WorldWideScience

Sample records for carbon steel sheets

  1. Fatigue Property of Nano-grained Delaminated Low-carbon Steel Sheet

    Institute of Scientific and Technical Information of China (English)

    X. Li; T.F. Jing; M.M. Lu; R. Xu; B.Y. Liang; J.W. Zhang

    2011-01-01

    Tension-tension fatigue life tests on nano-grained delaminated Iow-carbon steel sheet under different fatigue loads are carried out to study the fatigue properties of the steel. The three-dimensional microstructures of the steel are observed by TEM. In addition, the morphology of the fatigue fracture of the specimen under different loads is observed by SEM. The results show that micro-cracks form on the weak interface of the nano-grained steel under Iow-stress conditions, which hinders the propagation of the main cracks and reduces the fatigue crack propagation rate, resulting in the extending fatigue life of the steel.

  2. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    OpenAIRE

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based o...

  3. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  4. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties. PMID:28067318

  5. Electroless plating of Ni-Zn(Fe)-P alloy on carbon steel sheets

    Institute of Scientific and Technical Information of China (English)

    WANG Sen-lin; WU Hui-huang

    2004-01-01

    The autocatalytic deposition of Ni-Zn(Fe)-P alloys were carried out on carbon steel sheets from bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effects of pH and mole ratio of NiSO4/ZnSO4 on the deposition rate and the composition of deposit were studied. It is found that the presence of zinc sulfate in the bath has an inhibitory effect on the alloy deposition. As a consequence, the mole fraction of zinc in the deposits never reaches high value, which is less than 18.0%. The structure and surface morphology of Ni-Zn(Fe)-P coatings were charactered by XRD and SEM. The alloys plated at all conditions consist of amorphous phase coexisting with a crystalline cubic Ni phase. The surface morphology of coating is dependent on the deposition parameters.

  6. Toward the production of 50 000 tonnes of low-carbon steel sheet for the LHC superconducting dipole and quadrupole magnets

    CERN Document Server

    Babic, S; Beckers, F; Brixhe, F; Peiro, G; Verbeeck, T

    2002-01-01

    A total of 50 000 tonnes of low-carbon steel sheet has been ordered for the LHC main magnets. After three years of production, about 10 000 tonnes of steel sheet have been produced by Cockerill-Sambre Groupe Usinor. This paper gives a summary of the manufacturing process and improvements implemented as well as an overview of the difficulties encountered during this production. Preliminary statistics obtained for the mechanical and magnetic steel properties are presented. (6 refs).

  7. Towards the production of 50'000 tonnes of low-carbon steel sheet for the LHC superconducting dipole and quadrupole magnets

    CERN Document Server

    Babic, S; Brixhe, F; Comel, S; Peiro, G; Verbeeck, T

    2002-01-01

    A total of 50'000 tonnes of low-carbon steel sheet has been ordered for the LHC main magnets. After three years of production, about 10'000 tonnes of steel sheet have been produced by Cockerill-Sambre Groupe Usinor. This paper gives a summary of the manufacturing process and improvements implemented as well as an overview of the difficulties encountered during this production. Preliminary statistics obtained for the mechanical and magnetic steel properties are presented.

  8. CYCLIC RECRYSTALLIZATION OF FERRITE IN HOT-ROLLED LOW-CARBON SHEET STEEL WITH STRUCTURETEXTURAL HETEROGENEITY

    Directory of Open Access Journals (Sweden)

    A. M. Nesterenko

    2009-01-01

    Full Text Available It is determined that in the process of soaking at subcritical temperature 680 °C in hot-rolled rolling of low-carbon steel 08 ps recrystallization is developed with heterogeneous fu ll repeat change of the steel ferrite change by its section.

  9. Advanced sheet steels for automotive applications

    Science.gov (United States)

    Fekete, James R.; Strugala, Donald C.; Yao, Zhicong

    1992-01-01

    Vacuum degassing has recently been used by sheet steel producers to improve their products' ductility and strength. Carbon contents can be reduced by an order of magnitude to less than 0.0030 wt.%. Through careful alloying and processing, a range of new steel products has been developed for the automotive industry. These products include interstitial-free, deep-drawing-quality steels; formable, high-strength, interstitial-free steels; and bake-hardenable steels. This article summarizes the chemistry and processing needed to produce these products.

  10. Joining of Low-Carbon Steel Sheets with Al-Based Weld

    Directory of Open Access Journals (Sweden)

    Boczkal G.

    2016-03-01

    Full Text Available The analysis of the connection steel/Al/steel made by resistance welding was performed. The used low-carbon steel had low content of carbon and other elements, aluminum was of 99.997 wt.% Al purity. Formation of various FeAl intermetallic phases found in the phase diagram depending on the duration of the process was analyzed. Two distinctively different types of structure depending on time of welding were observed: 1 hypoeutectic structure for samples processed for 5 s, and 2 eutectic structure for samples processed for 10 s and more. The shear test showed increase of mechanical properties of the connection for the samples welded 10 s.

  11. Three-dimensional study of dislocation substructures in punch-stretched, AK, DQ, low-carbon steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Ledezma, M.

    1986-05-01

    Dislocation substructures developed in Aluminum Killed (AK), Drawing Quality (DQ), Low Carbon steel sheets during the Limiting Dome Height (LDH) test are investigated. Thin foils parallel to the sheet plane, longitudinal and transverse sections for different strain ratios have been observed by Transmission Electron Microscopy (TEM). Analysis of the cellular structure in three-dimensions allows the determination of the orientations of the cell wall planes inside individual ferrite grains. The observed cell wall planes for different strain ratios and grain orientations are compared with active slip planes calculated by using the Sach's model for polycrystal deformation. Cell walls are found to be roughly parallel to calculated slip planes for the range of strain ratios considered. Discrepancies observed in negative strain ratio samples are explained in terms of the validity of the Sach's model free-grain assumption.

  12. Quenching and partitioning response of carbon-manganese-silicon sheet steels containing nickel, molybdenum, aluminum and copper additions

    Science.gov (United States)

    Kahkonen, Joonas

    In order to produce passenger vehicles with improved fuel economy and increased passenger safety, car manufacturers are in need of steels with enhanced strength levels and good formability. Recently, promising combinations of strength and ductility have been reported for several, so-called third generation advanced high-strength steels (AHSS) and quenching and partitioning (Q&P) steels are increasingly being recognized as a promising third generation AHSS candidate. Early Q research used conventional TRIP steel chemistries and richer alloying strategies have been explored in more recent studies. However, systematic investigations of the effects of alloying elements on tensile properties and retained austenite fractions of Q&P steels are sparse. The objective of the present research was to investigate the alloying effects of carbon, manganese, molybdenum, aluminum, copper and nickel on tensile properties and microstructural evolution of Q&P heat treated sheet steels. Seven alloys were investigated with 0.3C-1.5Mn-1.5Si (wt pct) and 0.4C-1.5Mn-1.5Si alloys used to study carbon effects, a 0.3C-5Mn-1.6Si alloy to study manganese effects, 0.3C-3Mn-1.5Si-0.25Mo and 0.3C-3Mn-1.5Si-0.25Mo-0.85Al alloys to study molybdenum and aluminum effects and 0.2C-1.5Mn-1.3Si-1.5Cu and 0.2C-1.5Mn-1.3Si-1.5Cu-1.5Ni alloys to study copper and nickel effects. Increasing alloy carbon content was observed to mainly increase the ultimate tensile strength (UTS) up to 1865 MPa without significantly affecting total elongation (TE) levels. Increasing alloy carbon content also increased the resulting retained austenite (RA) fractions up to 22 vol pct. Measured maximum RA fractions were significantly lower than the predicted maximum RA levels in the 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys, likely resulting from transition carbide formation. Increasing alloy manganese content increased UTS, TE and RA levels, and decreased yield strength (YS) and austenite carbon content (Cgamma) levels

  13. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  14. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    Ľ Ambriško; L Pešek

    2014-04-01

    The paper deals with an experimental determination of the stretch zone dimensions in the notch tip in thin steel sheets. The stretch zone dimensions depend on steel grade, on the rolling direction as well as on the loading rate. Stretch zones were observed and measured on three steel grades. Fracture area and stretch zones were analysed by SEM. Stable crack growth was monitored by videoextensometry techniques on CT (Compact Tension) specimens. Specimens were loaded under two loading rates by eccentric tension, whereby the deformation in the notch surrounding area was recorded using a non-contact measurement–videoextensometry technique. Linear relation between the stretch zone dimensions was determined.

  15. Ultrahigh Carbon Steels

    Science.gov (United States)

    Sherby, O. D.; Oyama, T.; Kum, D. W.; Walser, B.; Wadsworth, J.

    1985-06-01

    Recent studies and results on ultrahigh carbon (UHC) steels suggest that major development efforts on these steels are timely and that programs to evaluate prototype structural components should be initiated. These recent results include: the development of economical processing techniques incorporating a divorced eutectoid transformation, the improvement of room temperature strength and ductility by heat treatment, the enhancement of superplastic properties through dilute alloying with silicon, and the attainment of exceptional notch impact strength in laminated UHC steel composites manufactured through solid state bonding. The unique mechanical properties achieved in UHC steels are due to the presence of micron-size fer-rite grains and ultrafine spheroidized carbides.

  16. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  17. Local Laser Heat Treatments of Steel Sheets

    Science.gov (United States)

    Järvenpää, A.; Jaskari, M.; Hietala, M.; Mäntyjärvi, K.

    In this work UHS structural and abrasion resistant (AR) steels were heat treated with a single 4 kW Yb: YAG-laser beam. Aim of the softening heat treatments was to enhance the formability locally with minimized strength lose. 1.8 mm thick B24CR boron steel was used for hardening tests. Study presents the possibilities and limitations in laser processing showing that a single laser beam is suitable for heat treating of sheets through the whole cross-section up to the thickness of 6 mm. In the case of the 6 mm thick sheets, the achieved maximum temperature in the cross-section varies as a function of the depth. Consequently, the microstructure and mechanical properties differ between the surfaces and the center of the cross-section (layered microstructure). For better understanding, all layers were tested in tensile tests. The 10 mm thick sheet was heat treated separately on the both surfaces by heating to a lower temperature range to produce a shallow tempered layer. The tensile and bendability tests as well as hardness measurements indicated that laser heat treatment can be used to highly improve the bendability locally without significant strength losses. Laser process has been optimized by transverse scanning movement and with a simple FE-model.

  18. Vibration damping characteristics of laminated steel sheet

    Science.gov (United States)

    Chen, Y. S.; Hsu, T. J.; Chen, S. I.

    1991-03-01

    The use of laminated steel sheets as vibration damping materials was studied. The laminate consisted of a viscoelastic layer which was sandwiched between two steel sheets. The study sought to identify parameters affecting the damping efficiency of the laminate. Two viscoelastic materials, a copolymer based on ethylene and acrylic acid (PEAA) and polyvinyl butyral (PVB), were used. A frequency analyzer was used to measure the loss factor of the laminates. A theoretical analysis of damping efficiency based on a model described by Ungar[2] was also carried out. The results showed that the loss factor of the PEAA-based laminates increased monotonically with increasing thickness of the viscoelastic layer and leveled off at 25.9 pct of total thickness. Ungar’s theory predicted a higher loss factor than the experimental data. This might have resulted from interfacial adhesive bonding, a nonuniform viscoelastic layer thickness, and the extrapolation of the rheological data from low to high frequencies. The loss factor of the laminate increased with increasing temperature, reached a maximum value, and then decreased. An optimum temperature for maximum damping was found for each laminate configuration. The PEAA-based laminates possessed higher damping efficiency than the PVB-based laminates at room temperature. The symmetric laminate (with the same steel sheet thickness) possessed a better damping efficiency than asymmetric laminates. The maximum damping peak of the laminates using a polymer blend, when compared to the laminates using unblended resin, exhibited a lower loss factor value, became broader, and occurred at a temperature between the T g’s of the individual components of the polymer blend.

  19. Ultrahigh carbon steels, Damascus steels, and superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  20. Active Vibration Control of a Thin Steel Sheet

    Directory of Open Access Journals (Sweden)

    Yohji Okada

    1995-01-01

    Full Text Available The commercial rolling process used in the steel industry to manufacture thin steel sheets tends to cause plate vibrations that lower the quality of the surface finish. This article introduces a noncontact method of active vibration control for reducing the flexural vibrations of a thin steel sheet. The proposed electromagnetic method of control has been implemented in a simple experimental setup where the signal from a motion sensor regulates the attractive force of the magnets that produce a damping force on the steel sheet.

  1. History of ultrahigh carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  2. Surface topography evolvement of galvanized steels in sheet metal forming

    Institute of Scientific and Technical Information of China (English)

    HOU Ying-ke; YU Zhong-qi; ZHANG Wei-gang; JIANG Hao-min; LIN Zhong-qin

    2009-01-01

    U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental results indicate that the surface roughness values of the two galvanized steels increase with the number of forming, i.e., the surface topographies of galvanized steels are roughened in SMF. Moreover, GI steel has a better ability of damage-resistance than GA steel. The mechanisms of topography evolvement are different in the forming of GI and GA steels. Scratch is the main form of surface damage in the forming of GI steels. The severity of scratch can be decreased by increasing die hardness. GA steel results in exfoliating of the coating firstly and then severe scratching. The surface topography of galvannealed steels can be improved by increasing die hardness. However, the hardness should not be too high.

  3. FEM Simulation of Bending Formability for Laminate Steel/Resin/Steel Lightweight Composite Sheet

    Institute of Scientific and Technical Information of China (English)

    Guancheng Ll; Yonglin KANG

    2003-01-01

    The ANSYS simulation software was used to analyze the bending formability of laminate steel/resin/steel lightweight composite sheet. The skin steel at external side produces relative slipping-off change during the bending due to its composite structure. The internal stress strain states, materials effect tools parameters and intermediate layer resin of lightweight sheet on slipping-off change were analyzed. The spring back and shear stress state after bending have also been discussed.

  4. Steel Fibres: Effective Way to Prevent Failure of the Concrete Bonded with FRP Sheets

    Directory of Open Access Journals (Sweden)

    V. Gribniak

    2016-01-01

    Full Text Available Although the efficiency of steel fibres for improving mechanical properties (cracking resistance and failure toughness of the concrete has been broadly discussed in the literature, the number of studies dedicated to the fibre effect on structural behaviour of the externally bonded elements is limited. This experimental study investigates the influence of steel fibres on the failure character of concrete elements strengthened with external carbon fibre reinforced polymer sheets. The elements were subjected to different loading conditions. The test data of four ties and eight beams are presented. Different materials were used for the internal bar reinforcement: in addition to the conventional steel, high-grade steel and glass fibre reinforced polymer bars were also considered. The experimental results indicated that the fibres, by significantly increasing the cracking resistance, alter the failure character from splitting of the concrete to the bond loss of the external sheets and thus noticeably increase the load bearing capacity of the elements.

  5. Effect of Microstructures on Yield Strength in Hot-Stamped Steel Sheet

    Directory of Open Access Journals (Sweden)

    Tabata Shin-ichiro

    2015-01-01

    Full Text Available For automotive structural parts, hot stamping is being increasingly used because of the need for both higher fuel efficiency and crashworthiness. The yield strength of hot-stamped steel sheet is lower than that of water-quenched steel sheet. The microstructure of hot-stamped low-carbon steel sheet comprises lath martensite and retained austenite. Due to the slow cooling rate below the martensite start temperature, the martensite formed by hot stamping is auto-tempered. To clarify the factor dominating the yield strength of the hot-stamped steel, the authors herein investigated the effect of microstructures on the yield strength with heat-treated specimens at various cooling rates and heating temperatures. Consequently, it was clarified that the yield strength of the auto-tempered low-carbon steel depends on grain, dislocation, solute carbon, carbide, and retained austenite. As far as the present experiment is concerned, the retained austenite is the most effective factor on the yield strength.

  6. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  7. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-09-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  8. Ultrahigh Carbon Steel.

    Science.gov (United States)

    1984-10-01

    Steels have been utilized to prepare compacted powders of white cast iron (2 to 3%C) which exhibit superplastic be- havior at 650 0C and which are ductile ...strength and ductility than many of these commercially-avail- able steels. In particular, austempered fine-grained UHC steels exhibit good co7,binations of... Ductility of Rapidly Solidified White Cast Irons ", Powd. Metall., 26 (1983), pp. 155-160. (29) L. E. Eiselstein, 0. A. Ruano, J. Wadsworth, and 0. D

  9. Preparation of Antibacterial Color-Coated Steel Sheets

    Directory of Open Access Journals (Sweden)

    Guoliang Li

    2012-01-01

    Full Text Available A simple method to fabricate antibacterial color-coated steel sheet was presented. The Ag-loaded TiO2 was well dispersed in steel coil coating coupled with some special additives, such as plasticizer, wetting dispersant, and flow agent, and finally became the part of coil coating without any negative influence on the properties of final products. The best process parameters were obtained by substantive trial experiments. Ag-loaded TiO2 with the addition of 2% (w/w in steel coil coating not only improved antibacterial efficiency of the antibacterial color-coated sheet by reaching 99.99%, but also greatly increased the degradation percentage of methyl orange to 88% without decreasing physical properties. The antibacterial color-coated sheets are expected to be used as antimicrobial products in the construction industry considering its low cost and high effectiveness in inhibiting the growth of bacteria.

  10. The ultrasonic testing of the spot welded different steel sheets

    Directory of Open Access Journals (Sweden)

    M. Vural

    2006-08-01

    Full Text Available Purpose: Purpose of this paper is to investigate the applicability of spot welded different steel sheets toultrasonic testing, because resistance spot welding of the steel sheets is widely used in the car bodies andtransport fields and ultrasonic testing is a good way to evaluate the fatique life of the spot welds.Design/methodology/approach: Methodology of this paper is that two different steel sheets (AISI 304 typeaustenitic stainless steel sheet and Galvanized steel sheet were welded to each other by using resistance spotwelding. Some pre-welding tests were made to obtain suitable and optimum weld nugget diameter; and thewelding current vs. nugget diameter curve were obtained. By using this curve and kepting constant weldingparameters such as current, electrode pressure, weld time, etch., fully identical four spot welded specimenshaving 5 mm (±0.2 nugget diameter were obtained. The specimens and nugget diameters were tested by usinga special ultrasonic test apparatus which is designed for spot welded joints.Findings: Findings are that after the first ultrasonic tests, the four identical spot welded sheets which have AISI304 – Galvanized steel sheet combination were subjected to the fatigue test in four different number of cycles.There is no any rupture or fracture in spot welded joints after fatigue tests. The spot welded specimens subjectedto fatigue test were tested in ultrasonic test apparatus to observe the variation in the weld nugget and joint. Theultrasonic test results before fatigue and after fatigue were compared with each other; and the decreasing of theweld nugget diameter were observed while increasing the number of cycles. The results were shown in figuresand discussed.Research limitations/implications: Spot welding of different steel sheets forms different microstructures whichrespond different values to ultrasonic testing. Evaluation of these responses are quiet difficult.Practical implications: Only a few spot welds can be

  11. Dynamic characteristics of automotive steel sheets

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2016-10-01

    Full Text Available The aim of this experimental research was to perform an analysis of deformation characteristics on two different types of steel: IF steel, and micro-alloyed steel were used automotive industry. For that purpose changes of properties of these materials were carried out by static 10-3 · s-1 and dynamic 103 · s-1 strain rate assess its plastic properties. Vickers micro hardness test was carried out by the static and dynamic loading condition and describes different hardness distribution. The higher strain hardening of materials was obtained too that was confirmed by distribution of dislocations.

  12. Effect of niobium addition on mechanical properties of hot rolled TRIP-aided steel sheets for automotive application

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Shunichi [CBMM Asia Co., Ltd., Tokyo (Japan); Ikeda, Shushi [Kobe Steel Ltd. (Japan); Sugimoto, Koh-ichi [Shinshu Univ., Nagano (Japan); Miyake, Syugo [Kobelco Research Inst., Inc., Kakogawa (Japan)

    2005-07-01

    The application of advanced high strength steel sheets such as TRIP-aided steel and DP steel have been progressed to meet the automobile industry's need for weight reduction. Automobile makers have asked for formable high strength steel sheets of 780 MPa TS grade for suspensions and structural parts. TRIP-aided steel is one of the most promising candidates which contribute to both car weight reduction and the improvement of crash worthiness. Based on the above mentioned back ground, the development of high TS grade steel sheets was carried out by taking into account the addition of Nb and Mo to 0.2%C-1.5%Si-1.5%Mn steel and coiling conditions after hot rolling. In addition to hot rolling experiment, in order to understand the effect of alloying elements and bainite transformation condition exactly, cold rolled sheets were heat treated and tensile tested. The results reveal that the addition of 0.05%Nb can attain higher elongation with higher strength compared with Hb-free steel. The obtained tensile strength in this steel was higher than 780MPa. The same behavior was confirmed by the simulated heat treatment from austenite region annealing. The good ductility in 0.05%Nb containing steel was mainly obtained by large volume fraction and high carbon concentration of retained austenite. In addition, finely dispersed retained austenite made some contribution to the improvement of ductility. (orig.)

  13. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-09-28

    ... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... Korea and the antidumping duty orders on stainless steel sheet and strip from Germany, Italy, Japan... antidumping duty orders on stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico,...

  14. Research of cold-rolling oil for stainless sheet steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research & application of cold rolling oil for stainless sheet steel are introduced inthis paper. The results indicate that this oil has well properties of anti-wear, oxidation, emulsifyingand fine rust-preventing characteristics, it can meet the employable demands of SENDZIMIR highspeed rolling mill at all.

  15. Thermal Diffusivity of Traditional and Innovative Sheet Steels

    OpenAIRE

    2010-01-01

    The low carbon steels, used for the production of car bodies by deep drawing, are graduallu substituted by high strength steels for vehicle weight reduction. The drawn car body components are joined by welding and the welded points undergo a reduction of the local tensile strength. In developing an accurate welding process model, able to optimize process parameters and to predict the final local microstructure, a significant improvement can be given by the knowledge of the welded steels therm...

  16. Improvement of mechanical properties of steel sheet

    Institute of Scientific and Technical Information of China (English)

    Bashchenko; A.; P.; Knokhin; V.; G.; Beliavsky; P.; B.; Traino; A.; I.

    2005-01-01

    Consideration was given to some peculiarities of the resource-saving IDT-production that implements metallophysical principles of hot deformation effect upon the formation of martensite and perlite structures of alloy steels as well as upon their functional properties by way of DTT-cycling.

  17. Magnetic Properties and Workability of 6.5% Si Steel Sheet Manufactured by Siliconizing Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric compo nents, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable to increase the applications. Therefore the improvement of workability of 6.5% Si steel sheet was investigated, and the results were obtained as follows: (a) workability of 6.5% Si steel sheet is deteriorated by grain boundary oxidization, (b) grain boundary oxidization can be restrained by the addition of C. Workability and magnetic properties of 6.5% Si steel sheet with C addition are discussed. Furthermore, it was found that the work ability of high Si steel sheet was improved remarkably by varying the Si content gradient along the thickness without deterioration of high frequency magnetic properties. This newly developed magnetic gradient high Si steel sheet is also discussed.

  18. Forming limit strains of interstitial free-IF steel sheet

    Science.gov (United States)

    Bressan, José Divo; Moreira, Luciano Pessanha; Freitas, Maria Carolina dos Santos

    2016-10-01

    Present work examines mathematical models to predict the onset of localized necking in sheet metal forming of interstitial free steel, such as biaxial stretching and deep drawing. Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulation by FEM, of IF steel sheet was assessed experimentally by Nakajima testing and ASAME software. The "Map of Principal Surface Limit Strains - MPLS", shows the experimental FLC which is the plot of principal true strains in the sheet metal surface (ɛ1, ɛ2), occurring at critical points obtained in laboratory formability tests or in the fabrication process of parts. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and rupture by induced shear stress. Therefore, two kinds of limit strain curves can be plotted in the forming map: the local necking limit curve FLC-N and the shear stress rupture limit curve FLC-S. Localized necking is theoretically anticipated to occur by two mathematical models: Marciniak-Kuczynski modeling, hereafter named M-K approach, and D-Bressan modeling. In the M-K approach, local necking originates at an initial sheet thickness heterogeneity or defect fo = tob/toa. The strain state inside the evolving groove moves to plane strain and the limit strain ɛ1* is attained when the strain ɛ1a outside the groove or neck stop to increase. In the D-Bressan model, local necking is proposed to initiate at the instability point of maximum load, at a thickness defect (λ/μ)diffuse inside the grooved sheet thickness. The inception of visible grooving on the sheet surface evolves from instability point to localized (λ/μ)crit and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain-rate material by the effective current stress. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming normal anisotropy, was used to analyze the plasticity

  19. New tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Ceron, Ermanno

    the reluctance of industry in the application of new solutions, due to the high trial costs. This project presents a new methodology for testing new environmentally friendly tribo-systems for sheet metal forming of advanced high strength steels and stainless steels. For the purpose, a new Universal Sheet......The environmental issue, concerning the lubrication in sheet metal forming, has become considerably important in the past 10 years. Besides the fact that legislation is becoming more restrictive on the type of lubricant industry is allowed to use, many companies are embracing the path of social...... responsibility and sustainability, which implies a careful application of environmentally friendly technology. On the other hand the global market requires more and more complex products, which ignites a chain reaction that affects the whole life cycle of the product. Regarding sheet metal forming, this means...

  20. Fatigue Properties of Galvanized Higher-Strength Steel Sheets

    Directory of Open Access Journals (Sweden)

    Buršák, M.

    2007-01-01

    Full Text Available The paper analyzes the fatigues properties of galvanized microalloyed steel sheets H220LAD and H380LAD. Under flat bending conditions and the symmetrical cycle, the fatigue limit of the H220LAD sheet is σCo = ± 152 MPa and that of the H380LAD sheet is σCo = ±188 MPa, and the fatigue limit to tensile strength ratio is 0,41 and 0,37, respectively. During fatigue tests with an increasing number of cycles or an increasing stress value, the degradation of the zinc coating increases (relief formation, damage of integrity. As a result, local corrosion, but also continuation of fatigue damage after 107 cycles, and hence corrosion fatigue, can take place during operation.

  1. Properties, Microstructures and Precipitate Morphology of Hot-rolled Interstitial-Free (IF) Steel Sheets

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to simplify production process and to decrease production cost of thicker cold-rolled IFsteel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in α region. In this paper, properties, microstructures and precipitate morphology of hot-rolled IF steel sheets are described..

  2. 75 FR 81308 - Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan

    Science.gov (United States)

    2010-12-27

    ... COMMISSION Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan AGENCY... steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan. SUMMARY: The Commission... sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to lead...

  3. Failure Mechanism of Laminated Damping Steel Sheet during Tensile-Shearing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The tensile-shear failure zone of the laminated damping steel sheet was investigated by scanning electron microscopyand X-ray photoelectron spectroscopy. It is found that there exists cohesive failure in polymer sandwich and sub-boundary failure between the steel sheet and the polymer. The sub-boundary layer is dominantly polymer material.The tensile-shear failure of the laminated damping steel sheet is a process during which the crazes form, grow upand merge into cracks.

  4. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  5. Acoustic emission characteristics on microscopic damage behavior of carbon fiber sheet reinforced concrete

    Science.gov (United States)

    Lee, Jin Kyung; Lee, Joon Hyun

    2002-05-01

    In this study, a three-point bend test has been carried out to understand the damage progress and the micro-failure mechanism of carbon fiber sheet (CFS) reinforced concretes. For these purposes, four kinds of specimens were used; unreinforced concrete, steel bar reinforced concrete, CFS reinforced concrete, and concrete reinforced by both steel bar and CFS. Acoustic Emission (AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of the specimens.

  6. Laser Welding Of Thin Sheet Of AISI 301 Stainless Steel

    Science.gov (United States)

    Vilar, R.; Miranda, R. M.

    1989-01-01

    Preliminary results of an investigation on laser welding of AISI 301 stainless steel thin sheet are presented. Welds were made with a CO2 continuous wave laser, varying power density and welding speed. The welds were studied by optical and electron scanning microscopy, X-ray diffraction and hardness tests. Experimental results show that under appropriate conditions, sound welds are obtained, with a negligeable heat affected zoneanda fine microstructure in the fusion zone. The fusion zone shows a cellular - dendritic microstructure, with austenite and ferrite as the major constituents. Ferrite, whose content is 5 to 7%, is predominantly intradendritic with both vermicular and acicular morphologies. However some interdendritic ferrite may also be present. The characteristics of the structure suggest that the solidification mode of AISI 301 stainless steel is essentially ferritic.

  7. Texture and microstructure of the austenite in multiphased steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Regle, H. [ARCELOR Group, CMC-IRSID, Maizieres-les-Metz (France); Maruyama, N.; Yoshinaga, N. [Nippon Steel Corp. - Technical Development Bureau, Futtsu (Japan)

    2004-07-01

    In this paper we present results obtained in collaboration between NSC and Arcelor on the austenite of a multiphased steel and on a 70%Ni-30Fe alloy. The work concerns the formation of the crystallographic textures during the recrystallisation of austenite, since these textures have a strong influence, after the phase transformation, on the forming properties of the sheets. The microstructure and the textures of the austenite and the FeNi alloy were measured with X-Ray diffraction techniques and with EBSD on a high resolution FEG-SEM. (orig.)

  8. Bauschinger effect and springback behavior of dual phase sheet steels

    Science.gov (United States)

    Ma, Hongwei

    2007-09-01

    With the increasing use of advanced high strength steels in the automotive industry, springback control has become a more critical issue. It is now realized that a more accurate simulation of springback has to take the Bauschinger effect into account, especially when sheet experiences complicated plastic deformation. In this study, the Bauschinger effect in dual-phase (DP) steels was investigated through tension-unloading-reloading tests. Fundamental mechanisms of the Bauschinger effect were examined via two special experiments: (i) TEM study of the dislocation distribution at the different plastic pre-strains in Bauschinger tests; and (ii) residual stress measurement after different tensile strains using in-situ neutron diffraction technology. To investigate the influence of the Bauschinger effect on springback, deep-draw bending tests were carried out with the different friction conditions. The experimental results of the tension-unloading-reloading tests show the Bauschinger effect in DP steel is much stronger than that in interfacial-free (IF) steel. TEM observation revealed very strong interactions between dislocations and martensite in DP steels. In-situ neutron diffraction tests show that the residual strains caused by inhomogeneous deformation of the two phases in DP steel after deformation are much higher than those in IF steels. The above results support the observation of a strong Bauschinger effect in DP steels. A composite model based on the analysis of internal stress shows further clearly that the residual stresses are the predominant mechanism of the Bauschinger effect in DP steels. A newly defined Bauschinger energy parameter (E beta) was found to be able to quantitatively describe this transient softening before reversed loading. The unloading responses showed the total recovery comes not only from elastic recovery but also from inelastic recovery. An effective unloading modulus was therefore introduced to reflect the inelastic recovery. Based on

  9. Plain carbon steel bipolar plates for PEMFC

    Institute of Scientific and Technical Information of China (English)

    WANG Jianli; SUN Juncai; TIAN Rujin; XU Jing

    2006-01-01

    Bipolar plates are a multifunctional component of PEMFC. Comparing with the machined graphite and stainless steels, the plain carbon steel is a very cheap commercial metal material. In this paper, the possibility of applying the plain carbon steels in the bipolar plate for PEMFC was exploited. In order to improve the corrosion resistance of the low carbon steel in the PEMFCs' environments,two surface modification processes was developed and then the electrochemical performances and interfacial contact resistance (ICR) of the surface modified plate of plain carbon steel were investigated. The results show that the surface modified steel plates have good corrosion resistance and relatively low contact resistance, and it may be a candidate material as bipolar plate of PEMFC.

  10. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    Science.gov (United States)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  11. 75 FR 30437 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-06-01

    ... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan. SUMMARY: The... strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to lead to continuation...

  12. 76 FR 46323 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2011-08-02

    ... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan... from Germany, Italy, and Mexico \\2\\ would not be likely to lead to continuation or recurrence of... with respect to stainless steel sheet and strip from Germany, Italy, and Mexico, and Commissioner...

  13. Multilayer Mg: Stainless Steel Sheets, Microstructure, and Mechanical Properties

    Science.gov (United States)

    Inoue, Junya; Sadeghi, Alireza; Kyokuta, Nobuhiko; Ohmori, Toshinori; Koseki, Toshihiko

    2017-02-01

    Different multilayer Mg AZ31 and SS304L steel sheet combinations were prepared with different volume fractions of Mg. Isolated stress-strain curves of the Mg layers showed significant improvements in the strength and elongation of multilayer samples. Results indicated that in the most extreme situation with the lowest Mg volume fraction (V f = 0.39), the ultimate strength was increased by 25 pct to 370 MPa and the elongation was improved by 70 pct to 0.34. Investigation of the fracture surface showed that failure occurs by the coalescence of cracks close to the interface region. The improved strength of the multilayer samples was due to the combined effect of surface crack prevention by the steel layer and the higher work-hardening rate caused by the possible increased activity of non-basal systems. It is suggested that the stronger work-hardening behavior and the enhanced activity of non-basal systems in the multilayer samples were due to the formation of new stress components in the transverse direction. The larger the volume fraction of steel in the multilayer, the longer the distance remaining unstrained before the UTS.

  14. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, David K [CSM/ASPPRC; Thomas, Larrin S [CSM/ASPPRC; Taylor, Mark D [CSM/ASPPRC; De Moor, Emmanuel [CSM/ASPPRC; Speer, John G [CSM/ASPPRC

    2015-08-03

    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. In response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.

  15. Design recommendations for long span composite slabs with deep profiled steel sheets

    NARCIS (Netherlands)

    Brekelmans, J.W.P.M.; Daniels, B.J.; Hove, B.W.E.M. van; Koukkari, H.; Stark, J.W.B.; Schuurman, R.G.

    1997-01-01

    As part of the ECSC research project `Steel intensive shallow floor construction', design recommendations for long span composite slabs with deep profiled steel deck have been drafted. These deep profiled steel sheets have depths of at least 200 mm. Test results and design recommendations are presen

  16. Laser brazing with filler wire for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaosong; Li Liqun; Chen Yanbin; Zhou Shanbao

    2005-01-01

    The process properties and interface behavior of CO2 laser brazing with automatic wire feed for galvanized steel sheets were investigated , in which the brazing filler metal was CuSi3 and no flux was used. As to the appearance quality of the brazing seams, the roles of the processing parameters, such as brazing speed, wire feeding rate, inclination and feeding direction of the wire, laser power, spot diameter and heating position, were assessed. The further investigation indicates that the behavior of the active elements Si, Mn and Zn are significantly influenced by energy input. At the interface, the microstructure of the base metal was composed of columnar crystals and the acicalar α solid solution was found on the filler metal side.

  17. Numerical Design of Drawbeads for Advanced High Strength Steel Sheets

    Science.gov (United States)

    Keum, Y. T.; Kim, D. J.; Kim, G. S.

    2010-06-01

    The map for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is numerically investigated and its application is introduced. The bending limit of AHSS sheet is determined from the extreme R/t's obtained simulating numerically the plane-strain process formed by the cylindrical punches and dies with various radii. In addition, the forming allowance defined by the difference between FLC0 and the strain after passing the drawbead, which is observed by the numerical simulation of drawbead pulling test, is computed. Based on the bending limit and forming allowance, the design map for determining the height, width, and shoulder radius of the drawbead which are key parameters in the drawbead design and depend on the restraining force is constructed by aid of the equivalent drawbead model. A drawbead of the stamping die for forming a channel-typed panel is designed by using the design map, and the formability and springback of the panel to be formed are numerically evaluated, from which the availability of the design map is demonstrated.

  18. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  19. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  20. Ten years of Toarcian argillite - carbon steel in situ interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dauzeres, Alexandre [IRSN, PRP-DGE/SRTG/LETIS, BP 17, 92262 Fontenay-aux-Roses cedex (France); Maillet, Anais [IRSN, PRP-DGE/SRTG/LETIS, BP 17, 92262 Fontenay-aux-Roses cedex (France); UMR CNRS 7285, IC2MP, Batiment B35 - 5, avenue Albert Turpain, 86022 Poitiers cedex (France); Gaudin, Anne [UMR CNRS 6112, LPGN, 2 rue de la Houssiniere, BP 92208, 44322 Nantes cedex 3 (France); El Albani, Abderrazak; Vieillard, Philippe [UMR CNRS 7285, IC2MP, Batiment B35 - 5, avenue Albert Turpain, 86022 Poitiers cedex (France)

    2013-07-01

    In situ interaction experiments over periods of 2, 6, and 10 years between Toarcian argillite and carbon steel discs were carried out in the Tournemire Underground Research Laboratory (URL), yielding a dataset of the materials' geochemical evolution under conditions representative of the future geological disposal of high-level long-lived radioactive wastes. The carbon steel discs were exposed to corrosion due to trapped oxygen. The corrosion rates indicate that the oxidizing transient lasted between 2 and 6 years. A systematic dissolution of calcium phases (Ca-smectite sheets in I/S and calcite) was observed in the iron diffusion halos. The iron release induced mineralogical dissolution and precipitation reactions, which partly clogged the argillite porosity. (authors)

  1. Internal force analysis of steel sheet pile cofferdam by considering the construction "path" effect

    Directory of Open Access Journals (Sweden)

    Dong LIANG

    2016-04-01

    Full Text Available In the process of installing inner support, the force loaded on the steel sheet pile is continuous, that is, the installation of inner support always happens after the accumulative deformation caused by inside and outside pressure difference of the steel sheet pile cofferdam. Taking the steel sheet pile cofferdam construction of a specially long span bridge as example, the paper puts forwards a spatial model of steel sheet pile cofferdam considering the construction “path” based on ANSYS. The model calculation result and the actual measurement result are compared. The results show that the model based on considering the “path” effects has a more similar calculating result with the measured value.

  2. Convert Graphene Sheets to Boron Nitride and Boron Nitride-Carbon Sheets via a Carbon-Substitution-Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Han, W.; Yu, H.-G.; Liu. Z.

    2011-05-16

    Here we discuss our synthesis of highly crystalline pure boron nitride (BN) and BN-carbon (BN-C) sheets by using graphene sheets as templates via a carbon-substitution reaction. Typically, these sheets are several micrometers wide and have a few layers. The composition ratios of BN-C sheets can be controlled by the post-treatment (remove carbon by oxidation) temperature. We also observed pure BN and BN-C nanoribbons. We characterized the BN-C sheets via Raman spectroscopy and density functional theory calculations. The results reveal that BN-C sheets with an armchair C-BN chain, and embedded C{sub 2} or C{sub 6} units in BN-dominated regions energetically are the most favorable.

  3. EIS Response of MIC on Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Maahn, Ernst

    1998-01-01

    Abstract Microbially influenced corrosion of carbon steel under sulphate reducing (sulphide-producing) bacterial activity (SRB) results in the formation of both ferrous sulphides as well as biofilm on the metal surface. The electrochemical characteristics of the ferrous sulphide/steel interface...... as compared to the biofilm/ferrous sulphide/steel interface has been studied with EIS, DC polarisations (Tafel, LPR) and a potentiostatic step technique. The electrochemical response is related to a threshold sulphide concentration above which very characteristic changes such as indications of finite...... response from the metal surface....

  4. Strategic surface topographies for enhanced lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten Sixten; Olsson, David Dam; Petrushina, Irina

    2010-01-01

    Strategic stainless steel surfaces have been developed for which the tribological properties are significantly improved for sheet-metal forming compared with the as-received surfaces. The improvements have been achieved by modification of the surface to promote Micro-Plasto Hydrodynamic Lubrication....... The technique, which has been developed, is based on an electrochemical treatment changing the topography of the stainless steel surface. Comparative testing of the new surface topographies in ironing and deep drawing of stainless steel sheet shows significant improvements and possibilities of replacing...

  5. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...... of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive...

  6. 钢板和碳纤维布加固不同损伤状态下受弯构件的荷载试验研究%Load Experiment of Flexural Members Reinforced by Steel Plate and Carbon Fiber Sheet in Different Damaged States

    Institute of Scientific and Technical Information of China (English)

    王保定; 薛保贵; 翟科玮

    2014-01-01

    Based on the destructive load experiment of the flexural members by steel plate and carbon fiber sheet in sound state and normal service limit damaged state,the deflection,crack and strain development status and changes of the flexural members reinforced by steel plate and carbon fiber sheet were studied. Comparing the difference of the bending bearing limit capacity,and other indicators with flexural members each other by different way of strengthening in sound state and normal service limit damaged state,evaluating the reinforcement effect comprehensively,the results show as follows. Two kinds of reinforcement measures have significant effect in improving the flexural capacity of the reinforced concrete flexural members in different damaged states. But the effect in sound state is superior to that in damaged state. The effect of the reinforcement by steel plate is superior to that by carbon fiber sheet.%基于钢板加固和碳纤维布加固完好状态下和正常使用极限损伤状态下的受弯构件的破坏荷载试验,研究钢筋混凝土受弯构件在采用粘贴钢板加固和粘贴碳纤维布加固措施后,其挠度、裂缝及应变等的发展变化规律。对比分析完好状态下和正常使用极限损伤状态下采用不同的加固方式,受弯构件极限承载力提高幅度的差异并将受弯构件的其他力学控制指标进行对比分析,综合检验评定其加固效果。试验结果表明:两种加固措施对提高在不同损伤状态下的钢筋混凝土受弯构件的抗弯承载力都具有显著效果,但完好情况下的加固效果优于受损情况,钢板加固措施优于碳纤维布加固。

  7. Investigation of Surface Damage in Forming of High Strength and Galvanized Steel Sheets

    Institute of Scientific and Technical Information of China (English)

    Zhongqi Yu; Yingke Hou; Haomin Jiang; Xinping Chen; Weigang Zhang

    2009-01-01

    Powdering/exfoliating of coatings and scratching are the main forms of surface damage in the forming of galvanized steels and high strength steels (HSS), which result in increased die maintenance cost and scrap rate.In this study, a special rectangular box was developed to investigate the behavior and characteristics of surface damage in sheet metal forming (SMF) processes.U-channel forming tests were conducted to study the effect of tool hardness on surface damage in the forming of high strength steels and galvanized steels (hot-dip galvanized and galvannealed steels).Experimental results indicate that sheet deformation mode influences the severity of surface damage in SMF and surface damage occurs easily at the regions where sheet specimen deforms under the action of compressive stress.Die corner is the position where surface damage initiates.For HSS sheet, surface damage is of major interest due to high forming pressure.The HSS and hot-dip galvanized steels show improved ability of damage-resistance with increased hardness of the forming tool.However, for galvannealed steel it is not the forming tool with the highest hardness value that performs best.

  8. Research of Mold Powder for Ultra-Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explained the mechanism of carbon pickup byultra-low-carbon steels during continuous casting and indicated that the major cause of carbon pickup is the contact of the molten steel with the enriched-carbon layer of the powder. Forming of the enriched-carbon layer is due to the existing of “carbon core”. Accordingly, the measures to reduce the carbon content and amount of the enriched-carbon layer were investigated. A kind of new powder has been developed and successfully used to minimize the carbon pickup by ultra-low carbon steels during continuous casting.

  9. Experimental Analysis of the Feasibility of Shaving Process Applied for High-Strength Steel Sheets

    Directory of Open Access Journals (Sweden)

    Wiriyakorn Phanitwong

    2016-01-01

    Full Text Available In recent years, the engineered materials were developed to improve their mechanical properties. A high-strength steel sheet is one of them, developed to serve the requirement of reducing weight of vehicles. Therefore, as a new material, many researches have been carried out to examine the use of sheet metal forming process applied for high-strength steel sheet. However, the feasibility of shaving process applied for it has not been investigated yet. In the present study, this feasibility was revealed by using experiments on two types of high-strength steel sheets: SAPH 440 and SPFH 590Y (JIS. The relationship between shaved surface feature and shearing clearance of high-strength steel sheets corresponded well with those of their conventional metal sheets. However, due to the high ultimate strength of these materials, it was revealed in this present study that there were not any suitable conditions of shaving process that could be applied to achieve the requirements of smooth cut surface overall material thickness.

  10. Dynamic Material Property Measurement of Steel Thin Sheets using Laser-Based Ultrasonics

    Science.gov (United States)

    Nagata, Y.; Yamada, H.; Hashiguchi, S.; Lim, C. S.; Park, H. C.; Huh, H. J.; Kang, M. K.; Oh, K. J.

    2014-06-01

    A material property measurement system for steel sheets using laser-based ultrasonics was developed. The system consists of a pulsed Nd:YAG laser for ultrasonic generation and multi-channel interferometer coupled with a CW single frequency laser for ultrasonic detection. The system can measure the frequency of the S1 Lamb wave mode of zero group velocity (S1f) as well as the longitudinal resonance frequencies without ablative damage to the steel surface. It was confirmed that Poisson's ratio could be directly obtained by combining the measured S1f value and the longitudinal resonance frequencies. To evaluate the applicability of this system in an actual steel production setting, the system was installed in hot rolling pilot plant that produces steel samples. As a result, it was demonstrated that the system can measure dynamic changes in Poisson's ratio values within steel sheets, even in the hot rolling pilot plant environment. Material property data, such as Poisson's ratio, during the thin sheet production process will be very useful for manufacturing high value-added steel, such as sheets with uniform quality.

  11. Contact Pressure Effect on Frictional Characteristics of Steel Sheet for Autobody

    Science.gov (United States)

    Han, S. S.; Kim, D. J.

    2011-08-01

    The high strength steel (HSS) is widely used in auto body part due to its advantage of weight reduction. The usage of HSS extends the range of contact pressure than that of mild steel's and makes it is not disregardable fact that the effect of contact pressure on frictional characteristics of steel sheet. To investigate the influence of contact pressure on frictional behavior of steel sheet, the flat type friction test with high strength bare steel sheet was conducted under various contact pressures. According to the test result, the relationship between contact pressure and friction coefficient shows U shape. When the contact pressure is lower than 10 MPa, the friction coefficient was slightly decreased as contact pressure was increased. However the amount of decrement was very small. Above 10 MPa contact pressure the friction coefficient was increased as the contact pressure was increased and the amount of increment of friction coefficient was not negligible. This study shows that the effect of contact pressure on frictional behavior of steel sheet is very big, especially on HSS stamping which has the wide range of contact pressure.

  12. Bimetallic layered castings alloy steelcarbon cast steel

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2011-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast processso-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic carbon cast steel, whereas working part (layer is plate of austenitic alloy steel sort X10CrNi 18-8. The ratio of thickness between bearing and working part is 8:1. The quality of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  13. The distribution of carbon in steels

    Energy Technology Data Exchange (ETDEWEB)

    Nechaev, Yurii S, E-mail: yuri1939@inbox.ru

    2011-05-31

    The nature and characteristics of the way carbon present in steel is distributed spatially and over states may be related to quasichemical 'reactions' that lead to the formation in austenite ({gamma}-Fe-C) and ferrite ({alpha}-Fe-C) of 'carbo-austenite' and 'carbo-ferrite molecules' (nanocomplexes) consisting, along with C atoms, of, respectively, {gamma}-Fe or {alpha}-Fe and of octahedral {gamma}- or {alpha}-interstitials. In this way, various aspects of the quasichemical dissolution and diffusion 'reactions' of carbon in the material can be determined, as can the quasichemical component of the martensite transformation (MT) mechanism in carbon steels. (reviews of topical problems)

  14. Aluminizing Low Carbon Steel at Lower Temperatures

    Institute of Scientific and Technical Information of China (English)

    Xiao Si; Bining Lu; Zhenbo Wang

    2009-01-01

    This study reports the significantly enhanced aluminizing behaviors of a low carbon steel at temperatures far below the austenitizing temperature, with a nanostructured surface layer produced by surface mechanical attrition treatment (SMAT). A much thicker iron aluminide compound layer with a much enhanced growth kinetics of η-Fe2Al5 in the SMAT sample has been observed relative to the coarse-grained steel sample. Compared to the coarse-grained sample, a weakened texture is formed in the aluminide layer in the SMAT sample. The aluminizing kinetics is analyzed in terms of promoted diffusivity and nucleation frequency in the nanostructured surface layer.

  15. Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet

    Science.gov (United States)

    Zu, Guoqing; Zhang, Xiaoming; Zhao, Jingwei; Wang, Yuqian; Yan, Yi; Li, Chengang; Cao, Guangming; Jiang, Zhengyi

    2017-02-01

    Three 4.5 wt% Si steel thin sheets with different thicknesses were efficiently fabricated by twin-roll strip casting, warm rolling and cold rolling followed by final annealing. A comprehensive investigation from the workability of the as-cast strip to the magnetic property of the produces was performed to illustrate the superiority of the new materials. The results show that the as-cast strip, which has a much lower Vickers hardness than that of the 6.5 wt% Si steel, is suitable for rolling processing. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirm that no ordering phase exists in the as-cast strip. The cold-rolled thin sheets exhibit good surface quality without edge cracks. Furthermore, all the three 4.5 wt% Si steel thin sheets possess relative strong //ND texture and present high magnetic inductions and low iron losses after finial annealing.

  16. On-line r value determination of deep drawing steel sheet

    Institute of Scientific and Technical Information of China (English)

    MAO Weimin

    2007-01-01

    A potential,rapid and accurate technology to determine r value of deep drawing steel sheets was investigated.The amount of pole figure data which should be measured is reduced drastically because of the pole figure symmetry.The necessary pole figures data carl be collected holistically by the X-ray area detectors,after which the volume fraction of the texture components in Gaussian forms is obtained.According to the volume fraction of the texture components,the r value of the steel sheets can be then calculated rapidly and accurately based on the reaction stress deformation model,while some other effecting factors beside texture are also included.The rapid and accurate determination technology overcomes the shortages of current technologies which emphasize either more on velocity or more on accuracy,and can be applied to the on-line r value determination of deep drawing steel sheet.

  17. Effect of Al coating conditions on laser weldability of Al coated steel sheet

    Institute of Scientific and Technical Information of China (English)

    Jung-Han LEE; Jong-Do KIM; Jin-Seok OH; Seo-Jeong PARK

    2009-01-01

    Al coated steel sheets with excellent heat resistance, thermal reflection, and corrosion resistance are widely used in various applications. The laser weldability of the Al coated steel sheet for full penetration welding was reported. The phenomenon caused by intermixed aluminum and behavior of aluminum in the weld were investigated. Al coated steel sheets that have various thickness and coating mass were prepared for laser welding. The effects of parameters such as welding conditions and Al coating conditions were investigated. Al content mixed in the weld after laser welding was evaluated, and then a correlation between the mixed Al and mechanical properties was investigated. The results show that the Al-rich zones which have Fe-Al intermetallic compounds are found in the weld. The intermetallic compounds cause the decreased strength of the weld.

  18. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  19. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  20. Aplicación del rayo láser de CO2 para soldar laminas de acero bajo carbono // Application of the ray laser of CO2 to weld sheets of steel low carbon

    Directory of Open Access Journals (Sweden)

    Enrique J. Martínez D

    1999-07-01

    very thin sheets is facilitated, that which difficultly is achieved withthe processes common of welding. This technique also presents the advantage that easily you can automate, producing weldings ofhigh precision with low contamination.The study consists on carrying out an investigation on the process of welding of thin sheets using a laser of CO2 of low power incontinuous way, focusing the laser with a lens of ZnSe and using industrial argon to control the atmosphere around the treated regionand to avoid the oxidation. To carry out the process, you design a device for ' to displace the sample at 45o with regard to thetrajectory of the ray laser in precise form; the welding was carried out to it collides and without material contribution.The work was carried out on sheets of steel of low coal of caliber 24 and 26. The welded samples were subjected to: tractionrehearsal, visual analysis, analysis metalográfico and microdureza tests. The obtained results show that it can be carried out theprocess easily, by means of the control of the most important variables, in such a way that once established, the operator doesn't needa great experience in the handling of this technique to carry out the process with high quality. The carried out analyses confirm thatby means of this technique it is possible to obtain uniform welding cords, with good mechanical properties.Key words: Welding, laser.

  1. Individual Grain Orientation and Heterogeneous Deformation in Cold-deformed Interstitial-Free Sheet Steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cold rolling deformation textural evolution of an interstitial-free (IF) steel sheet is investigated by experiment and simulation. The microstructure of the IF steel is observed by transmission electron microscopy (TEM). The relationship between the deformation behavior of individual grain and the grain orientation are connected by Taylor factor M. The results show that the grains with higher Taylor factor are deformed slighter than those with lower ones. By considering the heterogeneous deformation, the texture simulation result can be greatly improved.

  2. Experimental survey on the behaviour of AISI 304 steel sheets subjected to perforation

    OpenAIRE

    2010-01-01

    This paper presents and analyzes the behaviour of AISI 304 steel sheets subjected to perforation under a wide range of impact velocities. The relevance of this steel resides in the potential transformation of austenite into martensite during mechanical loading. This process leads to an increase in strength and ductility of the material. It makes the AISI 304 attractive for many engineering applications, especially for building structural elements responsible for absorbing energy under fast lo...

  3. Nanostructure-based Processes at the Carbonizing Steels

    Directory of Open Access Journals (Sweden)

    L.I. Roslyakova

    2015-12-01

    Full Text Available The studies of nanostructure-based processes carburizing steels showed that oxidizing atmosphere when carburizing steel contains along with carbon dioxide (CO2 + C = 2CO molecular and atmospheric oxygen (O2 + 2C = 2CO; O + C = CO released from the carbonate ВаСОз during its thermal dissociation. Intensive formation of CO provides high carbonizing ability of carbonate-soot coating and steel.

  4. 75 FR 62104 - Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the Republic of Korea, and...

    Science.gov (United States)

    2010-10-07

    ... International Trade Administration Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the... antidumping duty orders on certain stainless steel sheet and strip in coils from Germany, Italy, Japan, the... amended (the Act). The Department has conducted expedited (120-day) sunset reviews for the Germany,...

  5. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  6. Estimation of tensile shear strength of spot welded joint of steel sheets. 1st report. Resistance spot welded joint strength of steel sheets; Usukohan supotto yosetsu tsugite no hippari sendan tsuyosa no suitei. 1st report. Teiko supotto yosetsu tsugite no tsuyosa

    Energy Technology Data Exchange (ETDEWEB)

    Kabasawa, M.; Funakawa, Y.; Ogawa, K. [NKK Corp., Tokyo (Japan); Tamura, M. [Kokan Keisoku Co. Ltd., Tokyo (Japan)

    1996-11-05

    Recently, use of thinner steel sheets was promoted with their higher strength for weight reduction of car body in the car industry, and also use of higher strength steel sheets was proceeded to improve its collision safety. Among such a condition, estimation of strength of the most fundamental single spot welding joint becomes important because body and parts strengths are mainly occupied by the strength of the welded joint. As relationships between shear strength and strength, thickness and nugget diameter of the steel sheets were investigated uptodate and a lot of empirical equations were obtained, a result obtained by numerical analysis was individual, and empirical equations obtained in conventional studies were narrow in their applied regions and could not be forecast for their application limits. In this study, for a joint obtained by a welding condition corresponding to A class of Japan Welding Society standard WES7301, as an object of low carbon steel sheet containing more than 0.03% of carbon widely used for the car body, an experimental equation to estimate tensile shear strength specified in JIS Z3136 from sheet thickness, mother material feature and nugget diameter was induced. 10 refs., 17 figs., 4 tabs.

  7. Mirage effect from thermally modulated transparent carbon nanotube sheets

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ali E; Baughman, Ray H [Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Gartstein, Yuri N, E-mail: Ali.Aliev@utdallas.edu [Department of Physics, University of Texas at Dallas, Richardson, TX 75083 (United States)

    2011-10-28

    The single-beam mirage effect, also known as photothermal deflection, is studied using a free-standing, highly aligned carbon nanotube aerogel sheet as the heat source. The extremely low thermal capacitance and high heat transfer ability of these transparent forest-drawn carbon nanotube sheets enables high frequency modulation of sheet temperature over an enormous temperature range, thereby providing a sharp, rapidly changing gradient of refractive index in the surrounding liquid or gas. The advantages of temperature modulation using carbon nanotube sheets are multiple: in inert gases the temperature can reach > 2500 K; the obtained frequency range for photothermal modulation is {approx} 100 kHz in gases and over 100 Hz in high refractive index liquids; and the heat source is transparent for optical and acoustical waves. Unlike for conventional heat sources for photothermal deflection, the intensity and phase of the thermally modulated beam component linearly depends upon the beam-to-sheet separation over a wide range of distances. This aspect enables convenient measurements of accurate values for thermal diffusivity and the temperature dependence of refractive index for both liquids and gases. The remarkable performance of nanotube sheets suggests possible applications as photo-deflectors and for switchable invisibility cloaks, and provides useful insights into their use as thermoacoustic projectors and sonar. Visibility cloaking is demonstrated in a liquid.

  8. The Effect of Grinding and Polishing Procedure of Tool Steels in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Lindvall, F.; Bergström, J.; Krakhmalev, P.

    2010-01-01

    The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface...... 40 and Vanadis 6 and up to ten different grinding and polishing treatments were tested against AISI 316 stainless steel. The tests showed that an optimum surface preparation might be found at the transition between abrasive and adhesive wear....

  9. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  10. Processing of Ultralow Carbon Pipeline Steels with Acicular Ferrite

    Institute of Scientific and Technical Information of China (English)

    Furen XIAO; Mingchun ZHAO; Yiyin SHAN; Bo LIAO; Ke YANG

    2004-01-01

    Acicular ferrite microstructure was achieved for an ultralow carbon pipeline steel through the improved thermomechanical control process (TMCP), which was based on the transformation process of deformed austenite of steel.Compared with commercial pipeline steels, the experimental ultralow carbon pipeline steel possessed the satisfied strength and toughness behaviors under the current improved TMCP, although it contained only approximately 0.025% C, which should mainly be attributed to the microstructural characteristics of acicular ferrite.

  11. Thermal Transport Properties of Dry Spun Carbon Nanotube Sheets

    Directory of Open Access Journals (Sweden)

    Heath E. Misak

    2016-01-01

    Full Text Available The thermal properties of carbon nanotube- (CNT- sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an IR Camera. The heat flux of CNT-sheet was compared to that of copper, and it was found that the CNT-sheet has significantly higher specific heat transfer properties compared to those of copper. CNT-sheet is a potential candidate to replace copper in thermal transport applications where weight is a primary concern such as in the automobile, aircraft, and space industries.

  12. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    Science.gov (United States)

    Gaworska-Koniarek, Dominika; Szubzda, Bronisław; Wilczyński, Wiesław; Drosik, Jerzy; Karaś, Kazimierz

    2011-07-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  13. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel

    2010-01-01

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool...... degradation was analysed by the strip reduction test, simulating resistance to galling during ironing. It was shown that the surface condition of both the tools and the sheet metal was of importance to the galling resistance. Numerical simulations of the experimental tests were compared with the experimental...

  14. Comparative Structural Strength Research of Hardened Carbon Steel and Hot-Rolled Alloy Steel

    Science.gov (United States)

    Bogomolov, A. V.; Zhakupov, A. N.; Kanayev, A. T.; Sikach, I. A.; Tugumov, K. K.

    2016-08-01

    Experiments on quantitative evaluation of fatigue strength showed that St5ps and St5sp carbon steels with A400 strength class can be fully applied for erection of constructions and buildings having cyclical loads during operation. Study of corrosion resistance of hardened carbon steel in comparison with hot-rolled alloy steel consists in difference in structures and hence, difference in intensity of electric and chemical processes featuring presence of steel in concrete. Structure of St5sp steel with A400 strength class in surface area has significantly less corrosion rate than ferritic-perlitic structure of 35GS steel with A400 strength class.

  15. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

    Science.gov (United States)

    Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan

    2017-04-01

    Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

  16. Wear of soft tool materials in sliding contact with zinc coated steel sheet

    NARCIS (Netherlands)

    Heide, van der E.; Burlat, M.; Bolt, P.J.; Schipper, D.J.

    2003-01-01

    In order to reduce costs of tooling for press operations, efforts are made to use alternative tool materials like wood or plastic. Friction and wear characteristics in sliding contact with zinc-coated steel sheet could, however, limit the applicability of these tool materials for automotive applicat

  17. 76 FR 18518 - Stainless Steel Sheet and Strip in Coils From Mexico: Rescission of Antidumping Duty...

    Science.gov (United States)

    2011-04-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Stainless Steel Sheet and Strip in Coils From Mexico: Rescission of..., Department of Commerce. SUMMARY: In response to a request from an interested party, the Department...

  18. An automated system for the measurement of magnetostriction in electrical steel sheet under applied stress

    CERN Document Server

    Anderson, P I; Stanbury, H J

    2000-01-01

    The design of an automated system for the rapid assessment of the AC magnetostriction in electrical steel sheet under linear applied stress in the range +-10 MPa is described in detail. Typical results are presented showing the effect of induction on the unstressed material together with plots of the harmonics of magnetostriction and specific total loss versus applied stress.

  19. Development of strategic surface topographies for lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten; Olsson, David Dam; Petrushina, Irina

    2004-01-01

    Strategic stainless steel surfaces have been developed by which the tribological properties are significantly improved for sheet metal forming compared to as received surfaces. The improvements have been achieved by modification of the surface in order to promote micro-plasto hydrodynamic lubrica...

  20. Effect of Mo Content on Microstructure and Property of Low-Carbon Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Haijiang Hu

    2016-07-01

    Full Text Available In this work, three low-carbon bainitic steels, with different Mo contents, were designed to investigate the effects of Mo addition on microstructure and mechanical properties. Two-step cooling, i.e., initial accelerated cooling and subsequent slow cooling, was used to obtain the desired bainite microstructure. The results show that the product of strength and elongation first increases and then shows no significant change with increasing Mo. Compared with Mo-free steel, bainite in the Mo-containing steel tends to have a lath-like morphology due to a decrease in the bainitic transformation temperature. More martensite transformation occurs with the increasing Mo, resulting in greater hardness of the steel. Both the strength and elongation of the steel can be enhanced by Mo addition; however, the elongation may decrease with a further increase in Mo. From a practical viewpoint, the content of Mo could be ~0.14 wt. % for the composition design of low-carbon bainitic steels in the present work. To be noted, an optimal scheme may need to consider other situations such as the role of sheet thickness, toughness behavior and so on, which could require changes in the chemistry. Nevertheless, these results provide a reference for the composition design and processing method of low-carbon bainitic steels.

  1. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    Energy Technology Data Exchange (ETDEWEB)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  2. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    Boogaard, van den A.H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress tr

  3. Friction stir processing on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Sergei Yu., E-mail: tsy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, Alexander G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Rubtsov, Valery E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring the wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively.

  4. The uncertainties of magnetic properties measurements of electrical sheet steel

    CERN Document Server

    Ahlers, H

    2000-01-01

    In this work, uncertainties in measurements of magnetic properties of Epstein- and single-sheet samples have been determined according to the 'Guide To The Expression Of Uncertainty In Measurement', [International Organization for Standardization (1993)]. They were calculated for the results at predicted values of parameters taking into account the non-linear dependences. The measurement results and the uncertainties are calculated simultaneously by a computer program.

  5. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Experimental optimisation of the gas-assisted laser cutting of thick steel sheets

    Science.gov (United States)

    Malikov, A. G.; Orishich, Anatolii M.; Shulyat'ev, Viktor B.

    2009-06-01

    We report on the experimental optimisation of the oxygen-assisted CO2 laser cutting of low-carbon sheet steel 5 to 25 mm in thickness. It is shown that the cut edge roughness is minimal when the energy input per unit volume of the material removed and the incident beam power per unit sheet thickness remain constant at ~20 J mm-3 and ~200 W mm-1, respectively, over the entire range of sheet thicknesses examined. The corresponding Péclet number is Pe = 0.5. These results can be used to determine the optimal beam power and cutting speed for a particular sheet thickness. At sufficiently large thicknesses, the conditions that ensure the minimum roughness can be written in the form of relations between nondimensional parameters.

  6. Reducing the Variability of HSLA Sheet Steels (TRP 9807)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Anthony J. DeArdo

    2004-03-12

    The sensitivity of the yield strength of a 70 ksi HSLA steel to changes in processing variables was investigated using a laboratory hot-rolling mill. Along with a detailed examination of the hot-rolled microstructures, auxiliary experiments were conducted to determine how the decomposition of the austenite phase and the occurrence of ultra-fine precipitate formation could account for the yield strength variability. A set of guidelines was recommended for the reduction of the yield strength variability.

  7. Crack branching in carbon steel. Fracture mechanisms

    Science.gov (United States)

    Syromyatnikova, A. S.; Alekseev, A. A.; Levin, A. I.; Lyglaev, A. V.

    2010-04-01

    The fracture surfaces of pressure vessels made of carbon steel that form during crack branching propagation are examined by fractography. Crack branching is found to occur at a crack velocity higher than a certain critical value V > V c . In this case, the material volume that is involved in fracture and depends on the elastoplastic properties of the material and the sample width has no time to dissipate the energy released upon crack motion via the damage mechanisms intrinsic in the material under given deformation conditions (in our case, via cracking according to intragranular cleavage).

  8. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    Science.gov (United States)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  9. Effect of Friction on the Drawing Process of Hot-Galvanized Sheet Steel

    Institute of Scientific and Technical Information of China (English)

    Hongying GONG; Wei ZHU; Zhiliang ZHANG; Zhenliang LOU

    2005-01-01

    A probe test method was employed to detect the friction condition of the interfaces between tools and blank. At the same time a self-developed measurement apparatus to realize the probe test method was also presented. Based on the analysis of force, a correlative friction model was also given. With the self-developed measurement apparatus,the effects of three kinds of lubricating oils which were in common use during the process of sheet steel drawing were studied. By probing the friction coefficient values of different lubricating oils during the drawing process of the hot-galvanized sheet steel (steel brand: ST07Zn), we can see that the friction caused by PK oil was the lowest, so the effect of PK oil was the best. Then PK oil was used as the base lubricating oil and some solid additive powers was added into it to make a new type lubrication (named as L oil).The result of test proved that the new lubricating oil had remarkable effect on the drawing process of hot-galvanized sheet steel.

  10. STUDY OF TEXTURE EFFECT ON STRAIN LOCALIZATION OF BCC STEEL SHEETS

    Institute of Scientific and Technical Information of China (English)

    Xie Chunlei; Eiji Nakamachi; Dong Xianghuai

    2000-01-01

    Using elastic crystalline viscoplastic finite element (FE) annlysis, the formability of BCC steel sheets was assessed. An orientation probability assignment method in the FE modeling procedure, which can be categorized as an inhomogenized material modeling, was newly proposed. In the study, the crystal orientations of three materials, mild steel, dual phase steel and the high strength steel, were obtained by X ray diffraction and orientation distribution function (ODF) analyses. The measured ODF results have revealed clearly different textures in the sheets, featured by orientation fibers, skeleton lines and selected orientations in Euler angle space, which are closely related to the plastic anisotropy. Then, the crystal orientations were assigned to FE integration points by using this ODF data, individually. The FE analyses of the standard lim iting dome height(LDH) test show how the fiber textures affect the extent of strain localization in the forming processes. It was confirmed by comparison with experimental results that this FE code could predict the ex treme strain localization and assess the sheet formability.

  11. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets

    Science.gov (United States)

    Liu, Xiaofang; Cui, Xinrui; Liu, Yiding; Yin, Yadong

    2015-10-01

    A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the catalytic efficiency. The advantages of this ultra-stable architecture together with the densely dispersed catalytic sites were demonstrated by their high stability and superior catalytic activity in reducing hydrophilic 4-nitrophenol and hydrophobic nitrobenzene.A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the

  12. Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction

    Directory of Open Access Journals (Sweden)

    Thierry Belgrand

    2010-10-01

    Full Text Available This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature.

  13. Finite element analysis for delamination of laminated vibration damping steel sheet

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; CHEN Jun; TANG Bing-tao

    2007-01-01

    The material structure of laminated vibration damping steel sheet(LVDSS) was introduced in detail. An interface cohesive model between the skin sheets was developed by using a contact/interface approach, and the model was applied to simulate "T"-peel and lap-shear processes of LVDSS. The interface contact stress distribution during the "T"-peel and lap-shear processes is obtained, and the finite element analysis(FEA) results agree satisfactorily with the corresponding experimental results. As a result, the model is suitable to simulate the cohesive of LVDSS

  14. Effects of plating factors on morphology and appearance ofelectrogalvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    Hiroaki NAKANO

    2009-01-01

    Because the lightness, the gloss and the press-formability of electrogalvanized steel sheets change depending on the morphology of deposited Zn, control of this factor is essential to improving these properties. The effects of plating factors on the morphology of deposited Zn were systematically discussed both from the crystallographic viewpoint of epitaxy between Zn and steel and from the electrochemical viewpoint of the overpotential for Zn deposition. Plating factors include crystal orientation of steel substrate, current density, flow rate, temperature, addition of inorganic compounds to the solution and pre-adsorption of organic compounds. These plating factors affect the overpotential for Zn deposition and epitaxy between Zn and steel. The crystal orientation index of the Zn basal plane and the platelet crystal size of Zn are decreased with increasing the overpotential for Zn deposition. They are also decreased with decreasing the epitaxy between Zn and steel, even when the overpotential is kept constant. When the overpotential for Zn deposition is increased, the surface roughness of deposited Zn increases because of an increase in the inclination of the Zn basal plane to the steel substrate. When the epitaxy between Zn and steel is decreased without changing the overpotential, the surface roughness is reduced due to the decrease in platelet crystal size of Zn, although the inclination of the Zn basal plane is somewhat increased. The lightness of deposited Zn is enhanced with decreasing the surface roughness of Zn.

  15. Thermoplastic liners for carbon steel pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mauyed S.; AlDossary, Abdullah K. [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-12-19

    Materials selection for pipe and fittings used to convey corrosive fluids has often been a challenge. Traditionally, exotic Corrosion Resistant Alloys (CRA) have been used in corrosive environments despite their high cost. Plastic lined carbon steel piping offers a cost effective alternative to the use of CRAs by eliminating corrosion, significantly reducing the use of toxic chemicals and the heavy metal usually present in CRAs. Thermoplastic Liners offer the combination of corrosion resistance and mechanical strength, which are unachievable with singular materials. Under pressure conditions, the liner is fully supported by the metalwork, while under vacuum conditions, the liner must be thick enough along with venting system to withstand the collapsing forces created by the negative pressure. Plastic liners have been used successfully to line and protect metallic pipelines for many years and have become an indispensable requirement of the oil and gas industry particularly with water injection and hydrocarbon services. In the case of internally corroded pipes, the use of thermoplastic liners for rehabilitation is an option to extend the lifetime of companies' assets, reduce maintenance cost and increase intervals between T and Is. For new construction, plastic liners in carbon steel pipes can compete technically and economically with pipelines of CRA materials and other corrosion inhibition systems. This paper describes various design features, installations of thermoplastic liners in comparison to other corrosion inhibition methods. (author)

  16. Tribological study in roll forming of lean duplex stainless steel sheets

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Strogaard; Bay, Niels

    2012-01-01

    focus on tribological issues are galling and pick-up formation as well as tool life in roll forming of stainless duplex steel sheets. The roll forming process is exemplified by production of an s-shaped profile used in interlock carcass production for flexible pipes used in off-shore oil extraction...... are relatively low and surface expansion is more or less non-existent, long roll forming production runs imply large sliding/contact lengths due to relative movement between steel strip and rolls. This requires an efficient tribological system to prevent pick-up formation on the forming tools. The present work...

  17. The measurement of magnetic properties of electrical sheet steel - survey on methods and situation of standards

    CERN Document Server

    Sievert, J

    2000-01-01

    A brief review of the different requirements for magnetic measurement techniques for material research, modelling of material properties and grading of the electrical sheet steel for trade purposes is presented. In relation to the main application of laminated electrical steel, this paper deals with AC measurement techniques. Two standard methods, Epstein frame and Single Sheet Tester (SST), producing different results, are used in parallel. This dilemma was analysed in detail. The study leads to a possible solution of the problem, i.e. the possibility of converting the results of one of the two methods into the results of the other in order to satisfy the users of the Epstein method and, at the same time, to improve the acceptance of the more economical SST method.

  18. Analysis of Orange Peel Defect in St14 Steel Sheet by Electron Backscattered Diffraction (EBSD)

    Institute of Scientific and Technical Information of China (English)

    Shengquan CAO; Jinxu ZHANG; Jiansheng WU; Jiaguang CHEN

    2005-01-01

    In this paper, the orange peel defect in the surface range of the st14 steel sheet has been investigated using the electron backscattered diffraction (EBSD) technique. It has been found that the orange peel defect in the st14steel sheet was resulted from the local coarse grains which were produced during hot-rolling due to the critical deformation in dual-phase zone. During deep drawing, the coarse grains with {100}<001> microtexture can slip on the {112}<111> slip system to form bulging and yields orange peel defects, while the coarse grains with {112}<110>orientation do not form the defect as the Schmid factor of {112}<111> slip system in it equals zero.

  19. An analysis of the causes of complaintsabout steel sheets in metallurgical product quality management systems

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-01-01

    Full Text Available The publication presents the causes of complaints about metallurgical products, illustrated with an example of steel sheets, with a particular focus on the reasons having their source in the human factor. The publication has been based on direct research and analysis of complaints made available by a metallurgical plant. The obtained results have been enriched with theoretical considerations on quality management systems for metallurgical products.

  20. Four-point bending test of the Bauschinger effect in prestrained IF steel thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hiroyuki, E-mail: hkato@eng.hokudai.ac.jp [Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Sasaki, Kazuaki [Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Mori, T. [National Defense Academy, Yokosuka 239-0811 (Japan)

    2015-08-26

    The Bauschinger effect in a 1 mm thick sheet of interstitial free (IF) steel was examined by tensile testing (prestraining) and subsequent four-point bending. The effect was absent when the prestrain was below 4% and was present when the prestrain was above 4%. The Bauschinger effect parameter determined the elastic back stress which developed after prestraining. The occurrence of back stress coincided with the development of dislocation cell structures, observed with transmission electron microscopy.

  1. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    Directory of Open Access Journals (Sweden)

    Yao Yao

    2015-04-01

    Full Text Available Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs.

  2. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics.

    Science.gov (United States)

    Yao, Yao; Glisic, Branko

    2015-04-07

    Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs.

  3. Integrated modeling of steel refining, casting and rolling operations to obtain design set points for quality steel sheet production

    Science.gov (United States)

    Gupta, Akash; Kumar, Prabhash; Anapagaddi, Ravikiran; Reddy, Niranjan; Goyal, Sharad; Singh, A. K.; Padmanabhan, K. A.

    2013-05-01

    Non-metallic inclusions are defects present in steel which disrupt the homogeneity of structure and adversely affects the mechanical properties. To some extent silo approach based mathematical models have been successfully used to modify and control inclusions in steel making but very few attempts have been made to deal with these processes in integrated framework. With computational advancement and high promising potential of ICME (Integrated Computational Materials Engineering), physics based models can be integrated which will lead to overall increase of process understanding, control and eventually to better properties and performance of material. The objectives of the present work are: (a) using CFD based models understand the influence of various design and process parameters on inclusion removal during secondary steel making, (b) using FEM model study the effects of type and characteristics of inclusions during solid state forming operations, and finally (c) integrate these models in order to develop an integrated modeling framework. This integrated framework will determine the extent up to which inclusions can be tolerated in downstream processes without affecting the quality and properties of final steel sheet significantly and suggest modifications in upstream processes if inclusions are above acceptable limit.

  4. Numeric analysis of the global stiffness of group purlin-sheeting in lateral steel panels

    Directory of Open Access Journals (Sweden)

    Renato Bertolino Junior

    2008-08-01

    Full Text Available This paper presents an evaluation of the behaviour of lateral panels of steel buildings starting from computational modeling using the purlin-sheeting group in the longitudinal contention. The sheeting was fastened on 2nd and 5th waves and also in all waves. The sheeting was fastened in purlin and this system connected in the frame of the building to guarantee the functionality as a rigid panel, action diaphragm. It was also verified the behaviour of lateral panels, with traditional braced system using the same dimensions of the panels diaphragm. The panel was analyzed with dimensions of 4.0, 5.0, 6.0 and 7.0 meters, using the software SAP2000NonLinear. The results showed an increment of 84% related to the system traditional braced.

  5. Failure Investigation for QP Steel Sheets under uniaxial and Equal-Biaxial Tension Conditions

    Science.gov (United States)

    Zou, Danqing; Li, Shuhui; He, Ji; Cui, Ronggao

    2016-08-01

    The Quenching and Partitioning (QP) steel sheet is new generation material to induce phase transformation for plasticity in forming vehicle parts. The phase transformation is strongly stress state dependent behavior in experiments, which should affect the failure timing and limit strain in forming processes. In this paper, Nakajima test with QP980 and DP1000 steel sheets under equal-biaxial loading condition is performed for failure behavior. X-ray diffraction (XRD) is adopted to obtain the volume fraction of retained austenite (fA). Digital Image Correlation (DIC) is used to record the surface strain field and its evolution during equal-biaxial tension deformation. The same level Dual Phase (DP) steel is also employed for the purpose of comparison. The results show that phase transformation in QP steel gives small impact on failure strain under equal biaxial tension condition which is contradicted with our understanding. It suggests that failure behavior under uniaxial tension of QP980 is strongly phase transformation dependent. But it shows almost independent under equal biaxial tension condition.

  6. In Search of the Attributes Responsible for Sliver Formation in Cold Rolled Steel Sheets

    Science.gov (United States)

    Mohanty, Itishree; Das, Prasun; Bhattacharjee, Debashish; Datta, Shubhabrata

    2016-06-01

    Surface quality is one of the most important characteristics of cold rolled (CR) steel sheets for its application in consumer goods industries. The actual cause of sliver formation is very difficult to determine, as it is revealed only after the final cold rolling of the steel. A thorough investigation on searching the root cause of sliver formation in CR steel is done here using several statistical tools towards mining the industrial data for extraction of knowledge. As the complex interactions between the variables make it difficult to identify the cause, it is seen that findings from different techniques differed to a certain extent. Still it is revealed that 21 variables could be short listed as major contributor for sliver formation, but those are found to be from all the areas of the processing. This leads to the conclusion that no particular process variable or particular processing could be held responsible for sliver formation.

  7. Effect of Temper Rolling on Tensile Properties of Low-Si AI-Killed Sheet Steel

    Institute of Scientific and Technical Information of China (English)

    MA Qing-long; WANG Dong-cheng; LIU Hong-min; LU Hai-ming

    2009-01-01

    The tensile properties of steel after temper rolling are affected by the reduction;low-Si Al-killed sheet steel was taken to study the effect of temper rolling on the tensile properties.The results indicate that the yield strength first decreases with the increase of reduction,and then increases.The relationship between the yield strength and the reduction can be expressed using quadratic function.The tensile strength increases with the increase of the reduction,while the total elongation decreases with the increase of the reduction,and the relationship between them and the reduction can be expressed using power function.Under the same condition,the results also indicate that the yield strength and tensile strength of steels across the rolling direction are all larger than those along the rolling direction; there is no obvious distinction between the total elongation along the rolling direction and that across the rolling direction.

  8. Medium carbon vanadium micro alloyed steels for drop forging

    Energy Technology Data Exchange (ETDEWEB)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-12-31

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author) 17 refs., 19 figs., 5 tabs.

  9. Corrosion behaviour of the welded steel sheets used in automotive industry

    Directory of Open Access Journals (Sweden)

    D. Katundi

    2010-02-01

    Full Text Available Purpose: of this paper is to characterise the corrosion resistance in the steel sheets (Hot dip galvanizing of steel sheets used in automotive industry. In fact, corrosion of automotive components by road salt is a widely known problem. The different parts under the car body and the interior surface of body panels suffer easily from the corrosive products deposited on roads and used mainly to melt snow. A comparison in a chemical investigation of the corrosion rate for base metals (without welding and welded steel is required. Therefore, conformity will be accomplished between the corrosion phenomena in simulated corrosion tests and those in actual cars.Design/methodology/approach: Simulated corrosion tests, wet/humidity test and hot dust/dry cycle talk test carried on in laboratory conditions was investigated quantitatively. Dynamic behaviour of the corroded specimens have been tested dynamically to simulate under the crash test conditions.Findings: Studies carried out on the vast corroded samples have shown that the pitting corrosion damage and crack initiation sites have began and propagated generally in the HAZ in the welded steel sheets (Tailored welded blanks - TWB.Research limitations/implications: This paper contains partially results of a common research project. Some limitations exist in application of hot dust/dry cycle talk to the real open air test conditions. All of these results were carried out in the laboratory conditions.Practical implications: The problem is of extreme importance to all academic, scientific, manufacturing, maintenance and industrial societies. The outcome of the proposed study will contribute to the industrial application of ARCELOR-MITTAL. The proposed study will be benefit not only for the car industry and steel makers, but also important for the other industrial applications. The proposed research can be employed in a broad range of applications in oil and natural gas industries. This project will promote

  10. Parametric study on numerical simulation of the electromagnetic forming of DP780 steel workpiece with aluminium driver sheet

    Science.gov (United States)

    Park, Hyeonil; Lee, Jinwoo; Kim, Se-Jong; Lee, Youngseon; Kim, Daeyong

    2016-08-01

    The purpose of this study is to investigate the influences of numerical parameters on the electromagnetic forming (EMF) simulation. The 3-dimensional coupled electromagnetic- mechanical simulations were conducted to predict the deformation behavior of the advanced high strength steel (AHSS) sheet receiving support in EMF with aluminum driver sheet. Dual phase (DP) 780 steel workpiece was formed into a hemi elliptical protrusion shape with aluminum alloy AA1050 driver sheet using a flat spiral coil actuator and open cavity die. The deformed shape of the DP780 workpiece and the computation time with respect to element size, N cycle number and time step of electromagnetic (EM) solver were analysed.

  11. Electrochemical Studies of Nitrate-Induced Pitting in Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, P.E.

    1998-12-07

    The phenomenon of pitting in carbon steel exposed to alkaline solutions of nitrate and chloride was studied with the cyclic potentiodynamic polarization technique. Open-circuit and pitting potentials were measured on specimens of ASTM A537 carbon steel in pH 9.73 salt solutions at 40 degrees Celsius, with and without the inhibiting nitrite ion present. Nitrate is not so aggressive a pitting agent as is chloride. Both nitrate and chloride did induce passive breakdown and pitting in nitrite-free solutions, but the carbon steel retained passivity in solutions with 0.11-M nitrite even at a nitrate concentration of 2.2 M.

  12. Optimization of CO2 laser cutting parameters on Austenitic type Stainless steel sheet

    Science.gov (United States)

    Parthiban, A.; Sathish, S.; Chandrasekaran, M.; Ravikumar, R.

    2017-03-01

    Thin AISI 316L stainless steel sheet widely used in sheet metal processing industries for specific applications. CO2 laser cutting is one of the most popular sheet metal cutting processes for cutting of sheets in different profile. In present work various cutting parameters such as laser power (2000 watts-4000 watts), cutting speed (3500mm/min – 5500 mm/min) and assist gas pressure (0.7 Mpa-0.9Mpa) for cutting of AISI 316L 2mm thickness stainless sheet. This experimentation was conducted based on Box-Behenken design. The aim of this work is to develop a mathematical model kerf width for straight and curved profile through response surface methodology. The developed mathematical models for straight and curved profile have been compared. The Quadratic models have the best agreement with experimental data, and also the shape of the profile a substantial role in achieving to minimize the kerf width. Finally the numerical optimization technique has been used to find out best optimum laser cutting parameter for both straight and curved profile cut.

  13. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets

    Science.gov (United States)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.

    2014-11-01

    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  14. Comparison of Impact Properties for Carbon and Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    O.H. Ibrahim

    2011-01-01

    The impact properties of hot rolled carbon steel (used for the manufacture of reinforcement steel bars) and the quenched & tempered (Q&T) low alloy steel (used in the pressure vessel industry) were determined. The microstructure of the hot rolled carbon steel contained ferrite/pearlite phases, while that of the quenched and tempered low alloy steel contained bainite structure. Impact properties were determined for both steels by instrumented impact testing at temperatures between -150 and 200℃. The impact properties comprised total impact energy, ductile to brittle transition temperature, crack initiation and propagation energy, brittleness transition temperature and cleavage fracture stress. The Q&T low alloy steel displayed much higher resistance to ductile fracture at high test temperatures, while its resistance to brittle fracture at low test temperatures was a little higher than that of the hot rolled carbon steel. The results were discussed in relation to the difference in the chemical composition and microstructure for the two steels.

  15. Preparation and characterization of carbon nano-sheet powders

    Institute of Scientific and Technical Information of China (English)

    Yang Wubao; Zhao Zhen; Fang Songhua; Wang Yong; Yang Size; Lin Li

    2008-01-01

    Carbon nanosheet films were deposited on Al substrates by using plasma assisted chemical vapor deposition (PACVD) technique. And after being peeled off from Al substrates, carbon nanosheet powders (CNSPs) were obtained. In Raman spectrum of carbon film, there was a strong and broadened peak at about 1,580 cm-1, indicating a carbon diamond-like film. Atomic force microscope image showed that the carbon diamond-like film had a grain size less than 100 nm, and its surface roughness Ra was 17.95 nm in an area of 5×5 μm2. The CNSPs were irregular sheets with curly edges and a length of several micrometers to several hundreds of micrometers. The BET surface area of CNSPs was 6.66 m2/g with no micro-pore present, which was confirmed by N2 adsorption-desorption characterization. In the adsorption testing, when the relative pressure P/P0 was higher than 0.3, the adsorption behavior did not follow the Langmuir equation. The addition of CNSPs to carbon black (catalyst support) could improve hydrodesuifurization performance of carbon supported Ni-W catalysts for diesel oil.

  16. Marine atmospheric corrosion of carbon steels

    Directory of Open Access Journals (Sweden)

    Morcillo, Manuel

    2015-06-01

    Full Text Available Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a environmental conditions necessary for akaganeite formation; (b characterisation of akaganeite in the corrosion products formed; (c corrosion mechanisms of carbon steel in marine atmospheres; (d exfoliation of rust layers formed in highly aggressive marine atmospheres; (e long-term corrosion rate prediction; and (f behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camariñas, Galicia in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM/energy dispersive spectrometry (EDS, X-ray diffraction (XRD, Mössbauer spectroscopy and SEM/μRaman spectroscopy.La investigación fundamental en corrosión atmosférica marina de aceros al carbono es un campo científico relativamente joven que presenta grandes lagunas de conocimiento. La formación de akaganeíta en los productos de corrosión que se forman sobre el acero cuando se expone a atmósferas marinas conduce a un incremento notable de la velocidad de corrosión. En el trabajo se abordan las siguientes cuestiones: (a condiciones ambientales necesarias para la formación de akaganeíta, (b caracterización de la akaganeíta en los productos de corrosión formados, (c mecanismos de corrosión del acero al carbono en atmósferas marinas, (d exfoliación de las capas de herrumbre formadas en atmósferas marinas muy agresivas, (e predicción de la velocidad de corrosión a largo plazo, y (f comportamiento de aceros patinables. La

  17. The structural dependence of work hardening in low carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.E.

    1991-12-01

    The influence of the dislocation cell structure on the work hardening behavior of low carbon steel sheets was investigated. Specimens were prestrained at low temperature to suppress cell formation and their subsequent behavior was compared with results of isothermal reference tests. It was found that the extent of cell development has little or no influence on the plastic behavior at room temperature and below. Interrupted temperature, tensile-shear tests demonstrated further that the transient behavior induced by loading path changes is also not strongly associated with the cell walls. In-situ straining studies indicate that the factor controlling the flow stress at room temperature is the limited mobility of screw dislocations moving the cell interiors, and not dislocation interactions with the cell walls. The unique properties of a/2<111> screw dislocations are known to dominate low temperature deformation behavior in bcc metals. The current work indicates that these dislocations may still control the flow stress at intermediate temperatures, even in the presence of a developed cell structure.

  18. FABRICATION OF GD CONTAINING DUPLEX STAINLESS STEEL SHEET FOR NEUTRON ABSORBING STRUCTURAL MATERIALS

    Directory of Open Access Journals (Sweden)

    YONG CHOI

    2013-10-01

    Full Text Available A duplex stainless steel sheet with 1 wt.% gadolinium was fabricated for a neutron absorbing material with high strength, excellent corrosion resistance, and low cost as well as high neutron absorption capability. The microstructure of the as-cast specimen has typical duplex phases including 31% ferrite and 69% austenite. Main alloy elements like chromium (Cr, nickel (Ni, and gadolinium (Gd are relatively uniformly distributed in the matrix. Gadolinium rich precipitates were present in the grains and at the grain boundaries. The solution treatment at 1070 °C for 50 minutes followed by the hot-rolling above 950 °C after keeping the sheet at 1200 °C for 1.5 hours are important points of the optimum condition to produce a 6 mm-thick plate without cracking.

  19. Research on spring-back behavior of high strength steel sheets

    Institute of Scientific and Technical Information of China (English)

    Zhang Junping; Fang Gang; Ma Mingtu; Jin Qingsheng

    2014-01-01

    To investigate the spring-back behavior of dual-phase (DP) steel,V-shape spring-back experiments with different bending angles,relative bending radii and blank holding forces were carried out in this paper. It is concluded that with the increase of V-shape angle or blank holding force,the spring-back of DP steel sheets de-creases;while raising fillet radius of punch,which has the most apparent effects on spring-back,advances spring-back angle. Among DP590,DP780 and DP980,higher strength yields more notable spring-back due to larger elastic deformation. The difference of spring-back among these materials is relevant with the microstruc-ture and mechanical properties. The total elastic deformation approximately equals the ratio of the strength corre-sponding to the applied load to the modulus of elasticity.

  20. Corrosion Behavior of MIG Brazed and MIG Welded Joints of Automotive DP600-GI Steel Sheet

    Science.gov (United States)

    Basak, Sushovan; Das, Hrishikesh; Pal, Tapan Kumar; Shome, Mahadev

    2016-12-01

    Galvanized dual-phase steel sheets are extensively used by the auto industry for their corrosion resistance property. Welding by the metal inert gas (MIG) process causes degradation of the steel in the vicinity of the joint due to excessive zinc evaporation. In order to minimize Zn loss, the MIG brazing process has been tried out in lap joint configuration over a heat input range of 136-204 J mm-1. The amount of zinc loss, intermetallic formation and corrosion properties in the joint area has been evaluated for both MIG brazing and MIG welding. Corrosion rate of 21 mm year-1 has been reduced to 2 mm year-1 by adopting MIGB in place MIGW. Impedance study has shown that the corrosion mechanism in base metal, MIG brazed and MIG welded joints is dominated by charge transfer, diffusion and mixed mode control processes, respectively.

  1. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost.......For producers of advanced stainless components the choice of stainless material influences not only the product properties, but also the tooling solution for sheet metal stamping. This work describes how forming and punching tools will be affected when introducing the stainless alloys ferritic EN1...

  2. Thermal and mechanical response of steel sheets welded by laser process: Preanalysis made by ABAQUS code

    Energy Technology Data Exchange (ETDEWEB)

    Carmignani, B.; Daneri, A.; Giambuzzi, S.; Toselli, G. [ENEA, Bologna (Italy). Centro Ricerche Energia `E. Clementel` - Area Energetica

    1994-11-01

    In this work, the conclusive report on the activity, developed in the frame of the european project EUREKA-FASP (EU353), concerning the numerical simulation of the thermal and mechanical response of steel sheets, welded by a laser welding process, is presented. This type of welding process is of interest in the shipyard field. ABAQUS code, in its implicit version, has been used. Besides the description of the studies concerning more directly the laser welding, simulations of traditional welding processes, executed in order to single out particular aspects and calculation strategies to be utilized for the simulation of the process object of the study made, are presented and discussed.

  3. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  4. Effect of the compact Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel sheets

    Science.gov (United States)

    Meng, Lijian; Wu, Mingxing; Wang, Yongmei; Guo, Wei; Ma, Chunyu; Ma, Tingli; Silva, Rui

    2013-06-01

    Titanium films have been deposited on stainless steel metal sheets using dc magnetron sputtering technique at different substrate temperatures. The structure of the titanium films strongly depend on the substrate temperature. The titanium film deposited at the substrate temperature lower than 300 °C has a loose flat sheet grains structure and the titanium film prepared at the substrate temperature higher than 500 °C has a dense nubby grains structure. The DSSC assembled using stainless steel sheet coated with titanium film deposited at high substrate temperature has a low charge transfer resistance in the TiO2/Ti interface and results in a high conversion efficiency. The DSSC assembled using stainless steel sheet coated with titanium film deposited at temperature higher than 500 °C has higher conversion efficiency than that assembled using titanium metal sheet as the substrate. The maximum conversion efficiency, 2.26% is obtained for DSSC assembled using stainless steel sheet coated with titanium film deposited at 700 °C substrate temperature, which is about 70% of the conversion efficiency of the FTO reference cell used in this study.

  5. CO2 laser-micro plasma arc hybrid welding for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    C. H. KIM; Y. N. AHN; J. H. KIM

    2011-01-01

    A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal. which is steel. In the autogenous laser welding,the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-heat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap.The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces.Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.

  6. Iron cycling at corroding carbon steel surfaces.

    Science.gov (United States)

    Lee, Jason S; McBeth, Joyce M; Ray, Richard I; Little, Brenda J; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media.

  7. Twin structure of the lath martensite in low carbon steel

    Directory of Open Access Journals (Sweden)

    Pan Zhang

    2016-04-01

    Full Text Available It has been well accepted that the martensites in quenched carbon steels exhibit two typical morphologies which are closely dependent on the carbon content, i.e. lath martensite in low carbon steels and lenticular martensite in high carbon steels. Based on conventional belief, the lath martensites in low carbon steels are with high density dislocations as the substructure, in contrast to twin substructure in lenticular high carbon martensite. In the present work, an intensive transmission electron microscopy investigation was made to characterize the microstructures of the lath martensite in a low carbon steel of 0.2 wt%C. It was found that lots of lath martensites consist of twin as their substructure, rather than high density dislocations. In addition, nanoscale precipitates cohering with ferrite matrix were found at the twin interfaces. The orientation relationships between the precipitates and the ferrite matrix are in good agreement with that of primitive hexagonal ω phase in titanium alloys and other bcc metals or alloys.

  8. Microstructural, Structural, and Thermal Characterization of Annealed Carbon Steels

    Science.gov (United States)

    Lara-Guevara, A.; Ortiz-Echeverri, C. J.; Rojas-Rodriguez, I.; Mosquera-Mosquera, J. C.; Ariza-Calderón, H.; Ayala-Garcia, I.; Rodriguez-García, M. E.

    2016-10-01

    As is well known, the metallurgical microstructure of carbon steel is formed by ferrite and pearlite after the annealing heat treatment. When the cooling rate increases, the diffusive process is interrupted causing a change in the metallurgical microstructure which will affect steel properties. The aim of this work was to study thermal, structural, and microstructural properties of annealed carbon steel samples with four different carbon contents. Crystalline structure and crystalline quality were studied by the X-ray diffraction technique, where the full width at half maximum analysis showed that as the carbon content increased, the crystalline quality decreased. The metallurgical microstructure morphology was studied by scanning electron microscopy. The thermal diffusivity and the heat capacity were determined by the photoacoustic technique and by the thermal relaxation method, respectively. The thermal diffusivity and the thermal conductivity decreased as the carbon content increased. The amplitude signal of photothermal radiometry increased as the carbon content increased, while the phase signal of photothermal radiometry did not show significant differences among studied carbon steel types. The photoacoustic technique represents an important alternative in the steel characterization field.

  9. Twin structure of the lath martensite in low carbon steel

    Institute of Scientific and Technical Information of China (English)

    Pan Zhang; Yulin Chen; Wenlong Xiao; Dehai Ping; Xinqing Zhao

    2016-01-01

    It has been well accepted that the martensites in quenched carbon steels exhibit two typical morphol-ogies which are closely dependent on the carbon content, i.e. lath martensite in low carbon steels and lenticular martensite in high carbon steels. Based on conventional belief, the lath martensites in low carbon steels are with high density dislocations as the substructure, in contrast to twin substructure in lenticular high carbon martensite. In the present work, an intensive transmission electron microscopy investigation was made to characterize the microstructures of the lath martensite in a low carbon steel of 0.2 wt%C. It was found that lots of lath martensites consist of twin as their substructure, rather than high density dislocations. In addition, nanoscale precipitates cohering with ferrite matrix were found at the twin interfaces. The orientation relationships between the precipitates and the ferrite matrix are in good agreement with that of primitive hexagonalωphase in titanium alloys and other bcc metals or alloys.&2016 Chinese Materials Research Society. Production and hosting by Elsevier B.V. This is an open access.

  10. Archaeologic analogues: Microstructural changes by natural ageing in carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Esther Bravo [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Fernandez, Jorge Chamon [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Arasanz, Javier Guzman [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Peces, Raquel Arevalo [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Criado, Antonio Javier [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Dietz, Christian [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Martinez, Juan Antonio [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Criado Portal, Antonio Jose [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)]. E-mail: antoniocriado@quim.ucm.es

    2006-02-15

    When discussing the container material for highly active radionuclear waste, carbon steel is one of the materials most frequently proposed by the international scientific community. Evidently, security with respect to the container behaviour into deep geological deposits is fundamental. Among other parameters, knowledge about material mechanical properties is essential when designing the container. Time ageing of carbon steel, apart from possible alterations of the chemical composition (e.g. corrosion) involves important microstructural changes, at the scale of centuries and millenniums. The latter may cause variations of the mechanical properties of carbon steel storage containers, with the corresponding risk of possible leakage. In order to properly estimate such risk and to adjust the corresponding mathematical models to reality, the microstructural changes observed in this study on archaeologic samples are evaluated, comparing ancient and modern steels of similar chemical composition and fabrication processes.

  11. EVALUATION OF NATURAL FREQUENCY AND DAMPING OF PROFILED STEEL SHEET DRY BOARD COMPOSITE PANEL

    Directory of Open Access Journals (Sweden)

    W.H. WAN BADARUZZAMAN

    2011-12-01

    Full Text Available This paper evaluates the natural frequency and damping coefficient of Profiled Steel Sheet Dry Board (PSSDB composite flooring panel system. The PSSDB composite flooring panel consists of dry board attached to the top surface of profiled steel sheet by self-drilling and self-tapping screws. This PSSDB composite panel has been used successfully as flooring system in few construction projects within Malaysia. As a lightweight flooring system, human induced vibration is becoming increasingly vital serviceability and safety issues for such panel when it is covering relatively longer span or area. Therefore, it is important to evaluate the factors affecting the serviceability performance and hence, to consider the effects of vibration in building such flooring system. This research is focused mainly on the fundamental frequency and damping coefficient of such floor panel. The influence of span length, board thickness, and connectors spacing on fundamental frequency are evaluated. It is shown that for the panels considered in this paper; up to the span length of 3.5 m the fundamental frequency is above the limiting minimum value of 8Hz and hence, it can be concluded that such composite floor panel with practical span length will be comfortable to the occupants of building in terms of human induced vibration.

  12. Experimental and finite element analysis for fracture of coating layer of galvannealed steel sheet

    Institute of Scientific and Technical Information of China (English)

    S. I. KIM; J. U. HER; Y. C. JANG; Y. LEE

    2011-01-01

    Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.

  13. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    Directory of Open Access Journals (Sweden)

    Rezwanul Haque

    2017-01-01

    Full Text Available Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring stage of the SPR process curve. This study shows how the residual stress results may be related to the physical occurrences that happened during joining, using the characteristics curve. The study also shows that neutron diffraction technique enabled a crack in the rivet tip to be detected which was not apparent from a cross-section.

  14. The influence of heat treatment on properties of cold rolled alloyed steel and nickel superalloys sheets used in aircraft industry

    Science.gov (United States)

    Zaba, K.; Dul, I.; Puchlerska, S.

    2017-02-01

    Superalloys based on nickel and selected steels are widely used in the aerospace industry, because of their excellent mechanical properties, heat resistance and creep resistance. Metal sheets of these materials are plastically deformed and applied, inter alia, to critical components of aircraft engines. Due to their chemical composition these materials are hardly deformable. There are various methods to improve the formability of these materials, including plastic deformation at an elevated or high temperature, or a suitable heat treatment before forming process. The paper presents results of the metal sheets testing after heat treatment. For the research, sheets of two types of nickel superalloys type Inconel and of three types of steel were chosen. The materials were subjected to multivariate heat treatment at different temperature range and time. After this step, mechanical properties were examined according to the metal sheet rolling direction. The results were compared and the optimal type of pre-trial softening heat treatment for each of the materials was determined.

  15. Martensite Formation in Partially and Fully Austenitic Plain Carbon Steels

    NARCIS (Netherlands)

    Van Bohemen, S.M.C.; Sietsma, J.

    2009-01-01

    The progress of martensite formation in plain carbon steels Fe-0.46C, Fe-0.66C, and Fe-0.80C has been investigated by dilatometry. It is demonstrated that carbon enrichment of the remaining austenite due to intercritical annealing of Fe-0.46C and Fe-0.66C does not only depress the start temperature

  16. Orientation Dependence of Cracking in Hot-Dip Zn-Al-Mg Alloy Coatings on a Sheet Steel

    Science.gov (United States)

    Park, Y. B.; Kim, I. G.; Kim, S. G.; Kim, W. T.; Kim, T. C.; Oh, M. S.; Kim, J. S.

    2017-03-01

    The present study was aimed at investigating a basic cause of cracking in hot-dip Zn-Al-Mg alloy coatings on an extra deep drawing quality sheet steel. The electron backscattering diffraction technique was employed to examine the crystallographic planes of the cracks generated before and after bending deformation of the coated steel sheets. It was clarified that the occurrence of cracking in the Zn-Al-Mg alloy coatings absolutely depends on the orientation of the primary Zn and eutectic Zn alloy phases. Finally, a cracking mechanism was proposed on the basis of the anisotropy of thermal expansion and the Young's modulus in the phases constituting the coatings.

  17. Analysis on the deformation and fracture behavior of carbon steel by in situ tensile test

    Institute of Scientific and Technical Information of China (English)

    Fan Li; Haibo Huang

    2006-01-01

    The deformation and fracture behaviors of low-carbon steel, medium-carbon steel, and high-carbon steel were studied on internal microstructure using the scanning electron microscopy in situ tensile test. The microstructure mechanism of their deformation and fracture behavior was analyzed. The results show that the deformation and fracture behavior of low-carbon steel depends on the grain size of ferrite, the deformation and fracture behavior of medium-carbon steel depends on the size of ferrite grain and pearlite lump,and the deformation and fracture behavior of high-carbon steel depends on the size of pearlite lump and the pearlitic interlamellar spacing.

  18. Electromagnetic Wave Shieding Effectiveness of Carbon Fiber Sheet Coated Ferrite Film by Microwave-Hydrothermal Process

    Science.gov (United States)

    Murakami, Ri Ichi; Yamamoto, Hidetoshi; Kim, Chan Kong; Yim, Cheol Mun; Kim, Yun Hae

    The developments of electromagnetic wave shielding materials are strongly required because the malfunction of electronic equipment, mobile phone and wireless LAN avoids. In this study, it was investigated that the electromagnetic shielding effectiveness of carbon fiber sheets were enhanced by the ferrite which was coated by the microwave hydrothermal process. For coated carbon fiber sheet, the effects of ferrite and lamination of carbon fiber textile on the electromagnetic wave shielding effectiveness were discussed. In the range of frequency (100 1 GHz), the electromagnetic wave shielding effectiveness was measured by using TEM-Cell. The electromagnetic wave shielding effectiveness was greater for the coated carbon fiber sheets than for the uncoated carbon fiber sheets. When the insulation film was located between two carbon fiber sheets, the electromagnetic wave shielding effectiveness increased.

  19. Monitoring and phenomena observation during YAG laser lap welding of Zn-coated steel sheets

    Institute of Scientific and Technical Information of China (English)

    Seiji Katayama; Masami Mizutani; Taishi Tarui; Kiyokazu Mori

    2004-01-01

    A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of sound or bad weld beads.The behavior of a molten pool and a reflected beam was simultaneously observed through a high-speed video together with the monitoring of reflected beam intensity.The effect of a gap between sheets on porosity formation and bead appearances was confirmed,and characteristic monitoring signals were obtained according to the gaps.In the case of no gap,spatters were frequently generated,and a reflected beam was fluctuated intensively at low frequencies.On the other hand,in welding sheets with a wide gap,lap welds were not produced and the high frequency signals of a reflected beam were detected.Moreover,sound welds were produced in the sheets with a proper gap,and a moderate reflected beam was monitored.From these results,it was found that monitoring of a reflected beam was beneficial to the judgment of sound,under-filled or incomplete lap welds.

  20. Phase Evolution in Boride-Based Cermets and Reaction Bonding onto Plain Low Carbon Steel Substrate

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2012-04-01

    Reaction sinter bonding is a process that aims to bond two materials for improvement in properties through reactive sintering technique. The process has been effectively used to sinter hard materials like borides in situ which not only possess excellent oxidation resistance, good corrosion resistance but also resistant to abrasive wear. Sinter bonding is a unique surface modification process achieved through powder metallurgy and is competent with other techniques like boronizing sintering and sinter-brazing since it eliminates the additional operations of heat treatment and assembly and removes the inherent setbacks with these processes. This study focuses on identifying the phase evolution mechanism using characterization tools like x-ray diffractometry and energy dispersive spectroscopy and study of sinter bonding of the boron containing precursors (Mo-Cr-Fe-Ni-FeB-MoB) onto plain carbon steel. A microstructure containing Fe-based matrix dispersed with complex borides develops with temperature in the tape cast sheets. A fivefold increase in hardness between plain carbon steel in wrought condition and sinter bonded steel was observed. The multilayer consisted of a reaction zone adjacent to the interface and was investigated with the composition profile and hardness measurements. A model of sinter bonding between the cermet and the steel has also been proposed.

  1. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Science.gov (United States)

    2010-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  2. The effect of surface morphology on the friction of electrogalvanized sheet steel in forming processes

    Energy Technology Data Exchange (ETDEWEB)

    Skarpelos, P. N. [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1993-12-01

    The effect in the drawbead simulator test were evaluated for a set of commercially coated steels and a set of laboratory coated steels with underlying surfaces produced by laser textured, shot blast, and electro-discharge textured rolls. In general, surfaces with higher roughness (R{sub a} parameter) measured lower friction in the DBS tests. The requisite roughness amplitude necessary for low friction was moderated somewhat by having a more closely spaced roughness as described by the median wavelength, {lambda}m, of the power spectrum. This effect is due to interaction with the lubricant by the micro-roughness imparted by the galvanizing process. The lubricant tends to be retained better by the surfaces with the micro-roughness, thereby increasing the amount of elasto- and plasto-hydrodynamic support of the load. Other variables, such as large variations in thickness of the sheet can mask the effect of the surface by changing the actual distance of sliding contact during the DBS test. For tests where the amount of sliding is similar, the effect of roughness is significant. The friction measured for EG steels in the DBS test is dominated by deformation of the surface with plowing by the asperities of the tooling adding to that caused by the deformation. The size of the plow marks in the deformed surfaces corresponds to the roughness of the tooling and no significant evidence of wear particles was observed.

  3. Ultrafine-grained low carbon steels by severe plastic deformation

    Directory of Open Access Journals (Sweden)

    S. Dobatkin

    2008-07-01

    Full Text Available The structure and properties of 0,14% C and 0,1% C - B low-carbon steels taken in two initial states, martensitic and ferritic-pearlitic, were studied after cold equal-channel angular (ECA pressing. ECA pressing leads to the formation of only partially submicrocrystalline structure with a grain size of 150 – 300 nm, depending on the steel alloying and initial state. The finest structure with the elements of 190 nm in size is obtained in the 0,1% C - B steel microalloyed with boron. The strength of the 0,1% C - B steel after cold ECA pressing (Rm = 805-1235 MPa meets the specifications of fasteners of the R80 - R120 strength grade. The strength of the deformed 0,14% C steel is close to the R80 strength grade.

  4. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  5. Ultrasonic inspection for circumferential butt joint of austenitic stainless steel with carbon steel

    Institute of Scientific and Technical Information of China (English)

    Wan Shengyun; Xiong Lasen

    2006-01-01

    Tthe practical application of ultrasonic wave inspection in welded joint by austenitic stainless steel with carbon steel is presented. It is shown from the experimental results that the high frequency narrow-pulsed longitudinal ultrasonic wave inspection technique can detect the defects in deferent sound path and location within the tested welded joint clearly and exactly. The study in the paper may provide a new approach for further application of ultrasonic inspection in coarse-grained materials.

  6. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    Full Text Available Purpose. Damageability estimation of carbon steel in the conditions of cyclic loading. Methodology. The steel fragments of railway wheel rim and rail head served as material for research with chemical composition 0.65 % С, 0.67 % Mn, 0.3 % Si, 0.027 % P, 0.028 % S и 0.7 % C, 0.82 % Mn, 0.56 % Si, 0.025 % P, 0.029 % S accordingly. The microstructure of tested steels corresponded to the state of metal after a hot plastic deformation. The fatigue research was conducted in the conditions of symmetric bend using the proof-of-concept machine of type «Saturn-10». Full Wohler diagrams and the lines corresponding to forming of sub-and micro cracks were constructed. The distribution analysis of internal stresses in the metal under cyclic loading was carried out using the microhardness tester of PMT-3 type.Findings. On the basis of fatigue curves for high-carbon steels analysis the positions of borders dividing the areas of convertible and irreversible damages were determined. The article shows that with the growth of carbon concentration in the steel at invariability of the structural state an increase of fatigue limit is observed. At the same time the acceleration of processes, which determine transition terms from the stage of forming of submicrocracks to the microcracks occurs. The research of microhardness distribution in the metal after destruction confirmed the nature of carbon amount influence on the carbon steel characteristics. Originality. Regardless on the stages of breakdown site forming the carbon steels behavior at a fatigue is determined by the ration between the processes of strengthening and softening. At a cyclic loading the heterogeneity of internal stresses distribution decreases with the increase of distance from the destruction surface. Analysis of metal internal restructuring processes at fatigue loading made it possible to determine that at the stages prior to incubation period in the metal microvolumes the cells are already

  7. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...... techniques even though localised corrosion rate cannot be measured. FSM measures general corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable...

  8. Austenite Recrystallization and Controlled Rolling of Low Carbon Steels

    Institute of Scientific and Technical Information of China (English)

    DU Lin-xiu; ZHANG Zhong-ping; SHE Guang-fu; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    The dynamic recrystallization and static recrystallization in a low carbon steel were investigated through single-pass and double-pass experiments. The results indicate that as the deformation temperature increases and the strain rate decreases, the shape of the stress-strain curve is changed from dynamic recovery shape to dynamic recrystallization shape. The austenite could not recrystallize within a few seconds after deformation at temperature below 900 ℃. According to the change in microstructure during deformation, the controlled rolling of low carbon steel can be divided into four stages: dynamic recrystallization, dynamic recovery, strain-induced ferrite transformation, and rolling in two-phase region. According to the microstructure after deformation, the controlled rolling of low carbon steel can be divided into five regions: non-recrystallized austenite, partly-recrystallized austenite, fully-recrystallized austenite, austenite to ferrite transformation, and dual phase.

  9. 75 FR 81221 - Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of the Five-Year...

    Science.gov (United States)

    2010-12-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of..., International Trade Administration, Department of Commerce. SUMMARY: On June 2, 2010, the Department of...

  10. The effect of machining the gage section on Biaxial Tension/Shear plasticity experiments of DP780 sheet steel

    NARCIS (Netherlands)

    Walters, C.L.

    2013-01-01

    An experimental approach for determining the effect of machining the gage section of specimens for quasi-static, biaxial tension/shear testing of sheet steels is described. This method is demonstrated by comparing the results found by an existing testing method with a reduced thickness (Mohr and Osw

  11. 78 FR 21105 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-04-09

    ... Carbon Steel Pipes and Tubes from Thailand: 2011- 2012 Administrative Review,'' dated concurrently with... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping Duty Administrative Review; 2011- 2012 AGENCY: Import Administration,...

  12. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    Science.gov (United States)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  13. Use of a geomembrane steel sheet pile verticle barrier to curtail organic seepage

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmetti, J.L.; Butler, P.B. [DuPont Environmental Remediation Services, Wilmington, DE (United States)

    1997-12-31

    At a Superfund site in Delaware, contaminated groundwater, seeping out of a riverbank, produced a visible sheen on the river. As part of an emergency response action, a geomembrane steel sheet pile vertical barrier system was installed to contain the sheen and contaminated soil and sediments. The response action presented an engineering challenge due to the close proximity manufacturing facilities, steep riverbank slopes, tidal fluctuations, high velocity river flow, and underground and overhead interferences. A unique vertical containment barrier was developed to stabilize the riverbank slope, curtail sheens on the river, and prevent groundwater mounding behind the vertical barrier. In addition, the cost-effective vertical barrier enables natural chemical and biological processes to contain the organic seepage without requiring a groundwater extraction system.

  14. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, D. [Univ. of Waterloo (Canada); Jowett, R. [Waterloo Barrier Inc., Rockwood, Ontario (Canada); Gamble, M. [C3 Environmental, Breslau, Ontario (Canada)

    1997-12-31

    The Waterloo Barrier{trademark} steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10{sup -8} to 10{sup -10} cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier{trademark} cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier{trademark} in these applications.

  15. Draw-Bending Analysis of a Cold Rolled DP980 Steel Sheet

    Science.gov (United States)

    Verma, Rahul K.; Noma, Nobuyasu; Chung, Kwansoo; Kuwabara, Toshihiko

    2011-05-01

    To assess the springback prediction accuracy of the recently proposed model (Verma et. al., 2011), simulations for tension-compression (TC) and draw-bending of a cold rolled DP980 steel sheet (Noma and Kuwabara, 2010b) were performed. Using a rotating die and a specimen specially designed to introduce the uniaxial state of stress during the draw bending test, friction could be neglected and the shape of the yield surface did not play any role in accurate simulations. The effects of incorporating permanent softening and the plastic strain dependent Young's modulus were studied in detail and it was found that the incorporation of permanent softening and the plastic strain dependent Young's modulus both was important for accurate springback prediction.

  16. Residual stress measurements in carbon steel

    Science.gov (United States)

    Heyman, J. S.; Min, N.

    1986-01-01

    External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.

  17. The influence of dew point during annealing on the power loss of electrical steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Broddefalk, Arvid [Development and Market Research, Cogent Power Ltd., P.O. Box 201, SE-735 23 Surahammar (Sweden)], E-mail: arvid.broddefalk@sura.se; Jenkins, Keith [Development and Market Research, Cogent Power Ltd., P.O. Box 201, SE-735 23 Surahammar (Sweden); Silk, Nick [Corus RD and T, Swinden Technology Centre, Moorgate Rotherham S60 3AR (United Kingdom); Lindenmo, Magnus [Development and Market Research, Cogent Power Ltd., P.O. Box 201, SE-735 23 Surahammar (Sweden)

    2008-10-15

    Decarburization is a necessary part of the processing of electrical steels if their carbon content is above a certain level. The process is usually carried out in a wet hydrogen-nitrogen atmosphere. Having a high dew point has a negative influence on the power loss, though. This is due to oxidation of the steel, which hinders domain wall motion near the surface. In this study, an increase of the power loss was only observed at a fairly high dew point (>20 deg. C). It was also only at these high dew points where a subsurface oxide layer was observed. The surfaces of samples with and without this layer were etched in steps. The magnetic properties of the etched samples corresponded well with the expected behavior based on GDOES profiles of the samples.

  18. 77 FR 59892 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Affirmative Final Determination of...

    Science.gov (United States)

    2012-10-01

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Affirmative Final... mm to 5.0 mm. \\1\\ See Carbon and Certain Alloy Steel Wire Rod from Mexico: Affirmative Preliminary... on said entries.\\4\\ \\2\\ See Carbon and Certain Alloy Steel Wire Rod from Mexico: Initiation of...

  19. 78 FR 15376 - Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea

    Science.gov (United States)

    2013-03-11

    ... COMMISSION Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea On the basis... Korea and the antidumping duty orders on corrosion-resistant carbon steel flat products from Germany and... Corrosion-Resistant Carbon Steel Flat Products from Germany and Korea: Investigation Nos. 701-TA-350 and...

  20. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  1. Atmospheric Corrosion of Q235 Carbon Steel and Q450 Weathering Steel in Turpan,China

    Institute of Scientific and Technical Information of China (English)

    Qiang YU; Chao-fang DONG; Yue-hua FANG; Kui XIAO; Chun-yun GUO; Gang HE; Xiao-gang LI

    2016-01-01

    Q235 carbon steel and Q450 weathering steel were exposed to the hot and dry environment of Turpan, China for three years.The corrosion rates of both steels were calculated and compared.The morphologies of the rust layer products were observed by optical microscopy and scanning electron microscopy.Analyses of the rust layers were performed by X-ray photoelectron spectroscopy,X-ray powder diffraction,and Raman spectroscopy,and anal-ysis results indicate that the compositions of rust are main iron rich oxide such as FeOOH,Fe3 O4 ,and Fe2 O3 .The iron oxide layer content proportion was calculated through a semi-quantitative algorithm.The resistance elements (Cr,Ni,and Cu)enhanced the resistance properties of the Q450 weathering steel matrix.Moreover,the resistance elements increased the proportion of goethite crystals in the corroded rust layer.

  2. INVESTIGATING SPOT WELD GROWTH ON 304 AUSTENITIC STAINLESS STEEL (2 mm SHEETS

    Directory of Open Access Journals (Sweden)

    NACHIMANI CHARDE

    2013-02-01

    Full Text Available Resistance spot welding (RSW has revolutionized automotive industries since early 1970s for its mechanical assemblies. To date one mechanical assembly out five is welded using spot welding technology in various industries and stainless steel became very popular among common materials. As such this research paper analyses the spot weld growth on 304 austenitic stainless steels with 2mm sample sheets. The growth of a spot weld is primarily determined by its parameters such as current, weld time, electrode tip and force. However other factors such as electrode deformations, corrosions, dissimilar materials and material properties are also affect the weld growth. This paper is intended to analyze only the effects of nuggets growth due to the current and weld time increment with constant force and unchanged electrode tips. A JPC 75kVA spot welder was used to accomplish it and the welded samples were undergone tensile test, hardness test and metallurgical test to characterize the formation of weld nuggets.

  3. Work roll thermal contour prediction model of nonoriented electrical steel sheets in hot strip mills

    Institute of Scientific and Technical Information of China (English)

    Ningtao Zhao; Jianguo Cao; Jie Zhang; Yi Su; Tanli Yan; Kefeng Rao

    2008-01-01

    The demands for profile and flatness of nonoriented electrical steels are becoming more and more severe. The temperature field and thermal contour of work rolls are the key factors that affect the profile and flatness control in the finishing trains of the hot rolling. A theoretic mathematical model was built by a two-dimensional finite difference to calculate the temperature field and thermal contour at any time within the entire rolling campaign in the hot rolling process. To improve the calculating speed and precision,some special solutions were introduced, including the development of this model, the simplification of boundary conditions, the computation of heat transfer coefficient, and the narrower mesh along the edge of the strip. The effects of rolling pace and work roll shifting on the temperature field and thermal contour of work rolls in the hot rolling process were demonstrated. The calculated results of the prediction model are in good agreement with the measured ones and can be applied to guiding profde and flatness control of nonoriented electrical steel sheets in hot strip mills.

  4. Review of the Shearing Process for Sheet Steels and Its Effect on Sheared-Edge Stretching

    Science.gov (United States)

    Levy, B. S.; Van Tyne, C. J.

    2012-07-01

    Failure in sheared-edge stretching often limits the use of advanced high-strength steel sheets in automotive applications. The present study analyzes data in the literature from laboratory experiments on both the shearing process and the characteristics of sheared edges. Shearing produces a surface with regions of rollover, burnish, fracture, and burr. The effect of clearance and tensile strength on the shear face characteristics is quantified. Higher strength, lower ductility steels exhibit an increase in percent fracture region. The shearing process also creates a zone of deformation adjacent to the shear face called the shear-affected zone (SAZ). From an analysis of data in the literature, it is concluded that deformation in the SAZ is the dominant factor in controlling failure during sheared-edge stretching. The characteristics of the shear face are generally important for failures during sheared-edge stretching only as there is a correlation between the characteristics of the shear face and the characteristics of the SAZ. The effect of the shear burr on shear-edge stretching is also related to a correlation with the characteristics of the SAZ. In reviewing the literature, many shearing variables that could affect sheared-edge stretching limits are not identified or if identified, not quantified. It is likely that some of these variables could affect subsequent sheared-edge stretching limits.

  5. Investigation on hot-dip aluminised and subsequent HIP'ped steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Glasbrenner, H.; Konys, J. E-mail: juergen.konys@imf.fzk.de

    2001-11-01

    Tritium permeation can be reduced significantly by a suitable coating on the structural material. Since alumina has the capability of tritium permeation reduction the development of such coatings on ferritic martensitic steels by hot-dip aluminising of F82H-mod. steel sheets was already performed successfully. An improvement of these coatings were achieved by subsequent HIP'ping at 1040 deg. C for 0.5 h at 250, 500 and 750 bar and subsequently tempered at 750 deg. C for 1 h at 1 bar. All samples were investigated by means of metallographical examination, EDX line scan analysis and Vickers micro hardness measurements. The high pressure produced two observed changes: firstly, with increasing pressure the thickness of the FeAl phase increases and the thickness of the {alpha}-Fe(Al) phase decreases, and secondly the formation of pores could be suppressed successfully. The Vickers micro hardness of the base material F82H-mod. is not influenced by the heat-treatment under pressure and is about 215 HV.

  6. The evaluation of surface and adhesive bonding properties for cold rolled steel sheet for automotive treated by Ar/O{sub 2} atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Joo; Lee, Sang Kon; Kim Byung Min [Pusan National University, Busan (Korea, Republic of); Park, Keun Whan [Sungwoo Hitech Technical Institute, Busan (Korea, Republic of)

    2008-04-15

    Cold rolled steel sheet for automotive was treated by Ar/O{sub 2} atmospheric pressure plasma to improve the adhesive bonding strength. Through the contact angle test and calculation of surface free energy for cold rolled steel sheet, the changes of surface properties were investigated before and after plasma treatment. The contact angle was decreased and surface free energy was increased after plasma treatment. And the change of surface roughness and morphology were observed by AFM(Atomic Force Microscope). The surface roughness of steel sheet was slightly changed. Based on Taguchi method, single lap shear test was performed to investigate the effect of experimental parameter such as plasma power, treatment time and flow rate of O{sub 2} gas. Results shows that the bonding strength of steel sheet treated in Ar/O{sub 2} atmospheric pressure plasma was improved about 20% compared with untreated sheet.

  7. Profile and Flatness Control Technology With a Long Shifting Stroke on Wide Non-Oriented Electrical Steel Sheets%Profile and Flatness Control Technology With a Long Shifting Stroke on Wide Non-Oriented Electrical Steel Sheets

    Institute of Scientific and Technical Information of China (English)

    YANG Guang-hui; CAO Jian-guo; ZHANG Jie; SONG Ping; YAN Tan-li; RAO Ke-feng

    2012-01-01

    In order to solve the difficult profile and flatness control problem of wide non-oriented electrical steel sheets, the factors such as the relationship between strip crown control and strip width, the relationship between the maximum wearing value of work roll and the number of a rolling campaign and the wear contour change of work roll were analyzed on the basis of industrial test. Through analyzing the rolling process characteristics of non-oriented e- lectrical steel sheets, the ASR (asymmetry self-compensating work rolls) shape control technology and its roll shift- ing strategy of the wider non-oriented electrical steel sheets was proposed and developed. When the technology was applied, the number of the wide non-oriented electrical steel (2.3 mm× 1 280 mm) in one rolling campaign rose from 40 coils of the trial production to 70 coils of the industrial production, the ratio of the measured strip crown less than 45 um was increased from 50.0% to 94.9%, and the ratio of the measured strip crown more than 60 um was decreased from 20.0% to 0.7%.

  8. Oxidation of ultra low carbon and silicon bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Lucia [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: lucia.suarez@ctm.com.es; Rodriguez-Calvillo, Pablo [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: pablo.rodriguez@ctm.com.es; Houbaert, Yvan [Department of Materials Science and Engineering, University of Ghent (Belgium)], E-mail: Yvan.Houbaert@UGent.be; Colas, Rafael [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)], E-mail: rcolas@mail.uanl.mx

    2010-06-15

    Oxidation tests were carried out in samples from an ultra low carbon and two silicon bearing steels to determine the distribution and morphology of the oxide species present. The ultra low carbon steel was oxidized for short periods of time within a chamber designed to obtain thin oxide layers by controlling the atmosphere, and for longer times in an electric furnace; the silicon steels were reheated only in the electric furnace. The chamber was constructed to study the behaviour encountered during the short period of time between descaling and rolling in modern continuous mills. It was found that the oxide layers formed on the samples reheated in the electric furnace were made of different oxide species. The specimens treated in the chamber had layers made almost exclusively of wustite. Selected oxide samples were studied by scanning electron microscopy to obtain electron backscattered diffraction patterns, which were used to identify the oxide species in the layer.

  9. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic techniques even though localised corrosion rate cannot be measured. FSM measures general......Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...... corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS...

  10. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    Science.gov (United States)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  11. Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel%Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    R Paventhan; P R Lakshminarayanan; V Balasubramanian

    2012-01-01

    Friction weIding is a solid state joining process used extensively currently owing to its advantages such as low heat input, high production efficiency, ease of manufacture, and environment friendliness. Materials difficult to be welded by fusion welding processes can be successfully welded by friction welding. An attempt was made to develop an empirical relationship to predict the tensile strength of friction welded AISI 1040 grade medium carbon steel and AISI 304 austenitic stainless steel, incorporating the process parameters such as friction pressure, forging pressure, friction time and forging time, which have great influence on strength of the joints. Response surface methodology was applied to optimize the friction welding process parameters to attain maximum tensile strength of the joint. The maximum tensile strength of 543 MPa could be obtained for the joints fabricated under the welding conditions of friction pressure of 90 MPa, forging pressure of 90 MPa, friction time of 6 s and forging time of 6 s.

  12. Carbon distribution in bainitic steel subjected to deformation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu. F., E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Nikitina, E. N., E-mail: Nikitina-EN@mail.ru; Gromov, V. E., E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation)

    2015-10-27

    Analysis of the formation and evolution of carbide phase in medium carbon steel with a bainitic structure during compressive deformation was performed by means of transmission electron diffraction microscopy. Qualitative transformations in carbide phase medium size particles, their density and volume concentration depended on the degree of deformation.

  13. Microbial corrosion of carbon steel by sulfate-reducing bacteria:

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo; Hilbert, Lisbeth Rischel

    1997-01-01

    Electrochemical measurements (EIS and DC-polarisation curves) have been conducted on carbon steel coupons exposed in SRB-active environments. Results from EIS measurements show that very large interfacial capacities are found in such systems, and consequently high capacitive currents...... for a misleading conclusion that increasing corrosion rates are caused by cathodic depolarisation in SRB-active environments....

  14. Vanadium Effect on a Medium Carbon Forging Steel

    Directory of Open Access Journals (Sweden)

    Carlos Garcia-Mateo

    2016-05-01

    Full Text Available In the present work the influence of vanadium on the hardenability and the bainitic transformation of a medium carbon steel is analyzed. While V in solid solution enhances the former, it hardly affects bainitic transformation. The results also reveal an unexpected result, an increase of the prior austenite grain size as the V content increases.

  15. Erosion Effect of Molten Steel on Carbon Containing Refractories for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    LI Hongxia; YANG Bin; LIU Guoqi; CHENG Hepeng

    2007-01-01

    The erosion resistance of carbon containing refractories for continuous casting to molten steel was investigated by means of simulative erosion test and examining used refractories.Decolonization and reaction between molten steel and decolonization layer are main erosion process of carbon containing refractories by1 molten steel.The reactions between molten steel and oxide in refractories determine the thickness of decarbonization layer A dense layer formation on the working surface contacting with molten steel during casting will suppress decarbonization and erosion process.

  16. EFFECT OF CHEMICAL COMPOSITION AND PROCESSES ON THE TEXTURE OF HOT-ROLLED DEEP DRAWING STEEL SHEET

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; C.Y. Li; X.Y. Li; Y.L. Kang

    2002-01-01

    A hot-rolled deep drawing (HDD) steel with high r-value and uniform distribution of{ 111} texture in thickness was developed by hot rolling in ferrite region with lubricatingbetween the roller and the steel. The experimental results show that the carbon contentand finish rolling temperature have significant effects on beneficial texture {111}, andlubricating during hot rolling at low temperature in α-region makes the distributionof the texture uniform. Three basic requirements needed to meet for HDD steel wereconcluded by comparing different carbon contents and hot rolling processes.

  17. Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study

    Institute of Scientific and Technical Information of China (English)

    GAO Yu-Feng; YANG Yang; SUN De-Yan

    2011-01-01

    Using molecular dynamics simulations, we study the wetting of liquid iron in a carbon nanotube and on a graphene sheet. It is found that the contact angle of a droplet in a carbon nanotube increases linearly with the increase of wall curvature but is independent of the length of the filled liquid. The contact angle for a droplet on a graphene sheet decreases with the increasing droplet size. The line tension of a droplet on a graphene sheet is also obtained.Detailed studies show that liquid iron near the carbon walls exhibits the ordering tendencies in both the normal and tangential directions.

  18. Elastic Sag Property of Low Carbon Martensite Spring Steel

    Institute of Scientific and Technical Information of China (English)

    LI Ye-sheng; CHEN Mi-song; WU Zi-ping; ZHU Yin-lu; DUO Tie-yun

    2004-01-01

    This paper studies the elastic sag resistance of new low-carbon martensite spring steel 35Si2CrVB developed recently and points out that the cause of elastic sag is attributed to cyclic softening of spring steel engendered during its serving,also considers that elastic sag property should be evaluated by dynamic mechanical properties of spring material such as dynamic yield strength σ'0.2, ratio of dynamic yield strength σ'0.2 vs. tensile strength σb (σ'0.2/σb) and ratio of dynamic yield strength σ' 0.2vs. static yield strengthσ0.2 (σ'0.2/σ0. 2 )etc. , which are measured by the cyclic stress-strain curve test. Compared with conventional spring steel 60Si2MnA, 35Si2CrVB has good advantages in both dynamic and static properties, which show it possesses higher elastic sag resistance than 60Si2MnA because of its lath-martensite structure tempering in low temperature different from 60Si2MnA steel's plate martensite structure tempering inmedium temperature. So it can be demonstrated that low carbon martensite spring steel is more appropriate for the demands of spring.

  19. Weldability of Low Carbon Transformation Induced Plasticity Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mei; LI Lin; FU Ren-yu; ZHANG Ji-cheng; WAN Zi

    2008-01-01

    Transformation induced plasticity (TRIP) steel exhibited high or rather high carbon equivalent (CE) because of its chemical composition,which was a particularly detrimental factor affecting weldability of steels.Thus the weldability of a TRIP steel (grade 600) containing (in mass percent,%) 0.11C-1.19Si-1.67Mn was extensively studied.The mechanical properties and impact toughness of butt joint,the welding crack susceptibility of weld and heat affected zone (HAZ) for tee joint,control thermal severity (CTS) of the welded joint,and Y shape 60° butt joint were measured after the gas metal arc welding (GMAW) test.The tensile strength of the weld was higher than 700 Mpa.Both in the fusion zone (FZ) and HAZ for butt joint,the impact toughness was much higher than 27 J,either at room temperature or at -20 ℃,indicating good low temperature impact ductility of the weld of TRIP 600 steel.In addition,welding crack susceptibility tests revealed that weldments were free of surface crack and other imperfection.All experimental results of this steel showed fairly good weldability.For application,the crossmember in automobile made of this steel exhibited excellent weldability,and fatigue and durability tests were also accomplished for crossmember assembly.

  20. Morphological and microstructural studies on aluminizing coating of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe–Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe{sub 2}Al{sub 5}) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is ‘thick’ and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  1. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    Science.gov (United States)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  2. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  3. MECHANISTIC UNDERSTANDING OF CAUSTIC CRACKING OF CARBON STEELS

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Diaz, B.; Roy, A.

    2009-10-19

    Liquid waste generated by the PUREX process for separation of nuclear materials is concentrated and stored in Type IV single-shell carbon steel tanks at the Savannah River Site (SRS). The Type IV tanks for this waste do not have cooling coils and have not undergone heat treatment to stress-relieve the tanks. After the waste is concentrated by evaporation, it becomes very alkaline and can cause stress corrosion cracking (SCC) and pitting corrosion of the tank materials. SRS has experienced leakage from non-stress-relieved waste tanks constructed of A285 carbon steel and pitting of A212 carbon steel tanks in the vapor space. An investigation of tank materials has been undertaken at SRS to develop a basic understanding of caustic SCC of A285 and A212 grade carbon steels exposed to aqueous solutions, primarily containing sodium hydroxide (NaOH), sodium nitrate (NaNO{sub 3}), and sodium nitrite (NaNO{sub 2}) at temperatures relevant to the operating conditions of both the F and H area plants. This report presents the results of this corrosion testing program. Electrochemical tests were designed using unstressed coupons in a simulated tank environment. The purpose of this testing was to determine the corrosion susceptibility of the tank materials as a function of chemical concentration, pH, and temperature. A285 and A516 (simulates A212 carbon steel) coupons were used to investigate differences in the corrosion of these carbon steels. Electrochemical testing included measurement of the corrosion potential and polarization resistance as well as cyclic potentiodynamic polarization (CPP) testing of coupons. From the CPP experiments, corrosion characteristics were determined including: corrosion potential (E{sub corr}), pitting or breakdown potential (E{sub pit}), and repassivation potential (E{sub prot}). CPP results showed no indications of localized corrosion, such as pitting, and all samples showed the formation of a stable passive layer as evidenced by the positive

  4. 76 FR 15299 - Certain Hot-Rolled Carbon Steel Flat Products From India: Preliminary Rescission of...

    Science.gov (United States)

    2011-03-21

    ..., fully stabilized (commonly referred to as interstitial-free (IF)) steels, high strength low alloy (HSLA...), or both, added to stabilize carbon and nitrogen elements. HSLA steels are recognized as steels with...; high strength low alloy; and the substrate for motor lamination steel may also enter under...

  5. Formability Analysis of Diode-Laser-Welded Tailored Blanks of Advanced High-Strength Steel Sheets

    Science.gov (United States)

    Panda, S. K.; Baltazar Hernandez, V. H.; Kuntz, M. L.; Zhou, Y.

    2009-08-01

    Currently, advances due to tailored blanking can be enhanced by the development of new grades of advanced high-strength steels (HSSs), for the further weight reduction and structural improvement of automotive components. In the present work, diode laser welds of three different grades of advanced high-strength dual-phase (DP) steel sheets (with tensile strengths of 980, 800, and 450 MPa) to high-strength low-alloy (HSLA) material were fabricated by applying the proper welding parameters. Formability in terms of Hecker’s limiting dome height (LDH), the strain distribution on the hemispherical dome surface, the weld line movement during deformation, and the load-bearing capacity during the stretch forming of these different laser-welded blanks were compared. Finite element (FE) analysis of the LDH tests of both the parent metals and laser-welded blanks was done using the commercially available software package LS-DYNA (Livermore Software Technology Corporation, Livermore, CA); the results compared well with the experimental data. It was also found that the LDH was not affected by the soft zone or weld zone properties; it decreased, however, with an increase in a nondimensional parameter, the “strength ratio” (SR). The weld line movement during stretch forming is an indication of nonuniform deformation resulting in a decrease in the LDH. In all the dissimilar weldments, fracture took place on the HSLA side, but the fracture location shifted to near the weld line (at the pole) in tailor-welded blanks (TWBs) of a higher strength ratio.

  6. THE MACHINING OF HARDENED CARBON STEELS BY COATED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Yusuf ŞAHİN

    2001-02-01

    Full Text Available The investigation of machining AISI 1050 carbon steels hardened to the 60 HRC hardness was carried out to determine the tool life and wear behaviour of the various cutting tools under different conditions. These experiments were conducted at using coated ceramic cutting tools and carbide cutting tools. The experimental results showed that the coated ceramic tools exhibited better performance than those of the coated carbide tools when machining the hardened steels. Moreover, wear behaviour of cutting tools were investigated in a scanning electron microscope. Electron microscopic examination also indicated that flank wear, thermal cracks on the tool nose combined with the nose deformation on the tools were responsible for the wear behaviour of the ceramic tools. For the carbide tools, however, removal of coated material from the substrate tool and combined with the crater wear were effective for the machining the hardened steel.

  7. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  8. Influence of the Surface Layer when the CMT Process Is Used for Welding Steel Sheets Treated by Nitrooxidation

    Directory of Open Access Journals (Sweden)

    I. Michalec

    2012-01-01

    Full Text Available Nitrooxidation is a non-conventional surface treatment method that can provide significantly improved mechanical properties as well as corrosion resistance. However, the surface layer is a major problem during the welding process, and welding specialists face many problems regarding the weldability of steel sheets. This paper deals with the properties of a nitrooxidized surface layer, and evaluates ways of welding steel sheets treated by nitrooxidation using a Cold Metal Transfer (CMT process. The limited heat input and the controlled metal transfer, which are considered as the main advantage of the CMT process, have a negative impact on weld joint quality. An excessive amount of porosity is observed,probably due to the high content of nitrogen and oxygen in the surface layer of the material and the fast cooling rate of the weld pool.

  9. Effects of tempering on internal friction of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, J.J., E-mail: jjhoyos@unal.edu.co [Grupo de Ciencia y Tecnologia de los Materiales, Universidad Nacional de Colombia, Sede Medellin, Carrera 80 Numero 65-223, Medellin (Colombia); Ghilarducci, A.A., E-mail: friccion@cab.cnea.gov.ar [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Instituto Balseiro-Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Cientificas y Tecnologicas, Av. Bustillo 9500, 8400 Bariloche RN (Argentina); Salva, H.R., E-mail: salva@cab.cnea.gov.ar [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Instituto Balseiro-Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Cientificas y Tecnologicas, Av. Bustillo 9500, 8400 Bariloche RN (Argentina); Chaves, C.A., E-mail: cachaves@unal.edu.co [Grupo de Ciencia y Tecnologia de los Materiales, Universidad Nacional de Colombia, Sede Medellin, Carrera 80 Numero 65-223, Medellin (Colombia); Velez, J.M., E-mail: jmvelez@unal.edu.co [Grupo de Ciencia y Tecnologia de los Materiales, Universidad Nacional de Colombia, Sede Medellin, Carrera 80 Numero 65-223, Medellin (Colombia)

    2011-04-15

    Research highlights: {yields} Time tempering dependent microstructure of two steels is studied by internal friction. {yields} Internal friction indicates the interactions of dislocations with carbon and carbides. {yields} Internal friction detects the first stage of tempering. {yields} Precipitation hardening is detected by the decrease in the background. - Abstract: Two steels containing 0.626 and 0.71 wt.% carbon have been studied to determine the effects of tempering on the microstructure and the internal friction. The steels were annealed at 1093 K, quenched into water and tempered for 60 min at 423 K, 573 K and 723 K. The increase of the tempering time diminishes the martensite tetragonality due to the redistribution of carbon atoms from octahedrical interstitial sites to dislocations. Internal friction spectrum is decomposed into five peaks and an exponential background, which are attributed to the carbide precipitation and the dislocation relaxation process. Simultaneous presence of peaks P1 and P2 indicates the interaction of dislocations with the segregated carbon and carbide precipitate.

  10. 77 FR 54926 - Certain Seamless Carbon and Alloy Steel; Standard, Line, and Pressure Pipe From Germany

    Science.gov (United States)

    2012-09-06

    ... COMMISSION Certain Seamless Carbon and Alloy Steel; Standard, Line, and Pressure Pipe From Germany... steel standard, line, and pressure pipe from Germany would be likely to lead to continuation or... 2012), entitled Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe from...

  11. Heat exchange performance of stainless steel and carbon foams modified with carbon nano fibers

    NARCIS (Netherlands)

    Tuzovskaya, I.; Pacheco Benito, S.; Chinthaginjala, J.K.; Reed, C.P.; Lefferts, L.; Meer, van der T.H.

    2012-01-01

    Carbon nanofibers (CNF), with fishbone and parallel wall structures, were grown by catalytic chemical vapor deposition on the surface of carbon foam and stainless steel foam, in order to improve their heat exchange performance. Enhancement in heat transfer efficiency between 30% and 75% was achieved

  12. Experimental Investigation of the Capacity of Steel Fibers to Ensure the Structural Integrity of Reinforced Concrete Specimens Coated with CFRP Sheets

    Science.gov (United States)

    Gribniak, V.; Arnautov, A. K.; Norkus, A.; Tamulenas, V.; Gudonis, E.; Sokolov, A.

    2016-07-01

    The capacity of steel fibers to ensure the structural integrity of reinforced concrete specimens coated with CFRP sheets was investigated. Test data for four ties and eight beams reinforced with steel or glass-FRP bars are presented. Experiments showed that the fibers significantly increased the cracking resistance and altered the failure character from the splitting of concrete to the debonding of the external sheets, which noticeably increased the load-carrying capacity of the strengthened specimens.

  13. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qiang; Yau, Siu-Tung [Department of Electrical and Computer Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Nayfeh, Munir H. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2010-11-01

    A simple, two-step method for constructing flexible sheets of supercapacitors is described. The construction is based on painting a sheet of flexible plastic electrolyte with a composite material made of a conducting polymer and carbon nanotubes. The total capacitance of the supercapacitor consists of pseudocapacitance produced by the polymer and electrical double-layer capacitance produced by carbon nanotubes. Stacks of the capacitor sheets were used to light up a system of three light-emitting diodes. The method suggests an inexpensive and potentially high-throughput approach for making flexible supercapacitors. (author)

  14. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes

    Science.gov (United States)

    Liu, Qiang; Nayfeh, Munir H.; Yau, Siu-Tung

    A simple, two-step method for constructing flexible sheets of supercapacitors is described. The construction is based on painting a sheet of flexible plastic electrolyte with a composite material made of a conducting polymer and carbon nanotubes. The total capacitance of the supercapacitor consists of pseudocapacitance produced by the polymer and electrical double-layer capacitance produced by carbon nanotubes. Stacks of the capacitor sheets were used to light up a system of three light-emitting diodes. The method suggests an inexpensive and potentially high-throughput approach for making flexible supercapacitors.

  15. Atmospheric corrosion of carbon steel resulting from short term exposures

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, R.; Cook, D.C.; Perez, T.; Reyes, J. [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States)

    1998-12-31

    The study of corrosion products from short term atmospheric exposures of carbon steel, is very important to understand the processes that lead to corrosion of steels, and ultimately improve the performance of such steel in highly corrosive environments. Many regions along the Gulf of Mexico have extremely corrosive environments due to high mean annual temperature, humidity, time-of-wetness and every high atmospheric pollutants. The process the formation of corrosion products resulting from short term exposure of carbon steel, both as a function of environmental conditions and exposure time, has been investigated. Two sets of coupons were exposed at marine and marine locations, in Campeche, Mexico. Each set was exposed between 1 and 12 months to study the corrosion as a function of time. During the exposure periods, the relative humidity, rainfall, mean temperature, wind speed and wind direction were monitored along with the chloride and sulfur dioxide concentrations in the air. The corroded coupons were analyzed by Moessbauer, Raman, Infrared spectroscopies and X-ray diffraction in order to completely identify the oxides and map their location in the corrosion coating. Scattering and transmission Moessbauer analysis showed some layering of the oxides with lepidocrocite and akaganeite closer to the surface. The fraction of akaganeite phase increased at sites with higher chloride concentrations. A detailed analysis on the development of the oxide phases as a function of exposure time and environmental conditions will be presented. (Author)

  16. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  17. The Study on 400 MPa Class Plain Carbon Structure Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-mei; LI Sheng-li; LI Wei-juan; DU Lin-xiu; WANG Guo-dong

    2004-01-01

    New generation of structure steel has been developed to meet the uninterruptedly increasing needs of the economic construction and development of society, and such material is characterized by ultra-fine grain. In this paper, 400MPa class plain carbon structure steel has been studied, making its yield strength doubled and service life doubled on the basis of good comprehensive properties in large quantity utilization. The deformation behavior and the stain induced transformation of SS400 steel at different temperature were investigated in the laboratory, and the industrial rolling test was carried out in 2 050mm HSM of Baosteel. Not only the laboratory studies but also the industrial test show that the technical route of the experimentis correct and the industrial test results on the basis of low carbon plain steel indicate that the grain size of ferrite was near to 4 ~ 5 μm, elongation was more than 30% , impact property was good, the yield strength can reach 400 MPa.

  18. A new nanoscale metastable iron phase in carbon steels

    Science.gov (United States)

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  19. Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Won; Lee, Jung Min [Korea Institute of Industrial Technology, Jinju (Korea, Republic of); Joun, Man Soo [Gyeongsang National University, Jinju (Korea, Republic of); Kim, Dong Hwan [International University of Korea, Jinju (Korea, Republic of)

    2016-07-15

    During a galvannealed sheet metal forming, the failures of coating layers (powdering, flaking and cracking) frequently affect the strain state of sheets and deteriorate the frictional characteristic between sheets and tools. Two FE-models in this study were suggested to investigate the effects of the mechanical behavior of coating layers on the formability and friction of the coated steel sheets in FE analysis; the first is one-layer model to express the coated sheet as one stress-strain curve and the second is a multiple-layer model which is composed of substrates and coating layers, separately. First, the frictional properties and the formability of the coated sheets were experimentally investigated using a cup deep-drawing trial. After, the drawing process was simulated by FE analysis of the two models. In the multiplelayer model, the mechanical behavior of the coating is defined as a stress-strain curve which was determined using the nanoindentation test of the coating, its FE analysis and artificial neural network method. The result showed that the multiple-layer model provides more accuracy predictions of drawing loads than the one-layer model in the FE analysis, compared to the actual cup drawing test.

  20. Experimental analysis and theoretical predictions of the limit strains of a hot-dip galvanized interstitial-free steel sheet

    Directory of Open Access Journals (Sweden)

    Maria Carolina dos Santos Freitas

    2013-04-01

    Full Text Available In this work, the formability of a hot-dip galvanized interstitial-free (IF steel sheet was evaluated by means of uniaxial tensile and Forming Limit Curve (FLC tests. The FLC was defined using the flat-bottomed Marciniak's punch technique, where the strain analysis was made using a digital image correlation software. A plastic localization model was also proposed wherein the governing equations are solved with the help of the Newton's method. The investigated hot-dip galvanized IF steel sheet presented a very good formability level in the deep-drawing range consistent with the measured Lankford values. The predicted limit strains were found to be in good agreement with the experimental data of the hot-dip galvanized IF steel sheet owing to the definition of the localization model geometrical imperfection as a function of the experimental surface roughness evolution and, in particular, to the yield surface flattening near to the plane-strain stress state authorized by the adopted yield criterion.

  1. Temperature-dependent yield criterion for high strength steel sheets under warm-forming conditions

    Directory of Open Access Journals (Sweden)

    Cai Zhengyang

    2015-01-01

    Full Text Available In this paper, uniaxial and biaxial tensile tests with cruciform specimens were conducted to investigate the deformation behaviour of dual phase steel sheet with a tensile strength of 590 MPa (DP590 under evaluated warm-forming temperatures (20–190 ∘C. Detailed analyses were then carried out to obtain the corresponding experimental yield loci. For the purpose of describing the temperature-dependent yield behaviour of DP590 appropriately, the Yld2000–2d yield function with temperature-dependent exponent was proposed. The identification procedures of the introduced parameters were then proposed based on Levenberg-Marquardt optimization algorithm. Afterwards, the proposed model was implemented into ABAQUS as user subroutine VUMAT with NICE (Next Increment Corrects Error explicit integration scheme. The numerical simulations of biaxial tensile tests were then conducted to confirm the validity of the proposed model. It could be concluded that the flexibility and accuracy of the proposed model guarantee the applicability in warm-forming applications.

  2. Deep drawing of 304 L Steel Sheet using Vegetable oils as Forming Lubricants

    Science.gov (United States)

    Shashidhara, Y. M.; Jayaram, S. R.

    2012-12-01

    The study involves the evaluation of deep drawing process using two non edible oils, Pongam (Pongammia pinnata) and Jatropha (Jatropha carcass) as metal forming lubricants. Experiments are conducted on 304L steel sheets under the raw and modified oils with suitable punch and die on a hydraulic press of 200 ton capacity. The punch load, draw-in-length and wall thickness distribution for deep drawn cups are observed. The drawn cups are scanned using laser scanning technique and 3D models are generated using modeling package. The wall thickness profiles of cups at different sections (or height) are measured using CAD package. Among the two raw oils, the drawn cups under Jatropha oil, have uniform wall thickness profile compared to Pongam oil. Uneven flow of material and cup rupturing is observed under methyl esters of Pongam and Jatropha oil lubricated conditions. However, the results are observed under epoxidised Jatropha oil with uniform metal flow and wall thicknesses compared to mineral and other versions of vegetable oils.

  3. Numerical Determination of Shear Strength of Steel Reinforced Concrete Column Strengthened by CFRP Sheets

    Institute of Scientific and Technical Information of China (English)

    王铁成; 余流; 王立军

    2003-01-01

    The earthquake-resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon-fiber-reinforced plastic (CFRP) sheets including bond-slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two-dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one-dimensional rods including bond-slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite-element formulation. The numerical procedure produces accurate estimates for the loading-carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.

  4. Microstructural evolution and mechanical behaviour of surface hardened low carbon hot rolled steel

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, N.K. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Syed, B. [R and D Division, Tata Steel Limited, Jamshedpur 831007 (India); Ghosh, S.K., E-mail: skghosh@metal.becs.ac.in [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Kundu, S. [R and D Division, Tata Steel Limited, Jamshedpur 831007 (India); Shariff, S.M.; Padmanabham, G. [Centre for Laser Processing, ARCI-Hyderabad, Balapur PO, AP 500005 (India)

    2014-06-01

    Surface hardening of low carbon hot rolled C–Mn steel has been successfully performed by high power diode laser with an achievable case depth of about 300 μm. The laser treated samples have been characterised using optical microscope, scanning electron microscope, transmission electron microscope, and X-ray diffraction techniques. Higher hardness level is achieved in laser surface hardened zone (≈300 HV) than in the base alloy region (≈140 HV). The variation in hardness as a function of distance across the laser tracks is observed during multi-track laser hardening. Laser hardened steel sheets show enhanced mechanical strength (YS: 383–443 MPa, UTS: 476–506 MPa) with the lowering of percentage total elongation (23–28%) compared to the base alloy (YS: 351 MPa, UTS: 450 MPa and total elongation is 32%). Strain hardening exponent (‘n’) has been evaluated from true tensile stress–strain diagram and it shows a similar nature for both base alloy and laser treated steels. The microstructure in the base alloy region consists of a mixture of ferrite and pearlite, whereas predominantly lath martensite is present in the laser hardened surface layer. The improvement of mechanical strength is discussed in terms of the formation of this hardened layer on the surface.

  5. Microbiologically Influenced Corrosion of Carbon Steel Exposed to Biodiesel

    Directory of Open Access Journals (Sweden)

    S. Malarvizhi

    2016-01-01

    Full Text Available Environmental concerns over worsening air pollution problems caused by emissions from vehicles and depletion of fossil fuels have forced us to seek fuels such as biodiesel which can supplement petrofuels. Biodiesels have the ability to retain water and provide a conducive environment for microbiologically influenced corrosion (MIC which may cause difficulties during transportation, storage, and their use. This paper analyses the influence of bacteria on the corrosivity of biodiesel obtained from Jatropha curcas on carbon steel using mass loss method. Carbon steel showed the highest corrosion rates in B100 (100% biodiesel both in the presence and in absence of bacteria. The surface analysis of the metal was carried out using SEM.

  6. Characterization of the Fracture Toughness of TRIP 800 Sheet Steels Using Microstructure-Based Finite Element Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    Recently, several studies conducted by automotive industry revealed the tremendous advantages of Advanced High Strength Steels (AHSS). TRansformation Induced Plasticity (TRIP) steel is one of the typical representative of AHSS. This kind of materials exhibits high strength as well as high formability. Analyzing the crack behaviour in TRIP steels is a challenging task due to the microstructure level inhomogeneities between the different phases (Ferrite, Bainite, Austenite, Martensite) that constitute these materials. This paper aims at investigating the fracture resistance of TRIP steels. For this purpose, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. Uniaxial tensile tests on TRIP 800 sheet notched specimens were also conducted and tensile properties and R-curves (Resistance curves) were determined. The comparison between simulation and experimental results leads us to the conclusion that the method using microstructure-based representative volume element (RVE) captures well enough the complex behavior of TRIP steels. The effect of phase transformation, which occurs during the deformation process, on the toughness is observed and discussed.

  7. Changes in the mechanical properties and microstructure of anisotropic austenitic stainless sheet steel after uniaxial tensile test

    Directory of Open Access Journals (Sweden)

    Yankov Emil

    2017-01-01

    Full Text Available The aim of the investigation is to study the changes in the characteristics of an austenitic sheet material X5CrNi18-10 (1.4301, AISI 304 after a plastic deformation. Samples are cut out from the sheet material at three different directions - 0°, 45° and 90° angle to the rolling direction. The changes in the mechanical properties and microstructure of the anisotropic austenitic steel are investigated by mechanical tests (uniaxial tension tests and hardness measurements and structural analyses (optical and scanning electron microscopy, X-ray diffraction. It is established that the strain induced phase transformation of the metastable austenite to martensite during the tension tests changes the magnetic properties of the steel. It is found out that the sheet anisotropy effect on the uniform deformation, the thickness reduction and structure of the austenite sheet material is more essential for the plastic deformation behaviour than the strain-induced γ → α′ phase transformation.

  8. Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors

    Science.gov (United States)

    Wu, Mao-Sung; Lyu, Li-Jyun; Syu, Jhih-Hao

    2015-11-01

    Copper and nickel hexacyanoferrate (CuHCF and NiHCF) nanostructures featuring three-dimensional open-framework tunnels are prepared using a solution-based coprecipitation process. CuHCF shows superior supercapacitive behavior than the NiHCF, due to the presence of numerous macropores in CuHCF particles for facilitating the transport of electrolyte. Both CuHCF and NiHCF electrodes with stainless steel (SS) substrate tend to lose their electroactivity towards intercalation/deintercalation of hydrated potassium ions owing to the partial corrosion of SS. Formation of a protective and conductive carbon layer in between SS and CuHCF (NiHCF) film is of paramount importance for improving the irreversible loss of electroactivity. Thin and compact graphene (GN) layer without observable holes in its normal plane is the most effective way to suppress the corrosion of SS compared with porous carbon nanotube and activated carbon layers. Specific capacitance of CuHCF electrode with GN layer (CuHCF/GN/SS) reaches 570 F g-1, which is even better than that of CuHCF with Pt substrate (500 F g-1) at 1 A g-1. The CuHCF/GN/SS exhibits high stability with 96% capacitance retention over 1000 cycles, greater than the CuHCF with Pt (75%).

  9. Effects of Austempering after Hot Deformation on the Mechanical Properties of Hot Rolled Si-Mn TRIP Steel Sheets

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; ZHANG Ping-li; WU Di

    2004-01-01

    Excellent mechanical properties are obtained by austempering after hot deformation without subsequent heat treatment in the present Si-Mn TRIP steel sheets. Isothermal holding time after finishing rolling has affected the mechanical properties of this steel. The results show that the sample exhibits a good combination of ultimate tensile strength and total elongation when it is held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase of isothermal holding time, and a further increase in the holding duration results in a decrease of it. The tensile strength, total elongation and strength ductility reach the maximum values(774MPa, 33% and 25542MPa% respectively) for this sort of hot rolled Si-Mn TRIP steel using the optimal technology.

  10. 南沙港HZ和AZ型组合钢板桩陆上施工技术%Construction technology of Steel Pile Wall Formed by HZ and AZ-section Steel Sheet Pile

    Institute of Scientific and Technical Information of China (English)

    古建波; 郭生强

    2011-01-01

    介绍了南沙港粮食及通用码头HZ和AZ型组合钢板桩施工技术,对施打钢板桩用的导向架,采用活动式限位装置、防扭曲装置加以改进,加强测量控制,提高了钢板桩施工质量.%In this paper,construction technology of steel pile wall formed by HZ and AZ-section steel sheet pile on land is introduced.By setting up the active spacing equipment and equipment provided against twist in steel guide frame for steel sheet pile driving,the error of HZ and AZ-section steel sheet pile driving meet construction specifications.

  11. Influence of explosive welding parameters on properties of bimetal Ti-carbon steel

    Directory of Open Access Journals (Sweden)

    Prazmowski Mariusz

    2017-01-01

    Full Text Available Explosion welding of metals is a process of great technological significance in terms of modern metal composites manufacturing possibilities Nevertheless, selecting welding parameters is not an easy task. This paper assesses the effect of various values of distance of sheets on the quality of the bond zone in titanium (Ti Gr.1 - carbon steel (P355GH structure. The research was carried out for initial state bonds i.e. immediately following explosion welding. The results of mechanical and structural investigations were presented. In order to determine changes in the value of strengthening, microhardness tests of both the weld and the joined plates were performed. Performed metallographic analysis shows that the standoff distance affects the quality of the bond zone boundary. Smaller distance promotes the formation of waves with lower parameters (of length and height, whereas greater distances allow forming the bond of a more pronounced, repetitive wavy character, however, increasing the quantity of the fusion zone at the same time. Also, the initial distance between the materials to be joined makes for the strengthening in the areas adjacent to bond boundary. The results received allowed to conclude that for the assumed parameters it is possible to obtain Ti -carbon steel bi-metal with properties meeting the standard’s requirements.

  12. Influence of high deformation on the microstructure of low-carbon steel

    Institute of Scientific and Technical Information of China (English)

    Florin Popa; Ionel Chicina; Dan Frunz; Ioan Nicodim; Dorel Banabic

    2014-01-01

    Low-carbon steel sheets DC04 used in the automotive industry were subjected to cold rolling for thickness reduction from 20%to 89%. The desired thickness was achieved by successive reductions using a rolling mill. The influence of thickness reduction on the micro-structure was studied by scanning electron microscopy. Microstructure evolution was characterized by the distortion of grains and the occur-rence of the oriented grain structure for high cold work. A mechanism of grain restructuring for high cold work was described. The occur-rence of voids was discussed in relation with cold work. The evolution of voids at the grain boundaries and inside the grains was also consid-ered. To characterize the grain size, the Feret diameter was measured and the grain size distribution versus cold work was discussed. The chemical homogeneity of the sample was also analyzed.

  13. Fabrication and microwave shielding properties of free standing polyaniline-carbon fiber thin sheets

    Energy Technology Data Exchange (ETDEWEB)

    Joon, Seema [Polymeric & Soft Material Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Physics, DCRUST Murthal, Sonepat, Haryana 130001 (India); PDM College of Engineering, Bahadurgarh, Haryana 124507 (India); Kumar, Rakesh [Polymeric & Soft Material Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); PDM College of Engineering, Bahadurgarh, Haryana 124507 (India); Singh, Avanish Pratap [Polymeric & Soft Material Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Shukla, Rajni [Department of Physics, DCRUST Murthal, Sonepat, Haryana 130001 (India); Dhawan, S.K., E-mail: skdhawan@mail.nplindia.ernet.in [Polymeric & Soft Material Section, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2015-06-15

    Attempt has been made to synthesize polyaniline-carbon fiber (PANI-CF) composite via in-situ emulsion polymerization using β-naphthalene sulphonic acid (NSA) which acts as both surfactant as well as dopant. Free standing PANI-CF thin sheets are prepared which have electrical conductivity ∼1.02 S/cm with improved mechanical strength and thermal stability. The scanning electron microscopy is used to study the surface morphology of the composites. Structural characterization is done by using XRD. The dielectric attributes (ε* = ε′ − iε″) of PANI-CF sheets are calculated using experimental S parameters (S{sub 11}, S{sub 12}) by Nicolson Ross Wier equations. It has been demonstrated that these sheets show maximum shielding effectiveness (SE) of 31.9 dB at 12.4 GHz frequency at a thickness of 1.5 mm. Free standing PANI-CF sheets so prepared have a potential for X-band microwave absorber application. - Highlights: • Free standing polyaniline-carbon fiber thin sheets fabricated for EMI shielding. • The mechanical strength of sheets improves with phenolic resin loading. • The dielectric parameters were calculated by Nicholson Ross Wier equations. • Sheets (1.5 mm thickness) demonstrate SE of 31.9 dB at 12.4 GHz frequency. • Sheets find potential application for X-band microwave absorption.

  14. Surface cellular salient defects of galvanized steel sheets%镀锌板表面胞状凸起缺陷

    Institute of Scientific and Technical Information of China (English)

    陈连生; 胡宝佳; 宋进英; 田亚强; 郑小平; 邸光明

    2016-01-01

    Scanning electron microscopy along with energy dispersive spectroscopy and sample-electrolysing method was employed to investigate the causes for the formation of cellular salient defects on the surface of galvanized steel sheets. Results show that the skin defect of cold rolled steel sheet is the direct cause of the surface cellular salient defects of galvanized sheets. The strip of silicate inclusions larger than 300μm located at the subsurface area of the cold rolled steel sheet,and massive iron oxide lied among silicate inclusions. Mechanical grinding was conducted to remove the subsurface area of the pickling plate with the same defect batch,and the subsequent cold rolling test showed that the main reason of the surface defects of the galvanized sheet was not caused by massive iron oxide inclusions. The inclu-sion content in the casting billet of galvanized steel sheets with defects was 100.32 mg/10 kg which was composed of in-clusions larger than 140μm,while the normal value was 20.98 mg/10 kg for the casting billet of galvanized steel sheets without defects. The results proved that the fundamental cause of the surface cellular salient defects of galvanized steel sheets was the large silicate inclusions.%采用SEM、EDS和大样电解法研究了某种镀锌板表面胞状凸起缺陷的形成原因。结果表明:冷轧板表面起皮缺陷是造成镀锌板表面胞状凸起缺陷的直接原因。冷轧原料板近表层分布着尺寸大于300μm的长条状硅酸盐夹杂带,且夹杂带中分布着块状氧化铁夹杂。与缺陷镀锌板同批次酸洗板机械研磨去掉近表层,随后冷轧试验表明,块状氧化铁夹杂不是造成镀锌板表面胞状凸起缺陷的主要原因。缺陷镀锌板铸坯中夹杂物含量为100.32 mg/10 kg,夹杂物主要由尺寸大于140μm大型夹杂物组成,而正常镀锌板铸坯中夹杂物含量为20.98 mg/10 kg,证实钢中大型硅酸盐类夹杂是导致镀锌板表面凸起缺陷的根本原因。

  15. 76 FR 45509 - Final Results of Antidumping Duty Changed Circumstances Review: Carbon and Certain Alloy Steel...

    Science.gov (United States)

    2011-07-29

    ... Circumstances Review: Carbon and Certain Alloy Steel Wire Rod from Mexico, 75 FR 67685 (November 3, 2010...: Carbon and Certain Alloy Steel Wire Rod From Mexico, 71 FR 27989 (May 15, 2006). Notification This notice... International Trade Administration Final Results of Antidumping Duty Changed Circumstances Review: Carbon...

  16. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    Science.gov (United States)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  17. Influence of state of Nb on recrystallization temperature during annealing in cold-rolled low-carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toshio, E-mail: ogawa.m8b.toshio@jp.nssmc.com [Nagoya Works, Nippon Steel and Sumitomo Metal Corporation, 5-3 Tokai-machi, Tokai-shi, Aichi 476-8686 (Japan); Sugiura, Natsuko [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511 (Japan); Maruyama, Naoki; Yoshinaga, Naoki [Kimitsu R and D Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1 Kimitsu, Kimitsu, Chiba 299-1141 (Japan)

    2013-03-01

    The influence of state of Nb on recrystallization temperature during annealing in cold-rolled low-carbon steels was investigated. Two kinds of specimens showing a remarkable difference in recrystallization temperature were prepared. Differences in the features of Nb-containing precipitates larger than 3 nm were rarely observed, whereas differences in precipitates smaller than 3 nm were confirmed by atom-probe field-ion microscopy in each hot-rolled sheet. The difference in the recrystallization temperatures of both specimens probably originates in the state of Nb at the atomic scale before annealing.

  18. Inhibition Performance of Enhanced-Mo Inhibitor for Carbon Steel in 55% LiBr Solution

    Institute of Scientific and Technical Information of China (English)

    LIANG Cheng-hao; HU Xian-qi

    2008-01-01

    The inhibition performance of enhanced-Mo inhibitor for carbon steel in 55% LiBr solution was measured by means of chemical immersion, electrochemical measurements, and physical detection technologies. Results indicated that enhanced-Mo inhibitor showed excellent inhibition performance of carbon steel in 55% LiBr solution, especially at high temperature. With increasing the temperature of solution from 160 ℃ to 240 ℃, the corrosion rates of carbon steel increased from 17.67 μm/a to 33.07 μm/a. Enhanced-Mo inhibitor might improve the anodic polarization performance of carbon steel and widen the passive potential region of carbon steel in 55% LiBr solution. Enhanced-Mo inhibitor belongs to anodic inhibitor. In 55% LiBr solution, the relationship between corrosion current density icorr and corrosion potential Ecorr of carbon steel accorded with the equation lgicorr=-2.66-3.54Ecorr, and the value of cathodic Tafel constant βc for the H2 reaction was 282 mVSCE. When 55% LiBr solution contained enhanced-Mo inhibitor, a passive film comprising Fe3O4 and MoO2 was formed on the carbon steel surface by electrochemical reactions. The corrosion of carbon steel might be retarded by this protective film, and the anticorrosion performance of carbon steel in 55% LiBr solution might be improved by enhanced-Mo inhibitor.

  19. Deformation Behavior of Ultra-low Carbon Steel in Ferrite Region during Warm Processing

    Institute of Scientific and Technical Information of China (English)

    XU Guang; CHEN Zhenye; LIU Li; YU Shengfu

    2008-01-01

    The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out ina hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperature.The results show that the influences of deformation parameters on flow stress are different to those in austenitic deformation.The deformation characteristic parameters were calculated for ultra-low carbon steel in ferrite region.The flow stress equation for ultra-low carbon steel in ferritic deformation at low temperature was obtained.

  20. Research on Welding Test of Grey Cast Iron and Low-Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Grey cast iron's welding itself is a complex proble m.So proper welding materials must be selected,complex welding techniques such as preheating before weldingslow cooling after welding etc,should be taken. However the carbon component in low-carbon steel is comparatively low,the carbo n of welded joint will diffuse to the low-carbon steel when it is welded with gr ey cast iron,which will cause the component of carbon greatly increased at the low-carbon steel side in HAZ,high carbon martensite and cracks ...

  1. DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nanotube functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, A; Yamamoto, M; Asano, H; Fujiwara, K [Department of Applied Mathematics and Physics, Tottori University Koyama, Tottori 680-8552 (Japan)], E-mail: ishii@damp.tottori-u.ac.jp

    2008-03-15

    DFT calculation of various atomic species on graphene sheet is investigated as prototypes for formation of nano-structures on carbon nanotube (CNT) wall. We investigate computationally adsorption energies and adsorption sites on graphene sheet for a lot of atomic species including transition metals, noble metals, nitrogen and oxygen, using the DFT calculation as a prototype for CNT. The suitable atomic species can be chosen as each application from those results. The calculated results show us that Mo and Ru are bounded strongly on graphene sheet with large diffusion barrier energy. On the other hand, some atomic species has large binding energies with small diffusion barrier energies.

  2. Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Futao, E-mail: dongft@sina.com [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Du, Linxiu; Liu, Xianghua [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Xue, Fei [College of Electrical Engineering, Hebei United University, Tangshan 063000 (China)

    2013-10-15

    The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boron combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.

  3. INFLUENCE OF ELECTRIC SPARK ON HARDNESS OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-03-01

    Full Text Available Purpose. The purpose of work is an estimation of influence of an electric spark treatment on the state of mouldable superficial coverage of carbon steel. Methodology. The steel of fragment of railway wheel rim served as material for research with chemical composition 0.65% С, 0.67% Mn, 0.3% Si, 0.027% P, 0.028% S. Structural researches were conducted with the use of light microscopy and methods of quantitative metallography. The structural state of the probed steel corresponded to the state after hot plastic deformation. The analysis of hardness distribution in the micro volumes of cathode metal was carried out with the use of microhardness tester of type of PMT-3. An electric spark treatment of carbon steel surface was executed with the use of equipment type of EFI-25M. Findings. After electric spark treatment of specimen surface from carbon steel the forming of multi-layered coverage was observed. The analysis of microstructure found out the existence of high-quality distinctions in the internal structure of coverage metal, depending on the probed area. The results obtained in the process are confirmed by the well-known theses, that forming of superficial coverage according to technology of electric spark is determined by the terms of transfer and crystallization of metal. The gradient of structures on the coverage thickness largely depends on development of structural transformation processes similar to the thermal character influence. Originality. As a result of electric spark treatment on the condition of identical metal of anode and cathode, the first formed layer of coverage corresponds to the monophase state according to external signs. In the volume of coverage metal, the appearance of carbide phase particles is accompanied by the decrease of microhardness values. Practical value. Forming of multi-layered superficial coverage during electric spark treatment is accompanied by the origin of structure gradient on a thickness. The effect

  4. A Spray Pyrolysis Method to Grow Carbon Nanotubes on Carbon Fibres, Steel and Ceramic Bricks.

    Science.gov (United States)

    Vilatela, Juan J; Rabanal, M E; Cervantes-Sodi, Felipe; García-Ruiz, Máximo; Jiménez-Rodríguez, José A; Reiband, Gerd; Terrones, Mauricio

    2015-04-01

    We demonstrate a spray pyrolysis method to grow carbon nanotubes (CNTs) with high degree of crystallinity, aspect ratio and degree of alignment on a variety of different substrates, such as conventional steel, carbon fibres (CF) and ceramics. The process consists in the chemical vapour deposition of both a thin SiO2 layer and CNTs that subsequently grow on this thin layer. After CNT growth, increases in specific surface by factors of 1000 and 30 for the steel and CF samples, respectively, are observed. CNTs growth on ceramic surfaces results in a surface resistance of 37.5 Ohm/sq. When using conventional steel as a rector tube, we observed CNTs growth rates of 0.6 g/min. Details of nanotube morphology and the growth mechanism are discussed. Since the method discussed here is highly versatile, it opens up a wide variety of applications in which specific substrates could be used in combination with CNTs.

  5. The Influence of Carbon Nanotube and Roll Bonding Parameters on the Bond Strength of Al Sheets

    Science.gov (United States)

    Samadzadeh, Mahmoud; Toroghinejad, Mohammad Reza

    2014-05-01

    This study investigates the bond strength of aluminum sheets subjected to the roll bonding process in the presence of multiwall carbon nanotubes (MWCNTs). The effects of MWCNTs dispersion, thickness reduction, weight fraction of MWCNTs at the interface, and rolling temperature on the bond strength of the commercial pure aluminum sheets are studied. The peeling test is used to evaluate the bond strength of aluminum sheets. Optical microscopy and scanning electron microscopy are also used to evaluate the surface conditions of the peeled surfaces. Results indicate that, compared to the spread method, using the solution dispersion method to disperse MWCNTs reduces aluminum sheet's bond strength. Also, the presence of MWCNTs reduces the sheet's bond strength compared to aluminum sheets at a constant thickness reduction. However, bond strength is increased with higher thickness reductions in the presence or absence of MWCNTs. It is also shown that increasing the entry temperature improves bond strength, but that bond strength enhancement is lower in aluminum-MWCNTs sheets than in aluminum-aluminum sheets.

  6. Mechanical Properties and Corrosion Behavior of Low Carbon Steel Weldments

    Directory of Open Access Journals (Sweden)

    Mohamed Mahdy

    2013-01-01

    Full Text Available This research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current density and anodic Tafel slop, while decrease the polarization resistance compared with unwelded low carbon steel. Cyclic polarization were measured to show resistance of specimens to pitting corrosion and to calculate the forward and reveres potentials. The results show shifting the forward, reverse and pitting potentials toward active direction for weldments samples compared with unwelded sample.

  7. Nanosecond pulsed laser welding of high carbon steels

    Science.gov (United States)

    Ascari, Alessandro; Fortunato, Alessandro

    2014-03-01

    The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.

  8. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    Science.gov (United States)

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.

  9. Austenite and ferrite grain size evolution in plain carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Militzer, M.; Giumelli, A.; Hawbolt, E.B.; Meadowcroft, T.R. [British Columbia Univ., Vancouver, BC (Canada)

    1995-01-01

    Grain size evolution in a 0.17%C, 0.74%Mn plain carbon steel is investigated using a Gleeble 1500 thermomechanical simulator. Austenite grain growth measurements in the temperature range from 900 to 1150{degrees}C have been used to validate the Abbruzzese and Luecke model, which is recommended for simulating grain growth during reheating. For run-out table conditions, the ferrite grain size decreases from 1l{mu}m to 4{mu}m when the cooling rate from the austenite is increased from 1 to 80{degrees}C/s.

  10. Hybrid Friction Stir Welding of High-carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Don-Hyun Choi; Seung-Boo Jung; Chang-Yong Lee; Byung-Wook Ahn; Jung-Hyun Choi; Yun-Mo Yeon; Keun Song; Seung-Gab Hong; Won-Bae Lee; Ki-Bong Kang

    2011-01-01

    A high-carbon steel joint, SK5 (0.84 wt% C), was successfully welded by friction stir welding (FSW), both without and with a gas torch, in order to control the cooling rate during welding. After welding, the weld zone comprised gray and black regions, corresponding to microstructural variation: a martensite structure and a duplex structure of ferrite and cementite, respectively. The volume fraction of the martensite structure and the Vickers hardness in the welds were decreased with the using of the gas torch, which was related with the lower cooling rate.

  11. Corrosion inhibition of carbon steel by extract of Buddleia perfoliata

    Directory of Open Access Journals (Sweden)

    ROY LOPES-SESENES

    2012-06-01

    Full Text Available Buddleia perfoliata leaves extract has been investigated as a carbon steel corrosion inhibitor in 0.5 M sulfuric acid by using polarization curves, electrochemical impedance spectroscopy and weight-loss tests at different concentrations (0, 100, 200, 300, 400 and 500 ppm and temperatures, namely 25, 40 and 60 °C. Results showthat inhibition efficiency increases as the inhibitor concentration increases, decreases with temperature, and reaches a maximum value after 12 h of exposure, decreasing with a further increase in the exposure time. It was found that the inhibitory effect is due to the presence of tannines on this extract.

  12. Corrosion Inhibition of Carbon Steel in Chloride and Sulfate Solutions

    Directory of Open Access Journals (Sweden)

    Amr Ahmed Elsayed

    2016-02-01

    Full Text Available Corrosion is a major problem in industry and in infrastructure; a huge sum of expenditure every year is spent on preventing, retarding, and repairing its damages. This work studies the engineering of an inhibitor for carbon steel metal used in the cooling systems containing high concentration of chloride and sulfate ions. For this purpose, the synergy between the dichromate, molybdate and nitrite inhibitors is examined and optimized to the best results. Moreover, care was taken that the proposed inhibitor is compliant with the environmental laws and regulations.

  13. Recrystallization of High Carbon Steel during High Strain Rate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The recrystallization of high carbon steel during high temperature and high speed rolling has been studied by analyzing the stress-strain curves and the austenite grain size.Isothermal multi-pass hot compression at high strain rate was carried out by Gleeble-2000. The austenite grain size was measured by IBAS image analysis system. The results show that static recrystallization occurred at interpass time under pre-finish rolling, and at the finish rolling stage, due to the brief interpass time, static recrystallization can not be found.

  14. Investigation of Ductile Damage in DP980 Steel Sheets Using Mechanical Tests and X-ray Micro-Tomography

    Science.gov (United States)

    Mishra, A.; Leguen, C.; Thuillier, S.; Maire, E.

    2011-05-01

    This study is part of a broader research project on the prediction of formability limits in bending on radius of the order of the sheet thickness, based on ductile damage. As a first step, ductile damage in DP980 steel sheet was investigated by means of micro-tomography and mechanical testing, including tensile and simple shear tests. The local strain in tension was measured with a digital image correlation device up to rupture, on macroscopic samples of standard dimensions. Moreover, interrupted tensile tests on smaller specimen were also performed, in order to analyze the void distribution by X-ray micro-tomography. The final aim is to perform numerical simulation of the tests, with Gurson-Tvergaard-Needleman model, to take into account the influence of ductile damage on the mechanical behavior. A fair description of the void volume fraction was obtained as well as the stress level, in the case of small-size specimen.

  15. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: matteo.rossini@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: pasquale.russospena@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: luca.cortese@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: paolo.matteis@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: donato.firrao@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-03-25

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  16. Effects of process variables in decarburization annealing of Fe-3%Si-0.3%C steel sheet on textures and magnetic properties

    Science.gov (United States)

    Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung

    2017-01-01

    In Fe-3%Si-0.3%C steel sheet, a relatively strong //ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the //ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the //ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.

  17. Electrochemical characteristics and surface morphology in non-chromate chemical conversion coating for Zn-electroplated steel sheets

    Institute of Scientific and Technical Information of China (English)

    Masazumi OKIDO; Ryoichi ICHINO; Seok-Ki JANG; Seong-Jong KIM

    2009-01-01

    The corrosion protection property and morphology of colloidal silica conversion films as an alternative to chemical conversion coating(CCC) films were examined. The corrosion behavior was investigated in 3%NaCI solution using electrochemical techniques. Corrosion was implied by the appearance of red rust on the specimen surface. The results show that in 3%NaCl solution, red rust appears at 15-20, 55-70, and 75-85 d on Zn-electroplated steel, colloidal silica conversion-coated specimens, and chemical conversion-coated, specimens, respectively. In the salt spray test, the colloidal silica film provides better corrosion protection than CCC film, I.e., red rust appears at 96 h on the Zn-electroplated steel sheet, at 432 h on the CCC films, and at 888 h on silica conversion coating.

  18. Plasma arc brazing - a low energy joining technology for steel sheets; Plasmalichtbogenloeten - eine energiearme Fuegetechnik fuer Feinblechwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Bouaifi, B.; Draugelates, U.; Helmich, A.; Ouaissa, B. [TU Clausthal, Clausthal-Zellerfeld (Germany)

    2001-07-01

    Mild and high strength steel sheets are comparatively difficult to weld. The heat input in the case of conventional welding processes is too high, so that plasma brazing is an attractive alternative and complementary joining process. One characteristic of the process is the independent input of energy and filler material. In addition, the process is practically spatter-free. Plasma brazing reduces joint and panel distortion and is tolerant to surface contamination and metallic surface coatings. The brazed seams are aesthetic in appearance and clear good mechanical properties. (orig.)

  19. Effect of r-value and texture on plastic deformation and necking behavior in interstitial-free steel sheets

    Science.gov (United States)

    Oh, Gyu-Jin; Lee, Kye-Man; Huh, Moo-Young; Park, Jin Eon; Park, Soo Ho; Engler, Olaf

    2017-01-01

    Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.

  20. Two-beam Laser Brazing of Thin Sheet Steel for Automotive Industry Using Cu-base Filler Material

    Science.gov (United States)

    Mittelstädt, C.; Seefeld, T.; Reitemeyer, D.; Vollertsen, F.

    This work shows the potential of two-beam laser brazing for joining both Zn-coated steel and 22MnB5. Brazing of Zn-coated steel sheets using Cu-Si filler wire is already state of the art in car manufacturing. New press-hardened steels like 22MnB5 are more and more used in automotive industry, offering high potential to save costs and improve structural properties (reduced weight / higher stiffness). However, for joining of these ultra-high strength steels investigations are mandatory. In this paper, a novel approach using a two-beam laser brazing process and Cu-base filler material is presented. The use of Cu-base filler material leads to a reduced heat input, compared to currently applied welding processes, which may result in benefits concerning distortion, post processing and tensile strength of the joint. Reliable processing at desired high speeds is attained by means of laser-preheating. High feed rates prevent significant diffusion of copper into the base material.

  1. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  2. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    Science.gov (United States)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  3. 78 FR 16252 - Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results...

    Science.gov (United States)

    2013-03-14

    ... interstitial-free (``IF'')) steels, high strength low alloy (``HSLA'') steels, and the substrate for motor... and nitrogen elements. HSLA steels are recognized as steels with micro-alloying levels of elements... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia,...

  4. 75 FR 43931 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Preliminary Results of...

    Science.gov (United States)

    2010-07-27

    ... (``IF'')) steels, high strength low alloy (``HSLA'') steels, and the substrate for motor lamination... titanium and/or niobium added to stabilize carbon and nitrogen elements. HSLA steels are recognized as... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from...

  5. 76 FR 22868 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of...

    Science.gov (United States)

    2011-04-25

    ... (``IF'')) steels, high strength low alloy (``HSLA'') steels, and the substrate for motor lamination... titanium and/or niobium added to stabilize carbon and nitrogen elements. HSLA steels are recognized as... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From...

  6. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Mahat, Nur Akma; Othman, Norinsan Kamil [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Sahrani, Fathul Karim [School of Environment and Natural Resources Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  7. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Science.gov (United States)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  8. Distribution of radionuclides during melting of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  9. Microstructure and Property of High Carbonic-Chromium Cast Steel with Different Hot Deformation Ratio

    Institute of Scientific and Technical Information of China (English)

    XU Tao; WANG Jiu-liang; ZHANG Run-jun; CHAO Guo-hua; LIU Jian-hua

    2004-01-01

    The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied. The experimental results show that the microstructure and properties of high carbonic-chromium cast steel are obviously improved after hot deformation, and the best mechanical properties of the cast steel can be obtained under hot deformation ratio of 40 %-50 %, which leads to the morphology change of eutectic carbide and the precipitation of granular carbides.

  10. A study on the impediment of thickness diminution of carbon steel tube using applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Oh; Hong, Seong Min [Chungnam National Univ., Taejon (Korea, Republic of); Park, Yun Won [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2002-03-15

    Carbon steel pipe is used as a pipe laying for the cooling water of nuclear reactor. In order to examine the diminution of steel thickness, the magnetic field permeability of applicable permanent magnets was simulated by computer. The susceptibility of the permanent magnets according to the temperature was measured to investigate the applicability of permanent magnets at the cooling water temperature of nuclear power plant. The structure and magnetic properties of carbon steel tube were observed regarding to the existence of oxidized layer.

  11. 76 FR 78882 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Affirmative Preliminary Determination of...

    Science.gov (United States)

    2011-12-20

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Affirmative Preliminary... Administration, Department of Commerce. SUMMARY: We preliminarily determine that carbon and certain alloy steel wire rod (wire rod) with an actual diameter between 4.75 mm and 5.00 mm produced in Mexico and...

  12. 78 FR 2658 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Rescission of Antidumping Duty...

    Science.gov (United States)

    2013-01-14

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Rescission of... its administrative review of the antidumping duty order on carbon and certain alloy steel wire rod (``wire rod'') from Mexico for the period October 1, 2011, through September 30, 2012. DATES:...

  13. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  14. Laser alloying of the plain carbon steel surface layer

    Directory of Open Access Journals (Sweden)

    A. Radziszewska

    2008-07-01

    Full Text Available As an example of the types of features observed after laser alloying, the addition of Ta to mild carbon steel is described. The system is of interest because such alloying is beneficial in improving surface related properties. The paper describes the microstructure and properties (phase and chemical composition, microhardness of the laser alloyed surface layer. In the investigation the optical microscope, the scanning electron microscope (SEM, chemical (EDS microanalysis composition and microhardness testing methods have been used. Specimens of 0,17 %C plain steel were coated with Ta powder layers. The paints containing organic components were used as the binders during deposition of Ta powder layers on the sample surface. The thickness of Ta deposited layers amounted to 0,16 mm. The specimens were then swept through high power (of nominal power 2,5 kW CW CO2 laser radiation at different speeds.The surface alloyed layers varied in microstructure consisted of fiber like Ta2C + γ eutectics, chemical composition and microhardness. The EDS analyses revealed the enrichment of tantalum in the laser alloyed zone (LAZ. The changes of process parameters had an influence on the hardness of alloyed surface layers: by increasing scanning velocity (from 12 mm/s to 20 mm/s and decreasing laser power (from 1,8 kW to 1,35 kW, the hardness diminished. The wear tests were also carried out which showed that laser alloying of plain carbon steel surface layer led to improvement of their wear resistance.

  15. Reduction of work hardening rate in low-carbon steels

    Science.gov (United States)

    Yalamanchili, Bhaskar Rao

    Low carbon grades of steel rods are used to produce finished products such as fine wire, coat hangers, staples, and roofing nails. These products are subject to ductility failures during production due to excessively high work hardening rates during wire drawing. The high work hardening rates are attributed to the presence of residuals, free nitrogen, or combinations thereof. This research concludes that the most cost-effective way to reduce the work hardening rate during wire drawing is to combine boron with nitrogen to form boron nitride, and thus reducing its work hardening contribution. The results of this study also conclude the following: (1) Boron/Nitrogen ratio is the more significant factor than rod tensile strength, which affects work hardening rate. Higher ratio is better in the 0.79 to 1.19 range. (2) Maintaining this narrow B/N range requires precise process control. (3) Process conditions such as dissolved oxygen (Steel Texas (North Star) benefited from this research by being able to provide a competitive edge in both quality and cost of its low carbon boron grades thus making North Star a preferred supplier of wire rod for these products.

  16. 78 FR 79667 - Stainless Steel Sheet and Strip in Coils From Japan: Initiation of Expedited Changed...

    Science.gov (United States)

    2013-12-31

    ....30 percent copper and between 0.20 and 0.50 percent cobalt. This steel is sold under proprietary...-cobalt alloy stainless strip is also excluded from the scope of this order. This ductile stainless steel strip contains, by weight, 26 to 30 percent chromium, and 7 to 10 percent cobalt, with the remainder...

  17. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These advan

  18. Synthesis of carbon fibers with branched nanographene sheets for electrochemical double layer capacitor application.

    Science.gov (United States)

    Matsushima, Masahiro; Kalita, Golap; Kato, Kimitoshi; Noda, Mikio; Uchida, Hideo; Wakita, Koichi; Umeno, Masayoshi; Tanemura, Masaki

    2014-03-01

    We demonstrate a one step technique to synthesis the carbon fibers (CNFs) with branched nanographene sheets by the pulsed discharge (PD) plasma chemical vapor deposition (CVD) process. Highly crystalline branched nanographene sheets were directly grown from the surface of the carbon fibers to obtain a three dimensional (3D) nanostructure. The growth process can be explained from the catalyst support growth of the CNFs, and subsequently nucleation and growth of the nanographene sheets from the crystalline surface of the CNF. The deposited nanostructured films with different pulse discharge were used as an electrode for electrochemical double-layer capacitors (EDLC). It is observed that the capacitance is dependent on the morphology of the electrode materials and an optimum capacitance is obtained with the branched nanographene on CNFs.

  19. Effect of Variable Blank Holder Force on Rectangular Box Drawing Process of Hot-galvanized Sheet Steel

    Institute of Scientific and Technical Information of China (English)

    Qunqiang FU; Wei ZHU; Zhiliang ZHANG; Hongying GONG

    2005-01-01

    At first, a series of finite element method (FEM) simulation tests were used to find the critical forming conditions of hot-galvanized sheet steel during the rectangular box drawing processing when constant blank holder forces were applied. According the test results, the reasonable alteration scope of initial variable blank holder force (VBHF) wasas 1.9~2.3 T. Then, based on the test productions of blank holder force, 12 typical VBHF curves were applied to perform the simulation tests by the simulation software of DYNAFORM. The simulation test results showed that VBHF had great effects on drawing formability of hot-galvanized sheet steel during the rectangular box drawing.However, the different VBHF curves were applied to control the whole drawing and it would get great different effects. At the same tine, the VBHF had great effects on the maximum thick thinning ratio, but had little effect on the maximum thick incrassation ratio. So, reasonable application of the VBHF would greatly decrease the fractures.When the VBHF profile is taken as curve L, the best effect of drawing formability could be obtained. When curve I is used, contrary effect could be gotten. The other types of curves would cause effects between above two types of VBHF curves. Finally, the actual tests were applied to check the validity of the FEM simulation tests. The results show that the FEM simulation tests are good ways for predicting and optimizing the VBHF.

  20. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chung Keun; Lim, Sung Hyung [Buhmwoo Institute of Technology Research, Hwaseong (Korea, Republic of)

    2015-10-15

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

  1. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.

  2. 76 FR 16607 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Partial Rescission of Antidumping...

    Science.gov (United States)

    2011-03-24

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Partial... antidumping duty order on carbon and certain alloy steel wire rod from Mexico. See Antidumping or... carbon and certain alloy steel wire rod from Mexico, in part, with respect to DeAcero, Aceros,...

  3. 78 FR 28190 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Final Results of Antidumping Duty...

    Science.gov (United States)

    2013-05-14

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Final Results of... carbon and certain alloy steel wire rod (wire rod) from Mexico. The period of review (POR) is October 1... (the Act). \\1\\ See Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results...

  4. 77 FR 66954 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-11-08

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results of... on carbon and certain alloy steel wire rod (wire rod) from Mexico. The period of review is October 1... Antidumping Duty Orders: Carbon and Certain Alloy Steel Wire Rod from Brazil, Indonesia, Mexico,...

  5. 77 FR 13545 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-03-07

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Final Results... duty order on carbon and certain alloy steel wire rod (wire rod) from Mexico.\\1\\ This review covers.... \\1\\ See Carbon and Certain Alloy Steel Wire Rod from Mexico: Notice of Preliminary Results...

  6. 76 FR 33218 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Initiation of Anti-Circumvention Inquiry of...

    Science.gov (United States)

    2011-06-08

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Initiation of Anti... antidumping (AD) order on carbon and certain alloy steel wire rod from Mexico.\\1\\ See Notice of Antidumping Duty Orders: Carbon and Certain Alloy Steel Wire Rod from Brazil, Indonesia, Mexico, Moldova,...

  7. 78 FR 33809 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Science.gov (United States)

    2013-06-05

    ... Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of China: Rescission...'') initiated an administrative review of the antidumping duty order on seamless carbon and alloy steel standard... order on seamless carbon and alloy steel standard, line, and pressure pipe from the People's Republic...

  8. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... corrosion-resistant carbon steel flat products (``CORE'') from Germany and the Republic of Korea (``Korea...-Year (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel...

  9. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Science.gov (United States)

    2012-04-23

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to...

  10. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of...

  11. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five... duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead...

  12. 77 FR 301 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year...

    Science.gov (United States)

    2012-01-04

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year Reviews Concerning the Countervailing Duty Order on Corrosion-Resistant Carbon Steel Flat Products From Korea and the Antidumping Duty Orders on Corrosion-Resistant Carbon Steel Flat Products From Germany...

  13. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-12-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through December 31, 2009. See Corrosion-Resistant Carbon Steel...

  14. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea.... See Corrosion-Resistant Carbon Steel Flat Products from Germany and the Republic of Korea:...

  15. 76 FR 3613 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2011-01-20

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE..., 2008. See Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea:...

  16. 77 FR 72827 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Final...

    Science.gov (United States)

    2012-12-06

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... on certain corrosion- resistant carbon steel flat products (``CORE'') from Germany and the Republic... Reviews'' section of this notice. \\1\\ Corrosion-Resistant Carbon Steel Flat Products From Germany and...

  17. Internal corrosion of carbon steel piping in hot aquifers service

    Directory of Open Access Journals (Sweden)

    Simičić Miloš V.

    2011-01-01

    Full Text Available Internal corrosion of carbon steel pipelines is a major problem encountered in water service. In terms of prediction of the remaining lifetime for water pipelines based on the corrosion allowance, the three main approaches are corrosion modelling, corrosion inhibitor availability, and corrosion monitoring. In this study we used two theoretical corrosion models, CASSANDRA and NORSOK M-506 of quite different origin in order to predict uniform corrosivity of hot aquifers in eight different pipelines. Because of the varying calculation criteria for the different models, these can give very different corrosion rate predictions for the same data input. This is especially true under conditions where the formation of protective films may occur, such as at elevated temperatures. The evaluation of models was conducted by comparison using weight-loss coupons and three corrosion inhibitors were obtained from commercial suppliers. The tests were performed during the 60-day period. Even though inhibitors’ efficiencies of 98% had been achieved in laboratory testing, inhibitors’ availabilities of 85% have been used due to logistics problems and other issues. The results, given in mmpy, i.e. millimeter per year, are very consistent with NORSOK M-506 prediction. This is presumably because the model considers the effect of the formation of a passive iron carbonate film at temperatures above 80 °C and significant reduction in corrosion rate. Corrosion inhibitor A showed a better performance than inhibitors B and C in all cases but the target corrosion rates of less than 0.1 mmpy were achieved for all inhibitors. The chemical type of corrosion inhibitor A is based on quaternary amines mixed with methanol, isopropyl alcohol, xylene and ethylbenzene. Based on the obtained results the carbon steel lifetime of 30 years, provided proper inhibitors are present and 3mm corrosion allowance, can be achieved for hot aquifers service with presented water compositions.

  18. Study on temper-rapid cooling process of low carbon steel produced by CSP

    Institute of Scientific and Technical Information of China (English)

    Huajie Wu; Yangchun Liu; Jie Fu

    2007-01-01

    On the basis of the effect of carbon precipitation on the microstructure and properties of steel products below A1 temperature,a new thermal treatment method (temper-rapid cooling process) was studied. By the temper-rapid cooling process, the yield strengths of the high strength low carbon (HSLC) steel ZJ330 and SPA-H produced using the compact strip production (CSP) process increased from 340 to about 410 MPa and from 410 to about 450 MPa, respectively. The results indirectly indicated that there existed nanoscaled iron-carbon precipitates that have obvious precipitation effect on low carbon steel produced by CSP. The prospect of application is discussed.

  19. Constitutive model depending upon temperature and strain rate of carbon constructional quality steels

    Institute of Scientific and Technical Information of China (English)

    杨柳; 罗迎社

    2008-01-01

    The basic factors relating to the rheological stress in the constitutive equations were introduced.Carbon constructional quality steels were regarded as a kind of elastic-viscoplastic materials under high temperature and the elastic-viscoplastic constitutive models were summarized.A series of tension experiments under the same temperature and different strain rates,and the same strain rate and different temperatures were done on 20 steel,35 steel and 45 steel.52 groups of rheological stress-strain curves were obtained.The experimental results were analyzed theoretically.The rheological stress constitutive models of carbon steels were built combining the strong points of the Perzyna model and Johnson-Cook model.Comparing the calculation results conducted from the model with the experiment results,the results proves that the model can reflect the temperature effect and strain rate effect of carbon constructional quality steels better.

  20. Improved removal of arsenic from groundwater using pre-corroded steel and iron tailored granular activated carbon.

    Science.gov (United States)

    Zou, J; Cannon, F S; Chen, W; Dempsey, B A

    2010-01-01

    The authors have combined corrosion of steel fittings or perforated sheets with granular activated carbon (GAC) that had been pre-treated with Fe(III)-citrate, to produce an innovative and low-maintenance technique for removing arsenic from groundwater. Removal of arsenic was measured using two GAC column configurations: rapid small scale column tests (RSSCT's) and mini-column tests. Independent variables included pH, pre-corrosion procedure, and idling of the column (i.e. intentionally stopping flow for defined times in order to create reducing conditions). Use of corroded steel plus pre-treated GAC removed arsenic to below 10 microg/L for up to 248,000 bed volumes (BV) at pH 6, compared to 7,000 BVs for pre-treated GAC without pre-corroded steel. Performance was not as good at pH 6.5 or 7.5. Idling the system recovered the iron corrosion ability by reducing the passive Fe(III) layer on pre-corroded steel surface, as a result the BVs to arsenic breakthrough was doubled. But idling also caused brief periods of arsenic and iron release after restart, due to reductive dissolution of arsenic-containing ferric oxides. GAC was also effective as filtration media for removal of iron (hydr)oxide particles (and associated arsenic) that was released from the pre-corroded iron.

  1. 水上承台钢板桩围堰在小榄水道特大桥中的运用%Application of Steel Sheet Pile Cofferdam as Water Bearing Sheet in Xiaolan Extra Large Bridge

    Institute of Scientific and Technical Information of China (English)

    姚天虹

    2014-01-01

    Steel sheet pile is widely applied in excavation and support of foundation pit with weak foundation for its rapid construction speed and low cost. Based on the application of ESP-Ⅳsteel sheet pile cofferdam with water-proof measures in a large bridge in Zhongshan, Guangdong province, many aspects are introduced briefly, such as the tips of steel sheet pile cofferdam, the key points of steel sheet pile insertion, the leaking stoppage of the cofferdam, the fabrication of guide frame and the demolition of the cofferdam.%钢板桩在地基软弱基坑开挖支护时广泛使用,其具有施工速度快、成本低的特点。该文通过采用自身具备止水措施的FSP-Ⅳ型钢板桩围堰在广东中山市小榄水道特大桥中的运用实例,简要介绍了钢板桩围堰施工的注意事项、插打钢板桩的要点、钢板桩围堰的堵漏、导向架制作、钢板桩围堰的拆除等内容。

  2. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    Science.gov (United States)

    Timma, Christian; Lostak, Thomas; Janssen, Stella; Flock, Jörg; Mayer, Christian

    2016-12-01

    Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH4)2SO4) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH4)2Zn(SO4)2 * xH2O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  3. Stress and Buckling Analysis of Cold-formed Zed-purlins Partially Restrained by Steel Sheeting

    Institute of Scientific and Technical Information of China (English)

    Zhi-ming Ye; R. Kettle; L.Y. Li; B.Schafer

    2003-01-01

    This paper presents an analysis model for cold-formed purlin-sheeting systems subjected to wind uplitt loading in which the restraint of the sheeting to the purlin is taken into account by using two springs representing the translational and rotational restraints provided by the sheeting.The set of equations is solved by means of trigonometric series and finite strip methods in which the pre-buckling stress is calculated based on the same model used for the buckling analysis rather than taken as the "pure bending" stress. The influence of spring stiffness and fixing position of the purlin and sheeting on the stresses resulted in the cross-section of the purlin is discussed in details.

  4. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    Science.gov (United States)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  5. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.

    Science.gov (United States)

    Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S

    2014-11-26

    Thermal properties of single wall carbon nanotube sheets (SWCNT-sheets) are of significant importance in the area of thermal management, as an isolated SWCNT possesses high thermal conductivity of the value about 3000 W m(-1) K(-1). Here we report an indirect method of estimating the thermal conductivity of a nanometer thick suspended SWCNT-sheet by employing the Raman scattering technique. Tube diameter size is examined by the transmissions electron microscopy study. The Raman analysis of the radial breathing modes predicts narrow diameter size distribution with achiral (armchair) symmetry of the constituent SWCNTs. From the first order temperature coefficient of the A1g mode of the G band along with the laser power dependent frequency shifting of this mode, the thermal conductivity of the suspended SWCNT-sheet is estimated to be about ∼18.3 W m(-1) K(-1). Our theoretical study shows that the thermal conductivity of the SWCNT-sheet has contributions simultaneously from the intratube and intertube thermal transport. The intertube thermal conductivity (with contributions from the van der Waals interaction) is merely around 0.7 W m(-1) K(-1), which is three orders smaller than the intratube thermal conductivity, leading to an abrupt decrease in the thermal conductivity of the SWCNT-sheet as compared to the reported value for isolated SWCNT.

  6. Carbon nanotube sheets as transparent charge injectors in organic light-emitting diodes

    Science.gov (United States)

    Williams, Christopher; Zhang, Mei; Ovalle, Raquel; Trivedi, Krutarth; Kuznetsov, Alexander; Lee, Sergey; Baughman, Ray; Zakhidov, Anvar

    2006-03-01

    Carbon nanotubes (CNTs) have been recognized for their potential in many applications ranging from high strength materials and fibers to true nanoscale electronics. Recently a method for making strong and transparent CNT sheets has been developed, producing free-standing multiwall nanotube sheets which are easy to process [1]. Their mechanical and electrical properties allow them to meet the needs of a wide range of applications, particularly in optoelectronics. We show here the potential for using these thin, flexible CNT sheets in the development of flexible organic light-emitting diode (OLED) displays. The high transparency of the sheets, the high degree of orientation of tubes and the high work function of the material make them suitable hole injectors for typical hole transport materials used in OLEDs and polymeric LEDs (PLEDs). We show that CNT sheets can be used as anodes for both PLEDs and molecular OLEDs. We also introduce a method for producing inverted OLEDs on existing drive electronics for active matrix displays and a design for a transparent display using CNT sheets as both the electron and hole injector. [1] M. Zhang, S. Fang, A. Zakhidov, S. Lee, A. Aliev, C. Williams, K. Atkinson, R. Baughman, Science 309, 1215 (2005)

  7. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  8. STUDY OF THE HARDENING TEMPERATURE INFLUENCE ON PROCESSES WHEN TEMPERING CARBON STEEL

    Directory of Open Access Journals (Sweden)

    Ms. Irina L. Polyanskaya

    2016-12-01

    Full Text Available The article presents the research results of carbon steel electrical resistance changes at low tem-pering and determines the effect of temperature on the electrical resistance. The analysis of the results showed that the influence of carbon on the value of the electrical resistance is higher than the influence of the crystal structure defects. The changes of the hardened steel electrical resistance are due to the redistri-bution of carbon.

  9. Simple Predicting Method for Fatigue Crack Growth Rate Based on Tensile Strength of Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Three types of fatigue tests for an annealed carbon steel containing carbon of 0.42 % were carried out on smooth specimens and specimens with a small blind hole in order to investigate the fatigue crack growth law. A simple predicting method for crack growth rates has been proposed involving strength σb and the relation between cyclic stress and strain. The validity of proposed method has been confirmed by experiments on several carbon steels with different loadings.

  10. Effect of Carbon Properties on Melting Behavior of Mold Fluxes for Continuous Casting of Steels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    During continuous casting of steel, the properties of mold fluxes strongly affect the casting performance,steel quality and environment of casting operation. The high temperature microscopy technique was used to investigate the melting behaviour of mold fluxes, and drip test method was used to determine their melting rate. The results showed that free carbon is a dominant factor in governing the melting behaviour of fluxes, and the melting rate is increased with increasing carbon reactivity and decreasing carbon content.

  11. Study on rolling process optimization of high carbon steel wire

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experimental parameters for thermal simulation were optimized, and the thermal simulating experiments were carried out on a Gleeble1500 thermal simulator. The process parameters for the manufacture were optimized after analysis of the data, and the productive experiments were performed after the water box in front of the no-twist blocks was reconstructed, to control the temperature of the loop layer. The results from the productive experiments showed that the cooling rate of 10-15 ℃/s was reasonable before phase transformation, about 5℃/s during phase wire was increased to 1150-1170 MPa with an increase of 20-30 MPa, the percentage reduction of section was to 34%-36% with an increase of 1%-3% by testing the finished products after reconstruction.

  12. Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure.

    Science.gov (United States)

    Kim, Jae-Woo; Sauti, Godfrey; Siochi, Emilie J; Smith, Joseph G; Wincheski, Russell A; Cano, Roberto J; Connell, John W; Wise, Kristopher E

    2014-11-12

    Thermoset/carbon nanotube (CNT) sheet nanocomposites were successfully fabricated by resistive heating assisted infiltration and cure (RHAIC) of the polymer matrix resin. Resistive heating takes advantage of the electrical and thermal conductivity of CNTs to rapidly and uniformly introduce heat into the CNT sheet. Heating the CNT sheet reduces the viscosity of the polymer resin due to localized temperature rise in close proximity to the resin, which enhances resin flow, penetration, and wetting of the CNT reinforcement. Once the resin infusion process is complete, the applied power is increased to raise the temperature of the CNT sheet, which rapidly cures the polymer matrix. Tensile tests were used to evaluate the mechanical properties of the processed thermoset/CNT sheet nanocomposites. The improved wetting and adhesion of the polymer resin to the CNT reinforcement yield significant improvement of thermoset/CNT nanocomposite mechanical properties. The highest specific tensile strength of bismaleimide(BMI)/CNT sheet nanocomposites was obtained to date was 684 MPa/(g/cm(3)), using 4 V (2 A) for resin infiltration, followed by precure at 10 V (6 A) for 10 min and post curing at 240 °C for 6 h in an oven. The highest specific Young's modulus of BMI/CNT sheet nanocomposite was 71 GPa/(g/cm(3)) using resistive heating infiltration at 8.3 V (4.7 A) for 3 min followed by resistive heating cure at 12.5 V (7 A) for 30 min. In both cases, the CNT sheets were stretched and held in tension to prevent relaxation of the aligned CNTs during the course of RHAIC.

  13. Aluminizing of plain carbon steel: Effect of temperature on coating and alloy phase morphology at constant holding time

    OpenAIRE

    Isiko, Maureen Bangukira

    2012-01-01

    Aluminized steel possesses excellent physical, chemical and mechanical properties as compared to plain carbon steel. This type of steel has found application in high temperature, oxidizing and corrosive environments. In addition, aluminized steel is more cost effective than stainless steels. The objective of the current study is to study effect of temperature on the thicknesses and phase morphology of the coating and intermetallic layer that is formed during hot-dip aluminizing of steel at a ...

  14. Static conductivity and superconductivity of carbon nanotubes: Relations between tubes and sheets

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, L.X.; Crespi, V.H.; Louie, S.G.; Cohen, M.L. [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States)]|[Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)

    1995-11-15

    We relate the static conductivity of carbon nanotubes to the static in-plane conductivity of a graphite sheet and conclude that isolated single-wall nanotubes are excellent conductors. In contrast, multiwall tubes at low doping may possess conductivities substantially below that of the sum of the constituent tubes. The curvature of small tubes opens new electron-phonon scattering channels that are not available to sheets. This increases the electron-phonon coupling and yields superconducting transition temperatures for small doped tubes intermediate between those of intercalated graphite and alkali-metal-doped C{sub 60}.

  15. FINITE DIFFERENCE SIMULATION OF LOW CARBON STEEL MANUAL ARC WELDING

    Directory of Open Access Journals (Sweden)

    Laith S Al-Khafagy

    2011-01-01

    Full Text Available This study discusses the evaluation and simulation of angular distortion in welding joints, and the ways of controlling and treating them, while welding plates of (low carbon steel type (A-283-Gr-C through using shielded metal arc welding. The value of this distortion is measured experimentally and the results are compared with the suggested finite difference method computer program. Time dependent temperature distributions are obtained using finite difference method. This distribution is used to obtain the shrinkage that causes the distortions accompanied with structural forces that act to modify these distortions. Results are compared with simple empirical models and experimental results. Different thickness of plates and welding parameters is manifested to illustrate its effect on angular distortions. Results revealed the more accurate results of finite difference method that match experimental results in comparison with empirical formulas. Welding parameters include number of passes, current, electrode type and geometry of the welding process.

  16. Electric arc surfacing on low carbon steel: Structure and properties

    Science.gov (United States)

    Ivanov, Yurii; Gromov, Victor; Kormyshev, Vasilii; Konovalov, Sergey; Kapralov, Evgenii; Semin, Alexander

    2016-11-01

    By the methods of modern materials science, the structure-phase state and microhardness distribution along the cross-section of single and double coatings surfaced on martensite low carbon steel by alloy powder-cored wire were studied. It was established that the increased mechanical properties of surfaced layer are determined by the sub-micro and nanodispersed martensite structure formation, containing iron borides forming the eutectic of lamellar form. The plates of Fe2B are formed mainly in the eutectic of a single-surfaced layer, while FeB is formed in a double-surfaced layer. The existence of bend extinction contours indicating the internal stress fields formation at the boundaries of Fe borides-α-Fe phases were revealed.

  17. Subgrains and boron distribution of low carbon bainitic steels

    Institute of Scientific and Technical Information of China (English)

    Xuemin Wang; Bing Cao; Chengjia Shang; Xueyi Liu; Xinlai He

    2005-01-01

    The structure variation of deformed austenite during the relaxation stage after deformation at various temperatures in an Nb-B ultra low carbon bainitic steel and Fe-Ni alloy was studied by the thermo-simulation. Optical microscope and TEM were applied to analyze the microstructure after RPC (Relaxation-precipitation-controlling phase transformation technique) and the evolution of dislocation configuration. The particle tracking autoradiography (PTA) technique, revealing the distribution of boron, was employed to show the change of boron segregation after different relaxation times. The results indicate that during the relaxation stage the recovery occurs in the deformed austenite, the dislocations rearrange and subgrains form. During the subsequent cooling the boron will segregate at the boundaries of subgrains.

  18. Corrosion inhibition of carbon steel by sodium metavanadate

    Directory of Open Access Journals (Sweden)

    VIJAYA GOPAL SRIBHARATHY

    2012-08-01

    Full Text Available The inhibition efficiency of sodium metavanadate (SMV-adipic acid (AA system in controlling corrosion of carbon steel in an aqueous solution containing 60 ppm of Cl- has been evaluated by weight-loss method; 250 ppm of SMV exhibits inhibition efficiency of 56 %. Addition of adipic acid to SMV improves the inhibition efficiency of the system. The formulation consisting of 250 ppm of SMV and 250 ppm of adipic acid has inhibition efficiency of 98 %. A synergistic effect exists between SMV and adipic acid with the synergism parameters greater than 1. Mecha¬nistic aspects of corrosion inhibition have been studied by electrochemical methods like potentiodynamic polarization and electrochemical impedance spectroscopy. FTIR spectra reveal that the protective film consists of Fe2+-SMV complex and Fe2+-adipic acid complex. The protective film has been analyzed by fluorescence spectra, SEM and EDAX.

  19. 取向硅钢片的研究进展%Recent Developments in the Study on Oriented Silicon Steel Sheets

    Institute of Scientific and Technical Information of China (English)

    王均安; 李强; 姚美意; 周邦新

    2000-01-01

    Over the past several decades, the texture, properties and manufacture of quality silicon steels have been investigated for application in magnetic devices requiring magnetically soft materials, such as transformers, inductive devices, etc. Most recently, the factors effecting the texture and magnetic properties, e.g. impurities, rolling process and annealing process, have been greatly studied. The benefits of this study are that low core loss silicon steels with stable high-performance can be obtained through an economic production process. This review is intended to summarize the recent developments in the texture, properties, manufacture and application of oriented silicon steel sheets.

  20. 取向硅钢片的研究进展%Recent Developments in the Study on Oriented Silicon Steel Sheets

    Institute of Scientific and Technical Information of China (English)

    王均安; 李强; 姚美意; 周邦新

    2001-01-01

    Over the past several decades, the texture, properties and manufacture of quality silicon steels have been investigated for application in magnetic devices requiring magnetically soft materials, such as transformers, inductive devices, etc. Most recently, the factors effecting the texture and magnetic properties, e.g. impurities, rolling process and annealing process, have been greatly studied. The benefits of this study are that low core loss silicon steels with stable high-performance can be obtained through an economic production process. This review is intended to summarize the recent developments in the texture, properties, manufacture and application of oriented silicon steel sheets.

  1. Shielding effectiveness of non-woven carbon fibre sheets

    OpenAIRE

    Dawson, John F.; Flintoft, Ian Dand; Austin, A. N.; Marvin, Andrew C.

    2016-01-01

    This paper describes work undertaken to understand how the structure of a nonwoven carbon fibre material determines its shielding effectiveness, including the effects of fibre orientation, and contact resistance. In order to facilitate understanding of the material behaviour, software has been written to generate Monte Carlo Models (MCMs) of the material structure. The results of our MCMs are compared with measurements and some empirical expressions.

  2. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  3. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2013-04-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  4. Three Heavy Reflector Experiments in the IPEN/MB-01 Reactor: Stainless Steel, Carbon Steel, and Nickel

    Science.gov (United States)

    dos Santos, A.; de Andrade e Silva, G. S.; Mura, L. F.; Fuga, R.; Jerez, R.; Mendonça, A. G.

    2014-04-01

    The heavy reflector experiments performed in the IPEN/MB-01 research reactor facility comprise a set of critical configurations employing the standard 28×26-fuel-rod configuration. The heavy reflector, either Stainless Steel, Carbon Steel or Nickel plates, was placed at the west face of this reactor. 32 plates around 3.0 mm thick were used in all the experiments. The aim was to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check to the SS-304 reflector measurements. The experimental data comprise a set of critical control bank positions, temperatures and reactivities as a function of the number of the plates. The competition between the effect of thermal neutron capture in the heavy reflector and the effect of fast neutrons back scattering to the core is highlighted by varying the reflector thickness. For the Carbon Steel case the reactivity gain when all the 32 plates are inserted is the smallest one, thus demonstrating that Carbon Steel or essentially iron does not have the same reflector properties as the Stainless Steel or Nickel plates do. Nickel has the highest reactivity gain, thus demonstrating that this material is better reflector than Iron and Stainless Steel. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  5. Hot deformation behavior of medium carbon V-N microalloyed steel

    Institute of Scientific and Technical Information of China (English)

    XU Lei; WANG Cheng-yang; LIU Guo-quan; BAI Bing-zhe

    2009-01-01

    Processing maps for a medium carbon V-N microalloyed steel(designated as VN steel) and a medium carbon V-N bared steel(designated as Non-VN steel) were developed to study the hot deformation behavior and the influence of vanadium and nitrogen,in the temperature range of 750-1 100 ℃ and strain rate range of 0.005-30 s~(-1).Experimental results show that the processing map for the VN steel exhibits two dynamic recrystallization and three instability domains,while that for the Non-VN steel has one dynamic recrystallization and three instability domains.The instability domains of VN steel are larger than those of the Non-VN steel,and the VN steel is easier to be unstable when being hot deformed at high temperature and high stain rate.The addition and precipitation of vanadium and nitrogen can hinder the dynamic recrystallization.Compared with the Non-VN steel,the VN steel has higher dynamic recrystallization critical strain and the corresponding stress.

  6. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.

  7. Development of Low and Middle Carbon Martensite Spring Steel with High Strength and Toughness for Automobile

    Institute of Scientific and Technical Information of China (English)

    Li Ye-sheng; Wu Zi-ping; Zhu Yin-lu; Chen Hui-huang

    2004-01-01

    The conventional middle and high carbon spring steels have some drawbacks in properties, production and application. In order to meet the demands of rapid development of automobile, a new low and middle carbon spring steel35Si2CrMnVB, C0.34, Sil.66, Mn0.80, Cr0.67, V0.13, B0.001, P0.011, S0.014 wt.%, has been developed. Comparison between the new spring steel 35Si2CrMnVB and the conventional spring steel 60Si2MnA, C0.61, Sil.75, Mn0.76, P0.021,S0.018 wt.%, shows that the new spring steel has not only high strength, good ductility, good comprehensive mechanical properties, but also low decarbonization tendency, sufficient hardenability and high elastic sag resistance, etc.. The microstructure change in quenched steel caused by the decreasing of carbon contents is detected through metallographic observation, the new low and middle carbon spring steel 35Si2CrMnVB after quenching is composed of almost lath martensite with high dislocation density and only a little martensite with twin structure. It is testified that to develop low carbon spring steel with more excellent properties for automobile is feasible.

  8. Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness

    Directory of Open Access Journals (Sweden)

    Changyou Li

    2017-03-01

    Full Text Available Medium-carbon steel is commonly used for the rail, wire ropes, tire cord, cold heading, forging steels, cold finished steel bars, machinable steel and so on. Its fatigue behavior analysis and fatigue life estimation play an important role in the machinery industry. In this paper, the estimation of fatigue life of medium-carbon steel with different surface roughness using established S-N and P-S-N curves is presented. To estimate the fatigue life, the effect of the average surface roughness on the fatigue life of medium-carbon steel has been investigated using 75 fatigue tests in three groups with average surface roughness (Ra: 0.4 μm, 0.8 μm, and 1.6 μm, respectively. S-N curves and P-S-N curves have been established based on the fatigue tests. The fatigue life of medium-carbon steel is then estimated based on Tanaka-Mura crack initiation life model, the crack propagation life model using Paris law, and material constants of the S-N curves. Six more fatigue tests have been conducted to validate the presented fatigue life estimation formulation. The experimental results have shown that the presented model could estimate well the mean fatigue life of medium-carbon steel with different surface roughness.

  9. Assessment of the Critical Parameters Influencing the Edge Stretchability of Advanced High-Strength Steel Sheet

    Science.gov (United States)

    Pathak, N.; Butcher, C.; Worswick, M.

    2016-11-01

    The edge formability of ferritic-martensitic DP (dual-phase) and ferritic-bainitic CP (complex-phase) steels was evaluated using a hole expansion test for different edge conditions. Hole expansion tests involving the standard conical punch as well as a custom flat punch were performed to investigate formability when the hole is expanded out-of-plane (conical punch) and in-plane using the flat punch. A range of edge conditions were considered, in order to isolate the influence of a range of factors thought to influence edge formability. The results demonstrate that work hardening and void damage at the sheared edge govern formability, while the sheared surface quality plays a minor or secondary role. A comparison of the edge stretching limits of DP and CP steels demonstrates the advantages of a ferritic-bainitic microstructure for forming operations with severe local deformation as in a stretch-flanging operation. A comparison of a traditional DP780 steel with a CP steel of similar strength showed that the edge stretching limit of the CP steel was three times larger than that of the DP780.

  10. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    Science.gov (United States)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing

  11. Recent Progress in High Strength Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    Zrník J.

    2006-01-01

    Full Text Available Advanced High Strength (AHS steels, among them especially Dual Phase (DP steels, Transformation Induced Plasticity (TRIP steels, Complex Phase (CP steels, Partially Martensite (PM steels, feature promising results in the field. Their extraordinary mechanical properties can be tailored and adjusted by alloying and processing. The introduction of steels with a microstructure consisting at least of two different components has led to the enlargement of the strength level without a deterioration of ductility. Furthermore, the development of ultra fine-grained AHS steels and their service performance are reviewed and new techniques are introduced. Various projects have been devoted to develop new materials for flat and long steel products for structural applications. The main stream line is High Strength, in order to match the weight lightening requirements that concern the whole class of load bearing structures and/or steel components and one of the most investigated topics is grain refinement.

  12. Graphite Sheet Coating for Improved Thermal Oxidative Stability of Carbon Fiber Reinforced/PMR-15 Composites

    Science.gov (United States)

    Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda

    2005-01-01

    Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.

  13. Local hardening evaluation of carbon steels by using frequency sweeping excitation and spectrogram method

    Science.gov (United States)

    Tsuchida, Yuji; Kudo, Yuki; Enokizono, Masato

    2017-02-01

    This paper presents our proposed frequency sweeping excitation and spectrogram method (FSES method) by a magnetic sensor for non-destructive testing of hardened low carbon steels. This method can evaluate the magnetic properties of low carbon steels which were changed after induction heating treatment. It was examined by our proposed method that the degrees of yield strength of low carbon steels were varied depending on hardened conditions. Moreover, it was made clear that the maximum magnetic field strength, Hmax, derived from the measured B-H loops was very sensitive to the hardening if the surface of the samples were flat.

  14. SURFACE ROUGHNESS AND CUTTING FORCES IN CRYOGENIC TURNING OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    T. C. YAP

    2015-07-01

    Full Text Available The effect of cryogenic liquid nitrogen on surface roughness, cutting forces, and friction coefficient of the machined surface when machining of carbon steel S45C in wet, dry and cryogenic condition was studied through experiments. The experimental results show that machining with liquid nitrogen increases the cutting forces, reduces the friction coefficient, and improves the chips produced. Beside this, conventional machining with cutting fluid is still the most suitable method to produce good surface in high speed machining of carbon steel S45C whereas dry machining produced best surface roughness in low speed machining. Cryogenic machining is not able to replace conventional cutting fluid in turning carbon steel.

  15. THE ELECTROCHEMICAL BEHAVIOR OF OCEANIC MICROBIOLOGICAL INFLUENCED CORROSION ON CARBON STEEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The corrosion behavior of carbon steel in the medium of marine microorganisms was investigated by electrochemical impedance spectra, polarization curves, and so on. Experimental results showed that the corrosion potential of carbon steel moved in a negative direction in the unpurified marine microorganism solution, and the polarization style of the cathodic process did not change. The electrochemical impedance spectra showed that the impedance value of the electrode decreased in the medium with bacteria, which indicated that the existence of microorganism could accelerate the corrosion progress of carbon steel.

  16. Creep testing and viscous behavior research on carbon constructional quality steel under high temperature

    Institute of Scientific and Technical Information of China (English)

    余敏; 罗迎社; 彭相华

    2008-01-01

    Creep tests under at a certain temperature and different stress levels were performed on two carbon constructional quality steels at a certain stress level and different temperatures,and their creep curves at high temperature were obtained based on analyzing the testing data.Taking 45 steel at a certain temperature and stress as the example,the integral creep constitutive equation and the differential stress-strain constitutive relationship were established based on the relevant rheological model,and the integral core function was also obtained.Simultaneously,the viscous coefficients denoting the viscous behavior in visco-plastic constitutive equation were determined by taking use of the creep testing data.Then the viscous coefficients of three carbon steels(20 steel,35 steel and 45 steel) were compared and analyzed.The results show that the viscosity is different due to different materials at the same temperature and stress.

  17. Smudge on tinplate steel sheets and the effects of cathodic dichromate treatment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Smudge is black granules that scatter on tinplate sheet; it was formed during the process of plating and storing, and seriously affected the function and appearance of tinplate sheet. Reflowing and cathodic dichromate treatment (CDC) are two major phases in which smudge is produced. In this paper, the appearance and component of smudge was analyzed by means of whiteness meter, SEM and EDS quantitatively. Factors of CDC conditions was studied. Results of tests showed that whiteness measurement is convenient to evaluation of the degree of smudge and the effects of CDC on it , quantitatively.

  18. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    Science.gov (United States)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-01-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin–tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis. PMID:27585984

  19. Effect of Annealing Temperature and Time on Microstructure and Mechanical Properties of Multilayered Steel Composite Sheets

    Science.gov (United States)

    Cao, R.; Yu, X.; Feng, Z.; Ojima, M.; Inoue, J.; Koseki, T.

    2016-12-01

    Multilayered composite steels consisting of alternating layers of martensitic phase and austenitic phase exhibit an excellent combination of strength and elongation compared with conventional advanced high-strength steels. The deformation processes underlying these properties are of considerable interest. In this article, microstructure, grain size, and phase are characterized by scanning electron microscopy (SEM) and electron backscattering diffraction. The hardness of each layer is analyzed by a microindentation hardness testing system. Finally, the deformation and failure processes in multilayered steel are investigated by in-situ SEM. The hardness results indicate that various hardening modes occur in the soft austenitic layer and the hard martensitic layer. In- situ SEM results combined with microstructure analysis and hardness results reveal that annealing temperature and annealing time have a significant impact on final microstructure, fracture behavior, strength, hardness, and ductility.

  20. 75 FR 64254 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil; Final Results of...

    Science.gov (United States)

    2010-10-19

    ... degassed, fully stabilized (commonly referred to as interstitial-free (IF)) steels, high strength low alloy... and nitrogen elements. HSLA steels are recognized as steels with micro- alloying levels of elements... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From...

  1. 78 FR 42039 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Preliminary...

    Science.gov (United States)

    2013-07-15

    ..., fully stabilized (commonly referred to as interstitial-free (``IF'')) steels, high strength low alloy... columbium), or both, added to stabilize carbon and nitrogen elements. HSLA steels are recognized as steels... stabilized; high strength low alloy; and the substrate for motor lamination steel may also enter under...

  2. 78 FR 64473 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Final No...

    Science.gov (United States)

    2013-10-29

    ..., fully stabilized (commonly referred to as interstitial-free (``IF'')) steels, high strength low alloy... columbium), or both, added to stabilize carbon and nitrogen elements. HSLA steels are recognized as steels... stabilized; high strength low alloy; and the substrate for motor lamination steel may also enter under...

  3. ROLE OF FCA WELDING PROCESS PARAMETERS ON BEAD PROFILE, ANGULAR AND BOWING DISTORTION OF FERRITIC STAINLESS STEEL SHEETS

    Directory of Open Access Journals (Sweden)

    VENKATESAN M. V.

    2014-02-01

    Full Text Available This paper discusses the influence of flux cored arc welding (FCAW process parameters such as welding current, travel speed, voltage and CO2 shielding gas flow rate on bead profile, bowing distortion and angular distortion of 409 M ferritic stainless steel sheets of 2 mm thickness. The bowing and angular distortions of the welded plates were measured using a simple device called profile tracer and Vernier bevel protractor respectively. The study revealed that the FCAW process parameters have significant effect on bead profile, and distortion. The relationship between bead profile and distortions were analyzed. Most favorable process parameters that give uniform bead profile and minimum distortion for the weld are recommended for fabrication.

  4. Orthotropic damage in high-strength steel sheets. An elasto-viscoplastic material model with mixed hardening

    Science.gov (United States)

    Omerspahic, E.; Mattiasson, K.

    2003-09-01

    Within the scope of thermodynamics with internal variables, constitutive and evolution equations (representing ductile deformation of sheets made of high strength steel alloys) with mixed hardening and damage have been derived. As a result of the derivation, the rate-dependent elastoplastic constitutive model is identified. The material is assumed to be oriented in the principal damage directions, indicating orthotropic damage. Owing to postulates within continuum damage mechanics, a general expression for degradation of elastic properties in materials has been obtained. A numerical algorithm for the integration of the constitutive equations has been developed as well, based on an elastic predictor plastic/damage corrector procedure. The plastic/damage corrector is based on a fully implicit backward Euler scheme. In order to consider viscoplastic material properties, the overstress (in the definition of the plastic multiplier) is a function of the plastic yield function.

  5. New low-carbon steel for hot, warm, or cold forging

    Energy Technology Data Exchange (ETDEWEB)

    Ollilainen, V.; Hocksell, E. [Imatra Steel Oy Ab, Imatra Steelworks (Finland)

    2000-05-01

    The development of a new high-strength steel started from the needs of cold forging and continued into hot- and warm-forging areas. The steel has a very low carbon content (<0.1% C) and chromium-boron alloying. Its hardening is simple: just water quenching without tempering. Hot forgings of this steel are directly quenched from forging temperature, resulting in process cost savings and weight reduction. (orig.)

  6. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  7. Stretchable and bendable carbon nanotube on PDMS super-lyophobic sheet for liquid metal manipulation

    Science.gov (United States)

    Kim, Daeyoung; Jung, Daewoong; Yoo, Jun Hyeon; Lee, Yunho; Choi, Wonjae; Lee, Gil S.; Yoo, Koangki; Lee, Jeong-Bong

    2014-05-01

    We report a vertically-aligned carbon nanotube (CNT) forest on polydimethylsiloxane (PDMS) sheet as a novel widely stretchable and bendable anti-wetting super-lyophobic surface for naturally oxidized gallium-based liquid metals. The vertically-aligned CNT has inherent chemical inertness and a hierarchical texture combining micro/nanoscale roughness; these two characters render the developed sheet as a super-lyophobic substrate against gallium-based liquid metals. The vertically-aligned CNT forest was first grown on Si substrate and then transferred onto a PDMS sheet by imprinting. It was found that the transferred CNT on the PDMS sheet maintained its vertically-aligned nature as well as hierarchical micro/nano surface morphology. It was found that the static contact angles of the gallium-based liquid metal droplet on the CNT on Si and on the CNT on PDMS were both greater than 155° and the contact angle hysteresis on the CNT on Si was 4° and that on the transferred CNT on PDMS was 19°. These measurement results showed that the surface retains a super-lyophobic property before and after the CNT transfer onto PDMS. We tested the CNT on PDMS sheet for its mechanical flexibility using stretching (50% and 100%) and bending (curvature of 0.1 and 0.4 mm-1). We carried out a bouncing test and a rolling test on the stretched/bent CNT on the PDMS sheet and the results confirmed that the flexible sheet maintains anti-wetting characteristics under bending or stretching conditions.

  8. Using optical pyrometer in gas assisted laser cutting of steel sheets

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The use of optical methods of nondestructive testing can permit the real time control of gas assisted laser cutting, which is especially important in cutting metal sheets of large thickness and in other cases when the specified laser power is limited by laser operation modes[1,2].

  9. Using optical pyrometer in gas assisted laser cutting of steel sheets

    Institute of Scientific and Technical Information of China (English)

    Grishaev; R.; V.; Dubrov; V.; D.; Dubrovin; N.; G.; Zavalov; Yu.; N.

    2005-01-01

    The use of optical methods of nondestructive testing can permit the real time control of gas assisted laser cutting, which is especially important in cutting metal sheets of large thickness and in other cases when the specified laser power is limited by laser operation modes[1,2].……

  10. 77 FR 21968 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Science.gov (United States)

    2012-04-12

    ... International Trade Administration Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the... and alloy steel standard, line, and pressure pipe from the People's Republic of China. The period of... countervailing duty order on seamless carbon and alloy steel standard, line, and pressure pipe from the...

  11. 75 FR 27297 - Certain Hot-Rolled Carbon Steel Flat Products from India: Notice of Final Results of Antidumping...

    Science.gov (United States)

    2010-05-14

    ...- degassed, fully stabilized (commonly referred to as interstitial-free ``IF'')) steels, high-strength low... to as columbium), or both, added to stabilize carbon and nitrogen elements. HSLA steels are... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products from India: Notice of...

  12. Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.

    2006-01-01

    Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, steel slag samples were carbonated to a varying extent. Leaching experiments and geochemical modeling were used to identify solubility-controlling processes of

  13. Origin of abnormal formation of pearlite in medium-carbon steel under nonequilibrium conditions of heating

    Science.gov (United States)

    Mirzaev, D. A.; Yakovleva, I. L.; Tereshchenko, N. A.; Urtsev, V. N.; Degtyarev, V. N.; Shmakov, A. V.

    2016-06-01

    The structure and kinetics of the formation of austenite in medium-carbon steel during shortterm heating above the temperature Ac 1 followed by accelerated cooling are analyzed. It has been shown that the abnormal formation of pearlite in steel results from the concentrational and structural inhomogeneity of austenite, as well as the presence of carbide particles in ferrite areas.

  14. Solidification Structure of Low Carbon Steel Strips with Different Phosphorus Contents Produced by Strip Casting

    Institute of Scientific and Technical Information of China (English)

    Na LI; Zhenyu LIU; Yiqing QIU; Zhaosen LIN; Xianghua LIU; Guodong WANG

    2006-01-01

    In the present paper, low carbon steel strips with different phosphorus contents were produced using a twin roll strip casting process. The solidification structure was studied and its features were analyzed in detail. It was found that the strips possessed a fine microstructure compared with the mould cast steels. With increasing phosphorus content more ferrite has been formed with finer grains.

  15. Corrosion Performance of Carbon Steel in Simulated Pore Solution in the Presence of Micelles

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; De Wit, J.H.W.; Kolev, H.; Van Breugel, K.

    2011-01-01

    This study presents the results on the investigation of the corrosion behavior of carbon steel in model alkaline medium in the presence of very low concentration of polymeric nanoaggregates [0.0024 wt % polyethylene oxide (PEO)113-b-PS70 micelles]. The steel electrodes were investigated in chloride

  16. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Science.gov (United States)

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  17. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  18. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys.

    Science.gov (United States)

    Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger

    2013-02-01

    Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated.

  19. Evaluation of common tests for fracture characterisation of advanced high-strength sheet steels with the help of the FEA

    Science.gov (United States)

    Peshekhodov, I.; Dykiert, M.; Vucetic, M.; Behrens, B.-A.

    2016-11-01

    The paper presents results of evaluation of common tests for fracture characterization of advanced high-strength sheet steels with the help of the FEA. The tests include three in-plane shear tests, two uniaxial tension tests, two plane strain tension tests and two equibiaxial tension tests. Three high-strength steels with different yield loci, strain hardening rates and strengths in three different thicknesses each were used. The evaluation was performed based on the spatial distribution of the equivalent plastic strain and damage variable in the specimen at the moment of crack initiation as well as on the time variation of the stress state at the crack initiation location. For in-plane shear, uniaxial tension and plane strain tension, no test can be unconditionally recommended as disadvantages of all studied tests in these groups cannot be neglected. However, in each of these groups, a test can be chosen, which represents an acceptable compromise between its advantages and disadvantages: the shear test on an IFUM butterfly specimen for in-plane shear, the tensile test on a holed specimen for uniaxial tension and the tensile test on a waisted specimen for plane strain tension. On the contrary, the bulge test on a circular specimen with a punch of Ø 100 mm can be unconditionally recommended for equibiaxial tension. In the future, optimisation of the studied tests for in-plane shear, uniaxial tension and plane strain tension appears to be necessary.

  20. Two-surface plasticity Model and Its Application to Spring-back Simulation of Automotive Advanced High Strength Steel Sheets

    Science.gov (United States)

    Park, Taejoon; Seok, Dong-Yoon; Lee, Chul-Hwan; Noma, Nobuyasu; Kuwabara, Toshihiko; Stoughton, Thomas B.; Chung, Kwansoo

    2011-08-01

    A two-surface isotropic-kinematic hardening law was developed based on a two-surface plasticity model previously proposed by Lee et al., (2007, Int. J. Plast. 23, 1189-1212). In order to properly represent the Bauschinger and transient behaviors as well as permanent softening during reverse loading with various pre-strains, both the inner yield surface and the outer bounding surface expand (isotropic hardening) and translate (kinematic hardening) in this two-surface model. As for the permanent softening, both the isotropic hardening and the kinematic hardening evolution of the outer bounding surface were modified by introducing softening parameters. The numerical formulation was also developed based on the incremental plasticity theory and the developed constitutive law was implemented into the commercial finite element program, ABAQUS/Explicit and ABAQUS/Standard using the user-defined material subroutines. In this work, a dual phase (DP) steel was considered as an advanced high strength steel sheet and uni-axial tension tests and uni-axial tension-compression-tension tests were performed for the characterization of the material property. For a validation purpose, the developed two-surface plasticity model was applied to the 2-D draw bending test proposed as a benchmark problem of the NUMISHEET 2011 conference and successfully validated with experiments.

  1. Three-dimensional porous architectures of carbon nanotubes and graphene sheets for energy applications

    Directory of Open Access Journals (Sweden)

    Xuewan eWang

    2014-08-01

    Full Text Available Owing to their extraordinary physicochemical, electrical, and mechanical properties, carbon nanotubes (CNTs and graphene materials have been widely used to improve energy storage and conversion. In this article, we briefly review the latest development on fabrication of 3D porous structures of CNTs or graphene sheets or their hybrids, and their applications in various energy devices including supercapacitors, (bio- fuel cells, and lithium ion batteries.

  2. Three-dimensional porous architectures of carbon nanotubes and graphene sheets for energy applications

    OpenAIRE

    2014-01-01

    Owing to their extraordinary physicochemical, electrical, and mechanical properties, carbon nanotubes (CNTs) and graphene materials have been widely used to improve energy storage and conversion. In this article, we briefly review the latest development on fabrication of 3D porous structures of CNTs or graphene sheets or their hybrids, and their applications in various energy devices including supercapacitors, (bio-) fuel cells, and lithium ion batteries.

  3. Three-Dimensional Porous Architectures of Carbon Nanotubes and Graphene Sheets for Energy Applications

    OpenAIRE

    2014-01-01

    Owing to their extraordinary physicochemical, electrical, and mechanical properties, carbon nanotubes (CNTs) and graphene materials have been widely used to improve energy storage and conversion. In this article, we briefly review the latest development on fabrication of 3D porous structures of CNTs or graphene sheets or their hybrids, and their applications in various energy devices including supercapacitors, (bio-) fuel cells, and lithium ion batteries.

  4. Differences in plankton community structure and carbon cycling along a climate gradient from the Greenland Ice Sheet to offshore waters

    DEFF Research Database (Denmark)

    Arendt, K.E.; Nielsen, Torkel Gissel; Rysgaard, S.

    . Protozooplankton accounts for 20-38% of the carbon turnover in the offshore and inland areas. However, protozooplankton like copepods has low ability to turn over the primary production close to the Ice Sheet. Increased run of from the Greenland Ice Sheet due to global warming could displace the existing climate...

  5. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    Science.gov (United States)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  6. Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1M HCl solution.

    Science.gov (United States)

    Mobin, Mohammad; Rizvi, Marziya

    2017-03-15

    Polysaccharide from Plantago ovata was investigated for its inhibition characteristics for carbon steel corrosion in 1M HCl. The mucilage of the Plantago is comprised of a highly branched polysaccharide, arabinosyl (galaturonic acid) rhamnosylxylan (AX), which is mainly responsible for the corrosion inhibition of the carbon steel. The techniques that were used to assess the inhibition and adsorption properties of the AX in the acid solution are gravimetric method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-vis spectroscopy and FTIR. Thermodynamic and activation parameters revealed that the spontaneous adsorption of AX on carbon steel was mixed type and predominantly chemical in nature. Quantum chemical analysis supports the proposed mechanism of inhibition. AX from Plantago could serve as a green corrosion inhibitor for the carbon steel in hydrochloric medium with good inhibition efficiency but low risk of environmental pollution.

  7. 浦项镀锌汽车钢板的新进展%THE NEW DEVELOPMENT OF POSCO'S ZINC-COATED STEEL SHEET

    Institute of Scientific and Technical Information of China (English)

    张俊明; 吴美庆; 张志勤; 何立波

    2011-01-01

    This article introduces briefly the new development of POSCO' s zinc-coated steel sheet in three aspects. Upgrading of traditional auto steel sheet(including traditional advanced high strength steel) through components optimizing and other techniques, MAFE steel, DP steel, TRIP steel and other kinds of related steel are taken as examples here; research and development of technologies related to coating quality through improving process and devices, pre-oxidation, pre-coating , roll dent prevention and GI-ACE technologies are listed here; research and development of U(Ultra)-AHSS and X-AHSS steel through both components design and improving process, which is for the purpose of receiving higher strength and better plasticity together, TWIP steel are described here about its components, process characteristic, performance and use. Finally a strong system of products and technologies in the field of zinc-coated auto steel sheet is formed in POSCO.%介绍了浦项镀锌汽车钢板新进展。传统汽车用钢的升级,通过成分优化等手段提高汽车用钢(包括先进高强钢)性能;与镀层质量相关的工艺技术的研发,通过工艺和设备的优化来改善产品的表面质量和镀层性能;U(Ultra)-AHSS钢和X-AHSS的研发,以TWIP钢为代表,成分设计和工艺设计并重,着力于同时具有超高强度和更好成形性能的新产品;最终形成具有极强核心竞争力的汽车镀锌钢板的产品和技术发展空间。

  8. Hybrid use of steel and carbon-fiber reinforced concrete for monitoring of crack behavior

    OpenAIRE

    Ding, Yining; Han, Z; Zhang, Y; Azevedo, Cecília Maria

    2012-01-01

    In order to study the damage after concrete cracking, the influence of the combined use of steel fiber and carbon fiber on the conductivity and crack resistance of concrete beam under flexural loading were investigated. Carbon fiber and steel fiber were added as diphasic conductive materials to produce the electric conductive and ductile concrete. This paper reports the experimental and analytical work associated with establishing the crack width in relation to the fractional c...

  9. Prediction of Hot Ductility of Low-Carbon Steels Based on BP Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The purpose of the research is to obtain an effective method to predict the hot ductility of low-carbon steels, which will be a re ference to evaluate the crack sensitivity of steels. Several sub-netwo rks modeled from BP network were constructed for different temperature use, and the measured reduction of area (AR) of 12 kinds of low-carbo n steels under the temperature of 600 to 1000℃ were processed as trai ning samples. The result of software simulation shows that the model e stablished is relatively effective for predicting the hot ductility of steels.

  10. Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    M.Jafarzadegan; A.Abdollah-zadeh; A.H.Feng; T.Saeid; J.Shen; H.Assadi

    2013-01-01

    Dissimilar fusion welding of austenitic stainless steels to carbon steels has some metallurgical and technical problems.It was suggested that the solid-state nature of friction stir welding (FSW) can overcome these problems and produce a sound weld with reliable mechanical properties.In this study,plates of 304 stainless steel and st37 steel were welded together by FSW at tool rotational speed of 600 r/min and welding speed of 50 mm/min.In the stir zone (SZ) of 304 stainless steel,the results showed a refined grain structure with some features of metadynamic recrystallization.In the SZ of st37 steel,the hot deformation of material in the austenite region produced small austenite grains.These grains transformed to fine ferrite and pearlite by cooling the material after FSW.The production of fine grains increased the hardness and tensile strength in the SZ of both sides with respect to their base metals (BMs).

  11. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  12. Adhesion, resistivity and structural, optical properties of molybdenum on steel sheet coated with barrier layer done by sol–gel for CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: dodji.amouzou@fundp.ac.be [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Dumont, Jacques [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Richir, Jean-Baptiste; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium)

    2013-03-01

    Molybdenum films are investigated on stainless steel substrates coated with polysilazane based sol–gel and SiO{sub x} layers for flexible CIGS solar cell applications. Thermal stability of the multilayer has been studied. The thickness of polysilazane films are significantly reduced (17%) after heat treatment suggesting a thermal degradation. Four different microstructures were found for Mo films by varying argon total pressure from 2.6 × 10{sup −1} Pa to 2.6 Pa. It was shown that continuous films, low sheet resistance (0.5 Ω/□) and well facetted grains can be achieved when Mo films are deposited on heated substrates at homologous temperature, T of 0.2. - Highlights: ► Steel sheet is functionalized for Cu[Inx,Ga(1 − x)Se2] solar cells. ► Varying deposition pressure impacts the microstructure of Mo films. ► High thermal stability of the sol gel based barrier layer has been investigated. ► Low sheet resistance and continuous Mo films have been obtained at 550°C. ► Thermal stability of functionalized steel sheets at 550°C has been investigated.

  13. Determination of free nitrogen in carbon steels by inert gas fusion method

    Science.gov (United States)

    Tabakov, Ya. I.; Grigorovich, K. V.; Mansurova, E. R.

    2016-07-01

    The possibility to use hot extraction (thermal extraction in a carrier-gas flow) for fractional analysis of nitrogen in carbon steels is shown for cord and reinforcing-bar steels. A rapid procedure is developed for an analysis of free nitrogen in carbon steels. The validity of the analytical procedure is confirmed by high-temperature hydrogen extraction. The data obtained by the two methods correlate well with each other. A sample preparation procedure is developed for the determination of the content of dissolved nitrogen.

  14. The effect of carbon content on the structure-property of HSLA-100 steels

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C.I.; Mujahid, M.; DeArdo, A.J. [Univ. of Pittsburgh, PA (United States). Basic Metals Processing Research Inst.

    1995-12-31

    A major attraction of modern structural steels is their ability to offer a reduction in fabrication costs without compromising the quality and performance of the structure. For example, the relatively new family of high strength low alloy (HSLA-100) steels with copper additions features a reduction in the carbon content which leads to subsequent improvements in toughness and weldability. The strength in these steels is derived from a highly dislocated aged martensite and the precipitation of Cu particles which retards the softening associated during the aging process. Formation of austenite is also observed during aging around 640 C which is indicative of the low Ac{sub 1} temperature for this kind of steel composition. The purpose of this paper was to study the effect of carbon content on the structure-property relation of HSLA-100 steels.

  15. Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Trung, Trinh Van [School of Materials Science and Engineering, Hanoi University of Science and Technology, Hanoi (Viet Nam); Kim, Min Jung; Park, Soon Yong; Vadav, Poonam; Abro, Muhammad Ali; Lee, Dong Bok [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-02-15

    A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as Al{sub 5}Fe{sub 2} and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

  16. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    Science.gov (United States)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  17. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure

    Science.gov (United States)

    Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool

    2016-01-01

    The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.

  18. Elemental Quantitative Distribution and Statistical Analysis on Cross Section of Stainless Steel Sheet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Qian-hua LUO; Hai-zhou WANG

    2015-01-01

    An innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique in illustrating elemental distributions on stainless steel sheets was presented. The technique proved to be a systematic and accurate ap-proach in producing visual images or maps of elemental distributions at cross-sectional surface of a stainless steel sheet. Two stain-less steel sheets served as research objects: 3 mm×1 300 mm hot-rolled stainless steel plate and 1 mm×1 260 mm cold-rolled plate. The cross-sectional surfaces of the two samples at 1/4 position along the width direction were scanned (raster area-44 mm2 and 11 mm2) with a focused laser beam (wavelength 213 nm, diameter of laser crater 100 μm, and laser power 1.6 mJ) in a laser abla-tion chamber. The laser ablation system was coupled to a quadrupole ICP-MS, which made the detection of ion intensities of27Al+, 44Ca+,47Ti+,55Mn+ and56Fe+ within an area of interest possible. One-dimensional (1D) content line distribution maps and two-dimensional (2D) contour maps for speciifc positions or areas were plotted to indicate the element distribution of a target area with high accuracy. Statistic method was used to analyze the acquired data by calculating median contents, maximum segregation, sta-tistic segregation and content-frequency distribution.

  19. Novel multifunctional composites based on carbon nanotube sheets and yarns: Synthesis, fabrication, properties and applications

    Science.gov (United States)

    Lepro Chavez, Xavier N.

    Multiwalled carbon nanotube (MWNT) aligned sheets directly drawn from forests and derived yarns have recently attracted wide attention because of their exhibited mechanical, electronic, photonic and optical properties. Unfortunately, the supply of drawable forests is currently limited since the set of experimental conditions required to obtain adequate forest morphology is rather narrow, thus restricting the advance towards large scale applications. This work starts by addressing this issue by showing that the correct preparation of alternative substrates, such as thin metallic sheets, can produce the forest morphology required for solid-state drawability and increase the attainable surface for forest harvesting without further enlargement of the currently used chemical vapor deposition (CVD) reactor chamber. Also, it explores suitable ways to quantify the alignment of MWNTs in forests and by comparing them with spinnable ones, provides a range of alignment distribution where forest drawability can be reasonably expected. Next, this work presents procedures that can add functionality to the MWNT free-standing sheets without strongly affecting their mechanical integrity, nanotube alignment or individual morphology. Proved examples, such as free-standing sheets of catalytic-active, highly capacity (39 F/g), aligned nitrogen-doped MWNTs and silicon-based ceramic conformationally coated MWNTs that can be easily twisted into yarns, are examined in different chapters. Moreover, we show that MWNT sheets can be used for templating materials other than carbon into nanostructured arrays by preparing sheets of aligned silicon oxide nanotubes. Similar to MWNT sheets, these nanotube based materials can be used as host to confine functional unspinnable materials (up to 95 wt.%) by twisting them together into biscrolled yarns, suitable for applications as superconductors, lithium-ion batteries, fuel cells catalysts and photocatalysis. Such biscrolled yarns have a twist

  20. Elucidation of mechanism wear carbon steel with structure of martensite

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2013-04-01

    Full Text Available Purpose. The purpose of the paper is an estimation of degree of metal hardness change for the railway wheel with martensite structure during rolling. Methodology. As strength characteristic the Rockwell hardness is used. Wear tests were conducted in the conditions of normal loading with (10% and without sliding on the test equipment SMTs-2. Parameters of the fine crystalline structure (tetragonality degree of the crystalline grid, dislocation density, scale of coherent scattering regions, and disturbance value of the crystalline grid of second kind are determined by the methods of X-ray structural analysis. Findings. During operation of the railway wheels with different strength level, origin of defects on the wheel thread is caused by simultaneous action of both the friction forces and the cyclically changing loadings. Considering that formation of damage centers is largely determined by the state of metal volumes near the wheel thread, one should expect the differences in friction processes development at high contact stress for the wheels with different strength level and structural state. Originality. During the wear tests softening effect of carbon steel with martensite quenching structure is obtained. Softening effect equaled 3.5–7% from the level of quenched metal hardness. The softening effect is accompanied by the reduction of tetragonality degree of the crystalline structure of martensite, reduction of coherent scattering regions, dislocation density increase and crystalline grid disturbance of the second kind. Practical value. The results point out the necessity for further studies to clarify the resulted softening effect mechanism.

  1. Parameters Optimization of Low Carbon Low Alloy Steel Annealing Process

    Institute of Scientific and Technical Information of China (English)

    Maoyu ZHAO; Qianwang CHEN

    2013-01-01

    A suitable match of annealing process parameters is critical for obtaining the fine microstructure of material.Low carbon low alloy steel (20CrMnTi) was heated for various durations near Ac temperature to obtain fine pearlite and ferrite grains.Annealing temperature and time were used as independent variables,and material property data were acquired by orthogonal experiment design under intercritical process followed by subcritical annealing process (IPSAP).The weights of plasticity (hardness,yield strength,section shrinkage and elongation) of annealed material were calculated by analytic hierarchy process,and then the process parameters were optimized by the grey theory system.The results observed by SEM images show that microstructure of optimization annealing material are consisted of smaller lamellar pearlites (ferrite-cementite)and refining ferrites which distribute uniformly.Morphologies on tension fracture surface of optimized annealing material indicate that the numbers of dimple fracture show more finer toughness obviously comparing with other annealing materials.Moreover,the yield strength value of optimization annealing material decreases apparently by tensile test.Thus,the new optimized strategy is accurate and feasible.

  2. Optimization of fatigue damage indication in ferromagnetic low carbon steel

    Science.gov (United States)

    Tomáš, Ivan; Kovářík, Ondřej; Kadlecová, Jana; Vértesy, Gábor

    2015-09-01

    Fatigue damage was investigated by the method of magnetic adaptive testing (MAT), which is based on the systematic measurement and evaluation of minor magnetic hysteresis loops. A large number of magnetic measurements were performed on a single reference series of low carbon steel flat samples, which were fatigued by cyclic bending in an identical way, up to an increasing level of fatigue damage. The measurements of the magnetic properties of these samples were repeated under varied conditions, including speed of magnetization of the samples, sample temperature during the measurement, choice of the evaluated signal, frequency of the voltage sampling, and range of the applied amplitudes of the magnetizing field/current. Special attention was turned to the influence of the thickness of the non-ferromagnetic spacers positioned between the surface of the samples and the flat fronts of the attached magnetizing yokes. On one hand, the spacers decrease the values of the induced signal and its derivatives, but on the other hand they substantially increase the reproducibility of the measurement and positively influence the shapes of the resulting degradation curves. Optimum conditions for the magnetic measurement of the fatigue damage were searched, found, and recommended. The results indicate the reliable applicability of MAT to detect early stages of the material fatigue, and to predict its residual lifetime.

  3. Inhibition of carbon steel corrosion by 11-aminoundecanoic acid

    Directory of Open Access Journals (Sweden)

    Saad Ghareba

    2015-12-01

    Full Text Available The current study reports results on the investigation of the possibility of using 11-aminoundecanoic acid (AA as an inhibitor of general corrosion of carbon steel (CS in HCl under a range of experimental conditions: inhibitor concentration, exposure time, electrolyte temperature and pH and CS surface roughness. It was found that AA acts as a mixed-type inhibitor, yielding maximum inhibition efficiency of 97 %. The adsorption of AA onto the CS surface was described by the Langmuir adsorption isotherm. The corresponding apparent Gibbs free energy of AA adsorption on CS at 295 K was calculated to be −30.2 kJ mol–1. The adsorption process was found to be driven by a positive change in entropy of the system. PM-IRRAS measurements revealed that the adsorbed AA layer is amorphous, which can be attributed to the repulsion between the neighboring positively charged amine groups and a high heterogeneity of the CS surface. It was also found that the AA provides very good corrosion protection of CS of various surface roughness, and over a prolonged time.

  4. 东湖隧道钢板桩围堰施工质量控制%East Lake Tunnel Steel Sheet Pile Cofferdam Construction Quality Control

    Institute of Scientific and Technical Information of China (English)

    李乐利

    2012-01-01

    East Lake along the tunnel to cut down construction,before the construction of the main structure of the middle of the lake to be formed to build a steel sheet pile cofferdam construction site,steel sheet pile cofferdam construction quality not only to the middle of the lake tunnel structure construction cost and duration,is also related to post-construction security,its significance is huge.Paper first describes the overview of the East Lake Tunnel steel cofferdam and structural characteristics;second illustrates the steel sheet pile cofferdam construction process;last from the Material Control,Surveying,steel sheet pile into,laying geotextile,filling the soil within the weir and cofferdam deformation monitoring point of view on the impact of cofferdam construction quality of technical points.%东湖隧道采取明挖顺作法施工,湖中段主体结构施工前须构筑钢板桩围堰形成施工场地,钢板桩围堰施工质量不仅关系到湖中段隧道结构施工成本与工期,更关系到后期施工安全,其意义巨大。介绍了东湖隧道钢围堰工程概况与结构特点,阐明了钢板桩围堰施工工艺流程,并从材料控制、测量放线、钢板桩打入、土工布铺设、堰内土体填筑和围堰变形监测等角度论述了影响围堰施工质量的技术要点。

  5. Study on magnetic memory signals of medium carbon steel specimens with surface crack precut during loading process

    Institute of Scientific and Technical Information of China (English)

    DONG Lihong; XU Binshi; DONG Shiyun; YE Minghui; CHEN Qunzhi

    2006-01-01

    Static tensile test and tensile-tensile fatigue test of medium carbon steel sheet specimens with surface crack precut were performed on MTS810 hydraulic testing machine to clear the meaning of the point of Hp( y ) value zero. Magnetic memory signals were measured during the test process. The results show that only one point of Hp( y ) zero value exists in all measured magnetic signal curves during the loading process, which should be a sign of intersection of positive-negative magnetic poles after magnetic ordered state appears and does not indicate the position of surface crack precut. The analysis shows that the surface crack precut can not interrupt the magnetic ordered state occurred during the test completely, hence its Hp( y ) value is not zero. However, the crack extending to a penetrated defect at the instant of specimen's fracture leads to the discontinuance of magnetic ordered state.

  6. Causes and prevention of corrosion in carbon steel natural gas coolers

    Energy Technology Data Exchange (ETDEWEB)

    Kotwica, D.J.; Minevski, L. [BetzDearborn, The Woodlands, TX (United States)

    1998-12-31

    Two case histories in which high pressure natural gas coolers had failed due to the presence of carbon dioxide are reviewed. CO{sub 2} along with CO and H{sub 2}S are acid gases usually present in natural gas feeds. Carbonic acid can form in aqueous condensate, lowering the pH and locally corroding mild steel tube metal. Stress corrosion cracking (SCC) can occur in tubing containing residual tensile stresses from welding or manufacturing. Bicarbonates and carbonates concentrated in condensate from CO{sub 2} and CO present in natural gas are required to produce SCC. Cathodic depolarizers such as oxygen in conjunction with the presence of carbonic acid will increase the corrosion rate of mild steel. Oxygen also increases the susceptibility of mild steel to carbonate SCC.

  7. Structural Behavior of H+Hat Combined Steel Sheet Pile%H+Hat 组合型钢板桩结构性能研究

    Institute of Scientific and Technical Information of China (English)

    赵海丰; 永津亮祐; 项伟; 桂树强

    2015-01-01

    H+Hat 组合型钢板桩构造简单、抗弯刚度大、可反复使用且经济性好,具有广泛的应用前景,但在国内尚未应用而缺乏验证。通过理论计算、室内试验、现场原位试验和数值模拟等手段对H+Hat 组合型钢板桩的截面抗弯、锁口抗拉及锁口止水等结构性能进行了研究。研究结果显示:H+Hat 组合型钢板桩具有比普通钢板桩更大的抗弯截面模量,且其抗弯工作性能良好;锁口抗拉容许强度远大于其实际运行的抗拉强度;锁口止水性能不差于普通钢板桩。研究为H+Hat 组合型钢板桩在基坑、码头、船坞、围堰、库岸等工程中的推广应用提供了依据。%H+Hat combined steel sheet pile has a broad prospect of application due to its simple structure,big ben-ding stiffness,repeated usage and cost effectiveness.However,it has not been applied in China yet and lack of verification.In view of this we carried out theoretical calculation,indoor experiment,in situ test and numerical simulation to research the sectional flexural performance,lock tensile performance and lock waterproof performance of H+Hat combined steel sheet pile.Results reveal that the sectional flexural modulus of H+Hat combined steel sheet pile is larger than that of ordinary steel sheet pile with good flexural performance;the allowable lock tensile strength is far greater than that in actual operation;and the lock waterproof performance is not worse than that of or-dinary steel sheet pile.The research could be a basis for the popularization and application of H+Hat combined steel sheet pile in foundation pit,piers,docks,cofferdam,and bank supporting structures.

  8. HYDRO-ABRASIVE JET CLEANING TECHNOLOGY OF STEEL SHEETS DESIGNED FOR LASER CUTTING

    Directory of Open Access Journals (Sweden)

    I. Kachanov

    2013-01-01

    Full Text Available Investigations executed by the BNTU “Shipbuilding and hydraulics” department have shown that rather efficient implementation of the requirements to the metal sheet surface designed for laser cutting can be achieved by using hydro-abrasive jet cleaning while applying water pump equipment with the range of pressure – 20–40 MPa. Type of working fluid plays a significant role for obtaining surface of the required quality. The conducted experiments have demonstrated that the efficient solution of the assigned problems can be ensured by using a working fluid containing bentonite clay, surface-active agent polyacrylamide, soda ash and the rest water.

  9. Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle

    Science.gov (United States)

    Gajbhiye, Sachin O.; Singh, S. P.

    2016-05-01

    Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff-Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6-12 potential function. The equivalent nonlinear material model of carbon-carbon bond is used to model it based on its force-deflection relation. Newmark's algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.

  10. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, L.N.; Bursill, L.A.

    1997-12-31

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm {sup -3}) and sp{sup 3}/sp{sup 2}+sp{sup 2} bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense `amorphous` carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp{sup 3}/sp{sup 2}+sp{sup 3} bonding fractions. 29 refs., 8 figs., 2 tabs.

  11. Phonon dispersions in graphene sheet and single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    Dinesh Kumar; Veena Verma; H S Bhatti; Keya Dharamvir

    2013-12-01

    In the present research paper, phonons in graphene sheet have been calculated by constructing a dynamical matrix using the force constants derived from the second-generation reactive empirical bond order potential by Brenner and co-workers. Our results are comparable to inelastic X-ray scattering as well as first principle calculations. At point, for graphene, the optical modes (degenerate) lie near 1685 cm−1. The frequency regimes are easily distinguishable. The lowfrequency ($ → 0$) modes are derived from acoustic branches of the sheet. The radial modes can be identified with → 584 cm−1. High-frequency regime is above 1200 cm−1 (i.e. ZO mode) and consists of TO and LO modes. The phonons in a nanotube can be derived from zone folding method using phonons of a single layer of the hexagonal sheet. The present work aims to explore the agreement between theory and experiment. A better knowledge of the phonon dispersion of graphene is highly desirable to model and understand the properties of carbon nanotubes. The development and production of carbon nanotubes (CNTs) for possible applications need reliable and quick analytical characterization. Our results may serve as an accurate tool for the spectroscopic determination of the tube radii and chiralities.

  12. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate

    Science.gov (United States)

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-05-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c-axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and “low k di-electric” systems.

  13. Dilatometric investigations of phase transformations at heating and cooling of hardened, unalloyed, high-carbon steels

    Directory of Open Access Journals (Sweden)

    J. Pacyna

    2011-05-01

    Full Text Available Purpose: The reason for writing this paper was to describe the kinetics of phase transformations during continuous heating from hardened state and subsequent cooling of unalloyed high carbon steel.Design/methodology/approach: Dilatometric investigations were performed using a DT 1000 dilatometer of a French company Adamel. Samples after quenching and quenching and sub-quenching in liquid nitrogen (-196 °C were heated up 700 °C at the rate of 0.05 °C/s and subsequent cooled to room temperature at the rate of 0.05 °C/s.Findings: Regardless of heating the hardened high-carbon steel to 700 °C, a small fraction of the retained austenite remained in its structure, and was changing into fresh martensite only during cooling in the temperature range: 280°C-170°C.Research limitations/implications: Schematic presentation of the differential curve of tempering of the hardened high-carbon, unalloyed steel illustrating the phase transformations occurring during heating from hardened state.Practical implications: An observation, that a small fraction of the retained austenite remained in the structure of tempered high-carbon steel, indicates that even unalloyed steel should be tempered two times.Originality/value: Detailed descriptions of kinetics phase transformations during heating from hardened state of unalloyed high carbon steel.

  14. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  15. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    Directory of Open Access Journals (Sweden)

    V. Marušić

    2015-04-01

    Full Text Available In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6 is used. The microstructure and hardness of welded samples are tested. On the tensile tester, resistance of the welded joint is tested with a simulated experiment. Dimensional control of worn tribosystem elements was performed after six months of service.

  16. Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets

    Science.gov (United States)

    Weiss, H. A.; Leuning, N.; Steentjes, S.; Hameyer, K.; Andorfer, T.; Jenner, S.; Volk, W.

    2017-01-01

    Mechanical stress occurring during the manufacturing process of electrical machines detrimentally alters the magnetic properties (iron losses and magnetizability). This affects the efficiency and performance of the machine. Improvement of the manufacturing process in terms of reduced magnetic property deterioration enables the full potential of the magnetic materials to be exploited, and as a result, the performance of the machine to be improved. A high quantity of electrical machine components is needed, with shear cutting (punching, blanking) being the most efficient manufacturing technology. The cutting process leads to residual stresses inside the non-oriented electrical sheet metal, resulting in increased iron losses. This paper studies the residual stresses induced by punching with different shear cutting parameters, taking a qualitative approach using finite element analysis. In order to calibrate the finite element analysis, shear cutting experiments are performed. A single sheet tester analysis of the cut blanks allows the correlation between residual stresses, micro hardness measurements, cutting surface parameters and magnetic properties to be studied.

  17. 77 FR 43806 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Science.gov (United States)

    2012-07-26

    ... International Trade Administration Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the... Department) initiated an administrative review of the antidumping duty order on seamless carbon and alloy... carbon and alloy steel standard, line, and pressure pipe from the People's Republic of China covering...

  18. 77 FR 44213 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea...

    Science.gov (United States)

    2012-07-27

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... certain corrosion-resistant carbon steel flat products (``CORE'') from Germany and the Republic of Korea..., Director, Office 3, on ``Sunset Reviews of the Antidumping Duty Orders on Corrosion-Resistant Carbon...

  19. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium-sulfur batteries.

    Science.gov (United States)

    Wang, Bei; Wen, Yanfen; Ye, Delai; Yu, Hua; Sun, Bing; Wang, Guoxiu; Hulicova-Jurcakova, Denisa; Wang, Lianzhou

    2014-04-25

    Well-confined elemental sulfur was implanted into a stacked block of carbon nanospheres and graphene sheets through a simple solution process to create a new type of composite cathode material for lithium-sulfur batteries. Transmission electron microscopy and elemental mapping analysis confirm that the as-prepared composite material consists of graphene-wrapped carbon nanospheres with sulfur uniformly distributed in between, where the carbon nanospheres act as the sulfur carriers. With this structural design, the graphene contributes to direct coverage of sulfur to inhibit the mobility of polysulfides, whereas the carbon nanospheres undertake the role of carrying the sulfur into the carbon network. This composite achieves a high loading of sulfur (64.2 wt %) and gives a stable electrochemical performance with a maximum discharge capacity of 1394 mAh g(-1) at a current rate of 0.1 C as well as excellent rate capability at 1 C and 2 C. The improved electrochemical properties of this composite material are attributed to the dual functions of the carbon components, which effectively restrain the sulfur inside the carbon nano-network for use in lithium-sulfur rechargeable batteries.

  20. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel.

    Science.gov (United States)

    Javed, M A; Stoddart, P R; McArthur, S L; Wade, S A

    2013-09-01

    Metallurgical features have been shown to play an important role in the attachment of microorganisms to metal surfaces. In the present study, the influence of the microstructure of as-received (AR) and heat-treated (HT) 1010 carbon steel on the initial attachment of bacteria was investigated. Heat treatment was carried out with the aim of increasing the grain size of the carbon steel coupons. Mirror-polished carbon steel coupons were immersed in a minimal medium inoculated with Escherichia coli (ATCC 25922) to investigate the early (15, 30 and 60 min) and relatively longer-term (4 h) stages of bacterial attachment. The results showed preferential colonisation of bacteria on the grain boundaries of the steel coupons. The bacterial attachment to AR steel coupons was relatively uniform compared to the HT steel coupons where an increased number of localised aggregates of bacteria were found. Quantitative analysis showed that the ratio of the total number of isolated (i.e., single) bacteria to the number of bacteria in aggregates was significantly higher on the AR coupons than the HT coupons. Longer-term immersion studies showed production of extracellular polymeric substances by the bacteria and corrosion at the grain boundaries on both types of steel coupon tested.

  1. An investigation of a reticulated foam - perforated steel sheet combination as a blast mitigation structure

    Science.gov (United States)

    Nguyen, Thuy-Tien N.; Proud, William G.

    2017-01-01

    Explosions are one of the main causes of injuries during battles and conflicts, with improvised explosive devices (IEDs) becoming increasingly common. Blast waves produced from such explosions can inflict very complex injuries on human and serious damage to structures. Here, the interaction between blast waves and sandwich structures of reticulated foam and perforated sheets is studied using a shock tube. The level of mitigation for primary blast injuries of these structures are discussed in terms of pulse shape, pressure magnitude and impulse. Schlieren photography and other high-speed imaging were used to capture the form of the blast wave. The results show up to 95% mitigation in both pressure and impulse with the structures studied. The behaviors of these mitigating sandwich panels under two loadings, Mach 2.0 and Mach 2.6, are also discussed.

  2. Two-dimensional stress—magnetization effects of grain-oriented silicon steel sheets

    Science.gov (United States)

    Saito, Akihiko; Murashige, Shinichi; Uehara, Yuji

    1994-05-01

    Changes in the magnetization vector due to tensile stress under a constant magnetic field for grain-oriented silicon-iron sheet strip samples cut at various angles from the rolling direction have been investigated. In a low magnetic field, where the magnetization is less than 1.5 T, the magnetization vector lies in the direction of the sample length and the magnetization decreases with the application of tension. Beyond that magnetic field, the magnetization vector showed a two-dimensional hysteresis loop due to the application of tension. The maximum transverse magnetization change appeared in a 10° sample, where the rotation angle of the magnetization vector was 2.5°.

  3. Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    Low-temperature gaseous carburizing of stainless steel is associated with a colossal supersaturation of the fcc lattice with carbon, without the development of carbides. This article addresses the simultaneous determination of stress and composition profiles in layers of carbon xpanded austenite...

  4. Numerical analysis of high strain rate failure of electro-magnetically loaded steel sheets

    Directory of Open Access Journals (Sweden)

    Erice Borja

    2015-01-01

    Full Text Available Electro-magnetic forces provide a potentially power full means in designing dynamic experiments with active control of the loading conditions. This article deals with the development of computational models to simulate the thermo-mechanical response of electro-magnetically loaded metallic structures. The model assumes linear electromagnetic constitutive equations and time-independent electric induction to estimate the Joule heating and the Lorentz forces. The latter are then taken into account when evaluating stress equilibrium. A thermo-visco-plastic model with Johnson-Cook type of temperature and strain rate dependence and combined Swift-Voce hardening is used to evaluate the material's thermo-mechanical response. As a first application, the model is used to analyse the effect of electro-magnetic loading on the ductility of advanced high strength steels.

  5. Parametric optimization of seam welding of stainless steel (SS 304) sheets

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Muthuraman Pandi; Sait, Abdullah Naveen; Ravichandran, Manickam [Chendhuran College of Engineering and Technology, Pudukkottai, Tamilnadu (India)

    2015-06-01

    In the present study, seam welding process parameters were optimized for joining 306 stainless steel plates. Welding pressure, welding speed and welding temperature combinations were carefully selected with the objective of producing a weld joint with maximum impact strength and hardness. Taguchi technique was applied for optimizing the selected welding parameters. The factors used in this study consisted of pressure, welding speed and welding temperature, each of which had three levels in the study. L{sub 27} orthogonal array and corresponding levels were selected according to the aforementioned factors and experimental tests were performed. Signal-to-noise (S/N) ratio was used to evaluate the experimental results. The results indicate that the welding speed has the greatest influence on impact strength, followed by welding pressure and temperature. Experiments have also been conducted to validate the optimized parameters.

  6. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  7. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  8. Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel.

    Science.gov (United States)

    Miyanaga, Kazuhiko; Terashi, Ryosuke; Kawai, Hirofumi; Unno, Hajime; Tanji, Yasunori

    2007-07-01

    Biofilm formed on carbon steel by various species of bacterial cells causes serious problems such as corrosion of steel, choking of flow in the pipe, deterioration of the heat-transfer efficiency, and so on. Cathodic protection is known to be a reliable method for protecting carbon steel from corrosion. However, the initial attachment of bacteria to the surface and the effects of cathodic protection on bacterial viability in the biofilm have not been clarified. In this study, cathodic protection was applied to an artificial biofilm containing Pseudomonas aeruginosa (PAO1), a biofilm constituent, on carbon steel. The aims of this study were to evaluate the inhibition effect of cathodic protection on biofilm formation and to reveal the inhibition mechanisms. The viability of PAO1 in artificial biofilm of 5 mm thickness on cathodically protected steel decreased to 1% of the initial cell concentration. Analysis of pH distribution in the artificial biofilm by pH microelectrode revealed that pH in proximity to carbon steel increased to approximately 11 after cathodic protection for 5 h. Moreover, 99% of region in the artificial biofilm was under the pH conditions of over nine. A simulation of pH profile was shown to correspond to experimental values. These results indicate cells in the artificial biofilm were killed or damaged by cathodic protection due to pH increase.

  9. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  10. Effect of carbon dioxide and temperature on passive film parametersof superduplex stainless steel

    Directory of Open Access Journals (Sweden)

    Emandro Vieira da Costa

    2013-01-01

    Full Text Available Superduplex stainless steel has been frequently employed in new sites of Brazilian Pre-Salt. In these environments, chloride concentration, temperature and carbon dioxide are normally present in higher levels than those at sea water at room temperature. In these conditions, it is expected that the passive films of stainless steel also show modifications. To better understand such modifications, samples of superduplex stainless steel UNS S32750 were submitted to electrochemical impedance measurements in brine media, at two temperatures and under presence/absence of carbon dioxide. The electrochemical impedance results were initially tested using the Kramers-Kronig transform and subsequently fitted by equivalent circuit employing constant phase elements - CPE. Moreover, to quantify the effect of each factor (temperature, chloride, carbon dioxide and microstructure on the equivalent circuit, their parameters were tested applying statistical analysis. Significant effect of carbon dioxide and temperature was found on related parameters of passive film for heat-treated samples.

  11. Unique Sandwiched Carbon Sheets@Ni-Mn Nanoparticles for Enhanced Oxygen Evolution Reaction.

    Science.gov (United States)

    Zhang, Yan; Zhang, Huijuan; Yang, Jiao; Bai, Yuanjuan; Qiu, Huajun; Wang, Yu

    2016-05-11

    A unique sandwich-like architecture, where Ni-Mn nanoparticles are enveloped in coupled carbon sheets (CS@Ni-Mn), has been successfully fabricated. In the synthesis process, a great quantity of uniform NiMnO3 nanosheets generated by a universal hydrothermal method acts as precursors and templates and the cheap, environmentally friendly and recyclable glucose functions as a green carbon source. Via subsequent hydrothermal reaction and thermal annealing, sandwiched nanocomposites with Ni-Mn nanoparticles embedded inside and carbon sheets encapsulating outside can be massively prepared. The novel sandwich-like CS@Ni-Mn possesses numerous advantages, such as an intrinsic porous feature, large specific surface area, and enhanced electronic conductivity. Moreover, as a promising NiMn-based oxygen evolution reaction (OER) catalyst, the special sandwiched nanostructure demonstrates improved electrochemical properties in 1 M KOH, including a low overpotential of about 250 mV, a modest Tafel slope of 40 mV dec(-1), excellent stability over 2000 cycles, and durability for 40 h.

  12. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites

    Science.gov (United States)

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-01

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to

  13. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    Science.gov (United States)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  14. Sheet resistances of composite films prepared from chemically-reduced graphite oxides and multiwalled carbon nanotubes

    Science.gov (United States)

    Oh, Weontae; Kim, Daehan; Jeong, Euh Duck; Bae, Jong-Seong

    2013-12-01

    Graphite oxides (GOs) were spray-coated on a glass substrate to prepare the GO film, and the film was soaked in a HI aqueous solution to make a chemically-reduced GO (rGO) film. The rGOs were successfully prepared by using a chemical reduction of as-made GOs, but their surfaces were seriously damaged during the chemical treatments. The Sheet resistances of rGO and rGO/multiwalled carbon nanotube (MWNT) films were characterized as functions of the film's thickness and the number of MWNTs added to the rGO films.

  15. Numerical and experimental evaluation of the impact performance of advanced high-strength steel sheets based on a damage model

    Science.gov (United States)

    Ma, Ning; Park, Taejoon; Kim, Dongun; Kim, Chongmin; Chung, Kwansoo

    2010-06-01

    The impact performance in a Charpy impact test was experimentally and numerically studied for the advanced high-strength steel sheets (AHSS) TWIP940 and TRIP590 as well as the high-strength grade known as 340R. To characterize the mechanical properties, uni-axial simple tension tests were conducted to determine the anisotropic properties and strain rate sensitivities of these materials. In particular, the high-speed strain-rate sensitivity of TRIP590 and 340R (rate sensitive) was also characterized to account for the high strain rates involved in the Charpy impact test. To evaluate fracture behavior in the Charpy impact test, a new damage model including a triaxiality-dependent fracture criterion and hardening behavior with stiffness deterioration was introduced. The model was calibrated via numerical simulations and experiments involving simple tension and V-notch tests. The new damage model along with the anisotropic yield function Hill 1948 was incorporated into the ABAQUS/Explicit FEM code, which performed reasonably well to predict the impact energy absorbed during the Charpy impact test.

  16. Investigation of the Hot-Stamping Process for Advanced High-Strength Steel Sheet by Numerical Simulation

    Science.gov (United States)

    Liu, H. S.; Xing, Z. W.; Bao, J.; Song, B. Y.

    2010-04-01

    Hot forming is a new way to manufacture complex-shaped components of advanced high-strength steel (AHSS) sheet with a minimum of spring-back. Numerical simulation is an effective way to examine the hot-forming process, particularly to determine thermal and thermo-mechanical characteristics and their dependencies on temperature, strain and strain rate. The flow behavior of the 22MnB5 AHSS is investigated through hot tensile tests. A 3D finite element (FE) model of hot-stamping process for the [InlineMediaObject not available: see fulltext.] shaped part is built under the ABAQUS/Explicit environment based on the solutions of several key problems, such as treatment of contact between blank and tools, determination of material characteristics and meshing, etc. Numerical simulation is carried out to investigate the influence of blank holder force (BHF) and die gap on the hot-forming process for the [InlineMediaObject not available: see fulltext.] shaped part. Numerical results show the FE model is effective in simulation of hot-forming process. Large BHF reduces the amount of spring-back and improves the contact of flange with tools while avoiding cracking of stamped part. Die gap has a considerable influence on the distribution of temperature on side walls; the larger the die gap, higher is the temperature on the sidewall of [InlineMediaObject not available: see fulltext.] shaped part.

  17. Investigation on Twisting and Side Wall Opening Occurring in Curved Hat Channel Products Made of High Strength Steel Sheets

    Science.gov (United States)

    Takamura, Masato; Fukui, Ayako; Yano, Hiroshi; Hama, Takayuki; Sunaga, Hideyuki; Makinouchi, Akitake; Asakawa, Motoo

    2011-08-01

    High strength steel sheets are becoming increasingly important for the weight reduction of automotive bodies to meet the requirements for reduced environmental impact. However, dimensional defects resulting from springback are serious issues, and effective methods of predicting and reducing such defects are necessary. In this study, we numerically and experimentally analyzed the mechanisms of dimensional inaccuracies caused by springback occurring in curved hat channel deep drawing products. The analysis was based on the static explicit FEM software "TP-STRUCT" (the solver part is known as "STAMP3D"). The results of the experiments and simulations similarly show that the twist angle is positive (right-hand system) when the drawing height is relatively large. We calculated the twist torque around the longitudinal axis using the stress distributions obtained by FE analysis. Through the investigation of twist torque and its transition during the drawing and die removal processes, we found that the negative torque generated by side wall opening occurring in the die removal process is the dominant factor of the positive twist. Knowing such mechanisms of twist in cases with a relatively large drawing height, we attempted to explore methods of reducing side wall opening by giving the side wall a stepped shape with the eventual aim of reducing twist. Consequently, we concluded that the stepped shape on the side wall has marked effects of reducing side wall opening, mainly through the elimination of bending-unbending effects on die shoulders, which was verified by observing the stress distribution obtained by FE analysis.

  18. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx [Departamento de Materiales, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Colonia Reynosa Tamaulipas, C.P. 02200, México Distrito Federal (Mexico)

    2013-12-16

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  19. Modeling of mechanical behaviour of HSLA low carbon bainitic steel thermomechanically processed

    Science.gov (United States)

    Santos, D. B.; Rodrigues, P. C. M.; Cota, A. B.

    2003-10-01

    A comparative study of the microstructure characterization and mechanical properties was done in a HSLA low carbon (0.08%) bainitic steel containing boron, developed by industry as a bainitic steel grade APIX80. The steel was submitted to two different thermomechanical processes. In the first one, controlled rolling followed by accelerated cooling was applied in laboratory mill. In the second processing, specimens of the same steel were submitted to hot torsion testing. The influence of cooling conditions like start cooling temperature, cooling rates and finish cooling temperature on the microstructure and mechanical properties were investigated. The final microstructure obtained was a complex mixture of polygonal ferrite, perlite, bainite and martensite/retained austenite constituent. The use of multiple regression analysis allowed the establishment of quantitative relationships between the accelerated cooling variables and mechanical properties of the steel available from Vickers microhardness and tensile tests.

  20. The impact properties of laminated composites containing ultrahigh carbon (UHC) steels

    Science.gov (United States)

    Kum, D. W.; Oyama, T.; Wadsworth, J.; Sherby, O. D.

    AN ULTRAHIGH carbon (UHC) steel/mild steel laminated composite and a UHC steel/UHC steel laminate have been successfully manufactured by a roll-bonding procedure. Impact properties of these laminates, as well as of monolithic samples of the steels contained in these laminates, have been determined in the crackarrestor orientation over the temperature range 25 to -196°C. Both notched and unnotched samples of the laminated composite and laminate have been tested. Extremely low ductile-to-brittle temperatures of -140°C, and very high shelf energies (>325 J), have been found both for the laminated composites and the laminates. This remarkably good behavior is shown to be a result of notch blunting by delamination within the laminates.

  1. Corrosion of carbon steel, zinc and copper by air pollution in Chongqing

    Institute of Scientific and Technical Information of China (English)

    YE Di; ZHAO Da-wei; CHEN Gang-cai; ZHANG Dong-bao

    2007-01-01

    This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose-response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.

  2. Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States); Prairie, M.R.; Chavez, J.M. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    Corrosion behavior of two stainless steels and carbon steel in mixtures of NaNO{sub 3} and KNO{sub 3} was evaluated to determine if impurities found in commodity grades of alkali nitrates aggravate corrosivity as applicable to an advanced solar thermal energy system. Corrosion tests were conducted for 7000 hours with Types 304 and 316 stainless steels at 570C and A36 carbon steel at 316C in seven mixtures of NaNO{sub 3} and KNO{sub 3} containing variations in impurity concentrations. Corrosion tests were also conducted in a ternary mixture of NaNO{sub 3}, KNO{sub 3}, and Ca(NO{sub 3}){sub 2}. Corrosion rates were determined by descaled weight losses while oxidation products were examined by scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The nitrate mixtures were periodically analyzed for changes in impurity concentrations and for soluble corrosion products.

  3. Mathematical modeling and validation of the carburizing of low carbon steels

    Science.gov (United States)

    García Mariaca, A.; Cendales, E. D.; Chamarraví, O.

    2016-02-01

    This paper shows the mathematical modeling of heat and mass transfer in transient state of cylindrical bars of low carbon steel subjected to carburizing process. The model solution for the two phenomena was performed using a one-dimensional analysis in the radius direction, using the numerical method of finite differences; also a sensitivity analysis by varying the coefficient of convective heat transfer (h) is performed. The modeling results show that this carburization steel is strongly dependent on h. These results suggest that if it can increase the value of h in this kind of process could reduce the time of process for this heat treatment. Additionally, an experimental procedure was established by carburization of a steel AISI SAE 1010, which develops cementing solid phase and the specimen steel and micrographic hardness profiles obtained from samples of the specimen analysis was performed, to determine the penetration depth of the carbon and validate this result over the values obtained by the computer model.

  4. Corrosion of Carbon Steel under Epoxy-varnish Coating Studied by Scanning Kelvin Probe

    Institute of Scientific and Technical Information of China (English)

    XIAO Kui; DONG Chaofang; ZHANG Xin; WU Junsheng; XU Longjiao; LI Xiaogang

    2012-01-01

    The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmosphere environment.The localized corrosion was accurately characterized by SKP in both coated and uncoated regions.The SKP results showed that Volta potential varied with the test time,and the more the corrosion products,the more positive the potential.The borderline between coated and uncoated regions of partly coated steel shifted towards the coated side with the increasing of test time.The coating disbonding rate could be determined according to the shift of potential borderline measured by SKP.The corrosion mechanism of partly coated steel in NaC1 salt spray was discussed according to the potential maps and corrosion morphologies.

  5. Application of standard end-quench test to structural steel with elevated carbon content at low hardenability

    Science.gov (United States)

    Gliner, R. E.; Vybornov, V. V.

    2013-03-01

    Special features of the test of plain steel with elevated carbon content for hardenability, which is used in the production of gears instead carburizing alloy steel, are considered. It is shown that it is possible and effective to use computer simulation of the hardenability detectable by testing of this class of steel by the method of end quenching with allowance for the chemical composition.

  6. 78 FR 60850 - Carbon and Certain Alloy Steel Wire Rod From Brazil: Final Results of the Expedited Second Sunset...

    Science.gov (United States)

    2013-10-02

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Brazil: Final Results of the... certain alloy steel wire rod (wire rod) from Brazil would be likely to lead to continuation or recurrence... Alloy Steel Wire Rod from Brazil, 67 FR 55805 (August 30, 2002). \\2\\ See Initiation of...

  7. 76 FR 2344 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Preliminary Results of...

    Science.gov (United States)

    2011-01-13

    ... stabilized (commonly referred to as interstitial-free (``IF'')) steels, high-strength low-alloy (``HSLA... columbium), or both, added to stabilize carbon and nitrogen elements. HSLA steels are recognized as steels...: vacuum-degassed fully stabilized; high-strength low-alloy; and the substrate for motor lamination...

  8. Aluminizing and subsequent nitriding of plain carbon low alloy steels for piston ring applications

    Energy Technology Data Exchange (ETDEWEB)

    Bindumadhavan, P.N.; Keng Wah, H.; Prabhakar, O. [Nanyang Technol. Univ., Singapore (Singapore). Div. of Mater. Eng.; Makesh, S. [Chemical and Nuclear Engineering Building, University of Maryland, 20783, College Park, MD (United States); Gowrishankar, N. [I P Rings Ltd., D 11/12, Industrial Estate, 603209, Maraimalainagar (India)

    2000-05-22

    Nitriding is a case hardening process that is commonly used for increasing the wear life of automotive piston rings. However, special alloy steels are required to achieve high surface hardness and nitrided case depth values required by the automotive industry. The cost of such alloy steels is one of the major components of the total cost of the nitrided piston ring. To address this issue, efforts have been directed towards development of cheaper raw materials as substitutes for nitridable steels. In this study, an attempt has been made to increase the surface hardness of two plain carbon low alloy steels by aluminizing and subsequent diffusion treatment and nitriding. The process parameters for the aluminizing operation are discussed. Results indicate that a near twofold increase in surface hardness is achievable by aluminizing followed by diffusion treatment and nitriding (580-1208 HV for EN32B steel and 650-1454 HV for 15CR3 steel). It has also been found that the nitrided case depth obtained (0.11-0.13 mm for EN32B steel and 0.10-0.14 mm for 15CR3 steel) matches well with the general requirements of the piston ring industry. The diffusion of aluminum into the alloy layer has also been discussed and the theoretical predictions were compared with actual values of Al concentration, as obtained by SEM-EDS system. It is found that Fick's law gives a fairly good prediction of the actual Al concentration profile, in spite of the complexity of the diffusion path. X-Ray diffraction studies have confirmed the presence of AlN in the alloy layer, which could be instrumental in the significant increase in surface hardness. It is proposed that aluminizing followed by diffusion treatment and nitriding of plain carbon low alloy steels could provide an alternative to the use of expensive nitridable steels for piston ring applications. (orig.)

  9. EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND PROPERTIES OF HIGH STRENGTH AND HIGH ELONGATION STEELS

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; P.H. Li; S.K. Pu; Z.X. Yuan; B.F. Xu; D.X. Lou; A.M. Guo; S.B.Zhou

    2003-01-01

    The microstructure and mechanical properties of new kind of hot-rolled high strengthand high elongation steels with retained austenite were studied by discussing the in-fluence of different carbon content. The research results indicate that carbon contenthas a significant effect on retaining austenite and consequently resulting in high elon-gation. Besides, new findings about relationship between carbon content and retainedaustenite as well as properties were discussed in the paper.

  10. EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND PROPERTIES OF HIGH STRENGTH AND HIGH ELONGATION STEELS

    Institute of Scientific and Technical Information of China (English)

    Y.Chen; X.Chen; 等

    2003-01-01

    The microstructure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the in-fluence of different carbon content.The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elon-gation.Besides,new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.

  11. Corrosion Performance of Carbon Steel in Simulated Pore Solution in the Presence of Micelles

    OpenAIRE

    Hu, J; Koleva, D. A.; Wit, J.H.W. de; Kolev, H.; Breugel, K. van

    2011-01-01

    This study presents the results on the investigation of the corrosion behavior of carbon steel in model alkaline medium in the presence of very low concentration of polymeric nanoaggregates [0.0024 wt % polyethylene oxide (PEO)113-b-PS70 micelles]. The steel electrodes were investigated in chloride free and chloride-containing cement extracts. The electrochemical measurements (electrochemical impedance spectroscopy and potentiodynamic polarization) indicate that the presence of micelles alter...

  12. Corrosion Performance of Carbon Steel in Micelle-containing Cement Extract

    OpenAIRE

    Hu, J; Koleva, D. A.; Wit, J.H.W. de; Petrov, P; Breugel, K. van

    2010-01-01

    This study presents the results from a preliminary investigation on the corrosion behavior of low carbon steel in cement extract (CE) in the presence of very low concentration polymeric nanoaggregates (PEO113-b-PS70 micelles). The steel electrodes were investigated in Cl--containing CE as corrosion medium, compared to chloride-free CE as a reference case. The results from the electrochemical measurements (Electrochemical Impedance Spectroscopy (EIS) and Potentio-dynamic Polarization (PDP)) in...

  13. Enhanced wear and corrosion resistance of plasma electrolytic carburized layer on T8 carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie; Wang, Bin; Zhang, Yifan; Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xia, Yuan; Li, Guang [Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2016-03-01

    A hardening layer of 70 μm on T8 carbon steel was fabricated by plasma electrolytic carburizing (PEC) in glycerol solution at 380 V with 3 min treatment. The discharge process was characterized using optical emission spectroscopy (OES), and the electron temperature in plasma envelope was determined. Meanwhile, diffusion coefficient of carbon was calculated on the basis of carbon concentration profile. The tribological property of carburized steel under dry sliding against ZrO{sub 2} ball was measured by a ball-disc friction and wear tester. The corrosion behaviors were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). It was found that the carburized layer mainly contained α-Fe and Fe{sub 3}C phases with maximum hardness of 620 HV. The PEC treatment significantly decreased the friction coefficient from 0.4 to 0.1. The wear rate of PEC treated steel was about 5.86 × 10{sup −6} mm{sup 3}/N·m, which was less than 1/4 of T8 steel substrate. After PEC treatment, the wear and corrosion resistance of T8 steel were improved. Particularly, the pitting corrosion of steel substrate was obviously suppressed. - Highlights: • Electron temperature in plasma electrolytic carburizing process is determined. • Diffusion coefficient of carbon in PEC is higher than conventional carburizing. • Wear and corrosion resistance of T8 steel are both improved after PEC treatment. • Pitting corrosion of steel substrate is obviously suppressed by PEC treatment.

  14. Evaluation of essential work of fracture in a dual phase high strength steel sheet; Evaluacion del trabajo esencial de fractura en chapa de un acero de alta resistencia de fase dual

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, D.; Perez, L. I.; Lara, A.; Casellas, D.; Prado, J. M.

    2013-03-01

    Fracture toughness of advanced high strength steels (AHSS), can be used to optimize crash behavior of structural components. However it cannot be readily measured in metal sheet because of the sheet thickness. In this work, the Essential Work of Fracture (EWF) methodology is proposed to evaluate the fracture toughness of metal sheets. It has been successfully applied in polymers films and some metal sheets. However, their information about the applicability of this methodology to AHSS is relatively scarce. In the present work the fracture toughness of a Dual Phase (strength of 800 MPa) and drawing steel sheets has been measured by means of the EWF. The results show that the test requirements are met and also show the clear influence of notch radii on the measured values, specially for the AHSS grade. Thus, the EWF is postulated as a methodology to evaluate the fracture toughness in AHSS sheets. (Author) 18 refs.

  15. Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, M. [Chemistry Department, Faculty of Science, Benha University, Benha (Egypt)]. E-mail: metwally552@hotmail.com; Helal, E.A. [Corrosion Department, Badr El-Din Petroleum company (Egypt); Fouda, A.S. [Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: asfouda@yahoo.com

    2006-07-15

    The effect of some aminopyrimidine derivatives on the corrosion of 1018 carbon steel in 0.05 M HNO{sub 3} solution was studied using weight loss and polarization techniques. The percentage inhibition efficiency was found to increase with increasing concentration of inhibitor and with decreasing temperature. The addition of KI to aminopyrimidine derivatives enhanced the inhibition efficiency due to synergistic effect. The inhibitors are adsorbed on the steel surface according to Temkin isotherm. Some thermodynamic functions were computed and discussed. It was found that the aminopyrimidine derivatives provide a good protection to steel against pitting corrosion in chloride containing solutions.

  16. Control of microbiological corrosion on carbon steel with sodium hypochlorite and biopolymer.

    Science.gov (United States)

    Oliveira, Sara H; Lima, Maria Alice G A; França, Francisca P; Vieira, Magda R S; Silva, Pulkra; Urtiga Filho, Severino L

    2016-07-01

    In the present work, the interaction of a mixture of a biocide, sodium hypochlorite (NaClO), and a biopolymer, xanthan, with carbon steel coupons exposed to seawater in a turbulent flow regime was studied. The cell concentrations, corrosion rates, biomasses, and exopolysaccharides (EPSs) produced on the coupon surfaces with the various treatments were quantified. The corrosion products were evaluated using X-ray diffraction (XRD), and the surfaces of steels were analysed by scanning electron microscopy (SEM). The results indicated that xanthan and the hypochlorite-xanthan mixture reduced the corrosion rate of steel.

  17. Corrosion and Runoff Behavior of Carbon Steel in Simulated Acid Rain

    Institute of Scientific and Technical Information of China (English)

    Baigang AN; Xueyuan ZHANG; Enhou HAN; Honxi LI

    2004-01-01

    Under the condition of simulated rain precipitation in the laboratory, with ElS and SEM observation, the effects of pH value of simulated rain on corrosion and runoff behavior of carbon steel A3 were studied. The corrosion rate of A3 steel increased and runoff action of rain precipitation on A3 steel surface was intensified with decreasing pH value, of simulated rainwater.The runoff and corrosion traces were formed along the flowing direction of rainwater, which appeared more apparently with decreasing pH value.

  18. Unzipped Nanotube Sheet Films Converted from Spun Multi-Walled Carbon Nanotubes by O2 Plasma.

    Science.gov (United States)

    Jangr, Hoon-Sik; Jeon, Sang Koo; Shim, Dae Seob; Lee, Nam Hee; Nahm, Seung Hoon

    2015-11-01

    Large-scale graphene or carbon nanotube (CNT) films are good candidates for transparent flexible electrodes, and the strong interest in graphene and CNT films has motivated the scalable production of a good-conductivity and an optically transmitting film. Unzipping techniques for converting CNTs to graphene are especially worthy of notice. Here, we performed nanotube unzipping of the spun multi-walled carbon nanotubes (MWCNTs) to produce networked graphene nanoribbon (GNR) sheet films using an 02 plasma etching method, after which we produced the spun MWCNT film by continually pulling MWCNTs down from the vertical well aligned MWCNTs on the substrate. The electrical resistance was slightly decreased and the optical transmittance was significantly increased when the spun MWCNT films were etched for 20 min by O2 plasma of 100 mA. Plasma etching for the optimized time, which does not change the thickness of the spun MWCNT films, improved the electrical resistance and the optical transmittance.

  19. A Transmission Electron Microscopy Study of Plate Martensite Formation in High-carbon Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Albin Stormvinter; Peter Hedstr(o)m; Annika Borgenstam

    2013-01-01

    The martensitic microstructures in two high-carbon low alloy steels have been investigated by classical and automated crystallographic analysis under a transmission electron microscope.It is found that the martensitic substructure changes from consisting mostly of transformation twins for 1.20 mass% carbon (C) steel to both transformation twins and planar defects on {101}M for 1.67 mass% C steel.In the 1.67 mass% C steel it is further found that small martensite units have a rather homogeneous substructure,while large martensite units are more inhomogeneous.In addition,the martensite units in both steels are frequently found to be of zigzag patterns and have distinct crystallographic relationships with neighboring martensite units,e.g.kink or wedge couplings.Based on the present findings the development of martensite in high-carbon low alloy steels is discussed and a schematic of the martensite formation is presented.Moreover,whether the schematic view can be applied to plate martensite formation in general,is discussed.

  20. 75 FR 75455 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full...

    Science.gov (United States)

    2010-12-03

    ... (``IF'')) steels, high strength low alloy (``HSLA'') steels, and the substrate for motor lamination... titanium and/or niobium added to stabilize carbon and nitrogen elements. HSLA steels are recognized as... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From...

  1. Effect of Intercritical Heat Treatment on the Abrasive Wear Behaviour of Plain Carbon Dual Phase Steel

    Science.gov (United States)

    Manoj, M. K.; Pancholi, V.; Nath, S. K.

    Dual phase (DP) steels have been prepared from low carbon steel (0.14% C) at intercritical temperature 740°C and time is varied from 1 minute to 30 minutes followed by water quenching. These steels have been characterized by optical microscopy, FE-SEM, hardness measurements, tensile properties and electron backscattered diffraction (EBSD) studies. Tensile properties of a typical dual phase steel are found to be 805 MPa ultimate tensile strength with 18% total elongation. Martensite volume fraction of D P steel (determined by EBSD technique) prepared at 740°C for 6 minutes is found to be 10.2% and the grain size of ferrite and martensite found to be 14.39 micron and 1.05 microns respectively. Abrasive wear resistance of dual phase steels has been determined by pin on drum wear testing machine. DP steels have been found to be 25% more wear resistant than that of normalized steel. Short intercritical heating time followed by water quenching gives higher wear resistance by virtue of smaller and well dispersed martensite island in the matrix of ferrite.

  2. Mechanical and service properties of low carbon steels processed by severe plastic deformation

    Directory of Open Access Journals (Sweden)

    J. Zrnik

    2009-07-01

    Full Text Available The structure and properties of the 0,09% C-Mn-Si-Nb-V-Ti, 0,1% C-Mn-V-Ti and 0,09% C-Mo-V-Nb low-carbon steels were studied after cold equal-channel angular pressing (ECAP. ECAP leads to the formation of partially submicrocrystalline structure with a grain size of 150 – 300 nm. The submicrocrystalline 0,09% C-Mn-Si-Nb-V-Ti steel compared with the normalized steel is characterized by Re higher more than by a factor of 2 and by the impact toughness higher by a factor of 3,5 at a test temperature of -40°C. The plasticity in this case is somewhat lower. The high-strength state of the submicrocrystalline 0,1% C-Mn-V-Ti and 0,09% C-Mo-V-Nb steels after ECAP is retained up to a test temperature of 500°C. The strength properties at 600°C (i.e. the fire resistance of these steels are higher by 20-25% as compared to those of the undeformed steels. The strength of the 0,09% C-Mo-V-Nb steel at 600°C is substantially higher than that of the 0,1% C-Mn-V-Ti steel.

  3. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    Science.gov (United States)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  4. Preparation and Characterization of Nano-Structured SiO2 Thin Films on Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Rong Chun XIONG; Dong Zhou YAN; Gang WEI

    2003-01-01

    Nano-structured SiO2 thin films were prepared on the surface of carbon steel for the first time by LPD. The compositions of the films were analyzed by XPS, and the surface morphology of the thin films were observed by AFM. The thin films were constituted by compact particles of SiO2, and there was no Fe in the films. In the process of film forming, the SiO2 colloid particles were deposited or absorbed directly onto the surface of carbon steel substrates that were activated by acid solution containing inhibitor, and corrosion of the substrates was avoided. The nano-structured SiO2 thin films that were prepared had excellent protective efficiency to the carbon steel.

  5. The effect of environmental variables on atmospheric corrosion of carbon steel in Shenyang

    Institute of Scientific and Technical Information of China (English)

    WANG Chuan; WANG ZhenYao; KE Wei

    2009-01-01

    A study was carried out in order to investigate the effect of contaminants and meteorological variables on the rust layer of carbon steel exposed in Shenyang urban atmosphere. Seven kinds of contaminants and twelve kinds of meteorological parameters were also registered in order to correlate the data with respect to corrosion rate and the stepwise multiple regression analysis was carried out in order to obtain the best regression model. The sum of rainfall time as well as sunshine time and the concentration of H_2S could stimulate initial atmospheric corrosion of carbon steel. The initial atmospheric corrosion kinetics of carbon steel was observed to follow the cubic equation. The corrosion products were analyzed by XRD and the transformation of phases in different periods was discussed.

  6. Mechanics property Study for Interface Bim Composite of Zinc Alloy ZAS35/Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    陈基勇; 耿浩然; 杨爱玲

    2002-01-01

    The distortional fields of interface-U-field and V-field-have been obtained after the mechanics property for the geometric distortion of interface of cracked zinc alloy ZAS35/carbon steel is analyzed by means of a laser moire interferometry. The optimum cast preheating temperature has been decided in the light of the experiment of shear strength. After the microstructure of interface of bimetal composite of zinc alloy ZAS35/carbon steel is analyzed and studied with a X ray diffraction and an electronic scanning mirror (ESM), the phase component of metallurgical bond of interface of zinc alloy ZAS35/carbon steel has been gained, and the results of interface scan of distribution of elements Fe/Zn have been obtained with the dip coating temperature of 700(C. The above working theory, the experimental technology and its results will be introduced in this paper, and its results will be analyzed.

  7. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-02-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  8. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  9. Computational analysis of linear friction welding process and micromechanical modeling of deformation behavior for medium carbon steel

    Institute of Scientific and Technical Information of China (English)

    杨夏炜; 李文亚; 马铁军

    2015-01-01

    Finite element simulation of linear friction welding (LFW) medium carbon steel was carried out using the ABAQUS software. A two-dimensional (2D) coupled thermo-mechanical model was established. First, the temperature fields of medium carbon steel during LFW process were investigated. And then, the Mises stress and the 1st, 2nd and 3rd principal stresses fields’ evolution of the steel during LFW process were studied. The deformation behavior of LFW carbon steel was analyzed by using micromechanics model based on ABAQUS with Python code. The Lode parameter was expressed using the Mohr stress circle and it was investigated in detail.

  10. Multiaxial ratcheting of 20 carbon steel: Macroscopic experiments and microscopic observations

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yawei [State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Kang, Guozheng, E-mail: guozhengkang@yahoo.com.cn [State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Liu, Yujie; Jiang, Han [School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2013-09-15

    The multiaxial ratcheting behaviors of polycrystalline 20 ordinary carbon steel were investigated at room temperature. The macroscopic experimental results showed that the studied multiaxial ratcheting depends greatly on the mean stress, stress amplitude and loading path. The axial ratcheting strain increased with the increase of applied mean stress and stress amplitude. Apparent additional hardening was observed in the non-proportionally multiaxial cyclic loading. The multiaxial ratcheting of 20 carbon steel was lower than the corresponding uniaxial one and varies with different loading paths. Dislocation patterns and their evolutions of the multiaxial ratcheting of different loading paths were then investigated using transmission electron microscopy. The obtained images showed that, with the increasing number of loading cycles, the dislocation patterns evolved from dislocation lines and networks to dislocation tangles, walls and cells. After certain cycles, sub-grains were formed because of the re-arrangement of dislocations in the walls of cells and inside the cells since the cross slip of dislocations can be easily activated for the 20 carbon steel, a kind of body-centered cubic metal. The dislocation evolution of the multiaxial ratcheting is much quicker than that of the uniaxial one. With the reference to the uniaxial one of 20 carbon steel, the macroscopic multiaxial ratcheting behaviors can be qualitatively correlated with the microscopic observation of the dislocation patterns and their evolution. - Highlights: • Multiaxial loading hardly changes the cyclic stable feature of 20 carbon steel. • Multiaxial ratcheting of 20 carbon steel depends greatly on the load path. • Dislocation patterns evolve quicker in the multiaxial case. • The stabilized dislocation pattern is sub-grain, rather than the dislocation cell. • Sub-grains formed after certain cycles make the stable ratcheting strain rate large.

  11. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

    OpenAIRE

    Weimin Song; Jian Yin

    2016-01-01

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%,...

  12. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.

    Science.gov (United States)

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin

    2013-12-01

    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry.

  13. 78 FR 60316 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Science.gov (United States)

    2013-10-01

    ... order on carbon and certain alloy steel wire rod from Mexico. The Commission found that the respondent... COMMISSION [Investigation Nos. 701-TA-417 and 731-TA-953, 957-959, and 961-962 (Second Review)] Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and...

  14. 78 FR 63450 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Science.gov (United States)

    2013-10-24

    ... International Trade Administration, Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico... on carbon and certain alloy steel wire rod (``wire rod'') from Brazil, Indonesia, Mexico, Moldova... Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine, pursuant to section 751(c) of...

  15. 78 FR 33103 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Science.gov (United States)

    2013-06-03

    ... COMMISSION [Investigation Nos. 701-TA-417 and 731-TA-953, 957-959, 961, and 962 (Second Review)] Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine... countervailing duty order on carbon and certain alloy steel wire rod (``wire rod'') from Brazil and...

  16. 76 FR 34044 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time Limits for the Preliminary...

    Science.gov (United States)

    2011-06-10

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time Limits... administrative review of the antidumping duty order on carbon and certain alloy steel wire rod from...

  17. 77 FR 5240 - Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Continuation of Antidumping Duty...

    Science.gov (United States)

    2012-02-02

    ... should the order be revoked. See Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Final... within a reasonably foreseeable time. See Light-Walled Rectangular Pipe and Tube From Taiwan, 77 FR 3497... International Trade Administration Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan:...

  18. 76 FR 78313 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam

    Science.gov (United States)

    2011-12-16

    ... COMMISSION Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam... United Arab Emirates, and Vietnam of circular welded carbon- quality steel pipe, provided for in... of India, Oman, the United Arab Emirates, and Vietnam.\\2\\ \\1\\ The record is defined in sec....

  19. 77 FR 45576 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Preliminary...

    Science.gov (United States)

    2012-08-01

    ... Fair Value, and Affirmative Critical Circumstances, In Part: Certain Lined Paper Products From the... Than Fair Value: Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China, 66... Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Preliminary Results of...

  20. Pathways to a low-carbon iron and steel industry in the medium-term – the case of Germany

    NARCIS (Netherlands)

    Arens, Marlene; Worrell, Ernst; Eichhammer, Wolfgang; Hasanbeigi, Ali; Zhang, Qi

    2016-01-01

    The iron and steel industry is a major industrial emitter of carbon dioxide globally and in Germany. If European and German climate targets were set as equal proportional reduction targets (referred to here as “flat” targets) among sectors, the German steel industry would have to reduce its carbon d

  1. 78 FR 25253 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure From the People's Republic of China...

    Science.gov (United States)

    2013-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Seamless Carbon and Alloy Steel Standard, Line, and Pressure From the People... seamless carbon and alloy steel standard, line, and pressure pipe ] (``seamless pipe'') from the...

  2. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) has completed its administrative review of the countervailing duty (CVD) order on corrosion-resistant...\\ See Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

  3. 75 FR 77615 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2010-12-13

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic...

  4. 76 FR 69703 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2011-11-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic...

  5. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty order on corrosion- resistant carbon steel flat products from... ] requests for administrative review and partial revocation of the countervailing duty order on...

  6. 77 FR 25141 - Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time...

    Science.gov (United States)

    2012-04-27

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea... of the antidumping duty (AD) orders on corrosion-resistant carbon steel flat products (CORE) from... Countervailing Duty Operations, Office 3, regarding ``Sunset Reviews of the Antidumping Duty Orders on...

  7. INFLUENCE OF CARBON CONTENT OF MARTENSITE STEELS ON HARDNESS RE-DISTRIBUTION NEAR WORN SURFACE

    Institute of Scientific and Technical Information of China (English)

    Y.P. Ma

    2002-01-01

    After three-body abrasion, the hardness re-distribution near the worn surface has aclose relationship with the carbon content of martensite steel. It is considered thatthere is a competition between the work-hardening and the temper softening, whichresults from deformation and friction heat of material. When the carbon content ofmartensite steel is below about 0.6%, the subsurface hardness distribution of materialis a softened layer sandwiched between two hardened layers, but above 0.6%C, nosoftened region appears on the hardness re-distribution curve.

  8. Effect of Rare Earths on Corrosion Resisting Properties of Carbon-Manganese Clean Steels

    Institute of Scientific and Technical Information of China (English)

    郭锋; 林勤; 孙学义

    2004-01-01

    Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current icorr, and characteristic potential of pitting Eb. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization.

  9. Influence of grain size on radiation effects in a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Alsabbagh, Ahmad, E-mail: ahalsabb@ncsu.edu [Department of Nuclear Engineering, North Carolina State University (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University (Russian Federation); Murty, K.L. [Department of Nuclear Engineering, North Carolina State University (United States)

    2013-11-15

    Ultra-fine grain (UFG) metals with a relatively large volume of interfaces are expected to be more radiation resistant than conventional metals; grain boundaries act as unsaturable sinks for neutron irradiation induced defects. Effects of neutron irradiation on conventional and ultra-fine grain structured carbon steel are studied using the PULSTAR reactor at NC State University to relatively low fluence (∼1.15 × 10{sup −3} dpa). The low dose irradiation of ultrafine grained carbon steel revealed minute radiation effects in contrast to the observed radiation hardening and reduction of ductility in its conventional grained counterpart.

  10. Experimental Investigation of the Effect of the Material Damage Induced in Sheet Metal Forming Process on the Service Performance of 22MnB5 Steel

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Weimin; XIE Dongxuan; CHEN Yanhong

    2016-01-01

    The use of ultra-high strength steels through sheet metal forming process offers a practical solution to the lightweight design of vehicles. However, sheet metal forming process not only produces desirable changes in material properties but also causes material damage that may adversely influence the service performance of the material formed. Thus, an investigation is conducted to experimentally quantify such influence for a commonly used steel (the 22MnB5 steel) based on the hot and cold forming processes. For each process, a number of samples are used to conduct a uniaxial tensile test to simulate the forming process. After that, some of the samples are trimmed into a standard shape and then uniaxially extended until fracture to simulate the service stage. Finally, a microstructure test is conducted to analyze the microdefects of the remaining samples. Based on the results of the first two tests, the effect of material damage on the service performance of 22MnB5 steel is analyzed. It is found that the material damages of both the hot and cold forming processes cause reductions in the service performance, such as the failure strain, the ultimate stress, the capacity of energy absorption and the ratio of residual strain. The reductions are generally lower and non-linear in the former process but higher and linear in the latter process. Additionally, it is found from the microstructure analysis that the difference in the reductions of the service performance of 22MnB5 by the two forming processes is driven by the difference in the micro damage mechanisms of the two processes. The findings of this research provide a useful reference in terms of the selection of sheet metal forming processes and the determination of forming parameters for 22MnB5.

  11. Image analysis of corrosion pit initiation on ASTM type A240 stainless steel and ASTM type A 1008 carbon steel

    Science.gov (United States)

    Nine, H. M. Zulker

    The adversity of metallic corrosion is of growing concern to industrial engineers and scientists. Corrosion attacks metal surface and causes structural as well as direct and indirect economic losses. Multiple corrosion monitoring tools are available although those are time-consuming and costly. Due to the availability of image capturing devices in today's world, image based corrosion control technique is a unique innovation. By setting up stainless steel SS 304 and low carbon steel QD 1008 panels in distilled water, half-saturated sodium chloride and saturated sodium chloride solutions and subsequent RGB image analysis in Matlab, in this research, a simple and cost-effective corrosion measurement tool has identified and investigated. Additionally, the open circuit potential and electrochemical impedance spectroscopy results have been compared with RGB analysis to gratify the corrosion. Additionally, to understand the importance of ambiguity in crisis communication, the communication process between Union Carbide and Indian Government regarding the Bhopal incident in 1984 was analyzed.

  12. Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors

    Science.gov (United States)

    Chen, Jiucun; Liu, Yinqin; Li, Wenjun; Xu, Liqun; Yang, Huan; Li, Chang Ming

    2015-08-01

    Nitrogen-enriched carbon sheets were synthesized using egg white as a unique carbon source and expanded perlite as a novel template. The as-prepared material was further used as an electrode material for supercapacitor applications, demonstrating excellent supercapacitance with a maximum gravimetric specific capacitance of 302 F g-1 at 0.5 A g-1 in a 3-electrode setup for a sample carbonized at 850 °C and activated for 6 h. Moreover, the carbon sheet-based capacitor with 2-symmetric electrodes showed an excellent cycle life (2% loss at 0.1 A g-1 after 10 000 cycles). The excellent performance may be attributed to the combination of the 3D carbon structure and the highly concentrated doped nitrogen component from the natural egg source for superior pseudocapacitance.

  13. Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets.

    Science.gov (United States)

    Xu, Yifan; Zhang, Ye; Guo, Ziyang; Ren, Jing; Wang, Yonggang; Peng, Huisheng

    2015-12-14

    The fabrication of flexible, stretchable and rechargeable devices with a high energy density is critical for next-generation electronics. Herein, fiber-shaped Zn-air batteries, are realized for the first time by designing aligned, cross-stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector. The combined remarkable electronic and mechanical properties of the aligned carbon nanotube sheets endow good electrochemical properties. They display excellent discharge and charge performances at a high current density of 2 A g(-1) . They are also flexible and stretchable, which is particularly promising to power portable and wearable electronic devices.

  14. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  15. Investigation on laser brazing AA6056 Al alloy to XC18 low-carbon steel

    Institute of Scientific and Technical Information of China (English)

    Jianjun Ding; Feiqun Li; Feng Qu; Patrice Peyre; Remy Fabbro

    2005-01-01

    @@ Based on the studies of influence of YAG laser heating conditions for Al alloy melt and steel on wettability,the mechanics of the laser overlap braze welding of 6056 Al and XC18 steel sheet has been investigated.Under the temperature range which is above the melting point of the Al alloy and below the melting point of the steel, two dissimilar metals can be joined by means of laser braze welding. There is no crack observed in the joining area, i.e. Al-Fe intermetallic phase (Fe3Al/FeAl/FeAl3/Fe2Al5) layer formed by solution and diffusion between liquid-solid interface. The temperature range can be defined as the process temperatures of laser braze welding of Al-Fe materials. Selecting a higher laser heating temperature can improve the wettability of Al melt to steel surface, but the intermetallic phase layer is also thicker. When the laser heating temperature is so high that the joining surface of steel is melted, there is a crack trend in the joining area.

  16. EXPERIMENTAL ANALYSIS AND ISHIKAWA DIAGRAM FOR BURN ON EFFECT ON MANGANESE SILICON ALLOY MEDIUM CARBON STEEL SHAFT

    Directory of Open Access Journals (Sweden)

    AsmamawTegegne

    2013-12-01

    Full Text Available Burn on/metal penetration is one of the surface defects of metal castings in general and steel castings in particular. A research on the effect of burn on the six ton medium carbon steel shaft for making a roller of cold rolled steel sheet produced at one of the metals industry was carried out. The shaft was cast using sand casting by pouring through riser/feeding head step by step (with time interval of pouring. As it was required to use foam casting method for better surface finish and dimensional accuracy of the cast, the pattern was prepared from polystyrene and embedded by silica sand. Physical observations, photographic analysis, visual inspection, measurement of depth of penetration and fish bone diagram were used as method of results analysis. The shaft produced has strongly affected by sand sintering (burn on/metal penetration. Many reasons may be the case for these defects, however analysis results showed that the use of poorly designed gating system led to turbulence flow, uncontrollable high temperature fused the silica sand and liquid polystyrene penetrated the poorly reclaimed and rammed sand mold as a result of which eroded sand has penetrated the liquid metal deeply and reacted with it, consequently after solidification and finishing the required 240mm diameter of the shaft has reduced un evenly to 133mm minimum and 229mm maximum mm that end in the rejection of the shaft from the product since it is below the required standard for the designed application. In addition, it was not possible to remove the adhered sand by grinding. Thus burn on is included in mechanical type burn on.

  17. Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets

    Science.gov (United States)

    Jedari Salami, S.

    2016-02-01

    Bending analysis of a sandwich beam with soft core and carbon nanotube reinforced composite (CNTRC) face sheets in the literature is presented based on Extended High order Sandwich Panel Theory (EHSAPT). Distribution of fibers through the thickness of the face sheets could be uniform or functionally graded (FG). In this theory the face sheets follow the first order shear deformation theory (FSDT). Besides, the two dimensional elasticity is used for the core. The field equations are derived via the Ritz based solution which is suitable for any essential boundary condition. The influences of boundary conditions on bending response of the sandwich panel with soft core and CNTRC face sheet are investigated. In each type of boundary condition the effect of distribution pattern of CNTRCs on many essential involved parameters of the sandwich beam with functionally graded carbon nanotube reinforced composite (FG- CNTRC) face sheets are studied in detail. Finally, experimental result have been compared with those obtained based on developed solution method. It is concluded that, the sandwich beam with X distribution figure of face sheets is the strongest with the smallest transverse displacement, and followed by the UD, O and ∧-ones, respectively.

  18. Effect of Boron on Delayed Fracture Resistance of Medium-Carbon High Strength Spring Steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The delayed fracture behavior of medium-carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6%) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron content from 0. 000 5 % to 0. 001 6 %. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350 ℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initiation area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.

  19. Influence of Molybdenum Addition on Mechanical Properties of Low Carbon HSLA-100 Steel

    Directory of Open Access Journals (Sweden)

    Bogucki R.

    2014-10-01

    Full Text Available The results of mechanical properties and microstructure observation of low carbon copper bearing steel with high addition of molybdenum are presented in this paper. This steels were characterized by contents of molybdenum in the range from 1% to 3% wt. After the thermo -mechanical processing the steels were subsequently quenched and tempered at different temperatures (500-800 °C for 1h. The changes of mechanical properties as function of tempering temperature were typical for the steel with the copper addition. The sudden drop of impact resistance after tempering from 575 °C to 600 °C was caused probably by precipitates of Laves phase of type Fe2Mo.

  20. The influence of molybdenum on stress corrosion in Ultra Low Carbon Steels with copper addition

    Directory of Open Access Journals (Sweden)

    M. Mazur

    2010-07-01

    Full Text Available The influence of molybdenum content on the process of stress corrosion of ultra-low carbon structural steels with the addition of copper HSLA (High Strength Low Alloy was analyzed. The study was conducted for steels after heat treatment consisting of quenching andfollowing tempering at 600°C and it was obtained microstructure of the tempered martensite laths with copper precipitates and the phaseLaves Fe2Mo type. It was found strong influence of Laves phase precipitate on the grain boundaries of retained austenite on rate anddevelopment of stress corrosion processes. The lowest corrosion resistance was obtained for W3 steel characterized by high contents ofmolybdenum (2.94% Mo which should be connected with the intensity precipitate processes of Fe2Mo phase. For steels W1 and W2which contents molybdenum equals 1.02% and 1.88%, respectively were obtained similar courses of corrosive cracking.

  1. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  2. Raising the heat and wear resistances of hardened carbon steels by friction strengthening treatment

    Science.gov (United States)

    Makarov, A. V.; Korshunov, L. G.; Malygina, I. Yu.; Solodova, I. L.

    2007-03-01

    The effect of friction treatment by a hard-alloy indenter on the microhardness and resistance to the heat-induced softening upon tempering of hardened medium-and high-carbon steels at 100-600°C is studied. The x-ray and electron microscopy methods are used to determine the causes of the increase in the heat resistance of the friction-strained steel surfaces. A comparative analysis of the effect of the hardening treatment by a hard-alloy indenter and by abrasive particles on the friction-induced heat resistance is performed for the case of high-speed friction treatment of a high-carbon laser-hardened steel.

  3. Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere

    Science.gov (United States)

    Pan, Chen; Han, Wei; Wang, Zhenyao; Wang, Chuan; Yu, Guocai

    2016-12-01

    The evolution of initial corrosion of carbon steel exposed to an industrial atmosphere in Shenyang, China, has been investigated by gravimetric, XRD, SEM/EDS and electrochemical techniques. The kinetics of the corrosion process including the acceleration and deceleration processes followed the empirical equation D = At n . The rust formed on the steel surface was bi-layered, comprised of an inner and outer layer. The outer layer was formed within the first 245 days and had lower iron content compared to the inner layer. However, the outer layer disappeared after 307 days of exposure, which is considered to be associated with the depletion of Fe3O4. The evolution of the rust layer formed on the carbon steel has also been discussed.

  4. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder [Centro de Investigaciones en Optica, A.P. 1-948, León, Guanajuato 37160 (Mexico); Papadimitratos, Alexios [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Zakhidov, Anvar A., E-mail: Zakhidov@utdallas.edu [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Energy Efficiency Center, National University of Science and Technology, MISiS, Moscow 119049 (Russian Federation)

    2015-11-21

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  5. Flexural strengthening of reinforced concrete beams with carbon fibers reinforced polymer (CFRP sheet bonded to a transition layer of high performance cement-based composite

    Directory of Open Access Journals (Sweden)

    V. J. Ferrari

    Full Text Available Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP. This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

  6. EFFECT OF ELECTRIC FIELD ON THE AUSTENIZATION OF A LOW CARBON STEEL

    Institute of Scientific and Technical Information of China (English)

    X.T.Liu; J.Z.Cui

    2004-01-01

    With an electric field during austenitizing, the martensite transformation of the low carbon steel was promoted, and more martensite were obtained. The electric field promotes the homogeneity of carbon, and reduces the free energy of austenite. The critical neuclus r* and the critical driving force G* responsible for the nucleation of proeutectoid ferrite were increased. As a result of which the diffusion controlled proeuctoid ferrite transformation was retarded and the hardenability was improved.

  7. Carbonated aqueous media for quench heat treatment of steels

    Science.gov (United States)

    Nayak, U. Vignesh; Rao, K. M. Pranesh; Pai, M. Ashwin; Prabhu, K. Narayan

    2016-09-01

    Distilled water and polyalkylene glycol (PAG)-based aqueous quenchants of 5 and 10 vol.% with and without carbonation were prepared and used as heat transfer media during immersion quenching. Cooling curves were recorded during quenching of an inconel 600 cylindrical probe instrumented with multiple thermocouples. It was observed that the vapor stage duration was prolonged and the wetting front ascended uniformly for quenching with carbonated media. The cooling data were analyzed by determining the critical cooling parameters and by estimating the spatially dependent probe/quenchant interfacial heat flux transients. The study showed significantly reduced values of heat transfer rate for carbonated quenchants compared to quenchants without carbonation. Further, the reduction was more pronounced in the case of PAG-based carbonated quenchants than carbonated distilled water. The results also showed the dependence of heat transfer characteristics of the carbonated media on polymer concentration. The effect of quench uniformity on the microstructure of the material was assessed.

  8. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    Science.gov (United States)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  9. Bainite Formation in Medium-Carbon Low-Silicon Spring Steels Accounting for Chemical Segregation

    NARCIS (Netherlands)

    Goulas, C.; Mecozzi, M.G.; Sietsma, J.

    2016-01-01

    In this paper, the effect of chemical inhomogeneity on the isothermal bainite formation is investigated in medium-carbon low-silicon spring steel by dilatometry and microscopy. The analysis of the microstructure at different times during transformation shows that chemical segregation of substitution

  10. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  11. About Reverted Austenite in Carburized Layers of Low-Carbon Martensitic Steels

    Science.gov (United States)

    Ivanov, A. S.; Bogdanova, M. V.; Vylezhnev, V. P.

    2015-05-01

    Processes of surface hardening in low-carbon martensitic steel 24Kh2G2NMFTB under carburizing and subsequent quenching from the intercritical temperature range are studied. Special features of formation of reverted austenite with high strength and stability are considered.

  12. DEFORMATION AND FRACTURE MICROPROCESSES OF EXPLOSIVELY LOADED LOW-CARBON STEELS UNDER TENSION

    OpenAIRE

    Larionov, V; Yakovleva, S.

    1991-01-01

    The mechanism of strength properties formation in low-carbon steels subjected to explosive treatment is investigated. With this aim in view, the features inherent to plastic deformation and fracture microprocesses have been studied. A quantitative analysis of the microinhomogeneous plastic deformation characteristics has been carried out.

  13. Cumalative Distribution Functions for the Relative Humidity Thresholds for the Onset of Carbon Steel Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    1998-05-13

    The purpose of this calculation is to process the cumulative distribution functions (CDFs) characterizing the relative humidity (RH) thresholds for the onset of carbon steel corrosion provided by expert elicitation and minimize the set of values to 200 points for use in WAPDEG.

  14. Martensitic transformation and stress partitioning in a high-carbon steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Grumsen, Flemming Bjerg; Pantleon, Karen;

    2012-01-01

    Martensitic transformation in a high-carbon steel was investigated with (synchrotron) X-ray diffraction at sub-zero Celsius temperature. In situ angular X-ray diffraction was applied to: (i) quantitatively determine the fractions of retained austenite and martensite; and (ii) measure the evolution...

  15. Fabrication of cast carbon steel with ultrafine TiC particles

    Institute of Scientific and Technical Information of China (English)

    Sang-Hoon LEE; Jin-Ju PARK; Sung-Mo HONG; Byoung-Sun HAN; Min-Ku LEE; Chang-Kyu RHEE

    2011-01-01

    The carbon steels dispersed with ultrafine TiC particles were fabricated by conventional casting method. The casting process is more economical than other available routes for metal matrix composite production, and the large sized components to be fabricated in short processing time. However, it is extremely difficult to obtain uniform dispersion of ultrafine ceramic particles in liquid metals due to the poor wettability and the specific gravity difference between the ceramic particle and metal matrix, In order to solve these problems, the mechanical milling (MM) and surface-active processes were introduced. As a result, Cu coated ultrafine TiC powders made by MM process using high energy ball milling machine were mixed with Sn powders as a surfactant to get better wettability by lowering the surface tension of carbon steel melt, The microstructural investigations by OM show that ultrafine TiC particles are distributed uniformly in carbon steel matrix. The grain sizes of the cast matrix with ultrafine TiC particles are much smaller than those without ultrafine TiC particles. This is probably due to the fact that TiC particles act as nucleation sites during solidification. The wear resistance of cast carbon steel composites added with MMed TiC/Cu-Sn powders is improved due to grain size refinement.

  16. Trade-off between the Mechanical Strength and Microwave Electrical Properties of Functionalized and Irradiated Carbon Nanotube Sheets.

    Science.gov (United States)

    Williams, Tiffany S; Orloff, Nathan D; Baker, James S; Miller, Sandi G; Natarajan, Bharath; Obrzut, Jan; McCorkle, Linda S; Lebron-Colón, Marisabel; Gaier, James; Meador, Michael A; Liddle, J Alexander

    2016-04-13

    Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.

  17. Interaction of carbon-vacancy complex with minor alloying elements of ferritic steels

    Science.gov (United States)

    Bakaev, A.; Terentyev, D.; He, X.; Zhurkin, E. E.; Van Neck, D.

    2014-08-01

    Interstitial carbon, dissolved in bcc matrix of ferritic steels, plays an important role in the evolution of radiation-induced microstructure since it exhibits strong interaction with vacancies. Frequent formation and break-up of carbon-vacancy pairs, occurring in the course of irradiation, affect both kinetics of the accumulation of point defect clusters and carbon spatial distribution. The interaction of typical alloying elements (Mn, Ni, Cu, Si, Cr and P) in ferritic steels used as structural materials in nuclear reactors with a carbon-vacancy complex is analyzed using ab initio techniques. It is found that all the considered solutes form stable triple clusters resulting in the increase of the total binding energy by 0.2-0.3 eV. As a result of the formation of energetically favourable solute-carbon-vacancy triplets, the dissociation energy for vacancy/carbon emission is also increased by ∼0.2-0.3 eV, suggesting that the solutes enhance thermal stability of carbon-vacancy complex. Association of carbon-vacancy pairs with multiple solute clusters is found to be favorable for Ni, Cu and P. The energetic stability of solute(s)-carbon-vacancy complexes was rationalized on the basis of pairwise interaction data and by analyzing the variation of local magnetic moments on atoms constituting the clusters.

  18. Highly crystalline lithium titanium oxide sheets coated with nitrogen-doped carbon enable high-rate lithium-ion batteries.

    Science.gov (United States)

    Han, Cuiping; He, Yan-Bing; Li, Baohua; Li, Hongfei; Ma, Jun; Du, Hongda; Qin, Xianying; Yang, Quan-Hong; Kang, Feiyu

    2014-09-01

    Sheets of Li4Ti5O12 with high crystallinity are coated with nitrogen-doped carbon (NC-LTO) using a controlled process, comprising hydrothermal reaction followed by chemical vapor deposition (CVD). Acetonitrile (CH3 CN) vapor is used as carbon and nitrogen source to obtain a thin coating layer of nitrogen-doped carbon. The layer enables the NC-LTO material to maintain its sheet structure during the high-temperature CVD process and to achieve high crystallinity. Doping with nitrogen introduces defects into the carbon coating layer, and this increased degree of disorder allows fast transportation of lithium ions in the layer. An electrode of NC-LTO synthesized at 700 °C exhibits greatly improved rate and cycling performance due to a markedly decreased total cell resistance and enhanced Li-ion diffusion coefficient (D(Li)). Specific capacities of 159.2 and 145.8 mA h g(-1) are obtained using the NC-LTO sheets, at charge/discharge rates of 1 and 10 C, respectively. These values are much higher than values for LTO particles did not undergo the acetonitrile CVD treatment. A capacity retention value as high as 94.7% is achieved for the NC-LTO sheets after 400 cycles in a half-cell at 5 C discharge rate.

  19. Development of Auto Sheets in Baosteel

    Institute of Scientific and Technical Information of China (English)

    LuJiangxin; WangLi

    2005-01-01

    The development trends of auto sheets in recent years are summarized with regard to the envirorunental regulations, market demands and strategy of the steel industry. The growth of domestic auto industry and demands for auto sheets are also briefed. The current status of development of Bake hardenable steel, Isotropic steel for outer panels and Transformation induced plasticity steel, dual phase steel for structural parts in Baosteel is introduced and the future of auto sheets in Baosteel is forecasted.

  20. Effect of microstructure of carbon steel on magnetite formation in simulated Hot Conditioning environment of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Prafful Kumar, E-mail: prafful@barc.gov.in; Kiran Kumar, M.; Kain, Vivekanand

    2015-09-15

    Highlights: • Heat treatments used to tailor microstructure of a low and a high carbon steel. • Oxide growth rates established in Hot Conditioning simulated environment. • Only magnetite formed on all microstructural conditions of both the steels. • Growth rate was higher for all microstructures of high carbon steel upto 72 h. • After 72 h growth rate stabilized in narrow band for all microstructures of a steel. - Abstract: The objective of present investigation is to establish the role of starting microstructure of carbon steel on the magnetite formation behaviour in Hot Conditioning simulated environment. Two grades of carbon steel (low and high carbon) were subjected to selective heat-treatments to generate different microstructures: martensite, tempered martensite and modified ferrite–pearlite. Oxidation was carried out in lithiated water of pH 10–10.2 in a static autoclave at 270 °C. The results of the investigation clearly establish that: (a) high carbon steel (0.63% C) showed a relatively higher rate of oxidation over the low carbon (0.08% C) grade at all the test durations and (b) the oxidation rates for both the grades were sensitive to microstructural differences at initial stages of oxidation while the differences narrowed down after 72 h of exposure. The oxide formed was established to be magnetite on all the specimens.