WorldWideScience

Sample records for carbon steel corrosion

  1. Corrosion of carbon steel welds

    International Nuclear Information System (INIS)

    This report assesses the factors which cause preferential attack to occur in carbon steel fusion welds. It was concluded that the main factors were: the inclusion content of the weld metal, the potential of the weld metal being less noble than that of the parent, and the presence of low-temperature transformation products in the heat-affected zone of the weld. These factors should be minimized or eliminated as appropriate so that the corrosion allowances determined for carbon steel waste drums is also adequate for the welds. An experimental/theoretical approach is recommended to evaluate the relative corrosion resistance of welds prepared from BS 4360 grade 43A steel to that of the parent material. (author)

  2. Marine atmospheric corrosion of carbon steels

    OpenAIRE

    Morcillo, Manuel; Alcántara, Jenifer; Díaz, Iván; Chico, Belén; Simancas, Joaquín; de la Fuente, Daniel

    2015-01-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products...

  3. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  4. Marine atmospheric corrosion of carbon steels

    International Nuclear Information System (INIS)

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  5. Microbially influenced corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Jack, R.F.; Dowling, N.J.E.; Franklin, M.J.; Nivens, D.E.; Brooks, S.; Mittelman, M.W.; Vass, A.A. (Tennessee Univ., Knoxville, TN (USA). Inst. for Applied Microbiology); Isaacs, H.S. (Brookhaven National Lab., Upton, NY (USA))

    1990-01-01

    Microbially influenced corrosion of pipeline steels is an economically important problem. Microbes form tubercles which block fluid flow and can facilitate localized corrosion leading to through-wall penetrations. Microbes of diverse physiological types and metabolic potentialities have been recovered from fresh tubercles or under-deposit corrosion and have been characterized. In tests utilizing sterilizable flow-through systems containing pipeline steel coupons, corrosion rates determined by nondestructive electrochemical means have indicated that increasing the number of physiological types of microbes inoculated into the system generally increased the severity of the microbially influenced corrosion (MIC). This study reports the MIC of monocultures and combinations of monocultures in an aerobic fresh water system with low sulfate and an anaerobic saline system. In both the aerobic and anaerobic systems, the combination of microbes induced greater MIC responses than the monocultures. In tests involving a combination of microbes in both systems in which one member was a sulfate-reducing bacteria (SRB), the corrosion mechanism was different for the control and the monocultures. This difference was indicated by the phase shift in the electrochemical impedance spectra (EIS). The localization of corrosion, that in many cases is the hallmark of MIC, may be initiated by the inhomogeneities of supposedly smooth metal surfaces. The scanning vibrating electrode technique (SVET) demonstrated non-uniform current densities over carbon steel electrodes polished to a 600 grit finish suggesting pitting and repassivation of pits in sterile medium.

  6. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  7. Microbially induced corrosion of carbon steel in deep groundwater environment

    Science.gov (United States)

    Rajala, Pauliina; Carpén, Leena; Vepsäläinen, Mikko; Raulio, Mari; Sohlberg, Elina; Bomberg, Malin

    2015-01-01

    The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland) for periods of 3 and 8 months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel. PMID:26257707

  8. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of c...

  9. Marine atmospheric corrosion of carbon steels

    Directory of Open Access Journals (Sweden)

    Morcillo, Manuel

    2015-06-01

    Full Text Available Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a environmental conditions necessary for akaganeite formation; (b characterisation of akaganeite in the corrosion products formed; (c corrosion mechanisms of carbon steel in marine atmospheres; (d exfoliation of rust layers formed in highly aggressive marine atmospheres; (e long-term corrosion rate prediction; and (f behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camariñas, Galicia in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM/energy dispersive spectrometry (EDS, X-ray diffraction (XRD, Mössbauer spectroscopy and SEM/μRaman spectroscopy.La investigación fundamental en corrosión atmosférica marina de aceros al carbono es un campo científico relativamente joven que presenta grandes lagunas de conocimiento. La formación de akaganeíta en los productos de corrosión que se forman sobre el acero cuando se expone a atmósferas marinas conduce a un incremento notable de la velocidad de corrosión. En el trabajo se abordan las siguientes cuestiones: (a condiciones ambientales necesarias para la formación de akaganeíta, (b caracterización de la akaganeíta en los productos de corrosión formados, (c mecanismos de corrosión del acero al carbono en atmósferas marinas, (d exfoliación de las capas de herrumbre formadas en atmósferas marinas muy agresivas, (e predicción de la velocidad de corrosión a largo plazo, y (f comportamiento de aceros patinables. La

  10. Increasing corrosion resistance of carbon steels by surface laser cladding

    Science.gov (United States)

    Polsky, V. I.; Yakushin, V. L.; Dzhumaev, P. S.; Petrovsky, V. N.; Safonov, D. V.

    2016-04-01

    This paper presents results of investigation of the microstructure, elemental composition and corrosion resistance of the samples of low-alloy steel widely used in the engineering, after the application of laser cladding. The level of corrosion damage and the corrosion mechanism of cladded steel samples were established. The corrosion rate and installed discharge observed at the total destruction of cladding were obtained. The regularities of structure formation in the application of different powder compositions were obtained. The optimal powder composition that prevents corrosion of samples of low-carbon low-alloy steel was established.

  11. Initial Atmospheric Corrosion of Carbon Steel in Industrial Environment

    Science.gov (United States)

    Han, Wei; Pan, Chen; Wang, Zhenyao; Yu, Guocai

    2015-02-01

    The initial corrosion behavior of carbon steel subjected to Shenyang industrial atmosphere has been investigated by weight-loss measurement, scanning electron microscopy observation, x-ray diffraction, auger electron spectroscopy, and electron probe microanalysis. The experimental results reveal that the corrosion kinetics of the initial corrosion of carbon steel in industrial atmosphere follows empirical equation D = At n , and there is a corrosion rate transition from corrosion acceleration to deceleration; the corrosion products are composed of γ-FeOOH, α-FeOOH, Fe3O4, as well as FeS which is related to the existence of sulfate-reducing bacteria in the rust layers. The effect of dust particles on the corrosion evolution of carbon steel has also been discussed.

  12. Atmospheric corrosion of carbon steel in the prairie regions

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, W.J. [Calgary Univ., AB (Canada). Dept. of Mechanical and Manufacturing Engineering; Andersson, J.I. [Husky Oil Operations Ltd., Calgary, AB (Canada)

    2010-07-01

    A study of atmospheric corrosion and carbon steel located in the prairie regions of Canada was presented. The study considered corrosion behaviour as well as the standards currently used to establish and predict corrosion in atmospheric conditions. The aim of the study was to develop an accurate predictive method of establishing corrosion amounts over time. The controlling parameters for atmospheric corrosion included acidic rainfall; temperature and humidity; time of wetness; and the presence of major contaminants such as sulfur dioxide (SO{sub 2}). The predictive approach involved the study of a protective film of magnetite iron oxide that establishes itself on carbon steel over time. The presence of the film provides increased atmospheric corrosion resistance. An analysis of the atmospheric corrosion of steel tanks at the Hardisty terminal was used to demonstrate the method. 22 refs., 5 tabs., 7 figs.

  13. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    This is the final report of a 2 year programme aimed at (1) determining the rate of anaerobic corrosion of steel in concrete, (2) investigating the nature of the corrosion products formed on carbon steel embedded in cementitious material under anaerobic conditions and (3) evaluating the effect of hydrogen over-pressures on the rate of anaerobic corrosion. All experiments have been carried out at temperatures in the range 20-300C, ie ambient conditions. 4 refs.; 19 figs.; 6 tabs

  14. MICROBIAL CORROSION OF MILD AND MEDIUM CARBON STEELS

    OpenAIRE

    J. E.O. OVRI; S. I. OKEAHIALAM; O. O. ONYEMAOBI

    2013-01-01

    The role of bacteria in the corrosion of mild and medium carbon steels is reported. The steels were exposed to anaerobic and aerobic, and fresh water (control) environments. The corrosion rates were evaluated at intervals of seven days for a period of 42 days using weight loss and electrochemical methods. The corroded specimens were visually examined and majorities were found to have undergone general corrosion in the three environments (aerobic, anaerobic, and fresh water)....

  15. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    Science.gov (United States)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  16. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...

  17. Volatile corrosion inhibitor film formation on carbon steel surface and its inhibition effect on the atmospheric corrosion of carbon steel

    International Nuclear Information System (INIS)

    A novel volatile corrosion inhibitor (VCI), bis-piperidiniummethyl-urea (BPMU), was developed for temporary protection of carbon steel. Its vapor corrosion inhibition property was evaluated under simulated operational conditions. Electrochemical impedance spectroscopy was applied to study the inhibition effect of BPMU on the corrosion of carbon steel with a thin stimulated atmospheric corrosion water layers. Adsorption of BPMU on carbon steel surfaces was investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results indicate that BPMU can form a protective film on the metal surface, which protects the metal against further corrosion. The structure of the protective film was suggested as one BPMU molecule chelated with one Fe atom to form a complex with two hexa-rings

  18. Volatile corrosion inhibitor film formation on carbon steel surface and its inhibition effect on the atmospheric corrosion of carbon steel

    Science.gov (United States)

    Zhang, Da-quan; An, Zhong-xun; Pan, Qing-yi; Gao, Li-xin; Zhou, Guo-ding

    2006-11-01

    A novel volatile corrosion inhibitor (VCI), bis-piperidiniummethyl-urea (BPMU), was developed for temporary protection of carbon steel. Its vapor corrosion inhibition property was evaluated under simulated operational conditions. Electrochemical impedance spectroscopy was applied to study the inhibition effect of BPMU on the corrosion of carbon steel with a thin stimulated atmospheric corrosion water layers. Adsorption of BPMU on carbon steel surfaces was investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results indicate that BPMU can form a protective film on the metal surface, which protects the metal against further corrosion. The structure of the protective film was suggested as one BPMU molecule chelated with one Fe atom to form a complex with two hexa-rings.

  19. Corrosion behavior of carbon steels under tuff repository environmental conditions

    International Nuclear Information System (INIS)

    Carbon steels may be used for borehole liners in a potential high-level nuclear waste repository in tuff in Nevada. Borehole liners are needed to facilitate emplacement of the waste packages and to facilitate retrieval of the packages, if required. Corrosion rates of low carbon structural steels AISI 1020 and ASTM A-36 were determined in J-13 well water and in saturated steam at 1000C. Tests were conducted in air-sparged J-13 water to attain more oxidizing conditions representative of irradiated aqueous environments. A limited number of irradiation corrosion and stress corrosion tests were performed. Chromium-molybdenum alloy steels and cast irons were also tested. These materials showed lower general corrosion but were susceptible to stress corrosion cracking when welded. 4 references, 4 tables

  20. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    OpenAIRE

    Renato Altobelli Antunes; Rodrigo Uchida Ichikawa; Luis Gallego Martinez; Isolda Costa

    2014-01-01

    The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron micr...

  1. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  2. Corrosion of carbon steel nuclear waste containers in marine sediment

    International Nuclear Information System (INIS)

    The report describes a study of the corrosion of carbon steel nuclear waste containers in deep ocean sediments, which had the objective of estimating the metal allowance needed to ensure that the containers were not breached by corrosion for 1000 years. It was concluded that under such disposal conditions carbon steel would not be subject to localised corrosion or hydrogen embrittlement, and therefore the study concentrated on evaluating the rate of general attack. This was carried out by developing a mechanistically based mathematical model which was formulated on the conservative assumption that the corrosion would be under activation control, and would not be impeded by the formation of corrosion product layers. This model predicted that an allowance of 33 mm would be required for a 1000 year life. (author)

  3. Internal corrosion of carbon steel piping in hot aquifers service

    Directory of Open Access Journals (Sweden)

    Simičić Miloš V.

    2011-01-01

    Full Text Available Internal corrosion of carbon steel pipelines is a major problem encountered in water service. In terms of prediction of the remaining lifetime for water pipelines based on the corrosion allowance, the three main approaches are corrosion modelling, corrosion inhibitor availability, and corrosion monitoring. In this study we used two theoretical corrosion models, CASSANDRA and NORSOK M-506 of quite different origin in order to predict uniform corrosivity of hot aquifers in eight different pipelines. Because of the varying calculation criteria for the different models, these can give very different corrosion rate predictions for the same data input. This is especially true under conditions where the formation of protective films may occur, such as at elevated temperatures. The evaluation of models was conducted by comparison using weight-loss coupons and three corrosion inhibitors were obtained from commercial suppliers. The tests were performed during the 60-day period. Even though inhibitors’ efficiencies of 98% had been achieved in laboratory testing, inhibitors’ availabilities of 85% have been used due to logistics problems and other issues. The results, given in mmpy, i.e. millimeter per year, are very consistent with NORSOK M-506 prediction. This is presumably because the model considers the effect of the formation of a passive iron carbonate film at temperatures above 80 °C and significant reduction in corrosion rate. Corrosion inhibitor A showed a better performance than inhibitors B and C in all cases but the target corrosion rates of less than 0.1 mmpy were achieved for all inhibitors. The chemical type of corrosion inhibitor A is based on quaternary amines mixed with methanol, isopropyl alcohol, xylene and ethylbenzene. Based on the obtained results the carbon steel lifetime of 30 years, provided proper inhibitors are present and 3mm corrosion allowance, can be achieved for hot aquifers service with presented water compositions.

  4. MICROBIAL CORROSION OF MILD AND MEDIUM CARBON STEELS

    Directory of Open Access Journals (Sweden)

    J. E. O. OVRI

    2013-10-01

    Full Text Available The role of bacteria in the corrosion of mild and medium carbon steels is reported. The steels were exposed to anaerobic and aerobic, and fresh water (control environments. The corrosion rates were evaluated at intervals of seven days for a period of 42 days using weight loss and electrochemical methods. The corroded specimens were visually examined and majorities were found to have undergone general corrosion in the three environments (aerobic, anaerobic, and fresh water. The mild steel was found to corrode more than the medium carbon steel in anaerobic environment-mild steel: 6.43×10-4 mpy and -0.93 mV, due to limited available oxygen whilst it had -0.89 mV in aerobic and -0.77 mV in the fresh water. The medium carbon steel had -5.30×10-4 mpy and -0.91 mV in anaerobic: -0.84mV in aerobic and -0.74mV in freshwater.

  5. Corrosion of a carbon steel in simulated liquid nuclear wastes

    International Nuclear Information System (INIS)

    This work is part of a collaboration agreement between CNEA (National Atomic Energy Commission of Argentina) and USDOE (Department of Energy of the United States of America), entitled 'Tank Corrosion Chemistry Cooperation', to study the corrosion behavior of carbon steel A537 class 1 in different simulated non-radioactive wastes in order to establish the safety concentration limits of the tank waste chemistry at Hanford site (Richland-US). Liquid high level nuclear wastes are stored in tanks made of carbon steel A537 (ASTM nomenclature) that were designed for a service life of 20 to 50 years. A thickness reduction of some tank walls, due to corrosion processes, was detected at Hanford site, beyond the existing predicted values. Two year long-term immersion tests were started using non radioactive simulated liquid nuclear waste solutions at 40 C degrees. This work extends throughout the first year of immersion. The simulated solutions consist basically in combinations of the 10 most corrosion significant chemical components: 5 main components (NaNO3, NaCl, NaF, NaNO2 and NaOH) at three concentration levels and 5 secondary components at two concentration levels. Measurements of the general corrosion rate with time were performed for carbon steel coupons, both immersed in the solutions and in the vapor phases, using weight loss and electrochemistry impedance spectroscopy techniques. Optic and scanning electron microscopy examination, analysis of U-bend samples and corrosion potential measurements, were also done. Localized corrosion susceptibility (pitting and crevice corrosion) was assessed in isolated short-term tests by means of cyclic potentiodynamic polarization curves. The effect of the simulated waste composition on the corrosion behavior of A537 steel was studied based on statistical analyses. The Surface Response Model could be successfully applied to the statistical analysis of the A537 steel corrosion in the studied solutions. General corrosion was not

  6. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  7. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  8. Mechanical Properties and Corrosion Behavior of Low Carbon Steel Weldments

    Directory of Open Access Journals (Sweden)

    Mohamed Mahdy

    2013-01-01

    Full Text Available This research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current density and anodic Tafel slop, while decrease the polarization resistance compared with unwelded low carbon steel. Cyclic polarization were measured to show resistance of specimens to pitting corrosion and to calculate the forward and reveres potentials. The results show shifting the forward, reverse and pitting potentials toward active direction for weldments samples compared with unwelded sample.

  9. Corrosion Behavior of Carbon Steels in CCTS Environment

    Directory of Open Access Journals (Sweden)

    M. Cabrini

    2016-01-01

    Full Text Available The paper reports the results of an experimental work on the effect of steel microstructures on morphology and protectiveness of the corrosion scale formed in water saturated by supercritical CO2. Two HSLA steels were tested. The microstructures were modified by means of different heat treatments. Weight loss was measured after exposure at CO2 partial pressure of 80 bar and 60°C temperature. The morphology of the scale was analyzed by means of scanning electron microscope (SEM energy-dispersive X-ray spectroscopy (EDX. Cathodic potentiodynamic tests were carried out on precorroded specimens for evaluating the effect of preformed scales on cathodic polarization curves in CO2 saturated sulphuric acid solution at pH 3, which is the value estimated for water saturated by supercritical CO2. The results are discussed in order to evaluate the effect of iron carbide network on scale growth and corrosion rate. Weight loss tests evidenced average corrosion rate values in the range 1–2.5 mm/y after 150-hour exposure. The presence of thick siderite scale significantly reduces the corrosion rate of carbon steel. A slight decrease of the corrosion rate was observed as the scale thickness increases and moving from martensite to microstructures containing carbides.

  10. Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    XIAO Kui; DONG Chao-fang; LI Xiao-gang; WANG Fu-ming

    2008-01-01

    The formation and development of corrosion products on carbon steel surface during the initial stage of atmospheric corrosion in a laboratory simulated environment have been studied by scanning electron microscopy (SEM)and Raman spectroscopy.The results showed that two different shapes of corrosion products,that is,ring and chain,were formed in the initial stage of corrosion.MnS clusters were found in the nuclei of corrosion products at the active local corrosion sites.The ring-shaped products were composed of lepidocrocite (γ-FeOOH) and maghemite(γ-Fe2 O3) transformed from lepidocrocite.The chain-type products were goethite (α-FeOOH).A formation mechanism of the corrosion products is proposed.

  11. Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [Dept. of Materials Physical and Chemical, University of Science and Technology Beijing, Beijing 100083 (China); Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Li, D.Y., E-mail: dongyang.li@ualberta.c [Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Shang, C.J. [Dept. of Materials Physical and Chemical, University of Science and Technology Beijing, Beijing 100083 (China)

    2009-12-15

    Aluminizing is often used to improve steel's resistances to corrosion, oxidation and wear. This article reports our recent attempts to further improve aluminized carbon steel through surface nanocrystallization for higher resistances to corrosion and corrosive wear. The surface nanocrystallization was achieved using a process combining sandblasting and recovery heat treatment. The entire surface modification process includes dipping carbon steel specimens into a molten Al pool to form an Al coat, subsequent diffusion treatment at elevated temperature to form an aluminized layer, sandblasting to generate dislocation network or cells, and recovery treatment to turn the dislocation cells into nano-sized grains. The grain size of the nanocrystallized aluminized surface layer was in the range of 20-100 nm. Electrochemical properties, electron work function (EWF), and corrosive wear of the nanocrystalline alloyed surfaces were investigated. It was demonstrated that the nanocrystalline aluminized surface of carbon steel exhibited improved resistances to corrosion, wear and corrosive wear. The passive film developed on the nanocrystallized aluminized surface was also evaluated in terms of its mechanical properties and adherence to the substrate.

  12. Microbiological Corrosion in Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    O. Medina–Custodio

    2009-01-01

    Full Text Available The Microbiologically Induced Corrosion affects several industries, such as oil industry where it is estimated that 20% to 30% pipes failures are related with microorganism . The chemical reactions generate ions transfer, this validate the use of electrochemical techniques for its analysis. Coupons submerged in a nutritional medium with presence and absence of three different microorganisms during two periods, 48 hours and 28 days we restudied. Polarization resistance (Rp and Electrochemical Impedance Spectroscopy (EIS techniques we re applied to determine the corrosivity of the systems. The results show a greater corrosive effect of abiotic system, this indicates a microorganisms protection effect to the metal, opposite to the first hypothesis. This result was ratified observing surfaces coupons by using Scanning Electron Microscopy (SEM technique. A possible mechanism based on Evans – Tafel graph is proposed to explain inhibitor microorganism effect.

  13. Corrosion behavior of carbon steel in wet Na-bentonite medium

    International Nuclear Information System (INIS)

    Corrosion behaviors of carbon steel in wet Na-bentonite medium were studied. Corrosion rate of carbon steel in wet bentonite was measured to be 20 μm/yr at 25 deg C using the AC impedance technique. This value is agreed with that obtained by weight loss at 40 deg C for 1 year. The effect of bicarbonate ion on the corrosion of carbon steel in wet bentonite was also evaluated. The carbon steels in wet bentonite having 0.001, 0.01, and 0.1 M concentration of bicarbonate ion gave corrosion rates of 20, 8, and 0.2 μm/yr, respectively. Corrosion potentials of specimens were also measured and compared with the AC impedance results. Both results indicated that bicarbonate ion could effectively reduce the corrosion rate of carbon steels in bentonite due to the formation of protective layer on the carbon steel. (author)

  14. Mill Scale Corrosion and Prevention in Carbon Steel Heat Exchanger

    Science.gov (United States)

    Sharma, Pankaj; Roy, Himadri

    2015-10-01

    The cause of material degradation of an ASTM A-124 grade carbon steel tube belonging to a heat exchanger has been investigated. Visual examination, followed by an in-depth microstructural characterization using optical microscopy, energy dispersive X-ray, and scanning electron microscopy, was carried out for understanding the primary cause of material degradation. Based on the results of an extensive examination as well as the background information provided on the heat exchanger, it was determined that the steel tubes were predominantly damaged by the mechanism of crevice corrosion facilitated by the presence of mill scale. It is concluded that the heat exchanger tubes were not properly investigated for defects after their fabrication. Based on the situation, the proper cleaning method was selected for preventing further corrosion in the system. A chemical cleaning process was designed using acid pickling along with an inhibitor and a surfactant.

  15. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2014-01-01

    Full Text Available The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron microscopy. The main product found was lepidocrocite. Goethite and magnetite were also found on the corroded specimens but in lower concentrations. The results showed that the accelerated test based on the ASTM B117 procedure presented poor correlation with the atmospheric corrosion tests whereas an alternated fog/dry cycle combined with UV radiation exposure provided better correlation.

  16. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2013-04-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  17. Corrosion Inhibition of Carbon Steel in Chloride and Sulfate Solutions

    Directory of Open Access Journals (Sweden)

    Amr Ahmed Elsayed

    2016-02-01

    Full Text Available Corrosion is a major problem in industry and in infrastructure; a huge sum of expenditure every year is spent on preventing, retarding, and repairing its damages. This work studies the engineering of an inhibitor for carbon steel metal used in the cooling systems containing high concentration of chloride and sulfate ions. For this purpose, the synergy between the dichromate, molybdate and nitrite inhibitors is examined and optimized to the best results. Moreover, care was taken that the proposed inhibitor is compliant with the environmental laws and regulations.

  18. Corrosion inhibition of carbon steel by extract of Buddleia perfoliata

    Directory of Open Access Journals (Sweden)

    ROY LOPES-SESENES

    2012-06-01

    Full Text Available Buddleia perfoliata leaves extract has been investigated as a carbon steel corrosion inhibitor in 0.5 M sulfuric acid by using polarization curves, electrochemical impedance spectroscopy and weight-loss tests at different concentrations (0, 100, 200, 300, 400 and 500 ppm and temperatures, namely 25, 40 and 60 °C. Results showthat inhibition efficiency increases as the inhibitor concentration increases, decreases with temperature, and reaches a maximum value after 12 h of exposure, decreasing with a further increase in the exposure time. It was found that the inhibitory effect is due to the presence of tannines on this extract.

  19. Corrosion inhibition of carbon steel by sodium metavanadate

    Directory of Open Access Journals (Sweden)

    VIJAYA GOPAL SRIBHARATHY

    2012-08-01

    Full Text Available The inhibition efficiency of sodium metavanadate (SMV-adipic acid (AA system in controlling corrosion of carbon steel in an aqueous solution containing 60 ppm of Cl- has been evaluated by weight-loss method; 250 ppm of SMV exhibits inhibition efficiency of 56 %. Addition of adipic acid to SMV improves the inhibition efficiency of the system. The formulation consisting of 250 ppm of SMV and 250 ppm of adipic acid has inhibition efficiency of 98 %. A synergistic effect exists between SMV and adipic acid with the synergism parameters greater than 1. Mecha¬nistic aspects of corrosion inhibition have been studied by electrochemical methods like potentiodynamic polarization and electrochemical impedance spectroscopy. FTIR spectra reveal that the protective film consists of Fe2+-SMV complex and Fe2+-adipic acid complex. The protective film has been analyzed by fluorescence spectra, SEM and EDAX.

  20. A Corrosion Sensor for Monitoring the Early-Stage Environmental Corrosion of A36 Carbon Steel

    Directory of Open Access Journals (Sweden)

    Dong Chen

    2014-08-01

    Full Text Available An innovative prototype sensor containing A36 carbon steel as a capacitor was explored to monitor early-stage corrosion. The sensor detected the changes of the surface- rather than the bulk- property and morphology of A36 during corrosion. Thus it was more sensitive than the conventional electrical resistance corrosion sensors. After being soaked in an aerated 0.2 M NaCl solution, the sensor’s normalized electrical resistance (R/R0 decreased continuously from 1.0 to 0.74 with the extent of corrosion. Meanwhile, the sensor’s normalized capacitance (C/C0 increased continuously from 1.0 to 1.46. X-ray diffraction result indicates that the iron rust on A36 had crystals of lepidocrocite and magnetite.

  1. Zn-10.2% Fe coating over carbon steel atmospheric corrosion resistance. Comparison with zinc coating

    International Nuclear Information System (INIS)

    Zn-10.2% Fe galvanized coating versus hot galvanized coating over carbon steel corrosion performance has been studied. Different periods of atmospheric exposures in various Valencia Community sites, and salt spray accelerated test have been done. Carbon steel test samples have been used simultaneously in order to classify exposure atmosphere corrosivity, and environmental exposure atmosphere characteristics have been analyzed. Corrosion Velocity versus environmental parameters has been obtained. (Author) 17 refs

  2. Corrosion behaviour of carbon steel in contact with bentonite under anaerobic condition

    International Nuclear Information System (INIS)

    Full text of publication follows: The geological disposal system of high-level radioactive waste (HLW) consists of vitrified waste, overpack, buffer material and surrounding rock. In this system, overpack is required to prevent the contact of groundwater from vitrified waste for 1000 years. The main factor limiting this function is corrosion due to the contact with groundwater infiltrated to buffer material which is the mixture of bentonite and sand. Carbon steel is selected as one of the candidate materials for overpacks in Japan as a corrosion allowance metal. The deep underground environment for geological disposal of HLW is expected to be relatively oxidizing condition at the initial stage of repository, but it will be returned to reducing as the consumption of oxygen by the corrosion of overpack and the redox reactions with the minerals in buffer material. It is necessary to understand the corrosion behaviour of carbon steel under such anaerobic condition for the lifetime prediction of carbon steel overpack. In this study, immersion tests of carbon steel in buffer material were performed in nitrogen atmosphere in which oxygen gas concentration was controlled less than 1 ppm. The corrosion rates of carbon steel were measured by weight loss of the specimens and the corrosion products were analysed by SEM, XRD and EPMA. For investigating the influence of welding of overpack, welded samples by electron-beam welding (EBW) were used in some of the tests. Synthetic sea water (SSW) and aqueous solutions containing bicarbonate ion and chloride ion were chosen as simulated groundwater. The results indicated that the corrosion form of carbon steel under anaerobic condition was uniform corrosion and no localised corrosion such as pitting, crevice corrosion was found within our experimental conditions. Ferrous carbonate such as FeCO3 or Fe2(OH)2CO3 was identified as crystalline corrosion products by XRD. Although the corrosion rate was affected by test solution and buffer

  3. Corrosion behaviour of carbon steel in contact with bentonite under anaerobic condition

    Energy Technology Data Exchange (ETDEWEB)

    Naoki, Taniguchi; Susumu, Kawakami [Japan Nuclear Cycle Development Institute, Tokai-mura, Ibaraki (Japan); Manabu, Kawasaki; Mitsuru, Kubota [Inspection Development Corporation, Tokai-mura, Ibaraki (Japan)

    2004-07-01

    Full text of publication follows: The geological disposal system of high-level radioactive waste (HLW) consists of vitrified waste, overpack, buffer material and surrounding rock. In this system, overpack is required to prevent the contact of groundwater from vitrified waste for 1000 years. The main factor limiting this function is corrosion due to the contact with groundwater infiltrated to buffer material which is the mixture of bentonite and sand. Carbon steel is selected as one of the candidate materials for overpacks in Japan as a corrosion allowance metal. The deep underground environment for geological disposal of HLW is expected to be relatively oxidizing condition at the initial stage of repository, but it will be returned to reducing as the consumption of oxygen by the corrosion of overpack and the redox reactions with the minerals in buffer material. It is necessary to understand the corrosion behaviour of carbon steel under such anaerobic condition for the lifetime prediction of carbon steel overpack. In this study, immersion tests of carbon steel in buffer material were performed in nitrogen atmosphere in which oxygen gas concentration was controlled less than 1 ppm. The corrosion rates of carbon steel were measured by weight loss of the specimens and the corrosion products were analysed by SEM, XRD and EPMA. For investigating the influence of welding of overpack, welded samples by electron-beam welding (EBW) were used in some of the tests. Synthetic sea water (SSW) and aqueous solutions containing bicarbonate ion and chloride ion were chosen as simulated groundwater. The results indicated that the corrosion form of carbon steel under anaerobic condition was uniform corrosion and no localised corrosion such as pitting, crevice corrosion was found within our experimental conditions. Ferrous carbonate such as FeCO{sub 3} or Fe{sub 2}(OH){sub 2}CO{sub 3} was identified as crystalline corrosion products by XRD. Although the corrosion rate was affected by

  4. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  5. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ...-Year (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat... Corrosion- Resistant Carbon Steel Flat Products From Germany and Korea, 77 FR 301 (January 4, 2012). As a... Steel Flat Products From Germany and Korea, 78 FR 15376 (March 11, 2013) and Corrosion-Resistant...

  6. The effect of oil on carbon dioxide corrosion inhibition on carbon steel - potential for improved corrosion protection

    International Nuclear Information System (INIS)

    The search for robust and cost efficient ways to prevent internal corrosion of carbon steel piping and equipment in oil and gas production and transportation has lead to the development of highly sophisticated CO2 corrosion inhibitor products. This thesis studies oil wetting and corrosion inhibitor performance on bare steel and steel with corrosion product deposits on the surface, in the presence of a refined, low aromatic hydrocarbon oil. Three surfactants were used in the experiments; two commercial inhibitor base chemicals; an oleic imidazoline salt (OI) and a phosphate ester (PE), and cetyl trimethyl ammonium bromide (CTAB), a well characterized quaternary ammonium compound. Adsorption characteristics of the inhibitors on corroding iron and FeCO3 particles were also studied. Polarization resistance (PR) and electrochemical impedance spectroscopy (EIS) techniques were used to study the effect of the oil on the performance of the inhibitors. The performance testing was done on corroding carbon steel without any surface deposits and on carbon steel with either ferrous carbonate (FeCO3) or ferric corrosion products on the surface. The results showed that the addition of oil in the inhibitor tests had a significant, positive effect on the performance of the two commercial corrosion inhibitors; decrease in corrosion rate of about one order of magnitude compared to the rate without oil was found. Based on the EIS data it was concluded that the improved performance was caused by a modification of the inhibitor film and not the formation of a macroscopic oil film on the steel surface. Indications of oil wetting of the steel surface were only found when ferric corrosion products were present and OI was used as the inhibitor. No such effects were seen on bare steel or on FeCO3 covered surfaces. Contact angle measurements and dispersion tests were used to investigate the effect of the inhibitors on the wettability of the three types of surfaces when they were exposed to

  7. Steel Microstructure Effect on Mechanical Properties and Corrosion Behavior of High Strength Low Carbon Steel

    Science.gov (United States)

    Barraza-Fierro, Jesus Israel; Campillo-Illanes, Bernardo; Li, Ximing; Castaneda, Homero

    2014-08-01

    Different thermomechanical treatments were applied to a high strength low carbon steel with a novel chemical composition. As a result, three different microstructures were produced with dissimilar mechanical and corrosion properties. Subsequently, a tempering heat treatment was applied to redistribute the phases in the steel. Microstructure A with 56 pct martensite and 32 pct bainite presented high strength but medium ductility; microstructure C with 95 pct ferrite and 3 pct martensite/austenite resulted in low strength and high ductility, and finally microstructure B with 98 pct bainite and 2 pct martensite/austenite resulted in high strength and ductility. Alternatively the corrosion behavior obtained by polarization curves was characterized in 0.1 M H2SO4, 3 M H2SO4, 3.5 wt pct NaCl, and NS4 solutions resulting in similar magnitudes, while the corrosion behavior acquired by electrochemical impedance spectroscopy had slightly differences in 3 M H2SO4.

  8. THE ELECTROCHEMICAL BEHAVIOR OF OCEANIC MICROBIOLOGICAL INFLUENCED CORROSION ON CARBON STEEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The corrosion behavior of carbon steel in the medium of marine microorganisms was investigated by electrochemical impedance spectra, polarization curves, and so on. Experimental results showed that the corrosion potential of carbon steel moved in a negative direction in the unpurified marine microorganism solution, and the polarization style of the cathodic process did not change. The electrochemical impedance spectra showed that the impedance value of the electrode decreased in the medium with bacteria, which indicated that the existence of microorganism could accelerate the corrosion progress of carbon steel.

  9. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion.

    Science.gov (United States)

    Javed, M A; Neil, W C; Stoddart, P R; Wade, S A

    2016-01-01

    The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons. PMID:26785935

  10. Corrosion monitoring of carbon steel in the bentonite in deep underground

    International Nuclear Information System (INIS)

    In previous study, a corrosion sensor has been developed and its applicability to monitoring of the corrosion behavior of carbon steel overpack has been confirmed. In this study, a simulated overpack was placed with buffer material composed mainly of bentonite in test tunnel of 350 m deep underground constructed at Horonobe underground research laboratory. The corrosion monitoring was performed by AC impedance method using the corrosion sensors embeded in the buffer material. (author)

  11. Corrosion behaviour of carbon steel in buffer material under anaerobic condition

    International Nuclear Information System (INIS)

    The deep underground environment for geological disposal of HLW will be relatively oxidizing condition at the initial stage of repository, but it will be returned to reducing as the consumption of oxygen by the corrosion of overpack and the reactions with the minerals in buffer material. It is necessary to understand the corrosion behaviour of carbon steel under such reducing condition for the lifetime prediction of carbon steel overpack. In this study, immersion tests of carbon steel in buffer material were performed in nitrogen atmosphere in which oxygen gas concentration was controlled less than 1 ppm. The corrosion rates of carbon steel were measured by weight loss of the specimens and the corrosion products were analysed by SEM, XRD and EPMA. For investigating the influence of welding of overpack, welded samples by electron-beam welding (EBW) were used for some of the tests. Synthetic sea water (SSW) and aqueous solutions containing bicarbonate ion and chloride ion were chosen as simulated groundwater. According to the experimental results, corrosion products layer contained ferrous carbonate such as FeCO3 and Fe2(OH)2CO3. The average corrosion rates within 1 year were relatively high (4-18 μm/y), but the growths of corrosion after 1 year were decreased rapidly. The increase in average corrosion depths from 1 to 3 (or 4) years was only less than several micro-meters, and the realistic corrosion rates after 1 year were estimated to be less than 1 μm/y in many cases. There was no influence of welding on the corrosion rate of carbon steel up to 3 years of immersion period. The effects of the density of buffer material and the mixing ratio of sand in buffer material on the corrosion rate of carbon steel were also investigated in this study. (author)

  12. Effect of Rare Earths on Corrosion Resisting Properties of Carbon-Manganese Clean Steels

    Institute of Scientific and Technical Information of China (English)

    郭锋; 林勤; 孙学义

    2004-01-01

    Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current icorr, and characteristic potential of pitting Eb. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization.

  13. Corrosion of carbon steel, zinc and copper by air pollution in Chongqing

    Institute of Scientific and Technical Information of China (English)

    YE Di; ZHAO Da-wei; CHEN Gang-cai; ZHANG Dong-bao

    2007-01-01

    This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose-response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.

  14. Corrosion Behavior of Carbon Steels in CCTS Environment

    OpenAIRE

    Cabrini, M; S. Lorenzi; T. Pastore

    2016-01-01

    The paper reports the results of an experimental work on the effect of steel microstructures on morphology and protectiveness of the corrosion scale formed in water saturated by supercritical CO2. Two HSLA steels were tested. The microstructures were modified by means of different heat treatments. Weight loss was measured after exposure at CO2 partial pressure of 80 bar and 60°C temperature. The morphology of the scale was analyzed by means of scanning electron microscope (SEM) energy-dispers...

  15. Welded, sandblasted, stainless steel corrugated bars in non-carbonated and carbonated mortars: A 9-year corrosion study

    OpenAIRE

    Bautista, A.; Paredes, E. C.; Álvarez, S. M.; Velasco, F.

    2016-01-01

    Three different stainless steel corrugated grades (UNS S20430, S30403 and S32205) were similar welded to stainless steel bars with the same composition and dissimilar welded to carbon steel (CS). After cleaning the welding oxides by sandblasting, the reinforcements were embedded in mortar with chlorides and some of the samples were carbonated. Corrosion activity was monitored using corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS). After 8 years of exposure, the sam...

  16. Synergistic corrosion inhibition of environment-friendly inhibitors on the corrosion of carbon steel in soft water

    International Nuclear Information System (INIS)

    Highlights: • The composite demonstrated synergistic effects and exhibited mixed-type corrosion inhibition behaviour. • The composite showed remarkable corrosion inhibition property at a relatively low dosage. • The composite functioned more environmental-friendly compared to traditional inhibitors. • The composite have been adsorbed on the carbon steel surface as a protective film against corrosion attack. - Abstract: The synergistic effect of the combination of polyaspartic acid (PASP), polyepoxysuccinic acid (PESA), polyamino polyether methylenephosphonate (PAPEMP), sodium gluconate (Glu) and Zn2+ on carbon steel corrosion was investigated using weight loss and electrochemical measurements. The combination of PASP, PESA, PAPEMP, Glu and Zn2+ is an environment-friendly inhibitor and exhibited mixed-type inhibition behaviour. The composite efficiently inhibited corrosion on carbon steel at relatively low dosages in severely corrosive soft water media. Atomic force microscopy (AFM) images and X-ray photoelectron spectroscopic (XPS) spectra further confirmed the formation of a protective film composed of the adsorbed inhibitor molecules on the carbon steel surface against corrosion attack

  17. Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation

    International Nuclear Information System (INIS)

    The early stages of the evolution of atmospheric corrosion of carbon steels exposed in both a laboratory simulated and a natural atmosphere environment in Shenyang have been observed by in situ scanning electron microscopy. In the case of laboratory cyclic wet-dry tests, even though the chloride content level is very low, filiform corrosion is initiated in the early stage. The filiform corrosion grows in random directions, forming a network of ridges. White nodules nucleate and grow on the ridges during continued corrosion and eventually connect with each other to form the initial corrosion scale. Pits were also found on the surface beneath corrosion products. In the case of a natural atmospheric environment, both filiform corrosion and other localized corrosion, such as pitting and inter-granular attack take place in the initial stage. It is obvious that there is variety of localized corrosion in the initial stage of atmospheric corrosion

  18. Corrosion and Runoff Behavior of Carbon Steel in Simulated Acid Rain

    Institute of Scientific and Technical Information of China (English)

    Baigang AN; Xueyuan ZHANG; Enhou HAN; Honxi LI

    2004-01-01

    Under the condition of simulated rain precipitation in the laboratory, with ElS and SEM observation, the effects of pH value of simulated rain on corrosion and runoff behavior of carbon steel A3 were studied. The corrosion rate of A3 steel increased and runoff action of rain precipitation on A3 steel surface was intensified with decreasing pH value, of simulated rainwater.The runoff and corrosion traces were formed along the flowing direction of rainwater, which appeared more apparently with decreasing pH value.

  19. Control of microbiological corrosion on carbon steel with sodium hypochlorite and biopolymer.

    Science.gov (United States)

    Oliveira, Sara H; Lima, Maria Alice G A; França, Francisca P; Vieira, Magda R S; Silva, Pulkra; Urtiga Filho, Severino L

    2016-07-01

    In the present work, the interaction of a mixture of a biocide, sodium hypochlorite (NaClO), and a biopolymer, xanthan, with carbon steel coupons exposed to seawater in a turbulent flow regime was studied. The cell concentrations, corrosion rates, biomasses, and exopolysaccharides (EPSs) produced on the coupon surfaces with the various treatments were quantified. The corrosion products were evaluated using X-ray diffraction (XRD), and the surfaces of steels were analysed by scanning electron microscopy (SEM). The results indicated that xanthan and the hypochlorite-xanthan mixture reduced the corrosion rate of steel. PMID:26997238

  20. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  1. Enhancement of corrosion resistance of carbon steel by Dioscorea Hispida starch in NaCl

    Science.gov (United States)

    Zulhusni, M. D. M.; Othman, N. K.; Lazim, Azwan Mat

    2015-09-01

    Starch is a one of the most abundant natural product in the world and has the potential as corrosion inhibitor replacing harmful synthetic chemical based corrosion inhibitor. This research was aimed to examines the potential of starch extracted from local Malaysian wild yam (Dioscorea hispida), as corrosion inhibitor to carbon steel in NaCl media replicating sea water. By using gravimetric test and analysis, in which the carbon steel specimens were immersed in NaCl media for 24, 48 and 60 hours with the starch as corrosion inhibitor. the corrosion rate (mmpy) and inhibition efficiencies (%) was calculated. The results obtained showed decrease in corrosion rate as higher concentration of starch was employed. The inhibition efficiencies also shows an increasing manner up to 95.97 % as the concentration of the inhibitor increased.

  2. The effect of environmental variables on atmospheric corrosion of carbon steel in Shenyang

    Institute of Scientific and Technical Information of China (English)

    WANG Chuan; WANG ZhenYao; KE Wei

    2009-01-01

    A study was carried out in order to investigate the effect of contaminants and meteorological variables on the rust layer of carbon steel exposed in Shenyang urban atmosphere. Seven kinds of contaminants and twelve kinds of meteorological parameters were also registered in order to correlate the data with respect to corrosion rate and the stepwise multiple regression analysis was carried out in order to obtain the best regression model. The sum of rainfall time as well as sunshine time and the concentration of H_2S could stimulate initial atmospheric corrosion of carbon steel. The initial atmospheric corrosion kinetics of carbon steel was observed to follow the cubic equation. The corrosion products were analyzed by XRD and the transformation of phases in different periods was discussed.

  3. Corrosion of carbon steel in sodium methanoate solutions

    International Nuclear Information System (INIS)

    The behaviour of steel electrodes in sodium methanoate solutions was studied by coupling electrochemical techniques (voltammetry, OCP vs. time) with in situ micro-Raman spectroscopy analyses of the corrosion products. The polarisation curves depended strongly on the methanoate concentration. For the smallest concentration (10-3 mol L-1), the current density increased regularly with the applied potential. So the behaviour of the electrode was typical of an active material. In contrast, for the largest concentration (10-1 mol L-1), the curves obtained were typical of a passive material. Methanoate ions favoured growth and stability of a passive oxide film more likely by adsorbing on its surface. The polarisation curve obtained for the intermediate concentration (10-2 mol L-1) was unusual and testified of an imperfect passivation of the steel surface. Finally, steel electrodes were left at the open circuit potential in the methanoate solutions. In any case, the passivity was rapidly lost and a general corrosion of the surface took place. In situ Raman spectroscopy analyses at the early stage of the corrosion process demonstrated that the first product to form was a green rust, GR(HCOO-). It was oxidised later into γ-FeOOH (lepidocrocite) by dissolved O2. The process is then typical of what is usually observed in neutral or alkaline media, whatever the anions present and responsible of the GR formation. A new and detailed characterisation of GR(HCOO-) by X-ray diffraction was performed and a crystal structure is proposed.

  4. Carbide formation on carbon steels in CO2 corrosion by use of applied anodic current

    OpenAIRE

    Laethaisong, Nushjarin

    2011-01-01

    The present study aims to validate the method in enriching of iron carbide surface from carbon steels in CO2 corrosion. Applying an anodic current to carbon steel electrodes by galvanostatic measurement was a selected approach. Influence of magnitude of the applied current and exposure time on the corrosion process was studied. The experiments were conducted with CO2-saturated-0.5M NaCl solution as an electrolyte at room temperature and atmospheric pressure. Three different steels, X-65, St52...

  5. N-heterocyclic Amine Derivatives as Efficient Corrosion Inhibitors for Carbon Steel in Acidic Medium

    International Nuclear Information System (INIS)

    A novel heterocyclic amine derivatives, namely N, N'-substituted pyridinyl ethylene diamine tetra acetic acid sodium salt (A) and ethylene diamine N, N'-diacetic acid di (2-methylene tetra hydro furfuryl) acetate (B) were synthesized and their structure confirmations were performed by FTIR, HNMR and CNMR spectra. The inhibition effectiveness was evaluated against the corrosion of carbon steel in 1 M HCl by weight loss and polarization techniques. The results showed that the synthesized derivatives are good corrosion inhibitors for carbon steel in 1 M HCl medium, their inhibition efficiency, increased with inhibitor concentration, and (A) is slightly more effective than (B). The potentiostatic polarization study showed that (A) and (B) are mixed-type inhibitors in 1 M HCl. These compounds prevent carbon steel from corrosion by adsorption to the steel surface and forming insoluble complexes with ferrous species. The weight loss results and potentiostatic polarization studies were in reasonable agreement. (author)

  6. The influence of molybdenum on stress corrosion in Ultra Low Carbon Steels with copper addition

    Directory of Open Access Journals (Sweden)

    M. Mazur

    2010-07-01

    Full Text Available The influence of molybdenum content on the process of stress corrosion of ultra-low carbon structural steels with the addition of copper HSLA (High Strength Low Alloy was analyzed. The study was conducted for steels after heat treatment consisting of quenching andfollowing tempering at 600°C and it was obtained microstructure of the tempered martensite laths with copper precipitates and the phaseLaves Fe2Mo type. It was found strong influence of Laves phase precipitate on the grain boundaries of retained austenite on rate anddevelopment of stress corrosion processes. The lowest corrosion resistance was obtained for W3 steel characterized by high contents ofmolybdenum (2.94% Mo which should be connected with the intensity precipitate processes of Fe2Mo phase. For steels W1 and W2which contents molybdenum equals 1.02% and 1.88%, respectively were obtained similar courses of corrosive cracking.

  7. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Robert W.; Clift, W. Miles

    2010-11-01

    The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

  8. Image analysis of corrosion pit initiation on ASTM type A240 stainless steel and ASTM type A 1008 carbon steel

    Science.gov (United States)

    Nine, H. M. Zulker

    The adversity of metallic corrosion is of growing concern to industrial engineers and scientists. Corrosion attacks metal surface and causes structural as well as direct and indirect economic losses. Multiple corrosion monitoring tools are available although those are time-consuming and costly. Due to the availability of image capturing devices in today's world, image based corrosion control technique is a unique innovation. By setting up stainless steel SS 304 and low carbon steel QD 1008 panels in distilled water, half-saturated sodium chloride and saturated sodium chloride solutions and subsequent RGB image analysis in Matlab, in this research, a simple and cost-effective corrosion measurement tool has identified and investigated. Additionally, the open circuit potential and electrochemical impedance spectroscopy results have been compared with RGB analysis to gratify the corrosion. Additionally, to understand the importance of ambiguity in crisis communication, the communication process between Union Carbide and Indian Government regarding the Bhopal incident in 1984 was analyzed.

  9. Kinetics and structural studies of the atmospheric corrosion of carbon steels in Panama

    International Nuclear Information System (INIS)

    The corrosion of a carbon steel was studied in different atmospheres at sites in the Republic of Panama. The weight loss (corrosion penetration) suffered by the carbon steel is related to time by a bilogarithmic law. Moessbauer spectroscopy indicated the rust was composed of non-stoichiometric magnetite (Fe3-xO4), maghemite (γ-Fe2O3), goethite (α-FeOOH) of intermediate particle size, lepidocrocite (γ-FeOOH) and superparamagnetic particles. Magnetite formation is related to the alternating dry-wet cycles. Goethite is related to corrosion penetration by a saturation type of behavior, following a Langmuir type of relationship. Goethite in rust protects steel against further atmospheric corrosion

  10. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  11. Corrosion of carbon steel in sodium methanoate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Barchiche, C.; Sabot, R.; Jeannin, M. [Laboratoire d' etude des materiaux en milieux agressifs (LEMMA), EA 3167, Univ. La Rochelle, Bat. Marie Curie, Avenue Michel Crepeau, F-17042 La Rochelle cedex 01 (France); Refait, Ph., E-mail: prefait@univ-lr.f [Laboratoire d' etude des materiaux en milieux agressifs (LEMMA), EA 3167, Univ. La Rochelle, Bat. Marie Curie, Avenue Michel Crepeau, F-17042 La Rochelle cedex 01 (France)

    2010-02-15

    The behaviour of steel electrodes in sodium methanoate solutions was studied by coupling electrochemical techniques (voltammetry, OCP vs. time) with in situ micro-Raman spectroscopy analyses of the corrosion products. The polarisation curves depended strongly on the methanoate concentration. For the smallest concentration (10{sup -3} mol L{sup -1}), the current density increased regularly with the applied potential. So the behaviour of the electrode was typical of an active material. In contrast, for the largest concentration (10{sup -1} mol L{sup -1}), the curves obtained were typical of a passive material. Methanoate ions favoured growth and stability of a passive oxide film more likely by adsorbing on its surface. The polarisation curve obtained for the intermediate concentration (10{sup -2} mol L{sup -1}) was unusual and testified of an imperfect passivation of the steel surface. Finally, steel electrodes were left at the open circuit potential in the methanoate solutions. In any case, the passivity was rapidly lost and a general corrosion of the surface took place. In situ Raman spectroscopy analyses at the early stage of the corrosion process demonstrated that the first product to form was a green rust, GR(HCOO{sup -}). It was oxidised later into gamma-FeOOH (lepidocrocite) by dissolved O{sub 2}. The process is then typical of what is usually observed in neutral or alkaline media, whatever the anions present and responsible of the GR formation. A new and detailed characterisation of GR(HCOO{sup -}) by X-ray diffraction was performed and a crystal structure is proposed.

  12. Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, M. [Chemistry Department, Faculty of Science, Benha University, Benha (Egypt)]. E-mail: metwally552@hotmail.com; Helal, E.A. [Corrosion Department, Badr El-Din Petroleum company (Egypt); Fouda, A.S. [Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: asfouda@yahoo.com

    2006-07-15

    The effect of some aminopyrimidine derivatives on the corrosion of 1018 carbon steel in 0.05 M HNO{sub 3} solution was studied using weight loss and polarization techniques. The percentage inhibition efficiency was found to increase with increasing concentration of inhibitor and with decreasing temperature. The addition of KI to aminopyrimidine derivatives enhanced the inhibition efficiency due to synergistic effect. The inhibitors are adsorbed on the steel surface according to Temkin isotherm. Some thermodynamic functions were computed and discussed. It was found that the aminopyrimidine derivatives provide a good protection to steel against pitting corrosion in chloride containing solutions.

  13. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... FR 60078 (September 29, 2010) (Initiation). As a result of withdrawals of request for review, we are... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty order on corrosion- resistant carbon steel flat products...

  14. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Science.gov (United States)

    2012-04-23

    ... institution (77 FR 301, January 4, 2012) were adequate. A record of the Commissioners' votes, the Commission's... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping...

  15. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-12-14

    ... FR 54209 (August 31, 2011) (``Preliminary Results''). The final results were originally due no later... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea...

  16. Microbial corrosion of carbon steel by sulfate-reducing bacteria:

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo; Hilbert, Lisbeth Rischel

    1997-01-01

    Electrochemical measurements (EIS and DC-polarisation curves) have been conducted on carbon steel coupons exposed in SRB-active environments. Results from EIS measurements show that very large interfacial capacities are found in such systems, and consequently high capacitive currents are to be ex...

  17. HYDROTHERMALLY SELF-ADVANCING HYBRID COATINGS FOR MITIGATING CORROSION OF CARBON STEEL.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.

    2006-11-22

    Hydrothermally self-advancing hybrid coatings were prepared by blending two starting materials, water-borne styrene acrylic latex (SAL) as the matrix and calcium aluminate cement (CAC) as the hydraulic filler, and then their usefulness was evaluated as the room temperature curable anti-corrosion coatings for carbon steel in CO{sub 2}-laden geothermal environments at 250 C. The following two major factors supported the self-improving mechanisms of the coating during its exposure in an autoclave: First was the formation of a high temperature stable polymer structure of Ca-complexed carboxylate groups containing SAL (Ca-CCG-SAL) due to hydrothermal reactions between SAL and CAC; second was the growth with continuing exposure time of crystalline calcite and boehmite phases coexisting with Ca-CCG-SAL. These two factors promoted the conversion of the porous microstructure in the non-autoclaved coating into a densified one after 7 days exposure. The densified microstructure not only considerably reduced the conductivity of corrosive ionic electrolytes through the coatings' layers, but also contributed to the excellent adherence of the coating to underlying steel' s surface that, in turn, retarded the cathodic oxygen reduction reaction at the corrosion site of steel. Such characteristics including the minimum uptake of corrosive electrolytes by the coating and the retardation of the cathodic corrosion reaction played an important role in inhibiting the corrosion of carbon steel in geothermal environments.

  18. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: laboratory investigation.

    Science.gov (United States)

    Stipanicev, Marko; Turcu, Florin; Esnault, Loïc; Rosas, Omar; Basseguy, Régine; Sztyler, Magdalena; Beech, Iwona B

    2014-06-01

    Influence of sulfidogenic bacteria, from a North Sea seawater injection system, on the corrosion of S235JR carbon steel was studied in a flow bioreactor; operating anaerobically for 100days with either inoculated or filtrated seawater. Deposits formed on steel placed in reactors contained magnesium and calcium minerals plus iron sulfide. The dominant biofilm-forming organism was an anaerobic bacterium, genus Caminicella, known to produce hydrogen sulfide and carbon dioxide. Open Circuit Potentials (OCP) of steel in the reactors was, for nearly the entire test duration, in the range -800corrosion rate, expressed as 1/(Rp/Ω), was lower in the inoculated seawater though they varied significantly on both reactors. Initial and final corrosion rates were virtually identical, namely initial 1/(Rp/Ω)=2×10(-6)±5×10(-7) and final 1/(Rp/Ω)=1.1×10(-5)±2.5×10(-6). Measured data, including electrochemical noise transients and statistical parameters (0.0545), suggested pitting on steel samples within the inoculated environment. However, the actual degree of corrosion could neither be directly correlated with the electrochemical data and nor with the steel corrosion in the filtrated seawater environment. Further laboratory tests are thought to clarify the noticed apparent discrepancies.

  19. The anaerobic corrosion of carbon steel in alkaline media – Phase 2 results

    Directory of Open Access Journals (Sweden)

    Fennell P.A.H.

    2013-07-01

    Full Text Available In the Belgian Supercontainer concept a carbon steel overpack will surround high-level waste and spent fuel containers and be encased in a cementitious buffer material. A programme of research was carried out to investigate and measure the rate of anaerobic corrosion of carbon steel in an artificial alkaline porewater that simulates the aqueous phase in the cementitious buffer material. The corrosion rates were measured by monitoring hydrogen evolution using a manometric gas cell technique and by applying electrochemical methods. Phase 2 of the programme has repeated and extended previous Phase 1 measurements of the effects of radiation, temperature and chloride concentration of the anaerobic corrosion rate. This paper provides an update on the results from Phase 2 of the programme. The results confirm previous conclusions that the long-term corrosion rate of carbon steel in alkaline simulated porewater is determined by the formation of a thin barrier layer and a thicker outer layer composed of magnetite. Anaerobic corrosion of steel in cement requires an external supply of water.

  20. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Ashassi-Sorkhabi, H., E-mail: habib_ashassi@yahoo.com [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Moradi-Haghighi, M. [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Zarrini, G. [Microbiology laboratory, Biology Department, Science Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-02-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO{sub 2} deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: Black-Right-Pointing-Pointer A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. Black-Right-Pointing-Pointer This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. Black-Right-Pointing-Pointer In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  1. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO2 deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: ► A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. ► This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. ► In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  2. ELECTROCHEMICAL STUDIES ON THE CORROSION OF CARBON STEEL IN OXALIC ACID CLEANING SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B; John Mickalonis, J

    2007-10-08

    The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS has utilized oxalic acid to accomplish this task. Since the waste tanks are constructed of carbon steel, a significant amount of corrosion may occur. Although the total amount of corrosion may be insignificant for a short contact time, a significant amount of hydrogen may be generated due to the corrosion reaction. Linear polarization resistance and anodic/cathodic polarization tests were performed to investigate the corrosion behavior during the process. The effect of process variables such as temperature, agitation, aeration, sample orientation, light as well as surface finish on the corrosion behavior were evaluated. The results of the tests provided insight into the corrosion mechanism for the iron-oxalic acid system.

  3. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    International Nuclear Information System (INIS)

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible

  4. CO2 corrosion resistance of carbon steel in relation with microstructure changes

    International Nuclear Information System (INIS)

    The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO2 was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to characterize the formation of the corrosion product layers. Electrochemical results revealed that corrosion resistance increased in the following order: B < N < Q&T < A. From the polarization curves it was shown that specifically, cathodic current densities were affected by microstructural changes. SEM images indicated that ferrite dissolved earlier than cementite and a thin layer of corrosion products was deposited on the steel surface. XPS analyses revealed that this layer was composed of a mixture of iron carbonate and non-dissolved cementite. It was also found that the quantity of FeCO3 content on the steel surface was greater for Q&T and A microstructures. These results, in agreement with the electrochemical data, indicate that the deposition mechanism of iron carbonate is closely related to the morphology of the non-dissolved cementite, determining the protective properties of the corrosion product layers. - Highlights: • The effect of change in microstructure on CO2 corrosion resistance was evaluated. • An API 5LX 42 carbon steel was immersed in a 0.5 M NaCl solution saturated with CO2. • Banded, normalized, quenched-tempered and annealed microstructures were considered. • Electrochemical measurements were coupled with surface analysis. • Morphology and distribution of undissolved Fe3C control corrosion kinetics

  5. CO{sub 2} corrosion resistance of carbon steel in relation with microstructure changes

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Nathalie, E-mail: nochoa@usb.ve [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Vega, Carlos [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Pébère, Nadine; Lacaze, Jacques [Université de Toulouse, CIRIMAT, UPS/INPT/CNRS, ENSIACET, 4 Allée Emile Monso, CS 44362, 31030 Toulouse Cedex 4 (France); Brito, Joaquín L. [Laboratorio de Físico-química de Superficies, Centro de Química, Instituto Venezolano de Investigaciones Cientificas (IVIC), Carretera Panamericana, Km 11, Altos de Pipe, Estado Miranda (Venezuela, Bolivarian Republic of)

    2015-04-15

    The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO{sub 2} was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to characterize the formation of the corrosion product layers. Electrochemical results revealed that corrosion resistance increased in the following order: B < N < Q&T < A. From the polarization curves it was shown that specifically, cathodic current densities were affected by microstructural changes. SEM images indicated that ferrite dissolved earlier than cementite and a thin layer of corrosion products was deposited on the steel surface. XPS analyses revealed that this layer was composed of a mixture of iron carbonate and non-dissolved cementite. It was also found that the quantity of FeCO{sub 3} content on the steel surface was greater for Q&T and A microstructures. These results, in agreement with the electrochemical data, indicate that the deposition mechanism of iron carbonate is closely related to the morphology of the non-dissolved cementite, determining the protective properties of the corrosion product layers. - Highlights: • The effect of change in microstructure on CO{sub 2} corrosion resistance was evaluated. • An API 5LX 42 carbon steel was immersed in a 0.5 M NaCl solution saturated with CO{sub 2}. • Banded, normalized, quenched-tempered and annealed microstructures were considered. • Electrochemical measurements were coupled with surface analysis. • Morphology and distribution of undissolved Fe{sub 3}C control corrosion kinetics.

  6. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo;

    2007-01-01

    Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process...... of film formation in sulfide solutins was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data, resulting in unreliable corrosion rates measured using electrochemical techniques. The effect is strongly increased...... if the biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system...

  7. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo;

    2005-01-01

    Effects of film formation on carbon steel in hydrogen sulfide media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from hydrogen sulfide solutions, biological sulfide media and natural sulfide containing geothermal water have been collected and the process...... of film formation in sulfide solutions was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data resulting in unreliable corrosion rates measured by electrochemical techniques. The effect is strongly increased if biofilm...... in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system accelerates...

  8. Carbon steel corrosion in the low-pressure turbine exhaust environment

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Andrew G. [Xcel Energy, Golden, CO (United States)

    2010-11-15

    Corrosion of carbon steel on the steam side of condensers has long been observed by power plant operators, but the mechanism has not been well understood. Characteristics of the corrosion are areas of bare metal resulting from intergranular attack intermixed with black or red iron oxide, condensing high-purity steam with high local velocities, the lowest temperature in the steam cycle, and relative constancy over time in the macroscopic corrosion pattern. Effective mitigation would reduce iron transport into the steam cycle from the condenser, and might also reduce the likelihood of through-wall leaks in the cooling tubes of air-cooled condensers. (orig.)

  9. The effect of water vapor on the corrosion of carbon steel at 65 degree C

    International Nuclear Information System (INIS)

    AISI 1020 carbon steel was exposed to air at various relative humidities at 65 degrees C. A ''critical relative humidity'' (CRH) of 75--85% was determined. The CRH is the transitional relative humidity where oxidation/corrosion changes from dry oxidation to aqueous film electrochemical corrosion. Short term testing suggests that aqueous film electrochemical corrosion results in the formation of an inner oxide of Fe3O4, and an outer oxide of a powdery Fe2O3 and/or Fe2O3·xH2O

  10. Modeling of chemical transition of nitrate accompanied with corrosion of carbon steel under alkaline conditions

    International Nuclear Information System (INIS)

    Interaction between carbon steel and nitrate was modeled using the mixed potential concept. Carbon steel was selected as an example of metal components in the repository of radioactive wastes. The nitrate reduction accompanied with the corrosion of carbon steel was modeled as a reaction series of NO3- → NO2- → NH3. The sum of the current of the reaction series of NO3- → NO2- → NH3 and that of water reduction was assumed to be balanced with the oxidation current of carbon steel. The input parameters for this kinetic model were determined by electrochemical measurements and immersion tests. The results of the immersion tests can be interpreted by the analyses of the model. (author)

  11. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    International Nuclear Information System (INIS)

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H2SO4). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  12. Corrosion inhibition efficiency of linear alkyl benzene derivatives for carbon steel pipelines in 1M HCl

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available Linear alkyl benzene sulfonic acid (L and three of its ester derivatives (L1, L2, L3 were prepared, followed by quaternization of these esters (L1Q, L2Q, L3Q. The corrosion inhibition effect on carbon steel in 1 M HCl was studied using weight loss and potentiodynamic polarization measurements. The adsorption of the inhibitors on carbon steel surface obeyed the Langmuir’s adsorption isotherm. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy (ΔH∗, entropy (ΔS∗ of activation, adsorption–desorption equilibrium constant (Kads, standard free energy of adsorption (ΔGoads, heat (ΔHoads, and entropy of adsorption (ΔSoads were calculated to elaborate the corrosion inhibition mechanism.

  13. Green corrosion inhibitors for carbon steel by green leafy vegetables extracts in 1 M HCl

    Directory of Open Access Journals (Sweden)

    Ghadah M. Al-Senani

    2015-12-01

    Full Text Available The effect of some Green Leafy Vegetables (GLV extracts namely Lactuca sativa (Lactuca, Eruca Sativa (Arugula, Petroselinum crispum (Parsley, and Anethum Graveolens (Dill were investigated on inhibition of corrosion carbon steel in 1 M HCl solution using gravimetric (weight loss method. The inhibition efficiency has increased as concentration of the extract increased. The inhibition efficiency has decreased as the temperature increased. The results obtained showed that GLV extracts inhibited the corrosion process by a physical adsorption mechanism that followed the Langmuir, Freundlich, and Temkin adsorption isotherm models. The adsorption thermodynamic parameters that were calculated include, free energy of adsorption (∆G°ads, activation energy (Ea, enthalpy of adsorption (ΔH°ads, and entropy of adsorption (ΔS°ads are proposed for the corrosion of carbon steel in 1 M HCl in the absence and presence of GLV extract.

  14. Corrosion of Carbon Steel Pipeline in Flow System of waterSweetening Plant

    Directory of Open Access Journals (Sweden)

    Mr. Fadhil S. Kadhim

    2008-01-01

    Full Text Available The electrochemical behavior of carbon steel in water sweetening station in Libya has been studied in the range of ( 293–333 oC using weight loss technique. Measurements were carried out over a range of Reynolds number (5000 – 25000.An apparatus was designed for studying the corrosion process in the turbulent regime, which is of industrial significance. It was found that The corrosion rate of carbon steel in water sweetening station is under diffusion control and increases with increasing Reynolds number. On the other hand the variation of corrosion rate with temperature in the range of (293–333 oC was found to follow Arrhenius equation and the activation energy approximately the same except at low Reynolds number.

  15. The effect of temperature on carbon steel corrosion under geological conditions

    International Nuclear Information System (INIS)

    Graphical abstract: The carbon steel corrosion under simulated geological conditions has been investigated and the results show the formation of iron sulphide on steel surface due to microbial corrosion at 30 °C and to the reduction by hydrogen of pyrite originating from claystone into iron monosulphide and hydrogen sulphide at 90 °C. - Highlights: • The role of temperature and microbial activity on steel corrosion was investigated. • At 30 °C, steel developed iron sulphide surface due to microbial activity. • At 90 °C, the microbial activity was inhibited. • At 90 °C, H2S was produced via pyrite reduction by H2. • Sulphide production may occur at high temperature. - Abstract: We investigated the role of temperature on the carbon steel corrosion under simulated geological conditions. To simulate the effect of temperature increase due to radioactive decay, we conducted batch experiments using Callovo-Oxfordian (COx) claystone and synthetic water formation with steel coupons at 30 °C and 90 °C for 6 months. The corrosion products have been studied by scanning electron microscope/energy dispersive X-ray spectroscopy, X-ray diffraction and micro-Raman spectroscopy. At 30 °C, experiments showed the formation of magnetite and iron sulphide, indicating the activation of sulphate-reducing bacteria. At 90 °C a continuous iron sulphide layer was identified on steel surface due to the reduction by hydrogen of pyrite originating from claystone into pyrrhotite and hydrogen sulphide. Thus, sulphide production may occur even in the absence of microbial activity at high temperature and must be taken into consideration regarding the near-field geochemical evolution

  16. Microstructure, mechanical properties and corrosion behavior of laser welded dissimilar joints between ferritic stainless steel and carbon steel

    International Nuclear Information System (INIS)

    Highlights: • Laser welding of ferritic stainless steel to carbon steel joints was made. • The microstructure of this dissimilar joint is lath martensite and ferrite. • Decarburized layer and type II grain boundary was observed in joints. • The hardness distribution of two heat input joints across interface were analyzed. • Ecorr of dissimilar joint is between two base metals and joint has greatest icorr. - Abstract: The joint of dissimilar metals between ferritic stainless steel (FSS) and low carbon steel (CS) are welded by laser beam with two different welding speeds: 12 mm/s and 24 mm/s. Microstructure of dissimilar joint were investigated using optical microscope, X-ray diffraction and scanning electron microscope. The results show that the microstructure of this dissimilar joint is lath martensite and few ferrite, upper bainite and widmanstatten ferrite formed in heat-affected zone (HAZ) of CS. An increase of welding speed leads to narrower HAZ of CS and higher hardness of weld bead close to FSS side. The joints with different welding speed have similar ultimate tensile strength but superior elongation is obtained of high welding speed joint. Electrochemical corrosion test indicates the corrosion potential of dissimilar joint falls in between FSS and CS. And dissimilar joint has greatest corrosion current density which is attributed to the effect of galvanic corrosion

  17. Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution

    International Nuclear Information System (INIS)

    Highlights: → N-Alkyl-sodium phthalamates as corrosion inhibitors for industry in acidic medium. → Compounds behaved as mixed type inhibitors and followed Langmuir adsorption isotherm. → Efficiencies were proportional to aliphatic chain length and inhibitor concentration. → Iron complexes and chelates with phthalamates contributed to carbon steel protection. - Abstract: Three compounds of N-alkyl-sodium phthalamates were synthesized and tested as corrosion inhibitors for carbon steel in 0.5 M aqueous hydrochloric acid. Tests showed that inhibitor efficiencies were related to aliphatic chain length and dependent on concentration. N-1-n-tetradecyl-sodium phthalamate displayed moderate efficiency against uniform corrosion, 42-86% at 25 deg. C and 25-60% at 40 oC. Tests indicated that compounds behave as mixed type inhibitors where molecular adsorption on steel followed Langmuir isotherm, whereas thermodynamic suggested that a physisorption process occurred. XPS analysis confirmed film formation on surface, where Fe+2 complexes and Fe+2 chelates with phthalamates prevented steel from further corrosion.

  18. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  19. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  20. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Science.gov (United States)

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  1. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Science.gov (United States)

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  2. The kinetics of pitting corrosion of carbon steel

    International Nuclear Information System (INIS)

    The development of an improved statistical method for analysing pit growth data to take account of the difference in area of laboratory specimens and full sized high level nuclear waste containers is described. Statistical analysis of data from pit growth experiments with large area (460 cm2) plates of BS 4360 steel have indicated that the depth distributions correlate most closely with a limited distribution function. This correlation implies that previous statistical analyses to estimate the maximum pit depths in full size containers, which were made using unlimited distribution functions, will be pessimistic. An evaluation of the maximum feasible pitting period based on estimating the period during which the oxygen diffusion flux is sufficient to stabilise a passive film on carbon steel containers has indicated that this is of the order of 125 years rather than the full 1000 year container life. The estimate is sensitive to the value of the leakage current assumed to flow through the passive film, and therefore work is planned to measure this accurately in relevant granitic environments. (author)

  3. Electrochemical Impedance and Modelling Studies of the Corrosion of Three Commercial Stainless Steels in Molten Carbonate

    Directory of Open Access Journals (Sweden)

    C. S. Ni

    2014-01-01

    Full Text Available The corrosion induced by molten carbonates on the metallic structure materials is a problem constraining the life span of molten carbonate fuel cell (MCFC at elevated temperatures. The reaction between the outgrowing oxide scale and lithium carbonate in the electrolyte is generally a slow process and very important to the passivation behaviour of the underlying steel. The corrosion behaviour of three commercial alloys (P92, SS304, and SS310 with different Cr contents in molten (0.62Li, 0.38K2CO3 at 650°C was monitored by electrochemical impedance spectroscopy (EIS for 120 hours to investigate the lithiation process. With SEM images and extensive XRD analysis of the oxides, equivalent circuits were proposed to interpret the impedance data and explain the corrosion behaviour of the three alloys at different stage with respect to lithiation process.

  4. Corrosion rate evaluation of the carbon steel trough electrochemical techniques

    OpenAIRE

    Jeimmy González-Masís; Luis Garita-Arce

    2014-01-01

    Usually the atmospheric corrosion studies are cha­racterized by their long duration, months and even years. However electrochemical techniques have been developed, recent in comparison to other methods, allowing obtain real-time data, including corrosion rate. In this research electrochemical noise and lineal polarization resistance tests are valued, so obtained data were analyzed, relations were establis­hed between the graphics form and the corrosion type, as well as the relationship betwee...

  5. Inhibition effect of phosphorus-based chemicals on corrosion of carbon steel in secondary-treated municipal wastewater.

    Science.gov (United States)

    Shen, Zhanhui; Ren, Hongqiang; Xu, Ke; Geng, Jinju; Ding, Lili

    2013-01-01

    Secondary-treated municipal wastewater (MWW) could supply a viable alternative water resource for cooling water systems. Inorganic salts in the concentrated cooling water pose a great challenge to corrosion control chemicals. In this study, the inhibition effect of 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP), trimethylene phosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on corrosion of carbon steel in secondary-treated MWW was investigated by the means of potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibition effect increased with increasing concentration of inhibitors. The corrosion rates of carbon steel were 1.5, 0.8, 0.2 and 0.5 mm a(-1) for blank, HEDP, ATMP and PBTCA samples at 50 mg L(-1), respectively. The phosphorus-based chemicals could adsorb onto the surface of the carbon steel electrode, form a coat of protective film and then protect the carbon steel from corrosion in the test solution.

  6. Inhibition of carbon steel corrosion in 1 M HCl medium by potassium thiocyanate

    Directory of Open Access Journals (Sweden)

    A. Anejjar

    2014-04-01

    Full Text Available The effect of potassium thiocyanate (KSCN on the corrosion of carbon steel (C-steel in 1 M HCl has been investigated in relation to the concentration of the inhibitor by polarization curves, electrochemical impedance spectroscopy and weight loss measurement. The results obtained revealed that this compound is a good mixed type inhibitor with predominant cathodic effectiveness. The effect of temperature on the corrosion behavior with the addition of optimal concentration of KSCN was studied in the temperature range 298–328 K. The value of inhibition efficiency decreases slightly with the increase in temperature. Changes in impedance parameters (charge transfer resistance, Rct, and double layer capacitance, Cdl were indicative of adsorption of KSCN on the metal surface, leading to the formation of a protective film. Adsorption of KSCN on the C-steel surface was found to obey the Langmuir adsorption isotherm. Some thermodynamic functions of dissolution and adsorption processes were also determined and discussed.

  7. Corrosion Inhibition of the Galvanic Couple Copper-Carbon Steel in Reverse Osmosis Water

    Directory of Open Access Journals (Sweden)

    Irene Carrillo

    2011-01-01

    Full Text Available The purpose of this paper is to evaluate the electrochemical behaviour of corrosion inhibition of the copper-carbon steel galvanic couple (Cu-CS, exposed to reverse osmosis water (RO used for rinsing of heat exchangers for heavy duty machinery, during manufacture. Molybdate and nitrite salts were utilized to evaluate the inhibition behaviour under galvanic couple conditions. Cu-CS couple was used as working electrodes to measure open circuit potential (OCP, potentiodynamic polarization (PP, and electrochemical impedance spectroscopy (EIS. The surface conditions were characterized by scanning electron microscopy (SEM and electron dispersive X-ray spectroscopy (EDS. The most effective concentration ratio between molybdate and nitrite corrosion inhibitors was determined. The morphological study indicated molybdate deposition on the anodic sites of the galvanic couple. The design of molybdate-based corrosion inhibitor developed in the present work should be applied to control galvanic corrosion of the Cu-CS couple during cleaning in the manufacture of heat exchangers.

  8. 77 FR 301 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year...

    Science.gov (United States)

    2012-01-04

    ... corrosion-resistant carbon steel flat products from Germany and Korea (72 FR 7009). The Commission is now... part 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this request...-resistant carbon steel flat products from Korea (58 FR 43752). On August 19, 1993, Commerce...

  9. [Effect of the biofilm biopolymers on the microbial corrosion rate of the low-carbon steel].

    Science.gov (United States)

    Borets'ka, M O; Kozlova, I P

    2007-01-01

    The relationship between exopolymer's specific production, relative carbohydrate and protein content in the biofilm exopolymers of the pure and mixed Thiobacillus thioparus and Stenotrophomonas maltophilia cultures and their corrosion activity was studied. Change of growth model of investigated cultures from plankton to biofilm led to an increase of specific exopolymer's production. In the biofilm formed by T. thioparus and S. maltophilia biofilm on the low-carbon steel surface one could observe an increase of relative protein content in the exopolymer complex in comparison with those in the pure culture. The development of such biofilms stimulatied the 7-fold corrosion activity. PMID:17977451

  10. Corrugated stainless steels embedded in carbonated mortars with and without chlorides: 9-year corrosion results

    OpenAIRE

    Bautista, A.; Álvarez, S. M.; Paredes, E. C.; Velasco, F.; Guzmán, S.

    2015-01-01

    The corrosion behavior of 5 corrugated stainless steel bars was evaluated in carbonated mortars: UNS S20430, S30400, S31603, S31635 and S32205. The tests were carried out under 3 different exposure conditions: at high relative humidity (C-HRH); partially immersed in 3.5% NaCl (C-PD; and with CaCl2 added during mortar mixing and exposed to high relative humidity (C-HRHCl). Corrosion potential (Ecorr) measurements and electrochemical impedance spectroscopy (EIS) were used to monitor the behavio...

  11. Study on the Corrosion Inhibition Characteristics of Carbon Steel by Sodium Phosphate and Sodium Nitrite

    International Nuclear Information System (INIS)

    Sodium nitrite is widely used as one of the popular corrosion inhibitors for the protection of ferrous metal in closed cooling water system, such as a diesel engine and a chiller. The optimum treatment conditions are studied through laboratory tests using linear polarization resistance (LPR) technique. Corrosion rate of the carbon steel electrode could be maintained less than 2.5x10-3 mmpy in the test condition of 500 ppm as NO2-, 200 ppm as CT, 70 .deg. C and pH 6.8. The pH control is confirmed not to be an important factor in the protection of carbon steel by sodium nitrite inhibitor. The addition of tolyltriazole was needed for the protection of the copper alloy in the sodium nitrite treatment system

  12. Localized Corrosion of Zn-Plated Carbon Steel Used as a Fire Sprinkler Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hee [SK Engineering and Construction Corp., Seoul (Korea, Republic of); Lee, You Kee [Ui duk University, Gyeongju (Korea, Republic of); Lee, Kyu Hwan [Korea Institute of Materials Science, Changwon (Korea, Republic of); Kim, Dong Kyu; Lee, Sung Gun; Lee, Sang Hwa; Kim, In Soo [Dong-A University, Busan (Korea, Republic of)

    2009-08-15

    The failure of a Zn-plated carbon steel pipe that served as a fire sprinkler was investigated in terms of the pope's corrosion products. The pipes leaked through holes formed beneath the tubercles. The formation of oxygen concentration cell involves colonization of metal surface by aerobic bacteria or other slime formers, and anodic reaction beneath tubercle is accelerated by the presence of SRB, leading to the formation of hole beneath tubercle.

  13. CO2 corrosion resistance of carbon steel in relation with microstructure changes

    OpenAIRE

    Ochoa, Nathalie; Vega, Carlos; Pébère, Nadine; Lacaze, Jacques; Joaquín L. Brito

    2015-01-01

    International audience The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO2 was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to ...

  14. Green corrosion inhibitors for carbon steel by green leafy vegetables extracts in 1 M HCl

    OpenAIRE

    Ghadah M. Al-Senani; Sameerah I. Al-Saeedi; Rasmiah Almufarij

    2015-01-01

    The effect of some Green Leafy Vegetables (GLV) extracts namely Lactuca sativa (Lactuca), Eruca Sativa (Arugula), Petroselinum crispum (Parsley), and Anethum Graveolens (Dill) were investigated on inhibition of corrosion carbon steel in 1 M HCl solution using gravimetric (weight loss) method. The inhibition efficiency has increased as concentration of the extract increased. The inhibition efficiency has decreased as the temperature increased. The results obtained showed that GLV extracts inh...

  15. Mechanism of Pitting Corrosion Prevention by Nitrite in Carbon Steel Exposed to Dilute Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Philip E. Zapp; John W. Van Zee

    2002-02-01

    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during waste removal for permanent disposition and waste tank closure to ensure that the tanks are maintained safely. The results of the research provide the insight necessary to develop solutions that prevent further degradation.

  16. MECHANIZM OF ANODE DISSOLVING OF CORROSION-RESISTING AND STRUCTURAL CARBON STEELS UNDER ELECTROPULSE POLISHING

    Directory of Open Access Journals (Sweden)

    I. Yunkovsky

    2013-01-01

    Full Text Available In this article were suggested the schemes of anode processes, taking into account the nature of metals, anion structure, pH solution of electrolyte and anode potential by electropulse polishing of corrosion- resisting and structural carbon steels.It is shown and experimentally confirmed, that under conditions of electropulse polishing of anode dissolving of metals, which are contained into corrosion-resisting and structural carbon steels, carried out according to mechanism of complex formation through a set of series and series-parallel of intermediate stages. In the 1st stage on the surface of metals adsorption complexes with participation of chemisorption molecules of water are formed. In the next stages anions of electrolyte’s solution and molecules of water take part. In final stage of dissolving on the surface of anode soluble compounds are formed, which by transition into solution into simple ions are dissociated. It is determined that by electrical-impulse polishing in dissolving of components of corrosion-resisting carbon steels the important role play chemical processes, and anode dissolving of metals take place in the field of mixed electrochemical and diffusion kinetics . Diffusion limitations appear as a result of difficult ion mass transfer through surface salt, oxide and hydro-oxide and absorption-phase coatings.

  17. Seed Extract of Psidium guajava as Ecofriendly Corrosion Inhibitor for Carbon Steel in Hydrochloric Acid Medium

    Institute of Scientific and Technical Information of China (English)

    K.P.Vinod Kumar; M. Sankara Narayana Pillai; G. Rexin Thusnavis

    2011-01-01

    The anticorrosion characteristics of the seeds of Psidium guajava (P. Guajava) fruits on carbon steel in acid medium were examined with weight loss data and subsequently thermodynamic factors such as heat of adsorption of the inhibitor on the metal surface (Q), change in entropy (△S), change in free energy of the reaction (△G), corrosion rate (CR) and energy of activation for corrosion reaction of carbon steel (E) were also evaluated. Adsorption isotherm was plotted to study the adsorption of the inhibitor on the metal surface with increasing concentration of the inhibitor. The functional groups responsible for inhibition were investigated using Fourier transform infrared (FT-IR) spectra. Electrochemical parameters were evaluated through the potentiodynamic Tafel polarization and impedance spectral studies. Scanning electron microscopy (SEM) micrographs were recorded to investigate the change in surface morphology. The complete study reveals the efficiency of seed extract of P. Guajava as a safe, ecofriendly and alternate corrosion inhibitor for carbon steel in acid medium.

  18. The influence of molybdenum on stress corrosion in Ultra Low Carbon Steels with copper addition

    OpenAIRE

    Mazur, M.; R. Bogucki; Pytel, S.

    2010-01-01

    The influence of molybdenum content on the process of stress corrosion of ultra-low carbon structural steels with the addition of copper HSLA (High Strength Low Alloy) was analyzed. The study was conducted for steels after heat treatment consisting of quenching andfollowing tempering at 600°C and it was obtained microstructure of the tempered martensite laths with copper precipitates and the phaseLaves Fe2Mo type. It was found strong influence of Laves phase precipitate on the grain boundarie...

  19. The corrosion of carbon steel in aqueous lithium hydroxide under a hydrogen blanket

    International Nuclear Information System (INIS)

    The corrosion behavior of carbon steel in 3 and 5 mol/L aqueous solutions of lithium hydroxide at 95 degrees C under a hydrogen atmosphere was investigated in immersion tests lasting ten days. Corrosion rates were determined by wight loss, and the corrosion products were characterized by bulk chemical analysis, by light and electron microscopy, and by powder X-ray diffraction. Corrosion was uniform and the corrosion rates were moderately high (0.42 mm/y in 3 mol/L and 0.56 mm/y in 5 mol/L). The corrosion products consisted of a mixture of well-formed, octahedral crystals, and poorly crystallized masses and spherules that formed by precipitation from solution. These products formed a scale on the metal surface that continually sloughed off and afforded only minor protection. Both phases were identified as lithium-iron oxides, each possessing a disordered, non-stoichiometric structure. The predominant phase was a magnetic spinel LiFe508 and the minor phase was LiFe02. A corrosion mechanism is outlined. (2 figs., 5 tabs., 20 refs.)

  20. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    Directory of Open Access Journals (Sweden)

    Christopher Neil Lyles

    2014-04-01

    Full Text Available The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11 or a methanogen (M. hungatei. The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  1. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.

    Science.gov (United States)

    Lyles, Christopher N; Le, Huynh M; Beasley, William Howard; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  2. Corrosion rate evaluation of the carbon steel trough electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Jeimmy González-Masís

    2014-02-01

    Full Text Available Usually the atmospheric corrosion studies are cha­racterized by their long duration, months and even years. However electrochemical techniques have been developed, recent in comparison to other methods, allowing obtain real-time data, including corrosion rate. In this research electrochemical noise and lineal polarization resistance tests are valued, so obtained data were analyzed, relations were establis­hed between the graphics form and the corrosion type, as well as the relationship between the corro­sion data and atmospheric conditions, to find, finally, there is a more consistent behavior when the lineal polarization resistance test is used with the three comb-type electrodes electrochemical monitor.

  3. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.

    Science.gov (United States)

    Cote, Claudia; Rosas, Omar; Sztyler, Magdalena; Doma, Jemimah; Beech, Iwona; Basseguy, Régine

    2014-06-01

    Present in all environments, microorganisms develop biofilms adjacent to the metallic structures creating corrosion conditions which may cause production failures that are of great economic impact to the industry. The most common practice in the oil and gas industry to annihilate these biofilms is the mechanical cleaning known as "pigging". In the present work, microorganisms from the "pigging" operation debris are tested biologically and electrochemically to analyse their effect on the corrosion of carbon steel. Results in the presence of bacteria display the formation of black corrosion products allegedly FeS and a sudden increase (more than 400mV) of the corrosion potential of electrode immersed in artificial seawater or in field water (produced water mixed with aquifer seawater). Impedance tests provided information about the mechanisms of the interface carbon steel/bacteria depending on the medium used: mass transfer limitation in artificial seawater was observed whereas that in field water was only charge transfer phenomenon. Denaturing Gradient Gel Electrophoresis (DGGE) results proved that bacterial diversity decreased when cultivating the debris in the media used and suggested that the bacteria involved in the whole set of results are mainly sulphate reducing bacteria (SRB) and some other bacteria that make part of the taxonomic order Clostridiales. PMID:24355513

  4. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  5. Surface analysis study of gamma-radiation-induced carbon steel corrosion

    International Nuclear Information System (INIS)

    The corrosion rate of a metal depends on the nature of the surface oxide and its redox environment. Ionizing radiation can significantly alter the redox environment in water. We have investigated the impact of γ-radiation on the kinetics of carbon steel corrosion by characterizing the oxide films formed on carbon steel as a function of pH, cover gas, temperature, and irradiation time, using a range of surface analysis techniques. Results show that continuous irradiation enhances surface oxide formation with the type of oxide depending on the solution pH. For tests at 150oC and a [OH-] equivalent to that for pH25°C = 10.6, the surface oxide on carbon steel after γ-irradiation was non-porous and uniform; no localized corrosion was observed. However, this oxide appears to be susceptible to brittle fracture during cooling. Raman spectroscopy of the surface film shows that it is a mixed phase of Fe3O4 and γ-Fe2O3. In contrast, for tests at 150oC with [OH-] equivalent to neutral pH25°C, metal dissolution is significant and the surface oxide film is very porous. While Raman spectra show an oxide mostly composed of a similar mixed phase of Fe3O4 and γ-Fe2O3, SEM micrographs provide an image of the porous nature of the oxide grown at neutral pH25°C. At both pHs, α-Fe2O3 phase oxide, the most thermodynamically stable oxide under oxidizing conditions, has not been observed. The combination of this study and previously reported electrochemical studies provide a clearer understanding of the temperature dependence of oxide film formation/conversion processes on carbon steel, and allows us to distinguish radiation effects from those of temperature. (author)

  6. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    Science.gov (United States)

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. PMID:27474635

  7. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples

    OpenAIRE

    Gerrit eVoordouw; Priyesh eMenon; Tijan ePinnock; Mohita eSharma; Yin eShen; Amanda eVenturelli; Johanna eVoordouw; Aoife eSexton

    2016-01-01

    Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs ba...

  8. A Study on the Effect of Electrolyte Thickness on Atmospheric Corrosion of Carbon Steel

    International Nuclear Information System (INIS)

    Effect of electrolyte layer thickness and increase in concentration of electrolyte during electrolyte thining on the atmospheric corrosion of carbon steel were investigated using EIS and cathodic polarization technique. The electrolyte layer thickness was controlled via two methods : one is mechanical method with microsyringe applying a different amount of electrolyte onto the metal surface to give different electrolyte thickness with the same electrolyte concentration. The other is drying method in which water layer thickness decreases through drying, causing increase in concentration of electrolyte during electrolyte thinning. In the region whose corrosion rate is controlled by cathodic reaction, corrosion rate for mechanical method is larger than that for drying method. However, for the electrolyte layers thinner than 20 ∼ 30 m, increase in concentration of electrolyte cause a higher corrosion rate for the case of the mechanical method compared with that of drying method. For a carbon steel covered with 0.1M Na2SO4, maximum corrosion rate is found at an electrolyte thickness of 45 ∼ 55 μm for mechanical method. However, maximum corrosion rate is found at an electrolyte thickness of 20 ∼ 35 μm for drying method. The limiting current is inversely proportional to electrolyte thickness for electrolyte thicker than 20 ∼ 30 μm. However, further decrease of the electrolyte thickness leads to an electrolyte thickness-independent limiting current reagion, where the oxygen rate is controlled by the solvation of oxygen at the electrolyte/gas interface. Diffusion limiting current for drying method is smaller compared with that for mechanica control. This can be attributed to decreasing in O2 solubility caused by increase in concentration of electrolyte during electrolyte thining

  9. Protection of carbon steel against hot corrosion using thermal spray Si- and Cr-base coatings

    Science.gov (United States)

    Porcayo-Calderon, J.; Gonzalez-Rodriguez, J. G.; Martinez, L.

    1998-02-01

    A Fe75Si thermal spray coating was applied on the surface of a plain carbon steel baffle plate. Beneath this coating, a Ni20Cr coating was applied to give better adherence to the silicon coating. The baffle was installed in the high-temperature, fireside, corrosion zone of a steam generator. At the same time, an uncoated 304 stainless steel baffle was installed nearby for comparison. For 13 months the boiler burned heavy fuel oil with high contents of vanadium. The samples were studied employing scanning electron microscopy, x-ray microanalysis, and x-ray diffraction techniques. After that, it was possible to inspect the structural state of the components, and it was found that the stainless steel baffle plates were destroyed almost completely by corrosion, whereas the carbon steel coated baffle plate did not suffer a significant attack, showing that the performance of the thermal spray coating was outstanding and that the coating was not attacked by vanadium salts of the molten slag.

  10. Theoretical study of inhibition efficiencies of some amino acids on corrosion of carbon steel in acidic media: green corrosion inhibitors.

    Science.gov (United States)

    Dehdab, Maryam; Shahraki, Mehdi; Habibi-Khorassani, Sayyed Mostafa

    2016-01-01

    Inhibition efficiencies of three amino acids [tryptophan (B), tyrosine (c), and serine (A)] have been studied as green corrosion inhibitors on corrosion of carbon steel using density functional theory (DFT) method in gas and aqueous phases. Quantum chemical parameters such as EH OMO (highest occupied molecular orbital energy), E LUMO (lowest unoccupied molecular orbital energy), hardness (η), polarizability ([Formula: see text]), total negative charges on atoms (TNC), molecular volume (MV) and total energy (TE) have been calculated at the B3LYP level of theory with 6-311++G** basis set. Consistent with experimental data, theoretical results showed that the order of inhibition efficiency is tryptophan (B) > tyrosine (C) > serine (A). In order to determine the possible sites of nucleophilic and electrophilic attacks, local reactivity has been evaluated through Fukui indices.

  11. Theoretical study of inhibition efficiencies of some amino acids on corrosion of carbon steel in acidic media: green corrosion inhibitors.

    Science.gov (United States)

    Dehdab, Maryam; Shahraki, Mehdi; Habibi-Khorassani, Sayyed Mostafa

    2016-01-01

    Inhibition efficiencies of three amino acids [tryptophan (B), tyrosine (c), and serine (A)] have been studied as green corrosion inhibitors on corrosion of carbon steel using density functional theory (DFT) method in gas and aqueous phases. Quantum chemical parameters such as EH OMO (highest occupied molecular orbital energy), E LUMO (lowest unoccupied molecular orbital energy), hardness (η), polarizability ([Formula: see text]), total negative charges on atoms (TNC), molecular volume (MV) and total energy (TE) have been calculated at the B3LYP level of theory with 6-311++G** basis set. Consistent with experimental data, theoretical results showed that the order of inhibition efficiency is tryptophan (B) > tyrosine (C) > serine (A). In order to determine the possible sites of nucleophilic and electrophilic attacks, local reactivity has been evaluated through Fukui indices. PMID:26347374

  12. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm2 for parent plate without a weld, 400 N/mm2 for specimens with welds on one side only and 600 N/mm2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  13. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    OpenAIRE

    2014-01-01

    Various cases of accidents involving microbiology influenced corrosion (MIC) were reported by the oil and gas industry. Sulfate reducing bacteria (SRB) have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were i...

  14. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  15. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-10

    ...: Certain Steel Products From Korea, 58 FR 43752 (August 17, 1993) (Order). \\3\\ See the ``Decision... from Germany and the Republic of Korea: Revocation of Antidumping and Countervailing Duty Orders, 78 FR... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of...

  16. Microbiologically influenced corrosion of carbon steel from secondary circuit of nuclear power plant

    International Nuclear Information System (INIS)

    Microbiologically influenced corrosion (MIC) is the initiation or acceleration of the corrosion due to the interaction between the microbial activity and the corrosion processes. During 1980s , the electric power industry, particularly the nuclear industry , has devoted increased attention to MIC that affect reliability, operating and maintenance costs of plant systems. The economic impact of failures in such systems in large nuclear units can be extremely costly, about USD 1,000,000 per day. Costs for chemicals and delivery systems for water treatments to prevent MIC and biofouling can approach about USD 1,000,000 per year. Several plants have been forced to undertake replacement or to make extensive repairs of their service water system at a cost of about USD 30,000,000 per plant. Nuclear power plant can exhibit MIC as a result of their basic design philosophy. The large number of stand-by and redundant systems in nuclear plant design establishes stagnant or intermittent flow conditions, a situation in which a number of systems, some of which are safety-related, will be susceptible to MIC. The large size of nuclear generating facilities and the often prolonged licensing process has resulted in an extended construction phase, often with structural materials in contact with stagnant, untreated water used for hydrostat testing. This also produces a condition amenable to microbial growth. Carbon steels may experience random pitting, general corrosion, or severe degradation in flow as a result of MIC. Tubercles (comprising corrosion products, microbes, sticky exopolymer associated with both living and dead cells, and debris) often form on carbon steel pipes and other components. The tubercles create a hydraulic resistance to cooling water flow as well as sites for additional microbial activity. Tubercles can grow together, eventually becoming a severe impediment to cooling water flow. Pitting is also often observed beneath tubercles as mechanical and chemical

  17. Synthesis of bolaamphiphile surfactants and their inhibitive effect on carbon steel corrosion in hydrochloric acid medium

    International Nuclear Information System (INIS)

    Corrosion inhibition by surfactant molecules is related to the surfactant's ability to aggregate at interfaces and in solution. In this work some new triazole bolaamphiphiles in the series of 1,n-bis(1,2,4-triazolyl)alkane where n=10, 12 have been synthesized. The purity of surfactants synthesized was checked by rutinary methodologies (IR, 1H NMR, 13C NMR, mass spectra and elemental analysis). The aggregation of 1,n-bis(1,2,4-triazolyl)alkane have been determined by surface tension at the air-HCl 1 M interface. The inhibiting action of these compounds towards the corrosion of carbon steel in 1 M HCl solution was investigated using gravimetric, potentiodynamic and electrochemical impedance spectroscopy measurements. Polarization data indicate that these compounds act as very good cathodic inhibitors for carbon steel in 1 M HCl. The values of the transfer resistance, obtained from impedance plots of carbon steel, increase by increasing product concentration. From all measurements carried out, the variation of the inhibition efficiency versus concentration shows the same trend. The electrochemical study shows that DTC12 is the best inhibitor and its efficiency increases with concentration and the highest value obtained is around 94%

  18. Chemical transition of nitrate ions accompanied with corrosion of carbon steel under alkaline conditions

    International Nuclear Information System (INIS)

    Carbon steel was immersed in an aqueous solution of NaNO3 in a closed system for observing both the chemical interaction between metal and NO3-, and the effect of nitrate on the generation rate of H2 gas. The experimental pH range of the solution was 10.0-13.5 which corresponds to that of pore fluid in cementitious material. The cathodic current density showed a 'Tafel equation type' potential dependency in aqueous solution containing NO3- or NO2-. In spite of the accelerated cathodic reaction due to the existence of nitrate, the corrosion rate of carbon steel was not accelerated in the nitrate solutions. This fact suggests that the system is controlled by the anodic reaction. The nitrate reduction accompanied by the corrosion of carbon steel is considered to be a series reaction such as NO3-→NO2-→NH3. The nitrate reduction reaction competes with the water reduction reaction (hydrogen evolution reaction) within the anodic controlled condition, therefore nitrate strongly reduces the hydrogen generation rate (1/100-1/500 of the cases without nitrate in 1.0 mol dm-3 NaNO3 cases). The generation rates of NH3 were independent of the concentration of NO3- over the range of 1.0 x 10-3 - 1.0 mol dm-3. (author)

  19. High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions

    International Nuclear Information System (INIS)

    The corrosion behavior of eight low and high alloy steels was investigated under simulating the conditions at the cathode of a molten carbonate fuel cell at 650 C. Different Li-containing iron oxides (LiFeO2 and LiFe5O8) were formed in contact with the eutectic (Li, K)-carbonate melt depending on the Cr-content of the steel. These oxides show low solubility in the melt and protect the metallic material against further corrosive attack. Fast growing scales of Fe3O4 and LiFe5O8 were observed on the low alloy ferritic steel 10 CrMo 9 10. Higher alloy steels form LiFeO2 in contact with the melt and mixed Fe-Cr-spinels underneath. Steels with Cr-contents over 20 wt.% Cr form a mixed LiCr1-xFexO2 and LiCrO2 layer in contact with the metal. Marker experiments on the commercial steel 1.4404 (X2 CrNiMo 17 13 2) show that the outer LiFeO2 layer grows mainly by outward diffusion of iron ions (Fe3+), whereas the inner (Fe,Ni)Cr2O4 spinel layer grows inward. After 500 hours, LiFe5O8 was formed between the spinel and the LiFeO2 layer, but it had disappeared after several thousand hours of exposure as it was fully transformed to LiFeO2. Co-containing LiFeO2 was found after 500 hours on the high Co-containing steel 1.4971 (X12 CrCoNi 21 20), but is not stable after several thousand hours exposure. Co diffuses outward to form a protective LiCoO2 layer of a few microns in thickness. Protective Cr2O3 layers were not observed on steels with high Co-content (≥25 wt.% Cr) due to peroxide ions in the melt, which cause oxidation Cr2O3 and flux to chromate, which is highly soluble in the melt. Further quantitative investigations on total corrosion considering the chromate formation have shown that high alloy steels with high amounts of Cr form mainly K2CrO4. (orig.)

  20. High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions

    Energy Technology Data Exchange (ETDEWEB)

    Biedenkopf, P.; Spiegel, M.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1997-08-01

    The corrosion behavior of eight low and high alloy steels was investigated under simulating the conditions at the cathode of a molten carbonate fuel cell at 650 C. Different Li-containing iron oxides (LiFeO{sub 2} and LiFe{sub 5}O{sub 8}) were formed in contact with the eutectic (Li, K)-carbonate melt depending on the Cr-content of the steel. These oxides show low solubility in the melt and protect the metallic material against further corrosive attack. Fast growing scales of Fe{sub 3}O{sub 4} and LiFe{sub 5}O{sub 8} were observed on the low alloy ferritic steel 10 CrMo 9 10. Higher alloy steels form LiFeO{sub 2} in contact with the melt and mixed Fe-Cr-spinels underneath. Steels with Cr-contents over 20 wt.% Cr form a mixed LiCr{sub 1-x}Fe{sub x}O{sub 2} and LiCrO{sub 2} layer in contact with the metal. Marker experiments on the commercial steel 1.4404 (X2 CrNiMo 17 13 2) show that the outer LiFeO{sub 2} layer grows mainly by outward diffusion of iron ions (Fe{sup 3+}), whereas the inner (Fe,Ni)Cr{sub 2}O{sub 4} spinel layer grows inward. After 500 hours, LiFe{sub 5}O{sub 8} was formed between the spinel and the LiFeO{sub 2} layer, but it had disappeared after several thousand hours of exposure as it was fully transformed to LiFeO{sub 2}. Co-containing LiFeO{sub 2} was found after 500 hours on the high Co-containing steel 1.4971 (X12 CrCoNi 21 20), but is not stable after several thousand hours exposure. Co diffuses outward to form a protective LiCoO{sub 2} layer of a few microns in thickness. Protective Cr{sub 2}O{sub 3} layers were not observed on steels with high Co-content ({>=}25 wt.% Cr) due to peroxide ions in the melt, which cause oxidation Cr{sub 2}O{sub 3} and flux to chromate, which is highly soluble in the melt. Further quantitative investigations on total corrosion considering the chromate formation have shown that high alloy steels with high amounts of Cr form mainly K{sub 2}CrO{sub 4}. (orig.) 22 refs.

  1. Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, JiMan; Shon, MinYoung; Kwak, SamTak [Pukyong National University, Busan (Korea, Republic of)

    2016-01-15

    Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

  2. The role of bacterial communities and carbon dioxide on the corrosion of steel

    International Nuclear Information System (INIS)

    Highlights: • Two natural bacterial communities grew with only water, CO2 and steel. • One of these cultures increased corrosion rates by 45.5% in two months. • The species may serve different roles as electron donor or acceptor and fixing CO2. • Organic carbon was not required for growth. CO2 was the final electron acceptor and carbon source. • Each species required the others to grow in our culture conditions. - Abstract: Natural microbial communities were grown anaerobically with steel as the electron source and CO2 the electron acceptor and carbon source, without organic carbon and typical electron acceptors. The cultures increased corrosion by up to 45.5% compared to sterile controls in two months. Pyrosequencing showed the presence of sulphate reducing bacteria (SRB), sulphur reducing bacteria (S0RB) and acetogens likely growing in a syntrophic relationship where SRB extracted electrons from iron, acetogens accepted electrons and reduced CO2 to acetate, which served as carbon source for SRB and/or S0RB. The SRB Desulfovibrio mexicanus comprised up to 90.1% of the community

  3. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    International Nuclear Information System (INIS)

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH

  4. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Solehudin, Agus, E-mail: asolehudin@upi.edu [Department of Mechanical Engineering Education, Indonesia University of Education (UPI), Bandung, West Java (Indonesia); Nurdin, Isdiriayani [Department of Chemical Engineering, Bandung Institute of Technology, Bandung, West Java (Indonesia)

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  5. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  6. Effect of Caffeine-Zn2+ System in Preventing Corrosion of Carbon Steel in Well Water

    Directory of Open Access Journals (Sweden)

    K. Rajam

    2013-01-01

    Full Text Available The inhibition efficiency (IE of caffeine in controlling corrosion of carbon steel in well water in the absence and presence of Zn2+ has been evaluated by mass loss method. The formulation, consisting of 200 ppm of caffeine and 50 ppm Zn2+, offers 82% inhibition efficiency to carbon steel immersed in well water. Addition of malic acid increases inhibition efficiency of the caffeine-Zn2+ system. The inhibition efficiency of caffeine-Zn2+ and caffeine-Zn2+-malic acid system decreases with the increase in immersion period and increases with the increase in pH from 3 to 11. AC impedance spectra, SEM micrographs, and AFM studies reveal the formation of protective film on the metal surface. The film is found to be UV fluorescent.

  7. Atmospheric corrosion of carbon steel at marine sites in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Syed, S. [Chemical Engineering Department, King Saud University, Riyadh (Saudi Arabia)

    2010-03-15

    Atmospheric corrosion tests, according to ASTM G50-76, have been carried out in Saudi Arabia, at eight marine sites representing different environmental conditions. Environmental factors such as average temperature, average relative humidity, and deposition rates of atmospheric pollutants (Cl{sup -} and SO{sub 2}) was investigated. X-ray diffraction has been used to determine the composition of the corrosion products. Corrosion rates have been determined for each sample at each of the exposure sites via loss of weight. The obtained data were used for the classification of atmospheric aggressivity, according to ISO 9223. The results obeyed well with the empirical kinetics equation of the form C = Kt{sup n}, where K and C are the corrosion losses in mg/cm{sup 2} after 1 and t years of the exposure respectively, and n is constant. Based on n values, the corrosion mechanism of carbon steel is predicted. The major constituent of the rust formed in marine environment is goethite ({alpha}-FeOOH). Samples also show the presence of a large proportion of lepidocrocite ({gamma}-FeOOH) and small amounts of ferrihydrite and maghemite ({alpha}-Fe{sub 2}0{sub 3}). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Electrochemical Impedance Spectroscopy Study on Corrosion Protection of Acrylate Nanocomposite on Mild Steel Doped Carbon Nanotubes

    Science.gov (United States)

    Mahmud, M. R.; Akhir, M. M.; Shamsudin, M. S.; Afaah, A. N.; Aadila, A.; Asib, N. A. M.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Harun, M. K.; Rusop, M.; Abdullah, S.

    2015-05-01

    Acrylate:carbon nanotubes (A:CNTs) nanocomposite thin film was prepared by sol- gel technique. The corrosion coating protection of acrylate:carbon nanotubes (CNTs) nanocomposite thin film has been coated on mild steel characterised by electrochemical impedance spectrometer (EIS) measurement and equivalent circuit model are employed to analyse coating impedance for corrosion protection. In this study, 3.5 w/v % sodium chloride (NaCl) solution was immersed the acrylate:carbon nanotubes nanocomposite thin film. As the results, the surface morphology were found that there formation of carbon nanotubes with good distribution on acrylate-based coating. From EIS measurement, A:CNTs nanocomposite thin film with 0.4 w/v % contain of CNTs was exhibited the highest coating impedance from Nyquist graph after immersed in sodium chloride solution and may provide the excellent corrosion protection. The Bode plots have shown the impedance is high at the beginning from the time at high frequency and slightly decreases with value of frequency become smaller.

  9. Inhibition of the corrosion of carbon steel in neutral solutions by water soluble polyaniline

    International Nuclear Information System (INIS)

    The aim of this work is to study the inhibition effect of water-soluble polyaniline (sulphonate polyaniline) on the corrosion of carbon steel in neutral solutions. The effect on the inhibition efficiency of concentration, temperature has been studied systematically by mass-loss method and by electrochemical measurements. All these methods confirmed that the inhibition efficiency of sulphonate polyaniline increases in increasing its concentration, but decreases in increasing temperature. The studies of potentiodynamic polarization and electrochemical impedance spectroscopy reveal that sulphonate polyaniline acts as an anodic inhibitor. (author)

  10. Corrosion analysis of decommissioned carbon steel waste water tanks at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P.; Roberts, T.C.

    1995-07-01

    A corrosion analysis was carried out on available sections of carbon steels taken from two decommissioned radioactive waste water tanks at Brookhaven National Laboratory. One of the 100,000 gallon tanks suffered from a pinhole failure in the wall which was subsequently patched. From the analysis it was shown that this leak, and two adjacent leaks were initiated by a discarded copper heating coil that had been dropped into the tank during service. The failure mechanism is postulated to have been galvanic attack at points of contact between the tank structure and the coil. Other leaks in the two tanks are also described in this report.

  11. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides

    Science.gov (United States)

    Corrosion is one of the most serious and challenging problems faced worldwide by industry. This research investigates the inhibition of corrosive behavior of SAE1010 steel by bacterial exopolysaccharides. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion inhibition of diffe...

  12. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    Science.gov (United States)

    Fan, Yi; He, Yi; Luo, Pingya; Chen, Xi; Liu, Bo

    2016-04-01

    Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air-liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  13. Mechanism of selective corrosion in electrical resistance seam welded carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fajardo, Pedro; Godinez Salcedo, Jesus; Gonzalez Velasquez, Jorge L. [Instituto Politecnico Nacional, Mexico D.F., (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas. Dept. de Ingenieria Metalurgica

    2009-07-01

    In this investigation the studies of the mechanism of selective corrosion in electrical resistance welded (ERW) carbon steel pipe was started. Metallographic characterizations and evaluations for inclusions were performed. The susceptibility of ERW pipe to selective corrosion in sea water (NACE 1D182, with O{sub 2} or CO{sub 2} + H{sub 2}S) was studied by the stepped potential Potentiostatic electrochemical test method in samples of 1 cm{sup 3} (ASTM G5) internal surface of the pipe (metal base-weld). The tests were looking for means for predicting the susceptibility of ERW pipe to selective corrosion, prior to placing the pipeline in service. Manganese sulfide inclusions are observed deformed by the welding process and they are close to the weld centerline. A slight decarburization at the weld line is observed, and a distinct out bent fiber pattern remains despite the post-weld seam annealing. The microstructure of the weld region consists of primarily polygonal ferrite grains mixed with small islands of pearlite. It is possible to observe the differences of sizes of grain of the present phases in the different zones. Finally, scanning electron microscopic observation revealed that the corrosion initiates with the dissolution of MnS inclusions and with small crack between the base metal and ZAC. (author)

  14. Formation of the self-assembled structures by the ultrasonic cavitation erosion-corrosion effect on carbon steel

    Directory of Open Access Journals (Sweden)

    Dayun Yan

    2015-11-01

    Full Text Available The cavitation erosion-corrosion effect on the metal surface always forms irregular oxide structures. In this study, we reported the formation of regular self-assembled structures of amorphous nanoparticles around the cavitation erosion pits on carbon steel upon the ultrasonic cavitation in methylene blue solution. Each self-assembled structure was composed of linearly aligned nanoparticles of about 100 nm. The formation of self-assembled structures might be due to the combined effect of corrosion, specific sonochemical reaction in methylene blue solution, and the magnetic domain structures on the carbon steel.

  15. Mechanism of pitting corrosion prevention by nitrite in carbon steel exposed to dilute salt solutions. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The overall goal of this project is to develop a fundamental understanding of the role of nitrite in preventing the breakdown of protective oxide(s) on carbon steel and the onset of pitting. Pitting corrosion of carbon steel exposed to dilute alkaline salt solutions can be induced by nitrate, sulfate, and chloride ions and is prevented by sufficient concentration of nitrite. A significant example of this material/electrolyte system is the storage and processing of DOE''s high-level radioactive liquid waste in carbon steel tanks. Added nitrite in the waste has a considerable downstream impact on the immobilization of the waste in a stable glass form. Waste tank integrity and glass production efficiency may benefit from the fundamental understanding of nitrite''s role in preventing pitting. This report summarizes progress after approximately six months of effort in this three-year EMSP project. Initial experimental and theoretical work has focused on the electrochemical behavior of carbon steel in simplified non-radioactive solutions that simulate complex dilute radioactive waste solutions. These solutions contain corrosion-inducing species such as nitrate and chloride and the corrosion-inhibiting nitrite at moderately alkaline pHs. The electrochemical behavior of interest here is that of the open-circuit potential of the steel specimen at equilibrium in the experimental electrolyte and the measures of the steel''s passivity and passivity breakdown.'

  16. Surface coatings on carbon steel for prevention of flow accelerated corrosion under two phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Seung Hyun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B.

  17. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  18. Inhibiting properties and adsorption of an amine based fatty acid corrosion inhibitor on carbon steel in aqueous carbon dioxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Buchweishaija, Joseph

    1997-12-31

    Carbon dioxide corrosion is a major corrosion problem in oil and gas production systems and many organic inhibitors have been tested and used to protect the substrate from corrosion. This thesis studies the mechanism of interaction of the inhibitor molecule with the metallic substrate and how this affects the dissolution rate of the metal. The performance of a commercial amine based fatty acid corrosion inhibitor has been investigated using rotating cylinder electrodes and carbon steel electrodes in CO{sub 2} saturated formation water in the temperature range between 35 to 80{sup o}C. The corrosion process was monitored by electrochemical impedance measurements, and at the end of each experiment full polarization curves were recorded. When the inhibitor was applied on noncorroded electrodes, high inhibitor performance, over 99.7%, was observed independent of temperature. On precorroded electrodes inhibitor performance was found to depend on temperature and time of precorrosion. Above 60{sup o}C, the inhibitor performance decreased with increasing time of precorrosion, presumably because of the formation of a corrosion film of either iron carbonate or a combination of iron carbonate and iron carbide which prevent the inhibitor from reaching the surface. The inhibitor protection efficiency was assumed to be associated with the degree of inhibitor coverage at the material surface, and adsorption isotherms have been calculated in the concentration range between 0.1 ppm and 100 ppm. A Langmuir isotherm was found to give the best fit. The inhibitor performance on a 2 days precorroded rotating electrode was investigated at different solution pH ranging between 4.5 and 6.5 at 35{sup o}C. 130 refs., 80 figs., 22 tabs.

  19. Corrosion Resistance and Pitting Behaviour of Low-Carbon High-Mn Steels in Chloride Solution

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available Corrosion resistance of the X4MnSiAlNbTi27-4-2 and X6MnSiAlNbTi26-3-3 type austenitic steels, after hot deformation as well as after cold rolling, were evaluated in 3.5% NaCl solution using potentiodynamic polarization tests. A type of nonmetallic inclusions and their pitting corrosion behaviour were investigated. Additionally, the effect of cold deformation on the corrosion resistance of high-Mn steels was studied. The SEM micrographs revealed that corrosion damage formed in both investigated steels is characterized by various shapes and an irregular distribution at the metallic matrix, independently on the steel state (thermomechanically treated or cold worked. Corrosion pits are generated both in grain interiors, grain boundaries and along the deformation bands. Moreover, corrosion damage is stronger in cold deformed steels in comparison to the thermomechanically treated specimens. EDS analysis revealed that corrosion pits preferentially nucleated on MnS and AlN inclusions or complex oxysulphides. The morphology of corrosion damage in 3.5% NaCl supports the data registered in potentiodynamic tests.

  20. Inhibition of Corrosion of Carbon Steel in 3.5% NaCl Solution by Myrmecodia Pendans Extract

    Directory of Open Access Journals (Sweden)

    Atria Pradityana

    2016-01-01

    Full Text Available Inhibitor is a substance that is added to the corrosive media to inhibit corrosion rate. Organic inhibitors are preferred to inorganic ones since they are environmentally friendly. One of the organic compounds which is rarely reported as a corrosion inhibitor is Myrmecodia Pendans. The organic compounds can be adsorbed on the metal surface and block the active surface to reduce the rate of corrosion. In this study, the used pipe was carbon steel API 5L Grade B with 3.5% NaCl solution as the corrosion medium. The objective of this research was to analyze the inhibition mechanism Myrmecodia Pendans towards carbon steel in a corrosion medium. Concentration variations of extract Myrmecodia Pendans were 0–500 ppm. Fourier Transform Infrared (FTIR was used for chemical characterization of Myrmecodia Pendans. Polarization and Electrochemical Impedance Spectroscopy (EIS were used to measure the corrosion rate and behaviour. From the electrochemical measurements, it was found that the addition of 400 mg/L inhibitor gave the highest inhibition efficiency. Myrmecodia Pendans acted as a corrosion inhibitor by forming a thin layer on the metal surface.

  1. Microscale investigation of the corrosion performances of low-carbon and stainless steels in highly alkaline concretes

    OpenAIRE

    Itty, Pierre-Adrien

    2012-01-01

    Low-carbon steel shows good stability with respect to corrosion when embedded in ordinary portland cement concrete. This is due to the high alkaline content of the concrete pore solution favoring the formation of an iron oxide film that naturally keeps the steel in a passive state. With the rise of new types of concretes, based on different chemistries, the durability of reinforcements made out of low-carbon steel is at stake. Among the new concrete types, inorganic polymer concretes are char...

  2. Corrosion Behavior of Carbon Steel in Synthetically Produced Oil Field Seawater

    Directory of Open Access Journals (Sweden)

    Subir Paul

    2014-01-01

    Full Text Available The life of offshore steel structure in the oil production units is decided by the huge corrosive degradation due to SO42-, S2−, and Cl−, which normally present in the oil field seawater. Variation in pH and temperature further adds to the rate of degradation on steel. Corrosion behavior of mild steel is investigated through polarization, EIS, XRD, and optical and SEM microscopy. The effect of all 3 species is huge material degradation with FeSx and FeCl3 and their complex as corrosion products. EIS data match the model of Randle circuit with Warburg resistance. Addition of more corrosion species decreases impedance and increases capacitance values of the Randle circuit at the interface. The attack is found to be at the grain boundary as well as grain body with very prominent sulphide corrosion crack.

  3. Atmospheric corrosion of hot and cold rolled carbon steel under field exposure in Saudi Arabia

    International Nuclear Information System (INIS)

    Carbon steel (hot and cold rolled) specimens have been exposed to the action of different atmospheres at 20 test sites distributed in Saudi Arabia and was investigated in terms of environmental factors such as average temperature, average relative humidity and deposition rates of atmospheric pollutants (Cl- and SO2). Applying the standard ISO 9223 norm aggressiveness of the atmospheres corresponding to 0the different test sites has been determined. Calculations of corrosion rates were made via loss of weight and characterization of the corrosion products formed on samples has been carried out by means of X-ray diffraction (XRD). The major constituent of the rust formed in marine and marine-industrial environment is goethite (α-FeOOH). These samples also show the presence of a large proportion of lepidocrocite (γ-FeOOH) and small amounts of ferrihydrite and maghemite (γ-Fe2O3). In the case of urban and rural samples goethite is the major constituent of corrosion layers. The rust formed under the urban environment also contains large amounts of ferrihydrite and in a lesser proportion, of goethite and maghemite

  4. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    ... Countervailing Duty Administrative Review, 77 FR 58512 (September 21, 2012) (Preliminary Results). DATES...: Revocation of Antidumping and Countervailing Duty Orders, 78 FR 16832 (March 19, 2013) (Revocation Notice... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of...

  5. Measurements of the corrosion of low-carbon steel drums under environmental conditions at Hanford: One-year test results

    International Nuclear Information System (INIS)

    This report describes the methods used to expose low-carbon steel drums to atmospheric and soil corrosion and describes the methods used to examine specimens retrieved from both types of tests. These drums are being tested to meet requirements of radioactive waste storage for both low-level radioactive wastes and transuranic wastes

  6. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... proceed (77 FR 24221, April 23, 2012). A record of the Commissioners' votes, the Commission's statement on... amendments took effect on November 7, 2011. See 76 FR 61937 (Oct. 6, 2011) and the newly revised Commission's... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full...

  7. 78 FR 16247 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea; Final Results of...

    Science.gov (United States)

    2013-03-14

    ... Corrosion-Resistant Carbon Steel Flat Products from Korea, 58 FR 44159 (August 19, 1993). Notification to..., and Partial Rescission, 77 FR 54891 (September 6, 2012) (Preliminary Results). DATES: Effective Date...'s Preliminary Results.\\5\\ \\2\\ See id., 77 FR at 54893. \\3\\ See id., 77 FR at 54896. \\4\\ See...

  8. 76 FR 21332 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-15

    ... for Revocation in Part, 75 FR 60076 (September 29, 2010). The preliminary results of this review are... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on...

  9. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-04-30

    ... for Revocation in Part, 76 FR 61076 (October 3, 2011). The preliminary results of this review are... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on...

  10. 77 FR 67395 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for the...

    Science.gov (United States)

    2012-11-09

    ... these five-year reviews (77 FR 31877, May 30, 2012). As noted in the Commission's original scheduling... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for...

  11. 77 FR 44213 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea...

    Science.gov (United States)

    2012-07-27

    ... Corrosion-Resistant Carbon Steel Flat Products from Germany, 71 FR 66163 (November 13, 2006). Analysis of... and Final Results of Third Antidumping Duty Sunset Reviews, 77 FR 25141 (April 27, 2012) (``CORE...). \\2\\ See Initiation of Five-year (``Sunset'') Reviews, 77 FR 85 (January 3, 2012). The Department...

  12. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-05-10

    ... for Revocation in Part, 74 FR 48224 (September 22, 2009). The preliminary results of this review were... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on...

  13. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.

    Science.gov (United States)

    Miller, Robert Bertram; Sadek, Anwar; Rodriguez, Alvaro; Iannuzzi, Mariano; Giai, Carla; Senko, John M; Monty, Chelsea N

    2016-01-01

    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms.

  14. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.

    Directory of Open Access Journals (Sweden)

    Robert Bertram Miller

    Full Text Available Microbially induced corrosion (MIC is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly, ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms.

  15. Use of Extracted Green Inhibitors as a Friendly Choice in Corrosion Protection of Low Alloy Carbon Steel

    Directory of Open Access Journals (Sweden)

    Jano, A.

    2012-11-01

    Full Text Available Mitigation of corrosion impact on environment is an important step in environmental protection. Use of environmentally friendly corrosion protection methods is very important. It is smart to choose cheap and safe to handle compounds as corrosion inhibitors. The use of green inhibitors (extracted inexpensively, from the seed endosperm of some Leguminosae plants, and investigation of their efficiency in corrosion protection is the aim of this study. As green inhibitor one kind of polysaccharides (galactomannan from locust bean gum (also known as carob gum, carob bean gum extracted from the seed of carob tree is used. Corrosion protection efficiency of these extracted green inhibitors was tested for carbon steel marked as: steel 39, steel 44, and iron B 500 (usually applied as reinforcing bars to concrete. Sulfuric acid solution in the presence of chloride ions was used as corrosion media. The composition of corrosion acid media used was 1 mol L-1 H2SO4 and 10-3 mol L-1 Cl- (in the form of NaCl. Electrochemical techniques such as potentiodynamic polarization methods were used for inhibitor efficiency testing.

  16. Analysis of flow on grooving corrosion at the weld of a carbon steel pipe made by electrical resistance welding

    International Nuclear Information System (INIS)

    Lots of researches were gone already about grooving corrosion mechanism of ERW carbon steel pipe. But there is seldom study for water hammer happened by fluid and acceleration of corrosion rate by increased flow velocity. Therefore, in this study carried out the analysis based on hydrodynamic and fracture mechanics. Analyzed stress that act on a pipe using ANSYS as a program, and also FLUENT and STAR-CD were used for flow phenomenon confirmation. As the result, fatigue failure is happened by water hammer and corrosion rate was increased because of turbulent flow

  17. Influence of ph on corrosion control of carbon steel by peroxide injection in sour water

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Martins Magda; Baptista, Walmar; Joia, Carlos Jose Bandeira de Mello [PROTEMP - PETROBRAS/CENPES, Cidade Universitaria, Quadra 7, Rio de Janeiro, CEP 21949-900 (Brazil); Ponciano, Gomes Jose Antonio da Cunha [Departamento de Engenharia Metalurgica e de Materiais-COPPE/UFRJ, Cidade Universitaria, Rio de Janeiro (Brazil)

    2004-07-01

    Sour hydrogen damage is considered the most important corrosive process in the light-ends recovery section of Fluid Catalytic Cracking Units (FCCU). Corrosion in this condition is due to heavy gas oil that originates great amount of contaminants, such as H{sub 2}S, NH{sub 3} and HCN. Hydrogen absorption is promoted by the presence of free cyanides in the environment. The attenuation of this process requires the use of some inhibitors, such as oxygen, hydrogen peroxide (H{sub 2}O{sub 2}) or commercial polysulfides. The effect of these compounds is to neutralize free cyanides (CN{sup -}) into thio-sulfides (SCN{sup -}). When peroxide injection is selected, cyanide concentration in sour water has been used as key parameter to start the peroxide introduction. However, the importance of pH in this system has been pointed out by many authors. The aim of this work is to investigate the influence of pH when peroxide injection is carried out in less alkaline conditions of sour water. Electrochemical techniques - like anodic polarization and hydrogen permeation tests - and weight loss measurements were used to evaluate the effectiveness of corrosion control of carbon steel. It was concluded that at pH 7.5 peroxide injection can drive to an increment of the corrosion rate. Besides that, it was concluded that hydrogen permeation into the metal is promoted. Both detrimental effects were due to elemental sulfur generation in this pH range. The adoption of pH as a key parameter for peroxide injection is then suggested. (authors)

  18. Complexes of Imidazole with Poly(ethylene glycol) as a Corrosion Inhibitor for Carbon Steel in Sulphuric Acid

    Science.gov (United States)

    Salimi, Saeed; Nasr-Esfahani, Mojtaba; Umoren, Saviour A.; Saebnoori, Ehsan

    2015-12-01

    The inhibiting action of polyethylene glycol and imidazole (PEG/IMZ)) complexes prepared by a simple deprotonation procedure on carbon steel corrosion in 0.5 mol/L sulphuric acid was evaluated using the weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques complemented by surface analysis using scanning electron microscopy. The inhibiting effect of the PEG/IMZ complexes on carbon steel corrosion was compared with the non-complex forms. Results obtained show that PEG/IMZ complex is a very effective corrosion inhibitor of carbon steel in the acid environment. The inhibition efficiency increased with the increase in the temperature and also with increasing percentage of imidazole in the complex. Corrosion inhibition occurs by virtue of adsorption of PEG/IMZ complexes on the steel surface which was found to follow the Temkin adsorption isotherm model. The PEG/IMZ complexes function as a mixed-type inhibitor. Results from all the methods employed are in a reasonably good agreement.

  19. Corrosion Inhibition Effect of Carbon Steel in Sea Water by L-Arginine-Zn2+ System

    Directory of Open Access Journals (Sweden)

    S. Gowri

    2014-01-01

    Full Text Available The inhibition efficiency of L-Arginine-Zn2+ system in controlling corrosion of carbon steel in sea water has been evaluated by the weight-loss method. The formulation consisting of 250 ppm of L-Arginine and 25 ppm of Zn2+ has 91% IE. A synergistic effect exists between L-Arginine and Zn2+. Polarization study reveals that the L-Arginine-Zn2+ system functions as an anodic inhibitor and the formulation controls the anodic reaction predominantly. AC impedance spectra reveal that protective film is formed on the metal surface. Cyclic voltammetry study reveals that the protective film is more compact and stable even in a 3.5% NaCl environment. The nature of the protective film on a metal surface has been analyzed by FTIR, SEM, and AFM analysis.

  20. Corrosion Behavior of Carbon Steel with Hmta Inhibitor in Pickling Process

    Science.gov (United States)

    Liu, D.; Huang, L. P.

    In this investigation, attempts have been made to study the inhibitive effect of hexamethylenetetramine (HMTA) on carbon steel in 10% HCl (mass%) by weight loss, potentiodynamic polarization, EIS, and AFM. Results indicate that inhibition efficiency (IE) of HMTA increases with the increase in pickling immersion time from 10 to 60 min, and IE also increases with the increase in temperature. At higher temperatures (80°C), the IE values are higher and almost independent of pickling time. HMTA can be adsorbed on the surface of metal and reduce the corrosion rate of metal. HMTA is a kind of mixed inhibitor and can retard both the anodic dissolution and cathodic hydrogen evolution reactions independently. IE increases with the concentration of HMTA. Electrochemistry measurement shows that adsorption follows the Langmuir isotherm and the value of free energies of adsorption (ΔGads) is < 0, so the adsorption process can occur automatically. AFM analyses show HMTA can affect the surface roughness and protect metal.

  1. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY STUDY OF CORROSION INHIBITION OF MODIFIED LIGNOSULPHONATE FOR CARBON STEEL

    Institute of Scientific and Technical Information of China (English)

    C.H. Yi; X.Q. Qiu; D.J. Yang; H.M. Lou

    2005-01-01

    The corrosion inhibition for carbon steel in circulating cooling water by modified lignosulphonate has been investigated using electrochemical impedance spectroscopy technique. Results show that the inhibition efficiency of modified lignosulphonate GCL2 is a great improvement on that of lignosulphonate. The maximum inhibition efficiency of GCL2 reaches 99.21% at forming adsorption film on the metal surface for the electrochemical impedance spectroscopy in GCL2 solution shows more than one time-constant. Moreover, results also indicate that it is more efficient in stirring solution than in still solution for GCL2 because the constant of adsorption in stirring solution is much larger than that in still solution. The adsorption of inhibitor GCL2 follows Langmuir's adsorption isotherm.

  2. Corrosion-erosion resistance of Zn-Al co-cementation coatings on carbon steels in aqueous media

    Institute of Scientific and Technical Information of China (English)

    李德志; 何业东; 王德仁; 张召恩; 齐慧滨; 高唯

    2002-01-01

    A novel Zn-Al co-cementation coating was obtained by a pack cementation method. This coating possesses a two-layered structure. The outer layer is mainly composed of Fe2Al5 and FeAl intermetallics with a small amount of Zn, and the inner layer consists of Zn, Fe and a small amount of Al. The corrosion-erosion resistance of Zn-Al co-cementation coatings on carbon steel was studied by a rotary corrosion method in various NaCl and H2S containing solutions and relevant SiO2 containing media. The experimental results are compared with those of carbon steels and the sherardizing and aluminizing coatings, showing that the Zn-Al co-cementation coatings have excellent corrosion-erosion resistance in various aqueous media.

  3. Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments

    International Nuclear Information System (INIS)

    Highlights: • Maximum CO2 corrosion rate is reached with increasing Cl− content. • Cl− can destroy the corrosion product films. • High amounts of Cl− content can inhibit the cathodic reaction in CO2 corrosion. • Mass transfer control becomes more efficient as the Cl− content increases. • Cl− has no effect on the composition of the corrosion product. - Abstract: Effects of chloride content on CO2 corrosion of carbon steel have been studied by immersion tests and electrochemical measurements combined with scanning electron microscopy, X-ray diffraction and analysis of polarization curves. Results show that maximum CO2 corrosion rate is reached with increasing Cl− content at a constant temperature and partial pressure. CO2 corrosion is a mixed-controlled process, i.e., both activation and mass-transfer steps with increasing Cl− content. Increasing Cl− content can reduce CO2 solubility. Moreover, Cl− can destroy corrosion product films and change morphology of corrosion product films, but it has no effect on the composition of the corrosion product

  4. Evaluation of the potential of additives as corrosion inhibitors of CA-50 carbon steel used as reinforcement in concretes

    International Nuclear Information System (INIS)

    In this work, various compounds were tested to evaluate their potential capability for their use as corrosion inhibitors of carbon steel reinforcement in concretes. The additives tested were sodium benzoate, polyethylene glycol, hexamethylenetetramine, benzotriazole and yttrium carbonate. Initially, exploratory tests were carried out to select the ones to be used as corrosion inhibitors, based on the inhibit ion efficiency determined from electrochemical tests, specifically polarization tests and electrochemical impedance spectroscopy. These tests were carried out in a solution composed of 0.01 N sodium hydroxide (NaOH) and 0.05 N potassium hydroxide (KOH) to simulate the composition of the solution inside the pores in concretes. The additive that presented the most promising potential to be used as corrosion inhibitor was benzotriazole (BTA). After the elimination of some compounds and selection of the additive with higher corrosion inhibit ion efficiency in the test medium, the effect of its concentration on the corrosion inhibition efficiency was evaluated. Sodium nitrite solutions with the same concentrations as those solutions with BTA were tested for comparison reasons. Sodium nitrite is a well established corrosion inhibitor for carbon steel reinforcement in concretes but it has been related to toxic effects. The BTA was associated to higher corrosion inhibition efficiencies than that of sodium nitrite in similar concentrations. A blackish adherent film was formed on the steel surface exposed to BTA solutions during long periods of immersion in the alkaline medium. The results suggest that BTA is a potential candidate for substitution of nitrites as corrosion inhibitor of reinforcements in concrete. (author)

  5. Corrosion Inhibition of Carbon Steel in HCl Solution by Some Plant Extracts

    Directory of Open Access Journals (Sweden)

    Ambrish Singh

    2012-01-01

    Full Text Available The strict environmental legislations and increasing ecological awareness among scientists have led to the development of “green” alternatives to mitigate corrosion. In the present work, literature on green corrosion inhibitors has been reviewed, and the salient features of our work on green corrosion inhibitors have been highlighted. Among the studied leaves, extract Andrographis paniculata showed better inhibition performance (98% than the other leaves extract. Strychnos nuxvomica showed better inhibition (98% than the other seed extracts. Moringa oleifera is reflected as a good corrosion inhibitor of mild steel in 1 M HCl with 98% inhibition efficiency among the studied fruits extract. Bacopa monnieri showed its maximum inhibition performance to be 95% at 600 ppm among the investigated stem extracts. All the reported plant extracts were found to inhibit the corrosion of mild steel in acid media.

  6. Corrosion behavior of laser-clad Mo2NiB2 cermet coating on low carbon steel substrate

    International Nuclear Information System (INIS)

    A Mo2NiB2 cermet coating on low carbon steel substrate was fabricated by laser cladding technique. The coating consisted of γ-(Fe, Ni) as a metallic matrix binder and Mo2NiB2 particles as a reinforced phase distributed uniformly in the microstructure. Corrosion behavior of the coating was investigated and the commercial 1Cr, 304SS, and G3 were used for comparison. G3 exhibited the highest corrosion resistance and 1Cr the lowest corrosion resistance, whereas 304SS and the coating exhibited the intermediate and similar corrosion resistance. However, the severe pitting corrosion which was observed in 304SS did not exist for the coating. (author)

  7. Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution

    Directory of Open Access Journals (Sweden)

    Rihan Omar Rihan

    2012-01-01

    Full Text Available X52 and X60 high strength low alloy (HSLA steels are widely used in the construction of petroleum pipelines. This paper discusses the corrosion resistance of X52 and X60 steels in CO2 containing saltwater at pH 4.4 and 50 ºC. A circulating flow loop system inside an autoclave was used for conducting the experimental work. The rotating impeller speed was 2000 rpm. The corrosion rate was monitored using in situ electrochemical methods such as potentiodynamic sweep, linear polarization resistance, and electrochemical impedance spectroscopy (EIS methods. Results indicated that the corrosion rate of X60 steel is relatively higher than that of X52 steel.

  8. Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution

    Directory of Open Access Journals (Sweden)

    Rihan Omar Rihan

    2013-02-01

    Full Text Available X52 and X60 high strength low alloy (HSLA steels are widely used in the construction of petroleum pipelines. This paper discusses the corrosion resistance of X52 and X60 steels in CO2 containing saltwater at pH 4.4 and 50 ºC. A circulating flow loop system inside an autoclave was used for conducting the experimental work. The rotating impeller speed was 2000 rpm. The corrosion rate was monitored using in situ electrochemical methods such as potentiodynamic sweep, linear polarization resistance, and electrochemical impedance spectroscopy (EIS methods. Results indicated that the corrosion rate of X60 steel is relatively higher than that of X52 steel.

  9. Localized Corrosion of Chromium Coated Steel

    NARCIS (Netherlands)

    Zhang, X.; Beentjes, P.; Mol, A.; Terryn, H.

    2006-01-01

    In this paper, we report on the studies of the local corrosion behaviour of chromium-coated ultra low carbon steel in NaCl solution using polarization, electrochemical impedance spectroscopy (EIS) and SVET.

  10. Corrosion inhibition behavior of propyl phosphonic acid–Zn2+ system for carbon steel in aqueous solution

    International Nuclear Information System (INIS)

    The effectiveness of propyl phosphonic acid (PPA) as a corrosion inhibitor in association with a bivalent cation like Zn2+ has been studied. An eco-friendly inhibitor in controlling corrosion of carbon steel in neutral aqueous medium in the absence and presence of Zn2+ has been evaluated by gravimetric method. Impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the aqueous environment. Potentiodynamic polarization studies showed that the inhibitor is a mixed inhibitor. X-ray photoelectron spectroscopic analysis (XPS) of the protective film exhibited the presence of the elements viz., iron, phosphorus, oxygen, carbon and zinc. The chemical shifts in the binding energies of these elements inferred that the surface film is composed of oxides/hydroxides of iron(III), Zn(OH)2 and [Fe(II)/(III)–Zn(II)–PPA] complex. Further, the surface analysis techniques viz., FT-IR, AFM and SEM studies confirm the formation of an adsorbed protective film on the carbon steel surface. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.

  11. Characterization of the corrosion behavior of the carbon steel liner in Hanford Site single-shell tanks

    International Nuclear Information System (INIS)

    Six safety initiatives have been identified for accelerating the resolution of waste tank safety issues and closure of unreviewed safety questions. Safety Initiative 5 is to reduce safety and environmental risk from tank leaks. Item d of Safety Initiative 5 is to complete corrosion studies of single-shell tanks to determine failure mechanisms and corrosion control options to minimize further degradation by June 1994. This report has been prepared to fulfill Safety Initiative 5, Item d. The corrosion mechanisms that apply to Hanford Site single-shell tanks are stress corrosion cracking, pitting/crevice corrosion, uniform corrosion, hydrogen embrittlement, and microbiologically influenced corrosion. The corrosion data relevant to the single-shell tanks dates back three decades, when results were obtained from in-situ corrosion coupons in a few single-shell tanks. Since that time there have been intertank transfers, evaporation, and chemical alterations of the waste. These activities have changed the character and the present composition of the waste is not well characterized. All conclusions and recommendations are made in the absence of relevant laboratory experimental data and tank inspection data. The report attempts to identify the failure mechanisms by a literature survey of carbon steel data in environments similar to the single-shell tank wastes, and by a review of the work performed at the Savannah River Site where similar wastes are stored in similar carbon steel tanks. Based on these surveys, and in the absence of data specific to Hanford single-shell tanks, it may be concluded that the single-shell tanks identified as leakers failed primarily by stress corrosion cracking due to the presence of high nitrate/low hydroxide wastes and residual stresses. In addition, some failures may be attributed to pitting under crevices in low hydroxide locations

  12. Effect of Cr content, hardness and micro structure on flow-accelerated corrosion in carbon steel pipes. Examination of replaced carbon steel pipes

    International Nuclear Information System (INIS)

    68 replaced carbon steel piping in secondary system of pressurized water reactor (PWR) has been investigated by visual examination for checking thinning conditions. It is well known that the flow-accelerated corrosion (FAC) was inhibited by traces of Cr in steel. Therefore, the chemical compositions of those steels have been measured. In addition, the micro structure and hardness of those steels have been investigated. And the relationship between those material variables and FAC rate was considered. As the results, (1) The Cr contents in those steels were below 0.1 wt% except one sample. Minute quantities of chromium increase the resistance against FAC. But the water velocity was thought to be the dominant factor rather than chemical composition in steel, at least such as below 0.1%Cr. (2) Hardness of all piping has been satisfied the specifications of each materials. The hardness of steels was not correlated with wall thinning rate. (3) The micro structure was also not correlated with FAC rate. (author)

  13. Microbiological corrosion in low carbon steels; Corrosion microbiologica en aceros de bajo carbono

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Custodio, O; Ortiz-Prado, A; Jacobo-Armendariz, V. H; Schouwenaars-Franssens, R [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: medina_1979@yahoo.com; armandoo@servidor.unam.mx; vjacobo@dgapa.unam.mx; raf_schouweenaars@yahoo.com

    2009-01-15

    The Microbiologically Induced Corrosion affects several industries, such as oil industry where it is estimated that 20% to 30% pipes failures are related with microorganism. The chemical reactions generate ions transfer, this validate the use of electrochemical technique for its analysis. Coupons submerged in a nutritional medium with presence and absence of three different microorganisms during two periods, 48 hours and 28 days were studied. Polarization resistance (Rp) and Electrochemical Impedance Spectroscopy (EIS) techniques were applied to determine the corrosively of the systems. The results show a greater corrosive effect of abiotic systems, this indicates a microorganisms protection effect to the metal, opposite to the first hypothesis. This result was ratified observing surface coupons by using Scanning Electron Microscopy (SEM) technique. A possible mechanism based on Evans - Tafel graph is proposed to explain inhibitor microorganism effect. [Spanish] La corrosion microbiologica es un tipo comun de deterioro que afecta diversas industrias, una de ellas es la petrolera en la que se estiman que el 20% o 30% de fallas en las tuberias de trasporte de hidrocarburos es favorecida por microorganismos. Las reacciones quimicas que sustentan estos, generan transferencia de iones, lo que justifica el empleo de tecnicas electroquimicas para su analisis. En este trabajo, se estudiaron probetas de acero de bajo carbono SAE 1018, sumergidas en un medio nutritivo rico en cloruros en presencia y ausencia de tres diferentes cargas microbianas, en tiempos de exposicion de 48 horas y 28 dias. Se realizaron ensayos de resistencia a la polarizacion (Rp) y espectroscopia de impedancia electroquimica (EIS) para determinar el efecto corrosivo de los diferentes sistemas. Los resultados muestran que el medio abiotico causa el mayor efecto corrosivo, lo que indica un efecto protector de los microorganismos al metal contradiciendo la hipotesis inicialmente propuesta. La observacion

  14. THE SENSITIVITY OF CARBON STEELS' SUSCEPTIBILITY TO LOCALIZED CORROSION TO THE PH OF NITRATE BASED NUCLEAR WASTES

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER KD

    2010-01-14

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  15. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe

    Science.gov (United States)

    Li, Weijie; Ho, Siu Chun Michael; Song, Gangbing

    2016-04-01

    Steel reinforcement corrosion is one of the dominant causes for structural deterioration for reinforced concrete structures. This paper presents a novel corrosion detection technique using an active thermal probe. The technique takes advantage of the fact that corrosion products have poor thermal conductivity, which will impede heat propagation generated from the active thermal probe. At the same time, the active thermal probe records the temperature response. The presence of corrosion products can thus be detected by analyzing the temperature response after the injection of heat at the reinforcement-concrete interface. The feasibility of the proposed technique was firstly analyzed through analytical modeling and finite element simulation. The active thermal probe consisted of carbon fiber strands to generate heat and a fiber optic Bragg grating (FBG) temperature sensor. Carbon fiber strands are used due to their corrosion resistance. Wet-dry cycle accelerated corrosion experiments were performed to study the effect of corrosion products on the temperature response of the reinforced concrete sample. Results suggest a high correlation between corrosion severity and magnitude of the temperature response. The technique has the merits of high accuracy, high efficiency in measurement and excellent embeddability.

  16. Low carbon steel corrosion damage prediction in rural and urban environments

    Directory of Open Access Journals (Sweden)

    Díaz, V.

    2003-12-01

    Full Text Available This paper presents an Artificial Neural Network (ANN model for the damage function of carbon steel, expressed in μm of corrosion penetration as a function of environmental variables. Working in the context of the Iberoamerican Atmospheric Corrosion Map Project, the experimental data comes as result of the corrosion of low alloy steel subtracts in three test sites in Uruguay, South America. In addition, we included experimental values obtained from short time kinetics studies, corresponding to special series from one of the sites. The ANN numerical model shows attractive results regarding goodness of fit and residual distributions. It achieves a RMSE value of 0.5 μm while a classical regression model lies in the range of 4.1 μm. Furthermore, a properly adjusted ANN model can be useful in the prediction of corrosion damage under different climatological and pollution conditions, while linear models cannot.

    Este artículo presenta la metodología de las redes neuronales artificiales (RNA como solución para el modelado de los valores experimentales obtenidos en los procesos de corrosión atmosférica. Se desarrolla el modelo de RNA para la función de daño, expresada en μm de penetración para el acero de bajo carbono en función de las variables medioambientales, en el contexto del Proyecto MICAT (Mapa Iberoamericano de Corrosión Atmosférica y programas de experimentación propios. Los datos experimentales son resultado de los estudios de calibración sobre sustratos ferrosos en tres sitios del territorio uruguayo, Sudamérica. Se incluyen, además, los valores experimentales obtenidos en los estudios de cinéticas iniciales, correspondientes a series especiales de cortos tiempos de exposición en una de las estaciones de ensayo. El modelo numérico de RNA muestra resultados con un valor de RMSE de 0,5 μm, en tanto el modelo de regresión clásico arroja un valor de 4,1 μm.

  17. Synergistic Effect of Tungstate and Benzotriazole on Corrosion Inhibition of Carbon Steel in Solutions Containing Cl-

    Institute of Scientific and Technical Information of China (English)

    LI Yan; XI Dan-li; LU Zhu

    2004-01-01

    The corrosion inhibition of tungstate, benzotriazole (BTA) and their combination in solutions containing Cl- was studied by electrochemical techniques. The results indicated that the inhibition efficiency of tungstate was higher than that of BTA. The efficiency increased with increasing concentration of tungstate or BTA. In the studies of synergistic effect of tungstate and BTA, it had been found that in Ph 9.0 solution, the largest Rt could be obtained with the concentration ratio of tungstate / BTA being 1:1. Lowering the Ph value of solution would reduce the efficiency of inhibitors, especially in binary inhibitors. Increasing the concentration of Cl- accelerated the corrosion of carbon steel in the solutions with various inhibitors, but the influence of Cl- on corroding rate in binary inhibitors was not so strong as in single component. The results of surface analysis showed that W, C, N, O and Fe elements existed in the protecting film formed with binary inhibitors. The thickness of the film was about 12-15nm.

  18. POLYTETRAFLUOROETHYLENE-RICH POLYPHENLENESULFIDE BLEND TOP COATINGS FOR MITIGATING CORROSION OF CARBON STEEL IN 300 DEGREE CELCIUS BRINE.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.; JUNG, D.

    2006-06-01

    We evaluated usefulness of a coating system consisting of an underlying polyphenylenesulfide (PPS) layer and top polytetrafluoroethylene (PTFE)-blended PPS layer as low friction, water repellent, anti-corrosion barrier film for carbon steel steam separators in geothermal power plants. The experiments were designed to obtain information on kinetic coefficient of friction, surface free energy, hydrothermal oxidation, alteration of molecular structure, thermal stability, and corrosion protection of the coating after immersing the coated carbon steel coupons for up to 35 days in CO{sub 2}-laden brine at 300 C. The superficial layer of the assembled coating was occupied by PTFE self-segregated from PPS during the melt-flowing process of this blend polymer; it conferred an outstanding slipperiness and water repellent properties because of its low friction and surface free energy. However, PTFE underwent hydrothermal oxidation in hot brine, transforming its molecular structure into an alkylated polyfluorocarboxylate salt complex linked to Na. Although such molecular transformation increased the friction and surface free energy, and also impaired the thermal stability of PTFE, the top PTFE-rich PPS layer significantly contributed to preventing the permeation of moisture and corrosive electrolytes through the coating film, so mitigating the corrosion of carbon steel.

  19. Investigation on carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water

    Energy Technology Data Exchange (ETDEWEB)

    Mu, L.J. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: mulijunxjtu@126.com; Zhao, W.Z. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-01-15

    The carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water is studied by potentiodynamic curve and electrochemical impedance spectroscopy (EIS); the micro-structure and composition of the corrosion scale formed at high-temperature and high-pressure are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that 13Cr stainless steel is in passive state in the stratum water, the passive current density increases and the passive potential region decreases with increasing temperature. The corrosion scale formed at high-temperature and high-pressure is mainly composed of iron/chromium oxides and a little amount of FeCO{sub 3}.

  20. Synergic Mechanism of an Organic Corrosion Inhibitor for Preventing Carbon Steel Corrosion in Chloride Solution

    Institute of Scientific and Technical Information of China (English)

    LIU Zhiyong; YU Lei; LI Qingzhong

    2015-01-01

    The inhibition effect of dimethylethanolamine (DMEA) and its composite with carboxylic acid was studied with the electrochemical tests. The experimental results indicate that DMEA is not a good inhibitor but the composite of DMEA with caprylic acid exhibits excellent inhibiting efficiency. The synergic mechanism of the organic corrosion inhibitors (OCIs) was studied with quantum chemical calculations. It is found that the DMEA forms a quaternary ammonium salt with the proton in carboxylic acid, and a cyclic complex formed between the salt and Fe may be responsible for the enhancement of inhibiting efficiency. The possible hydrogen bond formed between DMEA and carboxylic acid is not enough for the inhibiting effect. This work is helpful to proposing theoretical interpretation as well as developing a functional organic inhibitor to improve the durability of reinforced concrete contaminated with chloride.

  1. Inhibition Effect of Dodecylamine on Carbon Steel Corrosion in Hydrochloric Acid Solution

    Science.gov (United States)

    Chen, Zhenyu; Huang, Ling; Qiu, Yubing; Guo, Xingpeng

    2012-12-01

    Dodecylamine spontaneously adsorbs on carbon steel via its polar group (-NH2) in hydrochloric acid solution. Furthermore, it forms a monolayer film on carbon steel surface. The inhibition mechanism of dodecylamine for carbon steel is geometric blocking effect. The adsorption of dodecylamine on carbon steel surface follows Arrhenius equation. The adsorption slightly increases activated energy, but greatly reduces pre-exponential factor value. Atomic force microscopy force curves indicate that at the area without adsorbed dodecylamine, no obvious adhere force occurs. At the area with adsorbed dodecylamine, however, an average 1.3 nN adhere force is observed.

  2. Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution

    OpenAIRE

    Rihan Omar Rihan

    2013-01-01

    X52 and X60 high strength low alloy (HSLA) steels are widely used in the construction of petroleum pipelines. This paper discusses the corrosion resistance of X52 and X60 steels in CO2 containing saltwater at pH 4.4 and 50 ºC. A circulating flow loop system inside an autoclave was used for conducting the experimental work. The rotating impeller speed was 2000 rpm. The corrosion rate was monitored using in situ electrochemical methods such as potentiodynamic sweep, linear polarization resistan...

  3. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples.

    Science.gov (United States)

    Voordouw, Gerrit; Menon, Priyesh; Pinnock, Tijan; Sharma, Mohita; Shen, Yin; Venturelli, Amanda; Voordouw, Johanna; Sexton, Aoife

    2016-01-01

    Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (10(5)/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (10(6)/ml) and SRB (10(8)/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows

  4. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples

    Directory of Open Access Journals (Sweden)

    Gerrit eVoordouw

    2016-03-01

    Full Text Available Microbially-influenced corrosion (MIC contributes to the general corrosion rate (CR, which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm, for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for 8 produced waters with high numbers (105/ml of acid-producing bacteria (APB, but no sulfate-reducing bacteria (SRB. Average CRs were 0.009 mm/yr for 5 central processing facility (CPF waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (106/ml and SRB (108/ml. Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows

  5. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples

    Science.gov (United States)

    Voordouw, Gerrit; Menon, Priyesh; Pinnock, Tijan; Sharma, Mohita; Shen, Yin; Venturelli, Amanda; Voordouw, Johanna; Sexton, Aoife

    2016-01-01

    Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (105/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (106/ml) and SRB (108/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows

  6. Opuntia ficus-indica Extract as Green Corrosion Inhibitor for Carbon Steel in 1 M HCl Solution

    Directory of Open Access Journals (Sweden)

    J. P. Flores-De los Ríos

    2015-01-01

    Full Text Available The effect of Opuntia ficus-indica (Nopal as green corrosion inhibitor for carbon steel in 1 M HCl solution has been investigated by using weight loss tests, potentiodynamic polarization curves, and electrochemical impedance spectroscopy measurements. Also, scanning electron microscopy (SEM and Fourier transform infrared spectroscopy (FT-IR analysis were performed. The inhibitor concentrations used ranged from 0 to 300 ppm at 25, 40, and 60°C. Results indicated the inhibition efficiency increases with increasing extract concentration and decreases with the temperature, and the inhibitor acted as a cathodic-type inhibitor which is physically absorbed onto the steel surface. In fact, the adsorption of the inhibitor on the steel surface follows the Langmuir adsorption isotherm, indicating monolayer adsorption. The presence of heteroatoms such as C, N, and O and OH groups were responsible for the corrosion inhibition.

  7. Effect of the Unsaturation of the Hydrocarbon Chain of Fatty-Amides on the CO2 Corrosion of Carbon Steel Using EIS and Real-Time Corrosion Measurement

    Directory of Open Access Journals (Sweden)

    J. Porcayo-Calderon

    2015-01-01

    Full Text Available Fatty-amide derivatives were evaluated to study the effect of the double bonds into the hydrocarbon chain (C18 on the corrosion behavior of carbon steel. Electrochemical impedance spectroscopy (EIS and real-time corrosion measurements were used to evaluate the inhibition mechanism of the fatty-amides on carbon steel in CO2-saturated (3% NaCl + 10% diesel emulsion at 50°C. EIS results demonstrated that the unsaturation present into the hydrocarbon chain contributes to the efficiency of fatty-amides, because they can be adsorbed on the metal surface by a flat-adsorption process reducing the presence of active sites and blocking the corrosion process and preventing the diffusion of corrosive species, such as H2O, H+, Cl−, and HCO3-. Real-time corrosion measurements also indicated that the effectiveness of the inhibitors is dependent on the unsaturation into the hydrocarbon chain, being also a good technique to determine the stability of the adsorption process of the inhibitors.

  8. Metallurgical and Corrosion Properties of Explosively Welded Ti6Al4V/Low Carbon Steel Clad

    Institute of Scientific and Technical Information of China (English)

    Nizamettin Kahraman; Beh(c)et Gülen(c)

    2005-01-01

    Titanium alloy (Ti6Al4V) and Iow carbon steel (LCS) were joined by explosive welding method using different ratios of explosive. Some metallurgical properties of joined samples were investigated. Joined samples were examined by means of optical microscope, scanning electron microscope (SEM) and tensile-shearing tests. Bending, tensile, hardness and corrosion behaviour of the samples were investigated. Separation was not occurred on the joining interface after tensile-shearing and bending tests. It is seen that hardness of both plates were increased with increasing explosive.It is found that increasing explosive ratio leads to an increase in corrosion. It is also found that corrosion rate was high at the beginning of the experiment but the rate of the corrosion decreased subsequently during the experiment.

  9. Atmospheric corrosion effects of HNO 3—Comparison of laboratory-exposed copper, zinc and carbon steel

    Science.gov (United States)

    Samie, Farid; Tidblad, Johan; Kucera, Vladimir; Leygraf, Christofer

    The influence of nitric acid (HNO 3) on the atmospheric corrosion of copper, zinc and carbon steel was investigated in laboratory exposures at 65% relative humidity (RH), 25 °C and 0.03 cm s -1 air velocity. The deposition velocity ( Vd) of HNO 3 on the specimens, the corrosion rates and corrosion products were determined by gravimetry, ion chromatography, X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) microspectroscopy. Comparisons were also made with literature data on the corrosion effects of sulfur dioxide (SO 2), nitrogen dioxide (NO 2) and ozone (O 3). At 65% RH, the Vd of HNO 3 on all metals was at least 70% of that of an ideal absorbent, i.e., an impregnated filter with perfect absorption for HNO 3. The Vd of HNO 3 was much higher than that of SO 2, NO 2 or O 3, which is mainly attributed to the relatively high sticking coefficient, high solubility and high reactivity of HNO 3 compared to the other gases. During identical exposures to HNO 3, the corrosion rate of carbon steel was nearly three times higher than that of copper or zinc. However, when comparing the corrosion effects induced by HNO 3 with those induced by SO 2 alone or in combination with either NO 2 or O 3, HNO 3 turned out to be far more aggressive than SO 2. Relative to SO 2, zinc is the metal most sensitive to HNO 3, followed by copper and with carbon steel least sensitive to HNO 3.

  10. REVIEW ON ATMOSPHERIC CORROSION OF WEATHERING AND CARBON STEELS%碳钢和耐候钢的大气腐蚀

    Institute of Scientific and Technical Information of China (English)

    李巧霞; 王振尧; 韩薇; 韩恩厚

    2009-01-01

    回顾了近年来碳钢和耐候钢大气腐蚀研究,比较了两种钢的腐蚀行为.重点分析了两种钢在腐蚀过程、腐蚀产物组成及影响因素等方面的相似性;同时讨论了两种钢的腐蚀速度和锈层结构的差异性.%The recent progress in the atmospheric corrosion of carbon steel and weathering steel is reviewed. The corrosion behavior of the above two kinds of steels is compared.The similarities in corrosion process, corrosion products,and effect factors of the two steels are analyzed.The differences in the corrosion rate and rust microstructure of the two steels are discussed.

  11. Investigation with slow traction conditions of the stress corrosion of carbon steels in alkaline media. Role of passivating inhibitors

    International Nuclear Information System (INIS)

    The stress corrosion cracking (S.C.C.) sensitivity of carbon steels in basic media, such as carbonates, is well known. A constant strain-rate test have allowed to observe two steels (A42 [E26] and XC38) behaviour in such conditions at pH 9. The S.C.C. potentials susceptibility range has been found. Inter and Trans-granular cracking have been revealed and measured with micrographic methods. A crack growth rate has been studied as a function of strain rate: an experimental rate has been compared to calculated values from methods which have proposed previously, and methods which have been elaborated in this work. These last permit a best approach of cracking in our case. The chromates use, as inhibitor ions, has permit to decrease the corrosive attack and to cancel the crack growth rate. (author)

  12. Study of the corrosion products formed on carbon steels in the tropical atmosphere of Panama

    Directory of Open Access Journals (Sweden)

    Jaén, J. A.

    2003-12-01

    Full Text Available Mössbauer spectroscopy and X-ray powder diffraction (in selected samples have been used to characterize corrosion products on carbon steels after atmospheric exposure to the tropical Panamanian locations of Panama and Colon, classified according to ISO 9223 as C3 and C5, respectively. Goethite (α-FeOOH of intermediate particle size (20-100 nm, lepidocrocite (γ-FeOOH, a spinel phase consisting of non-stoichiometric magnetite (Fe3-xO4 and/or maghemite (γ-Fe2O3 and nano-sized particles were identified in the corrosion products. The spinel phase is related to short term atmospheric exposure transforms in time to other corrosion products. The corrosion resistance increased with fraction of goethite following a saturation-type behavior.

    Se caracterizaron los productos de corrosión de aceros al carbono expuestos a las atmósferas tropicales panameñas localizadas en Panamá y Colón, mediante el uso de la espectroscopia Mössbauer y difracción de rayos-X (en muestras seleccionadas. Las atmósferas se clasifican como C3 y C5, respectivamente, de acuerdo a la norma ISO 9223. Se lograron identificar los compuestos goethita (α-FeOOH de tamaño de partícula intermedio (20-100 nm, lepidocrocita (γ-FeOOH, una fase de espinela consistente en magnetita no estequiométrica (Fe3-xO4 y/o maghemita (γ-Fe2O3, y nanopartículas. La fase de espinela se puede correlacionar con exposiciones cortas a la atmósfera, transformándose en el tiempo en otros productos de corrosión. La resistencia a la corrosión se incrementa con la cantidad de goethita siguiendo una conducta de saturación.

  13. Formation of the self-assembled structures by the ultrasonic cavitation erosion-corrosion effect on carbon steel

    OpenAIRE

    Dayun Yan; Jiadao Wang; Fengbin Liu; Kenan Rajjoub

    2015-01-01

    The cavitation erosion-corrosion effect on the metal surface always forms irregular oxide structures. In this study, we reported the formation of regular self-assembled structures of amorphous nanoparticles around the cavitation erosion pits on carbon steel upon the ultrasonic cavitation in methylene blue solution. Each self-assembled structure was composed of linearly aligned nanoparticles of about 100 nm. The formation of self-assembled structures might be due to the combined effect of corr...

  14. Opuntia ficus-indica Extract as Green Corrosion Inhibitor for Carbon Steel in 1 M HCl Solution

    OpenAIRE

    J. P. Flores-De los Ríos; M. Sánchez-Carrillo; C. G. Nava-Dino; J.G. Chacón-Nava; González-Rodríguez, J. G.; Huape-Padilla, E.; Neri-Flores, M. A.; Martínez-Villafañe, A.

    2015-01-01

    The effect of Opuntia ficus-indica (Nopal) as green corrosion inhibitor for carbon steel in 1 M HCl solution has been investigated by using weight loss tests, potentiodynamic polarization curves, and electrochemical impedance spectroscopy measurements. Also, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) analysis were performed. The inhibitor concentrations used ranged from 0 to 300 ppm at 25, 40, and 60°C. Results indicated the inhibition efficiency in...

  15. Pitting Corrosion Behavior of Stainless Steel 304 in Carbon Dioxide Environments

    Institute of Scientific and Technical Information of China (English)

    LI Guo-min; GUO Xing-peng; ZHENG Jia-shen

    2004-01-01

    The pitting corrosion behavior of stainless steel (SS) 304 in aqueous CO2-H2S-Cl- environment was investigated by potentiodynamic cyclic anodic polarization and electron probe microanalysis (EPMA). The experimental results show that the pitting corrosion susceptivity of SS 304 increases with the increase of temperature. Chlorine ion is the prerequisite for pitting corrosion of SS 304 in H2S-CO2 environments. There is a linear relationship between the pitting corrosion potential (Eb-100) and chlorine ion concentration, and Eb-100 becomes noble with increasing pH value of the solution with or without H2S. pH value has little effect on the protection potential with the presence of H2S. H2S increases strongly the pitting corrosion susceptivity and deteriorates the pitting corrosion resistance of SS 304 in CO2 environments. The observations by EPMA show that SS 304 in CO2-saturated NaCl solution (3 %) with H2S suffers pitting corrosion accompanied with intergranular corrosion.

  16. Effects of Inclusions in HSLA Carbon Steel on Pitting Corrosion in CaCl2

    Energy Technology Data Exchange (ETDEWEB)

    M. Ziomek-Moroz; S. Bullard; K. Rozman; J.J. Kruzic

    2011-12-05

    Susceptibility of high strength low alloy steel to localized corrosion was studied in 6.7 M CaCl{sub 2} for oil and natural gas drilling applications. Results of the immersion and electrochemical experiments showed that the steel is susceptible to pitting corrosion. Optical microscopy investigations of the polished samples revealed that 10% of the surface area was occupied by defects in the form of pits. The energy dispersive X-ray (EDX) and wavelength dispersive X-ray (WDX) chemical analyses revealed higher concentrations of Mn and S compared to the metal matrix in defected areas. These areas served as the sites for development of corrosion pits during both immersion and electrochemical experiments. The fatigue results of the corroded samples indicate that if the pit was the most significant defect, the fatigue crack initiated and propagated at this site.

  17. A Conceptual Model for the Interaction between Carbon Content and Manganese Sulphide Inclusions in the Short-Term Seawater Corrosion of Low Carbon Steel

    Directory of Open Access Journals (Sweden)

    Robert E. Melchers

    2016-05-01

    Full Text Available The critical role of manganese sulphide (MnS inclusions for the initiation of the short-term growth of pitting or localized corrosion of low carbon steels has long been recognized. Classical results show that pitting probability and pitting severity increases with increased sulphide concentration for low carbon steels as a result of magnesium sulphides acting as local cathodes for initiating pitting corrosion. However, the iron carbides (cementite in steels can also act as local cathodes for initiation of pitting corrosion. Herein it is proposed that there is competition between pits for cathodic area and that this will determine the severity of pitting and general corrosion observed in extended exposures. Preliminary experimental data for immersion exposures of up to 56 days in natural seawater of three low carbon steels show, contrary to conventional wisdom, greater pit depths for the steels with lower S content. However, the pit depth results are consistent with lower C/S ratios. This is considered to support the concept of cathodic competition between C and S. It is proposed that this offers explanations for a number of other phenomena, including the thus far unexplained apparently higher reactivity of some MnS inclusions.

  18. Corrosion behavior of carbon steel containers with organic coating during interim storage and disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    In the Federal Republic of Germany low and intermediate level wastes (e.g., solids, concentrates) are conditioned in carbon steel canisters with organic coating. For this purpose waste drums and steel sheet containers are used. They serve as unshielded packagings during interim storage, transport and disposal in the Konrad mine or in the Gorleben salt dome. Considering the licensing situation for the planned repositories, interim storage periods of up to 20 years are possible. During this period, the transport to the repository and in the operation phase of the repository, the integrity of the waste packaging must be guaranteed. Therefore, special attention must be paid to the corrosion behavior of the steel sheet packagings described in this report. For these reasons, corrosion studies were made on epoxy resin coated or polyurethane coated and uncoated stell sheet specimens. In the investigations design details of the containers (e.g., roundings, screwed connections, gaps, welded seams) as well as damage due to handling (cracks in the organic coating) were taken into account. The specimens were stored for six and twelve months, respectively, both in waste form simulates (inner corrosion of container) and under simulated conditions of an interim storage (storage hall) and of a repository (storage galeries in Konrad and Asse, salt brines) in order to be able to describe external container corrosion. Under simplifying boundary conditions an extrapolation is made of the test results. It has been possible to show that the carbon steel containers described here, provided with a 150 μm epoxy resin coating on the inner and external sides, fulfil the requirements imposed on them as regards their corrosion behavior. (orig.)

  19. The effect of various deformation processes on the corrosion behavior of casing and tubing carbon steels in sweet environment

    Science.gov (United States)

    Elramady, Alyaa Gamal

    The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher

  20. Novel quaternary ammonium hydroxide cationic surfactants as corrosion inhibitors for carbon steel and as biocides for sulfate reducing bacteria (SRB)

    International Nuclear Information System (INIS)

    A series of alkyl dimethylisopropylammonium hydroxide cationic surfactants (DEDIAOH, DODIAOH and HEDIAOH) was synthesized and characterized. The surface properties such as the critical micelle concentration (CMC), the effectiveness of surface tension reduction (ΠCMC), surface excess concentration (Γmax) and surface area per molecule (Amin) have been determined by means of surface tension measurements. The degree of counter ion dissociation (β) and the free energy of micellization (ΔGmic) were calculated. The corrosion inhibition of the synthesized cationic surfactants on carbon steel surface in 1 M HCl solution was investigated. For this purpose, a series of techniques such as gravimetric measurement, potentiodynamic polarization and scanning electron microscope (SEM) were used. The values of activation energy for carbon steel corrosion and the thermodynamic parameters such as adsorption equilibrium constant (Kads), free energy of adsorption (ΔGadso), adsorption heat (ΔHadso) and adsorption entropy (ΔSadso) values were evaluated. Results showed that HEDIAOH had better inhibition effect than DEDIAOH and DODIAOH of the corrosion of carbon steel in 1 M HCl solution and inhibition efficiency is higher than 96% after 24 h at 1 x 10-2 M concentration of the inhibitor. The inhibition efficiency is discussed in terms of strong adsorption of the inhibitor molecules on the metal surface and formation of a protective film. Scanning electron microscope (SEM) showed a good surface coverage on the metal surface. The Biological activity was examined against sulfate reducing bacteria (SRB) by dilution method.

  1. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid

    International Nuclear Information System (INIS)

    The effect of succinic acid (SA) on the corrosion inhibition of a low carbon steel (LCS) electrode has been investigated in aerated non-stirred 1.0 M HCl solutions in the pH range (2-8) at 25 oC. Weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were applied to study the metal corrosion behaviour in the absence and presence of different concentrations of SA under the influence of various experimental conditions. Measurements of open circuit potential (OCP) as a function of time till steady-state potentials (E st) were also established. Surface analysis using energy dispersive X-ray (EDX) and scanning electron microscope (SEM) allowed us to clarify the mechanistic aspects and evaluate the relative inhibition efficiency. Results obtained showed that SA is a good 'green' inhibitor for LCS in HCl solutions. The polarization curves showed that SA behaves mainly as an anodic-type inhibitor. EDX and SEM observations of the electrode surface confirmed existence of a protective adsorbed film of the inhibitor on the electrode surface. The inhibition efficiency increases with increase in SA concentration, pH of solution and time of immersion. Maximum inhibition efficiency (∼97.5%) is obtained at SA concentrations >0.01 M at pH 8. The effect of SA concentration and pH on the potential of zero charge (PZC) of the LCS electrode in 1.0 M HCl solutions has been studied and the mechanism of adsorption is discussed. Results obtained from weight loss, polarization and impedance measurements are in good agreements

  2. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, M.; de la Fuente, D.; I. Díaz; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morphology of steel c...

  3. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arman Abdullah

    2014-01-01

    Full Text Available Various cases of accidents involving microbiology influenced corrosion (MIC were reported by the oil and gas industry. Sulfate reducing bacteria (SRB have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were investigated using a weight loss method, an open circuit potential method (OCP, and a potentiodynamic polarization curves method in anaerobic conditions. Scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDS were then used to determine the corrosion morphology in verifying the SRB activity and corrosion products formation. Results from the study show that the corrosion rate (CR of weight loss method for the isolated SRB is recorded as 0.2017 mm/yr compared to 0.2530 mm/yr for ATCC 7757. The Tafel plot recorded the corrosion rate of 0.3290 mm/yr for Sg. Ular SRB and 0.2500 mm/yr for Desulfovibrio vulgaris. The results showed that the consortia of isolated SRB were of comparable effects and features with the single ATCC 7757 strain.

  4. Evaluation of thermal decomposition rate of carbohydrazide and its reducing effect on carbon steel corrosion

    International Nuclear Information System (INIS)

    Hydrazine as an oxygen scavenger has been widely used for the feed water treatment of PWR secondary side and fossil power plants in the world. However, there is some concern over health and safety issues related to the use of hydrazine. Carbohydrazide is listed up as one of alternative oxygen scavengers. In this study, laboratory tests were performed to examine the thermal decomposition rate of carbohydrazide and its reducing effect on carbon steel corrosion in comparison with hydrazine. Test results revealed that carbohydrazide was stable below 373 K. The thermal decomposition ratios of carbohydrazide were less than 50% after 20 minutes exposure in the range of 373 K to 428 K. Its thermal decomposition rate constant was derived from experimental test data. The measurement of dissolved oxygen concentration also showed that carbohydrazide possessed a fairly good oxygen scavenger property. Judging from test results mentioned above, it was concluded that carbohydrazide is applicable as an alternative oxygen scavenger for feedwater treatment in PWR and fossil power plant

  5. Microbial corrosion and cracking in steel. Fundamental studies on the electrochemical behaviour of carbon steel exposed in sulphide and sulphate-reducing environments

    Energy Technology Data Exchange (ETDEWEB)

    Rischel Hilbert, Lisbeth

    1998-08-01

    The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies and for recommendations in regards to electrochemical monitoring of MIC. The work presented here and further studies are also planned to lead to a Ph.D. thesis on `MIC monitoring based on mechanisms on corrosion`. The results of laboratory experiments conducted in the period 1995 to 1997 are summarised. Conclusions will be based on results from the entire 3 year period, but only selected experimental data primarily from the latest experiments will be presented in detail here. Microbial corrosion of carbon steel under influence of sulphate-reducing bacteria (SRB) is characterised by the formation of both biofilm and corrosion products (ferrous sulphides) on the metal surface. Experiments have been conducted on carbon steel exposed in near neutral (pH 6 to 8.5) saline hydrogen sulphide environment (0 to 100 mg/l total dissolved sulphide) for a period of 14 days. Furthermore coupons have been exposed in a bioreactor for a period of up to 120 days in sulphide-producing environment controlled by biological activity of (SRB). (au)

  6. The microwave assisted synthesis of 1-alkyl-3-methylimidazolium bromide as potential corrosion inhibitor toward carbon steel in 1 M HCl solution saturated with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Pasasa, Norman Vincent A., E-mail: npasasa@gmail.com; Bundjali, Bunbun; Wahyuningrum, Deana [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10 Bandung, Jawa Barat (Indonesia)

    2015-09-30

    Injection of corrosion inhibitor into the fluid current of oil and gas pipelines is an effective way to mitigate corrosion rate on the inner-surface parts of pipelines, especially carbon steel pipelines. In this research, two alkylimidazolium ionic liquids, 1-decyl-3-methylimidazolium bromide (IL1) and 1-dodecyl-3-methylimidazolium bromide (IL2) have been synthesized and studied as a potential corrosion inhibitor towards carbon steel in 1 M HCl solution saturated with carbon dioxide. IL1 and IL2 were synthesized using microwave assisted organic synthesis (MAOS) method. Mass Spectrometry analysis of IL1 and IL2 showed molecular mass [M-H+] peak at 223.2166 and 251.2484, respectively. The FTIR,{sup 1}H-NMR and {sup 13}C-NMR spectra confirmed that IL1 and IL2 were successfully synthesized. Corrosion inhibition activity of IL1 and IL2 were determined using weight loss method. The results showed that IL1 and IL2 have the potential as good corrosion inhibitors with corrosion inhibition efficiency of IL1 and IL2 are 96.00% at 100 ppm (343 K) and 95.60% at 50 ppm (343 K), respectively. The increase in the concentration of IL1 and IL2 tends to improve their corrosion inhibition activities. Analysis of the data obtained from the weight loss method shows that the adsorption of IL1 and IL2 on carbon steel is classified into chemisorption which obeys Langmuir’s adsorption isotherm.

  7. Localized corrosion of carbon steels due to sulfate-reducing bacteria. Development of a specific sensor; Corrosion localisee des aciers au carbone induite par des bacteries sulfato-reductrices. Developpement d'un capteur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Monfort Moros, N.

    2001-11-01

    This work concerns the microbiologically influenced corrosion of carbon steels in saline anaerobic media (3% of NaCl) containing sulfato-reducing bacteria (Desulfovibrio gabonensis, DSM 10636). In these media, extreme localised corrosion occurs by pitting under the bio-film covering the metallic substrate. A sensor with concentric electrodes was designed to initiate the phenomenon of bio-corrosion, recreating the favourable conditions for growth of a corrosion pit, and then measuring the corrosion current maintained by bacterial activity. The pit initiation was achieved through either of two methods. The electrochemical conditioning involved driving the potential difference between inner and outer electrodes to values corresponding to a galvanic corrosion that can be maintained by the bacterial metabolism. The mechanical process involved removal of a portion of the bio-film by scratching, yielding galvanic potential differences equivalent to that found by the conditioning technique. This protocol was found to be applicable to a bio-corrosion study on industrial site for the monitoring of the metallic structures deterioration (patent EN 00/06114, May 2000). Thereafter, a fundamental application uses the bio-corrosion sensor for Electrochemical Impedance Spectroscopy (EIS), Electrochemical Noise Analysis (ENA) and current density cartography by the means of micro-electrodes. Thus, the EIS technique reveals the importance of the FeS corrosion products for initiation of bio-corrosion start on carbon steel. In addition, depending on the method used to create a pit, the ENA gives rise to supplementary processes (gaseous release) disturbing the bio-corrosion detection. The beginning of a bio-corrosion process on a clean surface surrounded with bio-film was confirmed by the current density cartography. These different results establish the sensor with concentric electrodes as an indispensable tool for bio-corrosion studies, both in the laboratory and on industrial sites

  8. Corrosion of steel in ionic liquids

    OpenAIRE

    Arenas M.F.; Reddy R.G.

    2003-01-01

    The corrosion behavior of 1018 carbon steel alloy has been investigated by electrochemical techniques. The ionic liquids studied were 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1 hexyl-3-methylimidazolium hexafluorophosphate ([C6mim]PF6) 1-octyl-3-methylimidazolium hexafluorophosphate ([C8mim]PF6), and 1-butyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) imide ([C4mim][Tf2N]). Potentiodynamic polarization and Tafel plots were used to determine the corrosion behavior of the carbon...

  9. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    Science.gov (United States)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  10. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions - Part 1: Long term corrosion behaviour

    International Nuclear Information System (INIS)

    Highlights: → Anaerobic-aerobic cycling on pipeline steel forms two distinct surface morphologies. → Seventy-five percentage of the surface was covered by a black, compact layer ∼4.5 μm thick. → A tubercle, ∼3 to 4 mm in cross section, covered the remaining 25% of surface. → The tubercle cross section showed a single large pit ∼275 μm deep. - Abstract: The influence of anaerobic-aerobic cycling on pipeline steel corrosion was investigated in near-neutral carbonate/sulphate/chloride solution (pH 9) over 238 days. The corrosion rate increased and decreased as exposure conditions were switched between redox conditions. Two distinct corrosion morphologies were observed. The majority of the surface corroded uniformly to produce a black magnetite/maghemite layer approximately 4.5 μm thick. The remaining surface was covered with an orange tubercle, approximately 3-4 mm in cross section. Analysis of the tubercle cross section revealed a single large pit approximately 275 μm deep. Repeated anaerobic-aerobic cycling localized the corrosion process within this tubercle-covered pit.

  11. Development of an equipment for the detection and measurement of localized corrosion of carbon steel induced by sulfidogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cotiche, C. [CFG Services, 3 avenue Claude Guillemin, BP 6429, 45064 Orleans Cedex (France); Dauma, S. [CFG Services, 117 avenue de Luminy, 13009 Marseille (France)

    2004-07-01

    Most of the geothermal installations exploiting the Dogger aquifer of the Paris basin are faced to corrosion and scaling problems. Localized corrosion phenomena due to the presence of sulfate reducing bacteria which have been identified in the geothermal water and in scales deposited on corrosion coupons is the most insidious being able to induce rapid failures of the casings of production and injection wells and surface pipelines. In order to evaluate and prevent the occurrence of such corrosion risks that are similar to those encountered in oil and gas industry, a specific equipment has been developed by CFG Services, engineering company specialized in the exploitation and maintenance of geothermal plants. This equipment which includes a probe and an electronic device has to be installed on the pipeline transporting the corrosive medium through a nipple secured to it. The principle is based on the generation of a pit on a circular electrode in carbon steel by anodic polarization and on the measurement of the corrosion current between this electrode and the pipeline or the probe body used as cathodic pole. Then, the current freely flowing between the anode and cathode is monitored and used to estimate if the pitting corrosion artificially created by an electric pulse may be maintained or not by the activity of sulfidogenic bacteria which may have developed on the surface of the electrode. This equipment has been tested on a geothermal exploitation where the risk of microbial corrosion has been identified and the sensibility of the signal of the probe to the injection of biocide products proved. (authors)

  12. Corrosion Inhibition Performance of Lignin Extract of Sun Flower (Tithonia Diversifolia on Medium Carbon Low Alloy Steel Immersed in H2SO4 Solution

    Directory of Open Access Journals (Sweden)

    Kenneth K. ALANEME

    2012-08-01

    Full Text Available The inhibition potentials of lignin extract of sun flower was investigated by evaluating the corrosion behaviour of medium carbon low alloy steel immersed in 1M H2SO4 solution containing varied concentration of the extract. Mass loss, corrosion rate, and adsorption characterization were utilized to evaluate the corrosion inhibition and adsorption properties of the extract. The results revealed that the lignin extract is an efficient inhibitor of corrosion in mild steel immersed in 1M H2SO4. The corrosion rates were observed to decrease with increase in concentration of lignin extract but increase with temperature. The activation energies and the negative free energy of adsorption obtained from the adsorption studies indicate that the lignin extract is physically adsorbed on the surface of the steel and that the adsorption is strong, spontaneous and fit excellently with the assumptions of the Langmuir adsorption isotherm.

  13. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, Manuel; Fuente, Daniel de la; Díaz Ocaña, Iván; Cano, Heidis

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morpholog...

  14. Effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 thermal barrier coatings

    Science.gov (United States)

    Huang, Liang-liang; Meng, Hui-min; Liang, Li-kang; Li, Sen; Shi, Jin-hui

    2015-10-01

    LaMgAl11O19 thermal barrier coatings (TBCs) were applied to carbon steels with a NiCoCrAlY bond coat by plasma spraying. The effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs were investigated in 3.5wt% NaCl solution using polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results show that a large number of cracks are found in the LaMgAl11O19 TBCs after the samples are heat-treated, including some through-thickness cracks. The corrosion forms of the as-sprayed and heat-treated TBCs are uniform corrosion and pitting corrosion, respectively. The as-sprayed TBCs exhibit three EIS time constants after being immersed for less than 7 d, and then a new time constant appears because of steel substrate corrosion. When the immersion time is increased to 56 d, a Warburg impedance ( W) component appears in the EIS data. The EIS data for the heat-treated TBCs exhibit only two time constants after the samples are immersed for less than 14 d, and a new time constant appears when the immersion time is increased further. The heat treatment reduces the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs. The corrosion products are primarily γ-FeOOH and Fe3O4.

  15. POTENTIAL FOR STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS CONTAINING HIGHLY CAUSTIC SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.; Stripling, C.; Fisher, D.; Elder, J.

    2010-04-26

    The evaporator recycle streams of nuclear waste tanks may contain waste in a chemistry and temperature regime that exceeds the current corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history found that two of these A537 carbon steel tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved tanks of similar construction. Therefore, it appears that the efficacy of stress relief of welding residual stress is the primary corrosion-limiting mechanism. The objective of this experimental program is to test A537 carbon steel small scale welded U-bend specimens and large welded plates (30.48 x 30.38 x 2.54 cm) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in these nuclear waste tanks. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test was completed after 12 weeks of immersion in a similar solution at 125 C except that the aluminate concentration was reduced to 0.3 M. Visual inspection of the plate revealed that stress corrosion cracking had not initiated from the machined crack tips in the weld or in the heat affected zone. NDE ultrasonic testing also confirmed subsurface cracking did not occur. Based on these results, it can be concluded that the environmental condition of these tests was unable to develop stress corrosion cracking within the test periods for the small welded U-bends and for the large plates, which were welded with an identical procedure as used in the construction of the actual nuclear waste tanks in the 1960s. The

  16. Study of Temperature Effect on the Corrosion Inhibition of C38 Carbon Steel Using Amino-tris(Methylenephosphonic Acid in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Najoua Labjar

    2011-01-01

    Full Text Available Tafel polarization method was used to assess the corrosion inhibitive and adsorption behaviours of amino-tris(methylenephosphonic acid (ATMP for C38 carbon steel in 1 M HCl solution in the temperature range from 30 to 60∘C. It was shown that the corrosion inhibition efficiency was found to increase with increase in ATMP concentration but decreased with temperature, which is suggestive of physical adsorption mechanism. The adsorption of the ATMP onto the C38 steel surface was found to follow Langmuir adsorption isotherm model. The corrosion inhibition mechanism was further corroborated by the values of kinetic and thermodynamic parameters obtained from the experimental data.

  17. Microbial corrosion of stainless steel.

    Science.gov (United States)

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  18. MECHANICAL PROPERTIES AND CORROSION PROTECTION OF CARBON STEEL COATED WITH AN EPOXY BASED POWDER COATING CONTAINING MONTMORILONITE FUNCTIONALIZED WITH SILANE

    Directory of Open Access Journals (Sweden)

    Paula Tibola Bertuoli

    2014-06-01

    Full Text Available In the present work the MMT-Na+ clay was functionalized with 3-aminopropyltriethoxysilane (γ-APS and incorporated in a commercial formulation epoxy-based powder coating in a proportion of 8 wt% and applied on 1008 carbon steel panels by electrostatic spray. Adhesion, flexibility, impact and corrosion performance in salt spray chamber tests were performed to evaluate the coatings. The presence of clay did not affect the mechanical properties of the film, however greater subcutaneous migration was assessed after the completion of salt spray testing, which can compromise the use of paints obtained as primers.

  19. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    Science.gov (United States)

    Liu, Ming; Xu, Hong-feng; Fu, Jie; Tian, Ying

    2016-07-01

    Ni-Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  20. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    Institute of Scientific and Technical Information of China (English)

    Ming Liu; Hong-feng Xu; Jie Fu; Ying Tian

    2016-01-01

    Ni–Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was depositedin situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L−1 H2SO4 solution containing 5 ppm F− at 80°C was inves-tigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  1. INHIBITION OF STRESS CORROSION CRACKING OF CARBON STEEL STORAGE TANKS AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER, K.D.

    2007-01-31

    The stress corrosion cracking (SCC) behavior of A537 tank steel was investigated in a series of environments designed to simulate the chemistry of legacy nuclear weapons production waste. Tests consisted of both slow strain rate tests using tensile specimens and constant load tests using compact tension specimens. Based on the tests conducted, nitrite was found to be a strong SCC inhibitor. Based on the test performed and the tank waste chemistry changes that are predicted to occur over time, the risk for SCC appears to be decreasing since the concentration of nitrate will decrease and nitrite will increase.

  2. Microstructure, Wear, and Corrosion Characteristics of TiC-Laser Surface Cladding on Low-Carbon Steel

    Science.gov (United States)

    El-Labban, Hashem F.; Mahmoud, Essam Rabea Ibrahim; Algahtani, Ali

    2016-04-01

    Laser cladding was used to produce surface composite layer reinforced with TiC particles on low-carbon steel alloy for improving the wear and corrosion resistances. The cladding process was carried out at powers of 2800, 2000, 1500, and 1000 W, and a fixed traveling speed of 4 mm/s. The produced layers are free from any cracks. Some of the TiC particles were melted and then re-solidified in the form of fine acicular dendrites. The amount of the melted TiC was increased by increasing the laser power. The hardness of the produced layers was improved by about 19 times of the base metal. Decreasing laser power led to hardness increment at the free surface. The improvement in wear resistance was reached to about 25 times (in case of 1500 W) of the base metal. Moreover, the corrosion resistance shows remarkable improvement after the laser treatment.

  3. PREPARATION AND CORROSION RESISTANCE OF NiP/TiO2 COMPOSITE FILM ON CARBON STEEL IN SULFURIC ACID SOLUTION

    Institute of Scientific and Technical Information of China (English)

    L.Z. Song; S.Z. Song; J. Zhao

    2006-01-01

    A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy)and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.

  4. Influences of Temperature and pH Value on the Corrosion Behaviors of X80 Pipeline Steel in Carbonate/Bicarbonate Buffer Solution

    Institute of Scientific and Technical Information of China (English)

    LI,Jin-Bo; ZUO,Jian-E

    2008-01-01

    The joint effect of temperature and pH value on the corrosion behavior of X80 steel in carbonate/bicarbonate buffer solution was detected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis. The results show that an unstable corrosion film will be formed on the X80 steel surface in low pH value solutions, and a better protective corrosion film can be formed on the X80 steel surface in high pH value solutions. On the whole, the corrosion film resistance and transfer resistance increase with the increment of pH value, and decrease with increase of solution temperature, which indicates that the protective effect of the corrosion film on X80 steel is enhanced with increasing pH value and decreasing the solution temperature. The corrosion film formed on X80 steel surface in carbonate/bicarbonate buffer solution has an n-type semi-conductive character, and the donor density decreases with increasing the pH value, and increases with increasing the solution temperature. The flat-band potential and pH value have a linear relationship with a positive slope.

  5. The Effect of Temperature and Acid Gas Loading on Corrosion Behavior of API 5L X52 Carbon Steel in Amine Unit

    Science.gov (United States)

    Javidi, M.; Lalehparvar, M. M.; Ghassemi, A.

    2016-05-01

    The effect of temperature and H2S concentration on amine corrosion of API 5L X52 carbon steel in a CO2-saturated 25 wt.% diethanolamine solution was investigated via electrochemical techniques. It was found that increase in temperature from 25 to 80 °C resulted in severe increase in corrosion rate from 0.88 to 16.24 mpy due to increase in degradation rate of amine. Also, it was concluded that increase in H2S concentration led to increase in corrosion rate because of formation of more heat stable amine salts. The effect of temperature on corrosion rate was more significant than acid gas loading.

  6. The effect of pre-oxidation and the influence of deformation on the corrosion behaviour of two heat resistant steels in a sulphur-oxygen-carbon bearing environment

    International Nuclear Information System (INIS)

    The influence of pre-oxidation on the corrosion resistance of the austenitic steels AC 66 (Fe-32Ni-27Cr-0.07Ce) and alloy 800H (Fe-32Ni-20Cr) was studied in a sulphur-oxygen-carbon bearing atmospheric at 700oC. For AC 66 the corrosion resistance was significantly improved by preoxidation, whereas this effect was less marked for Alloy 800H. This can be explained by a much better adherence of the preformed oxide scale for AC 66. The corrosion resistance was shown to decrease by superimposed deformation which leads to deeply penetrating intergranular corrosion paths. (Author)

  7. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.

    Directory of Open Access Journals (Sweden)

    Huabing Li

    Full Text Available Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC of carbon steels. MIC by sulfate reducing bacteria (SRB is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.

  8. Electrochemical evaluation of antibacterial drugs as environment-friendly inhibitors for corrosion of carbon steel in HCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Golestani, Gh.; Shahidi, M., E-mail: shahidi1965@gmail.com; Ghazanfari, D.

    2014-07-01

    The effect of penicillin G, ampicillin and amoxicillin drugs on the corrosion behavior of carbon steel (ASTM 1015) in 1.0 mol L⁻¹ hydrochloric acid solution was investigated using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques. The inhibition efficiency was found to increase with increasing inhibitor concentration. The effect of temperature on the rate of corrosion in the absence and presence of these drugs was also studied. Some thermodynamic parameters were computed from the effect of temperature on corrosion and inhibition processes. Adsorption of these inhibitors was found to obey Langmuir adsorption isotherm. There was a case of mixed mode of adsorption here but while penicillin was adsorbed mainly through chemisorption, two other drugs were adsorbed mainly through physisorption. Potentiodynamic polarization measurements indicated that the inhibitors were of mixed type. In addition, this paper suggests that the electrochemical noise (EN) technique under open circuit conditions as the truly noninvasive electrochemical method can be employed for the quantitative evaluation of corrosion inhibition. This was done by using the standard deviation of partial signal (SDPS) for calculation of the amount of noise charges at the particular interval of frequency, thereby obtaining the inhibition efficiency (IE) of an inhibitor. These IE values showed a reasonable agreement with those obtained from potentiodynamic polarization and EIS measurements.

  9. Influence and role of ethanol minor constituents of fuel grade ethanol on corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    Highlights: • The pitting factors of the minor contents of ethanol are acetic acid, Cl and H2O. • Formic acid in ethanol promotes general corrosion. • The H2O content in fuel-grade-ethanol (FGE) affects the corrosion morphology. • Acetic acid generates iron acetate, which has high solubility in FGE environments. • A pitting mechanism based on the rupture of passive film is proposed. - Abstract: The influences of organic acids, chloride and water on the corrosion behavior of carbon steel in fuel grade ethanol (FGE) environments were investigated by immersion testing in simulated FGE. The roles of acetic acid, chloride and water in pitting corrosion were studied by using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES) and electrochemical experiments. The results indicated that iron acetate is generated on oxide film. Iron(II) acetate shows high solubility in FGE environments. The sites where iron(II) acetate is existed become preferential anodic sites, and chloride promotes anodic dissolution at such sites

  10. A Study of N,N-Diethylammonium O,O′-Di(p-methoxyphenyldithiophosphate as New Corrosion Inhibitor for Carbon Steel in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Chuan Lai

    2016-01-01

    Full Text Available N,N-Diethylammonium O,O′-di(p-methoxyphenyldithiophosphate (EAPP as a new corrosion inhibitor was synthesized in the present work. The corrosion inhibition of EAPP in hydrochloric acid for carbon steel was evaluated by potentiodynamic polarization measurements, electrochemical impedance spectroscopy, weight loss measurements, and scanning electron microscopy. The results indicate that the EAPP is mixed type inhibitor, and the adsorption of EAPP on carbon steel surface obeys Langmuir isotherm. In addition, the inhibition efficiency increases with increasing the concentration of inhibitor and decreases with increasing the hydrochloric acid concentration, temperature, and storage time.

  11. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel

    Science.gov (United States)

    Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Cai, Xun; Wu, Yixiong

    2014-03-01

    High electrical conductivity and corrosion resistance are central to advances in wider application of metallic bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). In this study, C/Cr-Ti-N multilayer coatings are deposited by physical vapor deposition and the effect of Cr:Ti ratio on the corrosion resistance and interfacial contact resistance (ICR) are systematically investigated. Scanning electron microscopy (SEM) result shows that the carbon layer is compact and uniform. Excellent corrosion resistance of 0.127 μA cm-2 current density at operating voltage in PEMFC cathode environment and low ICR of 2.03 mΩ-cm2 at compaction force of 150 N cm-2 are achieved when Cr:Ti ratio is 2:4 and 3:3, respectively. The significant enhancement in surface conductivity is probably because that the current comes from carbon paper is homogenized by two electrically conductive layers and flows to the passive film with much more contact area. After polarization, ICR increase to 3.07 mΩ-cm2 and 3.02 mΩ-cm2 in the simulated PEMFC cathode and anode environment, respectively. However, the Raman spectroscopy results disclose that the bonding type of top carbon film before and after polarization shows little difference. The results indicate that C/Cr-Ti-N multilayer coating with Cr:Ti ratio of 2:4 achieves the optimal composition.

  12. Adsorption and inhibition effect of Ascorbyl palmitate on corrosion of carbon steel in ethanol blended gasoline containing water as a contaminant

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Inhibition performance was studied using weight loss and EIS methods. •The addition of ethanol and water to gasoline increase the corrosion rate of C-steel. •Ascorbyl palmitate has good inhibition efficiency for C-steel in blend fuel. •Efficiency more than 96% was obtained with 120 mg l−1 AP at 298 K. •The adsorption of AP on C-steel surface obeys Langmuir adsorption isotherm. -- Abstract: The adsorption and inhibition effect of Ascorbyl palmitate (AP) on carbon steel in ethanol blended gasoline containing water as a contaminant (GE10 + 1%water) was studied by weight loss and electrochemical impedance spectroscopic (EIS) techniques. The results showed that the addition of ethanol and water to gasoline increase the corrosion rate of carbon steel. AP inhibits the corrosion of carbon steel in (GE10 + 1% water) solution to a remarkable extent. The adsorption of AP on the carbon steel surface was found to obey the Langmuir adsorption isotherm model. The values of activation energy (Ea) and various thermodynamic parameters were calculated and discussed

  13. Microbial corrosion and cracking in steel. Assessment of soil corrosivity using an electrochemical soil corrosion probe

    Energy Technology Data Exchange (ETDEWEB)

    Vendelbo Nielsen, L.

    1998-08-01

    An electrochemical soil corrosion probe has been designed, manufactured, and tested at five different locations in the field. The probe includes facilities for hydrogen permeation measurements, local soil resistivity measurements by the Wenner fourpoint method, and open circuit potential measurements on carbon steel- and high-alloyed (SMO-254) stainless steel electrodes. The carbon steel electrodes were arranged as two sets of three-electrode arrangements. Using these arrangements, electrochemical impedance spectroscopy (EIS), galvanostatic pulse (GP) measurements, and DC polarisation scans were applied for characterisation of the corrosion conditions present in the soil. (au) EFP-95. 21 refs.

  14. Corrosion of Steel in Concrete, Part I – Mechanisms

    DEFF Research Database (Denmark)

    Küter, André; Møller, Per; Geiker, Mette Rica

    2006-01-01

    prematurely. Reinforcement corrosion is identified to be the foremost cause of deterioration. Steel in concrete is normally protected by a passive layer due the high alkalinity of the concrete pore solution; corrosion is initiated by neutralization through atmospheric carbon dioxide and by ingress...... of depassivation ions, especially chloride ions. The background and consequences of deterioration of reinforced concrete structures caused by steel corrosion are summarized. Selected corrosion mechanisms postulated in the literature are briefly discussed and related to observations. The key factors controlling...... initiation and propagation of corrosion of steel in concrete are outlined....

  15. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65

    International Nuclear Information System (INIS)

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  16. INVESTIGATION OF THE POTENTIAL FOR CAUSTIC STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.

    2009-10-15

    The evaporator recycle streams contain waste in a chemistry and temperature regime that may be outside of the current waste tank corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history (1998-2008) of Tanks 30 and 32 showed that these tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved F-Area tanks. Therefore, for the Type III/IIIA waste tanks the efficacy of the stress relief of welding residual stress is the only corrosion-limiting mechanism. The objective of this experimental program is to test carbon steel small scale welded U-bend specimens and large welded plates (12 x 12 x 1 in.) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in Tanks 30 and 32. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test is currently in progress, but no cracking has been observed after 9 weeks of immersion. Based on the preliminary results, it appears that the environmental conditions of the tests are unable to develop stress corrosion cracking within the duration of these tests.

  17. Improvement in nano-hardness and corrosion resistance of low carbon steel by plasma nitriding with negative DC bias voltage

    Science.gov (United States)

    Alim, Mohamed Mounes; Saoula, Nadia; Tadjine, Rabah; Hadj-Larbi, Fayçal; Keffous, Aissa; Kechouane, Mohamed

    2016-10-01

    In this work, we study the effect of plasma nitriding on nano-hardness and corrosion resistance of low carbon steel samples. The plasma was generated through a radio-frequency inductively coupled plasma source. The substrate temperature increased (by the self-induced heating mechanism) with the treatment time for increasing negative bias voltages. X-rays diffraction analysis revealed the formation of nitride phases (ɛ-Fe2-3N and γ'-Fe4N) in the compound layer of the treated samples. A phase transition occurred from 3.5 kV to 4.0 kV and was accompanied by an increase in the volume fraction of the γ'-Fe4N phase and a decrease in that of the ɛ-Fe2-3N phase. Auger electron spectroscopy revealed a deep diffusion of the implanted nitrogen beyond 320 nm. The nano-hardness increased by ~400% for the nitrogen-implanted samples compared to the untreated state, the nitride phases are believed to participate to the hardening. Potentiodynamic polarization measurements revealed that the plasma nitriding has improved the corrosion resistance behavior of the material. When compared to the untreated state, the sample processed at 4.0 kV exhibits a shift of +500 mV and a reduction to 3% in its corrosion current. These results were obtained for relatively low bias voltages and short treatment time (2 h).

  18. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II: Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  19. RECRYSTALLIZATION BEHAVIOR AND PRIOR AUSTENITE GRAIN BOUNDARY CORROSION IN THE PLANE STRAIN COMPRESSION CONDITION FOR A LOW CARBON X70 PIPELINE STEEL

    Institute of Scientific and Technical Information of China (English)

    Y.H. Li; J. Wang; Y.S. Li; Y. Y. Shan

    2004-01-01

    Recrystallization behavior of a low carbon X70 pipeline steel was studied in the plane strain compression condition. It was found that the dynamic recovery but no dynamic recrystallization occurred in the current experimental condition. A method for examining the prior austenite grain boundary corrosion was supposed.

  20. Statistical analysis of a corrosion inhibitor family on three steel surfaces (duplex, super-13 and carbon) in hydrochloric acid solutions

    International Nuclear Information System (INIS)

    Previous studies have addressed the experimental and theoretical investigation of the inhibition corrosion efficiencies (ICE) of single metal surfaces. Along this line we carried out calculations concerning to 23 compounds on three different single-steel surfaces, duplex, super-13 and the carbon steel in hydrochloric acid (15% w/v) solutions. The overall experiment is composed of 69 results of weight loss ICEs at 60 deg. C for amines, alcohols, thiourea and its derivatives acting as corrosion inhibitors for three steel surfaces. In these studies ICEs were correlated with group and quantum AM1 descriptors through the use of three different statistical methodologies based on calibration and validation of regular and modified OLS and PLS (partial least squares) methods. All calculations have shown better results using weight isoesteric Langmuir adsorption function (WILA function), ln(θM/(1-θ)) or ln Kads, calculated from the weight loss data as the response function. The function -log(i) has been used, as well, on all comparisons. Variables describing the metal were added to the previous set of group and quantum IC variables and several models have been designed to fit the three-steel problem. Simple products of metal and IC variables with 250 (25 x 10) products were tested as model I. Selection of the best variable set was carried out for the calibration and validation procedures and these calculations indicated very few descriptors in common, i.e. each particular selection (calibration or validation) finds its own optimal descriptor set. The overall results showed excellent correlations with R2 values between 0.80 and 0.96 and a Q2 values from 0.75 to 0.93. We are unaware of any similar QSPR study on the steels here studied, and neither the study of such massive amount of data concerning molecular inhibitors on three different steel surfaces. Our best result for the second-order cross-validation descriptor selection employs 29 variables, Y29. The results

  1. Tungstate as a synergist to phosphonate-based formulation for corrosion control of carbon steel in nearly neutral aqueous environment

    Indian Academy of Sciences (India)

    B V Appa Rao; M Venkateswara Rao; S Srinivasa Rao; B Sreedhar

    2010-07-01

    Synergistic inhibition of corrosion of carbon steel in low chloride aqueous medium using tungstate as a synergist in combination with ,-(phosphonomethyl) glycine (BPMG) and zinc ions is presented. The synergistic action of tungstate has been established through the present studies. The new ternary inhibitor formulation is effective in neutral and slightly acidic as well as slightly alkaline media. Potentiodynamic polarisation studies inferred that the formulation functions as a mixed inhibitor. Impedance studies of the metal/solution interface revealed that the surface film is highly protective. Characterisation by X-ray photoelectron spectroscopy (XPS) of the surface film formed in presence of the inhibitor revealed the presence of iron, phosphorus, nitrogen, oxygen, carbon, zinc and tungsten in the surface film. The chemical shifts in the binding energies of these elements inferred that the surface film is composed of iron oxides/hydroxides, zinc hydroxide, heteropolynuclear complex [Fe(III), Zn(II)-BPMG] and WO3. Reflection absorption FTIR spectroscopic studies also supported the presence of these compounds in the surface film. Morphological features of the metal surface studied in the absence and presence of the inhibitor by scanning electron microscopy (SEM) are also presented. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.

  2. 碳钢在海水环境中的腐蚀和污损特性研究%Corrosion and Biofouling Character of Carbon Steel in Seawater

    Institute of Scientific and Technical Information of China (English)

    杨海洋; 黄桂桥

    2013-01-01

    Change of corrosion rate of carbon steels in seawater was discussed. Corrosion and biofouling character of carbon steels in seawater were summarized. The result showed that corrosion rate of the carbon steel exposed to seawater decreases with time, which is stable after one or two years of exposure;the corrosion course can be divided into the process dynamics controlled stage, the oxygen diffusion controlled stage, the growth of fouling organism controlled stage, and microbiological corrosion controlled stage.%讨论了碳钢材料在海水环境中的腐蚀速率随时间的变化情况,总结了碳钢在海水中不同暴露阶段的腐蚀和生物污损特性。结果显示,碳钢在海水中的腐蚀速度随时间延长而下降,暴露1~2年后腐蚀速率变化不显著,其腐蚀过程可分为腐蚀过程控制阶段、氧扩散控制阶段、污损生物成长控制阶段和微生物腐蚀控制阶段等4个阶段。

  3. Effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    Liang-liang Huang; Hui-min Meng; Li-kang Liang; Sen Li; Jin-hui Shi

    2015-01-01

    LaMgAl11O19 thermal barrier coatings (TBCs) were applied to carbon steels with a NiCoCrAlY bond coat by plasma spraying. The effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs were investigated in 3.5wt% NaCl solution using polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray diffrac-tion (XRD). The results show that a large number of cracks are found in the LaMgAl11O19 TBCs after the samples are heat-treated, including some through-thickness cracks. The corrosion forms of the as-sprayed and heat-treated TBCs are uniform corrosion and pitting corrosion, respectively. The as-sprayed TBCs exhibit three EIS time constants after being immersed for less than 7 d, and then a new time constant ap-pears because of steel substrate corrosion. When the immersion time is increased to 56 d, a Warburg impedance (W) component appears in the EIS data. The EIS data for the heat-treated TBCs exhibit only two time constants after the samples are immersed for less than 14 d, and a new time constant appears when the immersion time is increased further. The heat treatment reduces the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs. The corrosion products are primarilyγ-FeOOH and Fe3O4.

  4. Inhibition of acidic corrosion of carbon steel by some mono and bis azo dyes based on 1,5 dihydroxynaphihalene.

    Science.gov (United States)

    Abdallah, Metwally; Moustafa, Moustafa E

    2004-01-01

    Inhibition of the corrosion of carbon steel in hydrochloric acid solution by some mono- and bis-azo dyes based on 1,5-dihydroxynaphthalene was studied in relation to the concentration of inhibitors using weight loss and potentiostatic polarization techniques. The percentage inhibition efficiency calculated from two methods is in a good agreement with each other. The inhibition mechanism of the additives was ascribed to the formation of complex compound adsorbed on the metal surface. The adsorption process follows Freundlich adsorption isotherm. The formation of the complex compound was studied by conductometric and potentiometric titrations. The stability constants of the Fe-complexes were determined using the latter technique and related to the inhibition efficiency.

  5. Synthesis of Four Triazole Compounds and Their Corrosion Inhibitive Effect on Carbon Steel in Hydrochloric Acid Medium

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Ru; XU Min-Hua; ZHANG Shu-Sheng

    2008-01-01

    Four new 1,2,3-triazoles (3a, 3b, 4a and 4b) have been synthesized selectively via click chemistry approach and characterized by elemental analysis, IR, 1H NMR, 13C NMR and single crystal X-ray crystallographic analysis. The inhibiting action of these compounds against the corrosion of carbon steel in 1.0 mol/L HCI solution was investigated by electrochemical techniques including polarization and electrochemical impedance spectroscopy (EIS), both results of which indicate that these compounds act as good anodic inhibitors. The electrochemical study also shows that 4b is the best inhibitor among the four compounds in this work and its efficiency increases with concentration.The obtained highest IE (inhibition efficiency) of 4b is around 97%.

  6. The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different types of environment

    International Nuclear Information System (INIS)

    Carbon steel, copper, zinc and aluminium test pieces were exposed to a large variety of environmental conditions in a reduced geographic area close to the coastline in order to ascertain the degree of deterioration of the same due to environmental corrosion. Calculations of corrosion rates were made via loss of weight (in the case of carbon steel, zinc and copper) and analysis of surface deterioration (in the case of aluminium) together with X-ray diffraction analyses. The levels of chlorides, SO2 and time of wetness were also registered in order to be able to correlate the data with respect to corrosion rate with the environmental and meteorological parameters, using the potential law and a modified version of the same

  7. Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment

    Science.gov (United States)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun

    2016-10-01

    The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.

  8. Some peculiarities of corrosion of wheel steel

    OpenAIRE

    Alexander SHRAMKO; Alfred KOZLOWSKY; Elena BELAJA; Yuriy PROIDAK; Pinchuk, Sofia; Gubenko, Svetlana

    2009-01-01

    Corrosion mechanism and rate of different chemical composition and structural condition of wheel steel were investigated. It was shown that “white layers”, variation in grain size and banding of wheel steel structure results in corrosion rate. Microstructure of steel from different elements of railway wheels after operation with corrosion was investigated. Wheel steel with addition of vanadium corroded more quickly than steel without vanadium. Non-metallic inclusions are the centre of corrosi...

  9. Effects of carbon content and microstructure on corrosion rate of 13% chromium steel in wet CO2 environments; Shitsujun CO2 kankyochu deno 13%Cr ko no fushoku ni oyobosu C ryo to kinzoku soshiki no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T.; Asahi, H. [Nippon Steel Corp., Tokyo (Japan)

    1998-11-15

    Thirteen percent chromium steel is excellent in corrosion resistance of CO2. A large quantity of 13% chromium steel is used in oil and gas fields where CO2 is produced. Usually, AISI 420 13% chromium steel to which C was added 0.2% is used for an oil field tube. Since AISI 420 steel is tempered, chromium carbide is formed and the effective chromium amount in a parent phase is decreased to deteriorate the corrosion resistance of CO2. Therefore, it is desired to decrease the carbon content as far as possible for improvement of corrosion resistance of CO2. AISI 410 13% chromium steel with a carbon content of 0.1% is difficult to form {delta}-ferrite. It has a problem in manufacturing because the hot working performance is low. In this report, on the basis of AISI 420 13% chromium steel, the effects of composition on CO2 corrosion were investigated using the steel whose carbon content was changed. Ferrite, martensite, and tempered martensite differ in a corrosion rate. The corrosion rate increases in the order of martensite, ferrite, and tempered martensite. The corrosion rate of 13% chromium steel is represented by the product of the corrosion rate of each microstructure and the fraction of it. 11 refs., 12 figs., 2 tabs.

  10. Atmospheric corrosion of mild steel

    Directory of Open Access Journals (Sweden)

    Morcillo, M.

    2011-10-01

    Full Text Available The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a the morphology of steel corrosion products and corrosion product layers; and b long-term atmospheric corrosion ( > 10 years.

    La corrosión atmosférica del acero suave es un tema de gran amplitud que ha sido tratado por muchos autores en numerosas regiones del mundo. Este artículo de compilación incorpora publicaciones relevantes sobre esta temática, en particular sobre la naturaleza de los productos de corrosión atmosférica, mecanismos y cinética de los procesos de corrosión atmosférica, prestando una atención especial a dos aspectos sobre los que la información publicada ha sido menos abundante: a morfología de los productos de corrosión del acero y capas de productos de corrosión, y b corrosión atmosférica a larga duración (> 10 años.

  11. The effect of sulfide on the aerobic corrosion of carbon steel in near-neutral pH saline solutions

    International Nuclear Information System (INIS)

    Highlights: ► The corrosion rate is low when steel is exposed to anaerobic conditions (pH = 8.9). ► An anaerobic to aerobic corrosion with sulfide switch increases the corrosion rate. ► Aerobic exposure induces the formation of goethite-covered tubercles. ► Continual sulfide exposure leads to the slow conversion of goethite to mackinawite. - Abstract: Severe corrosion damage may occur when gas transmission pipelines are exposed, at disbonded coating locations, to trapped waters containing sulfide followed by secondary exposure to air. Aerobic corrosion with sulfide was investigated in a long-term corrosion experiment in which corrosion was monitored by measurement of the corrosion potential and polarization resistance obtained from linear polarization resistance measurements. The properties and composition of the corrosion product deposits formed were determined using scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy. A switch from aerobic to aerobic-with-sulfide corrosion doubles the relative corrosion rate.

  12. Evaluation of pH control agents influencing on corrosion of carbon steel in secondary water chemistry condition of pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, In Hyoung; Jung, Hyun Jun; Cho, Dae Chul [Dept. of Energy and Environmental Engineering, Soonchunhyang University, Asan (Korea, Republic of)

    2014-06-15

    The effect of various pH agents on the corrosion behavior of carbon steel was investigated under a simulated secondary water chemistry condition of a pressurized water reactor (PWR) in a laboratory, and the steel's corrosion performance was compared with the field data obtained from Uljin NPP unit 2 reactor. All tests were carried out at temperatures of 50 degrees C-250 degrees C and pH of 8.5 - 10. The pH at a given temperature was controlled by adding different agents. Laboratory data indicate that the corrosion rate of carbon steel decreased as the pH increased under the test conditions and the highest corrosion rate was measured at 150 degrees C. This high corrosion rate may be related to high dissolution and instability of Fe oxide (Fe{sub 3}O{sub 4}) at 150 degrees C. It was also found that an addition of ethanolamine (ETA) to ammonia was more effectivefor anticorrosion than ammonia alone, and that mixed treatment reduced 50% of iron or more at pHs of 9.5 or higher, especially in the steam generator (SG) and the moisture separator and re-heater.

  13. Preparation Femtosecond Laser Prevention for the Cold-Worked Stress Corrosion Crackings on Reactor Grade Low Carbon Stainless Steel

    CERN Document Server

    John Minehara, Eisuke

    2004-01-01

    We report here that the femtosecond lasers like low average power Ti:Sapphire lasers, the JAERI high average power free-electron laser and others could peel off and remove two stress corrosion cracking (SCC) origins of the cold-worked and the cracking susceptible material, and residual tensile stress in hardened and stretched surface of low-carbon stainless steel cubic samples for nuclear reactor internals as a proof of principle experiment except for the third origin of corrosive environment. Because a 143 °C and 43% MgCl2 hot solution SCC test was performed for the samples to simulate the cold-worked SCC phenomena of the internals to show no crack at the laser-peered off strip on the cold-worked side and ten-thousands of cracks at the non-peeled off on the same side, it has been successfully demonstrated that the femtosecond lasers could clearly remove the two SCC origins and could resultantly prevent the cold-worked SCC.

  14. Corrosion of low-carbon steel under environmental conditions at Hanford: Two-year soil corrosion test results

    Energy Technology Data Exchange (ETDEWEB)

    Anantatmula, R.P. [Westinghouse Hanford Co., Richland, WA (United States); Divine, J.R. [ChemMet Ltd., West Richland, WA (United States)

    1995-11-01

    At the Hanford Site, located in southeastern Washington state, nuclear production reactors were operated from 1944 to 1970. The handling and processing of radioactive nuclear fuels produced a large volume of low-level nuclear wastes, chemical wastes, and a combination of the two (mixed wastes). These materials have historically been packaged in US Department of Transportation (DOT) approved drums made from low-carbon steel, then handled in one of three ways: (A) Before 1970, the drums were buried in the dry desert soil. It was assumed that chemical and radionuclide mobility would be low and that the isolated, government-owned site would provide sufficient protection for employees and the public. (B) After 1970, the drums containing long-lived transuranic radionuclides were protected from premature failure by stacking them in an ordered array on an asphalt concrete pad in the bottom of a burial trench. The array was then covered with a large, 0.28-mm- (011-in.-) thick polyethylene tarp and the trench was backfilled with 1.3 m (4 ft) of soil cover. This burial method is referred to as soil-shielded burial . Other configurations were also employed but the soil-shielded burial method contains most of the transuranic drums. (C) Since 1987, US Department of Energy sites have complied with the Resource Conservation and Recovery Act of 1976 (RCRA) regulations. These regulations require mixed waste drums to be stored in RCRA compliant large metal sheds with provisions for monitoring. These sheds are provided with forced ventilation but are not heated or cooled.

  15. Erosion-corrosion of carbon steel by products of coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Xie Jianyang [Dept. of Materials Science and Engineering, Pennsylvania State Univ., University Park, PA (United States); Walsh, P.M. [Dept. of Materials Science and Engineering, Pennsylvania State Univ., University Park, PA (United States)

    1995-07-01

    Erosion of carbon steel by fly ash and unburned char particles was measured in the convection section of an industrial boiler firing micronized coal. The rate of erosion was enhanced by directing a small jet of nitrogen, 3 vol.% oxygen in nitrogen, or air toward the surface of a test coupon mounted on an air-cooled tube. Ash and char particles suspended in the flue gas entrained by the jet were accelerated toward the surface of the specimen. Samples were exposed for 2 h with metal temperature at 450, 550, and 650 K (350, 530, and 710 F). Changes in the surface were measured using a surface profiler. Erosion was slowest at the lowest metal temperature, regardless of the jet gas composition. Under the nitrogen jet, erosion increased with increasing temperature over the range of temperatures investigated. In the presence of 3% oxygen, erosion was most rapid at the intermediate temperature. At the highest oxygen concentration, in the air jet, the erosion rate was low at all three temperatures. The temperature and oxygen dependences of the erosion rate were consistent with a model for simultaneous erosion and oxidation. Extrapolation of the results to lower velocity, using experimentally determined coefficients for metal and oxide erosion, provided estimates of erosion of a tube, as a function of impaction angle and gas velocity. Under the conditions of metal temperature, oxygen concentration, particle size, particle loading, and particle composition investigated, erosion of carbon steel tubes is expected to be slower than 0.05 {mu}m h{sup -1} when the gas velocity in the convection section of the boiler is less than approximately 10 m s{sup -1}. (orig.)

  16. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  17. Characterization of corrosion products formed on steels in the first months of atmospheric exposure

    OpenAIRE

    Antunes Renato Altobelli; Costa Isolda; Faria Dalva Lúcia Araújo de

    2003-01-01

    The corrosion products of carbon steel and weathering steel exposed to three different types of atmospheres, at times ranging from one to three months, have been identified. The steels were exposed in an industrial site, an urban site (São Paulo City, Brazil), and a humid site. The effect of the steel type on the corrosion products formed in the early stages of atmospheric corrosion has been evaluated. The corrosion products formed at the various exposure locations were characterized by Raman...

  18. Corrosion Inhibition of Carbon Steel in HCl Solution by Some Plant Extracts

    OpenAIRE

    Ambrish Singh; Ebenso, Eno E.; M. A. Quraishi

    2012-01-01

    The strict environmental legislations and increasing ecological awareness among scientists have led to the development of “green” alternatives to mitigate corrosion. In the present work, literature on green corrosion inhibitors has been reviewed, and the salient features of our work on green corrosion inhibitors have been highlighted. Among the studied leaves, extract Andrographis paniculata showed better inhibition performance (98%) than the other leaves extract. Strychnos nuxvomica showed b...

  19. Effect of Al Hot-Dipping on High-Temperature Corrosion of Carbon Steel in N2/0.1% H2S Gas

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Abro

    2016-02-01

    Full Text Available High-temperature corrosion of carbon steel in N2/0.1% H2S mixed gas at 600–800 °C for 50–100 h was studied after hot-dipping in the aluminum molten bath. Hot-dipping resulted in the formation of the Al topcoat and the Al-Fe alloy layer firmly adhered on the substrate. The Al-Fe alloy layer consisted primarily of a wide, tongue-like Al5Fe2 layer and narrow Al3Fe layer. When corroded at 800 °C for 100 h, the Al topcoat partially oxidized to the protective but non-adherent α-Al2O3 layer, and the interdiffusion converted the Al-Fe alloy layer to an (Al13Fe4, AlFe3-mixed layer. The interdiffusion also lowered the microhardness of the hot-dipped steel. The α-Al2O3 layer formed on the hot-dipped steel protected the carbon steel against corrosion. Without the Al hot-dipping, the carbon steel failed by forming a thick, fragile, and non-protective FeS scale.

  20. Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism.

    Science.gov (United States)

    Dall'agnol, Leonardo T; Cordas, Cristina M; Moura, José J G

    2014-06-01

    Sulphate Reducing Prokaryotes (SRP) are an important group of microorganisms involved in biocorrosion processes. Sulphide production is recognized as a fundamental cause of corrosion and nitrate is often used as treatment. The present work analyses the influence of respiratory substrates in the metal, from off-shore installations, SRP influenced corrosion, using Desulfovibrio desulfuricans ATTC 27774 as model organism, since this can switch from sulphate to nitrate. Open Circuit Potential over 6days in different conditions was measured, showing an increase around 200 and 90mV for the different media. Tafel plots were constructed allowing Ecorr and jcorr calculations. For SRP in sulphate and nitrate media Ecorr values of -824 and -728mV, and jcorr values of 2.5 and 3.7μAcm(-2), respectively, were attained indicating that in nitrate, the resultant corrosion rate is larger than in sulphate. Also, it is shown that the equilibrium of sulphide in the solution/gas phases is a key factor to the evolution of corrosion Nitrate prevents pitting but promotes general corrosion and increases the corrosion potential and iron dissolution 40 times when compared to sulphate. Our results demonstrate that nitrate injection strategy in oil fields has to be considered carefully as option to reduce souring and localized corrosion.

  1. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  2. Inhibitory effect of tungstate, molybdate and nitrite ions on the carbon steel pitting corrosion in alkaline formation water containing Cl- ion

    International Nuclear Information System (INIS)

    The pitting corrosion of carbon steel in carbonate-formation water solution in the presence of chloride ions and the effect of addition WO42-, MoO42- and NO2- anions on the pitting corrosion were studied using cyclic voltammetry and potentiostatic current-time measurements and complemented by scan electron microscope (SEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) investigations. Cyclic voltammograms of carbon steel in the presence of chloride ions in carbonate-formation water solution show one anodic peak, corresponding to the formation green rust carbonate and the two cathodic peaks. As the addition of Cl- ions concentration increases, the anodic peak current density increases and pitting potential Epit shifts to more negative potential. It is shown that the rate of pit initiation (ti-1) decreases and the pitting potential Epit moves to more positive direction upon the addition of inorganic anions. It was found that pitting inhibition of carbon steel increases in the sequence: (WO4)2- > (MoO4)2- > (NO2)-

  3. Effects of Plastic Deformation and Carbon Dioxide on Corrosion of Pipeline Steel in Near-Neutral pH Groundwater

    Science.gov (United States)

    Lu, B. T.; Yu, H.; Luo, J. L.

    2013-05-01

    This paper investigates the effect of plastic deformation on the anodic dissolution behavior of pipeline steel in deaerated groundwater with near-neutral pH. The plastic deformation is introduced via two different ways: cold-rolling and in situ tension. It is observed that the cold-rolling prior to the exposure to corroding environment reduces the corrosion rate but the in situ tension increases corrosion rate slightly. In accord with thermodynamic analysis, the impacts of residual stresses and plastic deformation on active dissolution are very small except a highly non-uniform dislocation structure is formed. A preliminary analysis suggests that the reduced corrosion rate of cold-rolled steel is related to competitive adsorption of CO2 and H+ on the active sites over the surface.

  4. Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel

    OpenAIRE

    Hang, To Thi Xuan; Truc, Trinh Anh; Duong, Nguyen Thuy; Pébère, Nadine; Olivier, Marie-Georges

    2012-01-01

    International audience The present work focuses on the use of layered double hydroxides (LDH) as containers for corrosion inhibitors in an epoxy coating. 2-Benzothiazolylthio-succinic acid (BTSA), used as corrosion inhibitor, was intercalated by co-precipitation in magnesium-aluminum layered double hydroxides. The obtained LDH-BTSA was characterized by infrared spectroscopy, X-ray diffraction and scanning electron microscopy. BTSA release from LDH-BTSA in NaCl solutions was investigated by...

  5. Electrochemical, atomic force microscopy and infrared reflection absorption spectroscopy studies of pre-formed mussel adhesive protein films on carbon steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fanzhang@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Pan, Jinshan [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Claesson, Per Martin [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Institute for Surface Chemistry, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Brinck, Tore [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Physical Chemistry, Division of Physical Chemistry, Teknikringen 36, SE-10044 Stockholm (Sweden)

    2012-10-01

    Electrochemical measurements, in situ and ex situ atomic force microscopy (AFM) experiments and infrared reflection absorption spectroscopy (IRAS) analysis were performed to investigate the formation and stability as well as corrosion protection properties of mussel adhesive protein (Mefp-1) films on carbon steel, and the influence of cross-linking by NaIO{sub 4} oxidation. The in situ AFM measurements show flake-like adsorbed protein aggregates in the film formed at pH 9. The ex situ AFM images indicate multilayer-like films and that the film becomes more compact and stable in NaCl solution after the cross-linking. The IRAS results reveal the absorption bands of Mefp-1 on carbon steel before and after NaIO{sub 4} induced oxidation of the pre-adsorbed protein. Within a short exposure time, a certain corrosion protection effect was noted for the pre-formed Mefp-1 film in 0.1 M NaCl solution. Cross-linking the pre-adsorbed film by NaIO{sub 4} oxidation significantly enhanced the protection efficiency by up to 80%. - Highlights: Black-Right-Pointing-Pointer Mussel protein was tested as 'green' corrosion protection strategy for steel. Black-Right-Pointing-Pointer At pH 9, the protein adsorbs on carbon steel and forms a multilayer-like film. Black-Right-Pointing-Pointer NaIO{sub 4} leads to structural changes and cross-linking of the protein film. Black-Right-Pointing-Pointer Cross-linking results in a dense and compact film with increased stability. Black-Right-Pointing-Pointer Cross-linking of preformed film significantly enhances the corrosion protection.

  6. Protection of Petroleum Pipeline Carbon Steel Alloys with New Modified Core-Shell Magnetite Nanogel against Corrosion in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Gamal A. El Mahdy

    2013-01-01

    Full Text Available New method was used to prepare magnetite nanoparticle based on reduction of Fe(III ions with potassium iodide to produce Fe3O4 nanoparticle. The prepared magnetite was stabilized with cross-linked polymer based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS to prepare novel core-shell nanogel. In this respect, Fe3O4/poly(2-acrylamido-2-methylpropane sulfonic acid (PAMPS magnetic nanogels with controllable particle size produced via free aqueous polymerization at 65°C have been developed for the first time. The polymer was crosslinked in the presence of N,N-methylenebisacrylamide (MBA as a crosslinker and potassium peroxydisulfate (KPS as redox initiator system. The structure and morphology of the magnetic nanogel were characterized by Fourier transform infrared spectroscopy (FTIR and transmission and scanning electron microscopy (TEM and SEM. The effectiveness of the synthesized compounds as corrosion inhibitors for carbon steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. The results showed enhancement in inhibition efficiencies with increasing the inhibitor concentrations. The results showed that the nanogel particles act as mixed inhibitors. EIS data revealed that Rct increases with increasing inhibitor concentration.

  7. Research on Pitting Corrosion-resistant of Stainless Steel/Carbon Steel Welding Jiont%不锈钢/碳钢复合钢板焊接接头耐点蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    贡志林

    2015-01-01

    The corrosion resistance of bade metal, weld and heat affected zone of stainless steel-carbon steel laminated composite material in 3. 5% NaCl solution, 30% CH3 COOH solution, 60% CH3 COOH solution and 98%CH3 COOH solution was studied respectively through electrochemical test. It was obtained that the corrosion resistance of weld was the better then the base metal, but the corrosion resistance of heat affected zone was the worst. Besides, in the four solution base metal and weld showed poor corrosion resistance in 3. 5%NaCl solution. A theoretical and experimental foundation for stainless steel-carbon steel laminated composite material was supplied.%采用电化学测试方法评价了不锈钢复合板母材、焊缝及热影响区在3.5%NaCl溶液、30%CH3 COOH溶液、60%CH3 COOH溶液、98%CH3 COOH溶液中的耐点蚀性能。结果显示在以上各种溶液中焊缝的抗腐蚀性能最优、母材其次而热影响区抗腐蚀性能最弱。此外在这四种溶液中母材跟焊区在3.5%NaCl溶液溶液中的耐腐蚀性能最弱。

  8. Biochemical Contributions to Corrosion of Carbon Steel and Alloy 22 in a Continual Flow System

    International Nuclear Information System (INIS)

    Microbiologically influenced corrosion (MIC) may decrease the functional lifetime of nuclear waste packaging materials in the potential geologic repository at Yucca Mountain (YM), Nevada. Biochemical contributions to corrosion of package materials are being determined in reactors containing crushed repository-site rock with the endogenous microbial community, and candidate waste package materials. These systems are being continually supplied with simulated ground water. Periodically, bulk chemistries are analyzed on the system outflow, and surfacial chemistries are assessed on withdrawn material coupons. Both Fe and Mn dissolved from C1020 coupons under conditions that included the presence of YM microorganisms. Insoluble corrosion products remained in a reduced state at the coupon surface, indicating at least a localized anoxic condition; soluble reduced Mn and Fe were also detected in solution, while precipitated and spalled products were oxidized. Alloy 22 surfaces showed a layer of chrome oxide, almost certainly in the Cr(III) oxidation state, on microcosm-exposed coupons, while no soluble chrome was detected in solution. The results of these studies will be compared to identical testing on systems containing sterilized rock to generate, and ultimately predict, microbial contributions to waste package corrosion chemistries

  9. Electrochemical evaluation for corrosion resistance of bacterial exopolysaccharides on low carbon steel

    Science.gov (United States)

    Corrosion is a global issue that affects safety and economics. There is an increasing demand for bio-based polymers for industrial applications and production of polymers by microorganisms is especially attractive. This work reports on the electrochemical and physical properties of 29 strains or fr...

  10. Influence of Trace Alloying Elements on Corrosive Resistance of Cast Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    DUAN Han-qiao; YAN Xiang; WEI Bo-kang; LIN Han-tong

    2005-01-01

    The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18-8 type cast stainless steel have been studied in deta() orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.

  11. Experimental studies of the effect of irradiation on the anaerobic corrosion of carbon steel in relation to the Belgian supercontainer concept

    Directory of Open Access Journals (Sweden)

    Reddy B.

    2011-04-01

    Full Text Available This paper describes recent results from an investigation of the effects of γ-radiation on the anaerobic corrosion of carbon steel in cement, in relation to the Belgian Supercontainer Concept for radioactive waste disposal. Anaerobic corrosion rates were measured by monitoring hydrogen evolution and the corresponding electrochemical behaviour was investigated by measuring open circuit potential and linear polarisation resistance. The test medium was alkaline simulated porewater, at γ-irradiation dose rates of 0 and 25 Gy hr−1, temperatures of 25 °C and 80 °C and chloride concentrations of 0 and 100 mg/l. The effects of radiation on the corrosion behaviour were found to be small.

  12. Atmospheric Corrosion of Carbon Steel,Galvanized Steel and Cooper for Power Grid Equipments Reserve%电网设备用碳钢、镀锌钢和铜的大气腐蚀

    Institute of Scientific and Technical Information of China (English)

    刘争春; 苏伟; 卢思敏; 吕旺燕

    2016-01-01

    Metal materials of power grid equipments serving in atmospheric environment are prone to be invalid caused by at-mospheric corrosion. Therefore,this paper summarizes laws and influencing factors of atmospheric corrosion for backup metal materials for typical power grid equipments including carbon steel,galvanized steel and copper. By analyzing corrosion dynamics,corrosion influencing factors and research method for atmospheric corrosion of carbon steel,galvanized steel and copper in atmospheric environment,it discovers that corrosion loss laws of three metal materials follow power function equa-tion,progress of atmospheric corrosion is mainly affected by natural environment and pollutants in the atmosphere and cor-rosion outcomes of metals in different atmospheric environment are obviously different. It also states two typical types of re-search methods for atmospheric corrosion and respective boundedness including field exposure test and indoor simulation and acceleration test. It thinks to correctly predict speed rate of atmospheric corrosion of metals by combining these two methods and help adopting specific anti-corrosion measures.%服役于大气环境中的电网设备,其金属材料易被大气腐蚀而失效,基于此,综述了典型电网设备用金属材料———碳钢、镀锌钢和铜的大气腐蚀规律和影响因素。通过分析碳钢、镀锌钢和铜在大气环境中的腐蚀动力学,腐蚀影响因素和大气腐蚀研究方法等,发现三种金属材料的腐蚀失重规律都遵循幂函数方程;其大气腐蚀进程主要受大气的自然环境和污染物种类的影响,金属在不同的大气环境下生成的腐蚀产物明显不同。在此基础上,阐述了现场暴晒试验和室内模拟加速试验两种典型大气腐蚀研究方法及其局限性,认为将二者结合能更准确的预测金属的大气腐蚀速率,有助于采取针对性的防腐措施。

  13. Influence of Silicon, Carbon and Phosphorus on Intergranular Corrosion of High Purity Austenitic Stainless Steels Under Transpassive Conditions

    OpenAIRE

    Stolarz, J.

    1995-01-01

    Precipitate-free Fe-Cr-Ni f.c.c. alloys exhibit strong intergranular corrosion in acid solutions at electrochemical potentials from the transpassivity range. Segregation of impurity atoms to grain boundaries is generally considered to be responsible for this specific kind of localized damage. A study of the influence of silicon, phosphorus and carbon on the intergranular transpassive corrosion of the solution treated Fe-17Cr-13Ni alloy in the 2N sulphuric acid at a fixed electrochemical poten...

  14. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field

    OpenAIRE

    Mand, Jaspreet; Park, Hyung S.; Okoro, Chuma; Lomans, Bart P.; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2016-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a bas...

  15. Corrugated stainless steels embedded in mortar for 9 years: corrosion results of non-carbonated, chloride-contaminated samples

    OpenAIRE

    Bautista, A.; Paredes, E. C.; Velasco, F.; Álvarez, S. M.

    2015-01-01

    Mortar samples reinforced with 5 different corrugated stainless steels were tested for 9 years in 2 different conditions: partial immersion (PI) in 3.5% NaCl, and chloride addition to the mortar and exposure to high relative humidity (HRH). The monitoring during the exposures was carried out with corrosion potential (E-corr) and electrochemical impedance spectroscopy (EIS) measurements. A year before finishing (after 8 years of exposure), the reinforced mortar samples were anodically polarise...

  16. Inhibition of carbon steel corrosion in CO2-saturated brine using some newly surfactants based on palm oil: Experimental and theoretical investigations

    International Nuclear Information System (INIS)

    New surfactants from the type of fatty acids derivatives were synthesized based on palm oil and their inhibitive action against the corrosion of carbon steel in CO2-saturated 1% NaCl solution were investigated at 50 °C. The detailed study of surfactants as corrosion inhibitors is given using polarization curves and electrochemical impedance spectroscopy methods. The inhibition efficiencies obtained from the two employed methods are nearly closed. Results show that, the investigated surfactants are good inhibitors and its inhibition efficiency reaches to 98.95% at 100 ppm for inhibitor V. The high inhibition efficiencies were attributed to the simple blocking effect by adsorption of inhibitor molecules on the steel surface. The surface activity of the synthesized surfactant solutions was determined using surface tension measurements at 25 °C. Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir's adsorption isotherm and chemisorption. The correlation between the inhibition efficiencies of the studied surfactants and their molecular structures has been investigated using quantum chemical calculations. The obtained theoretical results have been supported our experimental data. - Graphical abstract: To investigate the relationship between molecular structures of the studied surfactants and their inhibition effect; Quantum chemical molecular calculations were performed. The following quantum chemical indices such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), energy gap ΔE = EHOMO − ELUMO, and dipole moment (μ) were considered. The relation between these parameters and the inhibition efficiencies was explained. The obtained theoretical results have been supported our experimental data. - Highlights: • Effect of surfactants on carbon steel corrosion in CO2-saturted brine was investigated. • The high inhibition efficiency attributed to the adherent adsorption of the investigated

  17. Inhibition of carbon steel corrosion in CO{sub 2}-saturated brine using some newly surfactants based on palm oil: Experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Lateef, Hany M., E-mail: Hany_shubra@yahoo.co.uk [Chemistry Department, Faculty of Science, Sohag University, Sohag (Egypt); Abbasov, V.M.; Aliyeva, L.I.; Qasimov, E.E.; Ismayilov, I.T. [Mamedaliev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan, AZ1025 Baku (Azerbaijan)

    2013-11-01

    New surfactants from the type of fatty acids derivatives were synthesized based on palm oil and their inhibitive action against the corrosion of carbon steel in CO{sub 2}-saturated 1% NaCl solution were investigated at 50 °C. The detailed study of surfactants as corrosion inhibitors is given using polarization curves and electrochemical impedance spectroscopy methods. The inhibition efficiencies obtained from the two employed methods are nearly closed. Results show that, the investigated surfactants are good inhibitors and its inhibition efficiency reaches to 98.95% at 100 ppm for inhibitor V. The high inhibition efficiencies were attributed to the simple blocking effect by adsorption of inhibitor molecules on the steel surface. The surface activity of the synthesized surfactant solutions was determined using surface tension measurements at 25 °C. Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir's adsorption isotherm and chemisorption. The correlation between the inhibition efficiencies of the studied surfactants and their molecular structures has been investigated using quantum chemical calculations. The obtained theoretical results have been supported our experimental data. - Graphical abstract: To investigate the relationship between molecular structures of the studied surfactants and their inhibition effect; Quantum chemical molecular calculations were performed. The following quantum chemical indices such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), energy gap ΔE = E{sub HOMO} − E{sub LUMO}, and dipole moment (μ) were considered. The relation between these parameters and the inhibition efficiencies was explained. The obtained theoretical results have been supported our experimental data. - Highlights: • Effect of surfactants on carbon steel corrosion in CO{sub 2}-saturted brine was investigated. • The high inhibition efficiency attributed to the adherent adsorption

  18. Inhibition of Corrosion of Carbon Steel in Well Water by DL-Phenylalanine-Zn2+ System

    Directory of Open Access Journals (Sweden)

    A. Sahaya Raja

    2013-01-01

    Full Text Available The environmental friendly inhibitor system DL-phenylalanine-Zn2+ has been investigated by weight loss method. A synergistic effect exists between DL-phenylalanine and Zn2+ system. The formulation consisting of 150 ppm of DL-phenylalanine and 5 ppm of Zn2+ offers good inhibition efficiency of 90%. Polarization study reveals that this formulation functions as a anodic inhibitor. AC impedance spectra reveal that a protective film is formed on the metal surface. The surface morphology has been analysed by SEM and EDAX. A suitable mechanism of corrosion inhibition is proposed based on the results obtained from weight loss study and electrochemical studies.

  19. Role of sulphide species on the behaviour of carbon steel envisioned for high-level radioactive disposal: interaction between sulphide and corrosion products

    International Nuclear Information System (INIS)

    This PhD work deals with the nuclear waste disposal. In France, it is envisaged by Andra (French national radioactive waste management agency) that high-level radioactive wastes will be confined in a glass matrix, stored in a stainless steel canister, it self placed in a carbon steel overpack. The wastes will then be stored at a depth of ∼500 m in a deep geological repository, drilled in a very stiff (indurated) clay (argillite) formation. The kinetics of corrosion expected for the overpack in this disposal concept are low and will stay low if the somehow protective rust layer that will develop initially on the steel surface remains undamaged. Local changes of the physico-chemical conditions may however degrade this layer and induce accelerated kinetics of corrosion. In particular, the growth of sulphate reducing bacteria (SRB) close to the steel overpack cannot be excluded and the sulphide species these micro-organisms produce may modify the corrosion process. The aim of this work was then to achieve a better understanding of the corrosion system constituted with steel, its rust layer mainly made of siderite FeCO3, and a sulphide-containing electrolyte. First, it proved necessary to characterise the iron sulphides involved in the corrosion processes by Raman micro-spectroscopy so as to study their formation and transformation mechanisms in various conditions of Fe(II) and S(-II) concentration, pH, temperature and aeration. It could be demonstrated that the Raman spectrum of mackinawite FeS, the compound that precipitated in any case from dissolved Fe(II) and S(-II) species with the experimental conditions considered here, depended on the crystallinity and oxidation state. Moreover, the mechanisms of the oxidation of mackinawite into greigite Fe3S4 in acidic anoxic solutions at 80 C could be described. Finally, iron sulphides, often present on archaeological artefacts, could be identified using Raman micro-spectroscopy. The compounds present were mainly

  20. Study of uncertainty in atmospheric corrosion rate of floe carbon steel

    International Nuclear Information System (INIS)

    The confidence interval of measurements of corrosion rate has been barely reported in the literature. It is a function of both the number of probes and the underlying pdf. We have performed specific experiments with a lot more probes than the standards require, and we evaluated, for exposure times of 1, 2, 3 and 7 months, the effect of using only three (as it is mandatory by the standard for one year exposure time) up to eleven. With the new experimental data, we were able to confirm that the values fit a normal distribution. We also found evidence that the minimum number of probes might depend upon the atmospheric condition and exposure time. The number of probes presently required for studies with exposure times of one year, might not be enough in studies of initial kinetics (exposure times smaller than one year). (Author) 14 refs

  1. Update of the water chemistry effect on the flow-accelerated corrosion rate of carbon steel: influence of hydrazine, boric acid, ammonia, morpholine and ethanolamine

    International Nuclear Information System (INIS)

    The influence of the water chemistry on Flow-Accelerated Corrosion (FAC) affecting carbon steel components has been studied for many years and is relatively well known and taken into account by the models. Nonetheless, experimental studies were conducted in the last few years at EDF on the CIROCO loop in order to check the influence of the water chemistry parameters (hydrazine, boric acid, ammonia, morpholine and ethanolamine) on the FAC rate of carbon steel in one phase flow conditions. The hydrazine impact on the FAC rate was shown to be minor in EDF's chemistry recommendation range, compared to other parameters' effects such as the pH effect. The presence of boric acid in the nominal secondary circuit conditions was negligible. Finally, as expected, the nature of the chemical conditioning (ammonia, morpholine or ethanolamine) did not modify the FAC rate, the influencing chemical variable being the at-temperature pH in one-phase flow conditions. (author)

  2. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    Science.gov (United States)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer. PMID:26831689

  3. Investigation of the Corrosion Behavior of Poly(Aniline-co-o-Anisidine)/ZnO Nanocomposite Coating on Low-Carbon Steel

    Science.gov (United States)

    Mobin, M.; Alam, R.; Aslam, J.

    2016-07-01

    A copolymer of aniline (AN) and o-anisidine (OA), Poly(AN-co-OA) and its nanocomposite with ZnO nanoparticles, Poly(AN-co-OA)/ZnO were synthesized by chemical oxidative polymerization using ammonium persulfate as an oxidant in hydrochloric acid medium. The synthesized compounds were characterized using FTIR, XRD, SEM-EDS, TEM, and electrical conductivity techniques. The copolymer and nanocomposite were separately dissolved in N-methyl-2-pyrrolidone and were casted on low-carbon steel specimens using 10% epoxy resin as a binder. The anticorrosive properties of the coatings were studied in different corrosive environments such as 0.1 M HCl, 5% NaCl solution, and distilled water at a temperature of 30 °C by conducting corrosion tests which include immersion test, open circuit potential measurements, potentiodynamic polarization measurements, and atmospheric exposure test. The surface morphology of the coatings prior to and after one-month immersion in corrosive solution was evaluated using SEM. It was observed that the nanocomposite coating exhibited higher corrosion resistance and provided better barrier properties in comparison with copolymer coating. The presence of ZnO nanoparticles improved the anticorrosion properties of copolymer coating in all corrosive media subjected to investigation.

  4. Stress Corrosion of Carbon Steel in Three Different Atmospheric Environments%碳钢在三种大气环境中的应力腐蚀

    Institute of Scientific and Technical Information of China (English)

    曹公望; 王振尧; 刘雨薇; 汪川

    2015-01-01

    ABSTRACT:Objective To research the stress corrosion failure of No.45 and Q235 carbon steels in different kinds of atmospheric environments. Methods No.45 and Q235 carbon steels were used to prepare U-shape samples and tensile samples. The corrosion test in atmospheric exposure for three years was conducted in atmospheric environment in Wanning, Jiangjin and Xishuangbanna. The rust layer depth analysis and the tensile failure analysis were performed to investigate the stress corrosion of carbon steel in different atmospheric environments. Results The u-shaped sample under the influence of the tensile stress in the three kinds of atmospheric environment had different depth of corrosion pits. Strength of extension had declined in a short period of time and failured in Wanning atmospheric environment, while it declined slowly in xishuangbanna and Jiangjin atmospheric environment. Conclusion Due to difference inatmospheric contaminants, the corrosion degree varied for U-shape samples under the influence of tensile stress. The tensile strength of tensile samples was periodically decreased during the process of corrosion.%目的:研究45#碳钢和Q235碳钢在不同大气环境中的应力腐蚀失效。方法将45#碳钢和Q235碳钢制备成U型样和拉伸试样,分别在万宁、江津和西双版纳三种大气环境下进行为期3年的暴露试验,利用截面锈层深度分析和拉伸断裂分析两种手段,分析两种碳钢在不同大气环境下的应力腐蚀行为。结果拉应力影响下的U型样在三种大气环境中出现了不同深度的腐蚀坑。拉伸试样在万宁大气环境下短时间内抗拉强度急剧下降并失效,在西双版纳和江津大气环境下抗拉强度缓慢下降。结论在拉应力影响下U型样的腐蚀进程随大气污染物的不同,腐蚀程度不同,拉伸试样的抗拉强度随腐蚀进程的发展而呈周期性衰减。

  5. Preparation and Application of Crosslinked Poly(sodium acrylate-Coated Magnetite Nanoparticles as Corrosion Inhibitors for Carbon Steel Alloy

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2015-01-01

    Full Text Available This work presents a new method to prepare poly(sodium acrylate magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate as shell. Fourier transform infrared spectroscopy (FTIR was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM was used to examine the morphology of the modified poly(sodium acrylate magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS. Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

  6. Preparation and application of crosslinked poly(sodium acrylate)--coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy.

    Science.gov (United States)

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; El-Saeed, Ashraf M

    2015-01-14

    This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM) was used to examine the morphology of the modified poly(sodium acrylate) magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

  7. Flow accelerated corrosion of carbon steel feeder pipes from Indian reactors

    International Nuclear Information System (INIS)

    En-masse feeder replacement was done at RAPS-2 after occurrence of a pinhole leak in B12 (S) outlet feeder elbow. Some of the feeders, removed after a service of 15.67 EFPY were received for detailed investigation. Ultrasonic thickness measurement of the feeders was carried out to ascertain the loss in wall thickness due to Flow Accelerated Corrosion (FAC) and marking the region of interest from outside. Surface morphology of inner surface of a number of feeder samples were carried out by SEM near the HAZ and adjoining area. Maximum FAC had occurred in the heat-affected zone of the weld in 32 NB elbows. Weld was affected to a lower extent than the parent metal due to higher chromium content. IGSCC cracks were also observed in parent metal portion of the middle elbow in 32 NB outlet feeder pipe due to bending residual stresses. There are two life limiting reasons to curtail the useful life in the reactors namely FAC and IGSCC. The problem of FAC can be reduced by increasing chromium content and reducing the flow velocity by opting for higher diameter feeder pipes. The welding defects and residual stresses in HAZ and surrounding areas are detrimental for FAC and IGSCC in the elbow region. This paper presents some of the microstructural observations and findings on FAC to explain the mechanism of degradation of feeders. (author)

  8. Flow accelerated corrosion of carbon steel feeder pipes from pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Detailed investigation of a number of feeder pipes received from Rajasthan Atomic Power Station Unit 2 (RAPS no. 2) after en-masse feeder pipe replacement after 15.67 Effective Full Power Years (EFPYs) was carried out. Investigations included ultrasonic thickness measurement by ultrasonic testing, optical microscopy, scanning electron microscopy, chemical analysis and X-ray Diffraction (XRD). Results showed that maximum thickness reduction of the feeder had occurred downstream and close to the weld in 32 NB (1.25″/32.75 mm ID) elbows. Rate of Flow Accelerated Corrosion (FAC) was measured to be higher in the lower diameter feeder pipes due to high flow velocity and turbulence. Weld regions had thinned to a lower extent than the parent material due to higher chromium content in the weld. A weld protrusion has been shown to add to the thinning due to FAC and lead to faster thinning rate at localized regions. Surface morphology of inner surface of feeder had shown different size scallop pattern over the weld and parent material. Inter-granular cracks were also observed along the weld fusion line and in the parent material in 32 NB outlet feeder elbow.

  9. Corrosion Inhibitive Potential Of Hibiscus Sabdariffa Calyx Extract For Low Carbon Steel In 0.5M H2SO4 Acid Solution

    OpenAIRE

    Adzor, S. A.*1

    2014-01-01

    The inhibitive potential of Hibiscus Sabdariffa calyx extract on low carbon steel corrosion in 0.5M H2SO4 have been investigated by weight loss method which is considered more informative than other laboratory methods. The studies were carried out using extracts obtained from 5-25g dried calyx powder. The test coupons were immersed in the corroding media at the time intervals of 24-168hours. The results obtained showed that the concentration of the inhibitor in the corrodent i...

  10. Effect of CO2 on Atmospheric Corrosion of UNS G10190 Steel under Thin Electrolyte Film

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO2 has been studied in the lab using an atmospheric corrosion monitor(ACM) in combination with XRD and SEM observations of the surface of steel. The ACM study indicated that the corrosion rate of the steel increased with increasing carbon dioxide concentration. The XRD and SEM observations showed that no carbonate was found in the corrosion product on the steel surface. The corrosion product consisted of two layers, i. e., inner and outer layer. From the experimental results, it was concluded that CO2 played an enhancing role in the atmospheric corrosion of UNS G10190 steel. The film of the corrosion product showed slight protection.

  11. Plain carbon steel bipolar plates for PEMFC

    Institute of Scientific and Technical Information of China (English)

    WANG Jianli; SUN Juncai; TIAN Rujin; XU Jing

    2006-01-01

    Bipolar plates are a multifunctional component of PEMFC. Comparing with the machined graphite and stainless steels, the plain carbon steel is a very cheap commercial metal material. In this paper, the possibility of applying the plain carbon steels in the bipolar plate for PEMFC was exploited. In order to improve the corrosion resistance of the low carbon steel in the PEMFCs' environments,two surface modification processes was developed and then the electrochemical performances and interfacial contact resistance (ICR) of the surface modified plate of plain carbon steel were investigated. The results show that the surface modified steel plates have good corrosion resistance and relatively low contact resistance, and it may be a candidate material as bipolar plate of PEMFC.

  12. Electrochemical and quantum chemical studies of N,N'-bis(4-hydroxybenzaldehyde)-2,2-dimethylpropandiimine Schiff base as corrosion inhibitor for low carbon steel in HCl solution.

    Science.gov (United States)

    Jafari, Hojat; Danaee, Iman; Eskandari, Hadi; Rashvandavei, Mehdi

    2013-01-01

    A synthesized Schiff base N,N'-bis(4-hydroxybenzaldehyde)-2,2-dimethylpropandiimine (p-HBDP) was studied as green inhibitor for the corrosion of low carbon steel in 1 M HCl solution using electrochemical, surface and quantum chemical methods. Results showed that the inhibition occurs through the adsorption of the inhibitor molecules on the metal surface. The inhibition efficiency was found to increase with increasing inhibitor concentration and de-creased with increasing temper-ature, which is due to the fact that the rate of corrosion of steel is higher than the rate of adsorption. Thermodynamic parameters for adsorp-tion and activation processes were determined. Polarization data indicated that this compound act as mixed-type inhibitors and the adsorption isotherm basically obeys the Langmuir adsorption isotherm. The calculations of reactivity indices of p-HBDP such as softness and natural charge distributions together with local reactivity by means of Fukui indices were used to explain the electron transfer mechanism between the p-HBDP molecules and the steel surface.

  13. Electrochemical and quantum chemical studies of N,N'-bis(4-hydroxybenzaldehyde)-2,2-dimethylpropandiimine Schiff base as corrosion inhibitor for low carbon steel in HCl solution.

    Science.gov (United States)

    Jafari, Hojat; Danaee, Iman; Eskandari, Hadi; Rashvandavei, Mehdi

    2013-01-01

    A synthesized Schiff base N,N'-bis(4-hydroxybenzaldehyde)-2,2-dimethylpropandiimine (p-HBDP) was studied as green inhibitor for the corrosion of low carbon steel in 1 M HCl solution using electrochemical, surface and quantum chemical methods. Results showed that the inhibition occurs through the adsorption of the inhibitor molecules on the metal surface. The inhibition efficiency was found to increase with increasing inhibitor concentration and de-creased with increasing temper-ature, which is due to the fact that the rate of corrosion of steel is higher than the rate of adsorption. Thermodynamic parameters for adsorp-tion and activation processes were determined. Polarization data indicated that this compound act as mixed-type inhibitors and the adsorption isotherm basically obeys the Langmuir adsorption isotherm. The calculations of reactivity indices of p-HBDP such as softness and natural charge distributions together with local reactivity by means of Fukui indices were used to explain the electron transfer mechanism between the p-HBDP molecules and the steel surface. PMID:23947700

  14. Investigation of the inhibitive effect of N-phosphono-methyl-glycine on the corrosion of carbon steel in neutral solutions by electrochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pech-Canul, M.A.; Chi-Canul, L.P. [CHINVESTAV-IPN-Merida (Mexico). Dept. de Fisica Aplicada

    1998-12-31

    Steady-state current-voltage curves for various disk rotation rates were combined with electrochemical impedance measurements in order to investigate the corrosion inhibition of carbon steel by N-phosphono-methyl-glycine (NPMG)/Zn{sup 2+} mixtures with a concentration ratio of 1:1 between NPMG and zinc cations, in a model water. The efficiency of the NPMG/Zn{sup 2+} combination increases with concentration in the range 10--100 ppm, and it acts as a mixed type inhibitor, affecting both the anodic and cathodic reactions. The corrosion behavior in all the metal/environments investigated is characterized by the formation of a 3-D porous layer which tends to hinder the diffusion of oxygen. Such layer consists of corrosion products in the blank solution and of corrosion products and/or inhibitors in the presence of the NPMG/Zn{sup 2+} mixture. The impedance response of such layers depends on inhibitor concentration, exposure time and rotation rate of the disk. From electrochemical impedance measurements it was found that the oxygen reduction reaction is under mixed activation diffusion control. It was shown by both steady-state and impedance measurements that there is a significant effect of rotation speed on the anodic reaction.

  15. Corrosion resistance of high-strength modified 13% Cr steel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M.; Miyata, Y.; Yamane, Y.; Toyooka, T.; Nakano, Y.; Murase, F. [Kawasaki Steel Corp., Handa, Aichi (Japan)

    1999-08-01

    A new 13% Cr martensitic stainless steel (0.025% C-13% Cr-Ni-Mo) with excellent resistance to carbon dioxide (CO{sub 2}) corrosion and good resistance to sulfide stress cracking (SSC) was developed, and its application limits in oil and gas environments were clarified. The CO{sub 2} corrosion rate of the 13% Cr steels with Ni and Mo was < 0.3 mm/y at 180 C (356 F) in 20% sodium chloride (NaCl). It was less than that of the conventional 13% Cr steel (0.2% C-13% Cr). The corrosion rate of the steel slightly decreased with the increase in Mo and Ni content. The SSC resistance improved with the increase in Mo content. The critical partial pressure of hydrogen sulfide (H{sub 2}S) for the 2% Mo steel was > 0.005 MPa at pH 3.5. Effects of Ni and Cu on SSC were not distinctive for this kind of steel. These results depended upon hydrogen permeability. The critical H{sub 2}S partial pressure for the 110-grade steel was the same as that of the 95-grade steel at pH 4.5 and pH 3.0 and was slightly lower at pH values between 3.0 and 4.5. The new 13% Cr steel proved to have excellent properties in the sweet and slightly sour environments.

  16. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  17. Corrosion Inhibition Effect of Furfural on Carbon Steel%糠醛对碳钢缓蚀性能的研究

    Institute of Scientific and Technical Information of China (English)

    刘峥

    2001-01-01

    The corrosion inhibition effect of furfural on the carbon steel was studied by weightloss method. It was shown that the furfural had strong corrosion inhibition effect on carbon steel in 5% HCl solution at 30 ℃. A strong synergistic effect was observed while using both furfural and sexamethyltetraamine as inhibitors. The inhibition mechanism was discussed by the authors.%采用失重法研究了糠醛对碳钢的缓蚀性能。实验表明30 ℃,4 h条件下,在5% 的盐酸中,糠醛具有较强的缓蚀作用,与六次甲基四胺复配缓蚀效果增强。通过研究找到了糠醛在碳钢上的吸附等温式,计算出碳钢溶解的表观活化能,研究了糠醛在碳钢上的吸附机理。研究表明糠醛为混合控制型缓蚀剂。

  18. Corrosion resistance of zinc-magnesium coated steel

    International Nuclear Information System (INIS)

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn5Cl2(OH)8 . H2O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH)2) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH)2, which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature

  19. A novel Schiff base-based cationic gemini surfactants: Synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, M.A. [Petrochemicals Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo (Egypt)], E-mail: mohamed_hgazy@yahoo.com

    2009-11-15

    The corrosion inhibition characteristics of the synthesized cationic gemini surfactants, namely bis(p-(N,N,N-decyldimethylammonium bromide)benzylidene thiourea (10-S-10), bis(p-(N,N,N-dodecyldimethylammonium bromide)benzylidene thiourea (12-S-12) and bis(p-(N,N,N-tetradecyldimethylammonium bromide)benzylidene thiourea (14-S-14) on the carbon steel corrosion in 1 M hydrochloric acid have been investigated at 25 deg. C by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiencies obtained from all methods employed are in good agreement with each other. The obtained results show that compound 14-S-14 is the best inhibitor with an efficiency of 97.75% at 5 x 10{sup -3} M additive concentration. Generally, the inhibition efficiency increased with increase of the inhibitor concentration. Changes in impedance parameters (charge transfer resistance, R{sub ct}, and double-layer capacitance, C{sub dl}) were indicative of adsorption of 14-S-14 on the metal surface, leading to the formation of a protective film. The potentiodynamic polarization measurements indicated that the inhibitors are of mixed type. The adsorption of the inhibitors on the carbon steel surface in the acid solution was found to obey Langmuir's adsorption isotherm. The free energy of adsorption processes were calculated and discussed. The surface parameters of each synthesized surfactant were calculated from its surface tension including the critical micelle concentration (CMC), maximum surface excess ({gamma}{sub max}) and the minimum surface area (A{sub min}). The free energies of micellization ({delta}G{sup o}{sub mic}) were calculated. The surface morphology of carbon steel sample was investigated by scanning electron microscopy (SEM)

  20. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  1. Corrosion of steel tanks in liquid nuclear wastes

    International Nuclear Information System (INIS)

    The objective of this work is to understand how solution chemistry would impact on the corrosion of waste storage steel tanks at the Hanford Site. Future tank waste operations are expected to process wastes that are more dilute with respect to some current corrosion inhibiting waste constituents. Assessment of corrosion damage and of the influence of exposure time and electrolyte composition, using simulated (non-radioactive) wastes, of the double-shell tank wall carbon steel alloys is being conducted in a statistically designed long-term immersion experiment. Corrosion rates at different times of immersion were determined using both weight-loss determinations and electrochemical impedance spectroscopy measurements. Localized corrosion susceptibility was assessed using short-term cyclic potentiodynamic polarization curves. The results presented in this paper correspond to electrochemical and weight-loss measurements of the immersed coupons during the first year of immersion from a two year immersion plan. A good correlation was obtained between electrochemical measurements, weight-loss determinations and visual observations. Very low general corrosion rates (-1) were estimated using EIS measurements, indicating that general corrosion rate of the steel in contact with liquid wastes would no be a cause of tank failure even for these out-of-chemistry limit wastes. (author)

  2. Steel Corrosion Inhibition by Acid Garlic Essential Oil as a Green Corrosion Inhibitor a nd Sorption Behavior

    OpenAIRE

    Afia, L.; Benali, O.; Salghi, R.; Ebenso, Eno E.; Jodeh, S.; Zougagh, M.; Hammouti, B.

    2014-01-01

    The aim of this work was to investigate the inhibition effect of acid garlic essential oil (GO oil) as an inhibitor on the corrosion of carbon steel in a 1M HCl solution at different temperatures by weight loss,electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The GO oil acts as an effective corrosion inhibitor for carbon steel in a hydrochloric acid medium. The inhibition process is attributed to the formatio...

  3. Effect of microstructure and Cr content in steel on CO{sub 2} corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Masakatsu [Sumitomo Metal Industries, Ltd., Amagasaki (Japan). Iron and Steel Research Labs.; Ikeda, Akio [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1996-08-01

    The effect of microstructure and Cr content in steels on CO{sub 2} corrosion was investigated by using steels containing Cr content from 0 to 13 mass% melted in laboratory and Steels J55, N80 and L80(API Grade) melted in the mill. Temperatures and H{sub 2}S contamination were considered as environmental factors. In CO{sub 2} environments, the temperature giving a maximum corrosion rate, T{sub max.}, existed in carbon and Cr steels. T{sub max.} increased together with Cr content, and T{sub max.} of 0, 1, 2 and 13% Cr steels was about 80, 100, 120 and 225 C, respectively. Because of this behavior, the relationship between Cr content and corrosion rate was linear at 60 C, but the corrosion rate was highest on the steel with around 1 mass% Cr at 100 C. H{sub 2}S contamination for CO{sub 2} corrosion suppressed the corrosion rate and localized-corrosion in the temperature region whose corrosion rate showed a maximum value. It was clarified that this was related to the formation of Fe-sulfides from EPMA analysis and the solubility of the corrosion products. Concerning microstructure, Steel J55 with ferritic-pearlitic microstructure showed good corrosion resistance for localized-corrosion compared with Steel N80 and L80 with martensitic microstructure.

  4. Electrochemical Investigation of the Corrosion of Different Microstructural Phases of X65 Pipeline Steel under Saturated Carbon Dioxide Conditions

    Directory of Open Access Journals (Sweden)

    Yuanfeng Yang

    2015-05-01

    Full Text Available The aim of this research was to investigate the influence of metallurgy on the corrosion behaviour of separate weld zone (WZ and parent plate (PP regions of X65 pipeline steel in a solution of deionised water saturated with CO2, at two different temperatures (55 °C and 80 °C and at initial pH~4.0. In addition, a non-electrochemical immersion experiment was also performed at 80 °C in CO2, on a sample portion of X65 pipeline containing part of a weld section, together with adjacent heat affected zones (HAZ and parent material. Electrochemical impedance spectroscopy (EIS was used to evaluate the corrosion behaviour of the separate weld and parent plate samples. This study seeks to understand the significance of the different microstructures within the different zones of the welded X65 pipe in CO2 environments on corrosion performance; with particular attention given to the formation of surface scales; and their composition/significance. The results obtained from grazing incidence X-ray diffraction (GIXRD measurements suggest that, post immersion, the parent plate substrate is scale free, with only features arising from ferrite (α-Fe and cementite (Fe3C apparent. In contrast, at 80 °C, GIXRD from the weld zone substrate, and weld zone/heat affected zone of the non-electrochemical sample indicates the presence of siderite (FeCO3 and chukanovite (Fe2CO3(OH2 phases. Scanning Electron Microscopy (SEM on this surface confirmed the presence of characteristic discrete cube-shaped crystallites of siderite together with plate-like clusters of chukanovite.

  5. Carbon dioxide corrosion inhibition of N80 carbon steel in single liquid phase and liquid/particle two-phase flow by hydroxyethyl imidazoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, Liaoning Province (China); Department of Applied Chemistry, Shenyang Institute of Chemical Technology, Shenyang 110142 (China); Zheng, Y.G. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, Liaoning Province (China); Okafor, P.C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, Liaoning Province (China); Department of Pure and Applied Chemistry, University of Calabar, Calabar (Nigeria)

    2009-07-15

    CO{sub 2} corrosion inhibition of N80 steel in liquid single-phase and liquid/particle two-phase flow by 2-undecyl-1-hydroxyethyl imidazoline (HEI-11) and 2-undecyl-1-hydroxyethyl-1-hydroxyethyl quaternary imidazoline (HQI-11) was investigated using weight loss, potentiodynamic polarization, EIS, and scanning electron microscope (SEM) techniques. The results show that the corrosion rate in the absence and presence of the imidazolines is strongly dependent on the flow condition and presence of entrained sand particles. The imidazolines function via a mixed-type corrosion inhibition mechanism. The inhibition efficiencies of the imidazolines followed the trend HQI-11 > HEI-11 in all the systems studied. Inhibition mechanism has been discussed in relation to the polycentric adsorption sites on the imidazoline molecules. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H{sub 2}O mixture

    Energy Technology Data Exchange (ETDEWEB)

    Samiento-Bustos, E. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Rodriguez, J.G. Gonzalez [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico)], E-mail: ggonzalez@uaem.mx; Uruchurtu, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Dominguez-Patino, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); U.A.E.M. Facultad de Ciencias Quimicas e Ingenieria, Av. Universidad 1001, 62209, Cuernavaca, Morelos (Mexico); Salinas-Bravo, V.M. [Instituto de Investigaciones Electricas, Gerencia de Materiales y Proceso Quimicos, Av. Reforma 113, Col. Palmira, CP 62490, Cuernavaca, Morelos (Mexico)

    2008-08-15

    The effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the mixture LiBr (55%) + ethylene glycol + H{sub 2}O at room temperature has been evaluated. Used inhibitors included LiNO{sub 3} (Lithium Nitrate), Li{sub 2}MoO{sub 4} (Lithium Molybdate) and Li{sub 2}CrO{sub 4} (Lithium Chromate) at concentrations of 5, 20 and 50 ppm. Electrochemical techniques included potentiodynamic polarization curves, electrochemical noise resistance (EN) and electrochemical impedance spectroscopy (EIS) measurements. Additionally, adsorption isotherms were calculated. The results obtained showed that both, the corrosion rate and the passive current density decreased with inhibitors, and, in general terms, inhibitors efficiency increased with inhibitor concentration, except in the case of Li{sub 2}CrO{sub 4,} where the highest efficiency was obtained with 20 ppm of inhibitor. Pitting potential with 5 ppm of inhibitor, regardless its chemical composition, was more active than in absence of inhibitor, increased at 20 ppm, especially with Li{sub 2}CrO{sub 4}, and remained unaltered with 50 ppm. EN measurements showed that at 5 ppm of inhibitor, the number of film rupture/repassivation events was higher than that obtained at 20 or 50 ppm. Adsorption isotherms suggested a different adsorption mechanism for each inhibitor, whereas EIS results suggested that the corrosion process when nitrates were added was under charge transfer control, but in the case of molybdates or chromates was under diffusion control.

  7. Application of Stabilized Silver Nanoparticles as Thin Films as Corrosion Inhibitors for Carbon Steel Alloy in 1 M Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2013-01-01

    Full Text Available Nanometer scaled materials have attracted tremendous interest as corrosion protective films due to their high ability to form self-assembled films on the metal surfaces. It is well known that the silver nanoparticles have higher reactivity towards aqueous acidic solution. The present work aims to prepare coated silver nanoparticles to protect carbon steel alloys from aqueous acidic corrosive media. In this respect, Ag nanoparticles colloid solutions were produced through reducing AgNO3 separately with trisodium citrate in an aqueous solution or in the presence of stabilizer such as poly(ethylene glycol thiol and poly(vinyl pyrrolidone. The morphology of the modified silver nanoparticles was investigated by TEM and DLS. UV-Vis absorption spectrum was used to study the effect of HCl on the stability of the dispersed silver nanoparticles. The corrosion inhibition efficiency of the poly (ethylene glycolthiol, the self-assembled monolayers of Ag nanoparticles, was determined by polarization method and electrochemical impedance spectroscopy (EIS. Polarization curves indicated that the coated silver poly (ethylene glycolthiol acted as a mixed type inhibitor. The data of inhibition efficiencies obtained measured by polarization measurements are in good agreement with those obtained with electrochemical impedance.

  8. Mechanism of protective film formation during CO2 corrosion of X65 pipeline steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Electrochemical techniques,X-ray diffraction (XRD),and scanning electron microscopy (SEM) were applied to study the corrosion behaviors of X65 steel in static solution with carbon dioxide (CO2 at 65℃.The results show that iron carbonate (FeCO3deposits on the steel surface as a corrosion product scale.This iron carbonate scale acts as a barrier to CO2 corrosion,and can reduce the general corrosion rate.The protection ability of the scale is closely related to the scale morphological characteristics.

  9. Prediction of external corrosion for steel cylinders

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) currently manages the UF6 Cylinder Program (the program). The program was formed to address the depleted-uranium hexafluoride (UF6) stored in approximately 50,000 carbon steel cylinders. The cylinders are located at three DOE sites: the K-25 site (K-25) at Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The System Requirements Document (SRD) (LMES 1996a) delineates the requirements of the program. The appropriate actions needed to fulfill these requirements are then specified within the System Engineering Management Plan (SEMP) (LMES 1996b). The report presented herein documents activities that in whole or in part satisfy specific requirements and actions stated in the UF6 Cylinder Program SRD and SEMP with respect to forecasting cylinder conditions. The wall thickness projections made in this report are based on the assumption that the corrosion trends noted will continue. Some activities planned may substantially reduce the rate of corrosion, in which case the results presented here are conservative. The results presented here are intended to supersede those presented previously, as the quality of several of the datasets has improved

  10. Cesium corrosion process in Fe–Cr steel

    International Nuclear Information System (INIS)

    A cesium corrosion out-pile test was performed to Fe–Cr steel in a simulated fuel pin environment. In order to specify the corrosion products, the corroded area was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A cesium corrosion process in Fe–Cr steel was successfully developed proceeding from both experimental results and thermochemical consideration. The corroded area was mainly formed by Fe layer and Fe depleted oxidized layer. The Fe depleted oxidized layer was formed by Cr0.5Fe0.5 and Cr2O3. The presumed main corrosion reactions were 2Cr+2/3 O2→Cr2O3(ΔG650°C=-894.1kJ/mol) and Cr23C6+46Cs+46O2→23Cs2CrO4+6C(ΔG650°C=-25018.1kJ/mol). Factors of these reactions are chromium, carbon, oxygen and cesium. Therefore, cesium corrosion progression must be dependent on the chromium content, carbon content in the steel, the supply rate of oxygen and temperature which correlated with the diffusion rate of cesium and oxygen into the specimen

  11. Corrosion behavior and electrochemical character of Q235 carbon steel in the presence of Penicillium%Q235钢在青霉菌作用下的腐蚀行为和电化学特性

    Institute of Scientific and Technical Information of China (English)

    李松梅; 王力锋; 杜娟; 刘建华; 于美

    2013-01-01

    采用表面分析技术、失重法及电化学测试方法研究了Q235钢在青霉菌(Penicillium)作用下的腐蚀行为和电化学特性.青霉菌在Q235钢表面形成致密的生物膜和腐蚀产物沉积膜层.青霉菌促进Q235钢的腐蚀,腐蚀类型为点蚀坑.青霉菌体系中试样表面膜经历由游离态变为固着态,由单层逐渐变为多层的过程;生物膜作用与细菌活性有关,当活性降低时微生物腐蚀促进作用也大幅降低.%The influenced corrosion behavior of Q235 carbon steel was investigated in the presence of Penicillium by using the surface analysis method, mass loss method, and electrochemical method. It is demonstrated that dense biofilms and depositing films of corrosion products form on the surface of Q235 carbon steel in the presence of Penicillium. Corrosion of Q235 carbon steel is evidently promoted and the corrosion morphology of Q235 carbon steel is pitting in Penicillium systems. The films on the surface of Q235 carbon steel changes through a complex process, from free state to solid state and single-layer to multilayer. The effect of the biofilm depends on bacterial activity, and the corrosion promotion of the biofilm decreases as the bacterial activity weakens.

  12. Corrosion of nickel alloys and stainless steels in polluted or confined PWR environments

    International Nuclear Information System (INIS)

    This document addresses the issue of corrosion of materials used in PWR nuclear reactors, notably in steam generators which have been particularly affected by this kind of degradation due to a progressive accumulation of impurities. The authors first present the different materials used in secondary circuit and in auxiliary circuits of PWRs: carbon steels and low alloyed steels, nickel alloys, stainless steels, and other materials. They discuss the degradation of steam generator tubes by corrosion: corrosion environments, types of corrosion (wastage, pitting, intergranular stress corrosion cracking), and influence of the environment and of the microstructure. They also propose a brief overview of modelling efforts in the case of the 600 alloy, and indicates measures to mitigate the tube degradation by corrosion (water treatment, better design of steam generators and secondary circuit, improvement of corrosion resistance). The next part addresses the degradation by stress corrosion cracking of stainless steels in polluted environments in PWRs reactors: return on experience, stress corrosion cracking in media contaminated by impurities (intergranular corrosion of sensitized or work hardened steels, transgranular corrosion by chloride ions, corrosion by diluted sulphate + chloride, corrosion in concentrated boric acid solutions)

  13. Investigation of the inhibitive effect of N-phosphono-methyl-glycine on the corrosion of carbon steel in neutral solutions by electrochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pech-Canul, M.A.; Chi-Canul, L.P.

    1999-10-01

    Steady-state current-voltage curves for various disk rotation rates were combined with electrochemical impedance measurements to investigate the corrosion inhibition of carbon steel by N-phosphono-methyl-glycine (NPMG)/Zn{sup 2+} mixtures with a concentration ratio of 1:1 between NPMG and zinc cations in a model water. Efficiency of the NPMG/Zn{sup 2+} formulation increased with concentration in the range from 10 ppm to 100 ppm, and it performed as a mixed type inhibitor, retarding the rate of the anodic and cathodic reactions. Analysis of impedance measurements by means of a simple model suggested that the oxygen reduction reaction was under mixed activation-diffusion control in blank solutions and nearly under diffusion control in the inhibited solutions. Results showed that with increasing rotation speeds, the rate of oxygen diffusion through the porous layer covering the electrode surface increased and the anodic dissolution reaction became slower.

  14. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Xiutong Wang; Jizhou Duan; Yan Li; Jie Zhang; Shide Ma; Baorong Hou

    2005-04-01

    Seabed sediment (SBS) is a special soil that is covered by seawater. With the developments in marine oil exploitation and engineering, more and more steel structures have been buried in SBS. SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this paper, approach in the field of SBS corrosion is reviewed. Electrochemical and microbial corrosion factors, corrosion mechanism, measurement of metal corrosion rate, corrosion evaluation and prediction of corrosion are also discussed here.

  15. Evaluation of the potential of additives as corrosion inhibitors of CA-50 carbon steel used as reinforcement in concretes; Avaliacao da potencialidade de aditivos como inibidores de corrosao do aco carbono CA-50 usado como armadura de estruturas de concreto

    Energy Technology Data Exchange (ETDEWEB)

    Mennucci, Marina Martins

    2006-07-01

    In this work, various compounds were tested to evaluate their potential capability for their use as corrosion inhibitors of carbon steel reinforcement in concretes. The additives tested were sodium benzoate, polyethylene glycol, hexamethylenetetramine, benzotriazole and yttrium carbonate. Initially, exploratory tests were carried out to select the ones to be used as corrosion inhibitors, based on the inhibit ion efficiency determined from electrochemical tests, specifically polarization tests and electrochemical impedance spectroscopy. These tests were carried out in a solution composed of 0.01 N sodium hydroxide (NaOH) and 0.05 N potassium hydroxide (KOH) to simulate the composition of the solution inside the pores in concretes. The additive that presented the most promising potential to be used as corrosion inhibitor was benzotriazole (BTA). After the elimination of some compounds and selection of the additive with higher corrosion inhibit ion efficiency in the test medium, the effect of its concentration on the corrosion inhibition efficiency was evaluated. Sodium nitrite solutions with the same concentrations as those solutions with BTA were tested for comparison reasons. Sodium nitrite is a well established corrosion inhibitor for carbon steel reinforcement in concretes but it has been related to toxic effects. The BTA was associated to higher corrosion inhibition efficiencies than that of sodium nitrite in similar concentrations. A blackish adherent film was formed on the steel surface exposed to BTA solutions during long periods of immersion in the alkaline medium. The results suggest that BTA is a potential candidate for substitution of nitrites as corrosion inhibitor of reinforcements in concrete. (author)

  16. Plasma coating used to evaluate resistance against flow accelerated corrosion on carbon steel feeder pipe material for pressurized heavy water reactor

    International Nuclear Information System (INIS)

    A collaborative study on plasma nitriding was initiated by Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, with FCIPT, a division of Institute of Plasma Research. In order to control the influence of Flow Accelerated Corrosion (FAC) on feeder pipe of PHWR reactor, coating by plasma nitriding process was carried out inside the pipe as a remedy.This is one of the methods to control the wall thickness reduction of carbon steel feeder pipe and the influence of FAC in PHWR (Pressurized heavy water reactor). Specimen of 15 mm NB Sch 80 straight pipe length of 100 mm pipe module section of low carbon steel ASTM 106 Gr. B were plasma nitrided at FCIPT, IPR for optimization of the process parameters. The wall thickness of the sample was measured axially and circumferentially by Ultrasonic thickness gauge with specific marking with templates before carrying out plasma nitriding process. During plasma nitriding the temperature was maintained at 520 °C for 24 hours. The samples after coating were checked for thickness variation by Raman spectroscopy as well as microscopy, and it was found that the coating was uniform and coating consisted of iron nitrides only. For functional test, to check the corrosion resistance, a specimen holder was designed and fabricated for the treated specimen such that it can withstand a velocity of 7 m/s. The holder was mounted in SIM loop outlet of heater. The SIM loop was maintained at 120 °C and 7 m/s for about 30 days with less than 20 ppb dissolved oxygen condition. Preliminary experiments on plasma nitriding have been carried out and checked in SIM loop in order to check the resistance to FAC under neutral pH condition. (author)

  17. Effects of sulphide ion on the corrosion behaviour of X52 steel in a carbon dioxide environment at temperature 40 deg. C

    International Nuclear Information System (INIS)

    Research highlights: → We study the effect of sulphide ion on the corrosion behaviour of X52 steel. → Increasing sulphide ion concentration will increase the corrosion rate of X52 steel. → Increasing sulphide ion concentration will increase cathodic reaction. → Less protective film, also contribute to the increasing the corrosion rate. - Abstract: The electrochemical behaviour of X52 steel in the presence of sulphide at 40 deg. C in a CO2 environment was investigated using the methods of linear polarization resistance (LPR), potentiodynamic sweep, electrochemical impedance spectroscopy (EIS). In addition, the surface of X52 steel was also studied using scanning electron microscopy (SEM). The results showed that the corrosion rate of X52 steel increased with increasing concentration of sulphide ion. Potentiodynamic curve showed that there were changes in cathodic branch due to the change in the nature of cathodic reaction in the presence of sulphide ion. EIS analysis showed the higher sulphide ion concentration, the higher adsorbed species on the steel surface that contributed in the cathodic reaction. Furthermore, SEM results showed crevices on the scale which indicated pitting tendency in sulphide ion solutions. The less protective film, probably mackinawite, also contributed to the increase of corrosion rate in the presence of sulphide ion.

  18. The effect of aerobic corrosion on anaerobically-formed sulfide layers on carbon steel in dilute near-neutral pH saline solutions

    International Nuclear Information System (INIS)

    Highlights: •The corrosion rate is low when steel is exposed to anaerobic conditions (pH = 8.9). •An anaerobic corrosion with sulfide to aerobic switch increases the corrosion rate. •Aerobic conditions leads to corrosion and oxide deposition beneath FeS. •Continual air exposure leads to the blistering of the original FeS film. -- Abstract: The aerobic corrosion of pipeline steel was investigated in an aqueous sulfide solution by monitoring the corrosion potential and periodically measuring the polarization resistance. The properties and composition of the corrosion product deposits formed were determined using scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy. The establishment of aerobic conditions leads to corrosion and (oxyhydr)oxide deposition beneath the anaerobically-formed mackinawite film originally present on the steel surface. This leads to blistering and spalling of the sulfide film. Chemical conversion of the mackinawite to Fe(III) (oxyhydr)oxides also occurs but is a relatively slow reaction

  19. Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, A. U.; Mishra, Brajendra [Colorado School of Mines, Denver (United States); Mittal, Vikas [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2016-01-15

    The aim of this study was to evaluate the use of iron-nickel oxide (Fe{sub 2}O{sub 3}.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

  20. A liquid aluminum corrosion resistance surface on steel substrate

    International Nuclear Information System (INIS)

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al2O3, followed by a thinner layer of FeAl3, and then a much thicker one of Fe2Al5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  1. Corrosion of Steels in Steel Reinforced Concrete in Cassava Juice

    Science.gov (United States)

    Oluwadare, G. O.; Agbaje, O.

    The corrosion of two types of construction steels, ST60Mn and RST37-2♦, in a low cyanide concentration environment (cassava juice) and embedded in concrete had been studied. The ST60 Mn was found to be more corrosion resistant in both ordinary water and the cassava juice environment. The cyanide in cassava juice does not attack the steel but it provides an environment of lower pH around the steel in the concrete which leads to breakdown of the passivating film provided by hydroxyl ions from cement. Other factors such as the curing time of the concrete also affect the corrosion rates of the steel in the concrete. The corrosion rate of the steel directly exposed to cassava juice i.e., steel not embedded in concrete is about twice that in concrete. Long exposure of concrete structure to cassava processing effluent might result in deterioration of such structures. Careful attention should therefore be paid to disposal of cassava processing effluents, especially in a country like Nigeria where such processing is now on the increase.

  2. 外锈层对低碳钢腐蚀影响的电化学分析%Electrochemical Analysis Outer Rust Layer Effect on Corrosion Behavior of Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    田志强; 孔小东; 王崇碧; 王源升

    2012-01-01

    In the long-term corrosion process, the rust layer formed on the low carbon hull steel may affect its corrosion behavior. The influence mechanism of the outer rust layer on the hull steel corrosion behavior is unclear. A certain type of low carbon steel was selected to soaked in 3mass% NaCl solutions for one year, then of which the electrochemical corrosion characteristic was studied by electrochemical methods before and after removal of the formed outer rust layer. The corrosion resistance before and after the removal of the outer rust layer was compared, and the effect of the outer rust layer on the corrosion of the rust steel was analyzed by use of linear polarization, AC impedance spectroscopy (EIS) and electrochemical noise (EN). The morphology, phase constituents and elemental distribution of the corrosion products formed on the rust and base steels were characterized by EPMA and XRD respectively, then the relevant corrosion mechanism was discassed. The results show that, the corrosion resistance of the steel decreased and the corrosion rate increased after removal of outer rust layer; the removal of the outer rust layer may facilitate the oxygen inward-transportation thereby affecting the electrode process on interface of the rust layer/ metal matrix.%选用某型船用低碳钢,在3mass%NaCl溶液中浸泡一年,用电化学技术研究外锈层去除前后低碳钢的腐蚀电化学特征.运用线性极化、电化学阻抗(EIS)和电化学噪声(EN)技术比较外锈层去除前后钢的耐蚀性,分析外锈层对腐蚀的影响;通过对内、外锈层和裸钢腐蚀形貌的显微观察、对内锈层的电子探针(EMPA)和x射线衍射(XRD)分析,研究外锈层对腐蚀影响的机理.结果表明,去除外锈层使钢的耐蚀性减小,腐蚀速率增大;外锈层的去除导致氧更易于向内输送,进而影响内锈层/金属基体界面的电极过程.

  3. Comparative Structural Strength Research of Hardened Carbon Steel and Hot-Rolled Alloy Steel

    Science.gov (United States)

    Bogomolov, A. V.; Zhakupov, A. N.; Kanayev, A. T.; Sikach, I. A.; Tugumov, K. K.

    2016-08-01

    Experiments on quantitative evaluation of fatigue strength showed that St5ps and St5sp carbon steels with A400 strength class can be fully applied for erection of constructions and buildings having cyclical loads during operation. Study of corrosion resistance of hardened carbon steel in comparison with hot-rolled alloy steel consists in difference in structures and hence, difference in intensity of electric and chemical processes featuring presence of steel in concrete. Structure of St5sp steel with A400 strength class in surface area has significantly less corrosion rate than ferritic-perlitic structure of 35GS steel with A400 strength class.

  4. POLYETHERSULFONE COATING FOR MITIGATING CORROSION OF STEEL IN GEOTHERMAL ENVIRONMENT.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.

    2005-06-01

    Emphasis was directed toward evaluating the usefulness of a polyethersulfone (PES)-dissolved N-methyl pyrrolidone (NMP) solvent precursor as a low-temperature film-forming anti-corrosion coating for carbon steel in simulated geothermal environments at brine temperatures up to 300 C. A {approx} 75 {micro}m thick PES coating performed well in protecting the steel against corrosion in brine at 200 C. However, at {>=} 250 C, the PES underwent severe hydrothermal oxidation that caused the cleavage of sulfone- and ether-linkages, and the opening of phenyl rings. These, in turn, led to sulfone {yields} benzosulfonic acid and ether {yields} benzophenol-type oxidation derivative transformations, and the formation of carbonyl-attached open rings, thereby resulting in the incorporation of the functional groups, hydroxyl and carbonyl, into the coating. The presence of these functional groups raised concerns about the diminutions in water-shedding and water-repellent properties that are important properties of the anti-corrosion coatings; such changes were reflected in an enhancement of the magnitude of susceptibility of the coatings surfaces to moisture. Consequently, the disintegration of the PES structure by hydrothermal oxidation was detrimental to the maximum efficacy of the coating in protecting the steel against corrosion, allowing the corrosive electrolytes to infiltrate easily through it.

  5. Effects of pH on Corrosion Behavior of Carbon Steel in Oilfield Water with High Sulphide%pH值对碳钢在高含硫油田水中腐蚀行为的影响

    Institute of Scientific and Technical Information of China (English)

    吴新民; 邵秀丽; 薛晨; 张彩霞; 方芳

    2013-01-01

    The corrosion behavior of J55 carbon steel in oilfield water with high sulphide at different pH values was investigated by electrochemical measurement and dynamic corrosion mass loss method. The corrosion scales were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The results showed that depolarization in cathode of the J55 carbon steel weakened and corrosion rate decreased as pH increased. When the pH was 5.6~7.2, the corrosion scale, which was mainly composed of mackinawite (FeS1-χ) with coarse grains was loose and brittle. It fell off easily and was non-protective, leading to the serious corrosion on the carbon steel surface. When the pH was 8.7~11.0, strongly protective corrosion scale which was composed of iron oxide formed on the carbon steel surface and obvious passivation was found in the anode, leading to the slight corrosion on carbon steel surface.%采用电化学测试方法和动态腐蚀失重实验并结合扫描电镜和能谱分析,研究不同pH值下J55钢在高含硫油田水中的腐蚀行为.结果表明,随着溶液pH值升高,J55钢阴极去极化作用减弱,腐蚀速率下降.当pH值在5.6~7.2时,腐蚀产物主要是疏松且易脱落的粗晶粒四方硫铁矿FeS1-x,无法在碳钢表面形成保护膜,形成大量腐蚀坑,使碳钢表面腐蚀较严重;当pH值在8.7~11.0时,腐蚀产物主要是氧化铁,在碳钢表面形成了致密的保护膜,阳极有明显的钝化现象,碳钢表面腐蚀轻微.

  6. 76 FR 54209 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2011-08-31

    ... Association of New Iron and Steel Technology (KANIST),\\3\\ which is an association of steel companies established for the development of new iron and steel technology, and/or (3) participate in another company's...- 2. \\3\\ Also known as Korea New Iron & Steel Technology Research Association (KNISTRA). In the...

  7. Stress Corrosion Cracking of Pipeline Steels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper provides a review of the differences between high pH and near-neutral pH stress corrosion cracking ofpipeline steels, influencing factors, and mechanisms. The characteristics and historical information on both forms ofSCC are discussed. The prospect for research in the future is also presented.

  8. Microbially Influenced Corrosion of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deuk; Ryu, Seung Ki; Kim Young Ho [POSCO Techanical Researh Laboratories, Pohang (Korea, Republic of)

    1996-06-25

    Microbially Influenced Corrosion(MIC) is often a significant factor in controlling the long-term performance of most structural materials in industrial applications. This papers cover MIC mechanism and evaluation of stainless steels in soil and sea water environments. Papers also cover detection, monitoring and mitigation of MIC, biocides and treatments. (author). 28 refs., 2 tabs., 5 figs.

  9. Corrosion behavior of carbon steel undera defected epoxy coating studied by scanning Kelvin probe%扫描Kelvin探针研究破损环氧涂层下碳钢的腐蚀行为

    Institute of Scientific and Technical Information of China (English)

    肖葵; 董超芳; 魏丹; 吴俊升; 徐龙娇; 李晓刚

    2011-01-01

    采用扫描Kelvin探针技术(SKP)对中性盐雾环境条件下破损环氧涂层的碳钢的腐蚀行为进行了研究.不同盐雾试验阶段的伏打电位变化规律的分析结果表明:环氧/碳钢涂层的缺陷为腐蚀介质提供了向碳钢基体传输的通道.破损处碳钢基体的电位比其邻近的膜下碳钢基体更负,成为阳极溶解发生区域.一定时间的盐雾试验后,破损处生成的未溶腐蚀产物可覆盖住裸露基体,使破损处向正的电位变化而成为阴极,而其附近的膜下碳钢基体电位变负而成为新的阳极区.同时,不断形成的新阴极和新阳极的电位差成为膜下腐蚀继续发展的驱动力.随着膜下腐蚀的进行,%Scanning Kelvin probe(SKP) was used for measuring the corrosion behavior of carbon steel with a defected epoxy coating after neutral salt spray test,and the volta potential changes of carbon steel at different stages of neutral salt spray test were analyzed.It is shown that the defect formed by the damaged epoxy/carbon coating provides a way for the corrosive medium to contact the carbon steel matrix.The potential of carbon steel is more negative at the defect point than that under the coating,resulting in anodic dissolution at the defect point.After some time of neutral salt spray test,insoluble corrosion products can cover the bare defect,leading to the potential at this part shifting to more positive values.Consequently,the defect becomes a cathode,while its vicinity under the coating exists as an anode.Meanwhile,the potential difference between the new cathode and the new anode offers a driving force for continuous corrosion under the coating.Therefore,with the corrosion developing,there would be a considerable corrosive medium and corrosion products aggregating at the interface,which destroy the binding between the epoxy coating and carbon steel,leading to the appearances of bubbling and peeling.

  10. Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo Yong; Koh, Seong Ung; Kim, Kyoo Young [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2005-04-15

    The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. however, corrosion rate was not directly related to SSC susceptibility of steels

  11. Atmospheric corrosion rate expressed as a function of time. Effects of atmospheric conditions and alloying elements on corrosion resistance of steels and cast irons

    International Nuclear Information System (INIS)

    On the basis of function describing a change in atmospheric corrosion rate (K) in time (t) the published results of long-standing corrosion tests of a great number of cast irons and steels were statistically processed. The effect of chloride - ions, sulfur dioxide, alloying elements (Cu, Ni, Cr, Mn, Si, V, C) on the rate of initial corrosion on the active surface (K0), passivation properties (α0) of corrosion products and corrosion resistance (α0/K0) of iron-carbonic alloys in different climatic areas was revealed. The data permit further investigation of the mechanism of alloying element effect on atmopsheric corrosion of steels

  12. Waste of cleaning emulsion sewage as inhibitors of steel corrosion

    Science.gov (United States)

    Fazullin, D. D.; Mavrin, G. V.; Shaikhiev, I. G.

    2016-06-01

    The article describes the corrosion test of steel of the brand 20 in the stratal water. To increase corrosion resistance as a corrosion inhibitor the concentrate waste emulsion of the mark "Incam- 1" was provided. The article presents studies of the corrosion rate with different dosages of corrosion inhibitor in the stratal water. Based on these research results are revealed that the degree of protection of steel is 27% at a dosage of 3.8 g / dm3.

  13. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Sha; Tian Jintao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Lei Yanhua; Chang Xueting; Liu Tao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (R{sub ct}) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  14. ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Outirite, Moha; Lagrenee, Michel; Lebrini, Mounim [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, Michel; Jama, Charafeddine [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad, E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-02-01

    The corrosion inhibition properties of a new class of oxadiazole derivatives, namely 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles (n-DPOX) for C38 carbon steel corrosion in 1 M HCl medium were analysed by electrochemical impedance spectroscopy (EIS). An adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The experimental results showed that these compounds are excellent inhibitors for the C38 steel corrosion in acid solution and that the protection efficiency increased with increasing the inhibitors concentration. Electrochemical impedance data demonstrate that the addition of the n-DPOX derivatives in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Adsorption of these inhibitors on the steel surface obeys to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal hydrochloric solution by n-DPOX is due to the formation of a chemisorbed film on the steel surface. Quantum chemical calculations using the Density Functional Theory (DFT) and the Quantitative Structure Activity Relationship (QSAR) approach were performed on n-DPOX derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that their inhibition effect is closely related to E{sub HOMO}, E{sub LUMO}, and dipole moment (mu).

  15. Corrosion resistance of modern austenitic-ferritic (duplex) stainless steel. Corrosion of special types. (Review)

    International Nuclear Information System (INIS)

    Recent data on resistance of modern corrosion-resistant austenitic-ferritic steels to different types of corrosion are generalized. It is shown that these steels are characterized by high resistance to general corrosion in acid, alkali, chloride and other solutions, are not inclined to intercrystalline, pitting and crevice corrosion and are noted for high resistance to corrosion cracking and corrosion fatigue. All this is combined with technological and economical effectiveness. It is advisible to use these steels instead of highly-alloyed and expensive steels and alloys in chemical, power and other industries. 59 refs.; 2 tabs

  16. Corrosion of carbon steel overpacks for the geological disposal of radioactive waste Task 3 Characterization of radioactive waste forms a series of final reports (1985-89) No 29

    International Nuclear Information System (INIS)

    This is the final report of a three-year research programme investigating the long-term corrosion of carbon steel overpacks for the disposal of nuclear waste in granitic and argillaceous environments. The aim of the work has been to develop mechanistic mathematical models of uniform and localized corrosion, and to test their validity by comparison with experimental data. It has been found that both models overestimate the rate of attack by factors of 4-6. It is recommended that additional work should be undertaken to improve the uniform corrosion model by including the retarding influence of accumulated corrosion products. However, in the case of localized corrosion, attention should focus on improving the estimate of the maximum period for localized attack, based on the criterion that such corrosion is only feasible under aerobic conditions. If, as seems likely, this period is only 20-40 years, the extent of penetration may then be estimated with sufficient accuracy form experimental data. However, the localized corrosion model in its present form will still have an important role in investigating the importance of different environmental conditions, with regard to the rate of corrosion penetration. 9 refs.; 17 figs.; 8 tabs

  17. Corrosion behavior of tempered dual-phase steel embedded in concrete

    Institute of Scientific and Technical Information of China (English)

    O(g)uzhan Kelestemur; Mustafa Aksoy; Servet Yddtz

    2009-01-01

    Dual-phase (DP) steels with different martensite contents were obtained by appropriate heat treatment of an SAE1010 structural carbon steel,which was cheap and widely used in the construction industry.The corrosion behavior of DP steels in con-crete was investigated under various tempering conditions.Intercritical annealing heat treatment was applied to the reinforcing steel to obtain DP steels with different contents of martensite.These DP steels were tempered at 200,300,and 400℃ for 45 min and then cooled to room temperature.Corrosion experiments were conducted in two stages.In the first stage,the corrosion potential of DP steels embedded in concrete was measured every day for a period of 30 d based on the ASTM C 876 standard.In the second stage,the anodic and cathodic polarization values of these steels were obtained and subsequently the corrosion currents were determined with the aid of cathodic polarization curves.It was observed that the amount of second phase had a definite effect on the corrosion behavior of the DP steel embedded in concrete.As a result of this study,it is found that the corrosion rate of the DP steel increases with an increase in the amount ofmartensite.

  18. Corrosion products release from steel surface into BWR water coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V.G.; Korolev, A.S.; Berezina, I.G.; Sofyin, M.V.

    1986-02-01

    Factors influencing steel corrosion product release and transfer into a BWR primary circuit have been studied and reported on in this paper. The study of corrosion kinetics and corrosion product release was carried out on the samples tested under RBMK NPP condensate-feedwater cycle conditions, as well as, under test rig conditions. The ratio of corrosion product specific mass, transferred to the water, to the whole corrosion product specific mass of steel, formed under the given conditions was determined and used as a criterion, characterizing the extent of corrosion product transfer from the steel surface into the water.

  19. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Institute of Scientific and Technical Information of China (English)

    LI Wei; LIU Jun-quan; TU Xiao-hui

    2007-01-01

    A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303 g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  20. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Directory of Open Access Journals (Sweden)

    LI Wei

    2007-02-01

    Full Text Available A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  1. Research on atmospheric corrosion of steel using synchrotron radiation

    International Nuclear Information System (INIS)

    Correlation between local structure around Cr in the protective rust layer on weathering steel and protective performance of the rust layer is presented as an example of corrosion research using synchrotron radiation which has recently been applied in various research fields as a useful tool. In addition, in situ observation of initial process of rust formation on steel is also mentioned. It was pointed out by considering the X-ray absorption fine structure spectra that the nanostructure of the protective rust layer on weathering steel primarily comprises of small Cr-goethite crystals containing surface adsorbed and/or intergranular CrOx3-2X complex anions. This CrOx3-2X explains the protective performance of the rust layer originated by dense aggregation of fine crystals with cation selectivity of the Cr-goethite. It is very advantageous to employ white X-rays for in situ observation of rusting process of a carbon steel covered with electrolyte thin films because rust structure might change very quickly. This in situ observation revealed the effect of ion species on the change in rust phase during wet/dry repeating. It can be said that application of synchrotron radiation on corrosion research is so useful to understand the nanostructure of surface oxides which closely relate to corrosion behavior of metals and alloys. (author)

  2. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Iwona B. [Applied Microbiology and Electrochemistry Group, University of Portsmouth, St. Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom)], E-mail: iwona.beech@port.ac.uk; Campbell, Sheelagh A. [Applied Microbiology and Electrochemistry Group, University of Portsmouth, St. Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom)

    2008-12-01

    Investigations were undertaken to elucidate causes of accelerated low water corrosion (ALWC) of steel piling in a harbour in Southern England. Visual inspection revealed features characteristic of ALWC such as the presence of poorly adherent, thick corrosion products of varying morphology, often seen as large blisters randomly located on sections of the structure at the low water mark. Upon the removal of blisters, a bright surface covered with shallow pits was exposed. Representative samples of the corrosion products were collected from the structure and water and sediment specimens were retrieved from selected areas in the harbour for microbiological, chemical and microscopy testing. In the laboratory, field samples were enriched to detect and enumerate communities of sulphur-oxidising bacteria (SOB) and sulphate-reducing bacteria (SRB). Biofilms, comprising SRB and SOB populations isolated from a sediment sample were grown under static conditions on surfaces of electrodes manufactured from steel piling material. Linear polarisation resistance (LPR) measurements revealed that the corrosion rate of steel with biofilms (0.518 mm y{sup -1}) was higher than that recorded in sterile seawater alone (0.054 mm y{sup -1}) and in sterile seawater to which nutrient was added (0.218 mm y{sup -1}). Scanning electron microscopy (SEM) imaging demonstrated enhanced pitting under biofilms. The results of our investigation revealed for the first time that the attack on steel piling in the presence of sediment SRB and SOB populations was characteristic of ALWC.

  3. Production, properties and application of steels resistant to atmospheric corrosion

    International Nuclear Information System (INIS)

    Steels, resistant to atmospheric corrosion, applied in the USSR and abroad, are reviewed. The influence of alloying elements (Cu, P, Cr, Si, Ni, Mo, Mn, As etc) upon resistance against atmospheric corrosion and mechanical properties of rolled steel is discussed. Technological properties, fields of the above steels application as well as the data on the range of product, are presented

  4. Tannin bark Melalauca cajuputi powell (gelam) as green corrosion inhibitor of mild steel

    International Nuclear Information System (INIS)

    Tannin was extracted from gelam bark and used to produce corrosion inhibitor for mild steel. Tannin was extracted from gelam bark using 70% aqueous acetone for 6 hour. Tannin powder was characterization using fourier transform infrared spectroscopy to analyse chemical component in tannin and Scanning electron microscope (SEM) for tannin physical structure. The tannin effect on the corrosion inhibition of mild steel has been investigated in 1Mol HCl solution for 6 hour followed ASTM. The weight loss method were applied to study the mild steel corrosion behavior in the present and absend of different concentration of tannin (250, 300, 350)ppm. Tannin act good inhibitor as corrosion inhibitor for mild steel in acid medium. Surface morphology of carbon steel with and without inhibitor was investigated by scanning electron microscopy

  5. An electrochemical and microstructural characterization of steel-mortar admixed with corrosion inhibitors

    Institute of Scientific and Technical Information of China (English)

    Tuan; Anh; Nguyen; Recep; AVCI

    2009-01-01

    The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCl and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mortar interfacial region. The admixing of the inhibitors increased the risk of carbonation of cement hydrates at the steel-mortar interfacial region, but partially displaced chloride ions. Chloride and the admixed inhibitors facilitated the formation of different cement hydrates and affected chloride binding at the steel-mortar interfacial region. The admixing of all three inhibitors was found to increase the polarization resistance of steel, indicating reduced corrosion rate of the steel over 48-day exposures to salt ponding.

  6. An electrochemical and microstructural characterization of steel-mortar admixed with corrosion inhibitors

    Institute of Scientific and Technical Information of China (English)

    SHI XianMing; YANG ZhengXian; Tuan Anh Nguyen; SUO ZhiYong; Recep AVCI; SONG ShiZhe

    2009-01-01

    The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCI and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mor-tar interfacial region. The admixing of the inhibitors increased the risk of carbonation of cement hy-drates at the steel-mortar interracial region, but partially displaced chloride ions. Chloride and the ad-mixed inhibitors facilitated the formation of different cement hydrates and affected chloride binding at the steel-mortar interfacial region. The admixing of all three inhibitors was found to increase the po-larization resistance of steel, indicating reduced corrosion rate of the steel over 48-day exposures to salt ponding.

  7. Tannin bark Melalauca cajuputi powell (gelam) as green corrosion inhibitor of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Talib, Nur Atiqah Abu; Zakaria, Sarani; Hua, Chia Chin; Othman, Norinsan Kamil [School of Applied Physic, Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2014-09-03

    Tannin was extracted from gelam bark and used to produce corrosion inhibitor for mild steel. Tannin was extracted from gelam bark using 70% aqueous acetone for 6 hour. Tannin powder was characterization using fourier transform infrared spectroscopy to analyse chemical component in tannin and Scanning electron microscope (SEM) for tannin physical structure. The tannin effect on the corrosion inhibition of mild steel has been investigated in 1Mol HCl solution for 6 hour followed ASTM. The weight loss method were applied to study the mild steel corrosion behavior in the present and absend of different concentration of tannin (250, 300, 350)ppm. Tannin act good inhibitor as corrosion inhibitor for mild steel in acid medium. Surface morphology of carbon steel with and without inhibitor was investigated by scanning electron microscopy.

  8. Tannin bark Melalauca cajuputi powell (gelam) as green corrosion inhibitor of mild steel

    Science.gov (United States)

    Talib, Nur Atiqah Abu; Zakaria, Sarani; Hua, Chia Chin; Othman, Norinsan Kamil

    2014-09-01

    Tannin was extracted from gelam bark and used to produce corrosion inhibitor for mild steel. Tannin was extracted from gelam bark using 70% aqueous acetone for 6 hour. Tannin powder was characterization using fourier transform infrared spectroscopy to analyse chemical component in tannin and Scanning electron microscope (SEM) for tannin physical structure. The tannin effect on the corrosion inhibition of mild steel has been investigated in 1Mol HCl solution for 6 hour followed ASTM. The weight loss method were applied to study the mild steel corrosion behavior in the present and absend of different concentration of tannin (250, 300, 350)ppm. Tannin act good inhibitor as corrosion inhibitor for mild steel in acid medium. Surface morphology of carbon steel with and without inhibitor was investigated by scanning electron microscopy.

  9. Atmospheric corrosion of mild steel in Oman

    Energy Technology Data Exchange (ETDEWEB)

    Gismelseed, Abbasher, E-mail: abbasher@squ.edu.om; Al-Harthi, S. H.; Elzain, M.; Al-Rawas, A. D.; Yousif, A.; Al-Saadi, S.; Al-Omari, I.; Widatallah, H.; Bouziane, K. [College of Science, Department of Physics (Oman)

    2006-01-15

    A systematic study has been made of the initial corrosion products which form on mild steel capons exposed near the coastal region of Oman and at some industrial areas. The phases and compositions of the products formed at different periods of exposure were examined by using Moessbauer spectroscopy (295 and 78 K) and X-ray diffraction (XRD) techniques. The results show that lepidocorcite and maghemite are early corrosion products and goethite starts to form after 2 months of metal exposure to the atmosphere. Akaganeite is an early corrosion product but it forms in marine environments only, which reflects the role of chlorine effect in the atmosphere. The 12 months coupons showed the presence of goethite, lepidocorcite and maghemite, but no akaganeite being seen in the products of one of the studied areas.

  10. Atmospheric corrosion of mild steel in Oman

    Science.gov (United States)

    Gismelseed, Abbasher; Al-Harthi, S. H.; Elzain, M.; Al-Rawas, A. D.; Yousif, A.; Al-Saadi, S.; Al-Omari, I.; Widatallah, H.; Bouziane, K.

    A systematic study has been made of the initial corrosion products which form on mild steel capons exposed near the coastal region of Oman and at some industrial areas. The phases and compositions of the products formed at different periods of exposure were examined by using Mossbauer spectroscopy (295 and 78 K) and X-ray diffraction (XRD) techniques. The results show that lepidocorcite and maghemite are early corrosion products and goethite starts to form after 2 months of metal exposure to the atmosphere. Akaganeite is an early corrosion product but it forms in marine environments only, which reflects the role of chlorine effect in the atmosphere. The 12 months coupons showed the presence of goethite, lepidocorcite and maghemite, but no akaganeite being seen in the products of one of the studied areas.

  11. Atmospheric corrosion of mild steel in Oman

    International Nuclear Information System (INIS)

    A systematic study has been made of the initial corrosion products which form on mild steel capons exposed near the coastal region of Oman and at some industrial areas. The phases and compositions of the products formed at different periods of exposure were examined by using Moessbauer spectroscopy (295 and 78 K) and X-ray diffraction (XRD) techniques. The results show that lepidocorcite and maghemite are early corrosion products and goethite starts to form after 2 months of metal exposure to the atmosphere. Akaganeite is an early corrosion product but it forms in marine environments only, which reflects the role of chlorine effect in the atmosphere. The 12 months coupons showed the presence of goethite, lepidocorcite and maghemite, but no akaganeite being seen in the products of one of the studied areas.

  12. Microbial Corrosion and Cracking in Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    1998-01-01

    reaction current. A very reactive film will therefore increase the apparent corrosion rate, even if the corrosion rate of steel is low. In this case corrosion rate estimation will fail.· Porous film formation gives an increased surface area and induces large effects of diffusion. The interfacial...... is a very strong indication of sulphide. The high capacitance is primarily caused by the formation of a reactive porous layer with a rapid enhancement of surface area. The effect is increased in the biological environment as compared to the hydrogen sulphide solutions.· Tafel polarisations are only relevant...... for mechanistic studies. The technique is, however, destructive, time consuming and fails, when things become complicated.· LPR and stepped LPR are applicable only in simple cases and gives little information on when and why the measurements may be unreliable.· EIS gives the opportunity to recognise...

  13. MICROSCOPIC CORROSION STUDIES OF DUPLEX STAINLESS STEELS

    Institute of Scientific and Technical Information of China (English)

    C.Leygraf; J.Pan; M.Femenia

    2004-01-01

    Electrochemical scanning tunneling microscopy and scanning electrochemical microscopy have been used for in situ monitoring of localized corrosion processes of different Duplex stainless steels (DSS) in acidic chloride solutions. The techniques allow imaging of local dissolution events with micrometer resolution, as opposed to conventional electrochemical techniques, which only give an overall view of the corrosion behavior. In addition, combined scanning Kelvin probe force microscopy and magnetic force microscopy were used for mapping the Volta potential variation over the surface of DSSs. A significant difference in Volta potential between the austenite and ferrite phases suggests galvanic interaction between the phases. A compositional gradient appears within 2 micrometers across the phase boundary, as seen with scanning Auger microscopy (SAM). In all, the studies suggest that higher alloyed DSS exhibit a more homogeneous dissolution behavior than lower alloyed DSS, due to higher and more similar corrosion resistance of the two phases, and enhanced resistance of the ferrite/austenite phase boundary regions.

  14. Electrochemical corrosion behavior of steel wires in a coalmine with a corrosive medium

    Institute of Scientific and Technical Information of China (English)

    Wang Songquan; Zhang Dekun; Wang Dagang; Zhang Zefeng

    2011-01-01

    A 6 × 19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory, simulating the actual working conditions in a coalmine. An electrochemical method was used to investigate the corrosion behavior of steel wires with different surface treatments of a corrosive acid solution. The results show that anode activation of steel wire mainly occurs during pre-corrosion, where the anode activation process of bare steel wires is the fastest as is their corresponding corrosion speed, while the anode activation process of oil coated steel wires and their corresponding corrosion speed are the lowest. During the intermediate and late immersion periods,a passive film is generated on the surface of steel wires, which are gradually damaged with the passage of time. Local pitting corrosion occurs easily on the surface of steel wires with a high-polarization potential.Suitable equivalent circuits were chosen to fit the electrochemical impedance spectroscopy (EIS) of steel wires over various corrosive times and different surface treatments, which indicate good fitting results.The double electrical layer charge-transfer resistance increases in the sequence: bare steel wire,untreated steel wire and oil coated steel wire and their corrosion resistance decreases in turn, which is consistent with their polarization curves. The oil layer provides a certain protective effect on untreated steel wires, but its effect is not entirely clear.

  15. Thermoplastic liners for carbon steel pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mauyed S.; AlDossary, Abdullah K. [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-12-19

    Materials selection for pipe and fittings used to convey corrosive fluids has often been a challenge. Traditionally, exotic Corrosion Resistant Alloys (CRA) have been used in corrosive environments despite their high cost. Plastic lined carbon steel piping offers a cost effective alternative to the use of CRAs by eliminating corrosion, significantly reducing the use of toxic chemicals and the heavy metal usually present in CRAs. Thermoplastic Liners offer the combination of corrosion resistance and mechanical strength, which are unachievable with singular materials. Under pressure conditions, the liner is fully supported by the metalwork, while under vacuum conditions, the liner must be thick enough along with venting system to withstand the collapsing forces created by the negative pressure. Plastic liners have been used successfully to line and protect metallic pipelines for many years and have become an indispensable requirement of the oil and gas industry particularly with water injection and hydrocarbon services. In the case of internally corroded pipes, the use of thermoplastic liners for rehabilitation is an option to extend the lifetime of companies' assets, reduce maintenance cost and increase intervals between T and Is. For new construction, plastic liners in carbon steel pipes can compete technically and economically with pipelines of CRA materials and other corrosion inhibition systems. This paper describes various design features, installations of thermoplastic liners in comparison to other corrosion inhibition methods. (author)

  16. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system...... consists mainly of CO2-Na2CO3-NaHCO3-MEG-H2O. Sodium is injected in the pipelines as NaOH in order to pH-stabilize the pipeline to avoid corrosion and MEG is injected in order to prevent gas hydrates. There are a great number of models available in the literature which may predict CO2 corrosion...... with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO2 corrosion is shown in chapter 5 and possible extensions of the models...

  17. The influence of Desulfovibrio vulgaris on the efficiency of imidazoline as a corrosion inhibitor on low-carbon steel in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rodriguez, Carlos A. [Facultad de Quimica UNAM, Ciudad Universitaria, C.P. 04510 Mexico, D.F. (Mexico)], E-mail: gorc74@yahoo.com; Rodriguez-Gomez, Francisco J.; Genesca-Llongueras, Joan [Facultad de Quimica UNAM, Ciudad Universitaria, C.P. 04510 Mexico, D.F. (Mexico)

    2008-12-01

    The action of Desulfovibrio vulgaris (Dv) during a corrosion process has been reported in literature, but the influence of imidazoline in the formation of biofilms is not clear, as well as the effect of bacteria on the efficiency of the corrosion inhibitors. The aim of this work is to determine the behavior of bacteria in the presence of imidazoline. Therefore, the growth of Dv, isolated and characterized from a morphological point of view, was monitored during 21 days, during which synthetic seawater was used as the culture medium, according to the ASTM D665-98 standard. Electrochemical noise (EN) was employed to establish the corrosion type generated by the microorganism on an AISI 1018 steel cylinder. The attack was observed using scanning electron microscopy (SEM). In order to evaluate the efficiency of the corrosion inhibitor, Tafel extrapolation was used; the optimum concentration of the inhibitor was used in the presence of sulphate-reducing bacteria (SRB). In general, two forms of corrosion were observed: localized corrosion (in the LAG phase) and mixed corrosion (in the LOG phase)

  18. Application of in-service temperature lowering to reduce radioactivity corrosion product deposition on carbon steel piping of BWR residual heat removal system

    International Nuclear Information System (INIS)

    Assessment of plant data and experiments on deposition of ion species on carbon steel were carried out in order to develop suitable countermeasures to reduce RHR (residual heat removal) piping dose rate. It was thought that radioactivity deposits on the RHR piping were mainly from radioactive ion species in the coolant and they were enhanced by the dehydration reaction of corrosion products on the piping. From an evaluation for temperature dependence of the dehydration reaction, it was proposed to lower the start-up temperature of RHR operation as a way to reduce radioactivity deposition. Feasibility studies of improved RHR operation were conducted and test operations were carried out in the Shika Nuclear Power Station Unit 1. Application of the improved RHR operation resulted in a temperature reduction from 150degC to 110degC, and a radioactivity deposition reduction on the RHR piping to one-fifth of that in conventional RHR operation. The improved RHR operation has now been applied to more than fifteen Japanese BWRs and significant suppression effects of radioactivity deposition have been observed. (author)

  19. Electrochemical Corrosion Behavior and Mechanism of X80 Steel in the Aqueous Solution of Carbon Dioxide%X80钢的CO2腐蚀电化学行为与机理研究

    Institute of Scientific and Technical Information of China (English)

    魏爱军; 霍富永; 蒋华义

    2011-01-01

    在模拟油田采出水腐蚀环境中,采用电化学交流阻抗和动电位扫描极化曲线测试技术,研究了X80钢在温度为60℃,饱和CO2条件下的腐蚀电化学行为和阳极与阴极的反应机理,实时监测了腐蚀产物膜对腐蚀行为和腐蚀反应机理的影响。研究结果表明:X80钢的阳极反应过程服从Bockris机理;X80钢的阴极反应以H2CO3的还原为主;反应中间产物吸附与腐蚀产物膜覆盖的竞争导致交流阻抗谱随腐蚀时间而变化,影响着钢的腐蚀行为;产物膜对钢基体具有一定的保护作用。%The corrosion environment in oil produced water was simulated in the solution saturated with CO2 , and the electrochemical corrosion behavior of X80 steel and the reaction mechanisms in anode and cathode at 60℃ were studied by means of electrochemical impendence spectroscopy(EIS) and potentialydynamic polarization curve. The effects of corrosion product film on the corrosion behavior and the corrosion reaction mechanism were monitored. The results showed that the anodic reactions obey Bockris mechanism, the predominant cathodic reaction is the reduction of carbonic acid, the competition between the deposition of corrosion product and the adsorption of reaction intermediate product influences the corrosion behavior of X80 steel and leads to the variation of EIS with corrosion time. The corrosion product film prevents X80 steel from further corrosion.

  20. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview

    Directory of Open Access Journals (Sweden)

    Marko Chigondo

    2016-01-01

    Full Text Available Traditionally, reduction of corrosion has been managed by various methods including cathodic protection, process control, reduction of the metal impurity content, and application of surface treatment techniques, as well as incorporation of suitable alloys. However, the use of corrosion inhibitors has proven to be the easiest and cheapest method for corrosion protection and prevention in acidic media. These inhibitors slow down the corrosion rate and thus prevent monetary losses due to metallic corrosion on industrial vessels, equipment, or surfaces. Inorganic and organic inhibitors are toxic and costly and thus recent focus has been turned to develop environmentally benign methods for corrosion retardation. Many researchers have recently focused on corrosion prevention methods using green inhibitors for mild steel in acidic solutions to mimic industrial processes. This paper provides an overview of types of corrosion, corrosion process, and mainly recent work done on the application of natural plant extracts as corrosion inhibitors for mild steel.

  1. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Wagh, A.B.

    steel. The data suggest that the organic matter associated with the corrosion products of mild steel may play an important role in influencing the corrosion of mild steel in these tropical marine waters...

  2. Corrosion Mechanism of Corrosion-Resistant Steel Developed for Bottom Plate of Cargo Oil Tanks

    Institute of Scientific and Technical Information of China (English)

    Feilong SUN; Xiaogang LI; Fan ZHANG; Xuequn CHENG; Cheng ZHOU; Nianchun WU; Yuqun YIN

    2013-01-01

    A new type of corrosion-resistant steel consisting of ferrite and bainite phases was developed for cargo oil tanks of crude oil tankers.The corrosion rate of this new steel was 0.22 mm/a,which was equivalent to ca.1/5 of the criterion (≤ 1 mm/a) for corrosion-resistant steels.The composition and element distribution of the corrosion products were investigated by micro-Raman spectrometry and energy dispersive spectrometer.The results demonstrated that the corrosion product was composed of α-FeOOH,Fe3O4 and a continuous Cu enrichment layer.This kind of corrosion product was protective to the steel matrix and accounted for the enhancement of the corrosion resistance of the new developed steel.

  3. Guidelines for the Protection of Steel Piles : Corrosive Marine Environment

    OpenAIRE

    Rhodes, Graham

    2011-01-01

    The corrosion of steel is a common phenomenon. In a marine environment, steel is corroded at an accelerated rate due to the atmospheric conditions. To combat this corrosion, steel piles are coated in order to protect them. As a major supplier of steel piles, Rautaruukki Oyj (Ruukki) commissioned this project in order to streamline their coating process. Currently Ruukki supplies a different coating system for almost every job; the aim of the project was to reduce the number of systems used to...

  4. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65; Estudio comparativo de la corrosion inducida por microorganismos sulfatorreductores, en un acero inoxidable 304L sensibilizado y un acero al carbono API X65

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Gonzalez F, E.; Arganis J, C.; Luna C, P.; Carapia M, L. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: ads@nuclear.inin.mx

    2004-07-01

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  5. Corrosion of steels in sour gas environments

    International Nuclear Information System (INIS)

    This report presents a study on the effects of sour gas environments on steels. Emphasis is placed on alloys commonly used in the heavy water, sour gas and refining industries. In addition, 'high strength, low alloy' steels, known as 'oil country tubular goods', are included. Reference is made to the effects of hydrogen sulphide environments on austenitic steels and on certain specialty steels. Theories of hydrogen-related cracking mechanisms are outlined with emphasis placed on sulphide stress cracking and hydrogen induced cracking in carbon and low alloy steels. Methods of controlling sulphide stress cracking and hydrogen induced cracking are addressed separately. Case histories from the heavy water, refining, and sour gas industries are used to illustrate operating experience and failure mechanisms. Finally, recommendations, based largely on the author's industrial experience, are made with respect to quality assurance and inspection requirements for sour service components. Only published literature was surveyed. Abstracts were made of all references, reviewing the major sources in detail

  6. A review of the archaeological analogue approaches to predict the long-term corrosion behaviour of carbon steel overpack and reinforced concrete structures in the French disposal systems

    International Nuclear Information System (INIS)

    This paper gives a review of several years of research on archaeological analogues in order to predict the long term behaviour of the steel canisters or the reinforced concrete structures involved in disposal or interim storage of nuclear wastes in France. This article aims at showing the specific methodology, the complementariness with different other approaches and the complete integration of the research on analogues in the frame of research programs on long term prediction. Archaeological sites on which field measurement can be performed were referenced and described. A significant number of artefacts collected from these sites was selected for study. Detailed chemical and microstructural characterisation of the artefacts were undertaken by a combination of microbeam analytical techniques (μRaman, μXRD, μRaman spectroscopy,...). Hypotheses on the corrosion mechanisms were then tested using specific isotopic markers during re-corroding experiments on analogues. Specific parameters were measured, allowing crucial steps in modelling long-term corrosion of steel.

  7. 76 FR 3613 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2011-01-20

    ... Results and Partial Rescission of Countervailing Duty Administrative Review, 75 FR 55745 (September 14... Countervailing Duty Determinations: Certain Steel Products from Korea, 58 FR 43752 (August 17, 1993). On... Results, 75 FR 55745. In accordance with 19 CFR 351.213(b), this administrative review covers HYSCO,...

  8. 77 FR 16810 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-03-22

    ... Amendments of Final Affirmative Countervailing Duty Determinations: Certain Steel Products from Korea, 58 FR... Investigation; Opportunity to Request Administrative Review, 76 FR 45773 (August 1, 2011). \\3\\ See Initiation of Antidumping and Countervailing Duty Administrative Reviews and Requests for Revocations in Part, 76 FR...

  9. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-14

    ... Affirmative Countervailing Duty Determinations: Certain Steel Products from Korea, 58 FR 43752 (August 17... Suspended Investigation; Opportunity to Request Administrative Review, 75 FR 45094 (August 2, 2010). In..., 75 FR 60076 (September 29, 2010). The preliminary results for this review are currently due no...

  10. 75 FR 18153 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-04-09

    ... Affirmative Countervailing Duty Determinations: Certain Steel Products from Korea, 58 FR 43752 (August 17... Suspended Investigation; Opportunity to Request Administrative Review, 74 FR 38397 (August 3, 2009). In... Duty Administrative Reviews and Request for Revocation in Part, 74 FR 48224 (September 22, 2009)....

  11. Contribution of archaeological analogs to the estimation of average corrosion rates and long term corrosion mechanisms of low carbon steel in soil; Apport des analogues archeologiques a l'estimation des vitesses moyennes et a l'etude des mecanismes de corrosion a tres long terme des aciers non allies dans les sols

    Energy Technology Data Exchange (ETDEWEB)

    Neff, D

    2003-11-15

    In the context of the French nuclear waste storage, a multi-barriers disposal is envisaged. Wastes could be put in metallic overpacks disposed in a clay soil. As these overpacks could be made of low carbon steel, it is important to understand the corrosion behaviour of this material in soil during period of several centuries. Indeed, it is necessary to consolidate the empirical data by a phenomenological approach. This includes laboratory experiments and modelling of the phenomenon which have to be validated and completed by the study of archaeological artefacts. This was the aim of this PhD-work. To this purpose, an analytical protocol has been elaborated: about forty archaeological artefacts coming from five dated sites (2. to 16. centuries) have been studied on cross section in order to observe on the same sample all the constituents of the system: metallic substrate/corrosion products/environment. The corrosion products are divided into two zones: the Dense Product Layer (DPL) in contact with the metal, and the Transformed Medium (TM) which are the corrosion products formed around soil minerals (quartz grains). The metallic substrate has been studied by the classical methods of materials science (optical and scanning electron microscope, energy and wavelength dispersive spectroscopies). It has been verified that despite their heterogeneity of structure and composition, they are all hypo-eutectoids steels that can contain phosphorous until 0.5 wt%. The corrosion products have been analysed by local structural analytical methods as micro-diffraction under synchrotron radiation ({mu}XRD) and Raman micro-spectroscopy. These two complementary techniques and also the elemental composition analysis conducted to the characterisation of the corrosion forms. On the majority of the samples coming from four sites, the DPL are constituted by goethite including marbles of magnetite/maghemite. On the artefacts from the fifth site, a particular corrosion form has been

  12. Inhibition of Weld Corrosion in Flowing Brines Containing Carbon Dioxide

    OpenAIRE

    Alawadhi, Khaled

    2009-01-01

    The aim of this research was to study the effectiveness of a typical oilfield corrosion inhibitor, which is considered to be a green inhibitor (non toxic to the environment) in controlling internal corrosion of welded X65 pipeline steel in brines saturated with carbon dioxide at one bar pressure, under dynamic flowing conditions, over a range of temperatures. Several experimental configurations were used ranging from a simple flat plate design to a novel rotating cylinder electrode, to all...

  13. Corrosion Behavior of Carbon Steel in Reverse Osmosis Permeate of Seawater%碳钢在海水淡化一级反渗透产水中的腐蚀行为

    Institute of Scientific and Technical Information of China (English)

    周东辉; 吴善宏; 肖丽; 王宏义; 胡家元

    2012-01-01

    The corrosion behavior of carbon steel in Reverse Osmosis(RO) permeate of seawater was studied by carrying out electrochemical measurements and analyzing corrosion products using SEM, IR and XRD. The results show that the corrosion process of carbon steel is controlled by the diffusion process of oxygen, and corrosion products contain r-FeOOH, Fe3O4 and a little a-FeOOH. The rust layer has double-layer structure, the outer including r-FeOOH is thin and the inner contains Fe3O4 which is the main proportion of rust layer. Due to the weak acidity of RO permeate, FeaO4 generates quickly and accumulates on metal surface. Because of the electrical conductivity and fractured surface of Fe304 layer, corrosion product layer canlt inhibit corrosion process through hindering the diffusion process of oxygen, and thus the corrosion rate of carbon steel is always high.%对碳钢在海水淡化一级反渗透产水中生成的锈层进行SEM、IR和XRD分析,并结合电化学测量,研究其腐蚀行为。结果表明,碳钢在一级反渗透产水中腐蚀过程受氧扩散控制,腐蚀产物包括7-FeOOH、Fe3O4以及少量的“FeOOH。锈层具有双层结构,外锈层很薄,主要成分为7-FeOOH;内层占整个锈层比重很大,主要成分为Fe3O4。一级反渗透产水的弱酸性促使腐蚀产物7-FeOOH迅速转化为Fe3O4,致使Fe3O4在金属表面大量堆积。由于Fe3O4层的导电性及不连续性,锈层不能阻碍阴极过程的进行,导致碳钢的腐蚀速度一直维持在高位。

  14. Study of uncertainty in atmospheric corrosion rate of floe carbon steel; Estudio de incertidumbre en la velocidad de corrosion atmosferica en acero de bajo carbono

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, V.; Lopez, C.

    2005-07-01

    The confidence interval of measurements of corrosion rate has been barely reported in the literature. It is a function of both the number of probes and the underlying pdf. We have performed specific experiments with a lot more probes than the standards require, and we evaluated, for exposure times of 1, 2, 3 and 7 months, the effect of using only three (as it is mandatory by the standard for one year exposure time) up to eleven. With the new experimental data, we were able to confirm that the values fit a normal distribution. We also found evidence that the minimum number of probes might depend upon the atmospheric condition and exposure time. The number of probes presently required for studies with exposure times of one year, might not be enough in studies of initial kinetics (exposure times smaller than one year). (Author) 14 refs.

  15. Characterisation of corrosion products on pipeline steel under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Lanarde, Lise [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France)]|[UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Campaignolle, Xavier; Karcher, Sebastien; Meyer, Michel [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France); Joiret, Suzanne [UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2004-07-01

    Onshore gas transmission lines are conjointly protected against external corrosion by cathodic protection (CP) and organic coatings. If both protection systems are simultaneously faulty, the pipe may be subjected to local loss of protection criteria. Consequently, the development of a corrosion due to the ground intrinsic corrosiveness may occur. To guarantee an optimal and safe use of its 31000 km buried gas transmission network, Gaz de France regularly inspects its pipelines. When indications of metal damage are suspected, excavations are realized to carry out a finer diagnosis and, if necessary, to repair. Whenever, corrosions are encountered, although it occurs very scarcely, it is necessary to evaluate its degree of gravity: activity, mechanism, and kinetics. Among corrosion defects, it is indeed essential to differentiate those active, from those older inactive at the time of excavation, since those last ones may possibly have been annihilated, by a PC reinforcement for instance. Eventually, the identification of the corrosion mechanism and its associated rate will provide an assessment of the risks encountered by other sections of the pipeline similar to that excavated. This study investigates to what extent the degree of gravity (activity, kinetics) of a corrosion can be determined by the characterization and identification of its associated corrosion products. Moreover, it will attempt to relate it to the close environment features as well as to the operating conditions of the pipe. The preliminary results presented in this paper consist in a laboratory study of the time evolution of corrosion products formed on the surface of ordinary low carbon steel samples. The specimens have been previously subjected to various polarization conditions in various aqueous media. The selected solutions are characteristic of ground waters. The main parameters considered for the definition of the media were its initial chemical composition, pH and dissolved gas composition

  16. Atmospheric Corrosion on Steel Studied by Conversion Electron Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    In order to investigate initial products on steel by atmospheric corrosion, conversion electron Moessbauer measurements were carried out at temperatures between 15 K and room temperature. From the results obtained at low temperatures, it was found that the corrosion products on steel consisted of ferrihydrite.

  17. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  18. Research on the influences of low-concentration phosphate in reclaimed water on the corrosion of carbon steel%再生水中低浓度磷酸盐对碳钢腐蚀影响研究

    Institute of Scientific and Technical Information of China (English)

    张雅君; 姚凌峰; 许萍; 杜婷婷; 范登云

    2016-01-01

    Under simulated real pipe network hydraulic conditions ,the influences of low-concentration phosphate on the corrosion of carbon steel have been studied in the aspects of corrosion rate,iron releasing rate,and composition and morphology of corrosion products. It is found that the mass concentration of phosphate is 0.8 mg/L ,the extreme value can be reached and the corrosion inhibition effect is the best. The corrosion rate of carbon steel could be reduced by 15.66%. Phosphate can inhibit the formation ofγ-FeOOH and form phosphosiderite,making corrosion products more compact,so as to inhibit corrosion. The initial acceleration of iron release by phosphate may be an important reason for phosphate to promote the iron element to turn into stable iron oxide ,so that the steady state of corrosion can be achieved earlier and finally the corrosion is inhibited.%在模拟真实管网水力条件下,从腐蚀速率、铁释放速率、腐蚀产物形貌及成分等方面研究了低浓度磷酸盐对碳钢腐蚀的影响。研究发现,磷酸盐为0.8 mg/L时达到极值,腐蚀抑制效果最好,碳钢的腐蚀速率可降低15.66%。磷酸盐可抑制γ-FeOOH的形成,同时形成磷铁矿,使腐蚀产物更加致密,从而抑制腐蚀。磷酸盐对铁释放存在初期加速作用,可能是磷酸盐促进铁元素向稳定铁氧化物转变,使腐蚀提前达到稳定状态的重要原因,最终抑制腐蚀。

  19. High temperature corrosion of high alloyed steels under simulated molten carbonate fuel cell conditions; Hochtemperaturkorrosion von hochlegierten Staehlen unter simulierten Schmelzkarbonat-Brennstoffzellen-Bedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Biedenkopf, P. [Max-Planck-Inst. fuer Eisenforschung GmbH, Duesseldorf (Germany); Spiegel, M. [Max-Planck-Inst. fuer Eisenforschung GmbH, Duesseldorf (Germany); Grabke, H.J. [Max-Planck-Inst. fuer Eisenforschung GmbH, Duesseldorf (Germany); Hennesen, K. [Max-Planck-Inst. fuer Eisenforschung GmbH, Duesseldorf (Germany); Skoruppa, E. [Max-Planck-Inst. fuer Eisenforschung GmbH, Duesseldorf (Germany); Wellms, U. [Max-Planck-Inst. fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1996-11-01

    The corrosion behaviour of two austenitic steels, 1.4404 (X2 CrNiMo 17 13 2) and 1.4845 (X12 CrNi 25 20), was investigated under simulated conditions of the cathode side of an MCFC. Both materials develop an outer LiCrO{sub 2} layer which protects the material from further corrosive attack by the carbonate melt due to its low solubility in the melt. Protective Cr{sub 2}O{sub 3} is not stable under cathodic fuel cell conditions and fluxed to chromate. The formation of potassium chromate on the material 1.4404 takes place only in the initial phase, whereas the chromate formation on the chromate-rich material 1.4845 seems to be a continuous process. Both materials develop additionally further inner oxides, with (Fe,Ni,Cr){sub 3}O{sub 4} and LiFe{sub 5}O{sub 8} being observed on the material 1.4404 and LiCrO{sub 2} being observed on the material 1.4845. (orig.) [Deutsch] Es wurden die Korrosionseigenschaften der beiden austenitischen Staehle 1.4404 (X2 CrNiMo 17 13 2) und 1.4845 (X12 Cr Ni 25 20) unter simulierten kathodenseitigen Brennstoffzellen-Bedingungen der MCFC untersucht. Beide Werkstoffe bilden eine aeussere LiFeO{sub 2}-Schicht aus, die aufgrund ihrer geringen Loeslichkeit in der verwendeten Schmelze den Werkstoff vor weiterem korrosivem Angriff der Karbonatschmelze schuetzt. Deckende Cr{sub 2}O{sub 3}-Schutzschichten werden nicht beobachtet, da Cr{sub 2}O{sub 3} unter kathodischen Brennstoffzellen-Bedingungen nicht stabil ist und zu Chromat oxidierend aufgeschlossen wird. Die Bildung von Kaliumchromat findet beim Werkstoff 1.4404 nur in der Anfangsphase statt, waehrend die Chromatbildung am chromreichen Werkstoff 1.4845 ein kontinuierlicher Vorgang zu sein scheint. Beide Werkstoffe bilden zusaetzlich weitere innere Oxide aus, wobei auf dem Werkstoff 1.4404 (Fe,Ni,Cr){sub 3}O{sub 4} sowie LiFe{sub 5}O{sub 8} und auf dem Werkstoff 1.4845 LiCrO{sub 2} beobachtet werden. (orig.)

  20. Ultrahigh carbon steels, Damascus steels, and superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  1. Passivation of carbon steel through mercury implantation

    Science.gov (United States)

    Wilbur, P. J.; Robinson, R. S.

    1981-01-01

    An experiment, in which carbon steel samples were implanted with mercury ions from a broad beam ion source and their corrosion characteristics in air were evaluated, is described. Mercury doses of a few mA min/square cm at energies of a few hundred electron volts are shown to effect significant improvements in the corrosion resistance of the treated surfaces. In a warm moist environment the onset of rusting was extended from 15 min. for an untreated sample to approximately 30 hrs. for one implanted at a dose of 33 mA min/square cm with 1000 eV mercury ions.

  2. Inhibition of corrosion of carbon steel in well water by L-Lysine – Zn2+system

    Directory of Open Access Journals (Sweden)

    J.AngelinThangakani

    2016-08-01

    Full Text Available The environmental friendly inhibitor system L-Lysine-Zn2+, has been investigated by weight loss method. A synergistic effect exists between L-Lysine and Zn2+ system. The formulation consisting of 250 ppm of L-Lysine and 50 ppm of Zn2+ offers good inhibition efficiency of 98%.Polarization study reveals that this formulation functions as anodic inhibitor. AC impedance spectra reveal that a protective film is formed on the metal surface. The FTIR spectra study leads to the conclusion that the Fe2+ - L-Lysine complex formed on anodic sites of the metal surface controlled the anodic reaction and Zn(OH2 formed on the cathodic sites of the metal surface controlling the cathodic reaction. UV and Fluorescence spectrum study reveals the metal film formed on the solution containing 250 ppm of L-Cysteine and 50 ppm of Zn2+.The morphology of the metal is studied by AFM images. A suitable mechanism of corrosion inhibition is proposed based on the results obtained from weight loss study and surface analysis technique. Synergism parameters have been calculated. They are found to be greater than 1 suggesting that a synergistic effect exists between L-Lysine and –Zn2+

  3. High-strength economically alloyed corrosion-resistant steels with the structure of nitrogen martensite

    Science.gov (United States)

    Bannykh, O.; Blinov, V.; Lukin, E.

    2016-04-01

    The use of nitrogen as the main alloying element allowing one both to increase the corrosion resistance and mechanical properties of steels and to improve their processability is a new trend in physical metallurgy of high-strength corrosion resistant steels. The principles of alloying, which are developed for high-nitrogen steel in IMET RAS, ensure the formation of the structure, which contains predetermined amounts of martensite (70-80%) and austenite (20-30%) and is free from δ-ferrite, σ-phase, and Cr23C6 carbide. These principles were used as the base for the creation of new high-strength corrosion-resistant weldable and deformable 0Kh16AN5B, 06Kh16AN4FD, 08Kh14AN4MDB, 09Kh16AN3MF, 27Kh15AN3MD2, 40Kh13AN3M2, and 19Kh14AMB steels, which are operative at temperatures ranging from - 70 to 400°C. The developed nitrogen-containing steels compared with similar carbon steels are characterized by a higher resistance to pitting and crevice corrosion and are resistant to stress corrosion cracking. The new steels successfully passed trial tests as heavy duty articles.

  4. Corrosion inhibition capacity of non-phosphorus corrosion inhibitor in water with moderate alkalinity and moderate hardness for A3 carbon steel%无磷缓蚀剂在中碱中硬水质中对A3碳钢的缓蚀性能

    Institute of Scientific and Technical Information of China (English)

    王超; 李颜云; 陶蕾; 秦立娟; 王昊

    2015-01-01

    开发了一种酰胺类无磷缓蚀剂,在中碱度中硬度水质中进行了缓蚀应用研究。选用A3碳钢作为测试对象,采用旋转挂片失重法和电化学阻抗法对酰胺类无磷缓蚀剂的缓蚀性能进行研究。测试结果表明,该酰胺类无磷缓蚀剂在中碱度中硬度的循环水水质下具有良好的缓蚀性能,能够有效地满足循环水系统的金属缓蚀需求。%A kind of amide derivative non-phosphorus corrosion inhibitor has been synthesized. Its application to corrosion inhibition in water with moderate alkalinity and moderate hardness is studied. Using carbon steel A3 as de-tection target,the corrosion inhibiting capacity of amide derivative non-phosphorus corrosion inhibitor by rotary coupon weight-loss method and electrochemical impedance method is studied. The results indicate that the amide derivative non-phosphorus corrosion inhibitor has good corrosion inhibiting capacity in circulating water with moder-ate alkalinity and moderately hardness ,being able to effectively meet the metal corrosion inhibition requirements for circulating water systems.

  5. Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil

    Institute of Scientific and Technical Information of China (English)

    Shengrong Wang; Cuiwei Dun; Xiaogang Li; Zhiyong Liunn; Min Zhu; Dawei Zhang

    2015-01-01

    The corrosion behavior of X70 pipeline steel buried in red soil environment has been studied. The surface morphology and elemental distribution were determined by scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion kinetics was evaluated by weight loss measurement. The results show that in red soil, the corrosion rate of X70 steel decreases with time, and follows the exponential decay law. General corrosion with non-uniform and localized pitting occurred on the steel surface.α-FeOOH was the dominate products during corrosion in whole buried periods, and the corrosion products exhibited well protective properties. The potentiodynamic polarization tests revealed that icorr decreased with time, indicating the improvement of corrosion resistance. The results of Electrochemical impendence spectroscopy (EIS) are consistent with potentiodynamic polarization tests.

  6. 带锈碳钢在流动海水中的长期腐蚀行为%CORROSION BEHAVIOR OF LONG-TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER

    Institute of Scientific and Technical Information of China (English)

    彭欣; 王佳; 山川; 王海杰; 刘在健; 邹妍

    2012-01-01

    将Q235碳钢在流动海水中浸泡280 d,利用失重法和多种腐蚀电化学方法研究了其在浸泡过程中的腐蚀规律.结果表明,与静止海水浸泡相比,在流动体系长时间浸泡后,电极表面几乎不存在疏松的黄色锈层,而被一层致密的黑色腐蚀产物所覆盖;失重法测得的腐蚀速率随腐蚀时间延长呈现减小的趋势,并最终趋于稳定,与静止海水相比,流动海水中的腐蚀速率高出约1倍;电化学方法测得的腐蚀速率则随浸泡时间的延长而增大,与失重法的结果之间存在较为明显的偏差,并且浸泡时间越长,这一偏差越明显.长期浸泡后,碳钢表面的锈层对电化学测试结果产生影响,是导致电化学方法不能准确评估腐蚀速率的原因.%The rust/metal structure is one of the multiphase and multiple interface complex systems. The corrosion under rust is the uppermost and longest form of metallic corrosion evolution process. It is difficult to accurately determine the electrochemical parameters because the existence of rust complicates the electrochemical corrosion process. Based on the result of the previous studies of quiescent seawater, the weight-loss method and different electrochemical tests such as polarization curves (PC), electrochemical impedance spectra (EIS) and linear polarization resistance (LPR) were carried out to study the corrosion behavior of A3 carbon steel immersed in flowing seawater for about 280 d. After very short immersing time, there is a thin yellow rust layer on carbon steel, but as time prolonged, the yellow corrosion products are rushed away quickly, and a tense black rust layer cover about the whole electrode. The corrosion rate obtained by weight-loss method show a steady decline and keep stable after about 84 d, but it is higher than that of the static state system data. The cathodic polarization curves show an obvious reduction current peak at about -950 mV, which makes a remarkable

  7. Corrosion behavior of duplex stainless steel in sulphuric acid

    International Nuclear Information System (INIS)

    Duplex stainless steels are alloyed and processed to develop microstructure of roughly equal amounts of ferrite and austenite. Duplex stainless steel constitute a new class of materials because they have balanced amounts of ferrite and austenite. Since they have high content of chromium and molybdenum present, thus they have good corrosion resistance. Their corrosion resistance is double to that of annealed austenitic stainless steels with regard to pitting, crevice corrosion, sulphide stress corrosion, and chloride stress corrosion environments. The corrosion behavior of duplex stainless steel in various concentrations of sulphuric acid was studied. The reactions were carried out by placing the steel specimen in a beaker containing a known concentration of sulphuric acid at room temperature for a definite period. Pits were initiated in duplex stainless steel specimen and the propagation of pits depends upon the concentration of the acid solution in which the sample is in contact. The weight loss for definite period of time were measured and corrosion rates were calculated in millimetres per year. The corrosion rates increases with an increase in acid concentration at room temperature. A comparison of the results obtained from various concentrations of sulphuric acid with the same concentrations of nitric acid is also discussed. (author)

  8. EIS Response of MIC on Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Maahn, Ernst

    1998-01-01

    Abstract Microbially influenced corrosion of carbon steel under sulphate reducing (sulphide-producing) bacterial activity (SRB) results in the formation of both ferrous sulphides as well as biofilm on the metal surface. The electrochemical characteristics of the ferrous sulphide/steel interface...... diffusion and high interfacial capacitance appear. These effects are strongly enhanced in the biologically active environment as compared to the sterile solutions possibly due to an enhanced porosity in the biofilm/ferrous sulphide surface layers. The effect of these features is that EIS may be used...

  9. Galvanic Corrosion Between A3 Carbon Steel and LC4 Aluminium Alloy in Different Salt Concentration Soils%土壤盐浓差对碳钢/铝合金电偶腐蚀行为影响

    Institute of Scientific and Technical Information of China (English)

    孙成; 李洪锡; 张淑泉; 高立群; 黄磊

    2001-01-01

    The effect of salt concentration difference on the galvanic corrosion between carbon steel and LC4 aluminium alloy was studied in simulated soils of moisture sands by means of mass loss and electrochemistry. It is shown that the galvanic corrosion rate of LC4 aluminium alloy was decided by the factors of soil of carbon steel, not the factors of soils of LC4 aluminium alloy. The rate of cathode protection was high as the cathode existed in high salt concentration soil. The corrosion rate of LC4 aluminium alloy as galvanic anode was 145 times what it was in natural corrosion.%利用砂土作为模拟土壤,通过失重法及电化学方法相结合,研究了土壤盐浓差(2.0%Cl-及0.2%Cl-)对A3钢/LC4铝合金电偶腐蚀的影响规律。结果表明,其电偶腐蚀主要取决于电偶对阴极A3钢所处的土壤条件,而与电偶对阳极所处的土壤条件关系不大。电偶对阴极处在高盐土壤中,其阴极保护效率较高,电偶对阳极LC4铝合金与同样试验条件下自然腐蚀相比,其腐蚀速率最大增加了145倍。

  10. Corrosion of vessel steel during its interaction with molten corium

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation)]. E-mail: bechta@sbor.spb.su; Khabensky, V.B. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Vitol, S.A. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Krushinov, E.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Granovsky, V.S. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Lopukh, D.B. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Gusarov, V.V. [Institute of Silicate Chemistry of Russian Academy of Science (ISC of RAS), Odoevsky str., b. 24/2, 199155 St. Petersburg (Russian Federation); Martinov, A.P. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Martinov, V.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Fieg, G. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Tromm, W. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Bottomley, D. [Europaeische Kommission, General Direktion GFS, Institut fuer Transurane (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tuomisto, H. [Fortum Engineering Ltd. 00048 FORTUM, Rajatorpantie 8, Vantaa (Finland)

    2006-07-15

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments.

  11. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Science.gov (United States)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  12. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Michalska, J, E-mail: joanna.k.michalska@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  13. Atmospheric corrosion of mild steel. Pt. II. Marine atmospheres

    International Nuclear Information System (INIS)

    This paper summarizes the results obtained in the MICAT project for mild steel specimens exposed for 1 to 4 years in 47 marine atmospheres in the Ibero-American region. All these atmospheres were characterized for climatology, pollution and corrosion rates according to ISO standards. Complementary morphological and chemical characterization of the steel corrosion product layers (SCPLs) formed in these atmospheres was carried out. The overall analysis of results contributes to understanding, in a systematic way, how atmospheric corrosivity categories can be correlated with corrosion mechanisms. Special aspects of the atmospheres, from pure to mixed marine, were considered. (orig.)

  14. On the stress corrosion cracking of lean duplex steel in chloride environment

    Science.gov (United States)

    Tayyaba, Qanita; Farooq, Hina; Shahid, Muhammad; Jadoon, Ammer Khan; Shahzad, M.; Qureshi, A. H.

    2014-06-01

    Duplex stainless steel having attractive combination of austenitic and ferritic properties is being used in industry such as petrochemical, pulp and paper mills. In this study, the corrosion and stress corrosion behavior of duplex stainless steel in 3.5% sodium chloride environment was investigated by weight loss measurements, electrochemical DC testing and slow strain rate test (SSRT). Weight loss data showed no significant corrosion after 1700 hours. Electrochemical polarization test in 3.5% NaCl solution exhibited a uniform corrosion rate of 0.008 mpy (calculated using Tafel analysis) showing passivity in the range of 735-950 mV. A comparison of the slow strain rate test in 3.5% NaCl solution with air shows almost a similar stress strain curve for duplex stainless steel. In comparison, the stress strain curves for 0.15% carbon steel show a loss of about 25% tensile elongation for the same comparison. The excellent corrosion and especially resistance to localized corrosion (pitting) is responsible for no loss of ductility in duplex stainless steel.

  15. On the stress corrosion cracking of lean duplex steel in chloride environment

    International Nuclear Information System (INIS)

    Duplex stainless steel having attractive combination of austenitic and ferritic properties is being used in industry such as petrochemical, pulp and paper mills. In this study, the corrosion and stress corrosion behavior of duplex stainless steel in 3.5% sodium chloride environment was investigated by weight loss measurements, electrochemical DC testing and slow strain rate test (SSRT). Weight loss data showed no significant corrosion after 1700 hours. Electrochemical polarization test in 3.5% NaCl solution exhibited a uniform corrosion rate of 0.008 mpy (calculated using Tafel analysis) showing passivity in the range of 735-950 mV. A comparison of the slow strain rate test in 3.5% NaCl solution with air shows almost a similar stress strain curve for duplex stainless steel. In comparison, the stress strain curves for 0.15% carbon steel show a loss of about 25% tensile elongation for the same comparison. The excellent corrosion and especially resistance to localized corrosion (pitting) is responsible for no loss of ductility in duplex stainless steel

  16. On the stress corrosion cracking of lean duplex steel in chloride environment

    International Nuclear Information System (INIS)

    Duplex stainless steel having attractive combination of austenitic and ferritic properties is being used in industry such as petrochemical, pulp and paper mills. In this study, the corrosion and stress corrosion behavior of duplex stainless steel in 3.5 percentage sodium chloride environment was investigated by weight loss measurements, electrochemical DC testing and slow strain rate test (SSRT). Weight loss data showed no significant corrosion after 1700 hours. Electrochemical polarization test in 3.5 percentage NaCl solution exhibited a uniform corrosion rate of 0.008 mpy (calculated using Tafel analysis) showing passivity in the range of 735-950 mV. A comparison of the slow strain rate test in 3.5 percentage NaCl solution with air shows almost a similar stress strain curve for duplex stainless steel. In comparison, the stress strain curves for 0.15percentage carbon steel show a loss of about 25 percentage tensile elongation for the same comparison. The excellent corrosion and especially resistance to localized corrosion (pitting) is responsible for no loss of ductility in duplex stainless steel. (author)

  17. SECM Study of Effect of Chromium Content on the Localized Corrosion Behavior of Low-Alloy Steels in Chloride Environment

    Science.gov (United States)

    Indira, K.; Nishimura, T.

    2016-10-01

    This paper investigates the effect of chromium (Cr) content (0, 1, 3 and 5% Cr) in epoxy-coated alloy steel against corrosion using in situ electrochemical techniques such as EIS and SECM in a 3% NaCl solution. The EIS results revealed that the epoxy-coated Cr steel exhibited higher impedance values than carbon steel, which is attributed to the greater resistance of Cr steel toward corrosion. Based on the cyclic voltammogram results, the tip potentials were set at -0.7, 0.04 and 0.60 V for determining the concentration of dissolved oxygen at cathodic region, and oxidation of Cr2+ and Fe2+ at anodic region, respectively. The SECM measurements showed that, the tip current in the anodic region has decreased with increase in Cr content of the sample, which indicates that the oxidation of Fe2+ and Cr2+ decreases (corrosion is reduced) with the increase in Cr content of the steel. Besides, 5% Cr steel can maintain the highest corrosion resistance, and 1 and 3% Cr steels have higher corrosion resistance than the 0% Cr steel. This higher corrosion resistance of Cr steel samples could be due to the formation of Cr-rich hydro-oxide layers [Cr(OH)3 as a corrosion product] on the surface of the samples. Thus, the epoxy-coated Cr alloy steel has greater corrosion resistance in a chloride-containing environment than the carbon steel. Hence, epoxy-coated Cr alloy steel can be successfully used as a construction material in structures.

  18. An experimental study on cavitation erosion-corrosion performance of ANSI 1020 and ANSI 4135 steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Leqin; Qiu, Ning [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Hellmann, Dieter-Heinz [KSB Aktiengesellschaft, Frankenthal (Germany); Zhu, Xiaowen [Zhejiang Keer Pump Stock Co., Ltd, Whenzhou (China)

    2016-02-15

    Cavitation erosion is quite complex, containing corrosion-erosion interaction effect. High temperature oxidization may be aroused after bubble collapse, accompanied by hot gas contacting with the pump component surface. The analysis of the erosion pits can be an effective way to know the mechanism of cavitation erosion. In present paper, the cavitation erosion resistance of carbon steel (ANSI 1020) and alloy steel (ANSI 4135) were tested in an ultrasonic vibration apparatus. By using energy dispersive X-ray spectroscope and three dimensional laser microscope, the chemical composition around erosion pits and the oxidation film structure were analyzed. By using metallographic microscope and scanning electronic microscope, the metallographic structure of specimens (e.g., carbon steel and alloy steel), the nano structured iron oxide and corresponding influence on specimen's anti-erosion performance were discussed. Based on the comparison between the different tests performed in distilled water and tap water respectively, results can be obtained that erosion rate of carbon steel and alloy steel varies with the component of water which had close correlation to the oxidation effect. Erosion rate of alloy steel 4135 was much lower in distilled water compared to tap water while the difference of carbon steel 1020 was not that large. The remarkable different responses of these two materials had close relationship with oxidation effect. The oxidation effect transferred the original structure of alloy steel surface which had high anti-erosion capability, into newly generated iron oxide structure, which was preferentially to be attacked. The pumping of slightly corrosive fluids frequently leads to erosion-corrosion damage on impellers, and corrosion can further amplify the erosion process.

  19. Investigation of Fecraly Coating on Corrosion Behaviour of Mild Steel

    OpenAIRE

    Joseph B. AGBOOLA

    2009-01-01

    Steel has found wide application in hot rolling equipments in the steel industry and the oil rig structures in sea water. These equipments are frequently subjected to corrosive and temperature condition which causes severe damage to them, hence the need to develop steel suitable to withstand these conditions in terms of surface treatment. This research work investigates the effect of FeCrAlY coating on mild steel under high temperature and aggressive environment. Iron based coatings are used ...

  20. Corrosivity Index Copper and Steel at Two Locations in Villahermosa, Tabasco

    Directory of Open Access Journals (Sweden)

    Tejero-Rivas María Candelaria

    2015-03-01

    Full Text Available This paper presents a study of the atmospheric corrosion of copper and carbon steel made ​​in two environments Villahermosa, Tabasco for six months. The test site of the industrial zone started Villahermosa Institute of Technology (ITVH and rural-urban site at the Technological University of Tabasco (UTTAB. Aluminum in combination with a screw carbon steel provided the index marine corrosivity (MA, the brass screw gives the index of industrial corrosivity (IA; wire method of screw according to ASTM G116-93 was used and the plastic screw nylon gives the rate of rural-urban corrosivity (RUA. The determination of air pollutants (sulfur dioxide and chlorides, was with the methods of wet candle and sulfation plates according to ISO 9225. Morphology studies were performed on the corrosion products formed on the specimens screw, using scanning electron microscopy coupled with energy dispersive. The corrosion products that formed on the surface of copper and carbon steel, having a bulb-shaped morphology characteristic of the addition of soluble salts, particularly sulphates and chlorides, were identified in the two stations.

  1. Corrosion of Steel in Concrete – Thermodynamical Aspects

    DEFF Research Database (Denmark)

    Küter, Andre; Møller, Per; Geiker, Mette Rica

    2004-01-01

    The present understanding of selected corrosion phenomena in reinforced concrete is reviewed. Special emphasis is given to chloride induced corrosion. There is a general acceptance of the basic corrosion mechanism for steel in concrete. However different anodic reactions governing the subsequent...... formation and composition of corrosion products have been proposed. Suggested reactions, except half-cell reactions, are verified or rejected based on their Gibbs free energy, while the electrode potential is calculated for half-cell reactions. Corrosion products postulated to form are related...

  2. Basic studies on carbon steel decontamination

    International Nuclear Information System (INIS)

    The dissolution of magnetite films grown in autoclave at high temperature on carbon steel has been performed in a dynamic loop in ammoniated citric and oxalic acid solutions at two different temperatures and constant pH. The dissolution process seems to be affected by the dual-layer oxide morphology depending on the growth conditions in the autoclave. The open-circuit potential of the specimens and the corrosion rate measured by the linear polarization method have been monitored. To this aim a particular corrosion cell and a suitable reference electrode have been set up at CISE. Polarization curves have been performed to check the electrochemical processes involved in the anodic and cathodic area. At last the effect of a corrosion inhibitor, of a complexing and a reducing agent and of temperature has also been studied. The work was carried out in the frame of a CNEN research programme for the development of the CIRENE prototype

  3. Microstructure, Mechanical Properties & Corrosion Behavior of Duplex 2209 in Electro-Slag Strip Cladding over low carbon steel substrate: a Review Paper

    OpenAIRE

    Harinder SinghBedi; Hitesh Arora

    2015-01-01

    The purpose of this research work is todetermine the microstructure and mechanical properties of Stainless steel (Duplex 2209 and S.S 309) weld overlay on Low carbon steel plate (SA 516 Grade 70) developing multilayers. The buffer layer is done by using S.S 309 L strip electrode of 60mm width following by top layers of Duplex 2209.The Process used is Electro Slag Strip Cladding due to its unique properties like high deposition rate and low dilution level.The Microstructure charact...

  4. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk; Daw, K. E., E-mail: Khawladaw@yahoo.com [University of Tripoli Department of Materials and Metallurgical Eng, Tripoli-Libya P.O.Box13589 (Libya)

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  5. Corrosion resistance properties of sintered duplex stainless steel

    OpenAIRE

    L.A. Dobrzański; Z. Brytan; M. Actis Grande; M. Rosso

    2006-01-01

    Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the ...

  6. Microbial iron respiration can protect steel from corrosion.

    Science.gov (United States)

    Dubiel, M; Hsu, C H; Chien, C C; Mansfeld, F; Newman, D K

    2002-03-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  7. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  8. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mehanna, Maha [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)], E-mail: mum34@psu.edu; Basseguy, Regine; Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)

    2009-11-15

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (E{sub oc}) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of E{sub oc} ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended essentially on the nature of the material. This effect was due to the capacity of G. sulfurreducens to create a direct cathodic reaction on steel surfaces, extracting the electrons directly from material. The presence of bacterial cells modified the corrosion features of mild steel and ferritic steel, so that corrosion attacks were gathered in determined zones of the surface. Local corrosion was significantly enhanced on ferritic steel. Potential ennoblement was not sufficient to induce corrosion on austenitic steels. In contrast G. sulfurreducens delayed the occurrence of pitting on 304L steel because of its capability to oxidize acetate at high potential values. The electrochemical behaviour of 304L steel was not affected by the concentration of soluble electron donor (acetate, 1-10 mM) or the amount of planktonic cells; it was directly linked to the biofilm coverage. After polarization pitting curves had been recorded, microscopic observations showed that pits propagated only in the surface zones where cell settlement was the densest. The study evidenced that Geobacter sulfurreducens can control the electrochemical behaviour of steels in complex ways that can lead to severe corrosion. As Geobacteraceae are ubiquitous species in sediments and soils they should now be considered as possible crucial actors in the microbial corrosion of buried equipment.

  9. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    International Nuclear Information System (INIS)

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (Eoc) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of Eoc ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended essentially on the nature of the material. This effect was due to the capacity of G. sulfurreducens to create a direct cathodic reaction on steel surfaces, extracting the electrons directly from material. The presence of bacterial cells modified the corrosion features of mild steel and ferritic steel, so that corrosion attacks were gathered in determined zones of the surface. Local corrosion was significantly enhanced on ferritic steel. Potential ennoblement was not sufficient to induce corrosion on austenitic steels. In contrast G. sulfurreducens delayed the occurrence of pitting on 304L steel because of its capability to oxidize acetate at high potential values. The electrochemical behaviour of 304L steel was not affected by the concentration of soluble electron donor (acetate, 1-10 mM) or the amount of planktonic cells; it was directly linked to the biofilm coverage. After polarization pitting curves had been recorded, microscopic observations showed that pits propagated only in the surface zones where cell settlement was the densest. The study evidenced that Geobacter sulfurreducens can control the electrochemical behaviour of steels in complex ways that can lead to severe corrosion. As Geobacteraceae are ubiquitous species in sediments and soils they should now be considered as possible crucial actors in the microbial corrosion of buried equipment.

  10. MECHANISTIC UNDERSTANDING OF CAUSTIC CRACKING OF CARBON STEELS

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Diaz, B.; Roy, A.

    2009-10-19

    Liquid waste generated by the PUREX process for separation of nuclear materials is concentrated and stored in Type IV single-shell carbon steel tanks at the Savannah River Site (SRS). The Type IV tanks for this waste do not have cooling coils and have not undergone heat treatment to stress-relieve the tanks. After the waste is concentrated by evaporation, it becomes very alkaline and can cause stress corrosion cracking (SCC) and pitting corrosion of the tank materials. SRS has experienced leakage from non-stress-relieved waste tanks constructed of A285 carbon steel and pitting of A212 carbon steel tanks in the vapor space. An investigation of tank materials has been undertaken at SRS to develop a basic understanding of caustic SCC of A285 and A212 grade carbon steels exposed to aqueous solutions, primarily containing sodium hydroxide (NaOH), sodium nitrate (NaNO{sub 3}), and sodium nitrite (NaNO{sub 2}) at temperatures relevant to the operating conditions of both the F and H area plants. This report presents the results of this corrosion testing program. Electrochemical tests were designed using unstressed coupons in a simulated tank environment. The purpose of this testing was to determine the corrosion susceptibility of the tank materials as a function of chemical concentration, pH, and temperature. A285 and A516 (simulates A212 carbon steel) coupons were used to investigate differences in the corrosion of these carbon steels. Electrochemical testing included measurement of the corrosion potential and polarization resistance as well as cyclic potentiodynamic polarization (CPP) testing of coupons. From the CPP experiments, corrosion characteristics were determined including: corrosion potential (E{sub corr}), pitting or breakdown potential (E{sub pit}), and repassivation potential (E{sub prot}). CPP results showed no indications of localized corrosion, such as pitting, and all samples showed the formation of a stable passive layer as evidenced by the positive

  11. Analysis of Short-Term Steel Corrosion Products Formed in Tropical Marine Environments of Panama

    OpenAIRE

    Juan A. Jaén; Josefina Iglesias; Cecilio Hernández

    2012-01-01

    A low-carbon steel A-36 and two conventional weathering steels A-588 and COR-420 exposed at four atmospheric test stations located in (i) Tocumen, an urban site near the Pacific Ocean, (ii) Sherman-Open, (iii) Sherman-Coastal, and (iv) Sherman-Breakwater on the Caribbean coast of Panama. Kinetics of the short-term atmospheric corrosion process and the relationship with exposure time and environmental characteristics of each site were investigated. The atmospheric exposure conditions, particul...

  12. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.

    Science.gov (United States)

    Delaunois, F; Tosar, F; Vitry, V

    2014-06-01

    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main.

  13. Corrosion Protection of Steels by Conducting Polymer Coating

    Directory of Open Access Journals (Sweden)

    Toshiaki Ohtsuka

    2012-01-01

    Full Text Available The corrosion protection of steels by conducting polymer coating is reviewed. The conducting polymer such as polyaniline, polypyrrole, and polythiophen works as a strong oxidant to the steel, inducing the potential shift to the noble direction. The strongly oxidative conducting polymer facilitates the steel to be passivated. A bilayered PPy film was designed for the effective corrosion protection. It consisted of the inner layer in which phosphomolybdate ion, PMo12O3−40 (PMo, was doped and the outer layer in which dodecylsulfate ion (DoS was doped. The inner layer stabilized the passive oxide and the outer possessed anionic perm-selectivity to inhibit the aggressive anions such as chloride from penetrating through the PPy film to the substrate steel. By the bilayered PPy film, the steel was kept passive for about 200 h in 3.5% sodium chloride solution without formation of corrosion products.

  14. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  15. Effect of Humidity on Corrosion Behavior of Low Carbon Steel in Atmosphere Containing SO_2%含SO_2大气中湿度对低碳钢腐蚀行为的影响

    Institute of Scientific and Technical Information of China (English)

    林翠; 陈三娟; 肖志阳

    2012-01-01

    Through simulated polluted atmospheric corrosion system,the effect of relative humidity(RH) on the corrosion morphology and the growth process of corrosion products of 20 low carbon steel in atmosphere containing 5×10-6 volume fraction SO2 was studied by means of optical microscopy,SEM,XRD and XPS.The results show that the corrosion products were mainly composed of α-FeOOH,γ-FeOOH,FeSO4,Fe3O4,γ-Fe2O3 under the enviroment of different relative humidities,and the concentration of FeOOH increased with increase of RH,and the corrosion rate increased,too.When the RH were 65% and 75%,the corrosion curves was divided into two stages which respectively followed by exponential increase and the linear growth.When the RH were 85% and 95%,the corrosion curves followed by linear growth.At the enviroment of RH of 65%,the corrosion products grew in the form of corrosion-ring.With increase of RH,the filiform corrosion products were found around the corrosion-ring.When the RH was 95%,it was filiform corrosion products with cellular corrosion products,and obvious pits were observed under the cellular corrosion products.%采用模拟污染大气腐蚀系统,利用光学显微镜、SEM、XRD和XPS等研究了湿度对含体积分数为5×10-6的SO2环境中20低碳钢腐蚀形貌和腐蚀产物生长过程的影响。结果表明:在不同湿度环境中,腐蚀产物均主要由α-FeOOH、γ-FeOOH、FeSO4、Fe3O4、γ-Fe2O3组成;随湿度增大,FeOOH含量增多,低碳钢的腐蚀速率增大;在相对湿度为65%,75%时,腐蚀曲线分为指数增加和线性增加2个阶段,在85%,95%时,腐蚀曲线符合线性增长规律;在相对湿度为65%的环境中,腐蚀产物主要以腐蚀圈形式生长,随着相对湿度增加,腐蚀圈周围有短小丝状腐蚀产物出现;在相对湿度为95%时主要为丝状腐蚀产物,其上伴随有胞状腐蚀产物生成,且在胞状腐蚀产物下存在明显的腐蚀坑。

  16. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    Science.gov (United States)

    France, Danielle Cook

    2016-07-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  17. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    Science.gov (United States)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  18. History of ultrahigh carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  19. Corrosion monitoring on a large steel pressure vessel by thin-layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, G. (Inst. of Nuclear Sciences, Dept. of Scientific and Industrial Research, P.O. Box 31312, Lower Hutt (NZ)); Boulton, L.H. (Auckland Industrial Development Div., Dept. of Scientific and Industrial Research, P.O. Box 2225, Auckland (NZ)); Hodder, D. (NZFP Pulp and Paper Ltd., Private Bag, Tokoroa (NZ))

    1989-12-01

    Thin-layer activation (TLA) is a technique in which a surface is irradiated by a nuclear accelerator and thereby labeled with an accurate depth profile of low-level radioactivity. By monitoring this activity it is possible to calculate how much of that surface has been removed by corrosion. As the radioactivity is marked by the emission of penetrating gamma rays, it is possible to monitor this corrosion remotely through several centimeters of steel. This technique has been used to monitor erosion-corrosion occurring on the inner carbon steel wall of a continuous Kraft pulp digester at a paper mill. Representative coupons of the same steel as the digester wall were irradiated and fixed to the walls in the liquor extraction zone during a maintenance shutdown. The loss of metal over the six months was measured by external monitoring of gamma radiation through the vessel wall, and converted to a corrosion rate. Subsequent weight-loss measurements and comparison with ultrasonic thickness measurements established that the corrosion rate measured gave accurate results over a much shorter time scale. TLA thus enables current, rather than historical corrosion rates to be measured in a large steel pressure vessel.

  20. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    Science.gov (United States)

    Adhe, K. M.; Kain, V.; Madangopal, K.; Gadiyar, H. S.

    1996-08-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 °C for 30 min to 10 h. The heat-treated samples then undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 °C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted.

  1. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    International Nuclear Information System (INIS)

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 C for 30 min to 10 h. The heat-treated samples than undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted

  2. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments.

    Science.gov (United States)

    Choi, Yoon-Seok; Nesic, Srdjan; Young, David

    2010-12-01

    The corrosion property of carbon steel was evaluated using an autoclave under CO(2)-saturated water phase and water-saturated CO(2) phase with impurities (O(2) and SO(2)) at 80 bar CO(2) and 50 °C to simulate the condition of CO(2) transmission pipeline in the carbon capture and storage (CCS) applications. The results showed that the corrosion rate of carbon steel in CO(2)-saturated water was very high and it increased with adding O(2) in the system due to the inhibition effect of O(2) on the formation of protective FeCO(3). It is noteworthy that corrosion took place in the water-saturated CO(2) phase under supercritical condition when no free water is present. The addition of O(2) increased the corrosion rates of carbon steel in water-saturated CO(2) phase. The addition of 0.8 bar SO(2) (1%) in the gas phase dramatically increased the corrosion rate of carbon steel from 0.38 to 5.6 mm/y. This then increased to more than 7 mm/y with addition of both O(2) and SO(2). SO(2) can promote the formation of iron sulfite hydrate (FeSO(3)·3H(2)O) on the steel surface which is less protective than iron carbonate (FeCO(3)), and it is further oxidized to become FeSO(4) and FeOOH when O(2) is present with SO(2) in the CO(2)-rich phase. The corrosion rates of 13Cr steel were very low compared with carbon steel in CO(2)-saturated water environments with O(2), whereas it was as high as carbon steel in a water-saturated CO(2) phase with O(2) and SO(2). PMID:21049923

  3. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments.

    Science.gov (United States)

    Choi, Yoon-Seok; Nesic, Srdjan; Young, David

    2010-12-01

    The corrosion property of carbon steel was evaluated using an autoclave under CO(2)-saturated water phase and water-saturated CO(2) phase with impurities (O(2) and SO(2)) at 80 bar CO(2) and 50 °C to simulate the condition of CO(2) transmission pipeline in the carbon capture and storage (CCS) applications. The results showed that the corrosion rate of carbon steel in CO(2)-saturated water was very high and it increased with adding O(2) in the system due to the inhibition effect of O(2) on the formation of protective FeCO(3). It is noteworthy that corrosion took place in the water-saturated CO(2) phase under supercritical condition when no free water is present. The addition of O(2) increased the corrosion rates of carbon steel in water-saturated CO(2) phase. The addition of 0.8 bar SO(2) (1%) in the gas phase dramatically increased the corrosion rate of carbon steel from 0.38 to 5.6 mm/y. This then increased to more than 7 mm/y with addition of both O(2) and SO(2). SO(2) can promote the formation of iron sulfite hydrate (FeSO(3)·3H(2)O) on the steel surface which is less protective than iron carbonate (FeCO(3)), and it is further oxidized to become FeSO(4) and FeOOH when O(2) is present with SO(2) in the CO(2)-rich phase. The corrosion rates of 13Cr steel were very low compared with carbon steel in CO(2)-saturated water environments with O(2), whereas it was as high as carbon steel in a water-saturated CO(2) phase with O(2) and SO(2).

  4. Effect of heat treatment on pitting corrosion of austenitic Cr-Ni-Mo steels in sodium chloride solution

    International Nuclear Information System (INIS)

    The pitting corrosion resistance of Cr17Ni12Mo2,5 type steel under potentiostatic polarization in a sodium chloride solution is adversely affected by previous annealing. The data obtained were systematically dependent on annealing temperature, time and surface roughness. The corrosion current, the number of pits or the mean area of pit opening and the corrosion rate within the pits were increased by previous annealing at 550 to 7500C for 1-100 hrs. The highest corrosion rate estimated corresponded to heat treatments provoking severe sensitization to intergranular corrosion. The paercentage area of corrosion pit openings and the estimated pit penetration rates were several times higher for as-machined than for polished surfaces. It can be assumed that pitting corrosion is little affected by the carbon content and that molybdenum depletion of grain-boundary zones is responsible for the reduced pitting resistance of annealed steels. (orig./HP)

  5. Microbially influenced corrosion of stainless steels by aerobic bacteria; Kokisei saikin no kanyoshita sutenresu ko no biseibutsu fushoku

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, H.; Miyuki, H. [Sumitomo Metal Inductries Ltd., Osaka (Japan). Corporate Research and Development Lab.

    1996-03-20

    Influence of microorganisms on the corrosion of metals has been recognized since Kuhr proposed the hypothesis of corrosion promotion due to so called hydrogen double electrode when hydrogen formed in corrosion reaction of steel is used by anaerobic bacteria. Corrosion of metals caused by the influence of such type of microorganisms is known as Microbially influenced corrosion (MIC), and recently is paid attention specially in Europe and America. These recent years, research on MIC is showing active trend even in Japan. As for the research subjects of MIC, the example of corrosion promotion of carbon steel by sulfate reducing bacteria (SRB) in anaerobic environment is paid attention conventionally. Further, at present, effect of general type of aerobic heterotrophic bacteria on the corrosion of steel is paid attention and research is carried out actively. In this report, effect of aerobic heterotrophic bacteria on the corrosion of stainless steel is introduced focusing to the authors knowhow regarding the ennoblement phenomena of corrosion potential of stainless steel in natural sea water. 44 refs., 10 figs., 3 tabs.

  6. EFFECT OF GRAIN SIZE ON ATMOSPHERIC CORROSION RESISTANCE OF ULTRA-LOW CARBON IF STEEL%晶粒尺寸对超低碳IF钢耐大气腐蚀性能的影响

    Institute of Scientific and Technical Information of China (English)

    汪兵; 刘清友; 王向东

    2012-01-01

    采用不同轧制及热处理工艺制备了化学成分相同而晶粒尺寸不同的3种超低碳IF钢试样.采用浸泡腐蚀、周浸腐蚀、原子力显微镜(AFM)及扫描电镜(SEM)微观分析、电化学阻抗测试等手段对晶粒尺寸与IF钢耐大气腐蚀性能之间的规律进行了研究.AFM及SEM微观分析结果表明,随着晶粒尺寸从15μm增加到220 μm,超低碳IF钢浸泡腐蚀后晶界处的局部腐蚀更加严重,腐蚀裂纹处的深度加深,裂纹宽度变宽.超低碳IF钢晶粒尺寸从15μm增加到46μm,周浸腐蚀实验后锈层中空洞和裂纹增多,锈层电阻下降,耐候性下降;晶粒尺寸进一步增大到220 μm后,锈层整体致密性得到增加,锈层电阻上升,耐候性得到增加.对晶粒尺寸影响耐大气腐蚀性能的机理进行了讨论.晶粒尺寸增大后晶界能的减少使得腐蚀表面的宏观总体缺陷数量有所减少,耐候性有所提高;但是晶粒尺寸增大后晶界处因局部腐蚀电流密度增大将会在局部造成更深的腐蚀坑槽并降低耐候性;晶粒尺寸的变化对钢铁材料耐大气腐蚀性能的影响不仅要考虑其对晶界局部腐蚀电流密度的影响,而且还必须考虑对基体整体晶界能所造成的影响.%Three kinds of ultra-low carbon IF steel with different grain sizes, and same chemical composition were prepared by different rolling and heat treat process. The relationship between grain size and atmospheric corrosion resistance of IF steel was investigated by immersion corrosion test, cyclic immersion corrosion test, AFM/SEM micro-analysis and electrochemical test. The results show that the local corrosion in grain boundary increases after immersion corrosion test, the depth of crack in grain boundary becomes deeper and the width of crack becomes wider with grain sizes of IF steel increase from 15 μm to 220 μm. The crack and cavity in the rust after cycle immersion corrosion test are increased and the atmospheric

  7. Temperature dependence of corrosion inhibition of steels used in oil well stimulation using acetylenic compound and halide ion salt mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, M.A.M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica], E-mail: marcom@eq.ufrj.br; Valle, M.L.M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Processos Organicos; Dweck, J. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Processos Inorganicos; Queiroz Neto, J.C. [Petroleo Brasileiro S.A. (CENPES / PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2007-07-15

    Halogenated salt (HS)-acetylenic compound (AC) mixtures were tested as corrosion inhibitors of 13Cr and 22Cr stainless steel and N80 and P110 carbon steel when exposed to 15 wt.% HCl solutions, at 50 deg C, 80 deg C and 100 deg C. The best corrosion inhibition efficiency is obtained when the concentration of both AC and HS is 1.5 wt. %, which indicates the use of all tested steels in oil well stimulation operated at 50 deg C and the use of 13Cr, N80 and P110 steels in oil well processing temperatures up to 100 deg C. (author)

  8. Microbial corrosion inhibition of mild steel in salty water environment

    International Nuclear Information System (INIS)

    The use of antimicrobial corrosion inhibitor is increasingly being curtailed by recent corrosion restrictions. This paper represents the results of the study of new biocide, antimicrobial corrosion inhibitor named 8-hydroxy-N'-(2-(quinolin-8-yloxy)acetyl)quinoline-5-sulfonohydrazide (HQS) was used to inhibit corrosion causing sulphate reducing bacteria (SRB). The effects of the inhibitor on mild steel dissolution in salty water environment were studied through weight loss measurements, electrochemical and microorganism tests. The results obtained from this study show that, the new inhibitor can decrease corrosion and microbial growth under the conditions tested. The mass loss for the protected mild steel coupons shows lower corrosion rate compared to the unprotected once. Cyclic polarization test reveals that, the biocide minimizes the pitting area (hysteresis). The nature of protective film formed on mild steel was studied by scanning electron microscopy (SEM). SEM images revealed that, the corrosion inhibition by the HQS on the mild steel surface significantly improved in the presence of biocide

  9. Microbial corrosion inhibition of mild steel in salty water environment

    Energy Technology Data Exchange (ETDEWEB)

    El-Shamy, A.M. [Electrochemistry and Corrosion Lab., Department of Physical Chemistry, National Research Centre, Dokki, 12622 Cairo (Egypt); Soror, T.Y. [Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt); El-Dahan, H.A. [Electrochemistry and Corrosion Lab., Department of Physical Chemistry, National Research Centre, Dokki, 12622 Cairo (Egypt)], E-mail: hosnieldahan@yahoo.com; Ghazy, E.A. [Microbial Biotechnology Department, National Research Centre, Dokki, 12622 Cairo (Egypt); Eweas, A.F. [Medicinal Chemistry Department, National Research Centre, Dokki, 12622, Cairo (Egypt)

    2009-03-15

    The use of antimicrobial corrosion inhibitor is increasingly being curtailed by recent corrosion restrictions. This paper represents the results of the study of new biocide, antimicrobial corrosion inhibitor named 8-hydroxy-N'-(2-(quinolin-8-yloxy)acetyl)quinoline-5-sulfonohydrazide (HQS) was used to inhibit corrosion causing sulphate reducing bacteria (SRB). The effects of the inhibitor on mild steel dissolution in salty water environment were studied through weight loss measurements, electrochemical and microorganism tests. The results obtained from this study show that, the new inhibitor can decrease corrosion and microbial growth under the conditions tested. The mass loss for the protected mild steel coupons shows lower corrosion rate compared to the unprotected once. Cyclic polarization test reveals that, the biocide minimizes the pitting area (hysteresis). The nature of protective film formed on mild steel was studied by scanning electron microscopy (SEM). SEM images revealed that, the corrosion inhibition by the HQS on the mild steel surface significantly improved in the presence of biocide.

  10. Microbially influenced corrosion of stainless steels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, U.P.; Wolfram, J.H.; Rogers, R.D.

    1990-01-01

    This paper reviews the components, causative agents, corrosion sites, and potential failure modes of stainless steel components susceptible to microbially influenced corrosion (MIC). The stainless steel components susceptible to MIC are located in the reactor coolant, emergency, and reactor auxiliary systems, and in many plants, in the feedwater train and condenser. The authors assessed the areas of most high occurrence of corrosion and found the sites most susceptible to MIC to the heat-affected zones in the weldments of sensitized stainless steel. Pitting is the predominant MIC corrosion mechanisms, caused by sulfur reducing bacteria (SRB). Also discussed is the current status of the diagnostic, preventive, and mitigation techniques, including use of improved water chemistry, alternate materials, and improved thermomechanical treatments. 37 refs., 3 figs.

  11. AFM study of steel corrosion in aqueous solutions in concrete

    Directory of Open Access Journals (Sweden)

    Díaz-Benito, B.

    2011-03-01

    Full Text Available Early corrosion stages are studied in carbon steel by means of a solution simulating that contained in concrete pores. Non-carbonated solution contains 5% NaCl. The atomic force microscopy (AFM technique is used to study material performance after different immersion times (up to 48 h. Obtained data are compared to electrochemical ones (corrosion potential and polarization resistance. Analysis of images and roughness evolution along time shows that steel initially tends to reach passivity, although the passive layer rapidly loses its protective character due to chloride attack.

    Este trabajo estudia los primeros estados de la corrosión de un acero al carbono en una disolución que simula la existente en los poros del hormigón, sin carbonatar, con un 5% de NaCl. Para ello, se ha empleado la técnica de microscopía de fuerza atómica (AFM, estudiando el comportamiento del material tras diferentes tiempos de inmersión, hasta 48 h, en la disolución. Estos datos se comparan con datos electroquímicos (potencial de corrosión y resistencia de polarización. El análisis de las imágenes y la evolución de la rugosidad con el tiempo muestran que el acero tiende inicialmente a pasivarse, pero la capa pasiva pierde rápidamente su carácter protector debido al ataque de los cloruros.

  12. Corrosion fatigue of a superduplex stainless steel weldment

    OpenAIRE

    Comer, Anthony John

    2004-01-01

    Superduplex stainless steels have superior mechanical and corrosion properties compared to austenitic stainless steels such as the grade 300 series. This is a result of a microstructure consisting of roughly equal percentages of austenite (y) and ferrite (a) and negligible inclusion content. As a result, super duplex stainless steels are increasingly being used in the offshore oil and gas industries. It is also envisaged that they will find application in the emergent renewable energy sec...

  13. Corrosion protection by sonoelectrodeposited organic films on zinc coated steel.

    Science.gov (United States)

    Et Taouil, Abdeslam; Mahmoud, Mahmoud Mourad; Lallemand, Fabrice; Lallemand, Séverine; Gigandet, Marie-Pierre; Hihn, Jean-Yves

    2012-11-01

    A variety of coatings based on electrosynthesized polypyrrole were deposited on zinc coated steel in presence or absence of ultrasound, and studied in terms of corrosion protection. Cr III and Cr VI commercial passivation were used as references. Depth profiling showed a homogeneous deposit for Cr III, while SEM imaging revealed good surface homogeneity for Cr VI layers. These chromium-based passivations ensured good protection against corrosion. Polypyrrole (PPy) was also electrochemically deposited on zinc coated steel with and without high frequency ultrasound irradiation in aqueous sodium tartrate-molybdate solution. Such PPy coatings act as a physical barrier against corrosive species. PPy electrosynthesized in silent conditions exhibits similar properties to Cr VI passivation with respect to corrosion protection. Ultrasound leads to more compact and more homogeneous surface structures for PPy, as well as to more homogeneous distribution of doping molybdate anions within the film. Far better corrosion protection is exhibited for such sonicated films. PMID:22516111

  14. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  15. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  16. Study on corrosion simulation device for marine structural steel

    Indian Academy of Sciences (India)

    Hou Baorong; Xiang Bin

    2003-04-01

    A corrosion simulation device was studied using offshore long scale hanging specimens. An Ni–Cu–P steel specimen was studied by analysing its corrosion products and corrosion types. The appearance of the samples and the surface of the metallic substrate after the removal of the rust layer produced by these two methods were observed and compared after 470 days of exposure. The phase structure of the corrosion products under different marine environments were analysed and compared. It further indicated good correlation between the electrically connected hanging specimen method and the long scale hanging specimen method.

  17. Investigation of Fecraly Coating on Corrosion Behaviour of Mild Steel

    Directory of Open Access Journals (Sweden)

    Joseph B. AGBOOLA

    2009-07-01

    Full Text Available Steel has found wide application in hot rolling equipments in the steel industry and the oil rig structures in sea water. These equipments are frequently subjected to corrosive and temperature condition which causes severe damage to them, hence the need to develop steel suitable to withstand these conditions in terms of surface treatment. This research work investigates the effect of FeCrAlY coating on mild steel under high temperature and aggressive environment. Iron based coatings are used due to low cost among other properties such as good corrosion resistance, ease of machining and high ductility when compared to hard metals.Thermal spraying of the specimens was carried out using high velocity oxygen fuel (HVOF. Corrosion test was carried out on both coated and uncoated samples. All samples were subjected to the same high temperature treatment for oxidation test.

  18. Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel

    International Nuclear Information System (INIS)

    Highlights: → Origins of better corrosion resistance of ZnAlMg coatings than galvanized steel. → Comparative study of corrosion products formed on ZnAlMg, ZnMg and Zn coatings. → Modeling of dissolution and precipitation stages of corrosion. → At early stages Mg stabilizes protective zinc basic salts during dry-wet cycling. → At later stages Al dissolves at high pH forming protective layered double hydroxides. - Abstract: Corrosion products are identified on Zn, ZnMg and ZnAlMg coatings in cyclic corrosion tests with NaCl or Na2SO4 containing atmospheres. For Mg-containing alloys the improved corrosion resistance is achieved by stabilization of protective simonkolleite and zinc hydroxysulfate. At later stages, the formation of layered double hydroxides (LDH) is observed for ZnAlMg. According to thermodynamic modeling, Mg2+ ions bind the excess of carbonate or sulfate anions preventing the formation of soluble or less-protective products. A preferential dissolution of Zn and Mg at initial stages of corrosion is confirmed by in situ dissolution measurement. The physicochemical properties of different corrosion products are compared.

  19. Oil field chemicals synergistic effects on the corrosion rate of L-80 steel in sea and formation waters

    Energy Technology Data Exchange (ETDEWEB)

    Al Hashem, A.; Carew, J. [Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat Kuwait (Kuwait); Al-Borno, A. [Charter Coating Service (2000) Ltd., no 6, 4604, 13 Street N.E., Calgary, AB T2E 6P1 (Canada)

    2004-07-01

    The corrosion rate of tubular grade L-80 carbon steel under downhole conditions of a northern oil field of Kuwait was investigated. This was done using the injection seawater, formation water and a 50:50 mixture of both waters in the presence of commercially available corrosion inhibitor, scale inhibitor, and biocide products separately and in combination with each other. The main objective of this study was to investigate the effect of the corrosion inhibitor and its interaction with the scale inhibitor and the biocide, as seen in the corrosion rate of L80 carbon steel. This was done using the manufacturers' recommended dosage levels of the corrosion inhibitor, scale inhibitor and biocide. The corrosion rates were measured by linear polarization. Tests were conducted using the rotating cylinder electrode method with rotational speeds of 1000 and 2000 rpm at 80 deg. C. The seawater results indicated that the corrosion-scale inhibitor and biocide-scale inhibitor combinations provided the best protection at both rotation speeds. In formation water, the effects of rotation speed were more apparent with higher corrosion rates of L-80 carbon steel accompanying higher shear forces. In the 50: 50 mix waters and the formation water, the corrosion-scale inhibitors-biocide combination provided the best protection at both rotational speeds under downhole conditions of a northern oil field of Kuwait. (authors)

  20. Corrosion resistance of high strength modified 13Cr steel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Mitsuo; Miyata, Yukio; Yamane, Yasuyoshi; Toyooka, Takaaki; Nakano, Yoshifumi [Kawasaki Steel Corp., Handa, Aichi (Japan). Technical Research Labs.; Murase, Fumio [Kawasaki Steel Corp., Handa, Aichi (Japan). Chita Works

    1997-08-01

    A new 13Cr martensitic stainless steel (0.025C-13Cr-Ni-Mo) with excellent resistance to CO{sub 2} corrosion and good resistance to SSC is developed and its application limit in oil and gas environments is clarified. The CO{sub 2} corrosion rate of the 13Cr steels with Ni and Mo is less than 0.3 mm/yr at 180 C (356 F) in 20% NaCl. It is less than that of the conventional 13Cr steel (0.2C-13Cr). The corrosion rate of the steel slightly decreases with the increase in Mo and Ni content. The SSC resistance improves with the increase in Mo content. The critical partial pressure of H{sub 2}S for the 2% Mo steel is greater than 0.005 MPa at the pH value of 3.5. The effects of Ni and Cu on SSC are not distinctive for this kind of steel. These results depends on the hydrogen permeability. The critical H{sub 2}S partial pressure for the 110 grade steel is the same as that of the 95 grade steel at the pH values of 4.5 and 3.0, and is slightly lower at the pH values between 3.0 and 4.5. The new 13Cr steel proves to have excellent properties in the sweet and slightly sour environment.

  1. Microstructure and corrosion behavior of hot-rolled GCr15 bearing steel

    Science.gov (United States)

    Fu, Junwei

    2016-04-01

    Microstructure, corrosion behavior and evolution of hot-rolled high-carbon-chromium bearing steel were investigated using scanning electron microscopy and energy dispersive spectrometer (EDS). The results show that corrosion initiates adjacent to the network carbide, which is the initial austenite grain boundary. With the further increase in corrosion time, corrosion fraction is increased and extended into the grains. Finally, the whole grain near the network carbide is etched off and the grain boundary is detached from the sample, which forms the corroded holes. Based on the EDS analyses, it is confirmed that this corrosion behavior is resulted from the depletion of Cr as solid solute at the grain boundary. The depletion of Cr is the result of the formation of Cr carbide near the grain boundary.

  2. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    OpenAIRE

    Mehanna, Maha; Basséguy, Régine; Délia, Marie-Line; Bergel, Alain

    2009-01-01

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (Eoc) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of Eoc ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended ess...

  3. The effect of buffered solutions in corrosion testing of alloyed 13%Cr martensitic stainless steels for mildly sour applications

    Energy Technology Data Exchange (ETDEWEB)

    Drugli, J.M.; Rogne, T.; Svenning, M.; Axelsen, S. [SINTEF Materials Technology, Trondheim (Norway); Enerhaug, J. [Statoil, Trondheim (Norway)

    1999-11-01

    13% Cr stainless steels may suffer from sulfide stress corrosion cracking in sour environments if hydrogen enters the material. Hydrogen evolution is caused by the cathodic reaction in the corrosion process. As distinct from solutions without buffer, buffered solutions keep the pH stable at the surface almost independent of the electrochemical reactions. The most common initiation process for corrosion of stainless steels is break-down of the passive oxide by subsequent local acidification, which to a certain extent can be prevented in buffered solutions. For local corrosion the risk of corrosion therefore is higher in solutions without buffer than in buffered solutions at the same bulk pH. Hydrogen evolution may also be caused by general corrosion. For this type of corrosion the effect of buffer in the solution may be, contrary to the effect for local corrosion, that general corrosion of 13 Cr (with risk for cracking of loaded specimens) is more readily initiated in buffered solutions than in solutions without buffer at the same pH. With respect to corrosion on ground alloyed 13Cr base material by coupling to carbon steel, it is shown that general corrosion initiates both in strongly and moderately without buffer at pH 3.5, buffered solutions, but not in solution.

  4. Corrosion of an austenite and ferrite stainless steel weld

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  5. 碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响%COMPOSITION OF BACTERIA IN CORROSION PRODUCT OF CARBON STEEL WITH DIFFERENT CARBON CONTENT IMMERSED IN SEAWATER FOR DIFFERENT TIME

    Institute of Scientific and Technical Information of China (English)

    杨雨辉; 肖伟龙; 柴柯; 吴进怡

    2011-01-01

    Bacterial adhesion and biofilm formation on the surface of carbon steel are common in seawater. The heterogeneous biofilm and the associated bacteria form complex biological systems that impact the physical and chemical characters of the metal/biofilm interface, such as pH, dissolved oxygen, chloride and sulfate, etc., and change the corrosion mechanism of carbon steel. Accordingly, it is important to investigate the bacteria composition in the corrosion product of carbon steel. In this work, the bacteria compositions in the corrosion product of different carbon steel emerged in seawater for different periods were researched by bacteria isolating and identifying methods. The results show that the contents of aerobe and facultative anaerobe reach the maximum value when the corrosion time is 91 d. However, the content of sulfate reducing bacteria reaches the maximum value when the corrosion time is 184 d. The contents of iron bacteria and sulfur bacteria change irregularly. For different carbon steel, except 7 d corrosion time, the contents of aerobe and facultative anaer- obe in biofilm increase with increasing the content of carbon, but that of sulfate reducing bacteria descends. Aerobe and facultative anaerobe mainly compose pseudomonas and vibrio. When the corrosion time is 365 d, fiavobacterium also exists in the corrosion product. The aerobe is predominant in the initial stage of experi- ment and facultative anaerobe is predominant in later stage. The major composition of iron bacteria includes naumanniella and siderocapsa. The different bacteria produce the different metabolic products that influence corrosion process of carbon steel.%为了深入探讨海洋微生物对碳钢的腐蚀机理,通过细菌的分离鉴定方法,研究了不同碳含量碳钢在自然海水中浸泡不同时间后腐蚀产物中的细菌组成。结果表明不同碳钢每克表面刮取物中需氧菌及兼性厌氧菌的数量均在浸泡时间为91d时达最大值,而硫

  6. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    Science.gov (United States)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-05-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  7. Corrosion behavior of low alloy steels in a wet-dry acid humid environment

    Science.gov (United States)

    Zhao, Qing-he; Liu, Wei; Yang, Jian-wei; Zhu, Yi-chun; Zhang, Bin-li; Lu, Min-xu

    2016-09-01

    The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet-dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet-dry acid humid environment.

  8. Corrosivity of paper mill effluent and corrosion performance of stainless steel.

    Science.gov (United States)

    Ram, Chhotu; Sharma, Chhaya; Singh, A K

    2015-01-01

    Present study relates to the corrosivity of paper mill effluent and corrosion performance of stainless steel (SS) as a construction material for the effluent treatment plant (ETP). Accordingly, immersion test and electrochemical polarization tests were performed on SS 304 L, 316 L and duplex 2205 in paper mill effluent and synthetic effluent. This paper presents electrochemical polarization measurements, performed for the first time to the best of the authors' information, to see the influence of chlorophenols on the corrosivity of effluents. The corrosivity of the effluent was observed to increase with the decrease in pH and increase in Cl- content while the addition of SO4- tends to inhibit corrosion. Mill effluent was found to be more corrosive as compared to synthetic effluent and has been attributed to the presence of various chlorophenols. Corrosion performance of SS was observed to govern by the presence of Cr, Mo and N contents. PMID:25188842

  9. Corrosion Behaviors of Steel A3 Exposed to Thiobacillus Ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    Jianhua LIU; Xin LIANG; Songmei LI

    2008-01-01

    The corrosion behaviors of steel A3 in synergistic action of Thiobacillus ferrooxidans (T.f) and electrochemically accelerated corrosion were studied by electrochemical, microbiology and surface analysis methods. The open circuit potential (Eocp) and electrochemical impedance spectroscopy (EIS) of the steel A3 electrodes were measured in leathen culture medium without and with T.f (simply called T.f solution in the following paper)in immersion electrode way at the time of the 2nd, 5th, 10th, 20th and 30th days, respectively. It was found that Eocp of the electrode for immersion in leathen culture medium shifted negatively with the immersion time while that for immersion in T.f solutions shifted negatively, then positively and finally negatively. On the 20th day, the corrosion of steel A3 for immersion in culture medium was in pitting initiation stage while that for immersion in T.f solutions was in pitting growth stage. It was found that the corrosion of steel A3 was accelerated by T.f. The morphology of corrosion product of steel A3 immersion in T.f solutions observed through scanning electron microscopy (SEM) transformed from solid globules to tabular plates and to spongy globules and plates.

  10. Prediction of External Corrosion for Steel Cylinders - 1998 Report

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, B.F.

    1998-01-01

    The United States Department of Energy (DOE) currently manages the UF, Cylinder Project. The project was formed to maintain and safely manage depleted uranium hexafluoride (UF{sub 6}) stored in approximately 50,000 carbon steel cylinders. The cylinders located at three DOE sites: the K-25 site at Oak Ridge, Tennessee (K-25); the Paducah Gaseous Diffusion Plant in Paducah, Kentucky (PGDP), and the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The System Requirements Document (SRD) (LMES 1997a) delineates the requirements of the project. The appropriate actions needed to fulfill these requirements are then specified within the System Engineering Management Plan (SEMP) (LMES 1997b). The report presented herein documents activities that in whole or in part satisfy specific requirements and actions stated in the UF{sub 6} Cylinder Project SRD and SEMP with respect to forecasting cylinder conditions. The wall thickness projections made in this report are based on the assumption that the corrosion trends noted will continue. Some activities planned may substantially reduce the rate of corrosion, in which case the results presented here are conservative. The results presented here are intended to supercede and enlarge the scope of those presented previously (Lyon 1995,1996, 1997). In particular, projections are made for thin-walled cylinders (nominal initial thickness 312.5 mils) and thick-walled cylinders (nominal initial thickness 625 mils). In addition, a preliminary analysis is conducted for the minimum thickness at the head/skirt interface for skirted cylinders.

  11. Prediction of external corrosion for steel storage cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, B.F.

    1997-02-01

    The US Department of Energy (DOE) currently manages the UF{sub 6} Cylinder Program (the program). The program was formed to address the depleted-uranium hexafluoride (UF{sub 6}) stored in approximately 50,000 carbon steel cylinders. The cylinders are located at three DOE sites: the K-25 site (K-25) at Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The System Requirements Document (SRD) (LMES 1996a) delineates the requirements of the program. The appropriate actions needed to fulfill these requirements are then specified within the System Engineering Management Plan (SEMP) (LMES 1996b). The report presented herein documents activities that in whole or in part satisfy specific requirements and actions stated in the UF{sub 6} Cylinder Program SRD and SEMP with respect to forecasting cylinder conditions. The wall thickness projections made in this report are based on the assumption that the corrosion trends noted will continue. Some activities planned may substantially reduce the rate of corrosion, in which case the results presented here are conservative. The results presented here are intended to supersede those presented previously, as the quality of several of the datasets has improved.

  12. Stress corrosion cracking of turbine disc steels: a study of mechanism

    International Nuclear Information System (INIS)

    Stress corrosion cracking was found to affect shrunk-on discs of 900 MW-EDF turbines. Investigations revealed that intergranular cracking occurred in high-stress confined locations, where concentrations of pollutants resulting from some assembling operations could take place (MoS2 sometimes used as a lubricant, carbonated compounds with chloride as in paint marks). Laboratory tests allowed to assess the chemical conditions (pH, electrochemical potential, pollutants) responsible for the stress corrosion cracking of NiCrMo V-steels. Three main E-pH fields were found to favour stress corrosion cracking, whose boundaries may be dependant on the anionic species. The crack growth rates in these conditions were measured at 95 and 130 deg C, and compared to the observed average measurements from service. The most likely mechanism seems to involve molybdic acid, as a result of thermal decomposition of MoS2 or generated by general corrosion of Mo-containing steel. Cracks might also have been initiated by carbonated compounds. The relevance of classical models to stress corrosion cracking of disc steel was discussed with respect to electrochemical behaviour. (authors). 15 refs., 8 figs., 1 tab

  13. Inhibition Performance of Enhanced-Mo Inhibitor for Carbon Steel in 55% LiBr Solution

    Institute of Scientific and Technical Information of China (English)

    LIANG Cheng-hao; HU Xian-qi

    2008-01-01

    The inhibition performance of enhanced-Mo inhibitor for carbon steel in 55% LiBr solution was measured by means of chemical immersion, electrochemical measurements, and physical detection technologies. Results indicated that enhanced-Mo inhibitor showed excellent inhibition performance of carbon steel in 55% LiBr solution, especially at high temperature. With increasing the temperature of solution from 160 ℃ to 240 ℃, the corrosion rates of carbon steel increased from 17.67 μm/a to 33.07 μm/a. Enhanced-Mo inhibitor might improve the anodic polarization performance of carbon steel and widen the passive potential region of carbon steel in 55% LiBr solution. Enhanced-Mo inhibitor belongs to anodic inhibitor. In 55% LiBr solution, the relationship between corrosion current density icorr and corrosion potential Ecorr of carbon steel accorded with the equation lgicorr=-2.66-3.54Ecorr, and the value of cathodic Tafel constant βc for the H2 reaction was 282 mVSCE. When 55% LiBr solution contained enhanced-Mo inhibitor, a passive film comprising Fe3O4 and MoO2 was formed on the carbon steel surface by electrochemical reactions. The corrosion of carbon steel might be retarded by this protective film, and the anticorrosion performance of carbon steel in 55% LiBr solution might be improved by enhanced-Mo inhibitor.

  14. Characterization of corrosion products formed on steels in the first months of atmospheric exposure

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2003-06-01

    Full Text Available The corrosion products of carbon steel and weathering steel exposed to three different types of atmospheres, at times ranging from one to three months, have been identified. The steels were exposed in an industrial site, an urban site (São Paulo City, Brazil, and a humid site. The effect of the steel type on the corrosion products formed in the early stages of atmospheric corrosion has been evaluated. The corrosion products formed at the various exposure locations were characterized by Raman microscopy, X-Ray diffraction (XRD and their morphology was observed by Scanning Electron Microscopy (SEM. Three regions of different colours (yellow, black and red have been identified over the steel coupons by Raman microscopy. Analysis carried out on each of these areas led to the characterization of the correspondent oxide/hydroxide phases. The main phases present were lepidocrocite (g-FeOOH and goethite (a-FeOOH. Small amounts of magnetite (Fe3O4 were also eventually encountered.

  15. Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on a multifactor test design to investigate uniform corrosion of low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, R.A.; Lerman, A.; Ditmars, J.D.; Macdonald, D.D.; Peerenboom, J.P.; Was, G.S.; Harrison, W.

    1987-01-01

    This report documents Argonne National Laboratory's review of an internal technical memorandum prepared by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) entitled Multifactor Test Design to Investigate Uniform Corrosion of Low-Carbon Steel in a Nuclear Waste Salt Repository Environment. The several major areas of concern identified by peer review panelists are important to the credibility of the test design proposed in the memorandum and are to adequately addressed there. These areas of concern, along with specific recommendations to improve their treatment, are discussed in detail in Sec. 2 of this report. The twenty recommendations, which were abstracted from those discussions, are presented essentially in the order in which they are introduced in Sec. 2.

  16. Corrosion of mild steel, copper and brass in crude oil / seawater mixture

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi, S.; Sawant, S.S.; Wagh, A.B.

    Mild steel, copper and brass coupons were introduced in natural seawater containing varying amount of crude oil. Mild steel showed higher rate of corrosion in seawater containing oil and lower corrosion rate in natural as well as artificial seawater...

  17. Electrochemical synthesis and characterisation of hybrid materials polypyrrole/dodecatungstophosphate as protective agents against steel corrosion

    Science.gov (United States)

    Bonastre Cano, Jose Antonio

    The losses caused by the effect of the corrosion are of the order of 2-3,5% of the GDP of the developed countries or developing only in direct costs, losses in structures or products. This figure doubles by the indirect costs, losses of productivity or demands for delays. Beside the possible losses of human lives, any intent leaded to the decrease of the corrosion in rusty metals is a commendable objective from the point of view of the protection of the environment. Building industry employing reinforced concrete is able to project some structural elements (pillars, wrought, beam, etc.) in principle free of corrosion, assuring during many years the useful life of the work in service. However, the reinforced concrete would be' a perfect solution if the indefinite permanency of the passive state of the steel could be guaranteed. Indeed, although the steel is protected against corrosion due to basic pH which provides the cement, the severe action of saline media or the effect of CO2 can diminish this protection conditions beginning the corrosion in steel elements. Type-p doped conducting polymers, as polypyrrole, are firm candidates to protect carbon steel providing galvanic protection by stabilising the passive layer of Fe oxides initially grown. Doping the polymeric matrix with polioxometalates, concretely phosphotungstate PW12O403-, is a very interesting hypothesis due to their oxidising effect, improving the anodic protection by the hybrid material electrosynthesised on carbon steel substrate. First in the present work, a new method was developed by cyclic voltammetry in LiClO4 + acetonitrile medium in order to diminish the unavoidable oxidation of carbon steel when the electrosyntesis of the hybrid material polypyrrole/PW12O403- is carrying out. The beginning potential of polypyrrole polymerisation is about 0.8 V (vs. Ag/AgCl), a positive potential where oxidation of Fe substrate is high, not allowing the electrodeposition of the hybrid material. On the other

  18. Corrosion inhibitor mechanisms on reinforcing steel in Portland cement pastes

    Science.gov (United States)

    Martin, Farrel James

    2001-07-01

    The mechanisms of corrosion inhibitor interaction with reinforcing steel are investigated in the present work, with particular emphasis on effects associated with corrosion inhibitors admixed into Portland cement paste. The principal objective in reinforcing steel corrosion inhibition for Portland cement concrete is observed to be preservation of the naturally passive steel surface condition established by the alkaline environment. Introduction of chloride ions to the steel surface accelerates damage to the passive film. Excessive damage to the passive film leads to loss of passivity and a destabilization of conditions that facilitate repair of the passive film. Passive film preservation in presence of chloride ions is achieved either through stabilization of the passive film or by modification of the chemical environment near the steel surface. Availability of inhibitors to the steel surface and their tendency to stabilize passive film defects are observed to be of critical importance. Availability of admixed corrosion inhibitors to the passive film is affected by binding of inhibitors during cement paste hydration. It is determined that pore solution concentrations of inorganic admixed inhibitors tend to be lower than the admixed concentration, while pore solution concentrations of organic admixed inhibitors tend to be higher than the admixed concentration. A fundamental difference of inhibitor function is observed between film-forming and defect stabilizing corrosion inhibitors. Experiments are conducted using coupons of reinforcing steel that are exposed to environments simulating chloride-contaminated Portland cement concrete. A study of the steel/cement paste interface is also performed, and compounds forming at this interface are identified using X-Ray diffraction.

  19. 2-(4-吡啶基)苯并咪唑对碳钢的缓蚀行为%Corrosion Inhibition of 2-(4-pyridyl)-benzimidazole for Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    宋力; 张帆; 王海平; 余志荣; 唐永明

    2013-01-01

    采用失重法、极化曲线和电化学阻抗谱(EIS)等方法对2-(4-吡啶基)苯并咪唑(PBI)在盐酸体系中对碳钢的缓蚀行为进行了研究.结果表明,PBI对碳钢的腐蚀具有优良的抑制作用,其缓蚀效率随着缓蚀剂浓度的增大而升高,随着温度升高和盐酸浓度增大而下降.PBI能够自发吸附在碳钢表面,其吸附遵循Langmuir吸附等温式.%Weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the corrosion inhibition of 2-(4-pyridyl)-benzimidazole (PBI) for carbon steel in hydrochloric acid. It is found that the inhibition efficiency of PBI increases with the increase of the concentration of PBI, and decreases with the increase in the temperature and concentration of hydrochloric acid. PBI is adsorbed on the surface of carbon steel spontaneously, and the adsorption of PBI obeys Langmuir isotherm.

  20. Green rusts in electrochemical and microbially influenced corrosion of steel

    Science.gov (United States)

    Refait, Philippe; Abdelmoula, Mustapha; Génin, Jean-Marie R.; Sabot, René

    2006-06-01

    Green rusts have been identified as corrosion products of steel in neutral or slightly alkaline aqueous media. They were mainly observed in carbonated media, where the carbonated green rust is obtained, and in seawater, where the sulphated variety is obtained. In the first case, the formation of the carbonated green rust competes with that of siderite FeCO 3. It is favoured when the dissolution of iron is accompanied by the reduction of dissolved oxygen and the formation of OH - ions. In the second case, the formation of the sulphated variety competes with that of the chlorinated variety. The sulphated green rust is obtained since the layered structure of green rusts is characterised by a strong affinity for divalent anions. Finally, the oxidation of green rusts leads to the various constituents of 'common' rust. The conditions favouring the formation of a ferric compound keeping the crystal structure of green rusts is discussed. To cite this article: P. Refait et al., C. R. Geoscience 338 (2006).

  1. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Science.gov (United States)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  2. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Mahat, Nur Akma; Othman, Norinsan Kamil [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Sahrani, Fathul Karim [School of Environment and Natural Resources Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  3. Microbial Iron Respiration Can Protect Steel from Corrosion

    OpenAIRE

    Dubiel, M.; Hsu, C H; Chien, C. C.; Mansfeld, F.; Newman, D. K.

    2002-01-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes...

  4. The methodology of determining the corrosion of steel structures

    OpenAIRE

    S.D. Fedotov; A.V. Ulybin; N.N. Shabrov

    2013-01-01

    The problems of determining the corrosive wear of steel structures are considered. The results of applying ultrasonic method to determine the remaining profile of the structure are described. The main advantages and disadvantages of ultrasonic thickness meters comparing to mechanical devices are given. Low reliability of the method based on evaluating the thickness of the corrosion oxides is substantiated. The problems of determining the original section of the elements are outlined. The alg...

  5. 21 CFR 178.3300 - Corrosion inhibitors used for steel or tinplate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Corrosion inhibitors used for steel or tinplate... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3300 Corrosion inhibitors used for steel or tinplate. Corrosion inhibitors may be safely used for steel or tinplate intended for use in,...

  6. Corrosion behaviour of steels and CRA in sour gas environments

    Energy Technology Data Exchange (ETDEWEB)

    Lara, M. Alvarez de; Lancha, A.M.; Hernandez, F.; Gomez-Briceno, D. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Coca, P. [ELCOGAS, S.A., C.T. GICC Puertollano, Carretera de Calzada de Calatrava a Puertollano, km 27, 13500 Puertollano, Ciudad Real (Spain)

    2004-07-01

    The ELCOGAS power plant in Puertollano (Spain), with 335 MWe (ISO conditions), is an Integrated Gasification Combined Cycle (IGCC) plant built to demonstrate both the technical and economic feasibility of this alternative for clean generation of electricity from coal. IGCC technology is based on a coal gasification process, namely the conversion of coal into combustible gas, which is then subjected to an exhaustive cleaning process. The result is a synthetic gas, virtually free of pollutants that can be burned with a high efficiency in a combined cycle electricity-generating unit. Basically, the ELCOGAS plant consists of three islands jointly designed and integrated into the process: gasification island, air separation island and combined cycle island. In the gasification island, the gas from the gasifier is cleaned (de-dusted and washed) and desulfurized before being sent to the combined cycle island. The washing system consists of a Venturi scrubber with a separator where halogens and alkalis (NH{sub 3}, HCl, HF) are removed from the previously de-dusted gas by means of the wash water. The halogens and alkalis removed are then stripped from the wash water as stripped gas, which is a sour gas. The coal-gas coming from the separator proceeds to sulphur removal in a MDEA system and then, the clean gas (mainly CO, H{sub 2}) is sent to the combined cycle plant. As COS is a significant part of the sulphur containing gases in the coal gas, hydrolysis of the COS to H{sub 2}S takes place before the desulfurization stage, since MDEA is a selective amine for H{sub 2}S. There are many important areas related to materials corrosion within the gas cleaning system. In the ELCOGAS plant carbon steels, austenitic stainless steels and nickel based alloys, such as AISI 316Ti, AISI 904L and Hastelloy C276, are used in the Venturi, the water separator and the strippers. AISI 316Ti is used for the gas piping from the separator to the COS hydrolysis system. Laboratory tests to evaluate

  7. Crevice Corrosion of 321 Stainless Steel in Sodium Chloride Solutions

    International Nuclear Information System (INIS)

    Electrochemical techniques have been applied to study the crevice corrosion behaviour of stabilized 321 stainless steel in both 0.5, 1 and 2 M sodium chloride solutions at 25 and 80 degree . This type of stainless steel enjoys a good corrosion resistance especially in the heat affected zone (Haz) of welds. In this investigation the crevice corrosion of 321 stainless steel was studied in both bulk solution environments as well as in chloride solutions simulating those formed inside crevices. A metal-to-nonmetal crevice assembly, in which disc type specimens were faced to a PTFE crevice former, is used for bulk solution tests. Crevice-free specimens of solutions formed inside crevices (known as the critical crevice solutions, CCS). Cyclic potentiodynamic technique was used in evaluating the electrochemical corrosion performance of the alloy in bulk (0.5 and 1 M Nacl) environment. This revealed that both chloride ion concentration and temperature have a marked effect on the electrochemical parameters generally used for the evaluation of the crevice corrosion susceptibility. This included the corrosion potential. E corr. The passivity breakdown potential, Eb, and the protection potential, E p

  8. Microbial corrosion of high alloy steels in natural sea water

    International Nuclear Information System (INIS)

    The paper deals with an investigation into regularities of settlement and potential impact of microbial forms on the corrosion of 12Kh18N10T stainless steel depending on its microstructure. It is shown that inhomogeneity of the morphorological composition and quantitative distribution of microorganisms on the surface of alloyed steels is caused by the selectivity of bacterial cells settlement on the substrate structural elements. The corrosion destruction at microscopic level primarily starts in the zones of microorganism concentration. 19 refs.; 3 figs.; 2 tabs

  9. Corrosion of 316L stainless steels MAVL wastes containers

    International Nuclear Information System (INIS)

    The long lived and medium activity wastes are conditioned or could be re-conditioned in primary drums of 316L stainless steels. In the framework of wastes storage, these drums will be placed in concrete containers; each containers would contain one or more drums. This document recalls global information on the corrosion of stainless steels, analyzes specific conditions bond to the drums conditioning in concrete containers and the nature of the wastes, and details the consequences on the possible risks of external and internal corrosion of the drums. (A.L.B.)

  10. Stress corrosion cracking in high-temperature pure water and selective corrosion of nickel-bearing 13Cr martensitic stainless steels

    International Nuclear Information System (INIS)

    Mechanical and corrosion properties of 13 mass% Cr martensitic stainless steels containing 2∼5 mass% nickel were studied in various tempered states. Effects of metallurgical variable were examined by the following tests: (a) Conventional mechanical and metallurgical tests, (b) selective corrosion test in 0.88 kmol/m3 HNO3 at 293 K, and (c) slow strain rate stress corrosion cracking test in high purity water at 561 K. The following results are obtained: (1) The 13 % Cr martensitic stainless steels containing 3.5∼5 mass% nickel shows superior mechanical properties and machinability to those with 0∼2 mass% nickel. (2) However, a higher nickel addition lowers the Ac1 point to the actual tempering temperature range. This makes it difficult to choose the tempering condition which satisfies the mechanical properties needed for hydraulic machinery. (3) The susceptibility to selective corrosion increases with increasing nickel content and selective corrosion occurs in a wide temperature range and consequently the selection of the tempering temperature range is limited. (4) Active path type stress corrosion cracking behavior is closely related to the selective corrosion behavior. In conclusion, it is desirable to lower the nickel and carbon contents in the steel and to carefully select the tempering temperature yielding good mechanical properties without giving rise to susceptibility to selective corrosion. (author)

  11. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...... by replacement of the nitride ions with oxide ions in the molten carbonate electrolyte....

  12. Corrosion of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    M Sen; R Balasubramaniam; A V Ramesh Kumar

    2000-10-01

    The corrosion behaviour of two carbon-alloyed intermetallics of composition Fe–28.1Al–2.1C and Fe–27.5Al–3.7C has been studied and compared with that of binary intermetallics. Potentiodynamic polarization studies indicated that the intermetallics exhibited active–passive behaviour in an acidic solution of pH = 1, whereas they exhibited stable passivity in a buffer solution of pH 8.4. Corrosion rates were also obtained by immersion testing. The variation of corrosion rate as a function of time was similar for both the intermetallics. The variation in corrosion rate as a function of time has been explained based on the observed potentiodynamic polarization behaviour. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to galvanic corrosion, due to the presence of carbides.

  13. 碳钢表面等离子喷涂Cr2O3涂层及其耐腐蚀性能%Corrosion Resistance of Plasma Sprayed Cr2O3 Coating on Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    糜亮; 李水清; 丁毅; 马立群

    2011-01-01

    Cr2O3 coating on carbon steel was prepared by plasma spraying. The micro-structure and corrosion resistance of the spayed coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical tests. The results showed that the thickness of the coating was about 100μm and the phase composition was mainly Cr2O3. The corrosion rate of the Cr2O3 coating decreased dramaticlly after spraying Cr2O3.%利用等离子喷涂技术在45(XRD)等方法表征了涂层的微观形貌、表面元素组成以及相结构;测量了涂层的显微硬度;采用CS300P型电化学工作站检测了Cr2O3涂层的耐蚀性能.结果表明,在45#钢表面等离子喷涂CrzO3涂层的厚度约为100μm,相成分主要是Cr2O3;显微硬度值达到莫氏9级;喷涂Cr3Oa涂层后的试样腐蚀速率显著降低,耐蚀性能明显提高.

  14. Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy.

    Science.gov (United States)

    Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R

    2012-02-01

    Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements.

  15. Mitigating Localized Corrosion Using Thermally Sprayed Aluminum (TSA) Coatings on Welded 25% Cr Superduplex Stainless Steel

    Science.gov (United States)

    Paul, S.; Lu, Q.; Harvey, M. D. F.

    2015-04-01

    Thermally sprayed aluminum (TSA) coating has been increasingly used for the protection of carbon steel offshore structures, topside equipment, and flowlines/pipelines exposed to both marine atmospheres and seawater immersion conditions. In this paper, the effectiveness of TSA coatings in preventing localized corrosion, such as pitting and crevice corrosion of 25% Cr superduplex stainless steel (SDSS) in subsea applications, has been investigated. Welded 25% Cr SDSS (coated and uncoated) with and without defects, and surfaces coated with epoxy paint were also examined. Pitting and crevice corrosion tests, on welded 25% Cr SDSS specimens with and without TSA/epoxy coatings, were conducted in recirculated, aerated, and synthetic seawater at 90 °C for 90 days. The tests were carried out at both the free corrosion potentials and an applied cathodic potential of -1100 mV saturated calomel electrode. The acidity (pH) of the test solution was monitored daily and adjusted to between pH 7.5 and 8.1, using dilute HCl solution or dilute NaOH, depending on the pH of the solution measured during the test. The test results demonstrated that TSA prevented pitting and crevice corrosion of 25% Cr SDSS in artificial seawater at 90 °C, even when 10-mm-diameter coating defect exposing the underlying steel was present.

  16. Investigation of Eh, pH and corrosion potential of steel in anoxic groundwater

    International Nuclear Information System (INIS)

    SKB intend to dispose of the spent nuclear fuel produced by Sweden's eleven nuclear reactors by encapsulating it in corrosion-resistant copper canisters containing a cast iron or carbon steel insert. After encapsulation, the fuel will be transported to a geological repository, where the containers will be deposited at a depth of 500 to 700 m in granitic rock and surrounded by a bentonite clay backfill material. If, or when the copper corrosion shield fails, the iron insert will be in contact with oxygen-free water and hydrogen-producing, anaerobic corrosion will start. SKB have carried out modelling calculations of the oxidising power (Eh) of groundwater and wished to confirm the results by carrying out experimental measurements. The objective of the work described in this report was to demonstrate the feasibility of monitoring Eh, pH and corrosion potential in a cell where anaerobic corrosion of steel in artificial groundwater was occurring. To this end, gas cells similar to those used previously for anaerobic corrosion rate measurements were used as the basis for the design of an electrochemical cell. The cell incorporated electrodes to provide an in situ measurement of the redox potential, Eh, the pH and the corrosion potential of carbon steel. The main stages of the work were: Design of the electrochemical cell; Preparation of silver-silver chloride and calomel reference electrodes; Calibration of the reference electrodes and commercial glass pH electrodes against a standard hydrogen electrode; Assembly of the test cell under anoxic conditions; Monitoring the cell before and after the addition of steel wires to the test solution. Details of the design of the test cell and the experimental procedures used are described. Two cells were set up. The first employed a silver-silver chloride reference electrode, which was failed after approximately 400 hours, and the second cell therefore used a calomel reference electrode. The results of the electrode calibrations

  17. Investigation of Eh, pH and corrosion potential of steel in anoxic groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Peat, R.; Brabon, S.; Fennell, P.A.H.; Rance, A.P.; Smart, N.R. [AEA Technology (United Kingdom)

    2001-01-01

    SKB intend to dispose of the spent nuclear fuel produced by Sweden's eleven nuclear reactors by encapsulating it in corrosion-resistant copper canisters containing a cast iron or carbon steel insert. After encapsulation, the fuel will be transported to a geological repository, where the containers will be deposited at a depth of 500 to 700 m in granitic rock and surrounded by a bentonite clay backfill material. If, or when the copper corrosion shield fails, the iron insert will be in contact with oxygen-free water and hydrogen-producing, anaerobic corrosion will start. SKB have carried out modelling calculations of the oxidising power (Eh) of groundwater and wished to confirm the results by carrying out experimental measurements. The objective of the work described in this report was to demonstrate the feasibility of monitoring Eh, pH and corrosion potential in a cell where anaerobic corrosion of steel in artificial groundwater was occurring. To this end, gas cells similar to those used previously for anaerobic corrosion rate measurements were used as the basis for the design of an electrochemical cell. The cell incorporated electrodes to provide an in situ measurement of the redox potential, Eh, the pH and the corrosion potential of carbon steel. The main stages of the work were: Design of the electrochemical cell; Preparation of silver-silver chloride and calomel reference electrodes; Calibration of the reference electrodes and commercial glass pH electrodes against a standard hydrogen electrode; Assembly of the test cell under anoxic conditions; Monitoring the cell before and after the addition of steel wires to the test solution. Details of the design of the test cell and the experimental procedures used are described. Two cells were set up. The first employed a silver-silver chloride reference electrode, which was failed after approximately 400 hours, and the second cell therefore used a calomel reference electrode. The results of the electrode

  18. Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints

    Directory of Open Access Journals (Sweden)

    J. Łabanowski

    2007-01-01

    Full Text Available Purpose: The aim of the current study is to reveal the influence of welding conditions on structure and stresscorrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Butt joints between duplex 2205 and austenitic 316L steels were performedwith the use of submerged arc welding (SAW method. The plates 15 mm in thickness were welded with heatinput in the range of 1.15 – 3.2 kJ/mm using duplex steel filler metal. Microstructure examinations and corrosiontests were carried out. Slow strain rate tests (SSRT were performed in inert (glycerin and aggressive (boiling35% MgCl2 solution environments.Findings: It was shown that place of the lowest resistance to stress corrosion cracking is heat affected zone atduplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of that zoneconsisted of great amount of coarse ferrite grains and acicular austenite precipitates. High welding inputs do notdeteriorate stress corrosion cracking resistance of welds.Research limitations/implications: High welding heat inputs should enhance the precipitation process ofintermetallic phases in the HAZ. It is necessary to continue the research to determine the relationship betweenwelding parameters, obtained structures, and corrosion resistance of dissimilar stainless steels welded joints.Practical implications: Application of more productive joining process for dissimilar welds like submerged arcwelding instead of currently employed gas metal arc welding (GMAW method will be profitable in terms ofreduction the welding costs.Originality/value: The stress corrosion cracking resistance of dissimilar stainless steel welded joints wasdetermined. The zone of the weaker resistance to stress corrosion cracking was pointed out.

  19. Understanding and modeling of chemical transition of nitrate accompanied with corrosion of carbon steel under hyper-alkaline and high nitrate concentration conditions

    International Nuclear Information System (INIS)

    Chemical reactions between metal and nitrate ion have been studied to determine their roles in chemical conditioning of a radioactive waste disposal repository and its surrounding environment. Immersion tests and rest potential measurements under hyper-alkaline and high NaNO3 concentration conditions were conducted to elucidate and improve model predictions of chemical interactions between carbon steel and NO3- in highly concentrated solutions of nitrate salts. Potentiostatic electrolysis experiments in the concentrated solution with a carbon steel electrode, as the working electrode, were also conducted to determine the electrochemical rate equation for NO3- reduction to NO2-. Experimental results of potentiostatic electrolysis of the concentrated solutions showed that a linear electrochemical rate equation for NO3- reduction to NO2-, as used in the previous model, gave too high a rate under the conditions of high NaNO3 concentration (≥1 mol dm-3). To ameliorate this effect, a non-linear equation was derived assuming a Langmuir type adsorption process of NO3- as a precursor process of discharge, and the parameter for the equation was determined by curve fitting using the data acquired under the conditions of potential -0.85 V vs. SHE and pH 12.5. The equation was incorporated in the model, and was used to analyze the results of ampul tests and rest potential measurements. The modified model can estimate the tendency of time dependent variation of chemical species and of rest potentials in the highly concentrated solution of NaNO3. (author)

  20. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.