests, grasses, and croplands, but completely omit urban areas from their scope. Here, we estimate carbon storage in urban areas within the United States, defined to encompass a range of observed settlement densities, and its changes from 1950 to 2000. We show that this storage is not negligible and has been continuously increasing. We include natural- and human-related components of urban areas in our estimates. The natural component includes carbon storage in urban soil and vegetation. The human related component encompasses carbon stored long term in buildings, furniture, cars, and waste. The study suggests that urban areas should receive continued attention in efforts to accurately account for carbon uptake and storage in terrestrial systems.

  19. Wayne Interim Storage Site. Annual site environmental report, calendar year 1985. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    International Nuclear Information System (INIS)

    The monitoring program at the Wayne Interim Storage Site (WISS) measures uranium, radium, and thorium concentrations in surface water, groundwater, and sediment; radon and thoron gas concentrations in air; and external gamma radiation dose rates. Potential radiation doses to the public are also calculated. During 1985, annual average thoron concentrations at the WISS ranged from 1 to 11% of the DOE guide. Annual average radon concentrations ranged from 13 to 39% of the DOE guide. The highest measured external dose rate at the WISS was 606 mrem/y, which is about six times the natural background rate and is in an area of known contamination. The highest average annual concentration of uranium in surface water monitored in the vicinity of the WISS was 3.2% of the Derived Concentration Guide; for 232Th it was 2.2%; for 226Ra it was 0.3%; and for radium-228 it was 3.0%. In groundwater, the highest annual average concentration of uranium was 2.4% of the Derived Concentration Guide; for 232Th it was 1.4%; for 226Ra it was 0.9%; and for 228Ra it was 2.7%. While there are no concentration guides for stream sediments, the highest annual average concentration of total uranium was 2.70 pCi/g, for 232Th it was 3.78 pCi/g, for 226Ra it was 5.10 pCi/g, and for 228Ra it was 6.90 pCi/g. These concentrations are below or approximately equal to the decontamination criteria. Radon concentrations and external gamma dose rates at the site were lower than those measured in 1984. Radionuclide concentrations in surface water were equal to background levels, and groundwater concentrations were similar to 1984 levels. For sediments, insufficient data are available to permit the establishment of trends. The calculated total radiation dose to the maximally exposed individual at the WISS, considering several exposure pathways, was 7 mrem, or 7% of the DOE radiation protection standard

  20. Enhanced lithium ion storage in nanoimprinted carbon

    International Nuclear Information System (INIS)

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance

  1. Enhanced lithium ion storage in nanoimprinted carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu, E-mail: jjli@uw.edu [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195-2600 (United States); Xie, Shuhong [Faculty of Materials, Optoelectronics and Physics, and Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan (China); Liu, Xiaoyan [College of Metallurgy and Materials Engineering, and Advanced Materials for Energy Institute, Chongqing University of Science and Technology, Chongqing 401331 (China)

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  2. Weathering controls on mechanisms of carbon storage in grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  3. Carbon Capture and Storage in the CDM

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This publication assesses the policy questions as highlighted in the relevant COP/MOP 2 decision, particularly leaks (or seepage) and permanence for geological storage, project boundaries and liability issues, and leakage, as well as a few others raised by some Parties. Since any emissions or leaks during the separation, capture and transport phases would occur during the crediting period of the project (and would therefore be accounted for as project emissions), the paper focuses its analyses for leaks and liability on storage, as it is in this part of the CCS process that long-term leaks could occur.

  4. Nanowire modified carbon fibers for enhanced electrical energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  5. Does the radiation from the interim storage in Gorleben affect the sex ratio of newborn children?; Beeinflusst die Strahlung aus dem Zwischenlager in Gorleben das Geschlechterverhaeltnis von Neugeborenen?

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, H.W.; Schulze, H.; Wede, S. [GNS Gesellschaft fuer Nuklear-Service mbH, Gorleben (Germany); Mueller, S. [Studsvik GmbH, Pforzheim (Germany)

    2015-07-01

    In the professional world but especially in public, the question is discussed whether ionizing radiation from nuclear facilities has a significant impact on the secondary sex ratio of newborn children in the vicinity of the plants. This issue is of exceptional importance in the region around Gorleben, where the opposition to nuclear facilities and activities for decades is particularly strong. At the site borders of the interim storage facility (TBL-G) of GNS the effective individual dose is about 0.2 mSv per year, mainly caused by neutron irradiation from 108 casks with high-level radioactive waste from reprocessing. In the surrounding villages there is no radiation measurable. Statistical studies allegedly have shown evidence that in some villages in the area and during certain periods, proportionately fewer girls were born in comparison to the average for the Federal Republic of Germany. Based on these purely statistical results henceforward was also alleged that neutron-induced secondary effects such as activation or secondary gamma radiation would be responsible for it. Monte Carlo calculations and special measurements yielded values of the dose at the plant border for activation products less than E-04 mSv/a and for secondary gamma radiation of about E-03 mSv/a. These results indicate that the ionizing radiation from the Gorleben interim storage facility cannot be held accountable for shifts of the secondary sex ratio.

  6. Spatial Characteristics of Soil Organic Carbon Storage in China's Croplands

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-Qiang; YU Gui-Rui; ZHAO Qian-Jun; NIU Dong; CHEN Qing-Mei; WU Zhi-Feng

    2005-01-01

    The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and based on 1 546typical cropland soil profiles, the paddy field and dryland SOC storage among six regions of China were systematically quantified to characterize the spatial pattern of cropland SOC storage in China and to examine the relationship between mean annual temperature, precipitation, soil texture features and SOC content. In all regions, paddy soils had higher SOC storage than dryland soils, and cropland SOC content was the highest in Southwest China. Climate controlled the spatial distribution of SOC in both paddy and dryland soils, with SOC storage increasing with increasing precipitation and decreasing with increasing temperature.

  7. On carbon dioxide storage based on biomineralization strategies.

    Science.gov (United States)

    Lee, Seung-Woo; Park, Seung-Bin; Jeong, Soon-Kwan; Lim, Kyoung-Soo; Lee, Si-Hyun; Trachtenberg, Michael C

    2010-06-01

    This study focuses on the separation and storage of the global warming greenhouse gas CO(2), and the use of natural biocatalysts in the development of technologies to improve CO(2) storage rates and provide new methods for CO(2) capture. Carbonic anhydrase (CA) has recently been used as a biocatalyst to sequester CO(2) through the conversion of CO(2) to HCO(-) in the mineralization of CaCO(3). Biomimetic CaCO(3) mineralization for carbon capture and storage offers potential as a stable CO(2) capture technology. In this report, we review recent developments in this field and assess disadvantages and improvements in the use of CA in industrial applications. We discuss the contribution that understanding of mechanisms of CO(2) conversion to CO(3)(-) in the formation and regeneration of bivalve shells will make to developments in biomimetic CO(2) storage. PMID:20144548

  8. Feasibility of Distributed Carbon Capture and Storage (DCCS)

    International Nuclear Information System (INIS)

    Research highlights: → The concept of Distributed Carbon Capture and Storage (DCCS) is proposed. → Carbon Storage in a Shallow Aquifer (CSSA) is studied as a technique for the DCCS. → The CSSA is estimated to allow less than Yen 3000/t-CO2 of the storage cost. → The CSSA is estimated to allow more than 20-years of the injection period. → The required energy for the CSSA is less than 10 % of the energy generated by the CO2 sources. -- Abstract: The concept of Distributed Carbon Capture and Storage (DCCS) for small scale CO2 sources, such as Distributed Energy Systems (DES), is proposed, and Carbon Storage in a Shallow Aquifer (CSSA), in which CO2 is stored in shallow aquifers as aqueous solution, is also studied as a technique for the DCCS. A conceptual design for the CSSA have been performed and the fundamental calculations in this study show that the dissolution capacity, that is, the amount of CO2 which can be dissolved into unit volume of water in a shallow aquifer is 10-35 kg-CO2/m3 in the range of the storage depth of 100-500 m. The dissolution capacity of the CSSA is less than 10% of the possible amount of CO2 stored by the ordinary CCS technique in which CO2 is stored in the supercritical condition. However, the CSSA is estimated to allow the CO2 storage at less than Yen 3000/t-CO2 of the storage cost and more than 20-years of the injection period for CO2 sources of 1800-39,000 t-CO2/year, which correspond to the CO2 emissions from 0.1 to 10 MW DES. The required energy for the CSSA is estimated to be less than 10% of the energy generated by the CO2 sources.

  9. Carbon Capture and Storage: Model Regulatory Framework

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Energy-related carbon dioxide (CO2) emissions are set to double by 2050 unless decisive action is taken. International Energy Agency (IEA) analysis demonstrates, however, that it is possible -- in the same timeframe to 2050 -- to reduce projected greenhouse-gas emissions to half 2005 levels, but this will require an energy technology revolution, involving the aggressive deployment of a portfolio of low-carbon energy technologies.

  10. Optimal Carbon Capture and Storage Policies

    OpenAIRE

    Ayong Le Kama, Alain; Mouez FODHA; Lafforgue, Gilles

    2011-01-01

    Following the IPCC's report (2005), which recommended the development and the use of carbon capture and sequestration (CCS) technologies in order to achieve the environmental goals, defined by the Kyoto Protocol, the issue addressed in this paper concerns the optimal strategy regarding the long-term use of CCS technologies. The aim of this paper is to study the optimal carbon capture and sequestration policy. The CCS technologies has motivated a number of empirical studies, via complex int...

  11. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  12. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li+/Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient dLi decreases with an increase of Li ion concentration in carbon nanotube host

  13. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available This review summarizes recent studies on carbon nanotube (CNT fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including low energy conversion efficiency and low stability and future direction of the energy fiber have been finally summarized in this paper.

  14. Actual Situation and Further Development of Interim Storage of Spent Nuclear Fuel (SNF) and Highly Active Waste (HAW) from the View of the Competent Authority in the Field of section 6

    International Nuclear Information System (INIS)

    According to the German atomic law the storage of nuclear material has to be licensed following section 6 by the competent authority in this field, which is the Federal Office for Radiation Protection. Interim storage in its actual form started in 2002 in the interim storage facility next to the NPP Lingen. Since this time each NPP erected its own storage facilities and three central storage facilities have been built. The spent nuclear fuel (SNF) and the vitrified high level waste (HAW) will be stored there until final disposal. The time span from now on to the point of opening of a final disposal facility shall be presented from a regulators point of view, divided into different phase which could spread from years to decades. Special attention shall be drawn on the different aspects influencing the licensing process and its duration at the moment and in future including the capabilities of the competent authority. (authors)

  15. Carbon coated textiles for flexible energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Kristy [Drexel Univ., Philadelphia, PA (United States). Fashion, Product, Design and Merchandising Dept., A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Perez, Carlos R. [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; McDonough, John K. [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Presser, Volker [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Heon, Min [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Dion, Genevieve [Drexel Univ., Philadelphia, PA (United States). Fashion, Product, Design and Merchandising Dept.; Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering

    2011-10-20

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25 A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².

  16. Global Ocean Storage of Anthropogenic Carbon (GOSAC)

    Energy Technology Data Exchange (ETDEWEB)

    Orr, J C

    2002-04-02

    GOSAC was an EC-funded project (1998-2001) focused on improving the predictive capacity and accelerating development of global-scale, three-dimensional, ocean carbon-cycle models by means of standardized model evaluation and model intercomparison. Through the EC Environment and Climate Programme, GOSAC supported the participation of seven European modeling groups in the second phase of the larger international effort OCMIP (the Ocean Carbon-Cycle Model Intercomparison Project). OCMIP included model comparison and validation for both CO{sub 2} and other ocean circulation and biogeochemical tracers. Beyond the international OCMIP effort, GOSAC also supported the same EC ocean carbon cycle modeling groups to make simulations to evaluate the efficiency of purposeful sequestration of CO{sub 2} in the ocean. Such sequestration, below the thermocline has been proposed as a strategy to help mitigate the increase of CO{sub 2} in the atmosphere. Some technical and scientific highlights of GOSAC are given.

  17. Carbon compound used in hydrogen storage

    International Nuclear Information System (INIS)

    In the present work it is studied the activated carbon of mineral origin for the sorption of hydrogen. The carbon decreased of particle size by means of the one alloyed mechanical. The time of mill was of 10 hours. The characterization one carries out by scanning electron microscopy and X-ray diffraction. The hydrogen sipped in the carbon material it was determined using the Thermal gravimetric method (TGA). The conditions of hydrogenation went at 10 atm of pressure and ambient temperature during 18 hours. They were also carried out absorption/desorption cycles of hydrogen in the same one system of thermal gravimetric analysis. The results showed percentages of sorption of 2% approximately in the cycles carried out in the system TGA and of 4.5% in weight of hydrogen at pressure of 10 atmospheres and ambient temperature during 18 hours. (Author)

  18. Carbon Capture and Storage: Legal and Regulatory Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The International Energy Agency (IEA) considers carbon capture and storage (CCS) a crucial part of worldwide efforts to limit global warming by reducing greenhouse-gas emissions. The IEA has estimated that the broad deployment of low-carbon energy technologies could reduce projected 2050 emissions to half 2005 levels -- and that CCS could contribute about one-fifth of those reductions. Reaching that goal, however, would require around 100 CCS projects to be implemented by 2020 and over 3000 by 2050.

  19. Carbon-based electrocatalysts for advanced energy conversion and storage

    OpenAIRE

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER ...

  20. Stakeholder assessments of Carbon Capture and Storage in the UK

    OpenAIRE

    Gough, Clair Amanda

    2014-01-01

    This thesis describes the development of methods and approaches aimed at bringing together diverse knowledge and stakeholder values as part of a broader Integrated Assessment (IA) process applied to the Carbon Capture and Storage (CCS) family of technologies. IA brings together knowledge from a variety of disciplines and stakeholders to provide policy-relevant insights in complex and uncertain contexts. CCS is a climate change mitigation approach which removes carbon dioxide from fossil fuel ...

  1. Impacts of Geological Variability on Carbon Storage Potential

    Science.gov (United States)

    Eccles, Jordan Kaelin

    The changes to the environment caused by anthropogenic climate change pose major challenges for energy production in the next century. Carbon Capture and Storage (CCS) is a group of technologies that would permit the continued use of carbon-intense fuels such as coal for energy production while avoiding further impact on the global climate system. The mechanism most often proposed for storage is injection of CO2 below the surface of the Earth in geological media, with the most promising option for CO2 reservoirs being deep saline aquifers (DSA's). Unlike oil and gas reservoirs, deep saline aquifers are poorly characterized and the variability in their properties is large enough to have a high impact on the overall physical and economic viability of CCS. Storage in saline aquifers is likely to be a very high-capacity resource, but its economic viability is almost unknown. We consider the impact of geological variability on the total viability of the CO 2 storage system from several perspectives. First, we examine the theoretical range of costs of storage by coupling a physical and economic model of CO 2 storage with a range of possible geological settings. With the relevant properties of rock extending over several orders of magnitude, it is not surprising that we find costs and storage potential ranging over several orders of magnitude. Second, we use georeferenced data to evaluate the spatial distribution of cost and capacity. When paired together to build a marginal abatement cost curve (MACC), this cost and capacity data indicates that low cost and high capacity are collocated; storage in these promising areas is likely to be quite viable but may not be available to all CO2 sources. However, when we continue to explore the impact of geological variability on realistic, commercial-scale site sizes by invoking capacity and pressure management constraints, we find that the distribution costs and footprints of these sites may be prohibitively high. The combination

  2. Storage of hydrogen on single-walled carbon nanotubes and other carbon structures

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, E.; Chahine, R.; Benard, P.; Cossement, D.; Lafi, L.; Melancon, E.; Bose, T.K. [Institut de recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, G9A 5H7, Trois-Rivieres, Quebec (Canada); Desilets, S. [R and D pour la defense Canada - Valcartier, 2459, boulevard Pie-XI Nord, G3J 1X5, Val-Belair, Quebec (Canada)

    2004-04-01

    The sorption of hydrogen on carbon structures and nanostructures offers a way to reduce the storage pressure of hydrogen with respect to compression storage while achieving interesting gravimetric storage densities. The most readily available carbon structures, activated carbons, can achieve reproducible, high gravimetric storage densities under cryogenic operating conditions: 5-6% at 35 bar and 77 K, in excess of the normal density that would be present in the pore volume under compression at the same temperature and pressure. We discuss and compare the adsorption of hydrogen on high specific surface activated carbons, nanofibres and nanotubes from experimental and theoretical considerations. In particular, we present gravimetric and volumetric hydrogen sorption measurements on single-walled carbon nanotubes (SWNTs) at (1 bar, 77 K) and (1 bar, 295 K) within the context of our ongoing work on the storage of hydrogen on activated carbon and carbon nanostructures. BET surface area and XRD characterization results on SWNTs are also presented. The experiments were performed on as received, chemically treated and metal-incorporated SWNT samples. Hydrogen sorption capacities measured on treated samples ranged from {proportional_to}0 to about 1 wt. % at 1 bar and 295 K and reached about 4 wt. % at 1 bar and 77 K. Our results show that under certain conditions, SWNTs have better hydrogen uptake performance than large surface area activated carbons. (orig.)

  3. Key issues from the French R and D project on the long-term evolution of the spent nuclear fuel in conditions of interim dry storage

    International Nuclear Information System (INIS)

    Full text: In France, the interim dry storage (long-term -100 y's- or classical -50 y.) of spent nuclear fuel is studied in the framework of the 1991 Law for the management of spent fuel in the back-end of the fuel cycle. Indeed, only two third of the total annual budget of spent fuel is currently reprocessed in order to balance the Pu annual budget. The other third is stored before further decision concerning its ultimate fate. Several engineering projects are on going in France on long-term storage and lead to address operational questions to R and D. These questions concern the issue of the retrievability of the spent fuel waste package at the end of the storage stage, the monitoring of the fuel packages during the storage and the applicability of potential re-conditioning process. Moreover, the evolution of the radionuclides source term is a major operational question for the safety assessment of the dry storage. The R and D PRECCI project is performed in CEA with the support of French utilities EDF and FRAMATOME. Some of its objectives are to qualify and quantify the long-term evolution of the spent nuclear fuel (SNF) under conditions of dry storage. This paper will present a synthetic status of the PRECCI project concerning: (1) The chemical and physical states evolution of the SNF in a closed system (without external exchange of matter) (2) Determination of the long-term cladding mechanical properties after irradiation (3) Potential evolution of the SNF in contact with air. The major outcomes and consequences on the potential design of long-term storage facilities will be enlightened. (1) Chemical and physical states of the SNF in a closed system may evolve due to radioactive alpha decays and temperature history, even without any contact with the external medium. No microscopic swelling due to irradiation damage or chemical evolution of the spent fuel is expected during dry storage in a closed system. Therefore, the evolution of the fuel microstructure and

  4. The Economics of Carbon Capture and Storage: An Update

    OpenAIRE

    Jepma, Catrinus; Hauck, Dominic

    2011-01-01

    This article surveys recent studies on costs, potential barriers to implementation and marketability of Carbon Dioxide Capture and Storage (CCS). Moreover, it discusses potential incentive schemes to push CCS into the market and, finally, provides an overview over cost types and forecasting uncertainties associated with these.

  5. Unravelling the Contested Nature of Carbon Capture and Storage

    NARCIS (Netherlands)

    van Egmond, Sander

    2016-01-01

    Our climate is changing. Carbon Capture and Storage (CCS) has been identified as an important technology to reduce CO2 emissions in order to avoid dangerous climate change. The implementation of CCS is however slow and CCS is publicly contested. This thesis focuses on the debate on this technology.

  6. Carbon foams for energy storage devices

    Science.gov (United States)

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1996-06-25

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g-1000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  7. Low pressure storage of natural gas on activated carbon

    Science.gov (United States)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  8. Doping of carbon foams for use in energy storage devices

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  9. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  10. Carbon dioxide:A new material for energy storage

    Institute of Scientific and Technical Information of China (English)

    Jacques Amouroux; Paul Siffert; Jean Pierre Massué; Simeon Cavadias; Béatriz Trujillo; Koji Hashimoto; Phillip Rutberg; Sergey Dresvin; Xianhong Wang

    2014-01-01

    Though carbon dioxide is the main green house gas due to burning of fossil resource or miscellaneous chemical processes, we propose here that carbon dioxide be a new material for energy storage. Since it can be the key to find the solution for three critical issues facing the world: food ecosystems, the greenhouse issue and energy storage. We propose to identify the carbon recovery through a circular industrial revolution in the first part, and in the second part we present the starting way of three business plants to do that from industrial examples. By pointing out all the economic constraints and the hidden competitions between energy, water and food, we try to qualify the phrase “sustainable development” and open the way of a huge circular economy.

  11. Electron and phonon properties and gas storage in carbon honeycomb

    CERN Document Server

    Gao, Yan; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-01-01

    A new kind of three-dimensional carbon allotropes, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks are constructed, and their electronic and phonon properties are calculated by using first principles methods. All networks are porous metal with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channels is originated from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channels is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m/s. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capa...

  12. Valuing the European 'coastal blue carbon' storage benefit.

    Science.gov (United States)

    Luisetti, T; Jackson, E L; Turner, R K

    2013-06-15

    'Blue' carbon ecosystems are important carbon storage providers that are currently not protected by any international mechanism, such as REDD. This study aims to contribute to raising awareness in the political domain about the 'blue' carbon issue. This analysis also provides guidance in terms of how to value stock and flows of ecosystem services adding to the debate begun by the Costanza et al. (1997) paper in Nature. Through scenario analysis we assess how human welfare benefits will be affected by changes in the European coastal blue carbon stock provision. The current extent of European coastal blue carbon has an accounting stock value of about US$180 million. If EU Environmental Protection Directives continue to be implemented and effectively enforced, society will gain an appreciating asset over time. However, a future policy reversal resulting in extensive ecosystem loss could mean economic value losses as high as US$1 billion by 2060. PMID:23623654

  13. Energy Saving High-Capacity Moderate Pressure Carbon Dioxide Storage System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach to high-pressure carbon dioxide storage will directly address the challenges associated with storage of compressed carbon dioxide - the need to reduce...

  14. Forest management techniques for carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Takao [Forestry and Forest Products Research Inst., Tsukuba, Ibaraki (Japan)

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  15. Proposed Plan for Interim Remedial Action and Dangerous Waste Modified Closure of the Treatment, Storage, and Disposal Units and Associated Sites in the 100-NR-1 Operable Unit

    International Nuclear Information System (INIS)

    This Proposed Plan identifies the preferred alternatives for interim remedial action and dangerous waste unit modified closure and corrective action of the treatment, storage, and disposal (TSD) units and their associated sites in the 100-NR-1 Operable Unit, located at the Hanford Site (Figure S-1). The TSD units consist of contaminated soils, structures, and pipelines. There are four Resource Conservation and Recovery Act of 1976 (RCRA) TSD units: the 116-N-1 Crib and Trench, the 116-N-3 Crib and Trench, the 120-N-1 Percolation Pond, and the 120-N-2 Surface Impoundment. There are two associated sites: the UPR-100-N-31 unplanned release (UPR) spill site and the 100-N-58 South Settling Pond. This Proposed Plan also summarizes the other remedial alternatives analyzed for remedial action. The intent of the remedial action is to address contaminated areas that pose potential threats to human health and the environment

  16. Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    Science.gov (United States)

    Gilroy, James J; Woodcock, Paul; Edwards, Felicity A; Wheeler, Charlotte; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2014-07-01

    With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape ('land-sharing' agriculture) or a few large contiguous blocks alongside intensive farmland ('land-sparing' agriculture). In this study, we are the first to integrate carbon storage alongside multi-taxa biodiversity assessments to compare land-sparing and land-sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó-Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land-sparing strategies would be more beneficial for both carbon storage and biodiversity than land-sharing strategies across a range of production levels. Biodiversity benefits of land-sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land-sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem

  17. Carbon Capture and Storage Legal and Regulatory Review. Edition 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The International Energy Agency (IEA) considers carbon capture and storage (CCS) a crucial part of worldwide efforts to limit global warming by reducing greenhouse-gas emissions. The IEA estimates that emissions can be reduced to a level consistent with a 2°C global temperature increase through the broad deployment of low-carbon energy technologies – and that CCS would contribute about one-fifth of emission reductions in this scenario. Achieving this level of deployment will require that regulatory frameworks – or rather a lack thereof – do not unnecessarily impede environmentally safe demonstration and deployment of CCS, so in October 2010 the IEA launched the IEA Carbon Capture and Storage Legal and Regulatory Review. The CCS Review is a regular review of CCS regulatory progress worldwide. Produced annually, it collates contributions by national and regional governments, as well as leading organisations engaged in CCS regulatory activities, to provide a knowledge-sharing forum to support CCS framework development. Each two page contribution provides a short summary of recent and anticipated CCS regulatory developments and highlights a particular, pre-nominated regulatory theme. To introduce each edition, the IEA provides a brief analysis of key advances and trends, based on the contributions submitted. The theme for this third edition is stakeholder engagement in the development of CO2 storage projects. Other issues addressed include: regulating CO2-EOR, CCS and CO2-EOR for storage; CCS incentive policy; key, substantive issues being addressed by jurisdictions taking steps to finalise CCS regulatory framework development; and CCS legal and regulatory developments in the context of the Clean Energy Ministerial Carbon Capture, Use and Storage Action Group.

  18. Moving the largest capacity PWR dual-purpose cask in the world from Goesgen NPP to the Zwilag interim storage site

    International Nuclear Information System (INIS)

    The Swiss Goesgen nuclear power plant (NPP) has decided to use two different methods for the disposal of its spent fuel. (1) To reprocess some of its spent fuel in dedicated facilities. Some of the vitrified waste from the reprocessing will be shipped back to Switzerland using the new COGEMA Logistics, TN81 cask. (2) To ship the other part of its spent fuel to the central interim storage facility of Zwilag (Switzerland) using a COGEMA Logistics dual-purpose TN24G cask. The TN24G is the heaviest and largest dual-purpose cask manufactured so far by COGEMA Logistics in Europe. It is intended for the transport and storage of 37 pressurised water-reactor (PWR) spent fuel assemblies. Four casks were delivered by COGEMA Logistics to Goesgen NPP. Three transports of loaded TN24G casks between Goesgen and Zwilag were successfully performed at the beginning of 2002 with the new COGEMA Logistics Q76 wagon specifically designed to transport heavy casks. This article describes the procedure of operations and shipments for the first TN24G casks up to storage at Zwilag. The fourth transport of loaded TN24G was due to happen in October 2002. The TN24G cask, as part of the TN24 casks family, proved to be a very efficient solution for the KKG spent fuel management. (author)

  19. Monitoring of Nuclear Fuel Leak Tightness in Condition of Slovak Wet Interim Spent Fuel Storage Facility and Considerations about Final Disposal. Annex X

    International Nuclear Information System (INIS)

    The Interim Spent Fuel Storage Facility (ISFSF) in Jaslovské Bohunice is an important component of the spent nuclear fuel management system. The facility has been used for storage purposes since 1987. ISFSF is a nuclear facility providing for a safe storage of the spent nuclear fuel from WWER-440 reactors for the time period of 50 years before the fuel is further processed in a reprocessing plant or appropriately disposed of. It is necessary to keep the concentration of fission products in storage pools on the low level for assurance of acceptable activity of the coolant. This can be done with periodical monitoring of the fuel elements condition, defects identification and closing of leaking assemblies or fuel elements respectively, in special hermetic caskets. This was the main reason for including not only “Sipping in pool” system, but also inspection stand “SVYP-440”, into the ISFSF operation. System “Sipping in pool” was built and implemented in the storage facility operation in 1999 and since then, the important results have been measured. The system increases the temperature of the fuel assembly (by external heaters), which cause the increasing of the pressure inside fuel elements. If there is any leakage, increased pressure will cause higher fission product release. By measurement of released activity, the assembly tightness is determined. Since December 2006, the new stand for WWER-440 fuel assemblies’ inspection “SVYP-440” is in operation. By using several modules, it has ability to open and take the fuel assembly apart, so it can examine all fuel elements. If the defect is found, fuel element with defect is closed into the special hermetic case

  20. Family Matters: Sphagnaceae Versus Cyperaceae in Peatland Carbon Storage

    Science.gov (United States)

    Nichols, J. E.; Peteet, D. M.; Gemma, M.; Fedio, C.; Pavia, F. J.

    2013-12-01

    Peatlands are a vitally important part of the Earth's carbon cycle. What is unclear, however, is how peatland type influences the rate of carbon accumulation, the fate of that accumulated carbon in the short and long term, and the role of methane in the overall carbon cycle. Studies of modern peatlands have shown that fens (dominated by Cyperaceae) may accumulate peat more quickly than bogs (dominated by Sphagnaceae), but in many downcore studies, bog peat may have higher apparent accumulation rates. These generalizations, however, do not apply in all locations, climates, or times throughout the Holocene. To address this conundrum, we present data from several peatland locations throughout the circum-Arctic to determine what types of environments and climate regimes are effective for the long-term storage of carbon, fens or bogs, and what climate conditions promote the development of each peatland type. Our sites include peatlands in the Arctic and boreal regions of North America and Asia. We use a multiproxy approach to directly compare the apparent carbon accumulation rate and methane-recycling rate with peatland type and specific hydroclimatic parameters. To reconstruct peatland type, we use macrofossil analysis. We use compound-specific hydrogen isotope ratios of leaf-wax biomarkers to assess hydrological parameters such as growing season evaporation and seasonality of precipitation. We use the carbon isotope ratios of these same compounds to reconstruct the rate of methane recycling. By reconstructing peat type, carbon cycle and hydroclimatic parameters in the same samples, we most effectively compare their mutual influence.

  1. Synthesis, characterization and hydrogen storage studies on porous carbon

    International Nuclear Information System (INIS)

    Porous carbon sample has been prepared, using zeolite-Y as template followed by annealing at 800°C, with view to estimate the extent of hydrogen storage by the sample. Based on XRD, 13C MAS NMR and Raman spectroscopic studies it is confirmed that the porous Carbon sample contains only sp2 hybridized carbon. The hydrogen sorption isotherms have been recorded for the sample at 273, 223K and 123K and the maximum hydrogen absorption capacity is found to be 1.47wt% at 123K. The interaction energy of hydrogen with the carbon framework was determined to be ∼ 10 kJ mol−1at lower hydrogen uptake and gradually decreases with increase in hydrogen loading

  2. Synthesis, characterization and hydrogen storage studies on porous carbon

    Science.gov (United States)

    Ruz, Priyanka; Banerjee, Seemita; Pandey, M.; Sudarsan, V.

    2015-06-01

    Porous carbon sample has been prepared, using zeolite-Y as template followed by annealing at 800°C, with view to estimate the extent of hydrogen storage by the sample. Based on XRD, 13C MAS NMR and Raman spectroscopic studies it is confirmed that the porous Carbon sample contains only sp2 hybridized carbon. The hydrogen sorption isotherms have been recorded for the sample at 273, 223K and 123K and the maximum hydrogen absorption capacity is found to be 1.47wt% at 123K. The interaction energy of hydrogen with the carbon framework was determined to be ˜ 10 kJ mol-1at lower hydrogen uptake and gradually decreases with increase in hydrogen loading.

  3. Carbon capture and storage: steering between necessity and realism; Le captage and storage du carbone, entre necessite and realisme

    Energy Technology Data Exchange (ETDEWEB)

    Finon, D. [CNRS, CIRED, Nogent-sur-Marne (France); Damian, M. [Universite Pierre Mendes-France, LEPII, Grenoble (France)

    2011-01-15

    Carbon sequestration is the option that will make possible to keep fossil energies in the future energy mix. This technology could be used for fixed carbon emission sources like fossil power plants or oil refineries or steel works or cement factories. Today 3 technologies to capture carbon have to be considered: post-combustion, pre-combustion and oxy-combustion, these technologies are expected to be used equally. The second step is the construction of a network of gas pipelines to transport CO{sub 2} to the storage place. The last step is the storage that can be done in ancient oil or natural gas fields or in deep coal layers on in deep salt aquifer. The latter being the most promising. With a carbon emission price comprised between 30 and 50 euros a tonne, carbon sequestration is expected to be economically competitive around 2030 under the condition that the feedback experience gained from the first industrial installations on a large scale have made investment costs drop sharply. Because of its need for important initial investment carbon sequestration appears to be as capitalistic as nuclear energy and will require public funding. Demonstration programs have been launched in Europe, United-States, Canada and Australia. (A.C.)

  4. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  5. Scale-up activation of carbon fibres for hydrogen storage

    OpenAIRE

    Kunowsky, Mirko; Marco Lozar, Juan Pablo; Cazorla Amorós, Diego; Linares Solano, Ángel

    2009-01-01

    In a previous study, we investigated, at a laboratory scale, the chemical activation of two different carbon fibres (CF), their porosity characterization, and their optimization for hydrogen storage [1]. In the present work, this study is extended to: (i) a larger range of KOH activated carbon fibres, (ii) a larger range of hydrogen adsorption measurements at different temperatures and pressures (i.e. at room temperature, up to 20 MPa, and at 77 K, up to 4 MPa), and (iii) a scaling-up activat...

  6. Accounting Carbon Storage in Decaying Root Systems of Harvested Forests

    OpenAIRE

    Wang, G. Geoff; Van Lear, David H.; Hu, Huifeng; Kapeluck, Peter R.

    2011-01-01

    Decaying root systems of harvested trees can be a significant component of belowground carbon storage, especially in intensively managed forests where harvest occurs repeatedly in relatively short rotations. Based on destructive sampling of root systems of harvested loblolly pine trees, we estimated that root systems contained about 32% (17.2 Mg ha−1) at the time of harvest, and about 13% (6.1 Mg ha−1) of the soil organic carbon 10 years later. Based on the published roundwood output data, we...

  7. Carbon Capture and Storage: Progress and Next Steps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Two years after the G8 leaders commitment to the broad deployment of carbon capture and storage (CCS) by 2020, significant progress has been made towards commercialisation of CCS technologies. Yet the 2008 Hokkaido G8 recommendation to launch 20 large-scale CCS demonstration projects by 2010 remains a challenge and will require that governments and industry accelerate the pace toward achieving this critical goal. This is one of the main findings of a new report by the International Energy Agency (IEA), the Carbon Sequestration Leadership Forum (CSLF), and the Global CCS Institute, to be presented to G8 leaders at their June Summit in Muskoka, Canada.

  8. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  9. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  10. Stakeholder attitudes on carbon capture and storage -- An international comparison

    OpenAIRE

    Johnsson, Filip; Reiner, David; Itaoka, Kenshi; Herzog, Howard J.

    2009-01-01

    This paper presents results from a survey on stakeholder attitudes towards Carbon Capture and Storage (CCS). The survey is the first to make a global comparison across three major regions; USA, Japan, and Europe. The 30-question survey targeted individuals working at stakeholder organizations that seek to shape, and will need to respond to, policy on CCS, including electric utilities, oil & gas companies, CO2-intensive industries and non-governmental organizations (NGOs). The results show ...

  11. Determining the Success of Carbon Capture and Storage Projects

    OpenAIRE

    Thronicker, Dominique; Ian A. Lange

    2015-01-01

    Carbon Capture and Storage (CCS) is regarded as one of the most important technologies to mitigate climate change while providing fossil-fuel based energy security. During the past decade, projects in support of the development and deployment of the technology have been initiated across the globe. However, a considerable number of these projects have later been put on hold or cancelled. Currently, there is little understanding of what characteristics may have led to these undesirable outcomes...

  12. Hydrogen Storage in Boron Nitride and Carbon Nanomaterials

    Directory of Open Access Journals (Sweden)

    Takeo Oku

    2014-12-01

    Full Text Available Boron nitride (BN nanomaterials were synthesized from LaB6 and Pd/boron powder, and the hydrogen storage was investigated by differential thermogravimetric analysis, which showed possibility of hydrogen storage of 1–3 wt%. The hydrogen gas storage in BN and carbon (C clusters was also investigated by molecular orbital calculations, which indicated possible hydrogen storage of 6.5 and 4.9 wt%, respectively. Chemisorption calculation was also carried out for B24N24 cluster with changing endohedral elements in BN cluster to compare the bonding energy at nitrogen and boron, which showed that Li is a suitable element for hydrogenation to the BN cluster. The BN cluster materials would store H2 molecule easier than carbon fullerene materials, and its stability for high temperature would be good. Molecular dynamics calculations showed that a H2 molecule remains stable in a C60 cage at 298 K and 0.1 MPa, and that pressures over 5 MPa are needed to store H2 molecules in the C60 cage.

  13. Federal Constitutional Court decision of January 26, 1988 - 1 BvR 1561/82: Construction permit, preliminary decision of a specialized court, proviso of legality, information to the public, protective obligations of the legislator, subsidiary principle, constitutional complaint, provisional legal protection, interim storage

    International Nuclear Information System (INIS)

    The legislators obligation to protect the legal objects defined in Article 2, (2), 1 of the Constitution does not mean that private external interim storage facilities may be built only by an explicit permit by the legislator. The principle of the reservation of the law bunds the legislator to make all essential decisions in the area of exercising the constitutional rights. The licensing of interim storage of spent fuel elements by the legislator, however, follows from the fact that interim storage is a necessary consequence of the operation of nuclear power plants which is permitted by the legislator. (orig.)

  14. Carbon dioxide storage capacity in gas shale reservoirs

    International Nuclear Information System (INIS)

    As the commercial success of shale gas exploitation in USA, there also amount of water resource depleted and some potential environmental problems exist. According to the low pore pressure, low porosity, low permeability characteristic of shale gas reservoir, and the successful experience of CO2 sequestration and enhanced methane recovery in the unminable coalbed, incorporating the differential adsorption capacity of CO2 and CH4 in shale, the injection technology of CO2 into shale gas reservoir for storage and enhancing shale gas recovery was pro- posed. Then the technology, economic and safety feasibility of this solution was analyzed. The result suggested that the shales adsorb more carbon dioxide than methane at reservoir conditions, the methane can be displaced by carbon dioxide injection and enhanced shale gas recovery could be achieved. A model for calculation of CO2 storage capacity was development, the preliminary estimate of the CO2 storage potential was 2.11∼4.32 times of the shale gas. So Injection of carbon di- oxide into shale gas reservoir is a promising technology which has the potential to enhance shale gas recovery, while simultaneously sequestering amount of CO2. (authors)

  15. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    Science.gov (United States)

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  16. Carbon Capture and Storage (CCS): Overview, Developments, and Challenges

    Science.gov (United States)

    Busch, Andreas; Amann, Alexandra; Kronimus, Alexander; Kühn, Michael

    2010-05-01

    Carbon dioxide capture and storage (CCS) is a technology that will allow the continued combustion of fossil fuels (coal, oil, gas) for e.g. power generation, transportation and industrial processes for the next decades. It therefore facilitates to bridge to a more renewable energy dominated world, enhances the stability and security of energy systems and at the same time reduces global carbon emissions as manifested by many western countries. Geological media suitable for CO2 storage are mainly saline aquifers due to the large storage volumes associated with them, but also depleted oil and gas reservoirs or deep unminable coal beds. Lately, CO2 storage into mafic- to ultramafic rocks, associated with subsequent mineral carbonation are within the R&D scope and first demonstration projects are being executed. For all these storage options various physical and chemical trapping mechanisms must reveal the necessary capacity and injectivity, and must confine the CO2 both, vertically (through an effective seal) or horizontally (through a confining geological structure). Confinement is the prime prerequisite to prevent leakage to other strata, shallow potable groundwater, soils and/or atmosphere. Underground storage of gases (e.g. CO2, H2S, CH4) in these media has been demonstrated on a commercial scale by enhanced oil recovery operations, natural gas storage and acid gas disposal. Some of the risks associated with CO2 capture and geological storage are comparable with any of these industrial activities for which extensive safety and regulatory frameworks are in place. Specific risks associated with CO2 storage relate to the operational (injection) phase and to the post-operational phase. In both phases the risks of most concern are those posed by the potential for acute or chronic CO2 leakage from the storage site. Currently there are only few operations worldwide where CO2 is injected and stored in the subsurface. Some are related to oil production enhancement but the

  17. Analysis of Dust Samples Collected from an Unused Spent Nuclear Fuel Interim Storage Container at Hope Creek, Delaware.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Enos, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently - removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers. Both wet and dry samples of the dust/salts were collected, using SaltSmart(TM) sensors and Scotch - Brite(TM) abrasive pads, respectively. The SaltSmart(TM) samples were leached and the leachate analyzed chemically to determine the composition and surface load per unit area of soluble salts present on the canister surface. The dry pad samples were analyzed by X-ray fluorescence and by scanning electron microscopy to determine dust texture and mineralogy; and by leaching and chemical analysis to deter mine soluble salt compositions. The analyses showed that the dominant particles on the canister surface were stainless steel particles, generated during manufacturing of the canister. Sparse environmentally - derived silicates and aluminosilicates were also present. Salt phases were sparse, and consisted of mostly of sulfates with rare nitrates and chlorides. On the FME covers, the dusts were mostly silicates/aluminosilicates; the soluble salts were consistent with those on the canister surface, and were dominantly sulfates. It should be noted that the FME covers were w ashed by rain prior to sampling, which had an unknown effect of the measured salt loads and compositions. Sulfate salts dominated the assemblages on the canister and FME surfaces, and in cluded Ca - SO4 , but also Na - SO4 , K - SO4 , and Na - Al - SO4 . It is likely that these salts were formed by particle - gas conversion reactions, either

  18. The Time Value of Carbon and Carbon Storage: Clarifying the terms and the policy implications of the debate

    OpenAIRE

    Marshall, Liz; Kelly, Alexia

    2010-01-01

    The question of whether there is any value to the temporary storage of carbon is fundamental to climate policy design across a number of arenas, including physical carbon discounting in greenhouse gas accounting, the relative value of temporary carbon offsets, and the value of other carbon mitigation efforts that are known to be impermanent, including deferred deforestation. Quantifying the value of temporary carbon storage depends on a number of assumptions about how the incremental impact (...

  19. Storage of hydrogen on carbons; Stockage de l'hydrogene sur les carbones

    Energy Technology Data Exchange (ETDEWEB)

    Conard, J. [Centre National de la Recherche Scientifique, CNRS-CRMD, 45 - Orleans-la-Source (France)

    2000-07-01

    The storage of hydrogen on carbons, with densities above 10% hydrogen weight, can be used in the sector of transport. However, only the physical-sorption of this gas (which is almost perfect and boils at 20 K under atmospheric pressure) cannot explain this performance. A study of the possible sites for one hydrogen, which can take very different forms, is presented, in order to better understand the rational development of this storage mode which could reach about ten weight %. (O.M.)

  20. Interim report on status of containment integrity studies for continued in-tank storage of Hanford high-level defense waste

    International Nuclear Information System (INIS)

    This interim report supplements technical information reported in RHO-LD-52, Status of Containment Integrity Studies for Continued In-Tank Storage of Hanford Defense High-Level Waste, September 1978. Only new data from the continuing laboratory programs and those studies initiated in the past year are included. Analyses of waste tank concrete integrity continued through the year. Laboratory tests to determine the effect of long-term elevated temperatures on the strength and elastic properties of concrete showed that the modulus of elasticity, compressive strength, and splitting tensile strength continued to decrease as a function of temperature; Poisson's ratio was relatively unchanged. The durability tests of reinforced concrete specimens exposed to simulated waste chemicals showed no evidence of deterioration after 6 months exposure. Temperature cycling effects after 17 cycles showed little change in the compressive strength but a large reduction in the modulus of elasticity. A structural failure mode analysis was initiated to estimate the effect of constant dead load, elevated temperature, and aggressive chemicals on tank structural integrity after 100 years of waste storage. No results are presently available. A report is scheduled for completion in early 1980. An electron microscopy analysis was initiated to determine if microstructural changes in concrete can be detected which would provide a key for correlating relatively short-term laboratory data to predicting long-term structural behavior. Documented results are scheduled for late 1980

  1. An optimized cask technology for conditioning, transportation and long term interim storage of 'End of Life' nuclear waste

    International Nuclear Information System (INIS)

    When preparing for the decommissioning of a nuclear facility, during its 'end of life' management and while performing the actual dismantling operations, one has to consider a large diversity of nuclear waste in term of types, volumes and activities. Customers are frequently faced with the obligation to undertake multiple and costly waste management operations including handling, reconditioning or re-transferring from one package to another, for example when moving from on-site storage to transportation. To address this issue, a new - highly flexible - cask system named TNR MW is being developed. This cask has a total weight of 10 T and is compliant with the 2012 IAEA regulations. It is developed on a flexible concept basis, adaptable to the various nuclear needs, including: from IP2 to B(U) / B(U)F; on-site/ international transportation; long term interim storage. Licensing and manufacturing of number of items of this TNR MW family is underway. (authors)

  2. Carbon Storage of Forest Vegetation in China and its Relationship with Climatic Factors

    International Nuclear Information System (INIS)

    Estimates of forest vegetation carbon storage in China varied due to different methods used in the assessments. In this paper, we estimated the forest vegetation carbon storage from the Fourth Forest Inventory Data (FFID) in China using a modified volume-derived method. Results showed that total carbon storage and mean carbon density of forest vegetation in China were 3.8 Pg C (about 1.1% of the global vegetation carbon stock) and 41.32 Mg/ha, respectively. In addition, based on linear multiple regression equation and factor analysis method, we analyzed contributions of biotic and abiotic factors (including mean forest age, mean annual temperature, annual precipitation, and altitude) to forest carbon storage. Our results indicated that forest vegetation carbon storage was more sensitive to changes of mean annual temperature than other factors, suggesting that global warming would seriously affect the forest carbon storage

  3. Interim storage of spent fuel assemblies from VVER-reactors, taking as an example the cask dry storage for the Czech Dukovany Nuclear Power Plant

    International Nuclear Information System (INIS)

    The nuclear fuel cycle services from the former Soviet Union were fundamentally changed in 1989. The necessity of intermediate spent fuel storage increased in Czechoslovakia in short term. After performing an international comparison and request for proposals, Czechoslovakia represented by the electrical utility CEZ in Prague, decided in favor of a dry cask storage concept for the nuclear power plant Dukovany. The selection process among the offered solutions and the dry cask storage concept is discussed

  4. Deformations and nanomechanical energy storage in twisted carbon nanotube ropes

    Science.gov (United States)

    Tomanek, David; Fthenakis, Zacharias G.; Seifert, Gotthard; Teich, David

    2013-03-01

    We determine the deformation energetics and energy density of twisted carbon nanotube ropes that effectively constitute a torsional spring. Due to the unprecedented stiffness and resilience of constituent carbon nanotubes, a twisted nanotube rope becomes an efficient energy carrier. Using ab initio and parameterized density functional calculations, we identify structural changes in these systems and determine their elastic limits. The deformation energy of twisted nanotube ropes contains contributions associated not only with twisting, but also with stretching, bending and compression of individual nanotubes. We quantify these energy contributions and show that their relative role changes with the number of nanotubes in the rope. The calculated reversible nanomechanical energy storage capacity of carbon nanotube ropes surpasses that of advanced Li-ion batteries by up to a factor of ten. Supported by the National Science Foundation Cooperative Agreement #EEC-0832785, titled ``NSEC: Center for High-rate Nanomanufacturing''.

  5. Electron and phonon properties and gas storage in carbon honeycombs

    Science.gov (United States)

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-06-01

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments.A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by

  6. Carbon Capture and Storage and the London Protocol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The International Energy Agency (IEA) estimates that 100 Carbon Capture and Storage (CCS) projects will be required by 2020 and over 3000 by 2050 if CCS is to contribute fully to the least-cost technology portfolio for CO2 mitigation. For CCS to reach its emissions reduction potential, the 2009 IEA publication Technology Roadmap: Carbon Capture and Storage recommends that international legal obstacles associated with global CCS deployment be removed by 2012 -- including the prohibition on transboundary CO2 transfer under the London Protocol. The London Protocol was amended by contracting parties in 2009 to allow for cross-border transportation of CO2 for sub-seabed storage, but the amendment must be ratified by two-thirds of contracting parties to enter into force. It is unlikely that this will occur in the near term; this working paper therefore outlines options that may be available to contracting parties under international law to address the barrier to deployment presented by Article 6, pending formal entry into force of the 2009 amendment.

  7. Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations

    Science.gov (United States)

    Jones, Kevin B.; Blondes, Madalyn S.

    2015-01-01

    “Unconventional reservoirs” for carbon dioxide (CO2) storage—that is, geologic reservoirs in which changes to the rock trap CO2 and therefore contribute to CO2 storage—including coal, shale, basalt, and ultramafic rocks, were the focus of a U.S. Geological Survey (USGS) workshop held March 28 and 29, 2012, at the National Conservation Training Center in Shepherdstown, West Virginia. The goals of the workshop were to determine whether a detailed assessment of CO2 storage capacity in unconventional reservoirs is warranted, and if so, to build a set of recommendations that could be used to develop a methodology to assess this storage capacity. Such an assessment would address only the technically available resource, independent of economic or policy factors. At the end of the workshop, participants agreed that sufficient knowledge exists to allow an assessment of the potential CO2 storage resource in coals, organic-rich shales, and basalts. More work remains to be done before the storage resource in ultramafic rocks can be meaningfully assessed.

  8. Carbon capture and storage as a corporate technology strategy challenge

    International Nuclear Information System (INIS)

    Latest estimates suggest that widespread deployment of carbon capture and storage (CCS) could account for up to one-fifth of the needed global reduction in CO2 emissions by 2050. Governments are attempting to stimulate investments in CCS technology both directly through subsidizing demonstration projects, and indirectly through developing price incentives in carbon markets. Yet, corporate decision-makers are finding CCS investments challenging. Common explanations for delay in corporate CCS investments include operational concerns such as the high cost of capture technologies, technological uncertainties in integrated CCS systems and underdeveloped regulatory and liability regimes. In this paper, we place corporate CCS adoption decisions within a technology strategy perspective. We diagnose four underlying characteristics of the strategic CCS technology adoption decision that present unusual challenges for decision-makers: such investments are precautionary, sustaining, cumulative and situated. Understanding CCS as a corporate technology strategy challenge can help us move beyond the usual list of operational barriers to CCS and make public policy recommendations to help overcome them. - Research highlights: → Presents a corporate technology strategy perspective on carbon capture and storage (CCS). → CCS technology is precautionary, sustaining, cumulative and situated. → Decision-makers need to look beyond cost and risk as barriers to investment in CCS.

  9. License Amendment Request for Storing Exelon Sister Nuclear Stations Class B/C LLRW in the LaSalle Station Interim Radwaste Storage Facility - 13620

    International Nuclear Information System (INIS)

    Exelon Nuclear (Exelon) designed and constructed an Interim Radwaste Storage Facility (IRSF) in the mid-1980's at LaSalle County Nuclear Station (LaSalle). The facility was designed to store low-level radioactive waste (LLRW) on an interim basis, i.e., up to five years. The primary reason for the IRSF was to offset lack of disposal in case existing disposal facilities, such as the Southeast Compact's Barnwell Disposal Facility in Barnwell, South Carolina, ceased accepting radioactive waste from utilities not in the Southeast Compact. Approximately ninety percent of the Radwaste projected to be stored in the LaSalle IRSF in that period of time was Class A, with the balance being Class B/C waste. On July 1, 2008 the Barnwell Disposal Facility in the Southeast Compact closed its doors to out of- compact Radwaste, which precluded LaSalle from shipping Class B/C Radwaste to an outside disposal facility. Class A waste generated by LaSalle is still able to be disposed at the 'Envirocare of Utah LLRW Disposal Complex' in Clive, Utah. Thus the need for utilizing the LaSalle IRSF for storing Class B/C Radwaste for an extended period, perhaps life-of-plant or more became apparent. Additionally, other Exelon Midwest nuclear stations located in Illinois that did not build an IRSF heretofore also needed extended Radwaste storage. In early 2009, Exelon made a decision to forward Radwaste from the Byron Nuclear Station (Byron), Braidwood Nuclear Station (Braidwood), and Clinton Nuclear Station (Clinton) to LaSalle's IRSF. As only Class B/C Radwaste would need to be forwarded to LaSalle, the original volumetric capacity of the LaSalle IRSF was capable of handling the small number of additional expected shipments annually from the Exelon sister nuclear stations in Illinois. Forwarding Class B/C Radwaste from the Exelon sister nuclear stations in Illinois to LaSalle would require an amendment to the LaSalle Station operating license. Exelon submitted the License Amendment Request

  10. Conductive porous carbon film as a lithium metal storage medium

    International Nuclear Information System (INIS)

    Highlights: • Conductive porous carbon films were prepared by distributing amorphous carbon nanoparticles. • The porous film provides enough conductive surfaces and reduces the effective current density. • By using the film, dendritic Li growth can be effectively prevented. • The use of the porous framework can be extended for use in other 3D structured materials for efficient Li metal storage. - Abstract: The Li metal anode boasts attractive electrochemical characteristics for use in rechargeable Li batteries, such as a high theoretical capacity and a low redox potential. However, poor cycle efficiency and safety problems relating to dendritic Li growth during cycling should be addressed. Here we propose a strategy to increase the coulombic efficiency of the Li metal electrode. Conductive porous carbon films (CPCFs) were prepared by distributing amorphous carbon nanoparticles within a polymer binder. This porous structure is able to provide enough conductive surfaces for Li deposition and dissolution, which reduce the effective current density. Moreover, the pores in these films enable the electrolyte to easily penetrate into the empty space, and Li can be densely deposited between the carbon particles. As a result, dendritic Li growth can be effectively prevented. Electrochemical tests demonstrate that the coulombic efficiency of the porous electrode can be greatly improved compared to that of the pure Cu electrode. By allowing for the development of robust Li metal electrodes, this approach provides key insight into the design of high-capacity anodes for Li metal batteries, such as Li-air and Li-S systems

  11. Synthesis and Hydrogen Storage in Single-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Single-walled carbon nanotubes (SWNTs) were synthesized by a hydrogen arc discharge method. A high yield of gram quantity of SWNTs per hour was achieved. Tow kinds of SWNT products: web-like substance and thin films in large slices were obtained. Results of resonant Raman scattering measurements indicate that the SWNTs prepared have a wider diameter distribution and a larger mean diameter. Hydrogen uptake measurements of the two kinds of SWNT samples (both as prepared and pretreated) were carried out using a high pressure volumetric method,respectively. And a hydrogen storage capacity of 4 wt pct could be repeatedly achieved for the suitably pretreated SWNTs, which indicates that SWNTs may be a promising hydrogen storage material.

  12. In Situ X-Ray Photoelectron Spectroscopy Gas-Solid Carbonation of Ultramafic Rocks: Implications for Carbon Capture and Storage

    OpenAIRE

    Zhao, Rong

    2012-01-01

    [ANGLÈS] With the increasing carbon dioxide emission in the atmosphere, there has been an interesting interest in CCS (Carbon Capture and Storage). Mineral carbonation was considered as a better option for storage atmospheric CO2 to slow climate change down. It’s a better method for storing CO2 without re-releasing CO2 in the atmosphere. The reaction rate of carbonation is too slow to be used at industrial scale under natural conditions containing ambient temperature and pressu...

  13. 75 FR 6087 - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Science.gov (United States)

    2010-02-05

    ... Documents#0;#0; ] Memorandum of February 3, 2010 A Comprehensive Federal Strategy on Carbon Capture and... investment in carbon capture and storage of any nation in history, and these investments are being matched by... technologies, I hereby establish an Interagency Task Force on Carbon Capture and Storage (Task Force)....

  14. Aggregation of carbon dioxide sequestration storage assessment units

    Science.gov (United States)

    Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.

    2013-01-01

    The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.

  15. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives.  Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites.  Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  16. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  17. Carbon-nanostructured materials for energy generation and storage applications

    Directory of Open Access Journals (Sweden)

    V. Linkov

    2010-01-01

    Full Text Available We have developed and refined a chemical vapour deposition method to synthesise nanotubes using liquid petroleum gasasthe carbonsource. The nanotubes were thoroughly characterised by scanning electron microscopy, transmission electron microscopy
    X-ray diffraction and thermogravimetric analysis. The protocol to grow nanotubes was then adapted to deposit nanotubes on the surface of different substrates, which were chosen based upon how
    the substrates could be applied in various hydrogen energyconver-sion systems. Carbon nanotubes area nanostructured material with an extremely wide range of application sinvariousenergy applications. The methods outlined demonstrate the complete
    development of carbon nanotube composite materials with direct applications in hydrogen energy generation, storage and conversion.

  18. A Policy Strategy for Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Successful deployment of carbon capture and storage (CCS) is critically dependent on comprehensive policy support. While policy plays an important role in the deployment of many low-carbon technologies, it is especially crucial for CCS. This is because, in contrast to renewable energy or applications of energy efficiency, CCS generates no revenue, nor other market benefits, so long as there is no price on CO2 emissions. It is both costly to install and, once in place, has increased operating costs. Effective, well-designed policy support is essential in overcoming these barriers and the subsequent deployment of CCS technology. This guide for policy makers aims to assist those involved in designing national and international policies around CCS. It covers development of CCS from its early stages through to wide-scale deployment of the technology. The focus is both on incentives for conventional fossil-fuel CCS and for bioenergy with CCS (BECCS).

  19. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon.

    Science.gov (United States)

    Washbourne, C-L; Renforth, P; Manning, D A C

    2012-08-01

    This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban centre of Newcastle upon Tyne, U.K. Subsequent analysis yielded average carbonate contents of 21.8±4.7% wt CaCO(3). Isotopic analysis demonstrated δ(18)O values between -9.4‰ and -13.3‰ and δ(13)C values between -7.4‰ and -13.6‰ (relative to Pee Dee Belemnite), suggesting that up to 39.4±8.8% of the carbonate C has been captured from the atmosphere through hydroxylation of dissolved CO(2) in high pH solutions. The remaining carbonate C is derived from lithogenic sources. 37.4 kg of atmospheric CO(2) has already been captured and stored as carbonate per Mg of soil across the site, representing a carbon dioxide (CO(2)) removal rate of 12.5 kg CO(2) Mg(-1) yr(-1). There is the potential for capture and storage of a further 27.3 kg CO(2) Mg(-1) in residual reactive materials, which may be exploited through increased residence time (additional in situ weathering). Overall, the Science Central site has the potential to capture and store a total of 64,800 Mg CO(2) as carbonate minerals. This study illustrates the potential for managing urban soils as tools of C capture and storage, an important ecosystem service, and demonstrates the importance of studying C storage in engineering urban anthropogenic soils. PMID:22683756

  20. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon

    International Nuclear Information System (INIS)

    This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban centre of Newcastle upon Tyne, U.K. Subsequent analysis yielded average carbonate contents of 21.8 ± 4.7% wt CaCO3. Isotopic analysis demonstrated δ18O values between − 9.4‰ and − 13.3‰ and δ13C values between − 7.4‰ and − 13.6‰ (relative to Pee Dee Belemnite), suggesting that up to 39.4 ± 8.8% of the carbonate C has been captured from the atmosphere through hydroxylation of dissolved CO2 in high pH solutions. The remaining carbonate C is derived from lithogenic sources. 37.4 kg of atmospheric CO2 has already been captured and stored as carbonate per Mg of soil across the site, representing a carbon dioxide (CO2) removal rate of 12.5 kgCO2 Mg−1 yr−1. There is the potential for capture and storage of a further 27.3 kgCO2 Mg−1 in residual reactive materials, which may be exploited through increased residence time (additional in situ weathering). Overall, the Science Central site has the potential to capture and store a total of 64,800 Mg CO2 as carbonate minerals. This study illustrates the potential for managing urban soils as tools of C capture and storage, an important ecosystem service, and demonstrates the importance of studying C storage in engineering urban anthropogenic soils. Highlights: ► Urban soils potentially capture 12.5 kgCO2 Mg−1 yr−1 (value £51,843–£77,765 ha−1). ► Formation of carbonate may be significant and exploitable storage

  1. Colonie Interim Storage Site: Annual site environmental report, Colonie, New York, Calendar year 1986: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    International Nuclear Information System (INIS)

    During 1986, the environmental monitoring program continued at the Colonie Interim Storage Site (CISS), a US Department of Energy (DOE) facility located in Colonie, New York. The CISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has mandated DOE to remedy. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action is being conducted at the site and at vicinity properties by Bechtel National Inc. (BNI), Project Management Contractor for FUSRAP. The environmental monitoring program is also carried out by BNI. The monitoring program at the CISS measures external gamma radiation levels as well as uranium and radium-226 concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess the potential effect of the site on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, the maximally exposed individual would receive an annual external exposure approximately equivalent to 5% of the DOE radiation protection standard of 100 mrem/y. Results of 1986 monitoring show that the CISS is in compliance with the DOE radiation protection standard. 14 refs., 9 figs., 9 tabs

  2. Maywood Interim Storage Site environmental report for calendar year 1992, 100 West Hunter Avenue, Maywood, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Maywood Interim Storage Site (MISS) and provides the results for 1992. Environmental monitoring of MISS began in 1984, when the site was assigned to DOE by Congress through the Energy and Water Development Appropriations Act and was placed under DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. MISS is part of a National Priorities List (NPL) site. The environmental surveillance program at MISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analysis includes metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling the DOE objective of measuring and monitoring effluents from DOE activities and calculating hypothetical doses to members of the general public. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Environmental standards are established to protect public health and the environment. The radiological data for all media sampled support the conclusion that doses to the public are not distinguishable from natural background radiation.

  3. Wayne Interim Storage Site environmental report for calendar year 1992, 868 Black Oak Ridge Road, Wayne, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Wayne Interim Storage Site (WISS) and provides the results for 1992. The fenced, site, 32 km (20 mi) northwest of Newark, New Jersey, was used between 1948 and 1971 for commercial processing of monazite sand to separate natural radioisotopes - predominantly thorium. Environmental surveillance of WISS began in 1984 in accordance with Department of Energy (DOE) Order 5400.1 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). The environmental surveillance program at WISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; radium-226, radium-228, thorium-230, thorium-232, total uranium, and several chemicals in surface water and sediment; and total uranium, radium-226, radium-228, thorium-230, thorium-232, and organic and inorganic chemicals in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. This monitoring program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results for environmental surveillance in 1992 show that the concentrations of all radioactive and most chemical contaminants were below applicable standards.

  4. Colonie Interim Storage Site environmental report for calendar year 1992, 1130 Central Avenue, Colonie, New York. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Colonie Interim Storage Site (CISS) and provides the results for 1992. The site is located in eastern New York State, approximately 6.4 km (4.0 mi) northwest of downtown Albany. From 1958 to 1984, National Lead (NL) Industries used the facility to manufacture various components from depleted and enriched uranium natural thorium. Environmental monitoring of CISS began in 1984 when Congress added, the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental surveillance program at CISS includes sampling networks for external gamma radiation exposure and for thorium-232 and total uranium concentrations in surface water, sediment, and groundwater. Several chemical parameters are also measured in groundwater, including total metals, volatile organics, and water quality parameters. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements.

  5. Maywood interim storage site: Annual site environmental report, Maywood, New Jersey, Calendar Year 1988: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    International Nuclear Information System (INIS)

    The monitoring program at the Maywood Interim Storage Site (MISS) measures thoron and radon concentrations in air; external gamma radiation levels, and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. The radiation dose was calculated for a hypothetical maximally exposed individual to verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess its potential effects on public health. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure approximately equivalent to 1 percent of the DOE radiation protection standard. This exposure is less than a person receives during a round-trip flight from New York to Los Angeles (because of the greater amounts of cosmic radiation present at higher altitudes). Cumulative dose to the population within an 80-km (50-mi) radius of the MISS that results from radioactive materials present at the site is indistinguishable from the dose the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the MISS is in compliance with the DOE radiation protection standard and with applicable permit requirements specified by the New Jersey Department of Environmental Protection Division groundwater permits. 20 refs., 17 figs., 34 tabs

  6. Wayne interim storage site: Annual site environmental report, Wayne, New Jersey, Calendar Year 1988: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    International Nuclear Information System (INIS)

    The monitoring program at the Wayne Interim Storage Site (WISS) measures radon and thoron concentrations in air; external gamma radiation levels; and uranium, radium, and thorium, concentrations in surface water, groundwater, and sediment. The radiation dose was calculated for a hypothetical maximally exposed individual to verify that the site is in compliance with the DOE radiation protection standard (100 merm/yr) and to assess its potential effects on public health. Based on the conservative scenario described in the report, this hypothetical individual receives an annual external exposure approximately equivalent to 2 percent of the DOE radiation protection standard. By comparison, this exposure is less than a person receives during a flight from New York City to Los Angeles as a result of greater amounts of cosmic radiation at higher altitudes. The cumulative dose to the population within an 80-km (50-mi) radius of the WISS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the WISS is in compliance with the DOE radiation protection standard and with applicable requirements specified by New Jersey Department of Environmental Protection groundwater permit. 26 refs., 13 figs., 19 tabs

  7. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  8. Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of t...

  9. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  10. Effect of Precipitation Fluctuation on Soil Carbon Storage of a Tropical Peat Swamp Forest

    OpenAIRE

    Anton E. Satrio; Seca Gandaseca; Osumanu H. Ahmed; Nik M.A. Majid

    2009-01-01

    Problem statement: It is important to compare the effect of extremely different rainfall conditions on soil carbon storage of lowland tropical peat swamp forest. Therefore, under these natural rainfall gradient, the objectives of this study were to determine whether rainfall affects soil carbon storage of a tropical peat swamp forest and to determine what correlations between variables occurs which stimulate soil carbon storage changes of a tropical peat swamp forest. Approach: Soil sampling ...

  11. Carbon Capture and Storage Legal and Regulatory Review. Edition 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The International Energy Agency (IEA) estimates that 100 carbon capture and storage (CCS) projects must be implemented by 2020 and over 3000 by 2050 if CCS is to fully contribute to the least-cost technology portfolio for CO2 mitigation. To help countries address the many legal and regulatory issues associated with such rapid deployment, the IEA launched the Carbon Capture and Storage Legal and Regulatory Review (CCS Review) in October 2010. The CCS Review gathers contributions by national and regional governments, as well as leading organisations engaged in CCS regulatory activities, to provide a knowledge-sharing forum that supports national-level CCS regulatory development. Each contribution provides a short summary of recent and anticipated developments and highlights a particular regulatory theme (such as financial contributions to long-term stewardship). To introduce each edition, the IEA provides a brief analysis of key advances and trends. Produced bi-annually, the CCS Review provides an up-to-date snapshot of global CCS regulatory developments. The theme for the second edition of the CCS Review, released in May 2011, is long-term liability for stored CO2. Other key issues addressed include: national progress towards implementation of the EU CCS Directive; developments in marine treaties relevant to CCS; international climate change negotiations; and the development process for CCS regulation.

  12. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    NARCIS (Netherlands)

    van Leeuwen, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks o

  13. How aware is the public of carbon capture and storage?

    Energy Technology Data Exchange (ETDEWEB)

    Curry, T.; Herzog, H.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Lab. for Energy and the Environment; Reiner, D.M. [Cambridge Univ., Cambridge, (United States). Judge Inst. of Management; Ansolabehere, S. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Dept. of Political Science

    2005-07-01

    This paper presented the results of a survey conducted in the fall of 2003 that examined attitudes toward, and understanding of, carbon dioxide capture and storage (CCS), also known as carbon sequestration. The study was conducted as part of broad range of questions about energy and the environment. The goal of the survey was to determine attitudes toward spending on the environment. In particular, the survey asked 17 questions to determine the level of public understanding of global warming and the carbon cycle and to determine public awareness of CCS. In addition to demographic information, the survey determined the effect of national energy usage information and price data on public preferences. The paper also presented some implications for public acceptance. The survey showed that the environment ranked thirteenth on a list of 22 issues facing the United States at the time of the survey, with the top three being terrorism, health care and the economy. The survey also asked respondents to choose the 2 most important of 10 environmental problems, namely water pollution, destruction of ecosystems, toxic waste, overpopulation, ozone depletion, global warming, urban sprawl, smog, endangered species, and acid rain. Global warming ranked sixth out of the issues in the survey. It was noted that very few people in the United States have heard of CCS, and those who have heard of it were no more likely to know what environmental concern it addressed than those who had not heard of CCS. 13 refs.

  14. Storage of carbon in natural grasses high andean

    Directory of Open Access Journals (Sweden)

    Raúl Marino Yaranga Cano

    2013-12-01

    Full Text Available The aim of the study was to determine the capacity of storage of carbon in species of grasses natural of high andean, between January of 2012 and March of 2013. They were defined two sampling areas in the districts of Huasicancha and Chicche of the county of Huancayo, Junín. The first of the areas was located in the place Pumahuasi (18L 466456E 8628580N and the second in Vista Alegre (18L 464886E 8642964N, between 3 845 and 3 870 meters of altitude. 10 plants per species were collected at random, between April and May, considering the moment of maximum growth of the plants. The samples were washed and dried off to the atmosphere during 15 days, being completed the drying in a stove to 60 °C, during 48 hours. The determination of the percentage of dry matter of the samples was carried out by the difference between the initial and final weights. While that the determination of the percentage of carbon was carried out through the method of Walkley-Black. The results of the correlation of weight between air biomass and biomass radicular were highly significant r = 0.9856 ** and b = 3.4507. The percentage of the weight of the root regarding that of the air biomass oscillated between 27.93% and 30.20%, respectively. The content of carbon expressed as percentage varied according to the part of the plant and the origin place.

  15. How aware is the public of carbon capture and storage?

    International Nuclear Information System (INIS)

    This paper presented the results of a survey conducted in the fall of 2003 that examined attitudes toward, and understanding of, carbon dioxide capture and storage (CCS), also known as carbon sequestration. The study was conducted as part of broad range of questions about energy and the environment. The goal of the survey was to determine attitudes toward spending on the environment. In particular, the survey asked 17 questions to determine the level of public understanding of global warming and the carbon cycle and to determine public awareness of CCS. In addition to demographic information, the survey determined the effect of national energy usage information and price data on public preferences. The paper also presented some implications for public acceptance. The survey showed that the environment ranked thirteenth on a list of 22 issues facing the United States at the time of the survey, with the top three being terrorism, health care and the economy. The survey also asked respondents to choose the 2 most important of 10 environmental problems, namely water pollution, destruction of ecosystems, toxic waste, overpopulation, ozone depletion, global warming, urban sprawl, smog, endangered species, and acid rain. Global warming ranked sixth out of the issues in the survey. It was noted that very few people in the United States have heard of CCS, and those who have heard of it were no more likely to know what environmental concern it addressed than those who had not heard of CCS. 13 refs

  16. Mangrove carbon sink. Do burrowing crabs contribute to sediment carbon storage? Evidence from a Kenyan mangrove system

    OpenAIRE

    Anna Andreetta; Marco Fusi; Irene Cameldi; Filippo Cimò; Stefano Carnicelli; Stefano Cannicci

    2014-01-01

    Mangrove ecosystems are acknowledged as a significant carbon reservoir, with a potential key role as carbon sinks. Little however is known on sediment/soil capacity to store organic carbon and the impact of benthic fauna on soil organic carbon (SOC) stock in mangrove C-poor soils. This study aimed to investigate the effects of macrobenthos on SOC storage and dynamic in mangrove forest at Gazi Bay (Kenya). Although the relatively low amount of organic carbon (OC%) in these soils, they resulted...

  17. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model

    DEFF Research Database (Denmark)

    Moore, J. A. M.; Jiang, J.; Post, W. M.; Classen, Aimee Taylor

    2015-01-01

    Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesize...

  18. Optimal Timing of Carbon Capture and Storage Policies Under Learning-by-doing

    OpenAIRE

    Amigues, Jean-Pierre; Lafforgue, Gilles; MOREAUX Michel

    2014-01-01

    Using a standard Hotelling model of resource exploitation, we determine the optimal consumption paths of three energy resources: dirty coal, which is depletable and carbon-emitting; clean coal, which is also depletable but carbon-free thanks to an abatement technology (CCS: Carbon Capture and Storage), and solar energy which is renewable and carbon-free. Carbon emissions are released into the atmosphere and we assume that the atmospheric carbon stock cannot exceed a given ceiling. We consider...

  19. Global Action to Advance Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Representing one-fifth of total global CO2 emissions currently, industrial sectors such as cement, iron and steel, chemicals and refining are expected to emit even more CO2 over the coming decades. Carbon capture and storage (CCS) is currently the only large-scale mitigation option available to cut the emissions intensity of production by over 50% in these sectors. CCS is already proven in some industrial sectors, such as natural gas processing. Yet, the commercial-scale demonstration stage in key sectors such as iron and steel, cement or some processes in the refining sector has not been reached. To achieve decarbonisation goals, policy makers must pay more attention to industrial applications of CCS, while not undermining the global competitiveness of these sectors.

  20. Permanent carbon dioxide storage in deep-sea sediments.

    Science.gov (United States)

    House, Kurt Zenz; Schrag, Daniel P; Harvey, Charles F; Lackner, Klaus S

    2006-08-15

    Stabilizing the concentration of atmospheric CO(2) may require storing enormous quantities of captured anthropogenic CO(2) in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO(2) stored in these reservoirs is buoyant. As a result, a portion of the injected CO(2) can escape if the reservoir is not appropriately sealed. We show that injecting CO(2) into deep-sea sediments below [corrected] 3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO(2) resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO(2) to be gravitationally stable. Additionally, CO(2) hydrate formation will impede the flow of CO(2)(l) and serve as a second cap on the system. The evolution of the CO(2) plume is described qualitatively from the injection to the formation of CO(2) hydrates and finally to the dilution of the CO(2)(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO(2)(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO(2) storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO(2) emissions. PMID:16894174

  1. Carbon Capture and Storage (CCS) in the European Union Energy Union’s Governance

    OpenAIRE

    Haszeldine, R. Stuart; Scott, Vivian

    2015-01-01

    Carbon Capture and Storage (CCS) in the European Union Energy Union’s Governance Submission to the House of Lords EU Energy and Environment Sub-Committee inquiry: EU Energy Governance Carbon Capture and Storage (CCS) in the European Union Energy Union’s Governance Submission to the House of Lords EU Energy and Environment Sub-Committee inquiry: EU Energy Governance

  2. Carbon Capture and Storage in the EU's 2030 climate and energy framework

    OpenAIRE

    Haszeldine, R Stuart; Scott, Vivian; Littlecott, Chris

    2014-01-01

    SCCS Policy Briefing and Recommendations for European Council Carbon Capture and Storage in the EU’s 2030 climate and energy framework SCCS Policy Briefing and Recommendations for European Council Carbon Capture and Storage in the EU’s 2030 climate and energy framework

  3. Experiments for evaluation of corrosion to develop storage criteria for interim dry storage of aluminum-alloy clad spent nuclear fuel

    International Nuclear Information System (INIS)

    The technical bases for specification of limits to environmental exposure conditions to avoid excessive degradation are being developed for storage criteria for dry storage of highly-enriched, aluminum-clad spent nuclear fuels owned by the US Department of Energy. Corrosion of the aluminum cladding is a limiting degradation mechanism (occurs at lowest temperature) for aluminum exposed to an environment containing water vapor. Attendant radiation fields of the fuels can lead to production of nitric acid in the presence of air and water vapor and would exacerbate the corrosion of aluminum by lowering the pH of the water solution. Laboratory-scale specimens are being exposed to various conditions inside an autoclave facility to measure the corrosion of the fuel matrix and cladding materials through weight change measurements and metallurgical analysis. In addition, electrochemical corrosion tests are being performed to supplement the autoclave testing by measuring differences in the general corrosion and pitting corrosion behavior of the aluminum cladding alloys and the aluminum-uranium fuel materials in water solutions

  4. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m3 to 5.86 kg/m3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  5. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    Science.gov (United States)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  6. Accounting carbon storage in decaying root systems of harvested forests.

    Science.gov (United States)

    Wang, G Geoff; Van Lear, David H; Hu, Huifeng; Kapeluck, Peter R

    2012-05-01

    Decaying root systems of harvested trees can be a significant component of belowground carbon storage, especially in intensively managed forests where harvest occurs repeatedly in relatively short rotations. Based on destructive sampling of root systems of harvested loblolly pine trees, we estimated that root systems contained about 32% (17.2 Mg ha(-1)) at the time of harvest, and about 13% (6.1 Mg ha(-1)) of the soil organic carbon 10 years later. Based on the published roundwood output data, we estimated belowground biomass at the time of harvest for loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina. We then calculated C that remained in the decomposing root systems in 2005 using the decay function developed for loblolly pine. Our calculations indicate that the amount of C stored in decaying roots of loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina was 7.1 Tg. Using a simple extrapolation method, we estimated 331.8 Tg C stored in the decomposing roots due to timber harvest from 1995 to 2005 in the conterminous USA. To fully account for the C stored in the decomposing roots of the US forests, future studies need (1) to quantify decay rates of coarse roots for major tree species in different regions, and (2) to develop a methodology that can determine C stock in decomposing roots resulting from natural mortality. PMID:22535427

  7. Conditioning of spent fuel for interim and final storage in the pilot conditioning plant (PKA) at Gorleben

    International Nuclear Information System (INIS)

    In 1994, due to the change of the nuclear law in Germany, the concept of direct final disposal for spent fuel was developed as an equivalent alternative to the waste management with reprocessing. Since 1979, tests for the direct final disposal of spent fuel have been conducted in Germany. In 1985, the State and the utilities came to an agreement to develop this concept of waste management to technical maturity. Gesellschaft fuer Nuklear-Service (GNS) was commissioned by the utilities with the following tasks: to develop and test components with regard to conditioning technology, to construct and operate the pilot conditioning plant (PKA), and to develop casks suitable for final disposal. Since 1990, the construction of the PKA has taken place at the Brennelementlager Gorleben site. The PKA has been designed as a multipurpose facility and can thus fulfil various tasks within the framework of the conditioning and management of spent fuel assemblies and radioactive waste. The pilot character of the plant allows for development and testing in the field of spent fuel assembly conditioning. The objectives of the PKA may be summarized as follows: to condition spent fuel assemblies, to reload spent fuel assemblies and waste packages, to condition radioactive waste, and to do maintenance work on transport and storage casks as well as on waste packages. Currently, the buildings of the PKA are constructed and the technical facilities are installed. The plant will be ready for service in the middle of 1999. It is the first plant of its kind in the world. (author)

  8. Removal Action Work Plan for 105-DR and 105-F Building Interim Safe Storage Projects and Ancillary Buildings

    International Nuclear Information System (INIS)

    This document contains the removal action work plan for the 105-DR and 105-F Reactor buildings and ancillary facilities. These buildings and facilities are located in the 100-D/DR and 100-F Areas of the Hanford Site, which is owned and operated by the US Department of Energy (DOE), in Benton County, Washington. The 100 Areas (including the 100-D/DR and 100-F Areas) of the Hanford Site were placed on the US Environmental Protection Agency's (EPA's) National Priorities List under the ''Comprehensive Environmental Response, Compensation, and Liability Act of 1980'' (CERCLA). The DOE has determined that hazardous substances in the 105-DR and 105-F Reactor buildings and four ancillary facilities present a potential threat to human health or the environment. The DOE has also determined that a non-time critical removal action is warranted at these facilities. Alternatives for conducting a non-time critical removal action were evaluated in the ''Engineering Evaluation/Cost Analysis for the 105-DR and 105-F Reactor Facilities and Ancillary Facilities'' (DOE-RL 1998a). The engineering evaluation/cost analysis (EE/CA) resulted in the recommendation to decontaminate and demolish the contaminated reactor buildings (except for the reactor blocks) and the ancillary facilities and to construct a safe storage enclosure (SSE) over the reactor blocks. The recommendation was approved in an action memorandum (Ecology et al. 1998) signed by the Washington State Department of Ecology (Ecology), EPA, and DOE. The DOE is the agency responsible for implementing the removal actions in the 105-D/DR and 105-F Areas. Ecology is the lead regulatory agency for facilities in the 100-D/DR Area, and EPA is the lead regulatory agency for facilities in the 100-F Area. The term ''lead regulator agency'' hereinafter, refers to these authorities. This removal action work plan supports implementation of the non-time critical removal action

  9. CO2 Highways for Europe: Modeling a Carbon Capture, Transport and Storage Infrastructure for Europe

    OpenAIRE

    Mendelevitch, Roman; Herold, Johannes; Oei, Pao-Yu; Tissen, Andreas

    2010-01-01

    We present a mixed integer, multi-period, cost-minimizing carbon capture, transport and storage (CCTS) network model for Europe. The model incorporates endogenous decisions about carbon capture, pipeline and storage investments; capture, flow and injection quantities based on given costs, certificate prices, storage capacities and point source emissions. The results indicate that CCTS can theoretically contribute to the decarbonization of Europe's energy and industry sectors. This requires a ...

  10. Nuclear cost studies for decontamination and dismantling. The interim storage for spent fuels at Studsvik.; Kaerntekniska kostnadsstudier avseende dekontaminering och nedlaeggning. Mellanfoervaret foer anvaent kaernbraensle (FA) i Studsvik.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeblom, Rolf; Sjoeoe, Cecilia [Tekedo AB, Nykoeping (Sweden); Lindskog, Staffan; Cato, Anna [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2005-05-01

    The interim store for spent fuel (FA) at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. FA comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e g expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to 'calibrate' against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of FA, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the drains

  11. Shielding and criticality safety analyses of a Latin American cask for transportation and interim storage of spent fuel from research reactors

    International Nuclear Information System (INIS)

    Full text: The IAEA Technical Cooperation Project RLA/4/018 'Management of Spent Fuel from Research Reactors' started in 2001. It constitutes a joint effort of Latin American nuclear institutions from Argentina, Brazil, Chile, Mexico, and Peru to accomplish the following objectives: 'to define the basic conditions for a regional strategy for managing spent fuel which will provide solutions that are in the economic and technological realities of the countries involved, and in particular, to determine what is needed for the temporary wet and dry storage of spent fuel from the research reactors in the countries of the Latin American region'. Such work gets considerable importance since the USA spent fuel take-back program will be end in May, 2006. After that the Latin American research reactors operators will need to identify and assess all possible options to deal with their spent fuel by themselves. Part of the project consists in to design a cask for interim storage and transportation of the spent fuel produced by these research reactors. The SCALE4.4A package was used for shielding calculations of the Latin American dual purpose cask and MCNP4B for criticality safety. The analyses were performed considering just two types of fuel elements (one of the TRIGA type and another of the MTR type) among several utilized in the region. Moreover, two types of baskets were considered for loading of these fuel elements, one for 21 MTR elements and another for 78 TRIGA elements. The simulations show that the highest dose rates occur at the top (or bottom) surface of the cask. The dose rates for TRIGA basket are well bellow the values of the MTR basket. In any case such values comply with the safety criteria limits. Concerning the criticality safety the sub-criticality is also guaranteed for the cask loaded with both types of baskets and fuel elements. Thus, the two types of fuel elements analysed can be safely stored or transported by the cask under the point of view of

  12. Increased fire frequency optimization of black carbon mixing and storage

    Science.gov (United States)

    Pyle, Lacey; Masiello, Caroline; Clark, Kenneth

    2016-04-01

    Soil carbon makes up a substantial part of the global carbon budget and black carbon (BC - produced from incomplete combustion of biomass) can be significant fraction of soil carbon. Soil BC cycling is still poorly understood - very old BC is observed in soils, suggesting recalcitrance, yet in short term lab and field studies BC sometimes breaks down rapidly. Climate change is predicted to increase the frequency of fires, which will increase global production of BC. As up to 80% of BC produced in wildfires can remain at the fire location, increased fire frequency will cause significant perturbations to soil BC accumulation. This creates a challenge in estimating soil BC storage, in light of a changing climate and an increased likelihood of fire. While the chemical properties of BC are relatively well-studied, its physical properties are much less well understood, and may play crucial roles in its landscape residence time. One important property is density. When BC density is less than 1 g/cm3 (i.e. the density of water), it is highly mobile and can easily leave the landscape. This landscape mobility following rainfall may inflate estimates of its degradability, making it crucial to understand both the short- and long term density of BC particles. As BC pores fill with minerals, making particles denser, or become ingrown with root and hyphal anchors, BC is likely to become protected from erosion. Consequently, how quickly BC is mixed deeper into the soil column is likely a primary controller on BC accumulation. Additionally the post-fire recovery of soil litter layers caps BC belowground, protecting it from erosional forces and re-combustion in subsequent fires, but still allowing bioturbation deeper into the soil column. We have taken advantage of a fire chronosequence in the Pine Barrens of New Jersey to investigate how density of BC particles change over time, and how an increase in fire frequency affects soil BC storage and soil column movement. Our plots have

  13. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage.

    Science.gov (United States)

    Hudiburg, Tara; Law, Beverly; Turner, David P; Campbell, John; Donato, Dan; Duane, Maureen

    2009-01-01

    Net uptake of carbon from the atmosphere (net ecosystem production, NEP) is dependent on climate, disturbance history, management practices, forest age, and forest type. To improve understanding of the influence of these factors on forest carbon stocks and flux in the western United States, federal inventory data and supplemental field measurements at additional plots were used to estimate several important components of the carbon balance in forests in Oregon and Northern California during the 1990s. Species- and ecoregion-specific allometric equations were used to estimate live and dead biomass stores, net primary productivity (NPP), and mortality. In the semiarid East Cascades and mesic Coast Range, mean total biomass was 8 and 24 kg C/m2, and mean NPP was 0.30 and 0.78 kg C.m(-2).yr(-1), respectively. Maximum NPP and dead biomass stores were most influenced by climate, whereas maximum live biomass stores and mortality were most influenced by forest type. Within ecoregions, mean live and dead biomass were usually higher on public lands, primarily because of the younger age class distribution on private lands. Decrease in NPP with age was not general across ecoregions, with no marked decline in old stands (>200 years old) in some ecoregions. In the absence of stand-replacing disturbance, total landscape carbon stocks could theoretically increase from 3.2 +/- 0.34 Pg C to 5.9 +/- 1.34 Pg C (a 46% increase) if forests were managed for maximum carbon storage. Although the theoretical limit is probably unattainable, given the timber-based economy and fire regimes in some ecoregions, there is still potential to significantly increase the land-based carbon storage by increasing rotation age and reducing harvest rates. PMID:19323181

  14. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest

    OpenAIRE

    Yong Shen; Shixiao Yu; Juyu Lian; Hao Shen; Honglin Cao; Huanping Lu; Wanhui Ye

    2016-01-01

    Tropical forests play a disproportionately important role in the global carbon (C) cycle, but it remains unclear how local environments and functional diversity regulate tree aboveground C storage. We examined how three components (environments, functional dominance and diversity) affected C storage in Dinghushan 20-ha plot in China. There was large fine-scale variation in C storage. The three components significantly contributed to regulate C storage, but dominance and diversity of traits we...

  15. Comparative study of Hydrogen Storage Efficiency and Thermal Effects of Metal Hydrides vs. Carbon Materials

    International Nuclear Information System (INIS)

    Storage of hydrogen is one of the key challenges in developing hydrogen economy. Conventional storage methods such as high-pressure gas or cryogenic liquid hydrogen can not fulfill the set future storage goals. Storage in solid fuel form by chemically or physically combined within materials has potential advantages over other storage methods. There is enduring research both on modifying and optimizing the known solid store materials. In the present paper, recent developments of metal hydrides and carbon based materials based on storage capacity, operating conditions and thermal effects are comparatively reported. The reported work will provide guidance to planned future programs. (authors)

  16. Activated carbons from African oil palm waste shells and fibre for hydrogen storage

    OpenAIRE

    Liliana Giraldo; Maria Fernanda González-Navarro; Juan Carlos Moreno-Piraján

    2013-01-01

    We prepared a series of activated carbons by chemical activation with two strong bases in-group that few use, and I with waste from shell and fibers and oil-palm African. Activated carbons are obtained with relatively high surface areas (1605 m2/g). We study the textural and chemical properties and its effect on hydrogen storage. The activated carbons obtained from fibrous wastes exhibit a high hydrogen storage capacity of 6.0 wt % at 77 K and 12 bar.

  17. Deployment models for commercialized carbon capture and storage.

    Science.gov (United States)

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  18. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation

    Science.gov (United States)

    Matter, Jürg M.; Kelemen, Peter B.

    2009-12-01

    Anthropogenic greenhouse-gas emissions continue to increase rapidly despite efforts aimed at curbing the release of such gases. One potentially long-term solution for offsetting these emissions is the capture and storage of carbon dioxide. In principle, fluid or gaseous carbon dioxide can be injected into the Earth's crust and locked up as carbonate minerals through chemical reactions with calcium and magnesium ions supplied by silicate minerals. This process can lead to near-permanent and secure sequestration, but its feasibility depends on the ease and vigour of the reactions. Laboratory studies as well as natural analogues indicate that the rate of carbonate mineral formation is much higher in host rocks that are rich in magnesium- and calcium-bearing minerals. Such rocks include, for example, basalts and magnesium-rich mantle rocks that have been emplaced on the continents. Carbonate mineral precipitation could quickly clog up existing voids, presenting a challenge to this approach. However, field and laboratory observations suggest that the stress induced by rapid precipitation may lead to fracturing and subsequent increase in pore space. Future work should rigorously test the feasibility of this approach by addressing reaction kinetics, the evolution of permeability and field-scale injection methods.

  19. Carbon Storage in an Extensive Karst-distributed Region of Southwestern China based on Multiple Methods

    Science.gov (United States)

    Guo, C.; Wu, Y.; Yang, H.; Ni, J.

    2015-12-01

    Accurate estimation of carbon storage is crucial to better understand the processes of global and regional carbon cycles and to more precisely project ecological and economic scenarios for the future. Southwestern China has broadly and continuously distribution of karst landscapes with harsh and fragile habitats which might lead to rocky desertification, an ecological disaster which has significantly hindered vegetation succession and economic development in karst regions of southwestern China. In this study we evaluated the carbon storage in eight political divisions of southwestern China based on four methods: forest inventory, carbon density based on field investigations, CASA model driven by remote sensing data, and BIOME4/LPJ global vegetation models driven by climate data. The results show that: (1) The total vegetation carbon storage (including agricultural ecosystem) is 6763.97 Tg C based on the carbon density, and the soil organic carbon (SOC) storage (above 20cm depth) is 12475.72 Tg C. Sichuan Province (including Chongqing) possess the highest carbon storage in both vegetation and soil (1736.47 Tg C and 4056.56 Tg C, respectively) among the eight political divisions because of the higher carbon density and larger distribution area. The vegetation carbon storage in Hunan Province is the smallest (565.30 Tg C), and the smallest SOC storage (1127.40 Tg C) is in Guangdong Province; (2) Based on forest inventory data, the total aboveground carbon storage in the woody vegetation is 2103.29 Tg C. The carbon storage in Yunnan Province (819.01 Tg C) is significantly higher than other areas while tropical rainforests and seasonal forests in Yunnan contribute the maximum of the woody vegetation carbon storage (account for 62.40% of the total). (3) The net primary production (NPP) simulated by the CASA model is 68.57 Tg C/yr, while the forest NPP in the non-karst region (account for 72.50% of the total) is higher than that in the karst region. (4) BIOME4 and LPJ

  20. Atmospheric monitoring for fugitive emissions from geological carbon storage

    Science.gov (United States)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  1. Consultation Report. Consultation under the Environmental Act sixth chapter 4 paragraph for interim storage, encapsulation and disposal of spent nuclear fuel; Samraadsredogoerelse. Samraad enligt miljoebalkens 6:e kapitel 4:e paragraf avseende mellanlagring, inkapsling och slutfoervaring av anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    This consultation report is an appendix to the Environmental Impact Assessment (EIA) which in turn is an appendix to SKB's application under the Environmental Code for the continued operation of CLAB (Central interim storage for spent Nuclear Fuel, located on the Simpevarp Peninsula in Oskarshamn municipality), to build the encapsulation plant and operate it integrated with CLAB and to construct and operate the disposal facility in Soederviken at Forsmark in Oesthammar municipality, and SKB's application for a license under the Nuclear Activities Act to construct and operate the disposal facility at Forsmark. The aim of the consultation report is to give an overall picture of the consultations.

  2. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    International Nuclear Information System (INIS)

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  3. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Gary T [ORNL; Belles, Randy [ORNL; Cetiner, Sacit M [ORNL; Howard, Rob L [ORNL; Liu, Cheng [ORNL; Mueller, Don [ORNL; Omitaomu, Olufemi A [ORNL; Peterson, Steven K [ORNL; Scaglione, John M [ORNL

    2012-06-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  4. Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World

    DEFF Research Database (Denmark)

    Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.;

    2012-01-01

    estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been...

  5. Influence of Chemical Properties on Soil Carbon Storage of a Tropical Peat Swamp Forest

    Directory of Open Access Journals (Sweden)

    Anton E. Satrio

    2009-01-01

    Full Text Available Problem statement: It is important to investigate the seriousness of degradation of peat swamp forest caused by skidding system in terms of its function as a carbon sink. In this study, we formulated assumptions that conditions of our research site before the introduction of skidding system were in their natural states, thus that changes measured are clearly caused by skidding system. The objective of this study was to determine soil carbon storage of a tropical peat swamp forest in their natural state. Approach: Peat soil samples and bulk density were taken at 0-15 cm in a 0.3 ha plot at Sibu, Sarawak, Malaysia. The soil samples were analyzed for acidity, organic matter content, total carbon and total nitrogen. The humic acid extraction was also done and soil carbon storage values obtained by calculation. The calculation of carbon storage was by the bulk density method. Correlation analysis was used where applicable using Statistical Analysis System (SAS version 9.1. Results: The results indicated that this tropical peat swamp forest rich in soil organic matter (97.645 % but had extreme acidic environment (pH 3.737, thereby inhibiting organic matter decomposition rates. This tropical peat swamp forest also had large amounts of total carbon (48.823 %, low mineral nitrogen (0.896 % and high C/N ratio (58.427. Stable carbon (soil carbon storage positively correlated with unstable carbon (p-1 (±61.49 % of unstable carbon. Furthermore, soil carbon storage positively correlated with soil organic matter (pConclusion: From the results, it can be concluded that the tropical peat swamp forest indicates its specific natural state. This natural tropical peat swamp forest plays an important role as a sink rather than a source of carbon. The soil carbon storage in this natural tropical peat swamp forest was derived from unstable carbon and sensitive to soil acidity.

  6. Societal acceptance of carbon capture and storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Alphen, Klaas van [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands)]. E-mail: k.vanalphen@geo.uu.nl; Voorst tot Voorst, Quirine van [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands); Hekkert, Marko P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands); Smits, Ruud E.H.M. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands)

    2007-08-15

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is-to a certain extent-a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology.

  7. Societal acceptance of carbon capture and storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Van Alphen, Klaas; Van Voorst tot Voorst, Quirine; Hekkert, Marko P.; Smits, Ruud E.H.M. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Innovation Studies

    2007-08-15

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is - to a certain extent - a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology. (author)

  8. Societal acceptance of carbon capture and storage technologies

    International Nuclear Information System (INIS)

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is - to a certain extent - a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology. (author)

  9. Stakeholder perspectives on carbon capture and storage in Indonesia

    International Nuclear Information System (INIS)

    Carbon capture and storage (CCS) is being considered as an option to reduce CO2 emissions worldwide. Yet recent cases show that CCS faces divergent public acceptance issues. This paper investigates stakeholder perspectives on CCS in Indonesia. Q methodology was adopted to analyse the diversity of stakeholder perspectives. Four perspectives were identified: (1) “CO2 emissions reduction through clean energy sources rather than CCS”; (2) “CCS as one of the options in the transition to a sustainable energy system”; (3) “CCS as the only optimal solution to reduce CO2 emissions”; (4) “CCS is only a tactic to keep burning coal forever”. Based on these results, we argue that stakeholder acceptance of CCS should be understood as a complex notion. This means that understanding whether or under what conditions stakeholders would be willing to support CCS, requires consideration of stakeholders' viewpoints about broader questions of CO2 emission reduction and energy supply in Indonesia, rather than studying attitudes towards CCS in isolation. We discuss how the approach taken in this study can be used and followed up in policymaking on CCS in Indonesia. - Highlights: • We investigate stakeholder perspectives on CCS in Indonesia with Q methodology. • The study revealed four shared perspectives on CCS in Indonesia. • Of the four perspectives, two are contrasting perspectives: one pro and one con CCS. • The other two are nuanced perspectives and differ in their argumentation on CCS. • From these results we derive academic and policy implications

  10. Carbon capture and storage: Frames and blind spots

    International Nuclear Information System (INIS)

    The European Union (EU) carbon capture and storage (CCS) demonstration programme stands out for the speed with which financial support was agreed to, the size of this support, and its unusual format. This paper sets out to examine CCS policymaking in the EU by analysing the way this technology was framed. It draws up a simple model of technology framing with two variants. The first one describes the creation of “mainstream frames” of technologies in policymaking. The second one explains the effects of a “hegemonic frame”, namely the weakening of evaluation criteria and the increased salience of “blind spots”. On this basis, this paper explains the global mainstreaming of a CCS frame and its transformation into a hegemonic frame in the EU. Finally, the paper reviews the blind spots in this hegemonic frame and their impact on EU policy. -- Highlights: •Absent much public debate, experts alone have framed CCS; yet serious biases exist. •Powerful interests in the EU took advantage of a positive global framing of CCS. •A hegemonic framing of CCS in the EU caused it to bypass rigorous evaluation. •Claims regarding energy security and other benefits of CCS in the EU are dubious

  11. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    Science.gov (United States)

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. PMID:27090405

  12. Safety of laboratories, plants, facilities being dismantled, waste processing, interim storage and disposal facilities. Lessons learned from events reported in 2009 and 2010

    International Nuclear Information System (INIS)

    This report presents the cross-disciplinary analysis performed by IRSN relating to significant events reported to the French Nuclear Safety Authority (ASN) during 2009 - 2010 for LUDD-type facilities (laboratories, plants, facilities being dismantled, and waste processing, interim storage and disposal facilities). It constitutes a follow-up to DSU Report 215 published in December 2009, relating to events reported to ASN during 2005 to 2008. The main developments observed since the analysis presented in that report have been underlined here, in order to highlight improvements, opportunities for progress and the main areas requiring careful attention. The present report is a continuation of DSU Report 215. Without claiming to be exhaustive, it presents lessons from IRSN's cross-disciplinary analysis of events reported to ASN during 2009 and 2010 at LUDD facilities while highlighting major changes from the previous analysis in order to underline improvements, areas where progress has been made, and main points for monitoring. The report has four sections: - the first gives a brief introduction to the various kinds of LUDD facilities and highlights changes with DSU Report 215; - the second provides a summary of major trends involving events reported to ASN during 2007-2010 as well as overall results of consequences of events reported during 2009 and 2010 for workers, the general public and the environment; - the third section gives a cross-disciplinary analysis of significant events reported during 2009 and 2010, performed from two complementary angles (analysis of main types of events grouped by type of risk and analysis of generic causes). Main changes from the analysis given in DSU Report 215 are considered in detail; - the last section describes selected significant events that occurred in 2009 and 2010 in order to illustrate the cross-disciplinary analysis with concrete examples. IRSN will publish this type of report periodically in coming years in order to

  13. Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon-Sequestration Capacity

    Science.gov (United States)

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3-7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within +or- 1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0-0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  14. Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery

    International Nuclear Information System (INIS)

    Geologic sequestration of carbon dioxide (CO2) in oil and gas reservoirs is one possibility to reduce the amount of CO2 released to the atmosphere. Carbon dioxide injection has been used in enhanced oil recovery (EOR) processes since the 1970s; the traditional approach is to reduce the amount of CO2 injected per barrel of oil produced. For a sequestration process, however, the aim is to maximize both the amount of oil produced and the amount of CO2 stored. It is not readily apparent how this aim is achieved in practice. In this study, several strategies are tested via compositional reservoir simulation to find injection and production procedures that 'cooptimize' oil recovery and CO2 storage. Flow simulations are conducted on a synthetic, three dimensional, heterogeneous reservoir model. The reservoir description is stochastic in that multiple realizations of the reservoir are available. The reservoir fluid description is compositional and incorporates 14 distinct components. The results show that traditional reservoir engineering techniques such as injecting CO2 and water in sequential fashion, a so-called water-alternating-gas process, are not conducive to maximizing the CO2 stored within the reservoir. A well control process that shuts in (i.e. closes) wells producing large volumes of gas and allows shut in wells to open as reservoir pressure increases is the most successful strategy for cooptimization. This result holds for both immiscible and miscible gas injection. The strategy appears to be robust in that full physics simulations employing multiple realizations of the reservoir model all confirmed that the well control technique produced the maximum amount of oil and simultaneously stored the most CO2

  15. Ectomycorrhizal fungi increase soil carbon storage: molecular signatures of mycorrhizal competition driving soil C storage at global scale

    Science.gov (United States)

    Averill, C.; Barry, B. K.; Hawkes, C.

    2015-12-01

    Soil carbon storage and decay is regulated by the activity of free-living decomposer microbes, which can be limited by nitrogen availability. Many plants associate with symbiotic ectomycorrhizal fungi on their roots, which produce nitrogen-degrading enzymes and may be able to compete with free-living decomposers for soil organic nitrogen. By doing so, ectomycorrhizal fungi may able to induce nitrogen limitation and reduce activity of free-living microbial decomposition by mining soil organic nitrogen. The implication is that ectomycorrhizal-dominated systems should have increased soil carbon storage relative to non-ectomycorrhizal systems, which has been confirmed at a global scale. To investigate these effects, we analyzed 364 globally distributed observations of soil fungal communities using 454 sequencing of the ITS region, along with soil C and N concentrations, climate and chemical data. We assigned operational taxonomic units using the QIIME pipeline and UNITE fungal database and assigned fungal reads as ectomycorrhizal or non-mycorrhizal based on current taxonomic knowledge. We tested for associations between ectomycorrhizal abundance, climate, and soil carbon and nitrogen. Sites with greater soil carbon had quantitatively more ectomycorrhizal fungi within the soil microbial community based on fungal sequence abundance, after accounting for soil nitrogen availability. This is consistent with our hypothesis that ectomycorrhizal fungi induce nitrogen-limitation of free-living decomposers and thereby increase soil carbon storage. The strength of the mycorrhizal effect increased non-linearly with ectomycorrhizal abundance: the greater the abundance, the greater the effect size. Mean annual temperature, potential evapotranspiration, soil moisture and soil pH were also significant predictors in the final AIC selected model. This analysis suggests that molecular data on soil microbial communities can be used to make quantitative biogeochemical predictions. The

  16. Hydrogen storage on high-surface-area carbon monoliths for Adsorb hydrogen Gas Vehicle

    Science.gov (United States)

    Soo, Yuchoong; Pfeifer, Peter

    2014-03-01

    Carbon briquetting can increase hydrogen volumetric storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed hydrogen gas vehicle storage tank. To optimize hydrogen storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis atmosphere. We found that carbon-to-binder ratio and pyrolysis atmosphere have influences on gravimetric excess adsorption. Compaction temperature has large influences on gravimetric and volumetric storage capacity. We have been able to optimize these parameters for high hydrogen storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument.

  17. Carbon storage and sequestration by trees in urban and community areas of the United States

    International Nuclear Information System (INIS)

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m−2 of tree cover and sequestration densities average 0.28 kg C m−2 of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes). -- Highlights: •Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes. •Total tree carbon storage in U.S. urban and community areas is estimated at 1.36 billion tonnes. •Net carbon sequestration in U.S. urban areas varies by state and is estimated at 18.9 million tonnes per year. •Overlap between U.S. forest and urban forest carbon estimates is between 247 million and 303 million tonnes. -- Field and tree cover measurements reveal carbon storage and sequestration by trees in U.S. urban and community areas

  18. Preparation of Isolated Single-walled Carbon Nanotubes with High Hydrogen Storage Capacity

    Institute of Scientific and Technical Information of China (English)

    张艾飞; 刘吉平; 吕广庶; 刘华

    2006-01-01

    Isolated single-walled carbon nanotubes with high proportion of opening tips were synthesized by using alcohol as carbon source. The mechanism of cutting action of oxygen was proposed to explain its growth. Compared with carbon nanotubes synthesized with benzene as carbon source, their specific surface area was heightened by approximately 2.2 times (from 200.5 to 648 m2/g) and the hydrogen storage capacity was increased by approximately 6.5 times (from 0.95 to 7.17%, ω)which had exceeded DOE energy standard of vehicular hydrogen storage.

  19. Carbon storage and spatial distribution patterns of paddy soils in China

    Institute of Scientific and Technical Information of China (English)

    WANG Hongjie; LIU Qinghua; SHI Xuezheng; YU Dongsheng; ZHAO Yongcun; SUN Weixia; Jeremy Landon Darilek

    2007-01-01

    Carbon storage in agricultural soils plays a key role in terrestrial ecosystem carbon cycles.Paddy soil is one of the major cultivated soil types in China and is of critical significance in studies on soil carbon sequestration.This paper estimated the organic and inorganic carbon density and storage in paddy soils,and analyzed the paddy soil stock spatial distribution patterns in China based on subgroups and regions using the newly compiled 1:1 000 000 digital soil map of China as well as data from 1 490 paddy soil profiles.Results showed that paddy soils in China cover an area of about 45.69 Mhm2,accounting for 4.92% of total soil area in China.Soil organic and inorganic carbon densities of paddy soils in China showed a great heterogeneity.Paddy soil organic carbon densities (SOCD) in soil profile ranged from 0.53 to 446.2 kg/m2 (0 to 100 cm) while the paddy soil inorganic carbon densities (SICD) ranged from 0.05 to 90.03 kg/m2.Soil organic carbon densities of paddy soils in surface layer ranged from 0.17 to 55.38 kg/m2 (0 to 20 cm),with SICD of paddy soils ranging from 0.01 to 21.85 kg/m2.Profile based and surface layer based paddy soil carbon storages (SCS) are 5.39 Pg and 1.79 Pg,respectively.Paddy soil organic carbon storage (SOCS) accounts for 95% of the total carbon storage.Profile based and surface layer based SOCS of paddy soils are 5.09 Pg and 1.72 Pg,respectively.Soil inorganic carbon storage (SICS) of paddy soils accounts for 5% of the total carbon storage in China.Profile based and surface layer based paddy SICS are 0.30 Pg and 0.07 Pg respectively.Among all the eight paddy soil subgroups,hydromorphic,submergenic and percogenic paddy soils account for 85.2% of the total paddy soil areas all over China.Consequently,profile based carbon storages of these three subgroups account for 78.1% of the total profile based paddy SCS in China.Most paddy soils in China are distributed in the East-China,South-China and South-west China regions,therefore,92.6% of

  20. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  1. Norway's experience of carbon dioxide storage: a basis for pursuing international commitments?

    International Nuclear Information System (INIS)

    Does the Norwegian political landscape indicate advocacy of binding international carbon storage commitments in the foreseeable future? Norway's unique geology has understandably prompted a particular interest in the subject. This article analyses the interests and relative influence of the key domestic actors (the oil industry, environmental organizations, political parties and government bureaucracy) who wield influence in policy-making processes concerning carbon dioxide storage. Despite the level of interest aroused by the issue in Norway, the evidence suggests that policy will not move in the direction of an international carbon storage agreement. This is mainly because Norwegian policy-making in the field is dominated by the Ministry of Petroleum and Energy, whose current interests do not seem compatible with such a position. The fact that carbon storage can be developed in accordance with Norway's interests as a petroleum producer may, however, be a decisive factor for the political parties, government bureaucracy and the oil industry in the future. (author)

  2. Carbon capture and storage projects under the climate policy regime: The case of Halten CO2

    OpenAIRE

    Torvanger, Asbjørn; Rypdal, Kristin; Tjernshaugen, Andreas

    2007-01-01

    The report discusses institutional and policy issues associated with implementation of a planned carbon capture and storage plant in Mid-Norway under the international and national climate policy regime.

  3. Carbon Storage in Beech Stands on the Chřiby Uplands

    Directory of Open Access Journals (Sweden)

    Schneider Jiří

    2015-03-01

    Full Text Available The submitted scientific statement is a contribution to solutions of monitoring the storage of carbon in the woods and its emissions. Four permanent research plots were established in the area of the Chřiby uplands in the Czech Republic. The plots are made of forest stands with nearly 100% of European beech (Fagus sylvatica L.. The stands form simple spatial structures of about the same age (about 180 years. They represent, however, varying site conditions (dwarf acid beech stands, herb-rich beech stands and transitions between them. For quantification of carbon storage, standard dendrometric methods and the Field-Map technology were used. The total amount of carbon was established as the sum of further documented carbon storages in the aboveground biomass, the belowground biomass, woody debris and the forest soil. Determination of total amount of carbon was addressed in a version manner. In the first version, the estimate of the total amount of carbon was established based on Wutzler et al. (2008 equations for the aboveground biomass (AGB and the belowground biomass (BB. In the second version, the AGB was calculated according to Joosten et al. (2004, the BB according to Wirth et al. (2003, the values of storages were consistent with Mund (2004 for woody debris, and with Mackù in Kolektiv (2007 for forest soil. Total carbon storage per hectare of stand is in average 370.2 t. Obtained outcomes support the quantitative results of latest research related to carbon in the woods.

  4. Effect of Logging Operation on Soil Carbon Storage of a Tropical Peat Swamp Forest

    Directory of Open Access Journals (Sweden)

    Anton E. Satrio

    2009-01-01

    Full Text Available Problem statement: Since heavy machinery are used in the logging operation activity for extracting the logs on sensitive forest site with peat soil, environment destruction should be the other concern during its processes especially on its important function as soil carbon storage. The objective of this study was to determine whether logging operation affect soil carbon storage of a tropical peat swamp forest. Approach: Soil sampling was conducted before and after logging operation in a 0.3 ha plot to a depth of 15 cm. The soil samples were analyzed for acidity, organic matter content, total carbon, total nitrogen and total phosphorus. The humic acid extraction was also done and soil carbon storage values were obtained by calculation. Paired t-test was used to compare variables under the two treatments (before and after logging and correlation analysis was used to correlate variables such as soil pH, soil organic matter, total carbon, total nitrogen, total phosphorus, C/N ratio, C/P ratio, humic acid yield, unstable carbon and stable carbon. Results: The availability of unstable carbon and stable carbon controlled by soil acidity on undisturbed peat swamp forest as a result, the accumulation of unstable carbon as well as stable carbon occurred even if the soil pH declines and vice versa. However, stable carbon associated well with soil acidity. It was found that the C/P ratio positively correlated with humic acid and stable carbon of both before and after logging conditions. Nevertheless, that association was prominent on logged peat swamp forest. An indication that even though this peat swamp forest had been logged, humification was strongly maintained. However, the similarity of stable carbon of the logged peat swamp forest with stable carbon of undisturbed peat swamp forest indicate an ineffectiveness humification of logged peat swamp forest. Conclusion: Logging operation on sensitive forest with peat soil using heavy machinery increased the

  5. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage?

    Science.gov (United States)

    Wiley, Erin; Huepenbecker, Sarah; Casper, Brenda B; Helliker, Brent R

    2013-11-01

    There is no consensus about how stresses such as low water availability and temperature limit tree growth. Sink limitation to growth and survival is often inferred if a given stress does not cause non-structural carbohydrate (NSC) concentrations or levels to decline along with growth. However, trees may actively maintain or increase NSC levels under moderate carbon stress, making the pattern of reduced growth and increased NSCs compatible with carbon limitation. To test this possibility, we used full and half defoliation to impose severe and moderate carbon limitation on 2-year-old Quercus velutina Lam. saplings grown in a common garden. Saplings were harvested at either 3 weeks or 4 months after treatments were applied, representing short- and longer-term effects on woody growth and NSC levels. Both defoliation treatments maintained a lower total leaf area than controls throughout the experiment with no evidence of photosynthetic up-regulation, and resulted in a similar total biomass reduction. While fully defoliated saplings had lower starch levels than controls in the short term, half defoliated saplings maintained control starch levels in both the short and longer term. In the longer term, fully defoliated saplings had the greatest starch concentration increment, allowing them to recover to near-control starch levels. Furthermore, between the two harvest dates, fully and half defoliated saplings allocated a greater proportion of new biomass to starch than did controls. The maintenance of control starch levels in half defoliated saplings indicates that these trees actively store a substantial amount of carbon before growth is carbon saturated. In addition, the allocation shift favouring storage in defoliated saplings is consistent with the hypothesis that, as an adaptation to increasing carbon stress, trees can prioritize carbon reserve formation at the expense of growth. Our results suggest that as carbon limitation increases, reduced growth is not necessarily

  6. Effect of Logging Operation on Soil Carbon Storage of a Tropical Peat Swamp Forest

    OpenAIRE

    Anton E. Satrio; Seca Gandaseca; Ahmed, Osumanu H.; Nik M.A. Majid

    2009-01-01

    Problem statement: Since heavy machinery are used in the logging operation activity for extracting the logs on sensitive forest site with peat soil, environment destruction should be the other concern during its processes especially on its important function as soil carbon storage. The objective of this study was to determine whether logging operation affect soil carbon storage of a tropical peat swamp forest. Approach: Soil sampling was conducted before and after logging operation in a 0.3 h...

  7. Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition

    OpenAIRE

    Bacsa, Revathi; Laurent, Christophe; Morishima, Ryuta; Suzuki, Hiroshi; Le Lay, Mikako

    2004-01-01

    Carbon nanotubes, mostly single- and double-walled, are prepared by a catalytic chemical vapor deposition method using H2-CH4 atmospheres with different CH4 contents. The maximum hydrogen storage at room temperatures and 10 MPa is 0.5 wt %. Contrary to expectations, purification of the carbon nanotube specimens by oxidative acid treatments or by heating in inert gas decreases the hydrogen storage. Decreasing the residual catalyst content does not necessarily lead to an increase in ASH. Moreov...

  8. Effect of Precipitation Fluctuation on Soil Carbon Storage of a Tropical Peat Swamp Forest

    Directory of Open Access Journals (Sweden)

    Anton E. Satrio

    2009-01-01

    Full Text Available Problem statement: It is important to compare the effect of extremely different rainfall conditions on soil carbon storage of lowland tropical peat swamp forest. Therefore, under these natural rainfall gradient, the objectives of this study were to determine whether rainfall affects soil carbon storage of a tropical peat swamp forest and to determine what correlations between variables occurs which stimulate soil carbon storage changes of a tropical peat swamp forest. Approach: Soil sampling was conducted in two different plots (0.3 ha each plot to a depth of 15 cm under two extremely different mean rainfall at Sibu, Sarawak, Malaysia. The soil samples were analyzed for acidity, organic matter content, total carbon, total nitrogen and total phosphorus. The humic acid extraction was also done and soil carbon storage values were obtained by calculation. The calculation of carbon storage was by the bulk density method. Comparison between paired means of soil carbon storage under two different rainfall gradients were tested using paired t-test and correlation analysis was used to correlate variables (pH, soil organic matter, total carbon, total nitrogen, total phosphorus, C/N ratio, C/P ratio, humic acid yield, unstable carbon and stable carbon. Results: The percentage of stable carbon count of unstable carbon was 42.93% under lower rainfall, while that of higher rainfall was 62.69 %. It suggests that this natural tropical peat swamp forest plays an important role as a sink rather than a source of carbon under higher rainfall but inversely under lower rainfall. It also suggests that soil organic matter tends to decompose and releases CO2 by oxidation under lower rainfall. Stable carbon positively correlated with humic acid yield for the two areas with different rainfall (pConclusion: Anaerobic environment is more prominent under higher rainfall and may facilitate high value of soil carbon storage in the soil profile of tropical peat swamp forest and

  9. Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa’s Power Sector

    OpenAIRE

    Peter Viebahn; Daniel Vallentin; Samuel Höller

    2015-01-01

    This article presents an integrated assessment conducted in order to explore whether carbon capture and storage (CCS) could be a viable technological option for significantly reducing future CO2 emissions in South Africa. The methodological approach covers a commercial availability analysis, an analysis of the long-term usable CO2 storage potential (based on storage capacity assessment, energy scenario analysis and source-sink matching), an economic and ecological assessment and a stakeholder...

  10. Root biomass and carbon storage in differently managed multispecies temporary grasslands

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Mortensen, Tine Bloch; Søegaard, Karen

    2012-01-01

    Species-rich grasslands may potentially increase carbon (C) storage in soil, and an experiment was established to investigate C storage in highly productive temporary multi-species grasslands. Plots were established with three mixtures: (1) a herb mixture containing salad burnet (Sanguisorba minor...

  11. The role of Carbon Capture and Storage in a future sustainable energy system

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    This paper presents the results of adding a CCS(Carbon Capture and Storage) plant including an underground CO2 storage to a well described and well documented vision of converting the present Danish fossil based energy system into a future sustainable energy system made by the Danish Society of...

  12. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    Science.gov (United States)

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage. PMID:25796882

  13. Impacts of Soil Organic Stability on Carbon Storage in Coastal Wetlands

    Science.gov (United States)

    Williams, E. K.; Rosenheim, B. E.

    2015-12-01

    Coastal wetlands store vast amounts of organic carbon, globally, and are becoming increasingly vulnerable to the effects of anthropogenic sea level rise. Recently, we used ramped pyrolysis/oxidation decomposition characteristics as proxies for soil organic carbon (SOC) stability to understand the fate of carbon storage in coastal wetlands (fresh, brackish, and salt marshes) comprising the Mississippi River deltaic plain, undergoing rapid rates of local sea level rise. At equivalent soil depths, we observed that fresh marsh SOC was more thermochemically stable than brackish and salt marsh SOC. The differences in stability imply stronger carbon sequestration potential of fresh marsh soil carbon, compared to that of salt and brackish marshes. Here, we expand upon these results of differential organic carbon stability/reactivity and model how projected changes in salinity due to sea-level rise and other environmental changes will impact carbon storage in this region with implications globally.

  14. The Environmental and Economic Sustainability of Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Mayuran Sivapalan

    2011-05-01

    Full Text Available For carbon capture and storage (CCS to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and

  15. Assessing the economic potential of carbon capture and storage in Canada using an energy-economy model

    OpenAIRE

    Lutes, Kristin Marie

    2012-01-01

    In this paper I investigate the potential for large-scale deployment of carbon capture and storage in Canada. I collected data on carbon emission point sources across Canada and potential carbon storage sites to estimate how carbon capture and storage costs differ by industry, region and increasing cumulative production nationally. The economic costs for all three aspects—capture, transport and storage—are assembled into regional and national cost curves. These cost curves provide a detailed ...

  16. Hydrogen Storage using Physisorption : Modified Carbon Nanofibers and Related Materials

    NARCIS (Netherlands)

    Nijkamp, Marije Gessien

    2002-01-01

    This thesis describes our research on adsorbent systems for hydrogen storage for small scale, mobile application. Hydrogen storage is a key element in the change-over from the less efficient and polluting internal combustion engine to the pollution-free operating hydrogen fuel cell. In general, hydr

  17. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)

    2012-06-15

    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  18. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest.

    Science.gov (United States)

    Shen, Yong; Yu, Shixiao; Lian, Juyu; Shen, Hao; Cao, Honglin; Lu, Huanping; Ye, Wanhui

    2016-01-01

    Tropical forests play a disproportionately important role in the global carbon (C) cycle, but it remains unclear how local environments and functional diversity regulate tree aboveground C storage. We examined how three components (environments, functional dominance and diversity) affected C storage in Dinghushan 20-ha plot in China. There was large fine-scale variation in C storage. The three components significantly contributed to regulate C storage, but dominance and diversity of traits were associated with C storage in different directions. Structural equation models (SEMs) of dominance and diversity explained 34% and 32% of variation in C storage. Environments explained 26-44% of variation in dominance and diversity. Similar proportions of variation in C storage were explained by dominance and diversity in regression models, they were improved after adding environments. Diversity of maximum diameter was the best predictor of C storage. Complementarity and selection effects contributed to C storage simultaneously, and had similar importance. The SEMs disengaged the complex relationships among the three components and C storage, and established a framework to show the direct and indirect effects (via dominance and diversity) of local environments on C storage. We concluded that local environments are important for regulating functional diversity and C storage. PMID:27278688

  19. Accelerating the development and deployment of carbon capture and storage technologies : an innovation system perspective

    NARCIS (Netherlands)

    van Alphen, K.

    2011-01-01

    In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policy makers around the world. At present CCS is the only t

  20. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage

    NARCIS (Netherlands)

    Schakel, Wouter; Meerman, Hans; Talaei, Alireza; Ramírez, Andrea; Faaij, André

    2014-01-01

    Combining co-firing biomass and carbon capture and storage (CCS) in power plants offers attractive potential for net removal of carbon dioxide (CO2) from the atmosphere. In this study, the impact of co-firing biomass (wood pellets and straw pellets) on the emission profile of power plants with carbo