WorldWideScience

Sample records for carbon source utilization

  1. UTILIZATION OF PINEAPPLE WASTE AS CARBON SOURCE

    OpenAIRE

    Abdullah Moch Busairi

    2012-01-01

    The liquid pineapple waste contains mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for organic acid fermentation.  The objective of this work is to evaluate the use of pineapple waste as substrate for lactic acid fermentation under variables of aerobic, anaerobic condition and pH controlling. Initial results showed that the liquid pineapple waste can be used as carbon source for lactic acid fermentation using Lactobacillus del...

  2. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.

    Science.gov (United States)

    Gupta, Prabuddha L; Choi, Hee-Jeong; Pawar, Radheshyam R; Jung, Sokhee P; Lee, Seung-Mok

    2016-12-15

    The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil.

  3. MECHANISM OF UTILIZATION OF CARBON SOURCES BY FLAGELLATED PROTOZOA.

    Science.gov (United States)

    The transport of succinate into Euglena gracilis var bacillaris (streptomycin bleached) was investigated with the use of structural analogs and...Studies were begun on identification of the first products formed after succinate uptake. Coupled with this work was the finding that Euglena fixes...C02 may be intimately connected with succinate utilization by Euglena . With the finding of significant heterotrophic C02 fixation by Euglena (bleached

  4. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species.

    Science.gov (United States)

    Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria

    2014-07-01

    Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hannaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima, Schwanniomyces occidentalis and Wickerhamomyces ciferrii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals.

  5. Glyphosate Utilization as the Source of Carbon: Isolation and Identification of new Bacteria

    Directory of Open Access Journals (Sweden)

    M. Mohsen Nourouzi

    2011-01-01

    Full Text Available Mixed bacteria from oil palm plantation soil (OPS were isolated to investigate their ability to utilize glyphosate as carbon source. Results showed that approximately all of the glyphosate was converted to aminomethyl-phosphonic acid (AMPA (99.5%. It is worthy to note that mixed bacteria were able to degrade only 2% of AMPA to further metabolites. Two bacterial strains i.e. Stenotrophomonas maltophilia and Providencia alcalifaciens were obtained from enrichment culture. Bacterial isolates were cultured individually on glyphosate as a sole carbon source. It was observed that both isolates were able to convert glyphosate to AMPA.

  6. Effect of additional carbon source on biodegradation of linear alkylbenzene sulfonate by las-utilizing bacteria

    Directory of Open Access Journals (Sweden)

    Kehinde I. Temitope Eniola

    2011-08-01

    Full Text Available Aerobic biodegradation of linear alkylbenzene sulfonate (LAS by LAS-utilizing bacteria (LUB in the presence of other sources of carbon (glucose and soluble starch was examined. Biodegradation of LAS was monitored as primary degradation in terms of half-life (t½ of the surfactant. Biodegradation of LAS by the individual LUB was slower in the presence of Glucose. Biodegradation of the surfactant by the various consortia of LUB was slower in the presence of the carbon sources: t½ increased to 3 days. The rates of biodegradation by the consortia can be ranked as: four-membered (t½=9 days > three-membered (t½=9 to 13 days > two-membered consortia (t½=10 to 15 days. Generally, degradation in the presence of the carbon sources was faster with the consortia than the individual species. Degradation of the surfactant by the LUB was generally fastest in the absence of additional carbon sources. The possible role of additional carbon sources in persistence of surfactant in water bodies and the application of the observation in management of LAS-containing-effluent is suggested.

  7. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source.

    Science.gov (United States)

    Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A

    2015-09-28

    Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.

  8. The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans.

    Science.gov (United States)

    Guan, Guobo; Wang, Haitao; Liang, Weihong; Cao, Chengjun; Tao, Li; Naseem, Shamoon; Konopka, James B; Wang, Yue; Huang, Guanghua

    2015-08-01

    The fungus Candida albicans is both a pathogen and a commensal in humans. The ability to utilize different carbon sources available in diverse host niches is vital for both commensalism and pathogenicity. N-acetylglucosamine (GlcNAc) is an important signaling molecule as well as a carbon source in C. albicans. Here, we report the discovery of a novel gene MCU1 essential for GlcNAc utilization. Mcu1 is located in mitochondria and associated with multiple energy- and metabolism-related proteins including Por1, Atp1, Pet9, and Mdh1. Consistently, inactivating Por1 impaired GlcNAc utilization as well. Deletion of MCU1 also caused defects in utilizing non-fermentable carbon sources and amino acids. Furthermore, MCU1 is required for filamentation in several inducing conditions and virulence in a mouse systemic infection model. We also deleted TGL99 and GUP1, two genes adjacent to MCU1, and found that the gup1/gup1 mutant exhibited mild defects in the utilization of several carbon sources including GlcNAc, maltose, galactose, amino acids, and ethanol. Our results indicate that MCU1 exists in a cluster of genes involved in the metabolism of carbon sources. Given its importance in metabolism and lack of a homolog in humans, Mcu1 could be a potential target for developing antifungal agents.

  9. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source.

    Science.gov (United States)

    Nakajima-Kambe, T; Onuma, F; Kimpara, N; Nakahara, T

    1995-06-01

    Various soil samples were screened for the presence of microorganisms which have the ability to degrade polyurethane compounds. Two strains with good polyurethane degrading activity were isolated. The more active strain was tentatively identified as Comamonas acidovorans. This strain could utilize polyester-type polyurethanes but not the polyether-type polyurethanes as sole carbon and nitrogen sources. Adipic acid and diethylene glycol were probably the main degradation products when polyurethane was supplied as a sole carbon and nitrogen source. When ammonium nitrate was used as nitrogen source, only diethylene glycol was detected after growth on polyurethane.

  10. Yeast species utilizing uric acid, adenine, n-alkylamines or diamines as sole source of carbon and energy.

    Science.gov (United States)

    Middelhoven, W J; De Kievit, H; Biesbroek, A L

    1985-01-01

    Yeast strains utilizing uric acid, adenine, monoamines or diamines as sole source of carbon and energy were isolated from several soil samples by the enrichment culture method. The most common species was Trichosporon cutaneum. Strains of Candida catenulata, C. famata, C. parapsilosis, C. rugosa, Cryptococcus laurentii, Stephanoascus ciferrii and Tr. adeninovorans were also isolated. All strains utilizing uric acid as sole carbon source utilized some primary n-alkyl-l-amines, hydroxyamines or diamines as well. The ascomycetous yeast strains showing these characteristics all belonged to species known to assimilate hydrocarbons. Type strains of hydrocarbon-positive yeast species which were not found in the enrichment cultures generally assimilated putrescine, some type strains also butylamine or pentylamine, but none assimilated uric acid. Methanol-positive species were not isolated. Type strains of methanol-positive and of hydrocarbon-negative species did not assimilate uric acid, butylamine or putrescine. Assimilation of putrescine as sole source of carbon and energy may be a valuable diagnostic criterion in yeast taxonomy.

  11. Functional diversity of the microbial community in healthy subjects and periodontitis patients based on sole carbon source utilization.

    Directory of Open Access Journals (Sweden)

    Yifei Zhang

    Full Text Available Chronic periodontitis is one of the most common forms of biofilm-induced diseases. Most of the recent studies were focus on the dental plaque microbial diversity and microbiomes. However, analyzing bacterial diversity at the taxonomic level alone limits deeper comprehension of the ecological relevance of the community. In this study, we compared the metabolic functional diversity of the microbial community in healthy subjects and periodontitis patients in a creative way--to assess the sole carbon source utilization using Biolog assay, which was first applied on oral micro-ecology assessment. Pattern analyses of 95-sole carbon sources catabolism provide a community-level phenotypic profile of the microbial community from different habitats. We found that the microbial community in the periodontitis group had greater metabolic activity compared to the microbial community in the healthy group. Differences in the metabolism of specific carbohydrates (e.g. β-methyl-D-glucoside, stachyose, maltose, D-mannose, β-methyl-D-glucoside and pyruvic acid were observed between the healthy and periodontitis groups. Subjects from the healthy and periodontitis groups could be well distinguished by cluster and principle component analyses according to the utilization of discriminate carbon sources. Our results indicate significant difference in microbial functional diversity between healthy subjects and periodontitis patients. We also found Biolog technology is effective to further our understanding of community structure as a composite of functional abilities, and it enables the identification of ecologically relevant functional differences among oral microbial communities.

  12. Utilization of glycerin byproduct derived from soybean oil biodiesel as a carbon source for heterologous protein production in Pichia pastoris.

    Science.gov (United States)

    Anastácio, G S; Santos, K O; Suarez, P A Z; Torres, F A G; De Marco, J L; Parachin, N S

    2014-01-01

    Crude glycerol, also known as glycerin, is the main byproduct of the biodiesel industry. It has been estimated that up to 40,000 tons of glycerin will be produced each year by 2020. This study evaluated the value-added use of crude glycerol derived from soybean biodiesel preparation as a carbon source for heterologous protein production using the yeast Pichia pastoris. Eleven glycerin samples were obtained by methanolysis of soybean oil using different acids or bases as catalysts. Cell growth experiments showed that crude glycerol containing either potassium or sodium hydroxide resulted in 1.5-2 times higher final cell densities when compared to glycerol P.A. Finally, crude glycerol containing sodium hydroxide was successfully utilized for constitutive heterologous α-amylase production in P. pastoris. This study demonstrated that crude glycerol without any purification steps may be directly used as carbon source for protein production in P. pastoris.

  13. Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source

    Energy Technology Data Exchange (ETDEWEB)

    Krupiński, Mariusz; Janicki, Tomasz [Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Łódź (Poland); Pałecz, Bartłomiej [Department of Physical Chemistry, University of Lodz, Pomorska 165, 90-236 Łódź (Poland); Długoński, Jerzy, E-mail: jdlugo@biol.uni.lodz.pl [Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Łódź (Poland)

    2014-09-15

    Highlights: • A. versicolor is able to degrade 4-n-NP as the sole source of carbon and energy. • 4-n-NP removal by A. versicolor was accompanied by the formation of metabolites. • Radioactive experiments show complete 4-n-NP mineralization by A. versicolor. • 4-n-NP initiates heat production in the A. versicolor spores. - Abstract: 4-n-Nonylphenol (4-n-NP) is an environmental pollutant with endocrine-disrupting activities that is formed during the degradation of nonylphenol polyethoxylates, which are widely used as surfactants. Utilization of 4-n-NP by the filamentous fungus Aspergillus versicolor as the sole carbon and energy source was investigated. By means of gas chromatography–mass spectrometry, we showed that in the absence of any carbon source other than 4-n-NP in the medium, A. versicolor completely removed the xenobiotic (100 mg L{sup −1}) after 3 d of cultivation. Moreover, mass spectrometric analysis of intracellular extracts led to the identification of eight intermediates. The mineralization of the xenobiotic in cultures supplemented with 4-n-NP [ring-{sup 14}C(U)] as a growth substrate was also assessed. After 3 d of incubation, approximately 50% of the initially applied radioactivity was recovered in the form of {sup 14}CO{sub 2}, proving that this xenobiotic was completely metabolized and utilized by A. versicolor as a carbon source. Based on microscopic analysis, A. versicolor is capable of germinating spores under such conditions. To confirm these observations, a microcalorimetric method was used. The results show that even the highest amount of 4-n-NP initiates heat production in the fungal samples, proving that metabolic processes were affected by the use of 4-n-NP as an energetic substrate.

  14. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    Science.gov (United States)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  15. Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources.

    Science.gov (United States)

    Luthfi, Abdullah Amru Indera; Manaf, Shareena Fairuz Abdul; Illias, Rosli Md; Harun, Shuhaida; Mohammad, Abdul Wahab; Jahim, Jamaliah Md

    2017-03-09

    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.

  16. [Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil].

    Science.gov (United States)

    Sun, Feng-xia; Zhang, Wei-hua; Xu, Ming-gang; Zhang, Wen-ju; Li, Zhao-qiang; Zhang, Jing-ye

    2010-11-01

    In order to explore the effects of long-term fertilization on the microbiological characters of red soil, soil samples were collected from a 19-year long-term experimental field in Qiyang of Hunan, with their microbial biomass carbon (MBC) and nitrogen (MBN) and microbial utilization ratio of carbon sources analyzed. The results showed that after 19-year fertilization, the soil MBC and MBN under the application of organic manure and of organic manure plus inorganic fertilizers were 231 and 81 mg x kg(-1) soil, and 148 and 73 mg x kg(-1) soil, respectively, being significantly higher than those under non-fertilization, inorganic fertilization, and inorganic fertilization plus straw incorporation. The ratio of soil MBN to total N under the application of organic manure and of organic manure plus inorganic fertilizers was averagely 6.0%, significantly higher than that under non-fertilization and inorganic fertilization. Biolog-ECO analysis showed that the average well color development (AWCD) value was in the order of applying organic manure plus inorganic fertilizers = applying organic manure > non-fertilization > inorganic fertilization = inorganic fertilization plus straw incorporation. Under the application of organic manure or of organic manure plus inorganic fertilizers, the microbial utilization rate of carbon sources, including carbohydrates, carboxylic acids, amino acids, polymers, phenols, and amines increased; while under inorganic fertilization plus straw incorporation, the utilization rate of polymers was the highest, and that of carbohydrates was the lowest. Our results suggested that long-term application of organic manure could increase the red soil MBC, MBN, and microbial utilization rate of carbon sources, improve soil fertility, and maintain a better crop productivity.

  17. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorous lyase

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Zechel, David L; Jochimsen, Bjarne

    2014-01-01

    After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a l...

  18. The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source

    NARCIS (Netherlands)

    Leemans, R; vanAmstel, A; Battjes, C; Kreileman, E; Toet, S

    1996-01-01

    The use of modern biomass for energy generation has been considered in many studies as a possible measure for reducing or stabilizing global carbon dioxide (CO2) emissions. In this paper we assess the impacts of large-scale global utilization of biomass on regional and grid scale land cover, greenho

  19. 大肠杆菌碳分解代谢抑制及混合C源共利用的研究进展%Carbon catabolite repression and co-utilization of mixed carbon sources in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    张旭; 李宜奎; 祁庆生

    2014-01-01

    The recent development in carbon catabolite repression( CCR) and its effect on carbon resource utilization are summarized.Meanwhile, the co-utilization of the mixed carbon sources in engineered Escherichia coli are analyzed and prospected.%总结了大肠杆菌中C源分解代谢( carbon catabolite repression,CCR)现象的原理及特点,综述并分析了如何通过对宿主菌进行基因工程改造以解除碳代谢抑制,以实现大肠杆菌利用多种C源。

  20. Aspects of carbon dioxide utilization

    Energy Technology Data Exchange (ETDEWEB)

    Omae, Iwao [Omae Research Laboratories, 335-23 Mizuno, Sayama, Saitama 350-1317 (Japan)

    2006-06-30

    Carbon dioxide reacts with hydrogen, alcohols, acetals, epoxides, amines, carbon-carbon unsaturated compounds, etc. in supercritical carbon dioxide or in other solvents in the presence of metal compounds as catalysts. The products of these reactions are formic acid, formic acid esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, polycarbonate (bisphenol-based engineering polymer), aliphatic polycarbonates, etc. Especially, the productions of formic acid, formic acid methyl ester and dimethylformamide with a ruthenium catalyst; dimethyl carbonate and urethanes with a dialkyltin catalyst; 2-pyrone with a nickel-phosphine catalyst; diphenyl carbonate with a lead phenoxide catalyst; the alternating copolymerization of carbon dioxide and epoxides with a zinc catalyst has attracted attentions as the industrial utilizations of carbon dioxide. The further development of these production processes is expected. (author)

  1. [Profiles of the utilization of 20 amino acids as the only source of nitrogen and carbon in bacteria of the genera Klebsiella, Enterobacter, Serratia, Escherichia].

    Science.gov (United States)

    Sivolodskiĭ, E P

    2005-01-01

    The profiles of the utilization of 20 protein amino acids in 118 Klebsiella pneumoniae sub- sp. pneumoniae, K. oxytoca, K. planticola, K. mobilis, Enterobacter cloacae, Serratia marscescens, S. liquefaciens, Escherichia coli strains isolated from clinical material were studied. The utilization of amino acids was determined on minimal saline agar containing amino acid as the only source of nitrogen and carbon; the results were evaluated after 72-hour incubation at 37 degrees C. 17 profiles of amino-acid utilization were thus determined, most of them genus-specific in enterobacteria: Klebsiella (profiles No. 1--6, 9, 10), Enterobacter (No. 11--13), Serratia (No. 14--16), Escherichia (No. 17). The full coincidence of amino-acid utilization profiles in bacteria of K. mobilis (No. 1, 6) and K. pneumoniae subsp. pneumoniae with out of such profiles in bacteria of the genera Enterobacter, Serratia, Escherichia was established, which confirmed that K. mobilis (formerly Enterobacter aerogenes) belonged to the genus Klebsiella.

  2. L-Arogenate is a chemoattractant which can be utilized as the sole source of carbon and nitrogen by Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R.S.; Song, Jian; Gu, Wei; Jensen, R.A. [Univ. of Florida, Gainesville, FL (United States)

    1997-02-01

    L-Arogenate is a commonplace amino acid in nature in consideration of its role as a ubiquitous precursor of L-phenylalanine and/or L-tyrosine. However, the questions of whether it serves as a chemoattractant molecule and whether it can serve as a substrate for catabolism have never been studied. We found that Pseudomonas aeruginosa recognizes L-arogenate as a chemoattractant molecule which can be utilized as a source of both carbon and nitrogen. Mutants lacking expression of either cyclohexadienyl dehydratase or phenylalanine hydroxylase exhibited highly reduced growth rates when utilizing L-arogenate as a nitrogen source. Utilization of L-arogenate as a source of either carbon or nitrogen was dependent upon {sub S}{sup 54}, as revealed by the use of an rpoN null mutant. The evidence suggests that catabolism of L-arogenate proceeds via alternative pathways which converge at 4-hydroxyphenylpyruvate. In one pathway, prephenate formed in the periplasm by deamination of L-arogenate is converted to 4-hydroxyphenylpyruvate by cyclohexadienyl dehydrogenase. The second route depends upon the sequential action of periplasmic cyclohexadienyl dehydratase, phenylalanine hydroxylase, and aromatic aminotransferase. 32 refs., 5 figs., 4 tabs.

  3. 污水处理厂内碳源利用的研究%Experiment and Research of Carbon Source Utilization of Sewage Treatment Plant

    Institute of Scientific and Technical Information of China (English)

    肖思海; 汪莉

    2014-01-01

    利用剩余污泥在厌氧水解酸化阶段产生的高浓度有机酸作为系统内碳源,在解决进水碳源不足的同时实现污泥的减量,系统内碳源的使用也实现了剩余污泥的资源化利用。确定了碱解的最佳pH值为10、碱解最佳的发酵时间为3 d时,同时保证剩余污泥具有较高的污泥浓度时得到的水解酸化液体中富含的VFA较多,完全可以替代外加碳源。结合荆马河污水处理厂运行实践,分析剩余污泥碱解发酵上清液作为污水厂内碳源的可行性。%Sludge containing high concentrations of organic acid production in the anaerobic hydrolysis acidification phase was used as the carbon source in the system to alleviate the lack of carbon source in the inlet water and reduction of sludge. The use of carbon source in the system had also realized the resource utilization for residual sludge. When the alkaline pH solution was 10, fermentation time was 3 d, meanwhile ensuring a high concentration of the residual sludge, the concentration of VFA was higher in the hydrolysis acidification liquid, which was a sufficient substitute for the external carbon source. Combined with the operation practice of Jingma River Sewage Treatment Plant, the feasibility of using residual sludge alkaline fermentation supernatant as carbon sources in sewage plant was analyzed.

  4. Analysis of the metabolic utilization of carbon sources and potential functional diversity of the bacterial community in lab-scale horizontal subsurface-flow constructed wetlands.

    Science.gov (United States)

    Deng, Huanhuan; Ge, Liyun; Xu, Tan; Zhang, Minghua; Wang, Xuedong; Zhang, Yalei; Peng, Hong

    2011-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands. To improve the performance of constructed wetlands, it is very important to know the metabolic properties and functional diversity of the microbial communities. The purpose of this study is to analyze the metabolic properties and functional diversity of the microbial community in a horizontal subsurface-flow constructed wetland (CW) in a laboratory study through the sole-carbon-source utilization profiles using Biolog-ECO microplates. The technique has advantages over traditional cell culture techniques, such as molecular-level techniques-RNA amplification, which are time-consuming, expensive, and only applicable to the small number of species that may be cultured. This CW was designed to treat rural eutrophic water in China, using the plant L. This study showed that the metabolic activities of upper front substrate microorganisms (UF) were greater than those of the lower back substrate microorganisms (LB) in the CW. Integrated areas under average well color development (AWCD) curves of substrate microorganisms in the UF were 131.9, 4.8, and 99.3% higher than in the lower front part (LF), the upper back part (UB), and the LB part of the CW, respectively. Principal components analysis showed significant differences in both community structure and metabolic utilization of carbon sources between substrate microorganisms from different sampling sites. Carbon source utilization of polymers, carbohydrates, carboxylic acids, and amino acids was higher in UF than in LF, but that of amines and phenolic compounds was very similar in UF and LF. The richness, evenness, and diversity of upper substrate microbial communities were significantly higher than those of lower substrate. The LF substrate microbial communities had lower evenness than the other sampling plots, and the lowest richness of substrate microbial community was found in the LB part of the CW.

  5. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    Science.gov (United States)

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.

  6. Isolation and characterization of a Sinorhizobium fredii mutant that cannot utilize proline as the sole carbon and nitrogen source

    Institute of Scientific and Technical Information of China (English)

    HUANG Sheng; BAI Xueliang; MA Qingsheng; TANG Xianlai; WU Bo

    2004-01-01

    Sinorhizobium fredii strain HN01 can use proline as the sole carbon and nitrogen source. A mutant strain GXHN100 unable to catabolize proline was screened from 6000 Tn5gusA5 random insertional mutants of S.fredii strain HN01. Sequencing analysis showed that an open reading frame, named pmrA (proline metabolic relative), was inserted by the Tn5gusA5. A positive clone, named pGXHN100 which containing 3.3kb foreign DNA fragment of S.fredii strain HN01, was isolated from a partial gene library of S.fredii HN01 by colony in situ hybridization. Sequence analysis showed that pGXHN100 contained the entire pmrA gene. The 3.3kb DNA fragment of pGXHN100 was cloned into a broad-host-range cosmid vector pLAFR3 to form plasmid pGXHN200 which was subsequently introduced into GXHN100 to form a complemented strain GXHN200. Plant test showed that GXHN100 was effective and no obvious changes in nitrogenase activity comparing with parental strain. But GXHN100 nodulated 2 days later on soybean and its nodulation efficiency and competitiveness were decreased. The complemented strain GXHN200 restored the nodulation efficiency and competitiveness of GXHN100 to the wild type.

  7. Methanol Expression Regulator 1 (Mxr1p) Is Essential for the Utilization of Amino Acids as the Sole Source of Carbon by the Methylotrophic Yeast, Pichia pastoris.

    Science.gov (United States)

    Sahu, Umakant; Rangarajan, Pundi N

    2016-09-23

    Unlike Saccharomyces cerevisiae, the methylotrophic yeast Pichia pastoris can assimilate amino acids as the sole source of carbon and nitrogen. It can grow in media containing yeast extract and peptone (YP), yeast nitrogen base (YNB) + glutamate (YNB + Glu), or YNB + aspartate (YNB + Asp). Methanol expression regulator 1 (Mxr1p), a zinc finger transcription factor, is essential for growth in these media. Mxr1p regulates the expression of several genes involved in the utilization of amino acids as the sole source of carbon and nitrogen. These include the following: (i) GDH2 encoding NAD-dependent glutamate dehydrogenase; (ii) AAT1 and AAT2 encoding mitochondrial and cytosolic aspartate aminotransferases, respectively; (iii) MDH1 and MDH2 encoding mitochondrial and cytosolic malate dehydrogenases, respectively; and (iv) GLN1 encoding glutamine synthetase. Synthesis of all these enzymes is regulated by Mxr1p at the level of transcription except GDH2, whose synthesis is regulated at the level of translation. Mxr1p activates the transcription of AAT1, AAT2, and GLN1 in cells cultured in YP as well as in YNB + Glu media, whereas transcription of MDH1 and MDH2 is activated in cells cultured in YNB + Glu but not in YP. A truncated Mxr1p composed of 400 N-terminal amino acids activates transcription of target genes in cells cultured in YP but not in YNB + Glu. Mxr1p binds to Mxr1p response elements present in the promoters of AAT2, MDH2, and GLN1 We conclude that Mxr1p is essential for utilization of amino acids as the sole source of carbon and nitrogen, and it is a global regulator of multiple metabolic pathways in P. pastoris.

  8. A comparison of sole carbon source utilization patterns and phospholipid fatty acid profiles to detect changes in the root microflora of hydroponically grown crops.

    Science.gov (United States)

    Khalil, S; Bååth, E; Alsanius, B; Englund, J E; Sundin, P; Gertsson, U E; Jensén, P

    2001-04-01

    Sole carbon source utilization (SCSU) patterns and phospholipid fatty acid (PLFA) profiles were compared with respect to their potential to characterize root-inhabiting microbial communities of hydroponically grown crops. Sweet pepper (Capsicum annum cv. Evident), lettuce (Lactuca sativa cv. Grand Rapids), and four different cultivars of tomato (Lycopersicon esculentum cvs. Gitana, Armada, Aromata, and Elin) were grown in 1-L black plastic beakers placed in a cultivation chamber with artificial light. In addition to the harvest of the plants after 6 weeks, plants of one tomato cultivar, cv. Gitana, were also harvested after 4 and 8 weeks. The cultivation in this study was performed twice. Principal component analysis was used to analyze the data. Both characterization methods had the ability to discriminate between the root microflora of different plant species, cultivars, and one tomato cultivar at different ages. Differences in both SCSU patterns and PLFA profiles were larger between plant species than between cultivars, but for both methods the largest differences were between the two cultivations. Still, the differences between treatments were always due to differences in the same PLFAs in both cultivations. This was not the case for the SCSU patterns when different plant ages were studied. Furthermore, PLFA profiles showed less variation between replicates than did SCSU patterns. This larger variation observed among the SCSU data indicates that PLFA may be more useful to detect changes in the root microflora of hydroponically grown crops than the SCSU technique.

  9. Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1.

    Science.gov (United States)

    Denger, Karin; Smits, Theo H M; Cook, Alasdair M

    2006-11-01

    A degradative pathway for taurine (2-aminoethanesulfonate) in Rhodobacter sphaeroides 2.4.1 was proposed by Brüggemann et al. (2004) (Microbiology 150, 805-816) on the basis of a partial genome sequence. In the present study, R. sphaeroides 2.4.1 was found to grow exponentially with taurine as the sole source of carbon and energy for growth. When taurine was the sole source of nitrogen in succinate-salts medium, the taurine was rapidly degraded, and most of the organic nitrogen was excreted as the ammonium ion, which was then utilized for growth. Most of the enzymes involved in dissimilation, taurine dehydrogenase (TDH), sulfoacetaldehyde acetyltransferase (Xsc) and phosphate acetyltransferase (Pta), were found to be inducible, and evidence for transcription of the corresponding genes (tauXY, xsc and pta), as well as of tauKLM, encoding the postulated TRAP transporter for taurine, and of tauZ, encoding the sulfate exporter, was obtained by reverse-transcription PCR. An additional branch of the pathway, observed by Novak et al. (2004) (Microbiology 150, 1881-1891) in R. sphaeroides TAU3, involves taurine : pyruvate aminotransferase (Tpa) and a presumptive ABC transporter (NsbABC). No evidence for a significant role of this pathway, or of the corresponding alanine dehydrogenase (Ald), was obtained for R. sphaeroides 2.4.1. The anaplerotic pathway needed under these conditions in R. sphaeroides 2.4.1 seems to involve malyl-CoA lyase, which was synthesized inducibly, and not malate synthase (GlcB), whose presumed gene was not transcribed under these conditions.

  10. A mutation in the COX5 gene of the yeast Scheffersomyces stipitis alters utilization of amino acids as carbon source, ethanol formation and activity of cyanide insensitive respiration.

    Science.gov (United States)

    Freese, Stefan; Passoth, Volkmar; Klinner, Ulrich

    2011-04-01

    Scheffersomyces stipitis PJH was mutagenized by random integrative mutagenesis and the integrants were screened for lacking the ability to grow with glutamate as sole carbon source. One of the two isolated mutants was damaged in the COX5 gene, which encodes a subunit of the cytochrome c oxidase. BLAST searches in the genome of Sc. stipitis revealed that only one singular COX5 gene exists in Sc. stipitis, in contrast to Saccharomyces cerevisiae, where two homologous genes are present. Mutant cells had lost the ability to grow with the amino acids glutamate, proline or aspartate and other non-fermentable carbon sources, such as acetic acid and ethanol, as sole carbon sources. Biomass formation of the mutant cells in medium containing glucose or xylose as carbon source was lower compared with the wild-type cells. However, yields and specific ethanol formation of the mutant were much higher, especially under conditions of higher aeration. The mutant cells lacked both cytochrome c oxidase activity and cyanide-sensitive respiration, whereas ADH and PDC activities were distinctly enhanced. SHAM-sensitive respiration was obviously essential for the fermentative metabolism, because SHAM completely abolished growth of the mutant cells with both glucose or xylose as carbon source.

  11. Proteinase production in Pseudomonas fluorescens ON2 is affected by carbon sources and allows surface-attached but not planktonic cells to utilize protein for growth in lake water

    DEFF Research Database (Denmark)

    Nicolaisen, Mette Haubjerg; Worm, Jakob; Jørgensen, Niels O. G.;

    2012-01-01

    Proteins may be an important carbon and nitrogen source to bacteria in aquatic habitats, yet knowledge on the actual utilization of this substrate by proteolytic bacteria is scarce. In the present study, Pseudomonas fluorescens ON2 produced an alkaline proteinase (AprX) during growth...... and there was no evidence for cell density-regulated or starvation-induced proteinase production. Proteinase was produced in the absence of an organic nitrogen source, and citrate had a negative while glucose had a positive effect on the production. Hence P. fluorescens ON2 seems to exploit protein sources by expressing...

  12. A Novel Promising Strain of Trichoderma evansii (WF-3 for Extracellular α-Galactosidase Production by Utilizing Different Carbon Sources under Optimized Culture Conditions

    Directory of Open Access Journals (Sweden)

    Aishwarya Chauhan

    2014-01-01

    Full Text Available A potential fungal strain of Trichoderma sp. (WF-3 was isolated and selected for the production of α-galactosidase. Optimum conditions for mycelial growth and enzyme induction were determined. Basal media selected for the growth of fungal isolate containing different carbon sources like guar gum (GG, soya bean meal (SM, and wheat straw (WS and combinations of these carbon substrates with basic sugars like galactose and sucrose were used to monitor their effects on α-galactosidase production. The results of this study indicated that galactose and sucrose enhanced the enzyme activity in guar gum (GG and wheat straw (WS. Maximum α-galactosidase production (213.63 UmL−1 was obtained when the basic medium containing GG is supplemented with galactose (5 mg/mL. However, the presence of galactose and sucrose alone in the growth media shows no effect. Soya meal alone was able to support T. evansii to produce maximum enzyme activity (170.36 UmL−1. The incubation time, temperature, and pH for the maximum enzyme synthesis were found to be 120 h (5 days, 28°C, and 4.5–5.5, respectively. All the carbon sources tested exhibited maximum enzyme production at 10 mg/mL concentration. Among the metal ions tested, Hg was found to be the strongest inhibitor of the enzyme. Among the chelators, EDTA acted as stronger inhibitor than succinic acid.

  13. Prospects for the utilization of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E.; Tommasi, I. (Universita degli Studi, Bari (Italy). Dipatimento di Chimica)

    1992-01-01

    The paper discusses the recovery and fixation of CO{sub 2}. Industrial applications of CO{sub 2} can be divided as follows:- non-synthetic industrial uses such as waste water treatment and food additives; utilization in the synthesis of organic chemicals; and the synthesis of intermediates and specialty chemicals such as urea and pharmaceuticals. The evaluation criteria for CO{sub 2} utilization pathways are:- the added value of the products; the energy requirements of the product; the rate of CO{sub 2} conversion; and the lifetime of the product. The conversion of CO{sub 2} into fuels raises three main questions: the amount of CO{sub 2} used, the source of energy from CO{sub 2} reduction and the rate of conversion of CO{sub 2}. The fixation of CO{sub 2} in organic materials such as carbonates may be of great relevance to the permanent fixation of CO{sub 2}. 5 refs., 3 figs., 6 tabs.

  14. The Efficient Utilization of Open Source Information

    Energy Technology Data Exchange (ETDEWEB)

    Baty, Samuel R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Intelligence and Systems Analysis

    2016-08-11

    These are a set of slides on the efficient utilization of open source information. Open source information consists of a vast set of information from a variety of sources. Not only does the quantity of open source information pose a problem, the quality of such information can hinder efforts. To show this, two case studies are mentioned: Iran and North Korea, in order to see how open source information can be utilized. The huge breadth and depth of open source information can complicate an analysis, especially because open information has no guarantee of accuracy. Open source information can provide key insights either directly or indirectly: looking at supporting factors (flow of scientists, products and waste from mines, government budgets, etc.); direct factors (statements, tests, deployments). Fundamentally, it is the independent verification of information that allows for a more complete picture to be formed. Overlapping sources allow for more precise bounds on times, weights, temperatures, yields or other issues of interest in order to determine capability. Ultimately, a "good" answer almost never comes from an individual, but rather requires the utilization of a wide range of skill sets held by a team of people.

  15. 磷供应对玉米根际微生物碳源利用和功能多样性的影响%Effects of phosphorus supply on microbial carbon source utilization and functional diversity of maize rhizosphere

    Institute of Scientific and Technical Information of China (English)

    唐宏亮; 郭秋换; 张春潮; 段霄霄

    2015-01-01

    study, a pot soil culture experiment with 2 P application treatments [low P of 5.7 mg(P).kg-1(soil) and high P of 200 mg(P).kg-1(soil)] was carried out to investigate the effect of P on carbon resources utilization and functional diversity of microorganisms in maize rhizosphere soil. After 35 d of growth, maize rhizosphere soil was collected using the nylon mesh method under 2 P treatments. The Biolog microplate technique was used to examine the color change of micro-well solutions containing 31 carbon sources every 24 h for consecutively 240 h. The results showed that with prolonged culture time, the utilization of 31 types of carbon sources by soil microorganisms obviously increased until the carbon sources in the micro-well solution were exhausted. High P treatment significantly increased average well color development (AWCD) and improved the utilization of carbohydrate carbon and its derivatives, amino acids and metabolites, but not affected the utilization of fatty acids and lipids. Functional diversity of soil microorganisms in maize rhizosphere soil was regulated by P availability, which depended largely on culturing time. During 72 h cultivation, high P treatment significantly increased the diversity index, dominance index and evenness index of soil microorganisms. However, after 72 h of cultivation, high P treatment had no significant effect on soil microorganism diversity. Based on principal component analysis (PCA), extracted first 3 components explained 75.15% of carbon sources utilization and separated 2 categories based on P treatments. A total of 23 carbon sources was correlated with PC1, 8 correlated with PC2 and 3 correlated with PC3. Multivariate analysis showed that the pattern of carbon sources utilization of soil microorganisms under high P supply was significantly different from that under low P supply (Hotelling trace = 2.485,F= 62.95,P< 0.001). In conclusion, carbohydrate and the derivatives, amino acids and metabolites were the major carbon

  16. Carbon dioxide utilization in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E.; Tommasi, I. [Univ. of Bari (Italy)

    1996-12-31

    Carbon dioxide as a raw material for the Chemical Industry is receiving growing attention because: (i) if recovery of CO{sub 2} from flue gases will be implemented, huge amounts of CO{sub 2} will be available; (ii) environmental issues urge to develop new processes/products, avoiding toxic materials. Several uses of CO{sub 2} appear to be responding to both (i) and (ii), i.e. use as a solvent (supplanting organic solvents) use as a building block for carboxylates/carbonates (supplanting phosgene); use as carbon-source in the synthesis of fuels (supplanting CO or coal/hydrocarbons). These options will be evaluated and their potentiality discussed.

  17. Cutting the cost of carbon capture: a case for carbon capture and utilization.

    Science.gov (United States)

    Joos, Lennart; Huck, Johanna M; Van Speybroeck, Veronique; Smit, Berend

    2016-10-20

    A significant part of the cost for carbon capture and storage (CCS) is related to the compression of captured CO2 to its supercritical state, at 150 bar and typically 99% purity. These stringent conditions may however not always be necessary for specific cases of carbon capture and utilization (CCU). In this manuscript, we investigate how much the parasitic energy of an adsorbent-based carbon capture process may be lowered by utilizing CO2 at 1 bar and adapting the final purity requirement for CO2 from 99% to 70% or 50%. We compare different CO2 sources: the flue gases of coal-fired or natural gas-fired power plants and ambient air. We evaluate the carbon capture performance of over 60 nanoporous materials and determine the influence of the initial and final CO2 purity on the parasitic energy of the carbon capture process. Moreover, we demonstrate the underlying principles of the parasitic energy minimization in more detail using the commercially available NaX zeolite. Finally, the calculated utilization cost of CO2 is compared with the reported prices for CO2 and published costs for CCS.

  18. New PHA products using unrelated carbon sources.

    Science.gov (United States)

    Matias, Fernanda; de Andrade Rodrigues, Maria Filomena

    2011-10-01

    Polyhydroxyalkanoates (PHA) are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc) or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA), especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA) depending on the carbon source used.

  19. IR microscopy utilizing intense supercontinuum light source

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan;

    2012-01-01

    . The supercontinuum light source has a high brightness and spans the infrared region from 1400 nm to 4000 nm. This combination allows contact free high resolution hyper spectral infrared microscopy. The microscope is demonstrated by imaging an oil/water sample with 20 μm resolution.......Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy...

  20. Utilizing alternative energy sources in France

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, M.

    1977-01-01

    The relative merits of various alternative-energy sources are discussed with particular reference to their suitability in the French context. The case is presented for decentralized solar power as against centralized solar-power production and some test installations in France are described. The potential for geothermal power is examined, and it is shown that the resource is essentially nonrenewable. A history of wind generation in France is presented, and power extraction from the seas is discussed, with particular reference to the Rance tidal-power scheme. While the public romance with alternative-energy schemes is accepted, it is pointed out that this may only last for as long as their implementation is on a small scale.

  1. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.

    Science.gov (United States)

    Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia

    2017-03-08

    Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts.

  2. New PHA products using unrelated carbon sources

    Directory of Open Access Journals (Sweden)

    Fernanda Matias

    2011-12-01

    Full Text Available Polyhydroxyalkanoates (PHA are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA, especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA depending on the carbon source used.

  3. Denitrification-Efficiencies of Alternate Carbon Sources

    Science.gov (United States)

    1984-07-01

    organic carbon was around 70%. Skrinde and Bhagat (1982) investigated a number of carbon sources (methanol, spent sufite liquor, yeast, corn silage , acid...sludge treated by acid hydrolysis); (5) corn steep liquor (a 4concentrated solution of maize solubles obtained from the lactic fermentation process...during the steeping of maize prior to wet milling, Grain Processing Corporation, Muscatine, IA), (6) soluble fish condensates, (Sharpley Laboratories Inc

  4. Bioethanol from different Finnish agricultural carbon sources

    Energy Technology Data Exchange (ETDEWEB)

    Kautola, H.; Kymaelaeinen, M.; Tokeensuu, L.; Alatalo, T. (HAMK University of Applied Sciences, Degree Programme in Biotechnology and Food Engineering, Haemeenlinna (Finland)); Caerdenas, R. (Universidad Central del Ecuador, Facultad Ciencias Quimicas, Escuela de Quimica, Av. America. Ciudadela Universitaria, Quito (Ecuador)); Siukola, K.; Naesi, J. (Suomen Biojalostus Oy, Renko (Finland))

    2007-07-01

    Bioethanol in fuel and its domestic production has become a great issue in Finland during the last few years. There has been discussion about what kind of raw materials should be used and are there any local priorities. In the years 2004-2007 local farmers in Haem e , in southern part of Finland, started to find alternative use for sugar beet due to drastic reduction of domestic sugar production in the near future. This was also the start of the experimental studies on bi oethanol production. The aim of the study was to find out how the change of carbon source will effect on bi oethanol yield. The bioethanol production was studied in laboratory scale using carbon sources of saccharose, glucose, sugar beet juice, sugar beet mash and barley hydrolysates pretreated with amylases, (beta-glucanase and xylanase). The yeast used was Saccharomyces sp. The pre experiments were performed in 250 mL flasks to optimize carbon, nitrogen and salts contents in production medium, also comparing different carbon sources and mixtures. The production was then studied in a 30 liter fermenter running for 36 hours. The preliminary studies showed that barley hydrolysate gave the best result 2,4% in bioethanol concentration during the performed fermentations, and saccharose was the best substrate in shake flask fermentations with a 9,6% bioethanol concentration. (orig.)

  5. Utilization of compressed natural gas for the production of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Kim-Yang Lee; Wei-Ming Yeoh; Siang-Piao Chai; Abdul Rahman Mohamed

    2012-01-01

    The present work aims at utilizing compressed natural gas (CNG) as carbon source for the synthesis of carbon nanotubes (CNTs) over CoO-MoO/Al2O3 catalyst via catalytic chemical vapor deposition (CCVD) method.The as-produced carbonaceous product was characterized by thermal gravimetric analyzer (TGA),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and Raman spectroscopy.The experimental finding shows that CNTs were successfully produced from CNG while carbon nanofibers (CNFs) were formed as the side products.In addition,the catalytic activity and lifetime were found sustained and prolonged,as compared with using high purity methane as carbon source.The present study suggests an alternative route which can effectively produce CNTs and CNFs using low cost CNG.

  6. Dual-Carbon sources fuel the OCS deep-reef Community, a stable isotope investigation

    Science.gov (United States)

    Sulak, Kenneth J.; Berg, J.; Randall, Michael; Dennis, George D.; Brooks, R.A.

    2008-01-01

    The hypothesis that phytoplankton is the sole carbon source for the OCS deep-reef community (>60 m) was tested. Trophic structure for NE Gulf of Mexico deep reefs was analyzed via carbon and nitrogen stable isotopes. Carbon signatures for 114 entities (carbon sources, sediment, fishes, and invertebrates) supported surface phytoplankton as the primary fuel for the deep reef. However, a second carbon source, the macroalga Sargassum, with its epiphytic macroalgal associate, Cladophora liniformis, was also identified. Macroalgal carbon signatures were detected among 23 consumer entities. Most notably, macroalgae contributed 45 % of total carbon to the 13C isotopic spectrum of the particulate-feeding reef-crest gorgonian Nicella. The discontinuous spatial distribution of some sessile deep-reef invertebrates utilizing pelagic macroalgal carbon may be trophically tied to the contagious distribution of Sargassum biomass along major ocean surface features.

  7. CARBOOCEAN -marine carbon sources and sinks assessment

    Science.gov (United States)

    Volbers, A.; Heinze, C.; de Baar, H.; CARBOOCEAN Consortium

    2009-04-01

    CARBOOCEAN is the European contribution to the global observation and modelling network on marine carbon. It is an FP6 Integrated Project funded over a five year period (2005-2009) with 14.5 million € and combines the key European experts of 35 contracting partners from 14 countries, including the USA. The project provides a description and quantification of the CO2 air-sea exchange ranging from a seasonal to interannual time scale up to a decadal to centennial time scale for the Atlantic Ocean and the Southern Ocean, involving also the sub-surface and deep waters. Special focus is given to the quantification of carbon sources and sinks at a regional scale and the identification and understanding of biogeochemical feedback mechanisms which control marine carbon uptake and release. The new data and knowledge is integrated into the prognostic modeling framework. One of the project highlights is the North Atlantic Observing Network which employs voluntary observing ships (VOS). The Air-sea fluxes of CO2 show a high temporal and spatial variation as a result of variability in climate, biological activity and ocean circulation. Latest data indicate that the North Atlantic and Southern Ocean both show at least transient decrease in uptake strength for CO2. The anthropogenic carbon uptake by the oceans is dominated by physical-chemical buffering but biological and biogeochemical effects cannot be neglected. Findings from data analysis, forward and inverse modeling indicate that the oceanic water column burden of anthropogenic carbon has a maximum in the northern North Atlantic close to the areas of deep convection but also the Southern Ocean carries significant amounts of anthropogenic carbon. These carbon sink areas of vertical water mass transfer are vulnerable to climate change.

  8. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    In the year 2013, 9.5 billion metric tons of carbon dioxide gas was emitted into the air, and each year this amount is increasing [1]. Carbon dioxide emissions are of particular concern as they represent 80% of greenhouse gas emissions and therefore are a large contributor to global warming. Among...... the two approaches that are currently being investigated, carbon capture and storage (CCS) and carbon capture and utilization (CCU) [1] to address this issue, the later approach is more promising as it reuses captured carbon dioxide, as a fuel, reactant, solvent, and others, to produce valuable products....... There is not only a need for technologies for capture and utilization, via conversion, but also there are numerous questions that need to be resolved. For example, which higher value chemicals can be produced, what are their current demands and costs of production, and, how much of the captured carbon dioxide would...

  9. CO2 Utilization For Mechanochemical Carbonation Of Celestine

    Directory of Open Access Journals (Sweden)

    Turianicova Erika

    2015-09-01

    Full Text Available Natural celestine (SrSO4 has been succesfully transformed into strontianite (SrCO3 via fast one-step mechanochemical carbonation utilizing gaseous CO2. The process was realized in the environment enriched with LiOH or NaOH additives. The mixtures were milled in a high-energy planetary ball mill for 40 min. The phases formed during the milling were characterized by different characterization techniques, such as X-ray diffraction (XRD and infrared spectroscopy (FT-IR. The presence or absence of carbon or sulphur in the products was confirmed by a CHNS analysis.

  10. Ground-source heat pump case studies and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  11. The need of research for developing the carbon dioxide disposal and utilization options

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M. [Univ. di Bari (Italy). METEA Research Center

    1996-12-31

    The idea of global warming correlating to the increasing atmospheric level of greenhouse gases is controversial. Assessing CO{sub 2}-mitigation technologies and a better knowledge of global effects of increasing atmospheric CO{sub 2} level, will contribute to avoiding a non return point. Mitigation technologies can be categorized as follows: Efficiency technologies; energy saving; alternative energy sources; enhanced atmospheric carbon dioxide fixation; recovery of carbon dioxide from concentrated sources (power plants or industries). The latter has a good potentiality for avoiding major amounts of atmospheric carbon dioxide, supposing that the questions about the fate of recovered CO{sub 2} (disposal or utilization) find a sound answer. Possible sites for disposal of CO{sub 2} are: depleted oil and gas fields, oceans, aquifers, deep geological cavities, and soil. The utilization of CO{sub 2} as solvent and reagent is beneficial for the environment: a non-toxic solvent is made available and a way to recycling carbon, with the double benefit of developing new benign syntheses and saving energy sources. This paper will discuss the research needed for implementing the CO{sub 2} recovery option.

  12. Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves.

    Science.gov (United States)

    von der Assen, Niklas; Müller, Leonard J; Steingrube, Annette; Voll, Philip; Bardow, André

    2016-02-01

    Capture and utilization of CO2 as alternative carbon feedstock for fuels, chemicals, and materials aims at reducing greenhouse gas emissions and fossil resource use. For capture of CO2, a large variety of CO2 sources exists. Since they emit much more CO2 than the expected demand for CO2 utilization, the environmentally most favorable CO2 sources should be selected. For this purpose, we introduce the environmental-merit-order (EMO) curve to rank CO2 sources according to their environmental impacts over the available CO2 supply. To determine the environmental impacts of CO2 capture, compression and transport, we conducted a comprehensive literature study for the energy demands of CO2 supply, and constructed a database for CO2 sources in Europe. Mapping these CO2 sources reveals that CO2 transport distances are usually small. Thus, neglecting transport in a first step, we find that environmental impacts are minimized by capturing CO2 first from chemical plants and natural gas processing, then from paper mills, power plants, and iron and steel plants. In a second step, we computed regional EMO curves considering transport and country-specific impacts for energy supply. Building upon regional EMO curves, we identify favorable locations for CO2 utilization with lowest environmental impacts of CO2 supply, so-called CO2 oases.

  13. A Novel Method of Utilizing Hybrid Generator as Renewable Source

    Directory of Open Access Journals (Sweden)

    K.Fathima

    2015-12-01

    Full Text Available Energy production and consumption in the future may depend on renewable energy sources and also depends on the efficiency of utilizing it. Here, a hybrid system, a combination of solar cells and thermoelectric generators is controlled by open circuit voltage method which is normally used for linear electrical characteristics. The proposed system is supported by theoretical analysis and simulation. Lead acid battery is used to accumulate the harvested energy. Cuk converters are used here to improve the efficiency and helps in reduction of noises. Hybrid generators are found to be efficient and more stable.

  14. Enhanced biological phosphorus removal with different carbon sources.

    Science.gov (United States)

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared.

  15. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  16. Denitrification on internal carbon sources in RAS is limited by fibers in fecal waste of rainbow trout

    NARCIS (Netherlands)

    Meriac, A.; Eding, E.H.; Kamstra, A.; Busscher, J.P.; Schrama, J.W.; Verreth, J.A.J.

    2014-01-01

    Denitrification on internal carbon sources offers the advantage to control nitrate levels in recirculating aquaculture systems (RAS) by using the fecal carbon produced within the husbandry system. However, it is not clear to which extent fecal carbon can be utilized by the microbial community within

  17. Low Temperature Heat Source Utilization Current and Advanced Technology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  18. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.

    Science.gov (United States)

    Radek, Andreas; Krumbach, Karin; Gätgens, Jochem; Wendisch, Volker F; Wiechert, Wolfgang; Bott, Michael; Noack, Stephan; Marienhagen, Jan

    2014-12-20

    Biomass-derived d-xylose represents an economically interesting substrate for the sustainable microbial production of value-added compounds. The industrially important platform organism Corynebacterium glutamicum has already been engineered to grow on this pentose as sole carbon and energy source. However, all currently described C. glutamicum strains utilize d-xylose via the commonly known isomerase pathway that leads to a significant carbon loss in the form of CO2, in particular, when aiming for the synthesis of α-ketoglutarate and its derivatives (e.g. l-glutamate). Driven by the motivation to engineer a more carbon-efficient C. glutamicum strain, we functionally integrated the Weimberg pathway from Caulobacter crescentus in C. glutamicum. This five-step pathway, encoded by the xylXABCD-operon, enabled a recombinant C. glutamicum strain to utilize d-xylose in d-xylose/d-glucose mixtures. Interestingly, this strain exhibited a tri-phasic growth behavior and transiently accumulated d-xylonate during d-xylose utilization in the second growth phase. However, this intermediate of the implemented oxidative pathway was re-consumed in the third growth phase leading to more biomass formation. Furthermore, C. glutamicum pEKEx3-xylXABCDCc was also able to grow on d-xylose as sole carbon and energy source with a maximum growth rate of μmax=0.07±0.01h(-1). These results render C. glutamicum pEKEx3-xylXABCDCc a promising starting point for the engineering of efficient production strains, exhibiting only minimal carbon loss on d-xylose containing substrates.

  19. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    gases are carbon dioxide, methane and nitrous oxide, of which carbon dioxide is the highest constituent at 82%. Furthermore, the amount of carbon dioxide emissions is growing with time. These trends make it evident that there is a need for methods to reduce these greenhouse gases emissions. While...... there are two methods of reducing carbon dioxide emissions, carbon capture and storage (CCS) and carbon capture and utilization (CCU), CCU is considered promising as it makes further use of the carbon dioxide as a solvent, raw material, and reagent to produce valuable products [1]. Using such utilization...... processes, the emissions can be reduced as they are being utilized and profit can be obtained, or the cost of operation for the carbon dioxide treatment can be returned, through this utilization process. In order to systematically reduce such emissions, carbon capture and utilization is considered rather...

  20. Influence of carbon sources on nutrient removal in A(2)/O-MBRs: Availability assessment of internal carbon source.

    Science.gov (United States)

    Xu, Rongle; Fan, Yaobo; Wei, Yuansong; Wang, Yawei; Luo, Nan; Yang, Min; Yuan, Xing; Yu, Rong

    2016-10-01

    Both internal carbon source and some external carbon sources were used to improve the nutrient removal in Anaerobic-Anoxic-Oxic-Membrane Bioreactor (A(2)/O-MBRs), and their technical and cost analysis was investigated. The experimental results showed that the nutrient removals were improved by all the carbon source additions. The total nitrogen and phosphorus removal efficiency were higher in the experiments with external carbon source additions than that with internal carbon source addition. It was found that pathways of nitrogen and phosphorus transform were different dependent on different carbon source additions by the mass balance analysis. With external carbon source addition, the simultaneous nitrification and denitrification occurred in aerobic zone, and the P-uptake in aerobic phase was evident. Therefore, with addition of C-MHP (internal carbon source produced from sludge pretreatment by microwave-H2O2 process), the denitrification and phosphorus-uptake in anoxic zone was notable. Cost analysis showed that the unit nitrogen removal costs were 57.13CNY/kg N of C-acetate addition and 54.48CNY/kgN of C-MHP addition, respectively. The results indicated that the C-MHP has a good technical and economic feasibility to substitute external carbon sources partially for nutrient removal.

  1. Diagnostic Evaluation of Carbon Sources in CMAQ

    Science.gov (United States)

    Traditional monitoring networks measure only total elemental carbon (EC) and organic carbon (OC) routinely. Diagnosing model biases with such limited information is difficult. Measurements of organic tracer compounds have recently become available and allow for more detailed di...

  2. Carbon Source Utilization and Functional Diversity of Soil Microbial Communities in Natural Secondary Forests with Different Management Regimes in Northeastern China%东北天然次生林不同经营模式下土壤微生物碳源利用与功能多样性

    Institute of Scientific and Technical Information of China (English)

    范垚城; 覃林; 王雅菲; 邹慧; 谭玲; 何友均

    2016-01-01

    Objective]In order to provide a reasonable reference for the management regime of natural secondary forests,the carbon source utilization and functional diversity of soil microbial communities were investigated under different forest management regimes of natural secondary forests in northeastern China.[Method]Four forests representing management regimes,traditional forest management ( FM1 ) ,target tree-based forest management ( FM2 ) ,conversion to mixed broadleaved-based forest management ( FM3 ) and nonintervention forest management ( FM4 ) ,were selected in Danqinghe Forestry Farm located in Harbin,Heilongjiang Province. Among them,the traditional forest management (FM1) puts more emphasis on obtaining the woods. Target tree-based forest management (FM2) is mainly based on the crop tree management,the weak interference and natural regeneration of the target trees. Conversion to mixed broadleaved-based forest management ( FM3 ) is a management that new hardwoods are introduced into the original management regime while logging. The nonintervention forest management ( FM4 ) is based on the natural growth without any disturbance. Under each forest management regime,we had 3 sampling plots. Each 50 m × 50 m plot was divided into 10 m × 10 m quadrats,generating a total of 25 quadrats. The topsoil (0 -20 cm) was collected in each quadrate. Based on the Biolog-Eco method,we studied the different characteristics of carbon source utilization and functional diversity in the four forest management regimes,and further explored the effect of soil chemical properties on soil carbon source utilization types.[Result]The carbon source utilization of soil microbial communities in FM1 was significantly lower than those in other three regimes,and it was highest in FM4,while there was no significant difference in soil carbon source utilization between in FM2 and FM3. Soil chemical properties,especially available nitrogen(AN),available potassium(AK), available phosphorus( AP

  3. Synthesis of Carbon Nanotubes of Few Walls Using Aliphatic Alcohols as a Carbon Source

    Directory of Open Access Journals (Sweden)

    Francisco Espinosa-Magaña

    2013-06-01

    Full Text Available Carbon nanotubes with single and few walls are highly appreciated for their technological applications, regardless of the limited availability due to their high production cost. In this paper we present an alternative process that can lead to lowering the manufacturing cost of CNTs of only few walls by means of the use of the spray pyrolysis technique. For this purpose, ferrocene is utilized as a catalyst and aliphatic alcohols (methanol, ethanol, propanol or butanol as the carbon source. The characterization of CNTs was performed by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The study of the synthesized carbon nanotubes (CNTs show important differences in the number of layers that constitute the nanotubes, the diameter length, the quantity and the quality as a function of the number of carbons employed in the alcohol. The main interest of this study is to give the basis of an efficient synthesis process to produce CNTs of few walls for applications where small diameter is required.

  4. Source attribution of black carbon in Arctic snow.

    Science.gov (United States)

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  5. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  6. Development of a stationary carbon emission inventory for Shanghai using pollution source census data

    Science.gov (United States)

    Li, Xianzhe; Jiang, Ping; Zhang, Yan; Ma, Weichun

    2016-12-01

    This study utilizes 521,631 activity data points from the 2007 Shanghai Pollution Source Census to compile a stationary carbon emission inventory for Shanghai. The inventory generated from our dataset shows that a large portion of Shanghai's total energy use consists of coal-oriented energy consumption. The electricity and heat production industries, iron and steel mills, and the petroleum refining industry are the main carbon emitters. In addition, most of these industries are located in Baoshan District, which is Shanghai's largest contributor of carbon emissions. Policy makers can use the enterpriselevel carbon emission inventory and the method designed in this study to construct sound carbon emission reduction policies. The carbon trading scheme to be established in Shanghai based on the developed carbon inventory is also introduced in this paper with the aim of promoting the monitoring, reporting and verification of carbon trading. Moreover, we believe that it might be useful to consider the participation of industries, such as those for food processing, beverage, and tobacco, in Shanghai's carbon trading scheme. Based on the results contained herein, we recommend establishing a comprehensive carbon emission inventory by inputting data from the pollution source census used in this study.

  7. Productivity, carbon utilization, and energy content of mass in scalable microalgae systems.

    Science.gov (United States)

    Murray, Kyle E; Shields, Jeremy A; Garcia, Nicholas D; Healy, Frank G

    2012-06-01

    This study was designed to examine carbon utilization within scalable microalgae production systems. Neochloris oleoabundans was produced in replicated troughs containing BG11 nutrient formulation. Atmospheric CO(2) was supplemented with ∼5% CO(2) or with NaHCO(3), and the pH of troughs receiving NaHCO(3) was adjusted with HCl or H(3)PO(4). Peak biomass concentrations reached 950, 1140, or 850 mg L(-1) and biomass productivities of 109, 96, and 74 mg L(-1) day(-1) were achieved in the CO(2), NaHCO(3):HCl and NaHCO(3):H(3)PO(4) troughs, respectively. The highest productivity is expected in a scaled-up continuous batch process of the CO(2) supplemented system, which was projected to yield 8948 L lipids ha(-1)yr(-1). Carbon utilization in the CO(2), NaHCO(3):HCl and NaHCO(3):H(3)PO(4) systems was ∼0.5, 15.5, and 12.9%, while the energy content of the combustible biomass was 26.7, 13.2, and 15.4 MJ kg(-1), respectively. Techno-economic analyses of microalgal production systems should consider efficiencies and cost-benefit of various carbon sources.

  8. Shunting arc plasma source for pure carbon ion beama)

    Science.gov (United States)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  9. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  10. A generic methodology for the design of sustainable carbon dioxide utilization processes using superstructure optimization

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Gani, Rafiqul

    ) is the primary greenhouse gas that is targeted via carbon capture and storage (CCS) as well as carbon capture and utilization (CCU) [1]. Carbon capture and utilization is showing promise because, in contrast with carbon capture and storage, it takes the captured carbon dioxide and makes further use of it......Global warming and other environmental concerns are fueling increased focus on sustainability resulting in new and stringent guidelines, especially with regard to emissions [1]. Greenhouse gases are prevalent and among harmful emissions that are targeted to be reduced; carbon dioxide (CO2......, including as an extractive agent or raw material. Chemical conversion, an important element of utilization, involves the use of carbon dioxide as a reactant in the production of chemical compounds [2]. However, for feasible implementation, a systematic methodology is needed for the design of the utilization...

  11. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years

    Science.gov (United States)

    Gonneea, Meagan Eagle; Paytan, Adina; Herrera-Silveira, Jorge A.

    2004-10-01

    Mangrove ecosystems may be a source of organic carbon and nutrients to adjacent coastal systems on one hand and provide a sedimentary sink for organic carbon on the other. The balance between these two functions may be sensitive to both natural and anthropogenically induced variability, yet these effects have not been thoroughly evaluated in mangrove ecosystems. We determine organic matter sources and carbon burial rates over the past 160 years in three lagoons on the Yucatan Peninsula, Mexico. Carbon isotopes and C/N elemental ratios are utilized to trace the three sources contributing to sedimentary organic matter, mangroves, seagrasses and phytoplankton, while nitrogen isotopes are used to elucidate potential post-depositional biogeochemical transformations in mangrove lagoon sediments. All three organic matter sources contribute to organic carbon burial. Phytoplankton and mangroves are the dominant sources of organic matter in lagoon bank sediments and seagrasses are a significant source to central lagoon sediments. Organic carbon burial rates are higher at the lagoon fringes, where mangrove vegetation dominates, than in seagrass-dominated mid-lagoon areas. A reduction in mangrove contribution to the sedimentary organic matter pool concurrent with reduced total organic carbon burial rates is observed in the recent past at all three lagoons studied. Natural cycles in sediment organic matter source over the past 160 years are observed in a high-resolution core. These fluctuations correspond to climatic variability in this region, as recorded in deep-sea foraminiferal assemblages. Additional work is required in order to differentiate between recent anthropogenic perturbations and natural variability in organic carbon sources and burial rates within these ecosystems.

  12. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Konarek, E.; Coulas, B.; Sarvinis, J. [Hatch Ltd., Mississauga, Ontario (Canada)

    2016-06-15

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  13. Economics of carbon dioxide capture and utilization-a supply and demand perspective.

    Science.gov (United States)

    Naims, Henriette

    2016-11-01

    Lately, the technical research on carbon dioxide capture and utilization (CCU) has achieved important breakthroughs. While single CO2-based innovations are entering the markets, the possible economic effects of a large-scale CO2 utilization still remain unclear to policy makers and the public. Hence, this paper reviews the literature on CCU and provides insights on the motivations and potential of making use of recovered CO2 emissions as a commodity in the industrial production of materials and fuels. By analyzing data on current global CO2 supply from industrial sources, best practice benchmark capture costs and the demand potential of CO2 utilization and storage scenarios with comparative statics, conclusions can be drawn on the role of different CO2 sources. For near-term scenarios the demand for the commodity CO2 can be covered from industrial processes, that emit CO2 at a high purity and low benchmark capture cost of approximately 33 €/t. In the long-term, with synthetic fuel production and large-scale CO2 utilization, CO2 is likely to be available from a variety of processes at benchmark costs of approx. 65 €/t. Even if fossil-fired power generation is phased out, the CO2 emissions of current industrial processes would suffice for ambitious CCU demand scenarios. At current economic conditions, the business case for CO2 utilization is technology specific and depends on whether efficiency gains or substitution of volatile priced raw materials can be achieved. Overall, it is argued that CCU should be advanced complementary to mitigation technologies and can unfold its potential in creating local circular economy solutions.

  14. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990

    Science.gov (United States)

    Miettinen, Jukka; Hooijer, Aljosja; Vernimmen, Ronald; Liew, Soo Chin; Page, Susan E.

    2017-02-01

    Tropical peatlands of the western part of insular Southeast Asia have experienced extensive land cover changes since 1990. Typically involving drainage, these land cover changes have resulted in increased peat oxidation in the upper peat profile. In this paper we provide current (2015) and cumulative carbon emissions estimates since 1990 from peat oxidation in Peninsular Malaysia, Sumatra and Borneo, utilizing newly published peatland land cover information and the recently agreed Intergovernmental Panel on Climate Change (IPCC) peat oxidation emission values for tropical peatland areas. Our results highlight the change of one of the Earth’s most efficient long-term carbon sinks to a short-term emission source, with cumulative carbon emissions since 1990 estimated to have been in the order of 2.5 Gt C. Current (2015) levels of emissions are estimated at around 146 Mt C yr‑1, with a range of 132–159 Mt C yr‑1 depending on the selection of emissions factors for different land cover types. 44% (or 64 Mt C yr‑1) of the emissions come from industrial plantations (mainly oil palm and Acacia pulpwood), followed by 34% (49 Mt C yr‑1) of emissions from small-holder areas. Thus, altogether 78% of current peat oxidation emissions come from managed land cover types. Although based on the latest information, these estimates may still include considerable, yet currently unquantifiable, uncertainties (e.g. due to uncertainties in the extent of peatlands and drainage networks) which need to be focused on in future research. In comparison, fire induced carbon dioxide emissions over the past ten years for the entire equatorial Southeast Asia region have been estimated to average 122 Mt C yr‑1 (www.globalfiredata.org/_index.html). The results emphasise that whilst reducing emissions from peat fires is important, urgent efforts are also needed to mitigate the constantly high level of emissions arising from peat drainage, regardless of fire occurrence.

  15. Downhole Microseismic Monitoring at a Carbon Capture, Utilization, and Storage Site, Farnsworth Unit, Ochiltree County, Texas

    Science.gov (United States)

    Ziegler, A.; Balch, R. S.; van Wijk, J.

    2015-12-01

    Farnsworth Oil Field in North Texas hosts an ongoing carbon capture, utilization, and storage project. This study is focused on passive seismic monitoring at the carbon injection site to measure, locate, and catalog any induced seismic events. A Geometrics Geode system is being utilized for continuous recording of the passive seismic downhole bore array in a monitoring well. The array consists of 3-component dual Geospace OMNI-2400 15Hz geophones with a vertical spacing of 30.5m. Downhole temperature and pressure are also monitored. Seismic data is recorded continuously and is produced at a rate of over 900GB per month, which must be archived and reviewed. A Short Term Average/Long Term Average (STA/LTA) algorithm was evaluated for its ability to search for events, including identification and quantification of any false positive events. It was determined that the algorithm was not appropriate for event detection with the background level of noise at the field site and for the recording equipment as configured. Alternatives are being investigated. The final intended outcome of the passive seismic monitoring is to mine the continuous database and develop a catalog of microseismic events/locations and to determine if there is any relationship to CO2 injection in the field. Identifying the location of any microseismic events will allow for correlation with carbon injection locations and previously characterized geological and structural features such as faults and paleoslopes. Additionally, the borehole array has recorded over 1200 active sources with three sweeps at each source location that were acquired during a nearby 3D VSP. These data were evaluated for their usability and location within an effective radius of the array and were stacked to improve signal-noise ratio and are used to calibrate a full field velocity model to enhance event location accuracy. Funding for this project is provided by the U.S. Department of Energy under Award No. DE-FC26-05NT42591.

  16. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel thermodyn......Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel...... thermodynamic cycle and cycle design, and use of multi-component working fluids. These advancements will not only improve the performance of existing technologies, but also enable the utilization of low temperature heat sources, which are currently not utilized due to technical or economical infeasibility...

  17. Distillery wastes as external carbon sources for denitrification in municipal wastewater treatment plants.

    Science.gov (United States)

    Czerwionka, K; Makinia, J; Kaszubowska, M; Majtacz, J; Angowski, M

    2012-01-01

    In this study, by-products from alcohol production were examined in terms of their potential application as external carbon sources for enhancing denitrification in biological nutrient removal systems. Three types of batch tests were used to compare the effects of the distillery by-products, such as fusel oil, syrup and reject water, on the non-acclimated activated sludge. Much higher nitrate utilization rates (NURs) were observed for the latter two carbon sources. In the conventional NUR measurements (one-phase experiments), the observed NURs with syrup and reject water were 3.2-3.3 g N/(kg VSS h) compared with 1.0 g N/(kg VSS h) obtained for fusel oils from two different distilleries. When the carbon sources were added at the beginning of the anoxic phase preceded by an anaerobic phase (two-phase experiments), the NURs were 4.2 g N/(kg VSS h) (syrup and reject water) and 2.4-2.7 g N/(kg VSS h) (fusel oils). The heterotrophic yield coefficient, determined based on the conventional OUR measurements, varied in a relatively narrow range (0.72-0.79 g COD/g COD) for all the examined carbon sources. Due to advantageous composition (much higher COD concentrations and COD/N ratios), fusel is a preferred carbon source for practical handling in full-scale wastewater treatment plants.

  18. Managing Carbon Regulatory Risk in Utility Resource Planning:Current Practices in the Western United States

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-05-16

    Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. Assuch, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations

  19. Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-07-11

    Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations.

  20. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process.

    Science.gov (United States)

    Tôrres Filho, Artur; Lange, Liséte Celina; de Melo, Gilberto Caldeira Bandeira; Praes, Gustavo Eduardo

    2016-02-01

    Pyrolysis is the thermal degradation of organic material in oxygen-free or very lean oxygen atmosphere. This study evaluates the use of pyrolysis for conversion of leather wastes from chromium tanning processes into Carbonized Leather Residues (CLR), and the utilization of CLR in metallurgical processes through the production of iron ore pellets. CLR was used to replace mineral coal in proportions of 10% and 25% on fixed carbon basis content in the mixtures for pellets preparation. Experimental conversions were performed on a pilot scale pyrolysis plant and a pelletizing reactor of the "pot grate" type. The results demonstrated the technical feasibility of using the charcoal product from animal origin as an energy source, with recovery of up to 76.47% of chromium contained in CLR in the final produced of iron ore pellets. Pellets with 25% replacement of fixed carbon in the coal showed an enhanced compressive strength, with an average value of 344kgfpellet(-1), compared to 300kgfpellet(-1) for standard produced pellets.

  1. Modulation of Candida albicans Biofilm by Different Carbon Sources.

    Science.gov (United States)

    Pemmaraju, Suma C; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-06-01

    In the present investigation, the role of carbon sources (glucose, lactate, sucrose, and arabinose) on Candida albicans biofilm development and virulence factors was studied on polystyrene microtiter plates. Besides this, structural changes in cell wall component β-glucan in presence of different carbon sources have also been highlighted. Biofilm formation was analyzed by XTT (2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay. Glucose-grown cells exhibited the highest metabolic activity during adhesion among all carbon sources tested (p roughness measurements by atomic force microscopy. Exposure to lactate induced hyphal structures with the highest proteinase activity while arabinose-grown cells formed pseudohyphal structures possessing the highest phospholipase activity. Structural changes in β-glucan characterized by Fourier transform infrared (FTIR) spectroscopy displayed characteristic band of β-glucan at 892 cm(-1) in all carbon sources tested. The β(1→6) to β(1→3) glucan ratio calculated as per the band area of the peak was less in lactate (1.15) as compared to glucose (1.73), sucrose (1.62), and arabinose (2.85). These results signify that carbon sources influence C. albicans biofilm development and modulate virulence factors and structural organization of cell wall component β-glucan.

  2. Utilizing Primary Sources as Building Blocks for Literacy.

    Science.gov (United States)

    Massich, Mary; Munoz, Eric

    1996-01-01

    Describes instructional strategies using primary sources in middle school history instruction. Maintains that students need to make critical, personal connections to material before they understand it. The strategies examined use visual aids, living history presentations, realia, music, and primary documents. (MJP)

  3. Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina.

    Science.gov (United States)

    Druzhinina, Irina S; Schmoll, Monika; Seiboth, Bernhard; Kubicek, Christian P

    2006-03-01

    The ascomycete Hypocrea jecorina (Trichoderma reesei), an industrial producer of cellulases and hemicellulases, can efficiently degrade plant polysaccharides. However, the catabolic pathways for the resulting monomers and their relationship to enzyme induction are not well known. Here we used the Biolog Phenotype MicroArrays technique to evaluate the growth of H. jecorina on 95 carbon sources. For this purpose, we compared several wild-type isolates, mutants producing different amounts of cellulases, and strains transformed with a heterologous antibiotic resistance marker gene. The wild-type isolates and transformed strains had the highest variation in growth patterns on individual carbon sources. The cellulase mutants were relatively similar to their parental strains. Both in the mutant and in the transformed strains, the most significant changes occurred in utilization of xylitol, erythritol, D-sorbitol, D-ribose, D-galactose, L-arabinose, N-acetyl-D-glucosamine, maltotriose, and beta-methyl-glucoside. Increased production of cellulases was negatively correlated with the ability to grow on gamma-aminobutyrate, adonitol, and 2-ketogluconate; and positively correlated with that on d-sorbitol and saccharic acid. The reproducibility, relative simplicity, and high resolution (+/-10% of increase in mycelial density) of the phenotypic microarrays make them a useful tool for the characterization of mutant and transformed strains and for a global analysis of gene function.

  4. Development and comparisons of efficient gas-cultivation systems for anaerobic carbon monoxide-utilizing microorganisms.

    Science.gov (United States)

    Ford, Jack; Todd French, W; Hernandez, Rafael; Easterling, Emily; Zappi, Mark; Morrison, Christine; Licha, Margarita; Brown, Lewis R

    2008-02-01

    We describe a system for the cultivation of gaseous substrate utilizing microorganisms that overcomes some of the limitations of fixed volume culture vessels and the costs associated with sparging. Cali-5-Bond gas-sampling bag was used as the culture vessel. The bags contain approximately six times more mass of CO than the 40 mL vials at 1 atm of pressure and performed equally to the 40 mL vials in terms of their ability to maintain the composition of the gas over extended incubation times. Experiments using Clostridium ljungdahlii and CO as the sole carbon and energy source in both the gas sampling bag cultivation system and the traditional vial system demonstrated that this culture had a 15x increase in optical density in 24 h of incubation. The gas-sampling bags offer a viable alternative to gas sparging while overcoming the limitations of fixed volume culture vessels.

  5. Production, characterization and utilization of the biomass from various sources

    OpenAIRE

    Gojkovic, Živan

    2014-01-01

    Biomass management is one of the most important issues in modern natural science as it is the basic category which spans through various disciplines of biotechnology. Whether animal, plant or microbial by its origin, biomass presents a vast source of food components, fine chemicals and bioactive molecules, which extraction, characterization and formulation can result in interesting new products destined for human consumption or as new materials in biomedicine. In the scope of t...

  6. Innovative slow-release organic carbon-source material for groundwater in situ denitrification.

    Science.gov (United States)

    Zhang, Dayi; Zhang, Xu; Wang, Yun; Zhou, Guizhong; Li, Guanghe

    2015-01-01

    Slow-release organic carbon-source (SOC) material, a new kind of electron donor for in situ groundwater denitrification, was prepared and evaluated in this study. With starch as a biologically utilized carbon source and polyvinyl alcohol (PVA) as a frame, this material performed controllable carbon release rates and demonstrated stable behaviour during the simulated denitrification process. Raman spectrum analysis showed that the PVA skeleton formed cross-linking network structures for hydrogen-bonded water molecules reset in low temperatures, and the starchy molecules filled in the interspace of the skeleton to form a two-phase interlocking/disperse phase structure. In a static system, carbon release processes followed the Fickian law with (1.294-6.560)×10(-3) mg g(-1) s(-1/2) as the release coefficient. Under domestication and in situ groundwater simulation conditions, SOC material played a favourable role during denitrification, with 1.049±0.165 as an average carbon-nitrogen ratio. The denitrification process followed the law of zero-order kinetics, while the dynamics parameter kN was 0.563-8.753 gN m(-3) d(-1). Generally, SOC material was suggested to be a potential carbon source (electron donor) suitable for in situ groundwater denitrification.

  7. Carbon dioxide utilization: Bridging the GHG mitigation with environmentally friendly technologies

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M. [Univ. of Bari (Italy)

    1997-12-31

    The recovery of carbon dioxide from power plants, flue gases, or industrial processes has been proposed as a technology for its mitigation. The end fate of recovered CO{sub 2} is either disposal in natural fields or gainful utilization (biological, technological, or chemical). The latter option deserves careful consideration as it would be doubly beneficial, helping to control the carbon dioxide emission and to save natural resources through the recycling of carbon. The economical aspects of the utilization option need thorough analysis to determine its feasibility. Another major point to consider is the amount of avoided carbon dioxide. This will define the extent of mitigation possible via the utilization option. To assess the potential of carbon dioxide utilization in the short-, medium-, and long-term is an exercise of great value from both the environmental and economical points of view. In this paper, criteria for the assessment be discussed as well as the current status of industrial carbon dioxide utilization. Furthermore, the perspectives for carbon dioxide utilization will be framed within the research needed for its implementation.

  8. The utilization of dual source CT in imaging of polytrauma

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, S. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)], E-mail: savvas.nicolaou@vch.ca; Eftekhari, A.; Sedlic, T.; Hou, D.J.; Mudri, M.J.; Aldrich, John; Louis, L. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)

    2008-12-15

    Despite the growing role of imaging, trauma remains the leading cause of death in people below the age of 45 years in the western industrialized countries. Trauma has been touted as the largest epidemic in the 20th century. The advent of MDCT has been the greatest advance in trauma care in the last 25 years. However, there are still challenges in CT imaging of the polytrauma individual including time restraints, diagnostic errors, radiation dose effects and bridging the gap between anatomy and physiology. This article will analyze these challenges and provide possible solutions offered by the unique design of the dual source CT scanner.

  9. Biotemplate synthesis of carbon nanostructures using bamboo as both the template and the carbon source

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiaodan [Research Center of Analysis and Measurement, Hangzhou 310014 (China); China National Bamboo Research and Development Center, Hangzhou 310012 (China); Yang, Qian [Research Center of Analysis and Measurement, Hangzhou 310014 (China); Zheng, Yifan; Mo, Weimin; Hu, Jianguan [Research Center of Analysis and Measurement, Hangzhou 310014 (China); College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Huang, Wanzhen, E-mail: risohuang@zjut.edu.cn [Research Center of Analysis and Measurement, Hangzhou 310014 (China)

    2014-03-01

    Graphical abstract: - Highlights: • A new method for the in situ growth of carbon nanostructures was demonstrated. • The bamboo was selected as both the green carbon source and the biotemplate. • Four distinct structural types of carbon nanostructure have been identified. • The corresponding growth mechanism of each carbon nanostructure was proposed. - Abstract: A series of carbon nanostructures were prepared via a biotemplate method by catalytic decomposition of bamboo impregnated with ferric nitrate. The natural nanoporous bamboo was used as both the green carbon source and the template for the in situ growth of carbon nanostructures. Scanning electron microscope, field emission transmission electron microscope and energy dispersive X-ray spectroscope were used to characterize the product. Four distinct structural types of carbon nanostructures have been identified, namely nanofibers, hollow carbon nanospheres, herringbone and bamboo-shaped nanotubes. The effect of reaction temperature (from 600 to 900 °C) on the growth behavior of carbon nanostructures was investigated and the corresponding growth mechanism was proposed. At low temperature the production of nanofibers was favored, while higher temperature led to bamboo-shaped nanostructures.

  10. Isotopic evidence of magmatism and a sedimentary carbon source at the Endeavour hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T A; Proskurowski, G; Lilley, M D

    2004-01-07

    Stable and radiocarbon isotope measurements made on CO{sub 2} from high temperature hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge indicate both magmatic and sedimentary sources of carbon to the hydrothermal system. The Endeavour segment is devoid of overlying sediments and has shown no observable signs of surficial magmatic activity during the {approx}20 years of ongoing studies. The appearance of isotopically heavy, radiocarbon dead CO{sub 2} after a 1999 earthquake swarm requires that this earthquake event was magmatic in origin. Evidence for a sedimentary organic carbon source suggests the presence of buried sediments at the ridge axis. These findings, which represent the first temporally coherent set of radiocarbon measurements from hydrothermal vent fluids, demonstrate the utility of radiocarbon analysis in hydrothermal studies. The existence of a sediment source at Endeavour and the occurrence of magmatic episodes illustrate the extremely complex and evolving nature of the Endeavour hydrothermal system.

  11. Characteristics of shunting arc discharge for carbon ion source

    Science.gov (United States)

    Takaki, K.; Mukaigawa, S.; Fujiwara, T.; Kumagai, M.; Yukimura, K.

    2003-05-01

    The criteria of initial resistance of carbon rod for shunting arc ignition are described in this article. The five different resistances were used. The rods are 40 mm in length and 2 mm in diameter. The carbon rod was set in the vacuum and was initially heated up with a pulsed current supplied by a charged capacitor with a capacitance of 20 μF, followed by a self-ignition. The heating energy is almost independent of the charging voltage of the capacitor. The heating energy increases with decreasing the rod resistance, whereas the energy deposited in the plasma and the utilizing efficiency of the charged energy in the capacitor decreases.

  12. Capture and utilization of carbon dioxide with polyethylene glycol

    CERN Document Server

    Yang, Zhen-Zhen; He, Liang-Nian

    2012-01-01

    In this volume, Professor He and his coworkers summarize polyethylene glycol (PEG)-promoted CO2 chemistry on the basis of understanding about phase behavior of PEG/CO2 system and reaction mechanism at molecular level. As PEG could be utilized as a green replacement for organic solvents, phase-transfer catalyst, surfactant, support in various reaction systems, significantly promoting catalytic activity and recovering expensive metal catalysts, particularly regarded as a CO2-philic material, the authors focus on special applications of PEG in CO2 capture and utilization, including PEG-functional

  13. Utilization of tomato waste as a source of polyphenolic antioxidants

    Directory of Open Access Journals (Sweden)

    Savatović Slađana M.

    2010-01-01

    Full Text Available This study is concerned with the effects of two extraction procedures (using ultrasonic bath and high performance homogenizer on the extraction efficiency of polyphenolics present in the tomato waste. The isolation of flavonoid fraction of obtained extracts was performed by solid-phase extraction. The antioxidant activity of flavonoid fractions was determined using different spectrophotometric tests, including reducing power and 2,2- diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assays. The content of total polyphenolics and flavonoids in extract obtained employing homogenizer (E2 was higher than in the extract obtained employing ultrasonic bath (E1, and it was 14.33 mg/g and 7.70 mg/g, respectively. The flavonoid fraction (EF2 of extract E2 showed higher antioxidant activity than flavonoid fraction (EF1 of extract E1. The DPPH free radical scavenging activity of fractions EF1 and EF2, expressed as EC50 value, were 0.78 mg/ml and 0.45 mg/ml, respectively. The obtained results show that tomato wastes can be used as an easily accessible source of antioxidant polyphenolics.

  14. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, Jesus

    2015-12-18

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering the redefinition of recalcitrant DOC recently proposed by Jiao et al., the dilution hypothesis best explains our experimental observations.

  15. Synthesis of LiFePO_4/C Composite Cathode Materials Using High Surface Area Carbon as Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    George; Ting-kuo; Fey; Kai-Lun; Chiang

    2007-01-01

    1 Results The pyrolyzed product of peanut shells was utilized as a carbon source to synthesize a LiFePO4/C composite.The advantages of using agricultural wastes such as peanut shells are low costs,easy processing,and environmentally benigness.Peanut shell was first treated with a porogenic agent to produce a precursor with high porosity and surface area (>2 000 m2·g-1).A small amount of precursor was mixed with LiFePO4 fine powders and heated.The optimum calcination process for synthesizing LiFePO4/C co...

  16. Different carbon sources affect PCB accumulation by marine bivalves.

    Science.gov (United States)

    Laitano, M V; Silva Barni, M F; Costa, P G; Cledón, M; Fillmann, G; Miglioranza, K S B; Panarello, H O

    2016-02-01

    Pampean creeks were evaluated in the present study as potential land-based sources of PCB marine contamination. Different carbon and nitrogen sources from such creeks were analysed as boosters of PCB bioaccumulation by the filter feeder bivalve Brachidontes rodriguezii and grazer limpet Siphonaria lessoni. Carbon of different source than marine and anthropogenic nitrogen assimilated by organisms were estimated through their C and N isotopic composition. PCB concentration in surface sediments and mollusc samples ranged from 2.68 to 6.46 ng g(-1) (wet weight) and from 1074 to 4583 ng g(-1) lipid, respectively, reflecting a punctual source of PCB contamination related to a landfill area. Thus, despite the low flow of creeks, they should not be underestimated as contamination vectors to the marine environment. On the other hand, mussels PCB bioaccumulation was related with the carbon source uptake which highlights the importance to consider this factor when studying PCB distribution in organisms of coastal systems.

  17. Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M.; Chen, P.C. [Hungkuang University, Taichung (Taiwan)

    2011-05-15

    Before switching totally to alternative fuel stage, CO{sub 2} mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO{sub 2} mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO{sub 2} tolerance even at 15% CO{sub 2} level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO{sub 2} bubble retention time could enhance CO{sub 2} removal efficiencies by 79% and 67%, respectively. A maximum CO{sub 2} fixation rate of 1.01 g CO{sub 2} L{sup -1} day{sup -1} was measured experimentally.

  18. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery

    Directory of Open Access Journals (Sweden)

    Guozhan Jiang

    2016-07-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.

  19. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery

    Science.gov (United States)

    Jiang, Guozhan; Hill, David J.; Kowalczuk, Marek; Johnston, Brian; Adamus, Grazyna; Irorere, Victor; Radecka, Iza

    2016-01-01

    Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs. PMID:27447619

  20. Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-zhen; MA Yong; WANG Shu-ying

    2007-01-01

    The aim of this study is to investigate the denitrification potential enhancement by addition of external carbon sources and to estimate the denitrification potential for the predenitrification system using nitrate utilization rate(NUR)batch tests.It is shown that the denitrification potential Can be substantially increased with the addition of three external carbon sources,i.e.methanol,ethanol,and acetate.and the denitrification rates of ethanol,acetate,and methanol reached up to 9.6,12,and 3.2 mgN/(gVSS·h),respectively,while mat of starch wastewater was only 0.74 mgN/(gVSS·h).By comparison,ethanol was found to be the best extemal carbon source.NUR batch tests with starch wastewater and waste ethanol were carried out.The denitrification potential increased from 5.6 to 16.5 mg NO.-N/L owing to waste ethanol addition.By means of NUR tests,the wastewater characteristics and kinetic parameters can be estimated.which are used to determine the denitrification potential of wastewater,to calculate the denitrification potential of the plant and to predict the nitrate effluent quality,as well as provide information for developing carbon dosage conlxol strategy.

  1. Gas-solid carbonation as a possible source of carbonates in cold planetary environments

    Science.gov (United States)

    Garenne, A.; Montes-Hernandez, G.; Beck, P.; Schmitt, B.; Brissaud, O.; Pommerol, A.

    2013-02-01

    Carbonates are abundant sedimentary minerals at the surface and sub-surface of the Earth and they have been proposed as tracers of liquid water in extraterrestrial environments. Their formation mechanism is since generally associated with aqueous alteration processes. Recently, carbonate minerals have been discovered on Mars' surface by different orbitals or rover missions. In particular, the phoenix mission has measured from 1% to 5% of calcium carbonate (calcite type) within the soil (Smith et al., 2009). These occurrences have been reported in area where the relative humidity is significantly high (Boynton et al., 2009). The small concentration of carbonates suggests an alternative process on mineral grain surfaces (as suggested by Shaheen et al., 2010) than carbonation in aqueous conditions. Such an observation could rather point toward a possible formation mechanism by dust-gas reaction under current Martian conditions. To understand the mechanism of carbonate formation under conditions relevant to current Martian atmosphere and surface, we designed an experimental setup consisting of an infrared microscope coupled to a cryogenic reaction cell (IR-CryoCell setup). Three different mineral precursors of carbonates (Ca and Mg hydroxides, and a hydrated Ca silicate formed from Ca2SiO4), low temperature (from -10 to +30 °C), and reduced CO2 pressure (from 100 to 2000 mbar) were utilized to investigate the mechanism of gas-solid carbonation at mineral surfaces. These mineral materials are crucial precursors to form Ca and Mg carbonates in humid environments (0%carbonation process for Ca hydroxide and hydrated Ca silicate. Conversely, only a moderate carbonation is observed for the Mg hydroxide. These results suggest that gas-solid carbonation process or carbonate formation at the dust-water ice-CO2 interfaces could be a currently active Mars' surface

  2. Utilization of Carbonized Wood from Tropical Fast-Growing Trees for Functional Materials

    Directory of Open Access Journals (Sweden)

    Joko Sulistyo

    2015-01-01

    Full Text Available Pembangunan hutan tanaman dari jenis-jenis cepat tumbuh di kawasan tropis menimbulkan limbah biomassa kayu yang sebagian saat ini digunakan untuk kayu bakar dan sebagian lain digunakan untuk produksi arang dengan tujuan penggunaan yang terbatas. Pengembangan material-material fungsional untuk berbagai aplikasi teknik dengan memanfaatkan arang kayu dari jenis pohon cepat tumbuh harus mempertimbangkan struktur mikro dan struktur pori dalam arang kayu yang berhubungan dengan kondisi karbonisasi. Ulasan ini meliputi kemajuan penelitian-penelitian saat ini pada karbonisasi kayu dari pohon cepat tumbuh tropis, mekanisme perkembangan struktur mikro dan struktur pori dalam arang kayu selama karbonisasi, pemanfaatan yang tepat dari struktur mikro dan porositas dalam arang kayu untuk pengembangan material-material fungsional serta usaha dan peningkatan pengembangan material-material fungsional menggunakan arang kayu dari pohon cepat tumbuh tropis. Katakunci: arang kayu, material fungsional, pohon cepat tumbuh, karbonisasi   Utilization of Carbonized Wood from Tropical Fast-Growing Trees for Functional Materials Abstract Establishment of fast-growing tree species plantations in tropical areas generate wood biomass residue in which some of them are currently utilized for heating fuel and some others are used for charcoal production with limited purposes. The development of functional materials for engineering applications utilizing carbonized wood from fast-growing trees species have to consider the microstructure and pore structure in carbonized wood which has a relationship to the carbonization conditions. This review covers the current researches on progress in the carbonization of wood from tropical fast-growing trees, mechanism of the microstructure and pore structure development in carbonized wood during carbonization, proper utilizations of the microstructure and porosity in carbonized wood for the development of functional materials and efforts

  3. Effect of carbon source on the denitrification in constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    LU Songliu; HU Hongying; SUN Yingxue; YANG Jia

    2009-01-01

    The constructed wetlands with different plants in removal of nitrate were investigated.The factors promoting the rates of denitrification including organic carbon, nitrate load, plants in wetlands, pH and water temperature in field were systematically investigated.The results showed that the additional carbon source (glucose) can remarkably improve the nitrate removal ability of the constructed wetland.It demonstrated that the nitrate removal rate can increase from 20% to more than 50% in the summer and from 10% to 30% in the winter, when the nitrate concentration was 30-40 mg/L, the retention time was 24 h and 25 mg/L dissolved organic carbon (DOC) was ploughed into the constructed wetland.However, the nitrite in the constructed wetland accumulated a litter with the supply of the additional carbon source in summer and winter, and it increased from 0.15 to 2 mg/L in the effluent.It was also found that the abilities of plant in adjusting pH and temperature can result in an increase of denitrification in wetlands, and the seasonal change may impact the denitrification.

  4. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2015-08-01

    Full Text Available In this study, fluorescent nitrogen-doped carbon dots (NCDs were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  5. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Gao, Peng; Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn; Du, Dezhuang [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 (China); Guo, Jun [Testing and Analysis Center, Soochow University, Suzhou 215123 (China)

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  6. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States

    Science.gov (United States)

    Briggs, Nicole L.; Long, Christopher M.

    2016-11-01

    An increasing number of air pollution source apportionment studies in Europe and the United States have focused on the black carbon (BC) fraction of ambient particulate matter (PM) given its linkage with adverse public health and climate impacts. We conducted a critical review of European and US BC source apportionment studies published since 2003. Since elemental carbon (EC) has been used as a surrogate measure of BC, we also considered source apportionment studies of EC measurements. This review extends the knowledge presented in previous ambient PM source apportionment reviews because we focus on BC and EC and critically examine the differences between source apportionment results for different methods and source categories. We identified about 50 BC and EC source apportionment studies that have been conducted in either Europe or the US since 2003, finding a striking difference in the commonly used source apportionment methods between the two regions and variations in the assigned source categories. Using three dominant methodologies (radiocarbon, aethalometer, and macro-tracer methods) that only allow for BC to be broadly apportioned into either fossil fuel combustion or biomass burning source categories, European studies generally support fossil fuel combustion as the dominant ambient BC source, but also show significant biomass burning contributions, in particular in wintertime at non-urban locations. Among US studies where prevailing methods such as chemical mass balance (CMB) and positive matrix factorization (PMF) models have allowed for estimation of more refined source contributions, there are fewer findings showing the significance of biomass burning and variable findings on the relative proportion of BC attributed to diesel versus gasoline emissions. Overall, the available BC source apportionment studies provide useful information demonstrating the significance of both fossil fuel combustion and biomass burning BC emission sources in Europe and the US

  7. Optimization of an Atmospheric Carbon Source for Extremophile Cyanobacteria

    Science.gov (United States)

    Beaubien, Courtney

    This thesis examines the use of the moisture swing resin materials employed at the Center for Negative Carbon Emissions (CNCE) in order to provide carbon dioxide from ambient air to photobioreactors containing extremophile cyanobacteria cultured at the Arizona Center for Algae Technology and Innovation (AzCATI). For this purpose, a carbon dioxide feeding device was designed, built, and tested. The results indicate how much resin should be used with a given volume of algae medium: approximately 500 grams of resin can feed 1% CO2 at about three liters per minute to a ten liter medium of the Galdieria sulphuraria 5587.1 strain for one hour (equivalent to about 0.1 grams of carbon dioxide per hour per seven grams of algae). Using the resin device, the algae grew within their normal growth range: 0.096 grams of ash-free dry weight per liter over a six hour period. Future applications in which the resin-to-algae process can be utilized are discussed.

  8. Trace Metal Source Terms in Carbon Sequestration Environments

    Energy Technology Data Exchange (ETDEWEB)

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  9. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Erik R. Coats; William A. Smith; Frank J. Loge; Michael P. Wolcott

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activated sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.

  10. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].

    Science.gov (United States)

    Zheng, Hongli; Gao, Zhen; Zhang, Qi; Huang, He; Ji, Xiaojun; Sun, Honglei; Dou, Chang

    2011-03-01

    We studied the effects of three inorganic carbon sources, Na2CO3, NaHCO3 and CO2, and their initial concentrations on lipid production of Chlorella vulgaris. Chlorella vulgaris could utilize Na2CO3, NaHCO3 and CO2 to produce lipids. After 10-day cultivation with each of the three inorganic carbon sources, lipid yield of Chlorella vulgaris reached its peak with the concentration increase of the inorganic carbon source, but dropped again by further increase of the concentration. The pH value of the culture medium for Chlorella vulgaris increased after the cultivation on inorganic carbon source. The optimal concentration of both Na2CO3 and NaHCO3 was 40 mmol/L, and their corresponding biomass dry weight was 0.52 g/L and 0.67 g/L with their corresponding lipid yield 0.19 g/L and 0.22 g/L. When the concentration of CO2 was 6%, Chlorella vulgaris grew the fastest and its biomass dry weight was 2.42 g/L with the highest lipid yield of 0.72 g/L. When the concentration of CO2 was too low, the supply of inorganic carbon was insufficient and lipid yield was low. A too high concentration of CO2 caused a low pH and lipid accumulation was inhibited. Na2CO3 and NaHCO3 were more favorable for Chlorella vulgaris to accumulate unsaturated fatty acids than that of CO2.

  11. Environmental potential of carbon dioxide utilization in the polyurethane supply chain.

    Science.gov (United States)

    von der Assen, Niklas; Sternberg, André; Kätelhön, Arne; Bardow, André

    2015-01-01

    Potential environmental benefits have been identified for the utilization of carbon dioxide (CO2) as a feedstock for polyurethanes (PUR). CO2 can be utilized in the PUR supply chain in a wide variety of ways ranging from direct CO2 utilization for polyols as a PUR precursor, to indirect CO2 utilization for basic chemicals in the PUR supply chain. In this paper, we present a systematic exploration and environmental evaluation of all direct and indirect CO2 utilization options for flexible and rigid PUR foams. The analysis is based on an LCA-based PUR supply chain optimization model using linear programming to identify PUR production with minimal environmental impacts. The direct utilization of CO2 for polyols allows for large specific impact reductions of up to 4 kg CO2-eq. and 2 kg oil-eq. per kg CO2 utilized, but the amounts of CO2 that can be utilized are limited to 0.30 kg CO2 per kg PUR. The amount of CO2 utilized can be increased to up to 1.7 kg CO2 per kg PUR by indirect CO2 utilization in the PUR supply chain. Indirect CO2 utilization requires hydrogen (H2). The environmental impacts of H2 production strongly affect the impact of indirect CO2 utilization in PUR. To achieve optimal environmental performance under the current fossil-based H2 generation, PUR production can only utilize much less CO2 than theoretically possible. Thus, utilizing as much CO2 in the PUR supply chain as possible is not always environmentally optimal. Clean H2 production is required to exploit the full CO2 utilization potential for environmental impact reduction in PUR production.

  12. Influence of carbon and nitrogen sources on growth, nitrogenase activity, and carbon metabolism of Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Tejera, Noel A; Ortega, Eduardo; Rodés, Rosa; Lluch, Carmen

    2004-09-01

    The effects of different carbon and nitrogen sources on the growth, nitrogenase activity, and carbon metabolism of Gluconacetobacter diazotrophicus were investigated. The amino acids asparagine, aspartic acid, and glutamic acid affected microbial growth and nitrogenase activity. Several enzymatic activities involved in the tricarboxylic acid cycle were affected by the carbon source used. In addition, glucose and gluconate significantly increased the oxygen consumption (respiration rate) of whole cells of G. diazotrophicus grown under aerobic conditions. Enzymes responsible for direct oxidation of glucose and gluconate were especially active in cells grown with sucrose and gluconate. The presence of amino acids in the apoplastic and symplastic sap of sugarcane stems suggests that these compounds might be of importance in the regulation of growth and nitrogenase activity during the symbiotic association. The information obtained from the plant-bacterium association together with the results of other biochemical studies could contribute to the development of biotechnological applications of G. diazotrophicus.

  13. Siberian Arctic black carbon sources constrained by model and observation

    Science.gov (United States)

    Winiger, Patrik; Andersson, August; Eckhardt, Sabine; Stohl, Andreas; Semiletov, Igor P.; Dudarev, Oleg V.; Charkin, Alexander; Shakhova, Natalia; Klimont, Zbigniew; Heyes, Chris; Gustafsson, Örjan

    2017-02-01

    Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ngṡm‑3 to 302 ngṡm‑3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth.

  14. Ligninolytic Activity of Ganoderma strains on Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    TYPUK ARTININGSIH

    2006-10-01

    Full Text Available Lignin is a phenylpropanoid polymers with only few carbon bonds might be hydrolized. Due to its complexity, lignin is particularly difficult to decompose. Ganoderma is one of white rot fungi capable of lignin degradation. The ligninolytic of several species Ganoderma growing under different carbon sources was studied under controlled conditions which P. chrysosporium was used as standard comparison.Three types of ligninolytic, namely LiP, MnP, and laccase were assessed quantitatively and qualitatively. Ratio between clear zone and diameter of fungal colony was used for measuring specific activity qualitatively.Four sspecies of Ganoderma showed positive ligninolytic qualitatively that G. lucidum KT2-32 gave the highest ligninolytic. Activity of LiP and MnP in different carbon sources was consistently resulted by G. lucidum KT2-32, while the highest activity of laccase was shown by G. ochrolaccatum SA2-14. Medium of Indulin AT affected production of protein extracellular and induced ligninolytic. Glucose, BMC, and pine sawdust did not affect the activity of ligninolytic. The specific activity of Ganoderma species was found to be higher than the one of P. chrysosporium.

  15. Carbon dioxide utilization via carbonate-promoted C-H carboxylation.

    Science.gov (United States)

    Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W

    2016-03-10

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  16. Carbon dioxide utilization via carbonate-promoted C-H carboxylation

    Science.gov (United States)

    Banerjee, Aanindeeta; Dick, Graham R.; Yoshino, Tatsuhiko; Kanan, Matthew W.

    2016-03-01

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO32-) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)—a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO32--promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  17. MEDIA OPTIMIZATION FOR BIOPROTEINS PRODUCTION FROM CHEAPER CARBON SOURCE

    Directory of Open Access Journals (Sweden)

    P. JAMAL

    2008-08-01

    Full Text Available There are high demands for animal and human food supply especially protein, which is an important dietary component. Agricultural wastes, cheap carbon sources- which are rich and have high energy, can be used for producing the value added bioprotein. A lab scale study was carried out to optimize the media composition for bioprotein production from a cheaper carbon source - wheat flour using potential strain, which was selected earlier by screening different microorganisms. The performance of the selected strain was enhanced by media optimization with varied substrate concentration, nitrogen sources and nutrient supplementation according to the central composite design from STATISTICA software. Statistical optimization was carried out to evaluate the polynomial regression model through effect of linear, quadratic and interaction of the factors. The maximum biomass produced was 21.89 g/L with optimum fermentation conditions of wheat flour (4 g/L, nitrogen concentration (0.5 g/L, nutrient concentration (0.1 g/L, and four days of fermentation.

  18. Russia's black carbon emissions: focus on diesel sources

    Science.gov (United States)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  19. Kupier prize lecture: Sources of solar-system carbon

    Science.gov (United States)

    Anders, Edward; Zinner, Ernst

    1994-01-01

    We have tried to deconvolve Solar-System carbon into its sources, on the basis of C-12/C-13 ratios (equivalent to R). Interstellar SiC in meteorites, representing greater than 4.6-Ga-old stardust from carbon stars, is isotopically heavier (bar R = 38 +/- 2) than Solar-System carbon (89), implying that the latter contains an additional, light component. A likely source are massive stars, mainly Type II supernovae and Wolf-Rayet stars, which, being O-rich, eject their C largely as CO rather than carbonaceous dust. The fraction of such light C in the Solar System depends on R(sub light) in the source. For R(sub light) = 180-1025 (as in 'Group 4' meteoritic graphite spherules, which apparently came from massive stars greater than 4.6 Ga ago), the fraction of light C is 0.79-0.61. Similar results are obtained for present-day data on red giants and interstellar gas. Although both have become enriched in C-13 due to galactic evolution (to bar-R = 20 and 57), the fraction of the light component in interstellar gas again is near 0.7. (Here bar R represents the mean of a mixture calculated via atom fractions; it is not identical to the arithmetic mean R). Interstellar graphite, unlike SiC, shows a large peak at R approximately equal 90, near the solar value. Although some of the grains may be of local origin, others show anomalies in other elements and hence are exotic. Microdiamonds, with R = 93, also are exotic on the basis of their Xe and N. Apparently R approximately 90 was a fairly common composition 4.6 Ga ago, of stars as well as the ISM.

  20. Demographic Information Sources and Utilization as Determinants of Educational Policy Making in South Western Nigeria

    Science.gov (United States)

    Gbadamosi, Belau Olatunde

    2013-01-01

    The paper examines demographic information sources and utilization as determinants of educational policy making in South West Nigeria. Using validated and structured questionnaire, the study population of 398 officers in the ministries of education in the affected states were enumerated. The study establishes population census, vital registration,…

  1. Advanced system demonstration for utilization of biomass as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The results of a 20 month study to explore the technical and economic feasibility of fuelwood utilization to operate a 50 megawatt energy conversion facility are described. The availability of biomass as a fuel source, the methods of harvesting and collecting the fuelstock, the costs of providing adequate fuel to the plant, and other requirements for fueling the proposed conversion facility are investigated. (MHR)

  2. When Forest become carbon sources: Impact of herbivory on carbon balance

    Science.gov (United States)

    Schafer, K. V.; Clark, K. L.; Skowronski, N. S.

    2008-12-01

    Traditionally forests are thought to be carbon sinks and are becoming important trading commodities in the carbon trading markets. However, disturbances such as fire, hurricanes and herbivory can lead to forests being sources rather than sinks of carbon. Here, we investigate the carbon balance of an oak/pine forest in the New Jersey Pine Barrens under herbivory attack in summer 2007. Net primary productivity (NPP) was reduced to ca 70% of previous year NPP (535 g m-2 a-1 in 2006) and canopy net assimilation (AnC), as modeled with the Canopy Conductance Constrained Carbon Assimilation model (4C-A), was reduced to ca 65 % of previous year (1335 g m-2 a-1 in 2006) AnC or ca 1015 g C m-2 a-1. Although the trees were defoliated for only 15 % of the normal annual growing season, the impact amounted to ca 30 % of C accumulation loss when integrated over the year. Overall NPP in 2007 was ca 378 g C m-2 a-1 with 50 % of NPP being allocated to foliage production which constitutes a short term carbon pool. On an ecosystem level net ecosystem exchange amounted to a release of 293 g C m-2 a-1 thus becoming a carbon source over the course of the year rather than being a sink for C. The overall impact of the defoliation spanned 21% of upland forests (320 km2) in the New Jersey Pine Barrens thus representing a significant amount of overall C being emitted back to the atmosphere rather than being accumulated in the biosphere.

  3. Quantification of carbon sources for isoprene emission in poplar leaves

    Science.gov (United States)

    Kreutzwieseer, J.; Graus, M.; Schnitzler, J. P.; Heizmann, U.; Rennenberg, H.; Hansel, A.

    2003-12-01

    Isoprene is the most abundant volatile organic compound emitted by plants and in particular by trees. Current interest in understanding its biosynthesis in chloroplasts is forced by the important role isoprene plays in atmospheric chemistry. Leaf isoprene formation is closely linked to photosynthesis by a dynamic use of recently fixed photosynthetic precursors in the chloroplast. Under steady state conditions in [13C]CO2 atmosphere approximately 75 % of isoprene became labeled within minutes. The source of unlabeled C is suggested to be of extra-chloroplastidic and/or from starch degradation. In order to test whether these alternative carbon sources - leaf internal C-pools and xylem-transported carbohydrates, contribute to leaf isoprene formation in poplar (Populus tremula x P. alba) on-line proton-transfer-reaction-mass spectrometry (PTR-MS) was used to follow 13C-labeling kinetics.

  4. Regional prediction of carbon isotopes in soil carbonates for Asian dust source tracer

    Science.gov (United States)

    Chen, Bing; Cui, Xinjuan; Wang, Yaqiang

    2016-10-01

    Dust particles emitted from deserts and semi-arid lands in northern China cause particulate pollution that increases the burden of disease particularly for urban population in East Asia. The stable carbon isotopes (δ13C) of carbonates in soils and dust aerosols in northern China were investigated. We found that the δ13C of carbonates in surface soils in northern China showed clearly the negative correlation (R2 = 0.73) with Normalized Difference Vegetation Index (NDVI). Using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived NDVI, we predicted the regional distribution of δ13C of soil carbonates in deserts, sandy lands, and steppe areas. The predictions show the mean δ13C of -0.4 ± 0.7‰ in soil carbonates in Taklimakan Desert and Gobi Deserts, and the isotope values decrease to -3.3 ± 1.1‰ in sandy lands. The increase in vegetation coverage depletes 13C in soil carbonates, thus the steppe areas are predicted by the lowest δ13C levels (-8.1 ± 1.7‰). The measurements of atmospheric dust samples at eight sites showed that the Asian dust sources were well assigned by the 13C mapping in surface soils. Predicting 13C in large geographical areas with fine resolution offers a cost-effective tracer to monitor dust emissions from sandy lands and steppe areas which show an increasing role in Asian dust loading driven by climate change and human activities.

  5. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate [Baylor Univ., Waco, TX (United States)

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  6. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact campaign was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Barrow, Alaska. The carbonaceous component was characterized by measuring the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the PM, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine PM fractions (PM2.5) and 49 coarse (PM10) PM fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the Barrow Black Carbon Source and Impact (BBCSI) study used standard Tisch “hi-vol” motors that have a known lifetime of approximately 1 month under constant use; this necessitated monthly maintenance, and it is suggested that, for future deployment in the Arctic, the motors be upgraded to industrial blowers. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric PM samples from Barrow, Alaska, from July 2012 to June 2013. Preliminary analysis of the OC and BC concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer. However, the annual OC concentrations had a very different seasonal pattern with the highest concentrations during the summer, lowest concentrations during the fall, and increased concentrations during the winter and spring (Figure 1).

  7. Carbon Isotope Ratios Of Carbon Dioxide In The Urban Salt Lake Valley, Utah USA: Source And Long-Term Monitoring Observations

    Science.gov (United States)

    Ehleringer, J.; Lai, C.; Strong, C.; Pataki, D. E.; Bowling, D. R.; Schauer, A. J.; Bush, S.

    2011-12-01

    A high-precision, decadal record of carbon isotope ratios in atmospheric carbon dioxide has been produced for the urbanized Salt Lake Valley, Utah USA. These data complement a similar time series of atmospheric carbon dioxide concentrations for different locations in the same urban region. This isotopic record includes diurnal and nocturnal observations based on flask (IRMS-based) and continuous (TDL-based) measurement systems. These data reveal repeatable diurnal and seasonal variations in the anthropogenic and biogenic carbon sources that can be used to reconstruct different source inputs. As the Salt Lake Valley is an isolated urban region, the impacts of local anthropogenic inputs can be distinguished from regional patterns as measured by NOAA at the rural Wendover monitoring station 200 km to the west of the Salt Lake Valley. Complementary data, such as vehicle exhaust, emission from power plants and household furnaces, plant and soil organic matter, are also provided to quantify the carbon isotope ratios of the predominant anthropogenic and biogenic sources within the Salt Lake Valley. The combined source and long-term observational values will be made freely available and their utility is discussed for modeling efforts including urban metabolism modeling and atmospheric trace gas modeling.

  8. Soil carbon dioxide emissions from the Mojave desert: Isotopic evidence for a carbonate source

    Science.gov (United States)

    Soper, Fiona M.; McCalley, Carmody K.; Sparks, Kimberlee; Sparks, Jed P.

    2017-01-01

    Arid soils represent a substantial carbonate pool and may participate in surface-atmosphere CO2 exchange via a diel cycle of carbonate dissolution and exsolution. We used a Keeling plot approach to determine the substrate δ13C of CO2 emitted from carbonate-dominated soils in the Mojave desert and found evidence for a nonrespiratory source that increased with surface temperature. In dry soils at 25-30°C, the CO2 substrate had δ13C values of -19.4 ± 4.2‰, indicative of respiration of organic material (soil organic matter = -23.1 ± 0.8‰). CO2 flux increased with temperature; maximum fluxes occurred above 60°C, where δ13CO2 substrate (-7.2‰ ± 2.8‰) approached soil carbonate values (0.2 ± 0.2‰). In wet soils, CO2 emissions were not temperature dependent, and δ13CO2 substrate was lower in vegetated soils with higher flux rates, higher organic C content, and potential root respiration. These data provide the first direct evidence of CO2 emissions from alkaline desert soils derived from an abiotic source and that diurnal emission patterns are strongly driven by surface temperature.

  9. UTILIZATION OF ORGANIC NITROGEN-SOURCES BY 2 PHYTOPLANKTON SPECIES AND A BACTERIAL ISOLATE IN PURE AND MIXED CULTURES

    NARCIS (Netherlands)

    IETSWAART, T; SCHNEIDER, PJ; PRINS, RA

    1994-01-01

    Algal production of dissolved organic carbon and the regeneration of nutrients from dissolved organic carbon by bacteria are important aspects of nutrient cycling in the sea, especially when inorganic nitrogen is limiting. Dissolved free amino acids are a major carbon source for bacteria and can be

  10. Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains.

    Directory of Open Access Journals (Sweden)

    Alicia Gutiérrez

    Full Text Available The capacity of wine yeast to utilize the nitrogen available in grape must directly correlates with the fermentation and growth rates of all wine yeast fermentation stages and is, thus, of critical importance for wine production. Here we precisely quantified the ability of low complexity nitrogen compounds to support fast, efficient and rapidly initiated growth of four commercially important wine strains. Nitrogen substrate abundance in grape must failed to correlate with the rate or the efficiency of nitrogen source utilization, but well predicted lag phase length. Thus, human domestication of yeast for grape must growth has had, at the most, a marginal impact on wine yeast growth rates and efficiencies, but may have left a surprising imprint on the time required to adjust metabolism from non growth to growth. Wine yeast nitrogen source utilization deviated from that of the lab strain experimentation, but also varied between wine strains. Each wine yeast lineage harbored nitrogen source utilization defects that were private to that strain. By a massive hemizygote analysis, we traced the genetic basis of the most glaring of these defects, near inability of the PDM wine strain to utilize methionine, as consequence of mutations in its ARO8, ADE5,7 and VBA3 alleles. We also identified candidate causative mutations in these genes. The methionine defect of PDM is potentially very interesting as the strain can, in some circumstances, overproduce foul tasting H2S, a trait which likely stems from insufficient methionine catabolization. The poor adaptation of wine yeast to the grape must nitrogen environment, and the presence of defects in each lineage, open up wine strain optimization through biotechnological endeavors.

  11. A Novel Airborne Carbon Isotope Analyzer for Methane and Carbon Dioxide Source Fingerprinting

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Owano, T. G.; Leifer, I.

    2014-12-01

    Recent field studies on major sources of the important greenhouse gas methane (CH4) indicate significant underestimation of methane release from fossil fuel industrial (FFI) and animal husbandry sources, among others. In addition, uncertainties still exist with respect to carbon dioxide (CO2) measurements, especially source fingerprinting. CO2 isotopic analysis provides a valuable in situ measurement approach to fingerprint CH4 and CO2as associated with combustion sources, leakage from geologic reservoirs, or biogenic sources. As a result, these measurements can characterize strong combustion source plumes, such as power plant emissions, and discriminate these emissions from other sources. As part of the COMEX (CO2 and MEthane eXperiment) campaign, a novel CO2 isotopic analyzer was installed and collected data aboard the CIRPAS Twin Otter aircraft. Developing methods to derive CH4 and CO2 budgets from remote sensing data is the goal of the summer 2014 COMEX campaign, which combines hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages the synergy between high spatial resolution HSI and moderate spatial resolution NIS. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (100-3000 ppm). The laboratory accuracy is ±1.2 ppm (1σ) in CO2 from 370-1000 ppm, with a long-term (1000 s) precision of ±0.012 ppm. The long-term precision for both δ13C and δ18O is 0.04 ‰, and for δ17O is 0.06 ‰. The analyzer was field-tested as part of the COWGAS campaign, a pre-cursor campaign to COMEX in March 2014, where it successfully discriminated plumes related to combustion processes associated with

  12. Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal

    Directory of Open Access Journals (Sweden)

    Çiğdem Kıvılcımdan Moral

    2016-01-01

    Full Text Available Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely, Azotobacter and Pseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.

  13. Acetic Acid bacteria: physiology and carbon sources oxidation.

    Science.gov (United States)

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  14. Analysis of the carbon source for diamond crystal growth

    Institute of Scientific and Technical Information of China (English)

    LI Li; XU Bin; LI MuSen

    2008-01-01

    The lattice constants of diamond and graphite at high pressure and high temperature (HPHT) were calculated on the basis of linear expansion coefficient and elastic constant. According to the empirical electron theory of solids and molecules (EET), the valence electron structures (VESs) of diamond, graphite crystal and their common planes were calculated. The relationship between diamond and graphite structure was analyzed based on the boundary condition of the improved Thomas-Fermi-Dirac theory by Cheng (TFDC). It was found that the electron densities of common planes in graphite were not continuous with those of planes in diamond at the first order of approximation. The results show that during the course of diamond single crystal growth at HPHT with metal catalyst, the carbon sources forming diamond structure do not come from the graphite structure directly. The diamond growth mechanism was discussed from the viewpoint of valence electron structure.

  15. Trends in the sources and sinks of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom; Raupach, Mike [GCP, Canberra, Australia; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Marland, Gregg [ORNL; Bopp, Laurent [National Center for Scientific Research, Gif-sur-Yvette, France; Ciais, Philippe [Laboratoire des Sciences du Climat et de l' Environement, France; Friedlingstein, Pierre [National Center for Scientific Research, Gif-sur-Yvette, France; Viovy, Nicolas [National Center for Scientific Research, Gif-sur-Yvette, France; Conway, T.J. [NOAA, Boulder, CO; Doney, Scott C. [Woods Hole Oceanographic Institution; Feely, R. A. [NOAA Pacific Marine Environmental Laboratory; Foster, Pru [University of Bristol, UK; House, Joanna I [University of Bristol, UK; Prentice, Colin I. [University of Bristol, UK; Gurney, Kevin [Purdue University; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Huntingford, Chris [Center for Ecology and Hydrology, Oxon, England; Levy, Peter E. [Center for Ecology and Hydrology, Midlothian, Scotland; Lomas, M. R. [University of Sheffield; Woodward, F. I. [University of Sheffield; Majkut, Joseph [Princeton University; Sarmiento, Jorge L. [Princeton University; Metzl, Nicolas [University of Paris; Ometto, Jean P [ORNL; Randerson, James T. [University of California, Irvine; Peters, Glen P [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Running, Steven [University of Montana, Missoula; Sitch, Stephen [University of Leeds, UK; Takahashi, Taro [Columbia University; Van der Werf, Guido [Universitate Amsterdam

    2009-12-01

    Efforts to control climate change require the stabilization of atmospheric CO2 concentrations. This can only be achieved through a drastic reduction of global CO2 emissions. Yet fossil fuel emissions increased by 29% between 2000 and 2008, in conjunction with increased contributions from emerging economies, from the production and international trade of goods and services, and from the use of coal as a fuel source. In contrast, emissions from land-use changes were nearly constant. Between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on average; the rest was absorbed by carbon sinks on land and in the oceans. In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO2 by the carbon sinks in response to climate change and variability. Changes in the CO2 sinks are highly uncertain, but they could have a significant influence on future atmospheric CO2 levels. It is therefore crucial to reduce the uncertainties.

  16. Carbon Nanotube/Magnesium Composite as a Hydrogen Source.

    Science.gov (United States)

    Yu, Min Kyu; Se, Kwon Oh; Kim, Min Joong; Hwang, Jae Won; Yoon, Byoung Young; Kwon, Hyuk Sang

    2015-11-01

    Hydrogen produced using the steam reforming process contains sulfur and carbon monoxide that are harmful to the Pt catalyst in proton-exchange-membrane fuel cells (PEMFCs). However, CO-free hydrogen can be generated from the hydrolysis of either Al in strongly alkaline water or Mg in neutral water with chlorides such as sea water. The hydrogen generation rate from the hydrolysis of Mg is extremely slow and linearly proportional to the corrosion rate of Mg in chloride water. In this work, we fabricated a carbon nanotube (CNT)--reinforced Mg--matrix composite by Spark Plasma Sintering as a fast hydrogen generation source for a PEMFC. The CNTs distributed in the Mg matrix act as numerous local cathodes, and hence cause severe galvanic corrosion between the Mg-matrix anode and CNT-cathode in NaCl solution. It was found that the hydrogen generation rate from the hydrolysis of the 5 vol.% CNT/Mg composite is 3300 times faster than that of the Mg without CNTs due primarily to the galvanic corrosion effect.

  17. Issues, Challenges, Causes, Impacts and Utilization of Renewable Energy Sources - Grid Integration

    Directory of Open Access Journals (Sweden)

    Er. Mamatha Sandhu

    2014-03-01

    Full Text Available The renewable energy sources have increased significantly due to environmental issues and fossil fuels elevated cost. Integration of renewable energy sources to utility grid depends on the scale of power generation. Large scale power generations are connected to transmission systems where as small scale distributed power generation is connected to distribution systems. There are certain challenges in the integration of both types of systems directly. Due to this, wind energy has gained a lot of investments from all over the world. However, due to the wind speed‘s uncertain behavior it is difficult to obtain good quality power, since wind speed fluctuations reflect on the voltage and active power output of the electric machine connected to the wind turbine. Solar penetration also changes the voltage profile and frequency response of the system and affects the transmission and distribution systems of utility grid. This paper presents a review in the issues, challenges, causes, impacts and utilization of renewable energy sources (RES - Grid Integration.

  18. Land use effects on terrestrial carbon sources and sinks

    Institute of Scientific and Technical Information of China (English)

    Josep; G.; Canadell

    2002-01-01

    Current and past land use practices are critical in determining the distribution and size of global terrestrial carbon (C) sources and sinks. Althoughfossil fuel emissions dominate the anthropogenic perturbation of the global C cycle, land use still drives the largest portion of anthropogenic emissions in a number of tropical regions of Asia. The size of the emission flux owing to land use change is still the biggest uncertainty in the global C budget. The Intergovernmental Panel on Climate Change (IPCC) reported a flux term of 1.7 PgC@a-1 for 1990-1995 but more recent estimates suggest the magnitude of this source may be only of 0.96 PgC@a-1 for the 1990s. In addition, current and past land use practices are now thought to contribute to a large degree to the northern hemisphere terrestrial sink, and are the dominant driver for some regional sinks. However, mechanisms other than land use change need to be invoked in order to explain the inferred C sink in the tropics. Potential candidates are the carbon dioxide (CO2) fertilization and climate change; fertilization due to nitrogen (N) deposition is believed to be small or nil. Although the potential for managing C sinks is limited, improved land use management and new land uses such as reforestation and biomass fuel cropping, can further enhance current terrestrial C sinks. Best management practices in agriculture alone could sequester 0.4-0.8 PgC per year in soils if implemented globally. New methodologies to ensure verification and permanency of C sequestration need to be developed.

  19. Microbial Diversity Indexes Can Explain Soil Carbon Dynamics as a Function of Carbon Source

    Science.gov (United States)

    Maron, Pierre-Alain; Menasseri-Aubry, Safya; Sarr, Amadou; Lévêque, Jean; Mathieu, Olivier; Jolivet, Claudy; Leterme, Philippe; Viaud, Valérie

    2016-01-01

    Mathematical models do not explicitly represent the influence of soil microbial diversity on soil organic carbon (SOC) dynamics despite recent evidence of relationships between them. The objective of the present study was to statistically investigate relationships between bacterial and fungal diversity indexes (richness, evenness, Shannon index, inverse Simpson index) and decomposition of different pools of soil organic carbon by measuring dynamics of CO2 emissions under controlled conditions. To this end, 20 soils from two different land uses (cropland and grassland) were incubated with or without incorporation of 13C-labelled wheat-straw residue. 13C-labelling allowed us to study residue mineralisation, basal respiration and the priming effect independently. An innovative data-mining approach was applied, based on generalized additive models and a predictive criterion. Results showed that microbial diversity indexes can be good covariates to integrate in SOC dynamics models, depending on the C source and the processes considered (native soil organic carbon vs. fresh wheat residue). Specifically, microbial diversity indexes were good candidates to help explain mineralisation of native soil organic carbon, while priming effect processes seemed to be explained much more by microbial composition, and no microbial diversity indexes were found associated with residue mineralisation. Investigation of relationships between diversity and mineralisation showed that higher diversity, as measured by the microbial diversity indexes, seemed to be related to decreased CO2 emissions in the control soil. We suggest that this relationship can be explained by an increase in carbon yield assimilation as microbial diversity increases. Thus, the parameter for carbon yield assimilation in mathematical models could be calculated as a function of microbial diversity indexes. Nonetheless, given limitations of the methods used, these observations should be considered with caution and

  20. Influence of carbon source on alpha-amylase production by Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens

    2001-01-01

    The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol and acet......The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol...... and acetate. A. oryzae did not grow on galactose as the sole carbon source, but galactose was co-metabolized together with glucose. Relative to that on low glucose concentration (below 10 mg/l), productivity was found to be higher during growth on maltose and maltodextrins, whereas it was lower during growth...

  1. Black carbon from the Mississippi River: quantities, sources, and potential implications for the global carbon cycle.

    Science.gov (United States)

    Mitra, Siddhartha; Bianchi, Thomas S; McKee, Brent A; Sutula, Martha

    2002-06-01

    Black carbon (BC) may be a major component of riverine carbon exported to the ocean, but its flux from large rivers is unknown. Furthermore, the global distribution of BC between natural and anthropogenic sources remains uncertain. We have determined BC concentrations in suspended sediments of the Mississippi River, the 7th largest river in the world in terms of sediment and water discharge, during high flow and low flow in 1999. The 1999 annual flux of BC from the Mississippi River was 5 x 10(-4) petagrams (1 Pg = 10(15) g = 1 gigaton). We also applied a principal components analysis to particulate-phase high molecular weight polycyclic aromatic hydrocarbon isomer ratios in Mississippi River suspended sediments. In doing so, we determined that approximately 27% of the BC discharged from the Mississippi River in 1999 originated from fossil fuel combustion (coal and smelter-derived combustion), implicating fluvial BC as an important source of anthropogenic BC contamination into the ocean. Using our value for BC flux and the annual estimate for BC burial in ocean sediments, we calculate that, in 1999, the Mississippi River discharged approximately 5% of the BC buried annually in the ocean. These results have important implications, not only for the global carbon cycle but also for the fluvial discharge of particulate organic contaminants into the world's oceans.

  2. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  3. Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

    Science.gov (United States)

    Oza, A. V.; Leblanc, F.; Berthelier, J. J.; Becker, J.; Coulomb, R.; Gilbert, P.; Hong, N. T.; Lee, S.; Vettier, L.

    2015-12-01

    The characterization of planetary exospheres today, relies on the development of a highly efficient ionization source, due to the scant neutral molecules (n atmospheres provide insight on to physical processes known to occur such as: space weathering, magneto-atmosphere interactions, as well as atmospheric escape mechanisms, all of which are being heavily investigated via current 3D Monte Carlo simulations (Turc et al. 2014, Leblanc et al. 2016 in prep) at LATMOS. Validation of these studies will rely on in-situ observations in the coming decades. Neutral detection strongly depends on electron-impact ionization which via conventional cathode-sources, such as thermal filaments (heated up to 2000 K), may only produce the target ionization essential for energy-measurements with large power consumption. Carbon nanotubes (CNTs) however are ideal low-power, cold cathodes, when subject to moderate electric fields (E ~ 1 MV / m). We present our current device, a small CNT chip, of emission area 15 mm2, emitting electrons that pass through an anode grid and subsequent electrostatic analyzer. The device currently extracts hundreds of µAmperes with applied external voltages ~ -150 Volts, approaching minimum power consumption plasma sputtering the icy regolith with heavy ions and electrons (keV < E < MeV), producing predominately molecular oxygen (Johnson et al. 2002).

  4. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-02-01

    The long economic lifetime and development lead-time of many electric infrastructure investments requires that utility resource planning consider potential costs and risks over a lengthy time horizon. One long-term -- and potentially far-reaching -- risk currently facing the electricity industry is the uncertain cost of future carbon dioxide (CO2) regulations. Recognizing the importance of this issue, many utilities (sometimes spurred by state regulatory requirements) are beginning to actively assess carbon regulatory risk within their resource planning processes, and to evaluate options for mitigating that risk. However, given the relatively recent emergence of this issue and the rapidly changing political landscape, methods and assumptions used to analyze carbon regulatory risk, and the impact of this analysis on the selection of a preferred resource portfolio, vary considerably across utilities. In this study, we examine the treatment of carbon regulatory risk in utility resource planning, through a comparison of the most-recent resource plans filed by fifteen investor-owned and publicly-owned utilities in the Western U.S. Together, these utilities account for approximately 60percent of retail electricity sales in the West, and cover nine of eleven Western states. This report has two related elements. First, we compare and assess utilities' approaches to addressing key analytical issues that arise when considering the risk of future carbon regulations. Second, we summarize the composition and carbon intensity of the preferred resource portfolios selected by these fifteen utilities and compare them to potential CO2 emission benchmark levels.

  5. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions

    Science.gov (United States)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd

    2005-01-01

    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  6. The Rutgers Workflow Management System: Migrating a Digital Object Management Utility to Open Source

    Directory of Open Access Journals (Sweden)

    Grace Agnew

    2007-12-01

    Full Text Available This article examines the development, architecture, and future plans for the Workflow Management System, software developed by Rutgers University Libraries (RUL to create and catalog digital objects for repository ingest and access. The Workflow Management System (WMS was created as a front-end utility for the Fedora open source repository platform and a vehicle for a flexible, extensible metadata architecture, to serve the information needs of a large university and its collaborators. The next phase of development for the WMS shifted to a re-engineering of the WMS as an open source application. This paper discusses the design and architecture of the WMS, its re-engineering for open source release, remaining issues to be addressed before application release, and future development plans for the WMS.

  7. Serpentinites used for carbon dioxide sequestration : a possible economic source for PGE

    Energy Technology Data Exchange (ETDEWEB)

    Porter, K. A. (Katherine A.)

    2001-01-01

    fraction is treated to extract iron and other metals. Since most PGE-bearing minerals in serpentinites and ultramafic rocks are magnetic or are associated with magnetic minerals, the magnetic separation of the powder could serve to essentially concentrate the PGE from the rock bodies. Once the PGE-bearing minerals have been separated and concentrated, the PGE may be at economically extractable levels. The primary focus of this research is the investigation of the PGE concentrations in the serpentinites and ultramafic rocks that may be utilized in the carbonation process. The magnetic fraction from a representative serpentinite body will be analyzed for PGE to determine whether or not these rocks may be economic sources of the PGE.

  8. Drinking water sources, availability, quality, access and utilization for goats in the Karak Governorate, Jordan.

    Science.gov (United States)

    Al-Khaza'leh, Ja'far Mansur; Reiber, Christoph; Al Baqain, Raid; Valle Zárate, Anne

    2015-01-01

    Goat production is an important agricultural activity in Jordan. The country is one of the poorest countries in the world in terms of water scarcity. Provision of sufficient quantity of good quality drinking water is important for goats to maintain feed intake and production. This study aimed to evaluate the seasonal availability and quality of goats' drinking water sources, accessibility, and utilization in different zones in the Karak Governorate in southern Jordan. Data collection methods comprised interviews with purposively selected farmers and quality assessment of water sources. The provision of drinking water was considered as one of the major constraints for goat production, particularly during the dry season (DS). Long travel distances to the water sources, waiting time at watering points, and high fuel and labor costs were the key reasons associated with the problem. All the values of water quality (WQ) parameters were within acceptable limits of the guidelines for livestock drinking WQ with exception of iron, which showed slightly elevated concentration in one borehole source in the DS. These findings show that water shortage is an important problem leading to consequences for goat keepers. To alleviate the water shortage constraint and in view of the depleted groundwater sources, alternative water sources at reasonable distance have to be tapped and monitored for water quality and more efficient use of rainwater harvesting systems in the study area is recommended.

  9. Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources.

    Science.gov (United States)

    Zeng, Wei-Yi; Tang, Yue-Qin; Gou, Min; Xia, Zi-Yuan; Kida, Kenji

    2016-12-01

    Lignocellulosic hydrolysates used for bioethanol production contain a mixture of sugars, with xylose being the second most abundant after glucose. Since xylose is not a natural substrate for Saccharomyces cerevisiae, recombinant S. cerevisiae strongly prefers glucose over xylose, and the fermentation rate and ethanol yield with xylose are both lower than those with glucose. To determine the molecular basis for glucose and xylose fermentation, we used microarrays to investigate the transcriptional difference of a xylose-utilizing industrial strain cultured in both single sugar media and a mixed sugar medium of glucose and xylose. The transcriptomes were nearly identical between glucose metabolizing cells in the glucose alone medium and those in the glucose fermentation phase in the mixed-sugar medium. Whereas the transcriptomes highly differed between the xylose metabolizing cells in the xylose alone medium and those in the xylose fermentation phase in the mixed sugar medium, and the differences mainly involved sulfur metabolism. When the transcriptional profiles were compared between glucose fermentation state and xylose fermentation state, we found the expression patterns of hexose transporters and glucose signaling pathway differed in response to different sugar sources, and the expression levels of the genes involved in gluconeogenesis, the glyoxylate and tricarboxylic acid cycles and respiration increased with xylose, indicating that the xylose-metabolizing cells had high requirements for maintenance energy and lacked the carbon catabolite repression capability. The effect of carbon catabolite repression by glucose lasted after glucose depletion for specific genes to different extents.

  10. Controls on the microbial utilization of carbon monoxide and formic acid in Acidic Hydrothermal Springs in Yellowstone National Park

    Science.gov (United States)

    Urschel, M.; Kubo, M. W.; Hoehler, T. M.; Boyd, E. S.; Peters, J.

    2012-12-01

    In hydrothermal systems, dissolved carbon dioxide (CO2) in the presence of reduced iron-bearing minerals, such as those found in basalt, can be reduced to form formic acid (HCOOH). HCOOH can then be dehydrated in a side reaction, resulting in the generation of carbon monoxide (CO), which forms an equilibrium with HCOOH. HCOOH can also be further reduced to methane, and longer chain hydrocarbons. Geochemical measurements have demonstrated the presence of elevated concentrations of HCOOH, dissolved CO, and dissolved inorganic carbon (CO2, H2CO3), in high temperature, low pH springs in Yellowstone National Park (YNP). Likewise, a number of compounds that could potentially serve as electron acceptors (e.g. S0, SO42-, NO3-, Fe3+) in the oxidation of CO or formic acid have been detected in many of these systems. We hypothesized that the utilization of CO and HCOOH as carbon and/or energy sources is a broadly-distributed metabolic strategy in high temperature, low pH springs in YNP. To test this hypothesis, radiolabeled CO (14CO) and HCOOH (H14COOH) were used to determine rates of CO and formate oxidation activity in three hot springs in YNP ranging in temperature from 53 °C to 89 °C and pH from 2.5 to 5.3. In parallel, 16S rRNA gene sequencing and enrichment isolation techniques were employed to identify the microorganisms responsible for these activities. Our results indicate that CO and HCOOH are important sources of carbon and/or energy in high temperature, low pH hydrothermal springs in Yellowstone National Park. Rates of CO oxidation appear to be orders of magnitude lower than those of HCOOH oxidation. One possible explanation for this result is that HCOOH is preferentially utilized, consistent with thermodynamic calculations indicating that HCOOH liberates approximately 215 kJ/mol more Gibbs energy (under standard conditions) than CO when oxidized with oxygen (O2) as the electron acceptor. Redox couples of HCOOH oxidation with other electron acceptors (e.g. SO4

  11. Carbon utilization profiles of bacteria colonizing the headbox water of two paper machines in a Canadian mill.

    Science.gov (United States)

    Kashama, Johnny; Prince, Véronique; Simao-Beaunoir, Anne-Marie; Beaulieu, Carole

    2009-03-01

    Forty-one bacterial strains isolated from the headbox water of two machines in a Canadian paper mill were associated with the genera Asticcacaulis, Acidovorax, Bacillus, Exiguobacterium, Hydrogenophaga, Pseudomonas, Pseudoxanthomonas, Staphylococcus, Stenotrophomonas based on the sequence of their 16S rRNA genes. The metabolic profile of these strains were determined using Biolog EcoPlate, and the bacteria were divided into four metabolic groups. Metabolic profiles of the bacterial communities colonizing the headbox water of two paper machines was also determined weekly over a 1 year period. The only compound that was not reduced by the bacterial community was 2-hydroxybenzoic acid. Utilization frequency of the other carbon sources in the Biolog EcoPlate ranged from 3 to 100%. The metabolic profiles of the bacterial community did not vary considerably between the two paper machines. However, the metabolic profile varied among the sampling dates.

  12. Vibrio cholerae phosphatases required for the utilization of nucleotides and extracellular DNA as phosphate sources.

    Science.gov (United States)

    McDonough, EmilyKate; Kamp, Heather; Camilli, Andrew

    2016-02-01

    Phosphate is essential for life, being used in many core processes such as signal transduction and synthesis of nucleic acids. The waterborne agent of cholera, Vibrio cholerae, encounters phosphate limitation in both the aquatic environment and human intestinal tract. This bacterium can utilize extracellular DNA (eDNA) as a phosphate source, a phenotype dependent on secreted endo- and exonucleases. However, no transporter of nucleotides has been identified in V. cholerae, suggesting that in order for the organism to utilize the DNA as a phosphate source, it must first separate the phosphate and nucleoside groups before transporting phosphate into the cell. In this study, we investigated the factors required for assimilation of phosphate from eDNA. We identified PhoX, and the previously unknown proteins UshA and CpdB as the major phosphatases that allow phosphate acquisition from eDNA and nucleotides. We demonstrated separable but partially overlapping roles for the three phosphatases and showed that the activity of PhoX and CpdB is induced by phosphate limitation. Thus, this study provides mechanistic insight into how V. cholerae can acquire phosphate from extracellular DNA, which is likely to be an important phosphate source in the environment and during infection.

  13. Biotechnological potential of alternative carbon sources for production of pectinases by Rhizopus microsporus var. rhizopodiformis

    Directory of Open Access Journals (Sweden)

    André Ricardo de Lima Damásio

    2011-02-01

    Full Text Available Fungi collected from Brazilian soil and decomposing plants were screened for pectinase production. R. microsporus var. rhizopodiformis was the best producer and was selected to evaluate the pectic enzyme production under several nutritional and environmental conditions. The pectinase production was studied at 40ºC, under 28 carbon sources-supplemented medium. The inducer effect of several agro-industrial residues such as sugar cane bagasse, wheat flour and corncob on polygalacturonase (PG activity was 4-, 3- and 2-fold higher than the control (pectin. In glucose-medium, a constitutive pectin lyase (PL activity was detected. The results demonstrated that R. microsporus produced high levels of PG (57.7 U/mg and PL (88.6 U/mg in lemon peel-medium. PG had optimum temperature at 65 ºC and was totally stable at 55 ºC for 90 min. Half-life at 70 ºC was 68 min. These results suggested that the versatility of waste carbon sources utilization by R. microsporus, produce pectic enzymes, which could be useful to reduce production costs and environmental impacts related to the waste disposal.

  14. Effect of carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-yi; PENG Yong-zhen; Wang Shu-ying; PAN Mian-li

    2004-01-01

    Effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by DPB sludge was systematically studied using batch experiments, at the same time the variation of ORP was investigated.Results showed that the denitrifying and phosphorus uptake rate in anoxic phase increased with the high initial anaerobic carbon source addition. However once the initial COD concentration reached a certain level, which was in excess to the PHB saturation of poly-P bacteria, residual COD carried over to anoxic phase inhibited the subsequent denitrifying phosphorus uptake. Simultaneously, phosphate uptake continued until all nitrate was removed, following a slow endogenous release of phosphate. High nitrate concentration in anoxic phase increased the initial denitrifying phosphorus rate. Once the nitrate was exhausted, phosphate uptake changed to release. Moreover, the time of this turning point occurred later with the higher nitrate addition. On the other hand, through on-line monitoring the variation of the ORP with different initial COD concentration , it was found ORP could be used as a control parameter for phosphorus release, but it is impossible to utilize ORP for controlling the denitrificaion and anoxic phosphorus uptake operations.

  15. Effect of carbon source and COD/NO₃⁻-N ratio on anaerobic simultaneous denitrification and methanogenesis for high-strength wastewater treatment.

    Science.gov (United States)

    Xie, Li; Chen, Jinrong; Wang, Rui; Zhou, Qi

    2012-06-01

    The effect of carbon source and COD/NO(3)(-)-N ratio on denitrification and methanogenesis in mixed methanogenic matrix was investigated in this study. Industrial wastewater, anaerobic treated cassava stillage (CS) and glucose synthetic wastewater were used as carbon sources respectively for comparison. Experimental results showed that denitrification was the main nitrate reduction pathway for all COD/NO(3)(-)-N ratios tested in two substrates. Simultaneous denitrification and methanogenesis occurred at COD/NO(3)(-)-N higher than 7 regardless of carbon sources. Incomplete denitrification was observed at COD/NO(3)(-)-N ratio below 7 in both the anaerobic effluent of CS and glucose-fed cultures due to the insufficient available organic carbon. The nature of carbon sources was observed to play a key role in the nitrate and organic carbon utilization rates. COD/NO(3)(-)-N ratio had a strong effect on the organic matter utilization pathways. Methanization consumed more organic matter than denitrification with further increase of COD/NO(3)(-)-N ratio above 7 in two substrates. Results of VFA variation suggested that propionate and butyrate were preferably utilized by the denitrifiers than acetate.

  16. A study of the ocean source of carbon disulphide

    Science.gov (United States)

    Xie, Huixiang

    1999-11-01

    The environmental importance of atmospheric carbon disulphide (CS 2) is recognised by its potential role as a major precursor of carbonyl Sulphide (OCS). The ocean is believed to emit CS2 to air, but large uncertainty may exist in the assessments of sea-to-air fluxes of this compound partly due to the meager database we currently have for CS2 in the ocean. This work is intended to re-assess the flux estimates and to identify and evaluate the potential Sources for Oceanic CS2. CS2 was measured in both the surface and subsurface waters during three cruises: two in the North Atlantic and one in the Pacific Ocean. All the investigated waters were supersaturated in CS2 relative to the atmosphere. Two distinct types of vertical profiles were observed: one in the cool waters of the North Atlantic, characterized by gradual reduction in CS2 with depth, and another in the warm waters of the North Pacific central are. showing the coexistence of subsurface CS2 and chlorophyll maxima. Solar UV-initiated photochemical reactions were identified as a significant source for oceanic CS2. The photo-production rate of CS2 is positively correlated with absorbance at 350 run, suggesting that the reactions are mediated by coloured dissolved organic matter. Laboratory irradiations confirmed that cysteine and cystine are efficient precursors of CS2 and that OH radicals are likely to be important intermediates. CS2 data were collected from axenic monocultures of six species of marine phytoplankton: Chaetoceros calcitrans, Phaeodactylum tricornutum, Phaeocystis sp., Porphyridium purpureum, Synechococcus sp. and Isochrysis sp. For a period of between two weeks and forty days, substantial accumulation Of CS2 was found in the cultures of C. calcitrans, P. tricornutum and Phaeocystis sp. C. calcitrans has a potential for CS2 production about 10 times higher than P. tricornutum or Phaeocystis sp. CS2 formation was strongly dependent on the growth stage of the cultured species. (Abstract shortened

  17. Effects of hydraulic retention time (HRT) on denitrification using waste activated sludge thermal hydrolysis liquid and acidogenic liquid as carbon sources.

    Science.gov (United States)

    Guo, Yiding; Guo, Liang; Sun, Mei; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2017-01-01

    Waste activated sludge (WAS) internal carbon source can efficiently and economically enhance denitrification, and hydraulic retention time (HRT) is one of the most important operational parameters for denitrification. The effects of HRT on denitrification were investigated with WAS thermal hydrolysis liquid and acidogenic liquid as carbon sources in this study. The optimal HRT was 12h for thermal hydrolysis liquid and 8h for acidogenic liquid, with NO3(-)-N removal efficiency of 91.0% and 97.6%, respectively. In order to investigate the utilization of sludge carbon source by denitrifier, the changes of SCOD (Soluble chemical oxygen demand), proteins, carbohydrates, and VFAs (Volatile fatty acids) during denitrification process were analyzed and three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with fluorescence regional integration (FRI) analysis was introduced. The kinetics parameters of denitrification rate (VDN), denitrification potential (PDN) and heterotroph anoxic yield (YH) were also investigated using sludge carbon source at different HRT.

  18. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    Science.gov (United States)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  19. Thermochemical characterization of pigeon pea stalk for its efficient utilization as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Katyal, S.K.; Iyer, P.V.R.

    2000-05-01

    Pigeon pea stalk is a widely available biomass species in India. In this article the potential use of pigeon pea stalk as a fuel source through thermochemical conversion methods such as combustion, gasification, and pyrolysis has been investigated through experimentation using a thermogravimetric analyzer and pilot-plant-scale equipment. It has been proposed that pigeon pea stalks can be effectively utilized in two ways. The first is to pyrolyze the material to produce value-added products such as char, tar, and fuel gas. The second alternative is to partially pyrolyze the material to remove tar-forming volatiles, followed by gasification of reactive char to generate producer gas.

  20. Utilization of cocoa by-products as an alternative source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Agyeman, K.O.G.; Oldham, J.H.

    1986-01-01

    The complete utilization of the by-products from the cocoa industry of Ghana has been investigated. Large-scale collection of cocoa sweating (i.e. the liquid which drains from the fresh bean when exposed to air) using the basket and sweat-box methods has been devised. It was found that collection and alcohol fermentation of the sweating can be done by farmers themselves. The fermented sweating had an alcohol level of 7-10% (w/w). The dried cocoa husks have also been used successfully for either production of potash or as a source of fuel. 10 references.

  1. CUDe—Carbon Utilization Degree as an Indicator for Sustainable Biomass Use

    Directory of Open Access Journals (Sweden)

    Anja Hansen

    2016-10-01

    Full Text Available Carbon (C is a central element in organic compounds and is an indispensable resource for life. It is also an essential production factor in bio-based economies, where biomass serves many purposes, including energy generation and material production. Biomass conversion is a common case of transformation between different carbon-containing compounds. At each transformation step, C might be lost. To optimize the C use, the C flows from raw materials to end products must be understood. The estimation of how much of the initial C in the feedstock remains in consumable products and delivers services provides an indication of the C use efficiency. We define this concept as Carbon Utilization Degree (CUDe and apply it to two biomass uses: biogas production and hemp insulation. CUDe increases when conversion processes are optimized, i.e., residues are harnessed and/or losses are minimized. We propose CUDe as a complementary approach for policy design to assess C as an asset for bio-based production. This may lead to a paradigm shift to see C as a resource that requires sustainable exploitation. It could complement the existing methods that focus solely on the climate impact of carbon.

  2. TECHNICAL NOTE: A feasibility study of self-heating concrete utilizing carbon nanofiber heating elements

    Science.gov (United States)

    Chang, Christiana; Ho, Michelle; Song, Gangbing; Mo, Yi-Lung; Li, Hui

    2009-12-01

    This paper presents the development of an electric, self-heating concrete system that uses embedded carbon nanofiber paper as electric resistance heating elements. The proposed system utilizes the conductive properties of carbon fiber materials to heat a surface overlay of concrete with various admixtures to improve the concrete's thermal conductivity. The development and laboratory scale testing of the system were conducted for the various compositions of concrete containing, separately, carbon fiber, fly ash, and steel shavings as admixtures. The heating performances of these concrete mixtures with the carbon fiber heating element were experimentally obtained in a sub-freezing ambient environment in order to explore the use of such a system for deicing of concrete roadways. Analysis of electric power consumption, heating rate, and obtainable concrete surface temperatures under typical power loads was performed to evaluate the viability of a large scale implementation of the proposed heating system for roadway deicing applications. A cost analysis is presented to provide a comparison with traditional deicing methods, such as salting, and other integrated concrete heating systems.

  3. Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    D. Gera; M.P. Mathur; M.C. Freeman; Allen Robinson [Fluent, Inc./NETL, Morgantown, WV (United States)

    2002-12-01

    This paper reports on the development and validation of comprehensive combustion sub models that include the effect of large aspect ratio of biomass (switchgrass) particles on carbon burnout and temperature distribution inside the particles. Temperature and carbon burnout data are compared from two different models that are formulated by assuming (i) the particles are cylindrical and conduct heat internally, and (ii) the particles are spherical without internal heat conduction, i.e., no temperature gradient exists inside the particle. It was inferred that the latter model significantly underpredicted the temperature of the particle and, consequently, the burnout. Additionally, some results from cofiring biomass (10% heat input) with pulverized coal (90% heat input) are compared with the pulverized coal (100% heat input) simulations and coal experiments in a tangentially fired 150 MW{sub e} utility boiler. 26 refs., 7 figs., 4 tabs.

  4. Organic Rankine-cycle turbine power plant utilizing low temperature heat sources

    Science.gov (United States)

    Maizza, V.

    1980-03-01

    Utilizing and converting of existing low temperature and waste heat sources by the use of a high efficiency bottoming cycle is attractive and should be possible for many locations. This paper presents a theoretical study on possible combination of an organic Rankine-cycle turbine power plate with the heat pump supplied by waste energy sources. Energy requirements and system performances are analyzed using realistic design operating condition for a middle town. Some conversion systems employing working fluids other than water are being studied for the purpose of proposed application. Thermodynamic efficiencies, with respect to available resource, have been calculated by varying some system operating parameters at various reference temperature. With reference to proposed application equations and graphs are presented which interrelate the turbine operational parameters for some possible working fluids with computation results.

  5. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  6. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    Science.gov (United States)

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  7. Enhancement of Glucose Utilization in Provision of Carbon Skeletons for Ammonium Assimilation in Wheat Roots

    OpenAIRE

    Koga, Nobuhisa; Ikeda, Motoki

    2000-01-01

    In providing carbon skeletons to be expended for amide synthesis during ammonium assimilation, glucose utilization in roots was studied. The roots of young wheat plants grown without nitrogen for 3d and grown with 4 mM NO_3^- or NH_4^+ for 1d were fed with ^C-glucose for 3h in the presence of NO_3^- or NH_4^+, and the distribution of ^C-metabolites within the plants was examined. The NH_4^+ supply changed the distribution of ^C to a greater extent than the NO_3^- supply. In roots grown with N...

  8. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    Energy Technology Data Exchange (ETDEWEB)

    Mayorga, E; Aufdenkampe, A K; Masiello, C A; Krusche, A V; Hedges, J I; Quay, P D; Richey, J E; Brown, T A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C and {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  9. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    Science.gov (United States)

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  10. NITROGEN UTILIZATION BY DAIRY GOATS OFFERED DIFFERENT NITROGEN SOURCES AS SUPPLEMENTS IN HIGH ISOCALORIC ENERGY CONCENTRATES

    Directory of Open Access Journals (Sweden)

    A.R.S. Asih

    2014-10-01

    Full Text Available Twelve growing female goats (Anglo-Nubian were assigned to a multiple latin square designexperiment to evaluate the effectiveness of additions of nitrogen (N supplements to a high isocaloricenergy ration on N utilization. In this experiment, microbial synthesis and N balance were assessed. Thedaily rations were either unsupplemented barley meal (BM, or BM supplemented with one of threenitrogen sources. All rations were isocaloric (3.0 Mcal ME/kg DM and the N supplements weresoybean meal (BSBM, cottonseed meal (BCSM or urea (BU to provide 2.9% N in the concentratecomponent. The unsupplemented BM contained 1.7% N. The addition of N supplements to the rationenhanced N utilization in dairy goats. The organic matter (OM intake, N intake, N balance, andmicrobial N synthesis for BM, BSBM, BCSM and BU were 660.5 g, 721.9 g, 728.1g and 703.5 g; 13.5g, 21.5 g, 20.9 g and 20.7 g; 2.7 g; 7.1 g, 5.4 g, and 5.7 g; and 14.1 g 19.1 g, 19.1 g, and 20.0 g,respectively. It can be concluded that when sufficient dietary energy was available for ruminal microbialactivities, the source of N did not affect N balance, and microbial N synthesis.

  11. Ablation Properties of the Carbon-Based Composites Used in Artificial Heat Source Under Fire Accident

    Institute of Scientific and Technical Information of China (English)

    TANG; Xian; HUANG; Jin-ming; ZHOU; Shao-jian; LUO; Zhi-fu

    2012-01-01

    <正>The ablation properties of the carbon-based composites used in artificial heat source under fire accident were investigated by the arc heater. In this work, we tested the carbon-based composites referring to Fig. 1. Their linear/mass ablation ratio and ablation morphologies were studied. The results showed that the carbon-based composites used in artificial heat source behaved well

  12. Growth characteristics and hydrogen production by Rhodobacter sphaeroides using various amino acids as nitrogen sources and their combinations with carbon sources

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielyan, Lilit; Torgomyan, Heghine; Trchounian, Armen [Department of Biophysics, Biological Faculty, Yerevan State University, 0025 Yerevan (Armenia)

    2010-11-15

    Some amino acids (alanine, asparagine, glutamate, glycine, proline, and tyrosine) were used as nitrogen sources in combination with carbon sources (succinate and malate) to study growth properties and H{sub 2} production by purple non-sulfur bacterium Rhodobacter sphaeroides strains A-10 and D-3. Both strains produced H{sub 2} in succinate-glutamate and malate-glutamate media. Succinate was a better carbon source than malate. In comparison with strain D-3, strain A-10 was able to utilize proline, alanine or tyrosine as nitrogen sources in succinate medium and to produce H{sub 2}. Both strains were unable to produce H{sub 2} in the presence of asparagine or glycine as nitrogen sources. N,N'-dicyclohexylcarbodiimide, the F{sub 0}F{sub 1}-ATPase inhibitor, led to marked inhibition of H{sub 2} production activity of R. sphaeroides. The results suggest that the R. sphaeroides cells growth can be achieved by the use of a large diversity of substrates but only some of them can increase the H{sub 2} production rate. (author)

  13. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-10-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic

  14. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    Science.gov (United States)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  15. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    Science.gov (United States)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  16. Transition Metal-Participated Synthesis and Utilization of N-containing Heterocycles: Exploring for Nitrogen Sources.

    Science.gov (United States)

    Gao, Mingchun; Xu, Bin

    2016-06-01

    This account aims to describe our recent efforts on the synthesis and utilization of N-containing heterocycles, where transition metals participate in the synthesis. A variety of nitrogen sources, including amines, amides, hydrazones, pyrimidines, isocyanides, and copper nitrate, have been disclosed for the synthesis of diverse bioactive and pharmacologically interesting N-containing heterocycles under the participation of transition metals. The well-known nitrogen sources, such as amines and amides, were used for the construction of indoles, isatins, and quinolones. Dihydrophthalazines, isoquinolines, indazoles, and pyrazoles were obtained from hydrazones, while various pyrimidine-containing heterocycles were afforded through regioselective C-H functionalizations using pyrimidine as the directing group. Recent research has focused on the chemistry of isocyanides to achieve several kinds of heterocyclic compounds with high efficiency under the catalysis of transition metals (Pd, Rh, Mn, Cu), through oxidative cyanation reactions, sequential isocyanide insertions into C-H, N-H, or O-H bonds, and tandem radical annulation. More recently, an efficient route to isoxazolines has been reported using copper nitrate as a novel nitrogen source.

  17. Toxicological Investigation of Acute Carbon Monoxide Poisoning in Four Occupants of a Fuming Sport Utility Vehicle

    Directory of Open Access Journals (Sweden)

    Martin Nnoli

    2014-11-01

    Full Text Available Background: This toxicological investigation involves a report on the death of four occupants of a sport utility vehicle on one of the major busy Federal roads of Nigeria where they were held for up to three hours in a traffic jam while the car was steaming. Methods: Autopsy was executed using the standard procedure and toxicological analysis was done using simple spectrophotometric method to establish the level of carboxyhaemoglobin (HbCO in peripheral blood in the four occupants. Results: The autopsy report indicated generalized cyanosis, sub-conjuctival hemorrhages, marked laryngo-trachea edema with severe hyperemia with frothy fluid discharges characteristic of carbon monoxide poisoning. Toxicological report of the level of HbCO in part per million (ppm in the peripheral blood of the four occupants was A= 650 ppm; B= 500 ppm; C= 480 ppm, and D= 495 ppm against the maximum permissible level of 50 ppm. Conclusion: The sudden death of the four occupants was due to excessive inhalation of the carbon monoxide gas from the exhaust fumes leaking into the cabin of the car. The poor road network, numerous potholes, and traffic jam in most of roads in Nigeria could have exacerbated a leaky exhaust of the smoky second hand SUV car leading to the acute carbon monoxide poisoning.

  18. The roles of inoculants' carbon source use in the biocontrol of potato scab disease.

    Science.gov (United States)

    Sun, Pingping; Zhao, Xinbei; Shangguan, Nini; Chang, Dongwei; Ma, Qing

    2015-04-01

    Despite the application of multiple strains in the biocontrol of plant diseases, multistrain inoculation is still constrained by its inconsistency in the field. Nutrients, especially carbons, play an important role in the biocontrol processes. However, little work has been done on the systematic estimation of inoculants' carbon source use on biocontrol efficacies in vivo. In the present study, 7 nonpathogenic Streptomyces strains alone and in different combinations were inoculated as biocontrol agents against the potato scab disease, under field conditions and greenhouse treatments. The influence of the inoculants' carbon source use properties on biocontrol efficacies was investigated. The results showed that increasing the number of inoculated strains did not necessarily result in greater biocontrol efficacy in vivo. However, single strains with higher growth rates or multiple strains with less carbon source competition had positive effects on the biocontrol efficacies. These findings may shed light on optimizing the consistent biocontrol of plant disease with the consideration of inoculants' carbon source use properties.

  19. Utility of social media and crowd-sourced data for pharmacovigilance: a scoping review protocol

    Science.gov (United States)

    Tricco, Andrea C; Zarin, Wasifa; Lillie, Erin; Pham, Ba; Straus, Sharon E

    2017-01-01

    Introduction Adverse events associated with medications are under-reported in postmarketing surveillance systems. A systematic review of published data from 37 studies worldwide (including Canada) found the median under-reporting rate of adverse events to be 94% in spontaneous reporting systems. This scoping review aims to assess the utility of social media and crowd-sourced data to detect and monitor adverse events related to health products including pharmaceuticals, medical devices, biologics and natural health products. Methods and analysis Our review conduct will follow the Joanna Briggs Institute scoping review methods manual. Literature searches were conducted in MEDLINE, EMBASE and the Cochrane Library from inception to 13 May 2016. Additional sources included searches of study registries, conference abstracts, dissertations, as well as websites of international regulatory authorities (eg, Food and Drug Administration (FDA), the WHO, European Medicines Agency). Search results will be supplemented by scanning the references of relevant reviews. We will include all publication types including published articles, editorials, websites and book sections that describe use of social media and crowd-sourced data for surveillance of adverse events associated with health products. Two reviewers will perform study selection and data abstraction independently, and discrepancies will be resolved through discussion. Data analysis will involve quantitative (eg, frequencies) and qualitative (eg, content analysis) methods. Dissemination The summary of results will be sent to Health Canada, who commissioned the review, and other relevant policymakers involved with the Drug Safety and Effectiveness Network. We will compile and circulate a 1-page policy brief and host a 1-day stakeholder meeting to discuss the implications, key messages and finalise the knowledge translation strategy. Findings from this review will ultimately inform the design and development of a data

  20. Utilization of BEAM and NEST open source toolboxes in education and research

    Directory of Open Access Journals (Sweden)

    Markéta Potůčková

    2011-05-01

    Full Text Available European Space Agency (ESA provides several open source toolboxes for visualization, processing and analyzing satellite images acquired both in optical and microwave domains. Basic ERS & Envisat (AATSR and MERIS Toolbox (BEAM was originally developed for easier handling ENVISAT optical data. Today this toolbox supports several raster data formats and datasets collected with other EO instruments such as MODIS, AVHRR, CHRIS/Proba. The NEXT ESA SAR Toolbox (NEST has been created for processing radar data acquired from different satellites such as ERS 1&2, ENVISAT, RADARSAT or TerraSAR X. Both toolboxes are suitable for the education of the basic principles of data processing (geometric and radiometric corrections, classification, filtering of radar data but also for research. Possibilities for utilization of these toolboxes in remote sensing courses based on two examples of practical exercises are described. Use of the NEST toolbox is demonstrated on a research project dealing with snow cover detection from SAR imagery.

  1. Advanced system demonstration for utilization of biomass as an energy source. Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    McCollom, M.

    1979-01-01

    The conclusions and findings of extensive analyses undertaken to assess the environmental impacts and effects of the proposal to assist in an Advanced System Demonstration for Utilization of Biomass as an Energy Source by means of a wood-fueled power plant. Included are a description of the proposed project, a discussion of the existing environment that the project would affect, a summary of the project's impacts on the natural and human environments, a discussion of the project's relationships to other government policies and plans, and an extensive review of the alternatives which were considered in evaluating the proposed action. All findings of the research undertaken are discussed. More extensive presentations of the methods of analysis used to arrive at the various conclusions are available in ten topical technical appendices.

  2. Use of transglutaminases in foods and potential utilization of plants as a transglutaminase source – Review

    Directory of Open Access Journals (Sweden)

    Fernando B. Luciano

    2012-11-01

    Full Text Available Transglutaminases (TGases are enzymes able to catalyze acyl-transfer reactions introducing covalent cross-links between proteins, peptides and primary amines. Animal TGases were the first studied and are divided in nine different groups of isoenzymes. They have a wide range of functions in the metabolism of most animal cells, and share the characteristic of being Ca2+-dependent. Microbial and plant TGases were also identified, and here is a vast heterogeneity among their amino acid sequences. Interestingly, it seems that all transglutaminases share a specific amino acid triad of Cys-His-Asp in their catalytic site, which can be found in all tertiary structures of the enzymes yet studied so far. Microbial TGases are the most widely used for food modification due to lower costs and high yields involved with their extraction and purification when compared to mammal sources. TGases are ubiquitously found in a variety of plants, and their utilization for food transformation has been proposed. However, there is only a single attempt using vegetal TGase in food systems, where apple pomace was used to improve the quality of pork meat. The transference of mammalian TGase genes to plants has also been considered and they were found to be successfully expressed in rice and tobacco leaves. These results lead to a new approach, where TGases could be literally farmed for food utilization.

  3. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  4. A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Habib, M.A.; Badr, H.M.; Ahmed, S.F. (and others) [King Fahd University of Petrology & Minerals, Dhahran (Saudi Arabia)

    2011-07-15

    Among the proposed methods of CO{sub 2} capture, oxyfuel combustion technology provides a promising option, which is applicable to power generation systems. This technology is based on combustion with pure oxygen (O{sub 2}) instead of air, resulting in flue gas that consists mainly of CO{sub 2} and water (H{sub 2}O), that latter can be separated easily via condensation, while removing other contaminants leaving pure CO{sub 2} for storage. However, fuel combustion in pure O{sub 2} results in intolerably high combustion temperatures. In order to provide the dilution effect of the absent nitrogen (N-2) and to moderate the furnace/combustor temperatures, part of the flue gas is recycled back into the combustion chamber. An efficient source of O{sub 2} is required to make oxycombustion a competitive CO{sub 2} capture technology. Conventional O{sub 2} production utilizing the cryogenic distillation process is energetically expensive. Ceramic membranes made from mixed ion-electronic conducting oxides have received increasing attention because of their potential to mitigate the cost of O{sub 2} production, thus helping to promote these clean energy technologies. Some effort has also been expended in using these membranes to improve the performance of the O{sub 2} separation processes by combining air separation and high-temperature oxidation into a single chamber. This paper provides a review of the performance of combustors utilizing oxy-fuel combustion process, materials utilized in ion-transport membranes and the integration of such reactors in power cycles. The review is focused on carbon capture potential, developments of oxyfuel applications and O{sub 2} separation and combustion in membrane reactors. The recent developments in oxyfuel power cycles are discussed focusing on the main concepts of manipulating exergy flows within each cycle and the reported thermal efficiencies.

  5. Source-related variables for the description of the oceanic carbon system

    Science.gov (United States)

    Walin, G.; Hieronymus, J.; Nycander, J.

    2014-09-01

    oceanic carbon system is commonly described in terms of the two state variables total carbon, DIC, and alkalinity, Alk. Here we suggest the use of alternative source adapted state variables, Acidic Carbon, AC and Basic Carbon, BC, defined by and related to (DIC, Alk) with a simple linear transformation. (AC, BC) can be interpreted as representing respectively the supply to the system of carbon dioxide and dissolved carbonate, keeping in mind that supply of hydrogen ions acts to transform from basic carbon to acidic carbon. Accordingly these variables tell us how much carbon dioxide or dissolved carbonate we actually have in the water, despite the fact that the major part of the carbon resides in bicarbonate ions. We claim that using these source-related variables as a compliment to the traditional variables, offers a number of advantages in the formulation of continuity equations, as well as in the interpretation of observations and modeling results. The traditional definition of alkalinity is related to a measuring procedure rather than to the supply of material to the system. Here we demonstrate that alkalinity, though defined in the traditional way, may be interpreted in terms of sources and sinks acting on the system. In the case of ocean water this amounts to twice the supply of dissolved carbonate minus the net supply of free hydrogen ions. We argue that this interpretation is a useful complement to the traditional definition. Every process that affects the state of the carbon system may be quantified in terms of supply of carbon dioxide, Fa, carbonate ions, Fb, or hydrogen ions, E.

  6. Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.

    Energy Technology Data Exchange (ETDEWEB)

    Walmet, Paula S. (MeadWestvaco Corporation,North Charleston, SC)

    2009-06-01

    This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

  7. A new power generation method utilizing a low grade heat source

    Institute of Scientific and Technical Information of China (English)

    Wei-feng WU; Kin-ping LONG; Xiao-ling YU; Quan-ke FENG

    2012-01-01

    Energy crisis make the effective use of low grade energy more and more urgent.It is still a worldwide difficult conundrum.To efficiently recover low grade heat,this paper deals with a theoretical analysis of a new power generation method driven by a low grade heat source.When the temperature of the low grade heat source exceeds the saturated temperature,it can heat the liquid into steam.If the steam is sealed and cooled in a container,it will lead to a negative pressure condition.The proposed power generation method utilizes the negative pressure condition in the sealed container,called as a condensator.When the condensator is connected to a liquid pool,the liquid will be pumped into it by the negative pressure condition.After the condensator is filled by liquid,the liquid flows back into the pool and drives the turbine to generate electricity.According to our analysis,for water,the head pressure of water pumped into the condensator could reach 9.5 m when the temperature of water in the pool is 25 ℃,and the steam temperature is 105 ℃.Theoretical thermal efficiency of this power generation system could reach 3.2% to 5.8% varying with the altitude of the condensator to the water level,ignoring steam leakage loss.

  8. Optimal Utilization of a Cognitive Shared Channel with a Rechargeable Primary Source Node

    CERN Document Server

    Pappas, Nikolaos; Ephremides, Anthony; Traganitis, Apostolos

    2011-01-01

    This paper considers the scenario in which a set of nodes share a common channel. Some nodes have a rechargeable battery and the others are plugged to a reliable power supply and, thus, have no energy limitations. We consider two source-destination pairs and apply the concept of cognitive radio communication in sharing the common channel. Specifically, we give high-priority to the energy-constrained source-destination pair, i.e., primary pair, and low-priority to the pair which is free from such constraint, i.e., secondary pair. In contrast to the traditional notion of cognitive radio, in which the secondary transmitter is required to relinquish the channel as soon as the primary is detected, the secondary transmitter not only utilizes the idle slots of primary pair but also transmits along with the primary transmitter with probability $p$. This is possible because we consider the general multi-packet reception model. Given the requirement on the primary pair's throughput, the probability $p$ is chosen to max...

  9. Distribution and Sources of Black Carbon in the Arctic

    Science.gov (United States)

    Qi, Ling

    The Arctic is warming at twice the global rate over recent decades. To slow down this warming trend, there is growing interest in reducing the impact from short-lived climate forcers, such as black carbon (BC), because the benefits of mitigation are seen more quickly relative to CO2 reduction. To propose efficient mitigation policies, it is imperative to improve our understanding of BC distribution in the Arctic and to identify the sources. In this dissertation, we investigate the sensitivity of BC in the Arctic, including BC concentrations in snow (BCsnow) and BC concentrations in air (BCair), to emissions, dry deposition and wet scavenging using a global 3-D chemical transport model (CTM) GEOS-Chem. By including flaring emissions, estimating dry deposition velocity using resistance-in-series method, and including Wegener-Bergeron-Findeisen (WBF) in wet scavenging, simulated BCsnow in the eight Arctic sub-regions agree with the observations within a factor of two, and simulated BCair fall within the uncertainty range of observations. Specifically, we find that natural gas flaring emissions in Western Extreme North of Russia (WENR) strongly enhance BCsnow (by up to ?50%) and BCair (by 20-32%) during snow season in the so-called 'Arctic front', but has negligible impact on BC in the free troposphere. The updated dry deposition velocity over snow and ice is much larger than those used in most of global CTMs and agrees better with observation. The resulting BCsnow changes marginally because of the offsetting of higher dry and lower wet deposition fluxes. In contrast, surface BCair decreases strongly due to the faster dry deposition (by 27-68%). WBF occurs when the environmental vapor pressure is in between the saturation vapor pressure of ice crystals and water drops in mixed-phase clouds. As a result, water drops evaporate and releases BC particles in them back into the interstitial air. In most CTMs, WBF is either missing or represented by a uniform and low BC

  10. Black carbon and carbon monoxide over Bay of Bengal during W_ICARB: Source characteristics

    Science.gov (United States)

    Girach, I. A.; Nair, Vijayakumar S.; Babu, S. Suresh; Nair, Prabha R.

    2014-09-01

    The ship borne measurements of near-surface black carbon (BC) and carbon monoxide (CO) were carried out over Bay of Bengal (BoB) during the winter period of 2009 under W_ICARB, the second phase of ‘Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB)'. The CO mixing ratio and BC mass concentration varied in the ranges of 80-480 ppbv and 75-10,000 ng m-3, respectively over this marine region. The BC and CO showed similar variations over northern BoB where airmass from Indo-Gangetic Plain (IGP) region prevailed during the observations period leading to a very strong positive correlation. The association of BC and CO was poor over the eastern and southern part of BoB could be due to the removal of BC aerosols by rain and/or processes of dilution and mixing while transported over to BoB. The highest value of CO observed over eastern BoB was partially due to biomass burning over East Asia. The BC/CO ratio for IGP airmass found to be 20.3 ng m-3 ppb-1 and ∼16 ng m-3 ppb-1 during winter and pre-monsoon, respectively which indicate the role of biomass burning as the source of BC over the region. Based on the emission flux of CO from various inventories and observed BC/CO ratios during pre-monsoon and winter, the BC emission for India is estimated to be in the range of 0.78-1.23 Tg year-1. The analysis of scavenging of BC revealed the loss rate of BC due to relative humidity 0.39 ± 0.08 ng m-3 ppb-1 RH (%)-1 over northern BoB and 0.53 ± 0.04 ng m-3 ppb-1 RH (%)-1 over the southern-BoB during winter.

  11. Solid source growth of Si oxide nanowires promoted by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Congxiang [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Wen-wen; Wang, Xingli [Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Xiaocheng [Laboratory of clean energy chemistry and materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18 Tianshui Middle Road, Lanzhou 730000 (China); Tan, Chong Wei [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Tay, Beng Kang, E-mail: ebktay@ntu.edu.sg [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Coquet, Philippe [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore)

    2014-09-30

    Highlights: • An array of well aligned and uniform CNTs is successfully fabricated by PECVD. • SiONW growth utilizes Si substrate as the source, ruling out the usage of silane. • With CNT array on the substrate, SiONW growth is improved significantly. • CNTs help dispersion of the catalysts and diffusion of the Si atoms. - Abstract: We report a method to promote solid source growth of Si oxide nanowires (SiONWs) by using an array of vertically aligned carbon nanotubes (CNTs). It starts with the fabrication of CNT array by plasma enhanced chemical vapor deposition (PECVD) on Si wafers, followed by growth of SiONWs. Herein, CNTs serve as a scaffold, which helps the dispersion of catalysts for SiONWs and also provides space for hydrogen which boosts the diffusion of Si atoms and hence formation of SiONWs. As the result, a three dimensional (3D) hybrid network of densely packed SiONWs and CNTs can be produced rapidly.

  12. A Method for Sustainable Carbon Dioxide Utilization Process Synthesis and Design

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Fjellerup, Kasper; Roh, Kosan;

    for the process synthesis, design and more sustainable design. Using a superstructure-based approach a network of utilization alternatives is created linking CO2 and other raw materials with various products using processing blocks. This will then be optimized and verified for sustainability. Detailed design has...... also been performed for various case studies. These case studies include multiple pathways for the production of methanol and the production of dimethyl carbonate (DMC). From detailed design and analysis, CO2 conversion processes show promise as an additional method for the sustainable reduction of CO2...... compounds via chemical reactions. However, conversion is still in its infancy and requires work for implementation at an industrial level. One aspect of this is the development of a methodology for the formulation and optimization of sustainable conversion processes. This methodology follows three stages...

  13. Micrometeorological Technique for Monitoring of Geological Carbon Capture, Utilization and Storage: Methodology, Workflow and Resources

    Science.gov (United States)

    Burba, G. G.; Madsen, R.; Feese, K.

    2013-12-01

    The eddy covariance (EC) method is a micrometeorological technique for direct high-speed measurements of the transport of gases and energy between land or water surfaces and the atmosphere [1]. This method allows for observations of gas transport scales from 20-40 times per second to multiple years, represents gas exchange integrated over a large area, from hundreds of square meters to tens of square kilometres, and corresponds to gas exchange from the entire surface, including canopy, and soil or water layers. Gas fluxes, emission and exchange rates are characterized from single-point in situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Presently, over 600 eddy covariance stations are in operation in over 120 countries [1]. EC is now recognized as an effective method in regulatory and industrial applications, including CCUS [2-10]. Emerging projects utilize EC to continuously monitor large areas before and after the injections, to locate and quantify leakages where CO2 may escape from the subsurface, to improve storage efficiency, and for other CCUS characterizations [5-10]. Although EC is one of the most direct and defensible micrometeorological techniques measuring gas emission and transport, and complete automated stations and processing are readily available, the method is mathematically complex, and requires careful setup and execution specific to the site and project. With this in mind, step-by-step instructions were created in [1] to introduce a novice to the EC method, and to assist in further understanding of the method through more advanced references. In this presentation we provide brief highlights of the eddy covariance method, its application to geological carbon capture, utilization and storage, key requirements, instrumentation and software, and review educational resources particularly useful for carbon sequestration research. References: [1] Burba G. Eddy Covariance Method

  14. Phylogenetic signal in phenotypic traits related to carbon source assimilation and chemical sensitivity in Acinetobacter species.

    Science.gov (United States)

    Van Assche, Ado; Álvarez-Pérez, Sergio; de Breij, Anna; De Brabanter, Joseph; Willems, Kris A; Dijkshoorn, Lenie; Lievens, Bart

    2017-01-01

    A common belief is that the phylogeny of bacteria may reflect molecular functions and phenotypic characteristics, pointing towards phylogenetic conservatism of traits. Here, we tested this hypothesis for a large set of Acinetobacter strains. Members of the genus Acinetobacter are widespread in nature, demonstrate a high metabolic diversity and are resistant to several environmental stressors. Notably, some species are known to cause opportunistic human infections. A total of 133 strains belonging to 33 species with validly published names, two genomic species and species of an as-yet unknown taxonomic status were analyzed using the GENIII technology of Biolog, which allows high-throughput phenotyping. We estimated the strength and significance of the phylogenetic signal of each trait across phylogenetic reconstructions based on partial RNA polymerase subunit B (rpoB) and core genome sequences. Secondly, we tested whether phylogenetic distance was a good predictor of trait differentiation by Mantel test analysis. And finally, evolutionary model fitting was used to determine if the data for each phenotypic character was consistent with a phylogenetic or an essentially random model of trait distribution. Our data revealed that some key phenotypic traits related to substrate assimilation and chemical sensitivity are linked to the phylogenetic placement of Acinetobacter species. The strongest phylogenetic signals found were for utilization of different carbon sources such as some organic acids, amino acids and sugars, thus suggesting that in the diversification of Acinetobacter carbon source assimilation has had a relevant role. Future work should be aimed to clarify how such traits have shaped the remarkable ability of this bacterial group to dominate in a wide variety of habitats.

  15. Utilization of olive cake as a potential energy source in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Hepbasli, A. [Ege Univ., Mechanical Engineering Dept., Izmir (Turkey); Akdeniz, R.C. [Ege Univ., Agricultural Machinery Dept., Izmir (Turkey); Vardar-Sukan, F. [Ege Univ., Bioengineering Dept., Izmir (Turkey); Oktay, Z. [Balikesir Univ., Mechanical Engineering Dept., Balikesir (Turkey)

    2003-05-15

    With the energy picture getting worse every day, it is now desirable to search for alternative energy sources. This has led to renewed interest in olive cake (OC) as an alternative energy source in Turkey due to some of its advantages, such as negligible sulfur content, reducing environmental impact, low cost compared to fossil fuels, problem-free storage, and lack of transportation requirements if used in an olive oil production facility. OC is a byproduct of olive oil production and is a solid material consisting of seed particles and the fleshy parts of olives. The Mediterranean region represents 98% of the world's olive tree population. In this regard, Turkey is among the top 5 main olive oil-producing countries in the world. The main objective of the present study is to investigate the potential and utilization of OC in the country. It is estimated that over 360,000 tons of OC, corresponding to an average of 150,000 tons of oil equivalent (toe), were produced in the 2000-2001 season in Turkey. Suitable combustion systems, such as fluidized bed systems, stoker fed from the bottom with secondary air supply, etc., should be used for efficient energy production from the OC. There are no limiting values related to emissions for OC in the Turkish regulations of air quality yet. There are, however, some studies being conducted by the Ministry of Environment for the determination of these limiting values. In light of the present study, it may be concluded that OC is a very promising source of energy in Turkey. (Author)

  16. Sources and sinks of carbon in boreal ecosystems of interior Alaska: A review

    Directory of Open Access Journals (Sweden)

    Thomas A. Douglas

    2014-12-01

    Full Text Available Abstract Boreal ecosystems store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region in Alaska and Canada, largely underlain by discontinuous permafrost, presents a challenging landscape for itemizing carbon sources and sinks in soil and vegetation. The roles of fire, forest succession, and the presence (or absence of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in boreal ecosystems for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape and carbon cycle changes over the next 20 to 50 years. To assist land managers in interior Alaska in adapting and managing for potential changes in the carbon cycle we developed this review paper by incorporating an overview of the climate, ecosystem processes, vegetation, and soil regimes. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to guide policy and land management decisions on how to best manage carbon sources and sinks. We surveyed estimates of aboveground and belowground carbon stocks for interior Alaska boreal ecosystems and summarized methane and carbon dioxide fluxes. These data have been converted into similar units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance. A novel research question is how compounding disturbances affect carbon sources and sinks associated with boreal ecosystem processes. Finally, we provide recommendations to address the challenges facing land managers in efforts to manage carbon cycle processes. The results of this study can be used for carbon cycle management in other locations within the boreal biome which encompasses a broad distribution

  17. Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR).

    Science.gov (United States)

    Kim, Hyun Woo; Marcus, Andrew K; Shin, Jeong Hoon; Rittmann, Bruce E

    2011-06-01

    A membrane carbonation (MC) module uses bubbleless gas-transfer membranes to supply inorganic carbon (C(i)) for photoautotrophic cyanobacterial growth in a photobioreactor (PBR); this creates the novel MCPBR system, which allows precise control of the CO(2)-delivery rate and minimal loss of CO(2) to the atmosphere. Experiments controlled the supply rate of C(i) to the main PBR by regulating the recirculation rate (Q(R)) between the module of MC chamber and the main PBR. The experiments evaluated how Q(R) controls the CO(2) mass transport in MC chamber and how it connects with the biomass production rate, C(i) concentration, pH in the PBR, and CO(2)-utilization efficiency. The biomass production rate and C(i) concentration increased in response to the C(i) supply rate (controlled by Q(R)), but not in linear proportion. The biomass production rate increased less than C(i) due to increased light limitation. Except for the highest Q(R), when the higher C(i) concentration caused the pH to decrease, CO(2) loss to gas ventilation was negligible. The results demonstrate that this MCPBR offers independent control over the growth of photoautotrophic biomass, pH control, and minimal loss of CO(2) to the atmosphere.

  18. Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone

    Directory of Open Access Journals (Sweden)

    Edna L. Hernández-López

    2015-09-01

    Here we describe experimental procedures and methods about our dataset (NCBI GEO accession number GSE68146 and describe the data analysis to identify different expression levels in N. fischeri using this recalcitrant carbon source.

  19. Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source

    Institute of Scientific and Technical Information of China (English)

    WANG XuMing; WANG JianLong

    2009-01-01

    Removal of nitrate from groundwater was investigated using biodegradable meal box (BMB) and poly(ε-caprolactone) (PCL) as carbon source and biofilm carrier. The experimental results show that nitrate in groundwater can be effectively removed using BMB and PCL as carbon source. Denitrification 7.5. The pH value of effluent ranged from 7 to 8, and NO2-N concentration was less than 0.1 mg/L. Compared with BMB, PCL could decrease nitrite accumulation; however, more significant influence of temperature on denitrification was observed for PCL as carbon source. Temperature constants for BMB and PCL were 0.045 and 0.068, respectively, at 10-30℃. Based on denitrification efficiency and cost, BMB is more suitable as a carbon source for denitrification of groundwater than PCL.

  20. Nitrate Removal from Drinking Water with Sodium Citrate as Sole Carbon Source

    Institute of Scientific and Technical Information of China (English)

    YAN Bo; ZHAO Lin; TAN Xin

    2005-01-01

    This paper investigates the effect of using sodium citrate(NaC6H5O6*2H2O)as sole carbon source for nitrate removal from drinking water.With sodium citrate as sole carbon source, batch experiments have been conducted to study the law of denitrification influenced by pH, C/N and temperature. Results show that a denitrification rate reaching 1.32 g NO-3-N /(g Biomass*d) was obtained when pH was at 7.5,C/N at 1.7(atom ratio), and temperature from 20 ℃ to 30 ℃. The results also show that denitrification rate with sodium citrate as carbon source approaches to that with methanol as carbon source.

  1. FOOD SOURCES AND CARBON BUDGET OF CHINESE PRAWN PENAEUS CHINENSIS

    Institute of Scientific and Technical Information of China (English)

    董双林; 张硕; 王芳

    2002-01-01

    This study deals with contribution of artificial food pellet and natural food to Chinese prawn (Penaeus orientalis) growth in a semiintensive culture pond. The prawn carbon consumption, budget, and the effects of some factors on the budget were investigated. The results showed that 26.2% of P. orientalis growth carbon came from formulated feed at the initial culture stage (when the prawns were 0.06±0.01 g in wet weight), and was 62.5% when the prawns were 9.56±1.04 g. The remaining part of the growth carbon was derived from organic fertilizer and natural food. The highest growth rate occurred at 20×10-3 salinity. Suitable salinity for culturing Chinese prawn was (20-28)×10-3.

  2. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  3. Theoretical study on the carbon nanotube used ashard x—radiation source

    Institute of Scientific and Technical Information of China (English)

    LuJing-Han; QinXi-Jun

    1998-01-01

    Calculations and analyses are made on the interaction between the carbon nanotube and the incident positron of high energy.The results obtained show that it is possible to use carbon nanotube as hard X-radiation source with high intensity and good monochromaticity.

  4. Sources of uncertainties in modelling black carbon at the global scale

    NARCIS (Netherlands)

    Vignati, E.; Karl, M.; Krol, M.C.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in th

  5. Utility of Microbial Source-Tracking Markers for Assessing Fecal Contamination in the Portage River Watershed, Northwestern Ohio, 2008

    Science.gov (United States)

    Kephart, Christopher M.; Bushon, Rebecca N.

    2010-01-01

    An influx of concentrated animal feeding operations in northwest Ohio has prompted local agencies to examine the effects of these industrial farms on water quality in the upper Portage River watershed. The utility of microbial source-tracking (MST) tools as a means of characterizing sources of fecal contamination in the watershed was evaluated. From 2007 to 2008, scientists with the U.S. Geological Survey, Bowling Green State University, and the Wood County Health Department collected and analyzed 17 environmental samples and 13 fecal source samples for Bacteroides-based host-associated DNA markers. At many of the environmental sites tested, MST marker results corroborated the presumptive fecal contamination sources. Results from this demonstration study support the utility of using MST with host-specific molecular markers to characterize the sources of fecal contamination in the Portage River watershed.

  6. Synthesis and performances of bio-sourced nanostructured carbon membranes elaborated by hydrothermal conversion of beer industry wastes

    Science.gov (United States)

    El Korhani, Oula; Zaouk, Doumit; Cerneaux, Sophie; Khoury, Randa; Khoury, Antonio; Cornu, David

    2013-03-01

    Hydrothermal carbonization (HTC) process of beer wastes (Almaza Brewery) yields a biochar and homogeneous carbon-based nanoparticles (NPs). The NPs have been used to prepare carbon membrane on commercial alumina support. Water filtration experiments evidenced the quasi-dense behavior of the membrane with no measurable water flux below an applied nitrogen pressure of 6 bar. Gas permeation tests were conducted and gave remarkable results, namely (1) the existence of a limit temperature of utilization of the membrane, which was below 100°C in our experimental conditions, (2) an evolution of the microstructure of the carbon membrane with the operating temperature that yielded to improved performances in gas separation, (3) the temperature-dependent gas permeance should follow a Knudsen diffusion mechanism, and (4) He permeance was increasing with the applied pressure, whereas N2 and CO2 permeances remained stable in the same conditions. These results yielded an enhancement of both the He/N2 and He/CO2 permselectivities with the applied pressure. These promising results made biomass-sourced HTC-processed carbon membranes encouraging candidates as ultralow-cost and sustainable membranes for gas separation applications.

  7. Electromagnetic scattering of the carbon nanotubes excited by an electric line source

    Institute of Scientific and Technical Information of China (English)

    Wang Yue; Wu Qun; Wu Yu-Ming; He Xun-Jun; Li Le-Wei

    2012-01-01

    An analytical solution is presented for the electromagnetic scattering from an infinite-length metallic carbon nanotube and a carbon nanotube bundle.The scattering field and scattering cross section are predicted using a modal technique based on a Bessel and Hankel function for the electric line source and a quantum conductance function for the carbon nanotube.For the particular case of an isolated armchair (10,10) carbon nanotube,the scattered field predicted from this technique is in excellent agreement with the measured result.Furthermore,the analysis indicates that the scattering pattern of an isolated carbon nanotube differs from that of the carbon nanotube bundle of identical index (m,n) metallic carbon nanotubes.

  8. Osteogenic cell cultures cannot utilize exogenous sources of synthetic polyphosphate for mineralization.

    Science.gov (United States)

    Ariganello, Marianne B; Omelon, Sidney; Variola, Fabio; Wazen, Rima M; Moffatt, Pierre; Nanci, Antonio

    2014-12-01

    Phosphate is critical for mineralization and deficiencies in the regulation of free phosphate lead to disease. Inorganic polyphosphates (polyPs) may represent a physiological source of phosphate because they can be hydrolyzed by biological phosphatases. To investigate whether exogenous polyP could be utilized for mineral formation, mineralization was evaluated in two osteogenic cell lines, Saos-2 and MC3T3, expressing different levels of tissue non-specific alkaline phosphatase (tnALP). The role of tnALP was further explored by lentiviral-mediated overexpression in MC3T3 cells. When cells were cultured in the presence of three different phosphate sources, there was a strong mineralization response with β-glycerophosphate (βGP) and orthophosphate (Pi) but none of the cultures sustained mineralization in the presence of polyP (neither chain length 17-Pi nor 42-Pi). Even in the presence of mineralizing levels of phosphate, low concentrations of polyP (50 μM) were sufficient to inhibit mineral formation. Energy-dispersive X-ray spectroscopy confirmed the presence of apatite-like mineral deposits in MC3T3 cultures supplemented with βGP, but not in those with polyP. While von Kossa staining was consistent with the presence or absence of mineral, an unusual Alizarin staining was obtained in polyP-treated MC3T3 cultures. This staining pattern combined with low Ca:P ratios suggests the persistence of Ca-polyP complexes, even with high residual ALP activity. In conclusion, under standard culture conditions, exogenous polyP does not promote mineral deposition. This is not due to a lack of active ALP, and unless conditions that favor significant processing of polyP are achieved, its mineral inhibitory capacity predominates.

  9. Evaluating microbial carbon sources in Athabasca oil sands tailings ponds using natural abundance stable and radiocarbon isotopes

    Science.gov (United States)

    Ahad, J. M.; Pakdel, H.

    2013-12-01

    Natural abundance stable (δ13C) and radiocarbon (Δ14C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate the carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. The absence of algal-specific PLFAs at three of the four sites investigated, in conjunction with δ13C signatures for PLFAs that were generally within ~3‰ of that reported for oil sands bitumen (~ -30‰), indicated that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. The Δ14C values of PLFAs ranged from -906 to -586‰ and pointed to a significant uptake of fossil carbon (up to ~90% of microbial carbon derived from petroleum), particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively higher levels of 14C in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population (~50-80% of microbial carbon derived from petroleum). Since the main carbon pools in tailings sediment were essentially 'radiocarbon dead' (i.e., no detectable 14C), the principal source for this modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential uptake of the minor amount of young and presumably more biodegradable material present in systems otherwise dominated by recalcitrant petroleum constituents has important implications for remediation strategies. On the one hand, it implies that mining-related organic contaminants could persist in the environment long after tailings pond reclamation has begun. Alternatively, it may be that the young, labile organic matter provided by the Athabasca River plays an important role in stimulating or supporting the microbial utilization of petroleum carbon in oil sands tailings ponds via co-metabolism or priming processes

  10. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    OpenAIRE

    Barbose, Galen

    2008-01-01

    The long economic lifetime and development lead-time of many electric infrastructure investments requires that utility resource planning consider potential costs and risks over a lengthy time horizon. One long-term -- and potentially far-reaching -- risk currently facing the electricity industry is the uncertain cost of future carbon dioxide (CO2) regulations. Recognizing the importance of this issue, many utilities (sometimes spurred by state regulatory requirements) are beginning to activ...

  11. Study on the threshold value of organic enrichment of carbonate as gas source rocks

    Institute of Scientific and Technical Information of China (English)

    XUE Haitao; LU Shuangfang; ZHONG Ningning; WANG Bo

    2004-01-01

    In this paper, calculations have been performed about gas quantity of generation, adsorption, dissolving in oil, dissolving in water, diffusion of unit area carbonate rocks at different geologic conditions in the Tarim basin. According to the material balance principle, the corresponding organic carbon content when gas started expelling from source rocks with separate phases has been worked out. We regard it as the theoretical threshold value (TOCmin) of gas source rocks under the same geologic condition. Based on the simulating calculation, a fact has been discovered that TOCmin decreases with the increasing source rocks thickness, decreases at the beginning and then increases with the increasing maturity and decreases with the better type of organic matter. TOCmin evaluation table of carbonate gas source rocks in the Tarim basin has been established. Investigations indicate that the TOCmin of carbonate gas source rocks varies greatly with the differences of geologic conditions, and gas source rocks cannot be evaluated with a unified TOC threshold value. And we also establish a preliminary evaluation table of TOC industrial threshold value, TOCgy, of carbonate gas source rocks in the Tarim basin.

  12. Study on Utilization of Carboxyl Group Decorated Carbon Nanotubes and Carbonation Reaction for Improving Strengths and Microstructures of Cement Paste

    Directory of Open Access Journals (Sweden)

    Xiantong Yan

    2016-08-01

    Full Text Available Carbon nanotubes (CNTs have excellent mechanical properties and can be used to reinforce cement-based materials. On the other hand, the reaction product of carbonation with hydroxides in hydrated cement paste can reduce the porosity of cement-based materials. In this study, a novel method to improve the strength of cement paste was developed through a synergy of carbon nanotubes decorated with carboxyl group and carbonation reactions. The experimental results showed that the carboxyl group (–COOH of decorated carbon nanotubes and the surfactant can control the morphology of the calcium carbonate crystal of carbonation products in hydrated cement paste. The spindle-like calcium carbonate crystals showed great morphological differences from those observed in the conventional carbonation of cement paste. The spindle-like calcium carbonate crystals can serve as fiber-like reinforcements to reinforce the cement paste. By the synergy of the carbon nanotubes and carbonation reactions, the compressive and flexural strengths of cement paste were significantly improved and increased by 14% and 55%, respectively, when compared to those of plain cement paste.

  13. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    Science.gov (United States)

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  14. A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources.

    Science.gov (United States)

    Kaufman, E N; Little, M H; Selvaraj, P

    1997-01-01

    A combined chemical and biological process for the recycling of flue gas desulfurization (FGD) gypsum into calcium carbonate and elemental sulfur is demonstrated. In this process, a mixed culture of sulfate-reducing bacteria (SRB) utilizes inexpensive carbon sources, such as sewage digest or synthesis gas, to reduce FGD gypsum to hydrogen sulfide. The sulfide is then oxidized to elemental sulfur via reaction with ferric sulfate, and accumulating calcium ions are precipitated as calcium carbonate using carbon dioxide. Employing anaerobically digested municipal sewage sludge (AD-MSS) medium as a carbon source, SRBs in serum bottles demonstrated an FGD gypsum reduction rate of 8 mg/L/h (10(9) cells)(-1). A chemostat with continuous addition of both AD-MSS media and gypsum exhibited sulfate reduction rates as high as 1.3 kg FGD gypsum/m(3)d. The increased biocatalyst density afforded by cell immobilization in a columnar reactor allowed a productivity of 152 mg SO(4) (-2)/Lh or 6.6 kg FGD gypsum/m(3)d. Both reactors demonstrated 100% conversion of sulfate, with 75-100% recovery of elemental sulfur and chemical oxygen demand utilization as high as 70%. Calcium carbonate was recovered from the reactor effluent on precipitation using carbon dioxide. It was demonstrated that SRBs may also use synthesis gas (CO, H(2), and CO(2) in the reduction of gypsum, further decreasing process costs. The formation of two marketable products-elemental sulfur and calcium carbonate-from FGD gypsum sludge, combined with the use of a low-cost carbon source and further improvements in reactor design, promises to offer an attractive alternative to the landfilling of FGD gypsum.

  15. Could 4 degrees warming change Arctic tundra from carbon sink to carbon source?

    Science.gov (United States)

    Torn, M. S.; Abramoff, R. Z.; Chafe, O.; Curtis, J. B.; Smith, L. J.; Wullschleger, S. D.

    2015-12-01

    We have set up a controlled, active warming experiment in permafrost tundra on the North Slope of Alaska. The aim of this micro-warming experiment is to investigate the direct effect of soil warming on microbial decomposition of soil organic matter. We are testing the feasibility of small, short-term, in situ warming that can be run off batteries for distributed deployment and that preserves plant-soil relations and natural variability in wind, temperature, and precipitation. Based on preliminary results, the approach looks promising. One resistance heater cable per plot (25 cm diameter plots) was inserted vertically to 50 cm, spanning the full active layer (maximum thaw depth was 40 cm in 2014). Heaters were turned on August 1, 2015, and heated plots reached the 4ºC warming target within 1-3 days. We are measuring soil microclimate, thaw depth, CO2 and CH4 fluxes, and 14CO2, and microbial composition, as part of the DOE Next Generation Ecosystem Experiments (NGEE-Arctic). Ecosystem respiration increased immediately in the heated plots, and net ecosystem exchange under clear chambers changed from net uptake to net CO2 source in two of the four plots. CH4 flux shifted toward reduced net emissions or greater net uptake in all plots. These rapid responses demonstrate direct changes in decomposition without complications from microbial acclimation, altered community structure or changes in substrate availability. However, future Arctic tundra carbon balance will depend on both short term and long term microbial responses, as well as the links between warming, decomposition, nitrogen mineralization, and plant growth. Thus, we envision that distributed micro-warming plots could be combined with new approaches to aboveground passive warming being developed in NGEE, gradient studies, and modeling.

  16. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae) : A comparison with other marine algae using the isotopic disequilibrium technique

    NARCIS (Netherlands)

    Elzenga, JTM; Prins, HBA; Stefels, J

    2000-01-01

    The utilization of inorganic carbon species by the marine microalga Phaeocystis globasa (Prymnesiophyceae) and several other algal species from different taxa, was investigated by determining the time course of C-14 incorporation in isotopic disequilibrium experiments. From these kinetic data, concl

  17. Utilization of carbon dioxide for improving the performance of waterflooding in heavy oil recovery

    Science.gov (United States)

    Nasehi Araghi, Majid

    For several years, heavy oil reserves of Western Canada, which are amongst the largest in the world and total more than 5 billion m 3, have been under waterflooding and oil has been produced at very high water-oil-ratios. Despite its shortcomings, waterflooding has been employed because it is relatively a low cost process and is easier to operate compared to other techniques. In many cases waterflooding has been the only easy and low risk option due to the reservoir conditions which have made it impossible for any enhanced oil recovery techniques to be employed. Heavy oil waterflooding is always associated with low recoveries and poor efficiencies and therefore, there is a need for improving the performance of heavy oil waterflooding. Due to its favourable effects, CO2 injection has been accepted in the industry as an effective method of recovery for light to medium oils. But due to the immiscible nature of CO2 and heavy oil, CO 2 injection has not been looked at as a method of recovery improvement in heavy oil reserves of Western Canada. CO2 is highly soluble in both water and oil and therefore, it might be possible to improve the overall heavy oil waterflooding recoveries of these reserves by the utilization of CO2. This study consists of twelve core flood tests designed to investigate the effects of CO2 utilization on improving the performance of waterflooding in heavy oil recovery. Two injection methods are used; 1) injection of a slug of 10 to 25% pore volume of CO2 followed by a soak period and then waterflooding, and 2) injection of carbonated water which is prepared by dissolving CO2 in 1% wt. NaCl brine. Experiments were performed at temperatures of 30°C, and at pressures of 500 and 1000 psi. Water injection rates of 1 to 50 ft/day were used to recover heavy oils of 1000 to 2000 cp viscosities. The results show that, CO2 can be effectively used to make significant improvements in the overall recovery of heavy oil by waterflooding. Post CO2 waterfloodings

  18. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    Science.gov (United States)

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-04-16

    Carbon captured by marine organisms helps sequester atmospheric CO2 , especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air-sea CO2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10-30. Phytoplankton-derived POC dominated the water column POC (65-95%) within this salinity range; however, it was minor in the sediments (3-29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49-78% and 19-36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15-30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters. They function

  19. Polyol synthesis in Aspergillus niger : influence of oxygen availability, carbon and nitrogen sources on the metabolism

    DEFF Research Database (Denmark)

    Diano, Audrey; Bekker-Jensen, S; Dynesen, Jens Østergaard

    2006-01-01

    Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium...

  20. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the transformations of land utilization pattern, soil aggregates with bigger size were

  1. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  2. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

    Science.gov (United States)

    Walter Anthony, K. M.; Zimov, S. A.; Grosse, G.; Jones, Miriam C.; Anthony, P.; Chapin, F. S.; Finlay, J. C.; Mack, M. C.; Davydov, S.; Frenzel, P.F.; Frolking, S.

    2014-01-01

    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47±10 grams of carbon per square metre per year; mean±standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7

  3. Case studies for utilizing groundwater-source and low-enthalpy geothermal resources in Korea

    Science.gov (United States)

    Kim, K.-H.; Shin, J.; Lee, K.-K.; Lee, T. J.

    2012-04-01

    As one of the top 10 oil-consuming countries in the world, Korea recently has had a great interest in extending the ways to utilize renewable energy. In this regard, geothermal energy resource is attracting more concerns from both of the government and the research field. Korea has neither active volcanic sites nor areas with abnormally higher heat flow. In spite of these natural conditions, many efforts have been exerted to utilize geothermal energy. Here, we introduce two case studies of using groundwater-source geothermal energy with relatively low-enthalpy: One is a riverbank filtration facility, which has been using some of its riverbank filtrate water for the indoor air-conditioning. The other is the first EGS plant planning site, where a few fault-related artesian wells reaching 70C were discovered lately. Numerical simulations to predict the temperature evolution of the two sites, which is dominated by several hydrogeologic factors, were carried out and compared. Simulation of temperature profile of riverbank filtrate water using HydroGeoSphere shows that the primary factor in determining filtrate water temperature is the pumping rate. It also shows that maintaining the facility operation with present pumping rate for the next 30 years will not cause any significant change of water temperature. However, following the new plan of the facility to install additional 37 wells with 6 times higher pumping rate than the current rate might cause about 2C decrease in filtrate water temperature in 10 years after the extension. Simulation for the temperature evolution in a faulted geothermal reservoir in EGS planning site under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity, which reflected the analysis from several geophysical explorations, was generated. Temperature distribution calculated from the simulation shows a rise of relatively hot geothermal water along the fault plane

  4. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  5. Sources and potential application of waste heat utilization at a gas processing facility

    Science.gov (United States)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to

  6. Mesozoic black shales, source mixing and carbon isotopes

    Science.gov (United States)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  7. Ethanol and Acetate Acting as Carbon/Energy Sources Negatively Affect Yeast Chronological Aging

    Directory of Open Access Journals (Sweden)

    Ivan Orlandi

    2013-01-01

    Full Text Available In Saccharomyces cerevisiae, the chronological lifespan (CLS is defined as the length of time that a population of nondividing cells can survive in stationary phase. In this phase, cells remain metabolically active, albeit at reduced levels, and responsive to environmental signals, thus simulating the postmitotic quiescent state of mammalian cells. Many studies on the main nutrient signaling pathways have uncovered the strong influence of growth conditions, including the composition of culture media, on CLS. In this context, two byproducts of yeast glucose fermentation, ethanol and acetic acid, have been proposed as extrinsic proaging factors. Here, we report that ethanol and acetic acid, at physiological levels released in the exhausted medium, both contribute to chronological aging. Moreover, this combined proaging effect is not due to a toxic environment created by their presence but is mainly mediated by the metabolic pathways required for their utilization as carbon/energy sources. In addition, measurements of key enzymatic activities of the glyoxylate cycle and gluconeogenesis, together with respiration assays performed in extreme calorie restriction, point to a long-term quiescent program favoured by glyoxylate/gluconeogenesis flux contrary to a proaging one based on the oxidative metabolism of ethanol/acetate via TCA and mitochondrial respiration.

  8. Evaluation of gasoline-denatured ethanol as a carbon source for denitrification.

    Science.gov (United States)

    Kazasi, Anna; Boardman, Gregory D; Bott, Charles B

    2013-06-01

    In this study concerning denitrification, the performance of three carbon sources, methanol (MeOH), ethanol (EtOH) and gasoline-denatured ethanol (dEtOH), was compared and evaluated on the basis of treatment efficiency, inhibition potential and cost. The gasoline denaturant considered here contained mostly aliphatic compounds and little of the components that typically boost the octane rating, such as benzene, toluene, ethylbenzene and xylenes. Results were obtained using three lab-scale SBRs operated at SRT of 12.0 +/- 0.9 days. After biomass was acclimated, denitrification rates with dEtOH were similar to those of EtOH (201 +/- 50 and 197 +/- 28 NO3-N/g MLVSS x d, respectively), and higher than those of MeOH (165 +/- 49 mg NO3-N/g MLVSS x d). The denaturant did not affect biomass production, nitrification or denitrification. Effluent soluble COD concentrations were always less than the analytical detection limit. Although the cost of dEtOH ($2.00/kg nitrate removed) was somewhat higher than that of methanol ($1.63/kg nitrate removed), the use of dEtOH is very promising and utilities will have to decide if it is worth paying a little extra to take advantage of its benefits.

  9. Performance of a 60 F carbon nanotubes-based supercapacitor for hybrid power sources

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Wang; Dianbo Ruan; Zheng You; Yiqiang Lu; Qiqian Sha

    2005-01-01

    A supercapacitor based on charge storage at the interface between a high surface area carbon nanotube electrode and a LiClO4/PC electrolyte was assembled. The performance of the capacitor depends on not only the material used in the cell but also the construction of the cell. From a constant charge-discharge test, the capacitance of 60 F was obtained. The performance of the power power supercapacitor were demonstrated with a cell of the maximum operating voltage of 2.5 V. A hybrid power source consisting of a lithium ionic battery and the 60 F supercapacitor was demonstrated to power successfully a simulated power load encountered in GSM portable communication equipment. The addition of the supercapacitor to the power train of a cellular phone results in significantly more energy from the battery being used by the load. The experiments indicate that more than 33.8% energy is utilized by load and less stored energy is dissipated within the battery for each charge-discharge cycle.

  10. A one-step single source route to carbon nanotubes

    Indian Academy of Sciences (India)

    Tao Cheng; Zhiyong Fang; Guifu Zou; Qixiu Hu; Biao Hu; Xiaozhi Yang; Youjin Zhang

    2006-12-01

    Carbon nanotubes (CNTs) have been synthesized via directly pyrolyzing ferrocene in the autoclave. The nanotubes with several micrometers in length have outer and inner diameters in the range of 40–100 nm and 20–40 nm, respectively. An yield of ∼70% of CNTs can be obtained without any accessorial solvents and catalysts. Experimental results showed that a temperature higher than 600°C in conjunction with proper pressure was favourable for achievement of the nanotubes. The growth mechanism of CNTs was also discussed.

  11. Development of scalable methods for the utilization of multi-walled carbon nanotubes in polymer and metal matrix composites

    Science.gov (United States)

    Vennerberg, Danny Curtis

    Multi-walled carbon nanotubes (MWCNTs) have received considerable attention as reinforcement for composites due to their high tensile strength, stiffness, electrical conductivity and thermal conductivity as well as their low coefficient of thermal expansion. However, despite the availability of huge quantities of low-cost, commercially synthesized nanotubes, the utilization of MWCNTs in engineering composites is extremely limited due to difficulties in achieving uniform dispersion and strong interfacial bonding with the matrix. A proven method of enhancing the nanotube-polymer interface and degree of MWCNT dispersion involves functionalizing the MWCNTs through oxidation with strong acids. While effective at laboratory scales, this technique is not well-suited for large-scale operations due to long processing times, poor yield, safety hazards, and environmental concerns. This work aims to find scalable solutions to several of the challenges associated with the fabrication of MWCNT-reinforced composites. For polymer matrix composite applications, a rapid, dry, and cost-effective method of oxidizing MWCNTs with O3 in a fluidized bed was developed as an alternative to acid oxidation. Oxidized MWCNTs were further functionalized with silane coupling agents using water and supercritical carbon dioxide as solvents in order to endow the MWCNTs with matrix-specific functionalities. The effect of silanization on the cure kinetics, rheological behavior, and thermo-mechanical properties of model epoxy nanocomposites were investigated. Small additions of functionalized MWCNTs were found to increase the glass transition temperature, strength, and toughness of the epoxy. In order to achieve composite properties approaching those of individual nanotubes, new approaches are needed to allow for high loadings of MWCNTs. One strategy involves making macroscopic mats of nanotubes called buckypaper (BP) and subsequently infiltrating the mats with resin in processes familiar to

  12. Potential Chemical Effects of Changes in the Source of Water Supply for the Albuquerque Bernalillo County Water Utility Authority

    Science.gov (United States)

    Bexfield, Laura M.; Anderholm, Scott K.

    2008-01-01

    Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to

  13. Investigating the Feasibility of Utilizing Carbon Nanotube Fibers for Spacesuit Dust Mitigation

    Science.gov (United States)

    Manyapu, Kavya K.; de Leon, Pablo; Peltz, Leora; Tsentalovich, Dmitri; Gaier, James R.; Calle, Carlos; Mackey, Paul

    2016-01-01

    Historical data from the Apollo missions has compelled NASA to identify dust mitigation of spacesuits and other components as a critical path prior to sending humans on potential future lunar exploration missions. Several studies thus far have proposed passive and active countermeasures to address this challenge. However, these technologies have been primarily developed and proven for rigid surfaces such as solar cells and thermal radiators. Integration of these technologies for spacesuit dust mitigation has remained an open challenge due to the complexity of suit design. Current research investigates novel methods to enhance integration of the Electrodynamic Dust Shield (EDS) concept for spacesuits. We leverage previously proven EDS concept developed by NASA for rigid surfaces and apply new techniques to integrate the technology into spacesuits to mitigate dust contamination. The study specifically examines the feasibility of utilizing Carbon Nanotube (CNT) yarns manufactured by Rice University as electrodes in spacesuit material. Proof of concept testing was conducted at NASA Kennedy Space Center using lunar regolith simulant to understand the feasibility of the proposed techniques for spacesuit application. Results from the experiments are detailed in this paper. Potential challenges of applying this technology for spacesuits are also identified.

  14. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, G.; Ramos, J.L. [Consejo Superior de Investigaciones Cientificas, Granada (Spain); Kovarova, K.; Egli, T. [Swiss Federal Inst. for Environmental Science and Technology, Duebendorf (Switzerland). Dept. of Microbiology

    1998-08-01

    The nitrate-tolerant organism Klebsiella oxytoca CECT-4460 tolerates nitrate at concentrations up to 1 M and is used to treat wastewater with high nitrate loads in industrial wastewater treatment plants. The authors studied the influence of the C source (glycerol or sucrose or both) on the growth rate and the efficiency of nitrate removal under laboratory conditions. With sucrose as the sole C source the maximum specific growth rate was 0.3 h{sup {minus}1}, whereas with glycerol it was 0.45 h{sup {minus}1}. In batch cultures K. oxytoca cells grown on sucrose or glycerol were able to immediately use sucrose as a sole C source, suggesting that sucrose uptake and metabolism were constitutive. In contrast, glycerol uptake occurred preferentially in glycerol-grown cells. Independent of the preculture conditions, when sucrose and glycerol were added simultaneously to batch cultures, the sucrose was used first, and once the supply of sucrose was exhausted, the glycerol was consumed. Utilization of nitrate as an N source occurred without nitrite of ammonium accumulation when glycerol was used, but nitrite accumulated when sucrose was used. In chemostat cultures K. oxytoca CECT 4460 efficiently removed nitrate without accumulation of nitrite or ammonium when sucrose, glycerol, or mixtures of these two C sources were used. The growth yields and the efficiencies of C and N utilization were determined at different growth rates in chemostat cultures. Regardless of the C source, yield carbon (Y{sub C}) ranged between 1.3 and 1.0 g (dry weight) per g of sucrose C or glycerol C consumed. Regardless of the specific growth rate and the C source, yield nitrogen (Y{sub N}) ranged from 17.2 to 12.5 g (dry weight) per g of nitrate N consumed.

  15. Source and age of carbon in peatland surface waters: new insights from 14C analysis

    Science.gov (United States)

    Billett, Michael; Garnett, Mark; Dinsmore, Kerry; Leith, Fraser

    2013-04-01

    Peatlands are a significant source of carbon to the aquatic environment which is increasingly being recognised as an important flux pathway (both lateral and vertical) in total landscape carbon budgets. Determining the source and age of the carbon (in its various forms) is a key step to understanding the stability of peatland systems as well as the connectivity between the soil carbon pool and the freshwater environment. Novel analytical and sampling methods using molecular sieves have been developed for (1) within-stream, in situ sampling of CO2 in the field and (2) for the removal/separation of CO2 in the laboratory prior to 14C analysis of CH4. Here we present dual isotope (δ13C and 14C) data from freshwater systems in UK and Finnish peatlands to show that significant differences exist in the source and age of CO2, DOC (dissolved organic carbon) and POC (particulate organic carbon). Individual peatlands clearly differ in terms of their isotopic freshwater signature, suggesting that carbon cycling may be "tighter" in some systems compared to others. We have also measured the isotopic signature of different C species in peatland pipes, which appear to be able to tap carbon from different peat depths. This suggests that carbon cycling and transport within "piped-peatlands" may be more complex than previously thought. Some of our most recent work has focussed on the development of a method to measure the 14C component of CH4 in freshwaters. Initial results suggest that CH4 in peatland streams is significantly older than CO2 and derived from a much deeper source. We have also shown that the age (but not the source) of dissolved CO2 changes over the hydrological year in response to seasonal changes in discharge and temperature. Radiocarbon measurements in the peat-riparian-stream system suggest that a significant degree of connectivity exists in terms of C transport and cycling, although the degree of connectivity differs for individual C species. In summary, 14C

  16. Evaluation criteria for gas source rocks of marine carbonate in China

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaoyun; ZHAO Wenzhi; WANG Yunpeng

    2005-01-01

    Hydrocarbon generating and expulsion simulation experiments are carried out using samples artifically matched between the acid-dissolved residue of relatively low-maturity limestone and the original sample. This work makes up for the insufficiency of source rock samples with high abundance of organic matters and low maturity in China. The organic carbon content of the 10 prepared samples varies between 0.15 % and 0.74 %. Pyrolysis data and simulation experiment results of hydrocarbon generating and expulsion, which were obtained by a high-temperature and high-pressure open system, indicate that the lower limit of organic carbon content for marine carbonate rock to generate and expel hydrocarbons is 0.23 %-0.31%. In combination with the numerical analysis of organic carbon in marine carbonate rocks from Tarim Basin, Sichuan Basin, Ordos Basin and North China, as well as the contribution of these gas source rocks to the discovered gas pools, we think that the organic carbon criterion for carbonate gas source rocks should be 0.3%.

  17. Comparison of denitrification performances using PLA/starch with different mass ratios as carbon source.

    Science.gov (United States)

    Wu, Chuanfu; Tang, Danqi; Wang, Qunhui; Wang, Juan; Liu, Jianguo; Guo, Yan; Liu, Shu

    2015-01-01

    A suitable carbon source is significant for biological nitrate removal from groundwater. In this study, slow-release carbon sources containing polylactic acid (PLA) and starch at 8:2, 7:3, 6:4, 5:5, 4:6, and 3:7 ratios were prepared using a blending and fusing technique. The PLA/starch blend was then used as a solid carbon source for biological nitrate removal. The carbon release rate of PLA/starch was found to increase with increased starch content in leaching experiments. PLA/starch at 5:5 mass ratio was found to have the highest denitrification performance and organic carbon consumption efficiency in semi-continuous denitrification experiments, and was also revealed to support complete denitrification at 50 mg-N/L influent nitrate concentration in continuous experiments. The effluent nitrate concentration was PLA/starch increased with prolonged experimental time, which may be conducive to microorganism attachment. Therefore, PLA/starch was a suitable carbon source and biofilm carrier for groundwater remediation.

  18. The Associations between Health Literacy, Reasons for Seeking Health Information, and Information Sources Utilized by Taiwanese Adults

    Science.gov (United States)

    Wei, Mi-Hsiu

    2014-01-01

    Objective: To determine the associations between health literacy, the reasons for seeking health information, and the information sources utilized by Taiwanese adults. Method: A cross-sectional survey of 752 adults residing in rural and urban areas of Taiwan was conducted via questionnaires. Chi-squared tests and logistic regression were used for…

  19. Impact of sulfate nutrition on the utilization of atmospheric SO2 as sulfur source for Chinese cabbage

    NARCIS (Netherlands)

    Yang, Liping; Stulen, I.; De Kok, L.J.

    2006-01-01

    The ability of Chinese cabbage (Brassica pekinensis) to utilize atmospheric sulfur dioxide (SO2) as sulfur (S) source for growth was investigated in relation to root sulfate (SO42-) nutrition. If seedlings of Chinese cabbage were transferred to a sulfate-deprived nutrient solution directly after ger

  20. Influence of protein source on amino acid uptake patterns and protein utilization in rainbow trout Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Rolland, Marine; Holm, Jørgen; Dalsgaard, Anne Johanne Tang

    Matrixes of different protein sources (fish and plant products) combined with the use of crystalline amino acids allow for formulation of diets that meet fish requirements with little or no effect on protein digestibility and/or feed intake. Despite this, a total or partial replacement of fish meal...... induces reduced growth performances that remain partly unexplained. The aim of the current study was to investigate the effect of exchanging the protein source on protein utilization. Marine (fish meal) and vegetable (pea protein) sources were used with or without supplementation of crystalline amino...

  1. Variable Responses to Carbon Utilization between Planktonic and Biofilm Cells of a Human Carrier Strain of Salmonella enterica Serovar Typhi.

    Science.gov (United States)

    Kalai Chelvam, Kalaivani; Yap, Kien Pong; Chai, Lay Ching; Thong, Kwai Lin

    2015-01-01

    Salmonella enterica serovar Typhi (S. Typhi) is a foodborne pathogen that causes typhoid fever and infects only humans. The ability of S. Typhi to survive outside the human host remains unclear, particularly in human carrier strains. In this study, we have investigated the catabolic activity of a human carrier S. Typhi strain in both planktonic and biofilm cells using the high-throughput Biolog Phenotype MicroArray, Minimum Biofilm Eradication Concentration (MBEC) biofilm inoculator (96-well peg lid) and whole genome sequence data. Additional strains of S. Typhi were tested to further validate the variation of catabolism in selected carbon substrates in the different bacterial growth phases. The analyzes of the carbon utilization data indicated that planktonic cells of the carrier strain, S. Typhi CR0044 could utilize a broader range of carbon substrates compared to biofilm cells. Pyruvic acid and succinic acid which are related to energy metabolism were actively catabolised in the planktonic stage compared to biofilm stage. On the other hand, glycerol, L-fucose, L-rhamnose (carbohydrates) and D-threonine (amino acid) were more actively catabolised by biofilm cells compared to planktonic cells. Notably, dextrin and pectin could induce strong biofilm formation in the human carrier strain of S. Typhi. However, pectin could not induce formation of biofilm in the other S. Typhi strains. Phenome data showed the utilization of certain carbon substrates which was supported by the presence of the catabolism-associated genes in S. Typhi CR0044. In conclusion, the findings showed the differential carbon utilization between planktonic and biofilm cells of a S. Typhi human carrier strain. The differences found in the carbon utilization profiles suggested that S. Typhi uses substrates mainly found in the human biliary mucus glycoprotein, gallbladder, liver and cortex of the kidney of the human host. The observed diversity in the carbon catabolism profiles among different S

  2. Variable Responses to Carbon Utilization between Planktonic and Biofilm Cells of a Human Carrier Strain of Salmonella enterica Serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Kalaivani Kalai Chelvam

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi is a foodborne pathogen that causes typhoid fever and infects only humans. The ability of S. Typhi to survive outside the human host remains unclear, particularly in human carrier strains. In this study, we have investigated the catabolic activity of a human carrier S. Typhi strain in both planktonic and biofilm cells using the high-throughput Biolog Phenotype MicroArray, Minimum Biofilm Eradication Concentration (MBEC biofilm inoculator (96-well peg lid and whole genome sequence data. Additional strains of S. Typhi were tested to further validate the variation of catabolism in selected carbon substrates in the different bacterial growth phases. The analyzes of the carbon utilization data indicated that planktonic cells of the carrier strain, S. Typhi CR0044 could utilize a broader range of carbon substrates compared to biofilm cells. Pyruvic acid and succinic acid which are related to energy metabolism were actively catabolised in the planktonic stage compared to biofilm stage. On the other hand, glycerol, L-fucose, L-rhamnose (carbohydrates and D-threonine (amino acid were more actively catabolised by biofilm cells compared to planktonic cells. Notably, dextrin and pectin could induce strong biofilm formation in the human carrier strain of S. Typhi. However, pectin could not induce formation of biofilm in the other S. Typhi strains. Phenome data showed the utilization of certain carbon substrates which was supported by the presence of the catabolism-associated genes in S. Typhi CR0044. In conclusion, the findings showed the differential carbon utilization between planktonic and biofilm cells of a S. Typhi human carrier strain. The differences found in the carbon utilization profiles suggested that S. Typhi uses substrates mainly found in the human biliary mucus glycoprotein, gallbladder, liver and cortex of the kidney of the human host. The observed diversity in the carbon catabolism profiles among

  3. Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure

    KAUST Repository

    Mazarrasa, Inés

    2017-03-15

    Seagrass meadows are strong coastal carbon sinks of autochthonous and allochthonous carbon. The aim of this study was to assess the effect of coastal anthropogenic pressure on the variability of carbon sources in seagrass carbon sinks during the last 150 yr. We did so by examining the composition of the sediment organic carbon (Corg) stocks by measuring the δ13Corg signature and C : N ratio in 210Pb dated sediments of 11 Posidonia oceanica seagrass meadows around the Balearic Islands (Spain, Western Mediterranean) under different levels of human pressure. On average, the top meter sediment carbon deposits were mainly (59% ± 12%) composed by P. oceanica derived carbon whereas seston contribution was generally lower (41% ± 8%). The contribution of P. oceanica to the total sediment carbon stock was the highest (∼ 80%) in the most pristine sites whereas the sestonic contribution was the highest (∼ 40–80%) in the meadows located in areas under moderate to very high human pressure. Furthermore, an increase in the contribution of sestonic carbon and a decrease in that of seagrass derived carbon toward present was observed in most of the meadows examined, coincident with the onset of the tourism industry development and coastal urbanization in the region. Our results demonstrate a general increase of total carbon accumulation rate in P. oceanica sediments during the last century, mainly driven by the increase in sestonic Corg carbon burial, which may have important implications in the long-term carbon sink capacity of the seagrass meadows in the region examined.

  4. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Abdulazeez T., E-mail: abdul.lawal@yahoo.com

    2016-01-15

    Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews and publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.

  5. Inorganic carbon and fossil organic carbon are source of bias for quantification of sequestered carbon in mine spoil

    Science.gov (United States)

    Vindušková, Olga; Frouz, Jan

    2016-04-01

    Carbon sequestration in mine soils has been studied as a possibility to mitigate the rising atmospheric CO2 levels and to improve mine soil quality (Vindu\\vsková and Frouz, 2013). Moreover, these soils offer an unique opportunity to study soil carbon dynamics using the chronosequence approach (using a set of sites of different age on similar parent material). However, quantification of sequestered carbon in mine soils is often complicated by fossil organic carbon (e.g., from coal or kerogen) or inorganic carbon present in the spoil. We present a methodology for quantification of both of these common constituents of mine soils. Our recommendations are based on experiments done on post-mining soils in Sokolov basin, Czech Republic. Here, fossil organic carbon is present mainly as kerogen Type I and II and represents 2-6 wt.% C in these soils. Inorganic carbon in these soils is present mainly as siderite (FeCO3), calcite (CaCO3), and dolomite (CaMg(CO3)2). All of these carbonates are often found in the overburden of coal seams thus being a common constituent of post-mining soils in the world. Vindu\\vsková O, Frouz J, 2013. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. ENVIRONMENTAL EARTH SCIENCES, 69: 1685-1698. Vindu\\vsková O, Dvořáček V, Prohasková A, Frouz J. 2014. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy. ECOLOGICAL ENGINEERING. 73: 643-648. Vindu\\vsková O, Sebag D, Cailleau G, Brus J, Frouz J. 2015. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen. ORGANIC GEOCHEMISTRY, 89-90:14-22.

  6. Carbon sources supporting a diverse fish community in a tropical coastal ecosystem (Gazi Bay, Kenya)

    OpenAIRE

    Nyunja, J; Ntiba, M; Onyari, J.; Mavuti, K.; Soetaert, K.; Bouillon, S.

    2009-01-01

    Interlinked mangrove-seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isoto...

  7. Autotrophic carbon sources for fish communities in a tropical coastal ecosystem (Gazi bay, Kenya)

    OpenAIRE

    Nyunja, J; Ntiba, M; Onyari, J.; Mavuti, K.; Soetaert, K.; Bouillon, Steven

    2009-01-01

    Interlinked mangrove-seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isoto...

  8. Sources of uncertainties in modelling black carbon at the global scale

    OpenAIRE

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the...

  9. Studies on the Growth of Chlorella vulgaris in Culture Media with Different Carbon Sources

    OpenAIRE

    2009-01-01

    Diminishing oil reserves, rising oil prices and a significant increase in atmospheric carbon dioxide levels have led to an increasing demand for alternative fuels. Microalgae have been suggested as a suitable means for fuel production because of their advantages related to higher growth rates, higher photosynthetic efficiency and higher biomass production, compared to other terrestrial energy crops. During photosynthesis, microalgae can fix carbon dioxide from different sources, including the...

  10. Utilization of biodiesel waste as a renewable resource for activated carbon. Application to environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    Foo, K.Y.; Hameed, B.H. [School of Chemical Engineering, Engineering Campus, University of Science Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2009-12-15

    Stepping into the new globalized and paradigm shifted era, a huge revolution has been undergone by the oil palm industry. From a humble source of the edible oil, today oil palm has demonstrated a wide variety of uses, almost by every part of its plant. With the price of the crude petroleum hitting record height every other day, the feasibility of palm oil and oil palm biomass as renewable substitutes for the production of biodiesel has been proposed. Lately, its development has received various criticisms, mainly hinges on the huge generation of solid residues which are currently no profitable use. In view of the aforementioned reason, this paper presents a state-of-the-art review of oil palm industry, its fundamental background studies, propagation and industrial applications. Moreover, the recent developments on the preparation of activated carbons from oil palm waste, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expansion of oil palm waste in the field of adsorption science represents a potentially viable and powerful tool, leading to the superior improvement of pollution control and environmental conservation. (author)

  11. Utilization of recovered nitrogen from hydrothermal carbonization process by Arthrospira platensis.

    Science.gov (United States)

    Yao, Changhong; Pan, Yanfei; Lu, Hongbin; Wu, Peichun; Meng, Yingying; Cao, Xupeng; Xue, Song

    2016-07-01

    In the context of sustainable cultivation of microalgae, the present study focused on the use of nitrogen from the hot-water extracted biomass residue of Arthrospira platensis by hydrothermal carbonization (HTC) and the sequential cultivation of the same alga with the HTC aqueous phase (AP). Nearly 90% of the nitrogen recovered from HTC into AP was in the organic form. Under nitrogen-limited condition with HTCAP as nitrogen source the yield and content of carbohydrate were enhanced by 21% and 15% respectively compared with that under the same nitrogen level provided by NaNO3, which entitled HTCAP for the substitution of conventional nitrate. In the same way pilot-scale cultivation of A. platensis in raceway ponds outdoors demonstrated that carbohydrate content of 43.8% DW and productivity of 10.3g/m(2)/d was achieved. Notably 54% of organic nitrogen in the HTCAP could be recycled by cultivation of pre-nitrogen starved A. platensis as seeds under nitrogen limitation.

  12. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams

    Science.gov (United States)

    Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrific...

  13. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    Directory of Open Access Journals (Sweden)

    Sergi Abad

    2015-12-01

    Full Text Available Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1, biomass (0.7–0.8 g cells/g Substrate and product (0.14–0.15 g DHA/g cells yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.

  14. A new activated primary tank developed for recovering carbon source and its application.

    Science.gov (United States)

    Jin, Pengkang; Wang, Xianbao; Zhang, Qionghua; Wang, Xiaochang; Ngo, Huu Hao; Yang, Lei

    2016-01-01

    A novel activated primary tank process (APT) was developed for recovering carbon source by fermentation and elutriation of primary sludge. The effects of solids retention time (SRT), elutriation intensity (G) and return sludge ratio (RSR) on this recovery were evaluated in a pilot scale reactor. Results indicated that SRT significantly influenced carbon source recovery, and mechanical elutriation could promote soluble COD (SCOD) and VFA yields. The optimal conditions of APT were SRT=5d, G=152s(-1) and RSR=10%, SCOD and VFA production were 57.0mg/L and 21.7mg/L. Particulate organic matter in sludge was converted into SCOD and VFAs as fermentative bacteria were significantly enriched in APT. Moreover, the APT process was applied in a wastewater treatment plant to solve the problem of insufficient carbon source. The outcomes demonstrated that influent SCOD of biological tank increased by 31.1%, which improved the efficiency of removing nitrogen and phosphorus.

  15. Behavior of solid carbon sources for biological denitrification in groundwater remediation.

    Science.gov (United States)

    Zhang, Jianmei; Feng, Chuanping; Hong, Siqi; Hao, Huiling; Yang, Yingnan

    2012-01-01

    The present study was conducted to compare the behavior of wheat straw, sawdust and biodegradable plastic (BP) as potential carbon sources for denitrification in groundwater remediation. The results showed that a greater amount of nitrogen compounds were released from wheat straw and sawdust than from BP in leaching experiments. In batch experiments, BP showed higher nitrate removal efficiency and longer service life than wheat straw and sawdust, which illustrated that BP is the most appropriate carbon source for stimulation of denitrification activity. In column experiments, BP was able to support complete denitrification at influent nitrate concentrations of 50, 60, 70, 80, and 90 mg NO(3)(-)-N/L, showing corresponding denitrification rates of 0.12, 0.14, 0.17, 0.19, and 0.22 mg NO(3)(-)-N.L(-1).d(-1).g(-1), respectively. These findings indicate that BP is applicable for use as a carbon source for nitrate-polluted groundwater remediation.

  16. Sources and delivery of carbon dioxide for enhanced oil recovery. Final report, October 1977--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hare, M.; Perlich, H.; Robinson, R.; Shah, M.; Zimmerman, F.

    1978-12-01

    Results are presented from a comprehensive study by Pullman Kellogg, with assistance from Gulf Universities Research Consortium (GURC) and National Cryo-Chemics Incorporated (NCI), of the carbon dioxide supply situation for miscible flooding operations to enhance oil recovery. A survey of carbon dioxide sources within the geographic areas of potential EOR are shown on four regional maps with the tabular data for each region to describe the sources in terms of quantity and quality. Evaluation of all the costs, such as purchase, production, processing, and transportation, associated with delivering the carbon dioxide from its source to its destination are presented. Specific cases to illustrate the use of the maps and cost charts generated in this study have been examined.

  17. Effect of Different Carbon Source on Expression of Carotenogenic Genes and Astaxanthin Production in Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2013-10-01

    Full Text Available The present research gives an insight into astaxanthin production, as well as transcription differences of four key carotenogenic genes, in Xanthophyllomyces dendrorhous when cultured with various carbon sources and soybean oil as co-substrates. Glucose was found to be the carbon source with best culture growth and astaxanthin production and the addition of 2% (v/v soybean oil resulted in even higher astaxanthin producing. In addition, four carotenogenic genes encoding geranylgeranyl diphosphate synthase (crtE, phytoene desaturase (crtl, phytoene synthase lycopene cyclase(crtYB, and astaxanthin synthetase (ast, respectively, were demonstrated to be associated with different transcription levels under various substrates. The present study suggests the effectiveness of manipulating the metabolic regulation by using different carbon sources, in order to improve the production of astaxanthin.

  18. Carbon storages in plantation ecosystems in sand source areas of north Beijing, China.

    Directory of Open Access Journals (Sweden)

    Xiuping Liu

    Full Text Available Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0-100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management.

  19. Characteristics and source of black carbon aerosol over Taklimakan Desert

    Institute of Scientific and Technical Information of China (English)

    FU; S.Joshua

    2010-01-01

    Black carbon(BC) and PM10 in the center of the Taklimakan Desert were online monitored in the whole year of 2007.In addi-tion,TSP samples were also synchronously daily collected by medium-volume samplers with Whatman41 filters in the spring of 2007.BC in the dust aerosol was up to 1.14%of the total mass of PM10.A remarkable seasonal variation of BC in the aerosol was observed in the order of winter>spring>autumn>summer.The peak value of BC appeared at midnight while the lowest one in the evening each day,which was just the reverse of that in the urban area.The contribution of BC to the total mass of PM10 on non-dust storm days was~11 times of that in dust storm.Through back trajectory and principal component analysis,it was found that BC in the dust aerosol over Taklimakan Desert might be attributed to the emission from the anthropogenic activities,including domestic heating,cooking,combustion of oil and natural gas,and the medium-range transport from those oases located in the margins of the desert.The total BC aerosol from the Taklimakan Desert to be transported to the eastward downstream was estimated to be 6.3×104 ton yr-1.

  20. Utilizing hydropower for load balancing non-storable renewable energy sources - technical and environmental challenges

    Science.gov (United States)

    Alfredsen, K. T.; Killingtveit, A.

    2011-12-01

    About 99% of the total energy production in Norway comes from hydropower, and the total production of about 120 TWh makes Norway Europe's largest hydropower producer. Most hydropower systems in Norway are based on high-head plants with mountain storage reservoirs and tunnels transporting water from the reservoirs to the power plants. In total, Norwegian reservoirs contributes around 50% of the total energy storage capacity in Europe. Current strategies to reduce emission of greenhouse gases from energy production involve increased focus on renewable energy sources, e.g. the European Union's 202020 goal in which renewable energy sources should be 20% of the total energy production by 2020. To meet this goal new renewable energy installations must be developed on a large scale in the coming years, and wind power is the main focus for new developments. Hydropower can contribute directly to increase renewable energy through new development or extensions to existing systems, but maybe even more important is the potential to use hydropower systems with storage for load balancing in a system with increased amount of non-storable renewable energies. Even if new storage technologies are under development, hydro storage is the only technology available on a large scale and the most economical feasible alternative. In this respect the Norwegian system has a high potential both through direct use of existing reservoirs and through an increased development of pump storage plants utilizing surplus wind energy to pump water and then producing during periods with low wind input. Through cables to Europe, Norwegian hydropower could also provide balance power for the North European market. Increased peaking and more variable operation of the current hydropower system will present a number of technical and environmental challenges that needs to be identified and mitigated. A more variable production will lead to fluctuating flow in receiving rivers and reservoirs, and it will also

  1. Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees.

    Science.gov (United States)

    Martínez-Alcántara, Belén; Iglesias, Domingo J; Reig, Carmina; Mesejo, Carlos; Agustí, Manuel; Primo-Millo, Eduardo

    2015-03-15

    Fruit load in alternate-bearing citrus trees is reported to alter shoot number and growth during spring, summer, and autumn flushes, and the source-sink balance, which affects the storage and mobilization of reserve nutrients. The aim of this work was to assess the extent of shoot growth inhibition resulting from the presence of fruits in 'Moncada' mandarin trees loaded with fruit (ON) or with very light fruit load (OFF), and to identify the role of carbohydrates and nitrogenous compounds in the competition between fruits and shoots. Growth of reproductive and vegetative organs was measured on a monthly basis. (13)C- and (15)N-labeled compounds were supplied to trace the allocation of reserve nutrients and subsequent translocation from source to sink. At the end of the year, OFF trees produced more abundant flushes (2.4- and 4.9-fold higher in number and biomass, respectively) than ON trees. Fruits from ON trees accumulated higher C amounts at the expense of developing flushes, whereas OFF trees exhibited the opposite pattern. An inverse relationship was identified between the amount of C utilized by fruits and vegetative flush growth. (13)C-labeling revealed an important role for mature leaves of fruit-bearing branches in supporting shoot/fruit growth, and the elevated sink strength of growing fruits on shoots. N availability for vegetative shoots was not affected by the presence or absence of fruits, which accumulated important amounts of (15)N. In conclusion, our results show that shoot growth is resource-limited as a consequence of fruit development, and vegetative-growth inhibition is caused by photoassimilate limitation. The competence for N is not a decisive factor in limiting vegetative growth under the experimental conditions of this study.

  2. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  3. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    Science.gov (United States)

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  4. Nanotube substituted source/drain regions for carbon nanotube transistors for VLSI circuits.

    Science.gov (United States)

    Dutta, Shibesh; Shankar, Balakrishnan

    2011-12-01

    Aggressive scaling of silicon technology over the years has pushed CMOS devices to their fundamental limits. Pioneering works on carbon nanotube during the last decade possessing exceptional electrical properties have provided an intriguing solution for high performance integrated circuits. So far, at best, carbon nanotubes have been considered only for the channel, with metal electrodes being used for source/drain. Here, alternative schemes of 'All-Nanotube' transistor are presented where even the transistor components are derived from carbon nanotubes which hold the promise for smaller, faster, denser and more power efficient electronics.

  5. Sources of uncertainties in modelling Black Carbon at the global scale

    Directory of Open Access Journals (Sweden)

    F. Cavalli

    2009-11-01

    Full Text Available Our understanding of the global black carbon cycle is essentially qualitative due to uncertainties in our knowledge of the properties of black carbon. This work investigates uncertainties related to modelling black carbon: due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and due to the uncertainties in the definition and quantification of observed black carbon, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering black carbon as bulk aerosol and a simple treatment in the removal and (ii a more complete description of microphysical aging within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol. In the first approach a fixed 70% of black carbon is scavenged in clouds and removed when rain is present. The second leads to a global average of 40% black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, showing that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of magnitude.

  6. North America carbon dioxide sources and sinks: magnitude, attribution, and uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    King, Anthony W.; Hayes, Daniel J.; Huntzinger, Deborah N.; West, Tristram O.; Post, W. M.

    2012-12-01

    North America is both a source and sink of atmospheric CO2. Sources, predominately fossil-fuel combustion in the United States along with contributions from deforestation in Mexico, add CO2 to the atmosphere. Most North America ecosystems, particularly regrowing forests in the United States, are sinks for atmospheric CO2. CO2 is removed from the atmosphere in photosynthesis, converted into biomass and stored as carbon in vegetation, soil and wood products. Fossil-fuel emissions dominate the North American source-sink balance. North America is a net source of atmospheric CO2 with ecosystem sinks balancing approximately 35% of fossil-fuel CO2 emissions from North America.

  7. Evaluation of Natural Materials as Exogenous Carbon Sources for Biological Treatment of Low Carbon-to-Nitrogen Wastewater

    Science.gov (United States)

    Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel; Vázquez-Rodríguez, Gabriela

    2015-01-01

    In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4+, NO2−, and NO3−, and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents. PMID:26495313

  8. The effect of various carbon sources on the growth of single-celled cyanophyta

    Science.gov (United States)

    Avilov, I. A.; Sidorenkova, E. S.

    1983-01-01

    In 19 strains of unicellular blue-green algae, belonging to general Synechococcus, Synechocystis, Aphanocapsa and Aphanothece, the capacity of growth under mixotrophic conditions in mineral media with organic carbon sources (carbohydrates, polyols) was investigated. At moderate light intensity (1200 lx) and 0.5% of carbon source there was revealed: (1) Stimulation of growth; (2) Partial or complete inhibition of growth; (3) No influence of carbohydrate and polyols on the growth of some algae strains. Three physiological groups for the investigated strains have been outlined on the basis of data obtained. The possibility of using the differences revealed in classification of unicellular blue-green algae is discussed.

  9. Electrochemical Characterization of a Microbial Fuel Cell (MFC) that Utilizes cow Manure as Energy Source

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, M.; Prenafeta, F.; Flotats, X.; Gerritse, J.

    2009-07-01

    Microbial fuel cells are new types of bioreactors that convert the chemical energy encountered in organic matter directly to electricity. The efficiency of this energy conversion is potentially higher than described in other environmental technologies focused on energy production from organic wastes, such as biogas utilization. A MFC reactor utilizes microorganisms as catalysts to transfer electrons from the biological oxidation of the organic matter to an electrode (anode) in anaerobic conditions. (Author)

  10. Public utilities with renewable energy sources. Proceedings; Stadtwerke mit Erneuerbaren Energien. Konferenzbeitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Within the Second EUROSOLAR Conference of EUROSOLAR, the European Association for Renewable Energy (Bonn, Federal Republic of Germany) between 15th and 16th May, 2008, at the Waterworks Braunschweig (Federal Republic of Germany), the following lectures were held: (1) The municipal public utility: The paradigm shift from power distribution companies to municipal infrastructure provider (C. Jaenig); (2) Public utilities and their concepts (Z. Meszaros); (3) The BS Energy Group (U.Lehmann-Grube); (4) New ways with energy (T. Westerheide); (5) Public utilities and their concepts (R. Edzards); (6) Public utilities with renewable energy (P. Asmuth); (7) Total concept of the public utility Wolfhagen (M. Ruehl); (8) Municipal energy concepts for the expansion of the combined heat and power generation and renewable energies (J. van Bergen); (9) Storage of renewable energy (T. Blank); (10) Public utility as a confident partner of a renewable regional economy (R. Hemmers); (11) The regenerative combined cycle power plant (M. Meyr); (12) The solar power system of systaic (O. Achilles); (13) The concession contract as an instrument for restructuring (J. Schwarz); (14) EEG 2009, GasNZV and EEWaermeG: The changed legal framework as a chance for a restructured power generation (M. Altrock).

  11. Bicarbonate utilization and pH polarity. The response of photosynthetic electron transport to carbon limitation in Potamogeton lucens leaves

    NARCIS (Netherlands)

    van Ginkel, LC; Prins, HBA

    1998-01-01

    By the process of pH polarity, several submersed angiosperms can use bicarbonate as carbon source for photosynthesis. Under conditions of relatively high light intensity and low CO2 availability, the pH of the apoplast and unstirred layer becomes acid at one side of the leaf and alkaline at the othe

  12. Comparative study on CO2 sources in soil developed on carbonate rock and non-carbonate rock in Central Guizhou

    Institute of Scientific and Technical Information of China (English)

    黎廷宇; 王世杰; 郑乐平

    2002-01-01

    In this paper, by using concentration and carbon stable isotope the CO2 sources of soil profiles developed on limestone, dolostone and claystone basements in Central Guizhou, China are comparatively studied. The results show that CO2 concentration of soil profiles developed on different basements is different, having the following sequence: limestone>dolostone>claystone. Below the soil depth of 20 cm from the surface the ? 13C value of CO2 in soil profile developed on limestone ranges from -12.811‰ - -13.492‰(PDB), that in soil profile developed on dolostone varys from -13.212‰ - -14.271‰(PDB) and that in soil profile developed on claystone is about -20.234‰ - -21.485‰(PDB). Taking the carbon isotope of soil organic matter and carbonate rock as two isotopic endmembers, the proportion of soil CO2 generated by dissolution of carbonate rock is calculated, about 21%-25% for soil profile developed on limestone basement, 19%-21% for soil profile developed on dolostone basement. There is almost no influx of CO2 generated by the dissolution of carbonate rock in soil profile developed on claystone basement.

  13. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  14. Carbon allocation, source-sink relations and plant growth: do we need to revise our carbon centric concepts?

    Science.gov (United States)

    Körner, Christian

    2014-05-01

    Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers

  15. Utilization of spent activated carbon to enhance the combustion efficiency of organic sludge derived fuel.

    Science.gov (United States)

    Chen, Wei-Sheng; Lin, Chang-Wen; Chang, Fang-Chih; Lee, Wen-Jhy; Wu, Jhong-Lin

    2012-06-01

    This study examines the heating value and combustion efficiency of organic sludge derived fuel, spent activated carbon derived fuel, and derived fuel from a mixture of organic sludge and spent activated carbon. Spent activated carbon was sampled from an air pollution control device of an incinerator and characterized by XRD, XRF, TG/DTA, and SEM. The spent activated carbon was washed with deionized water and solvent (1N sulfuric acid) and then processed by the organic sludge derived fuel manufacturing process. After washing, the salt (chloride) and sulfide content could be reduced to 99% and 97%, respectively; in addition the carbon content and heating value were increased. Different ratios of spent activated carbon have been applied to the organic sludge derived fuel to reduce the NO(x) emission of the combustion.

  16. Sources of uncertainties in modelling black carbon at the global scale

    Directory of Open Access Journals (Sweden)

    E. Vignati

    2010-03-01

    Full Text Available Our understanding of the global black carbon (BC cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of

  17. Sources of uncertainties in modelling black carbon at the global scale

    Science.gov (United States)

    Vignati, E.; Karl, M.; Krol, M.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-03-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation. The schemes for the atmospheric processing of black carbon that have been tested with the model are (i) a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii) a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of magnitude. The sensitivity to wet

  18. Source apportionment of atmospheric particulate carbon in Las Vegas, Nevada,USA

    Institute of Scientific and Technical Information of China (English)

    Mark C.Green; Judith C.Chow; M.-C.Oliver Chang; L.-W.Antony Chen; Hampden D.Kuhns; Vicken R.Etyemezian; John G.Watson

    2013-01-01

    A study was conducted to quantify wintertime contributions of source types to carbonaceous PM2.5 at four urban sites in the Las Vegas Valley,one of the most rapidly growing urban areas in the southwestern United States.Twenty-four hour average ambient samples were collected for mass,ions,elements,organic carbon (OC),elemental carbon (EC),and trace organic markers analysis.Additional measurements were made to determine diurnal patterns in light-absorbing black carbon (BC) as a marker for combustion sources.Carbonaceous PM sources of on-road gasoline vehicles,on-road diesel vehicles,and off-road diesel engines were characterized with their chemical profiles,as well as fuel-based emission factors,using an In-Plume Sampling System.The Effective Variance Chemical Mass Balance (EV-CMB) source apportionment model was applied to the ambient samples collected,using source profiles developed in this study as well as profiles from other relevant studies.Four main sources contributed to PM2.5 carbon within the Las Vegas Valley:(1) paved road dust,(2) on-road gasoline vehicles,(3) residential wood combustion,and (4) on-road diesel vehicles.CMB estimated that on-road mixed fleet gasoline vehicles are the largest source for OC and EC at all the sites.The contribution of paved road dust to both OC and EC was 5-10% at the four sites.On-road diesel vehicles contribute 22% of the OC and 34% of the EC at a site near the city center,which is located immediately downwind of a major freeway.Residential wood combustion is a more important source than on-road diesel vehicles for two residential neighborhood sites.These results are consistent with our conceptual model,and the research methodology may be applied to studying other urban areas.

  19. Expanding Human Capabilities through the Adoption and Utilization of Free, Libre, and Open Source Software

    Science.gov (United States)

    Simpson, James Daniel

    2014-01-01

    Free, libre, and open source software (FLOSS) is software that is collaboratively developed. FLOSS provides end-users with the source code and the freedom to adapt or modify a piece of software to fit their needs (Deek & McHugh, 2008; Stallman, 2010). FLOSS has a 30 year history that dates to the open hacker community at the Massachusetts…

  20. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads

  1. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    Science.gov (United States)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer pipes can be critical to more effectively minimizing urban nonpoint nutrient sources. The sources, fluxes, and flowpaths of groundwater

  2. Important fossil source contribution to brown carbon in Beijing during winter

    Science.gov (United States)

    Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan

    2017-01-01

    Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources. PMID:28266611

  3. Important fossil source contribution to brown carbon in Beijing during winter

    Science.gov (United States)

    Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan

    2017-03-01

    Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources.

  4. Production of Medium Chain Length Polyhydroxyalkanoates by Pseudomonas mendocina 0806 from Related and Unrelated Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Pseudomonas mendocina strain 0806 isolated from oil-contaminated soil was found to produce medium chain length polyhydroxyalkanoates (mcl PHAs).The mcl PHAs consist of monomers with even numbers of carbon atoms such as hydroxyhexanoate (HHx or C6), hydroxyoctanoate (HO or C8), and/or hydroxydecanoate (HD or C10) as major compositions when the strain was grown on unrelated carbon sources such as glucose, citric acid and related carbon sources such as octanoate, myristic acid or oleic acid.While even and odd number hydroxyalkanoate (HA) monomers were synthesized when tridecanoic acid was used as carbon source.The molar ratio of carbon to nitrogen (RC/N) had strong effects on PHA compositions: the strain produced PHAs with 97%-99% (molar ratio) HD (C10) monomer when grown in a glucose ammonium sulfate medium of RC/N40.It was demonstrated that the molar ratio of HO/HD remained constant in the polymers synthesized from media containing a constant RC/N, regardless of the change of glucose concentration.Up to 3.6 g/L cell dry weight containing 45% (mass fraction) PHAs was produced by the strain grown for 48 h in a medium containing 25 g/L glucose with RC/N of 40.

  5. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.

    Science.gov (United States)

    Pérez-García, Fernando; Max Risse, Joe; Friehs, Karl; Wendisch, Volker F

    2017-02-07

    Corynebacterium glutamicum is used for the million-ton scale production of amino acids and has recently been engineered for production of the cyclic non-proteinogenic amino acid L-pipecolic acid (L-PA). In this synthetic pathway L-lysine was converted to L-PA by oxidative deamination, dehydration and reduction by L-lysine 6-dehydrogenase (deaminating) from Silicibacter pomeroyi and pyrroline 5-carboxylate reductase from C. glutamicum. However, production of L-PA occurred as by-product of L-lysine production only. Here, the author show that abolishing L-lysine export by the respective gene deletion resulted in production of L-PA as major product without concomitant lysine production while the specific growth rate was reduced due to accumulation of high intracellular lysine concentrations. Increasing expression of the genes encoding L-lysine 6-dehydrogenase and pyrroline 5-carboxylate reductase in C. glutamicum strain PIPE4 increased the L-PA titer to 3.9 g L(-1) , and allowed faster growth and, thus, a higher volumetric productivity of 0.08 ± 0.00 g L(-1) h(-1) respectively. Secondly, expression of heterologous genes for utilization of glycerol, xylose, glucosamine, and starch in strain PIPE4 enabled L-PA production from these alternative carbon sources. Third, in a glucose/sucrose-based fed-batch fermentation with C. glutamicum PIPE4 L-PA was produced to a titer of 14.4 g L(-1) with a volumetric productivity of 0.21 g L(-1) h(-1) and an overall yield of 0.20 g g(-1) .

  6. Effect of Nitrogen Source and Carbon to Nitrogen Ratio on Hydrogen Production using C. acetobutylicum

    Directory of Open Access Journals (Sweden)

    Mohd Sahaid Kalil

    2008-01-01

    Full Text Available Problem statement: One of the main factors influenced the bacterial productivity and total yield of hydrogen is the nitrogen source and its concentration. Approach: Using different nitrogen source with different concentration on bacterial productivity of hydrogen showed to affect on both bacterial productivity of hydrogen and biomass concentration. Results: Yeast extract as nitrogen source at concentration of 13 g L-1 was the best organic nitrogen source and resulted in hydrogen yield YP/S of 308 mL g-1 glucose utilized with biomass concentration of 1.1 g L-1, hydrogen yield per biomass YP/X of 280 mL g-1 L-1, biomass per substrate utilized YX/S of 0.22 and produced hydrogen in gram per gram of glucose utilized YH2/S of 0.0275. C/N of 70 enhanced the YP/S from 308-350 mL g?1 glucose utilized with biomass concentration of 1.22 gL-1, YP/X of 287 mL g-1 L-1, YX/S of 0.244 and YH2/S of 0.03125. Conclusion: Nitrogen source with proper C:N ratio enhanced the hydrogen production.

  7. Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source.

    Science.gov (United States)

    Park, Paul K J; Jun, S B; Kim, Hoon; Jung, D K; Lee, W R; Chung, Y C

    2007-10-17

    We report on the reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based ASE source for injection locking to FPLD. The results show that, to suppress the polarization-induced Q penalty sufficiently less than 0.5 dB, the MQW-SLD output should be depolarized within the locking range of the wavelength-locked FPLD.

  8. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico.

    Science.gov (United States)

    Morales Mora, M A; Vergara, C Pretelín; Leiva, M A; Martínez Delgadillo, S A; Rosa-Domínguez, E R

    2016-12-01

    Post-combustion CO2 capture (PCC) of flue gas from an ammonia plant (AP) and the environmental performance of the carbon capture utilization (CCU) technology for greenhouse gas (GHG) emissions to an enhanced oil recovery (EOR) system in Mexico was performed as case study. The process simulations (PS) and life cycle assessment (LCA) were used as supporting tools to quantify the CO2 capture and their environmental impacts, respectively. Two scenarios were considered: 1) the AP with its shift and CO2 removal unit and 2) Scenario 1 plus PCC of the flue gas from the AP primary reformer (AP-2CO2) and the global warming (GW) impact. Also, the GW of the whole of a CO2-EOR project, from these two streams of captured CO2, was evaluated. Results show that 372,426 tCO2/year can be PCC from the flue gas of the primary reformer and 480,000 tons/y of capacity from the AP. The energy requirement for solvent regeneration is estimated to be 2.8 MJ/kgCO2 or a GW impact of 0.22 kgCO2e/kgCO2 captured. GW performances are 297.6 kgCO2e emitted/barrel (bbl) for scenario one, and 106.5 kgCO2e emitted/bbl for the second. The net emissions, in scenario one, were 0.52 tCO2e/bbl and 0.33 tCO2e/bbl in scenario two. Based on PS, this study could be used to evaluate the potential of CO2 capture of 4080 t/d of 4 ammonia plants. The integration of PS-LCA to a PCC study allows the applicability as methodological framework for the development of a cluster of projects in which of CO2 could be recycled back to fuel, chemical, petrochemical products or for enhanced oil recovery (EOR). With AP-2CO2, "CO2 emission free" ammonia production could be achieved.

  9. Carbon sources supporting a diverse fish community in a tropical coastal ecosystem (Gazi Bay, Kenya)

    NARCIS (Netherlands)

    Nyunja, J.; Ntiba, M.; Onyari, J.; Mavuti, K.; Soetaert, K.E.R.; Bouillon, S.

    2009-01-01

    Interlinked mangrove–seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two locat

  10. Formation of a raw starch-hydrolyzing -amlyase by Clostridium 2021: effect of carbon sources

    Energy Technology Data Exchange (ETDEWEB)

    Avendano, M.C.; Cornejo, I.

    1987-01-01

    Clostridium 2021 was found to produce -amylase effective at hydrolyzing raw starch. Of the carbohydrates examined, starch at 3% concentration was found to be the best carbon source for enzyme production. The products of -amylase action on starch were: maltose, glucose and higher dextrins.

  11. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik;

    1994-01-01

    In alternating type activated sludge nutrient removal processes, the denitrification rate can be limited by the availability of readily-degradable carbon substrate. A control strategy is proposed by which an easily metabolizable COD source is added directly to that point in the process at which...

  12. Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Removal of nitrate from groundwater was investigated using biodegradable meal box(BMB) and poly(ε-caprolactone)(PCL) as carbon source and biofilm carrier.The experimental results show that nitrate in groundwater can be effectively removed using BMB and PCL as carbon source.Denitrification rates supported by BMB and PCL were 52.80 and 42.77 mg(NO3-N)/(m2h),respectively,at 30 ℃ and pH 7.5.The pH value of effluent ranged from 7 to 8,and NO2-N concentration was less than 0.1 mg/L.Compared with BMB,PCL could decrease nitrite accumulation;however,more significant influence of temperature on denitrification was observed for PCL as carbon source.Temperature constants for BMB and PCL were 0.045 and 0.068,respectively,at 10-30℃.Based on denitrification efficiency and cost,BMB is more suitable as a carbon source for denitrification of groundwater than PCL.

  13. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01

    Institute of Scientific and Technical Information of China (English)

    QIAO Hongjin; WANG Guangce

    2009-01-01

    Heterotrophic culture of microalgae to develop methods of increasing biomass productivity and storage lipids has brought new insight to commercial biodiesel production. To understand the relationship between heterotrophy and lipid production, the effects of carbon sources on the growth and lipid accumulation of Chlorella sorokiniana GXNN01 was studied. The alga exhibited an increased growth rate in response to the addition of carbon sources, which reached the stationary phase after 48 h at 30°C. In addition, glucose and NaAc had a significant effect on the lipid accumulation during the early-stationary phase. Specifically, the lipid content was 0.237±0.026 g g~(-1) cell dry weight and 0.272±0.041 g L~(-1) when glucose was used as the carbon source, whereas the lipid content reached 0.287±0.018 g g~(-1) cell dry weight and 0.288±0.008 g L~(-1) when NaAc was used as the carbon source. The neutral lipid content was found to first decrease and then increase over time during the growth phase. A glucose concentration of 20 mmol L~(-1) gave the maximal lipid yield and the optimum harvest time was the early-stationary phase.

  14. Silica-Based Carbon Source Delivery for In-situ Bioremediation Enhancement

    Science.gov (United States)

    Zhong, L.; Lee, M. H.; Lee, B.; Yang, S.

    2015-12-01

    Colloidal silica aqueous suspensions undergo viscosity increasing and gelation over time under favorable geochemical conditions. This property of silica suspension can potentially be applied to deliver remedial amendments to the subsurface and establish slow release amendment sources for enhanced remediation. In this study, silica-based delivery of carbon sources for in-situ bioremediation enhancement is investigated. Sodium lactate, vegetable oil, ethanol, and molasses have been studied for the interaction with colloidal silica in aqueous suspensions. The rheological properties of the carbon source amendments and silica suspension have been investigated. The lactate-, ethanol-, and molasses-silica suspensions exhibited controllable viscosity increase and eventually became gels under favorable geochemical conditions. The gelation rate was a function of the concentration of silica, salinity, amendment, and temperature. The vegetable oil-silica suspensions increased viscosity immediately upon mixing, but did not perform gelation. The carbon source release rate from the lactate-, ethanol-, and molasses-silica gels was determined as a function of silica, salinity, amendment concentration. The microbial activity stimulation and in-situ bioremediation enhancement by the slow-released carbon from the amendment-silica gels will be demonstrated in future investigations planned in this study.

  15. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    Science.gov (United States)

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system.

  16. Stream restoration and sewers impact sources and fluxes of water,carbon, and nutrients in urban watersheds

    Science.gov (United States)

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P)...

  17. Application of carbon isotope for discriminating sources of soil CO2 in karst area, Guizhou

    Institute of Scientific and Technical Information of China (English)

    黎廷宇; 王世杰

    2001-01-01

    Using carbon isotope of soil CO2 this paper discussed the sources of soil CO2 in karst area, Guizhou Province, China. Oxidation-decomposition of organic matter, respiration of plant root and activity of microbe are thought to be the major sources of soil CO2. However, in karst area, the contribution of dissolution of underlying carbonate rock to soil CO2 should be considered as in acidic environment. Atmospheric CO2 is the major composition of soil CO2 in surface layer of soil profiles and its proportion in soil CO2 decreases with increase of soil depth. CO2 produced by dissolution of carbonate rock contributes 34%-46% to soil CO2 below the depth of 10cm in the studied soil profiles covered by grass.

  18. Morphological forms of carbon and their utilizations at formation of iron casting surfaces

    Directory of Open Access Journals (Sweden)

    P. Jelínek

    2008-07-01

    Full Text Available Model pyrolysis made possible to identify three solid products of carbonaceous additives. Lustrous carbon is the most important form of the pyrolysis carbon. With its structure and physical and chemical properties it comes near to graphite. Amorphous carbon with turbo-stratic lattice, higher oxireactivity, and lower protective function against liquid metal comes near to carbon black. Semicoke also plays a non-negligible role. All forms of carbon have an important representation in oolitized quartz grain also during forming the casting surface. While amorphous carbon is formed directly from the gaseous phase by homogeneous nucleation, lustrous carbon, with regard to similarity of lattices with quartz, is formed by heterogeneous nucleation on grains. High covering power and low oxireactivity give its highest protecting power of the mould face. New experimental equipment made possible to check a possibility of use of new composite bentonite binders containing „process carbon“(graphite, anthracite, amorphous carbon. The BTEX content in exhalations and in waste sands too was considerably decreased with high smoothness of castings.

  19. Utilization of porous carbons derived from coconut shell and wood in natural rubber

    Science.gov (United States)

    The porous carbons derived from cellulose are renewable and environmentally friendly. Coconut shell and wood derived porous carbons were characterized with elemental analysis, ash content, x-ray diffraction, infrared absorbance, particle size, surface area, and pore volume. The results were compared...

  20. Nitrogen source and concentration affect utilization of glucose by mixed ruminal microbes in vitro

    Science.gov (United States)

    Availability of ruminally degradable protein (RDP) changes the utilization of carbohydrates by ruminal microbes. However, the effects are not well described, though such information is needed to understand the potential impact on nutrient supplies for ruminants. The objective of this study was to co...

  1. An Analytic Linear Accelerator Source Model for Monte Carlo dose calculations. II. Model Utilization in a GPU-based Monte Carlo Package and Automatic Source Commissioning

    CERN Document Server

    Tian, Zhen; Li, Yongbao; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-01-01

    We recently built an analytical source model for GPU-based MC dose engine. In this paper, we present a sampling strategy to efficiently utilize this source model in GPU-based dose calculation. Our source model was based on a concept of phase-space-ring (PSR). This ring structure makes it effective to account for beam rotational symmetry, but not suitable for dose calculations due to rectangular jaw settings. Hence, we first convert PSR source model to its phase-space let (PSL) representation. Then in dose calculation, different types of sub-sources were separately sampled. Source sampling and particle transport were iterated. So that the particles being sampled and transported simultaneously are of same type and close in energy to alleviate GPU thread divergence. We also present an automatic commissioning approach to adjust the model for a good representation of a clinical linear accelerator . Weighting factors were introduced to adjust relative weights of PSRs, determined by solving a quadratic minimization ...

  2. A versatile, pulsed anion source utilizing plasma-entrainment: Characterization and applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu-Ju; Lehman, Julia H.; Lineberger, W. Carl, E-mail: wcl@jila.colorado.edu [JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-01-28

    A novel pulsed anion source has been developed, using plasma entrainment into a supersonic expansion. A pulsed discharge source perpendicular to the main gas expansion greatly reduces unwanted “heating” of the main expansion, a major setback in many pulsed anion sources in use today. The design principles and construction information are described and several examples demonstrate the range of applicability of this anion source. Large OH{sup −}(Ar){sub n} clusters can be generated, with over 40 Ar solvating OH{sup −}. The solvation energy of OH{sup −}(Ar){sub n}, where n = 1-3, 7, 12, and 18, is derived from photoelectron spectroscopy and shows that by n = 12-18, each Ar is bound by about 10 meV. In addition, cis– and trans– HOCO{sup −} are generated through rational anion synthesis (OH{sup −} + CO + M → HOCO{sup −} + M) and the photoelectron spectra compared with previous results. These results, along with several further proof-of-principle experiments on solvation and transient anion synthesis, demonstrate the ability of this source to efficiently produce cold anions. With modifications to two standard General Valve assemblies and very little maintenance, this anion source provides a versatile and straightforward addition to a wide array of experiments.

  3. A versatile, pulsed anion source utilizing plasma-entrainment: Characterization and applications

    Science.gov (United States)

    Lu, Yu-Ju; Lehman, Julia H.; Lineberger, W. Carl

    2015-01-01

    A novel pulsed anion source has been developed, using plasma entrainment into a supersonic expansion. A pulsed discharge source perpendicular to the main gas expansion greatly reduces unwanted "heating" of the main expansion, a major setback in many pulsed anion sources in use today. The design principles and construction information are described and several examples demonstrate the range of applicability of this anion source. Large OH-(Ar)n clusters can be generated, with over 40 Ar solvating OH-. The solvation energy of OH-(Ar)n, where n = 1-3, 7, 12, and 18, is derived from photoelectron spectroscopy and shows that by n = 12-18, each Ar is bound by about 10 meV. In addition, cis- and trans- HOCO- are generated through rational anion synthesis (OH- + CO + M → HOCO- + M) and the photoelectron spectra compared with previous results. These results, along with several further proof-of-principle experiments on solvation and transient anion synthesis, demonstrate the ability of this source to efficiently produce cold anions. With modifications to two standard General Valve assemblies and very little maintenance, this anion source provides a versatile and straightforward addition to a wide array of experiments.

  4. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  5. Comparative study on CO2 sources in soil developed on carbonate rock and non-carbonate rock in Central Guizhou

    Institute of Scientific and Technical Information of China (English)

    黎廷宇; 王世杰; 郑乐平

    2002-01-01

    In this paper, by using concentration and carbon stable isotope the.CO2 sources of soil profiles developed on limestone, dolostone and claystone basements in Central Guizhou, China are comparatively studied. The results show that CO2 concentration of soil profiles developed on different basements is different, having the following sequence: limestone>dolostone>claystone. Below the soil depth of 20 cm from the surface the δ13C value of CO2 in soil profile developed on limestone ranges from -12.811‰ - -13.492‰(PDB), that in soil profile developed on dolostone varys from -13.212‰--14.271‰(PDB) and that in soil profile developed on claystone is about -20.234‰- -21.485‰(PDB). Taking the carbon isotope of soil organic matter and carbonate rock as two isotopic endmembers, the proportion of soil C02 generated by dissolution of carbonate rock is calculated, about 21%-25% for soil profile developed on limestone basement, 19%-21% for soil profile developed on dolostone basement. There is almost no influx of

  6. Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1

    Institute of Scientific and Technical Information of China (English)

    WU Haizhen; WEI Chaohai; WAMG Yaqin; HE Qincong; LIANG Shizhong

    2009-01-01

    A bacterial strain that utilized o-chloronitrobenzene (o-CNB) as the sole carbon, nitrogen and energy sources was isolated from an activated sludge collected from an industrial waste treatment plant. It was identified as Pseudomonas putida based on its morphology, physiological, and biochemical characteristics with an automatic biometrical system and the 16S rRNA sequence analysis. Microcosm study showed that the biodegradation of o-CNB was optimized at culture medium pH 8.0 and temperature of 32℃. At these conditions, the strain degraded 85% of o-CNB at a starting concentration of 1.1 mmol/L in 42 h. o-Chloroaniline was identified as the major metabolite with both high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The study showed that o-chloronitrobenzene degradation by Pseudomonas putida OCNB-1 was initiated by aniline dioxyenase, nitrobenzene reductase and catechol-1,2-dioxygenase.

  7. Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources.

    Science.gov (United States)

    Schneider, Willian Daniel Hahn; dos Reis, Laísa; Camassola, Marli; Dillon, Aldo José Pinheiro

    2014-01-01

    The effect of different carbon sources on morphology and cellulase and xylanase production of Penicillium echinulatum was evaluated in this work. Among the six carbon sources studied, cellulose and sugar cane bagasse were the most suitable for the production of filter paper activity, endoglucanases, xylanases, and β-glucosidases. However, sucrose and glucose showed β -glucosidase activities similar to those obtained with the insoluble sources. The polyacrylamide gels proved the enzymatic activity, since different standards bands were detected in the media mentioned above. Regarding morphology, it was observed that the mycelium in a dispersed form provided the greatest enzymatic activity, possibly due to greater interaction between the substrate and hyphae. These data are important in understanding the physiology of fungi and could contribute to obtaining enzyme with potential application in the technology of second generation ethanol.

  8. Morphogenesis and Production of Enzymes by Penicillium echinulatum in Response to Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    Willian Daniel Hahn Schneider

    2014-01-01

    Full Text Available The effect of different carbon sources on morphology and cellulase and xylanase production of Penicillium echinulatum was evaluated in this work. Among the six carbon sources studied, cellulose and sugar cane bagasse were the most suitable for the production of filter paper activity, endoglucanases, xylanases, and β-glucosidases. However, sucrose and glucose showed β-glucosidase activities similar to those obtained with the insoluble sources. The polyacrylamide gels proved the enzymatic activity, since different standards bands were detected in the media mentioned above. Regarding morphology, it was observed that the mycelium in a dispersed form provided the greatest enzymatic activity, possibly due to greater interaction between the substrate and hyphae. These data are important in understanding the physiology of fungi and could contribute to obtaining enzyme with potential application in the technology of second generation ethanol.

  9. The potential of carbon and nitrogen isotopes to conservatively discriminate between subsoil sediment sources

    Science.gov (United States)

    Laceby, J. Patrick; Olley, Jon

    2013-04-01

    Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the

  10. The role of metal centres in reduction and carboxylation reactions utilizing carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E.; Tommasi, I. (Bari Univ. (Italy))

    1994-01-01

    The utilisation of carbon dioxide in synthesis of chemicals has been confined for a long time essentially to urea and salicylic acid synthesis. Quite recently, after the discovery of transition metal-carbon dioxide complexes, the direct carboxylation of organic substrates has been investigated, the reactions can be categorized as: functionalization of olefins, CO[sub 2] insertion into C-H bond via C-H activation, reaction with strained rings, reaction with amines to afford carbamates, synthesis or organic carbonates via reaction with oxetanes. (A.B.). 41 refs, 8 figs., 2 tabs.

  11. The Chemistry and Sources of Fructose and Their Effect on its Utility and Health Implications

    Directory of Open Access Journals (Sweden)

    Peter D. Cooper

    2012-06-01

    Full Text Available Fructose is a significant component in unprocessed food and has become one of the most commonly sweeteners used in food manufacturing. Fructose is also a useful pharmaceutical excipient and derivatives of fructose are exploited as renewable chemical building blocks. Fructose based polysaccharides have extensive pharmaceutical and dietary functions. We discuss here the chemistry and physical behaviours of this saccharide and how these factors affect the utility and health implications of fructose

  12. Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains

    OpenAIRE

    Alicia Gutiérrez; Gemma Beltran; Jonas Warringer; Jose M Guillamón

    2013-01-01

    The capacity of wine yeast to utilize the nitrogen available in grape must directly correlates with the fermentation and growth rates of all wine yeast fermentation stages and is, thus, of critical importance for wine production. Here we precisely quantified the ability of low complexity nitrogen compounds to support fast, efficient and rapidly initiated growth of four commercially important wine strains. Nitrogen substrate abundance in grape must failed to correlate with the rate or the effi...

  13. Effects of Different Carbon Sources and NaBr-KCI on Synthesis of Ti(C,N)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Ti(C,N) was synthesized with the starting materi-als of 76.9% titania white and 23.1% carbon black (graphite or activated carbon),or 40% titania white and 60% amylum,with or without 10% NaBr-KCI,dry moulding and carbon embedded firing at 1 300 ℃ and 1 400 ℃ for 3 h,respectively.Phase composition and microstructure of the synthesized Ti (C,N) were analyzed by XRD,SEM and EPMA.Effects of different carbon sources and NaBr-KCl on the synthesis of Ti (C,N) were investigated.The results show that:(1) Ti (C,N) can be synthesized by using carbon black,graphite,activated carbon or amylum as carbon source separately;(2) Additive NaBr-KCI is more fa-vorable for accelerating the carbothdrmal reduction reac-tion using carbon black or amylum as carbon source;(3) In the presence of NaBr-KCl,particle size of the synthesized Ti (C,N) is 5-8 μm using carbon black as carbon source fired at 1 300 ℃ for 3 h,while that is only 1-3 μm using graphite,activated carbon or amy-lum fired at 1 400 ℃ for 3 h.

  14. Utilizing gas-filled cavities for the generation of an intense muon source

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States); Neuffer, David V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-05-03

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  15. Utilizing Gas Filled Cavities for the Generation of an Intense Muon Source

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-01

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  16. Australian net (1950s-1990) soil organic carbon erosion is an omitted CO2 source

    Science.gov (United States)

    Chappell, A.; Webb, N.; Viscarra Rossel, R. A.; Bui, E. N.

    2013-12-01

    The debate about agricultural erosion substantially offsetting fossil fuel emissions and acting as an important source or sink of CO2 is informed by studies of water and tillage erosion at the field scale and extrapolated across regions based on gross erosion. We use ';catchment' scale (~25 km2) estimates of 137Cs-derived net (1950s-1990) soil redistribution of all processes (wind, water and tillage) to calculate the soil organic carbon (SOC) net redistribution across Australia. We include the selective removal of SOC at net eroding locations, SOC enrichment of transported sediment and net depositional locations. We show that the total SOC net redistribution for Australia is -4.06 Tg SOC y-1, a net loss of SOC from the terrestrial ecosystem and 2% of the total carbon stock (0-10 cm) of Australia. Assuming the SOC is mineralised, these losses represent 12% of CO2-e emissions from all carbon pools in Australia and a significant source of uncertainty in the carbon budget SOC net redistribution as a proportion (%) of SOC stocks Calculation of soil organic carbon net (1950s-1990) redistribution and its proportion for land use classes across Australia *Using an equal area projection the area of a pixel is approximately 4.53 km x 4.87 km ≈ 22.03 km2 equivalent to 2203 ha

  17. Application of biogenic carbon dioxide produced by yeast with different carbon sources for attraction of mosquitoes towards adult mosquito traps.

    Science.gov (United States)

    Sukumaran, D; Ponmariappan, S; Sharma, Atul K; Jha, Hemendra K; Wasu, Yogesh H; Sharma, Ajay K

    2016-04-01

    Surveillance is a prime requisite for controlling arthropod vectors like mosquitoes that transmit diseases such as malaria, dengue and chikungunya. Carbon dioxide (CO2) is one of the main cues from vertebrate breath that attracts mosquitoes towards the host. Hence, CO2 is used as an attractant during surveillance of mosquitoes either from commercial cylinders or dry ice for mosquito traps. In the present study, the biogenic carbon dioxide production was optimized with different carbon sources such as glucose, simple sugar and jaggery with and without yeast peptone dextrose (YPD) media using commercial baker's yeast. The results showed that yeast produced more biogenic CO2 with simple sugar as compared to other carbon sources. Further substrate concentration was optimized for the continuous production of biogenic CO2 for a minimum of 12 h by using 10 g of baker's yeast with 50 g of simple sugar added to 1.5 l distilled water (without YPD media) in a 2-l plastic bottle. This setup was applied in field condition along with two different mosquito traps namely Mosquito Killing System (MKS) and Biogents Sentinel (BGS) trap. Biogenic CO2 from this setup has increased the trapping efficiency of MKS by 6.48-fold for Culex quinquefasciatus, 2.62-fold for Aedes albopictus and 1.5-fold for Anopheles stephensi. In the case of BGS, the efficiency was found to be increased by 3.54-fold for Ae. albopictus, 4.33-fold for An. stephensi and 1.3-fold for Armigeres subalbatus mosquitoes. On the whole, plastic bottle setup releasing biogenic CO2 from sugar and yeast has increased the efficiency of MKS traps by 6.38-fold and 2.74-fold for BGS traps as compared to traps without biogenic CO2. The present study reveals that, among different carbon sources used, simple sugar as a substance (which is economical and readily available across the world) yielded maximum biogenic CO2 with yeast. This setup can be used as an alternative to CO2 cylinder and dry ice in any adult mosquito traps to

  18. Experimental study of a three-adsorber sorption refrigerator for utilization of renewable sources of energy

    Science.gov (United States)

    Tsitovich, A. P.

    2013-03-01

    A three-adsorber refrigerator has been created and experimentally tested, in which use is made of a composite sorbent consisting of activated carbon fiber and alkali salts. This sorbent has a high capacity of storage of refrigeration characteristic of chemical coolers and a high sorption rate characteristic of adsorption refrigerators. The sorbent structure makes it possible to effect a convective intrapore process of cooling of the sorbent through intense two-phase heat transfer. A three-adsorber refrigerator has a higher refrigeration efficiency and smaller mass and overall dimensions than a traditional two-stage four-adsorber refrigerator.

  19. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ülgen Kutlu Ö

    2007-03-01

    Full Text Available Abstract Background Control effective flux (CEF of a reaction is the weighted sum of all fluxes through that reaction, derived from elementary flux modes (EFM of a metabolic network. Change in CEFs under different environmental conditions has earlier been proven to be correlated with the corresponding changes in the transcriptome. Here we use this to investigate the degree of transcriptional regulation of fluxes in the metabolism of Saccharomyces cerevisiae. We do this by quantifying correlations between changes in CEFs and changes in transcript levels for shifts in carbon source, i.e. between the fermentative carbon source glucose and nonfermentative carbon sources like ethanol, acetate, and lactate. The CEF analysis is based on a simple stoichiometric model that includes reactions of the central carbon metabolism and the amino acid metabolism. Results The effect of the carbon shift on the metabolic fluxes was investigated for both batch and chemostat cultures. For growth on glucose in batch (respiro-fermentative cultures, EFMs with no by-product formation were removed from the analysis of the CEFs, whereas those including any by-products (ethanol, glycerol, acetate, succinate were omitted in the analysis of growth on glucose in chemostat (respiratory cultures. This resulted in improved correlations between CEF changes and transcript levels. A regression correlation coefficient of 0.60 was obtained between CEF changes and gene expression changes in the central carbon metabolism for the analysis of 5 different perturbations. Out of 45 data points there were no more than 6 data points deviating from the correlation. Additionally, up- or down-regulation of at least 75% of the genes were in qualitative agreement with the CEF changes for all perturbations studied. Conclusion The analysis indicates that changes in carbon source are associated with a high degree of hierarchical regulation of metabolic fluxes in the central carbon metabolism as the

  20. Constructing a Traffic Information Providing System Utilizing Multi-Source Information

    Science.gov (United States)

    Tamaki, Hiroshi; Yano, Junji; Kagawa, Kouji; Morita, Tetsuo; Numao, Masayuki; Kurihara, Satoshi

    To realize an effective ITS(Intelligent Transport Systems) services, such as a traffic jam prediction system or car navigation system, the traffic information like average traffic speed is indispensable. However, current systems providing traffic information have serious problems about lack of data. Hence, we construct a system which provides traffic information, which complements lack data using incomplete probe and VICS(Vehicle Information and Communication System) data. The system utilizes multi-information such as real time/stored/diffusion/succession information effectively. We verified the performance of the system through experiments using probe/VICS data of Nagoya city, and confirmed beneficial results.

  1. EFFECT OF THE TYPE OF HEAT SOURCES ON CARBON DIOXIDE EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sławomir Rabczak

    2016-11-01

    Full Text Available A lot of attention is nowadays devoted to the problem of generally defined ecology. It is absolutely essential in case of systems and sources generating heat due to their direct influence on the environment through emitting post-process products to the atmosphere which are, most frequently a result of combustion. Therefore, constant searchers are made to optimize the operation of heat sources and to acquire energy from sources for which the general balance of carbon dioxide emission is zero or close to zero. This work compares the emissions of equivalent CO2 from selected systems with the following heat sources: coal, gas furnace, heat pump, and refers results of the analysis to aspects connected with regulations concerning environmental protection. The systems generating thermal energy in the gas furnaces, coal, biomass, as well as the compression heat pumps with the lower heat source as ambient air or ground were taken under consideration, as well as centralized systems for the production of heat based on the combustion of coal, gas, oil, and biomass. the Emission of carbon dioxide for the installation of cogeneration and absorption heat pump were also calculated. Similarly obtained amount of extra emission necessary for the proper operation maintenance of heating devices via the supplied electricity from external source, the mostly fuel-fired power plants for fuels as previously mentioned. The results of the calculations were presented in tables and graphs.

  2. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Directory of Open Access Journals (Sweden)

    Thomas Larsen

    Full Text Available Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13C patterns among amino acids (δ(13CAA could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13CAA patterns in contrast to bulk δ(13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  3. Primary Nutritional Content of Bio-Flocs Cultured with Different Organic Carbon Sources and Salinity

    Directory of Open Access Journals (Sweden)

    JULIE EKASARI

    2010-09-01

    Full Text Available Application of bio-flocs technology (BFT in aquaculture offers a solution to avoid environmental impact of high nutrient discharges and to reduce the use of artificial feed. In BFT, excess of nutrients in aquaculture systems are converted into microbial biomass, which can be consumed by the cultured animals as a food source. In this experiment, upconcentrated pond water obtained from the drum filter of a freshwater tilapia farm was used for bio-flocs reactors. Two carbon sources, sugar and glycerol, were used as the first variable, and two different levels of salinity, 0 and 30 ppt, were used as the second variable. Bio-flocs with glycerol as a carbon source had higher total n-6 PUFAs (19.1 + 2.1 and 22.3 + 8.6 mg/g DW at 0 and 30 ppt, respectively than that of glucose (4.0 + 0.1 and 12.6 + 2.5 mg/g DW at 0 and 30 ppt. However, there was no effect of carbon source or salinity on crude protein, lipid, and total n-3 PUFAs contents of the bio-flocs.

  4. IN VITRO UTILIZATION OF NPN SOURCES BY INCREASING LEVELS OF CORN STARCH IN STRAW BASED DIETS

    Directory of Open Access Journals (Sweden)

    C. S. ALI, T. KHALIQ1, A. JAVAID, M. SARWAR, M. A. KHAN2, M. A. SHAHZAD AND S. ZAKIR3

    2007-04-01

    Full Text Available This study was conducted to investigate the effect of replacement of 50% cottonseed meal (CSM nitrogen with various non protein nitrogen (NPN sources i.e. urea (CU, biuret (CB and diammonium phosphate (CD. The four energy sources were: wheat straw with no corn starch (WS, WS + 20% corn starch, WS + 30% corn starch and WS + 40% corn starch. These substrates were fermented with rumen liquor to measure in vitro dry matter digestibility (DMD, bacterial count and ammonia nitrogen (NH3-N concentrations. The protein sources provided 2% nitrogen (12.5% CP. The control substrate contained CSM as the sole source of nitrogen and ground wheat straw as the sole sources of energy. The in vitro DMD increased to 49.10, 40.06 and 31.52% in substrates containing CB, CU and CD compared to 23.10% for CSM (P<0.01. Similarly, supplementation of straw with 20, 30 and 40% corn starch gave 24.31, 38.03 and 45.48% DMD compared to 23.10% for control (P<0.01. Increase of corn starch from 20 to 30% resulted in 13.72 units higher DMD which increased to a mere 7.45 units when the corn starch was raised from 30 to 40%. The interactions between nitrogen sources and starch levels revealed that substrate CB x 40% corn starch yielded 70.73% DMD, followed by 49.66% DMD with CU x 40% starch (P<0.01. The NH3-N increased due to 50% replacement of CSM with NPN sources on isonitrogenous basis. It was maximum with CU as nitrogen source, followed by CD, CB and CSM. The differences among the four nitrogen sources were significant (P<0.01. The substrates containing CU resulted in highest bacterial counts of 33.78x108 compared to 20.41x108, 17.06x108 and 11.34x108 for CB, CSM and CD, respectively (P<0.01. Addition of corn starch up to 20 and 30% to straw based substrates increased the bacterial counts to 23.25x108 and 23.12x108 and 40% corn starch yielded 15.58x108 bacterial counts which was significantly (P<0.01 lesser than 17.06x108 for substrates containing 0% corn starch. Bacterial count

  5. Spot size measurement of flash-radiography source utilizing the pinhole imaging method

    CERN Document Server

    Wang, Yi; Chen, Nan; Cheng, Jinming; Xie, Yutong; Liu, Yulong; Long, Quanhong

    2015-01-01

    The spot size of the x-ray source is a key parameter of a flash-radiography facility, which is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam is tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.

  6. A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide

    Science.gov (United States)

    Hao, L. Y.; Zhou, X. J.; Yang, Z. B.; Zhang, H. L.; Sun, H. C.; Cao, H. X.; Dai, P. H.; Li, J.; Hatano, T.; Wang, H. B.; Wen, Q. Y.; Wu, P. H.

    2016-12-01

    We report a practical superconducting terahertz (THz) source, comprising a stack of Bi2Sr2CaCu2O8 intrinsic Josephson junctions (IJJs) and a vanadium dioxide (VO2) tunable attenuator with coplanar interdigital contacts. The electrical triggering phase transitions are observed not only at room temperature, but also at low temperatures, which provides a proof of the electrical triggering. Applying this, the VO2 attenuator is implemented for the independent regulations on the emission powers from the IJJ THz emitter, remaining frequencies and temperatures unchanged. The attenuation can be tuned smoothly and continuously within a couple of volts among which the maximum is, respectively, -5.6 dB at 20 K or -4.3 dB at 25 K. Such a power-adjustable radiation source, including the VO2 attenuator, can further expand its practicability in cryogenic THz systems, like superconducting THz spectrometers.

  7. Fine and ultrafine particulate organic carbon in the Los Angeles basin: Trends in sources and composition.

    Science.gov (United States)

    Shirmohammadi, Farimah; Hasheminassab, Sina; Saffari, Arian; Schauer, James J; Delfino, Ralph J; Sioutas, Constantinos

    2016-01-15

    In this study, PM2.5 and PM0.18 (particles with dporganic carbons) and individual organic compounds. Concentrations of organic compounds were reported and compared with many previous studies in Central LA to quantify the impact of emissions control measurements that have been implemented for vehicular emissions over the past decades in this area. Moreover, a novel hybrid approach of molecular marker-based chemical mass balance (MM-CMB) analysis was conducted, in which a combination of source profiles that were previously obtained from a Positive Matrix Factorization (PMF) model in Central LA, were combined with some traditional source profiles. The model estimated the relative contributions from mobile sources (including gasoline, diesel, and smoking vehicles), wood smoke, primary biogenic sources (including emissions from vegetative detritus, food cooking, and re-suspended soil dust), and anthropogenic secondary organic carbon (SOC). Mobile sources contributed to 0.65 ± 0.25 μg/m(3) and 0.32 ± 0.25 μg/m(3) of PM2.5 OC in Central LA and Anaheim, respectively. Primary biogenic and anthropogenic SOC sources were major contributors to OC concentrations in both size fractions and sites. Un-apportioned OC ("other OC") accounted for an average 8.0 and 26% of PM2.5 OC concentration in Central LA and Anaheim, respectively. A comparison with previous studies in Central LA revealed considerable reduction of EC and OC, along with tracers of mobile sources (e.g. PAHs, hopanes and steranes) as a result of implemented regulations on vehicular emissions. Given the significant reduction of the impacts of mobile sources in the past decade in the LA Basin, the impact of SOC and primary biogenic emissions have a larger relative impact and the new hybrid model allows the impact of these sources to be better quantified.

  8. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment.

    Science.gov (United States)

    Mulopo, J; Mashego, M; Zvimba, J N

    2012-01-01

    The conversion of steelmaking slag (a waste product of the steelmaking process) to calcium carbonate (CaCO(3)) was tested using hydrochloric acid, ammonium hydroxide and carbon dioxide via a pH-swing process. Batch reactors were used to assess the technical feasibility of calcium carbonate recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effects of key process parameters, such as the amount of acid (HCl/calcium molar ratio), the pH and the CO(2) flow rate were considered. It was observed that calcium extraction from steelmaking slag significantly increased with an increase in the amount of hydrochloric acid. The CO(2) flow rate also had a positive effect on the carbonation reaction rate but did not affect the morphology of the calcium carbonate produced for values less than 2 L/min. The CaCO(3) recovered from the bench scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with the commercial laboratory grade CaCO(3).

  9. Utility of regional Chinese seismograms for source and path studies in central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Patton, H.J.; Taylor, S.R.; Harris, D.B.; Mills, J.M. Jr.

    1984-04-01

    Regional surface waves recorded at the Urumchi station located about 700 km north of the Tibetan Plateau in the Sinkiang Province are used to study East Kazakh explosions and wave propagation in central Asia. The data consist of broadband (flat to displacement between 0.1 and 10 Hz), photographic records from an SK Kirnos galvanometric system. Simultaneous inversion of Rayleigh wave phase and group velocities for the path from East Kazakh through the Dzhungarian Basin yields a crustal model dominated by the presence of very low velocities and a strong positive velocity gradient above 15 km depth. Velocities below 15 km depth are not significantly different from other continental structures underlain by Paleozoic or Precambrian basement. This model is consistent with geologic evidence indicating that most of the path is characterized by the presence of up to 10 km of sediments overlying a Paleozoic basement. Source studies were made on seven East Kazakh explosions detonated in the time period between June 1980 and April 1981. These studies involved estimation of seismic moments using models of explosion sources with associated tectonic release. The largest explosion studied occurred on 9/14/80 and had an m/sub b/ of 6.2 and a seismic moment of 2.7 x 10/sup 23/ dyn-cm. The observed amplitude spectra of Rayleigh waves are richer in high frequencies than predicted by explosion source models with tectonic release. This could be caused by a path effect involving seismic wave focusing by the large sedimentary basin between East Kazakh and the Urumchi station, although source medium effects cannot be ruled out. 30 references, 5 figures, 2 tables.

  10. Effect of mycorrhizae o f pine seedlings on the utilization of different mineral phosphorus sources

    Directory of Open Access Journals (Sweden)

    Roman Pachlewski

    2014-08-01

    Full Text Available Pine seedlings (P. sylvestris L. growing on the unsterilized sand, with addition of different phosphorus sources, were inoculated with ectomycorrhizal fungi. Lack of P in the substrate restricted mycorrhizal infection of roots. In the presence of AIPO4 and FePO4 inoculation with A. verna and H. mesophaeum have positive effect on the seedlings growth and survival. Strain of H. mesophaeum intensified the phosphorus uptakc, particulary when FePO4 was applied.

  11. Headwater management alters sources, flowpaths, and fluxes of water, carbon, and nitrogen in urban watersheds

    Science.gov (United States)

    Pennino, M. J.; Kaushal, S.; Mayer, P. M.; Welty, C.; Miller, A. J.

    2012-12-01

    Increased urbanization has altered watershed hydrology and increased nutrient pollution, leading to eutrophication and hypoxia in downstream coastal ecosystems. Due to urban stream degradation, there have been efforts to restore streams and reduce peak-flow discharges and contaminant export through stormwater management and stream restoration. However, there have been relatively few studies comparing watershed scale impacts of contrasting headwater management practices on sources and fluxes of water, carbon, and nutrients across space and time. In this study we compared sources and fluxes of water, carbon (C), and nitrogen (N) along 4 watersheds of contrasting headwater management: 2 urban degraded watersheds with minimal or no stormwater management and 2 managed urban watersheds with stormwater controls and stream restoration. Surface water samples were collected biweekly at USGS gauging stations located within each watershed over 2 years. Spatially, watersheds were sampled longitudinally during 4 seasons. Sources of water, nitrate, and carbon were investigated using isotopic and spectroscopic tracer techniques. Indicator anions (F-, Cl-, I-, SO42-) were also used to trace anthropogenic vs. natural water sources. Hydrologic flowpaths (groundwater vs. overland flow) were assessed with longitudinal synoptic surveys using stable water isotopes of H and O. Annual fluxes of water, C, and N, were estimated using the USGS program LOADEST. H and O isotope data showed that the source of stream water is primarily groundwater during summer months, with greater contributions from stormflow during winter months for all 4 watersheds. Elevated levels of indicator anions (F-, Cl-, I-, SO42-) as well as greater "pulses" of C and N over time in the degraded vs. managed watersheds indicate potential sewage sources due to leaky sanitary sewers and greater stormdrain inputs. Unlike the managed watersheds where hydrologic flowpaths were from groundwater in headwaters, the longitudinal

  12. Utilization of muddy detritus as organic matter source by the fan mussel Pinna nobilis.

    Directory of Open Access Journals (Sweden)

    S. TRIGOS

    2014-09-01

    Full Text Available The knowledge of the feeding habits in marine species is fundamental to better understand their relationship with the environment. Although phytoplankton has been traditionally reported as the main food source consumed by the Mediterranean fan mussel Pinna nobilis, recent studies have revealed that detritus represents an important food source for this species. We analysed the degree of acceptance of muddy detritus and the utilisation of its organic matter (OM by P. nobilis on a group of 21 individuals (30.3-59.7 cm of total shell height (Ht. The specimens were collected between July and September 2012 in two areas (43°04´25” N; 5°46´7” E and 43°04´34” N; 5°47´32” E of the Embiez archipelago, northwestern Mediterranean (France. Our studies show that P. nobilis retains high quantities of OM from muddy detritus (47.50 ± 11.23% of filtered OM irrespectively of shell size. Smaller individuals, however, actively filter more detritus than large ones. The values of retained OM, together with previous studies on stomach contents, suggest that muddy detritus is a more important OM source than phytoplankton for this species.

  13. Identifying microbial carbon sources during ethanol and toluene biodegradation in a pilot-scale experimental aquifer system using isotopic analysis

    Science.gov (United States)

    Clay, S.; McLeod, H.; Smith, J. E.; Roy, J. W.; Slater, G. F.

    2013-12-01

    metabolisms. On-going archaeal lipid analyses are expected to capture the establishment of methanogenic communities and provide insight into carbon use by these communities. Furthermore, radiocarbon analysis will aid in tracking the biodegradation of ethanol and toluene. Ultimately this research aims to illustrate the preferential biodegradation of ethanol in a gasoline mixture, and identify the carbon sources utilized by an evolving microbial community using isotopic analyses to improve assessments and remediation strategies at sites contaminated with ethanol-blended fuels.

  14. Forensic utility of the carbon isotope ratio of PVC tape backings

    Science.gov (United States)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    Forensic interest in adhesive tapes with PVC-backings (polyvinyl chloride, electrical tapes) derives from their use in construction of improvised explosive devices, drug packaging and in a variety of other illicit activities. Due to the range of physical characteristics and chemical compositions of such tapes, traditional microscopic and chemical analysis of the tape backings and adhesives offer a high degree of discrimination between tapes from different manufacturers and products. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different tapes of the same product, we assessed the PVC-backings of 87 rolls of black electrical tape for their δ13C values. The adhesive on these tapes was physically removed with hexane, and plasticizers within the PVC tape backings were removed by three-20 minute extractions with chloroform. The δ13C values of the PVC tape backings ranged between -23.8 and -41.5 (‰ V-PDB). The carbon isotopic variation within a product (identical brand and product identification) is significant, based on five products with at least 3 rolls (ranges of 7.4‰ (n=3), 10.0‰ (n=6), 4.2‰ (n=16), 3.8‰ (n=6), and 11.5‰ (n=8), respectively). There was no measurable carbon isotope variation in regards to the following: a) along the length of a roll (4 samples from 1 roll); b) between the center and edge of a strip of tape (1 pair); c) between rolls assumed to be from the same lot of tape (2 pairs); d) between different rolls from the same batch of tape (same product purchased at the same time and place; 5 pairs); and e) between samples of a tape at room temperature, heated to 50° C and 80° C for 1 week. For each sample within the population of 87 tapes, carbon isotopes alone exclude 80 to 100% of the tapes as a potential match, with an average exclusion power of 92.5%, using a window of ± 0.4‰. Carbon isotope variations originate from variations in starting

  15. High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry.

    Science.gov (United States)

    Pan, Shu-Yuan; Chen, Yi-Hung; Chen, Chun-Da; Shen, Ai-Lin; Lin, Michael; Chiang, Pen-Chi

    2015-10-20

    The high-gravity carbonation process for CO2 mineralization and product utilization as a green cement was evaluated using field operation data from the steelmaking industry. The effect of key operating factors, including rotation speed, liquid-to-solid ratio, gas flow rate, and slurry flow rate, on CO2 removal efficiency was studied. The results indicated that a maximal CO2 removal of 97.3% was achieved using basic oxygen furnace slag at a gas-to-slurry ratio of 40, with a capture capacity of 165 kg of CO2 per day. In addition, the product with different carbonation conversions (i.e., 0%, 17%, and 48%) was used as supplementary cementitious materials in blended cement at various substitution ratios (i.e., 0%, 10%, and 20%). The performance of the blended cement mortar, including physicochemical properties, morphology, mineralogy, compressive strength, and autoclave soundness, was evaluated. The results indicated that the mortar with a high carbonation conversion of slag exhibited a higher mechanical strength in the early stage than pure portland cement mortar, suggesting its suitability for use as a high early strength cement. It also possessed superior soundness compared to the mortar using fresh slag. Furthermore, the optimal operating conditions of the high-gravity carbonation were determined by response surface models for maximizing CO2 removal efficiency and minimizing energy consumption.

  16. Forensic utility of carbon isotope ratio variations in PVC tape backings.

    Science.gov (United States)

    Dietz, Marianne E; Stern, Libby A; Mehltretter, Andria Hobbs; Parish, Ashley; McLasky, Velvet; Aranda, Roman

    2012-03-01

    Forensic interest in adhesive tapes with polyvinyl chloride (PVC) backings (electrical tape) derives from their use in a variety of illicit activities. Due to the range of physical characteristics, chemical compositions, and homogeneity within a single roll of tape, traditional microscopic and chemical analyses can offer a high degree of discrimination between tapes, permitting the assessment of potential associations between evidentiary tape samples. The carbon isotope ratios of tapes could provide additional discrimination among tape samples. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different rolls of tape of the same product, we assessed the δ(13)C values of backings from 87 rolls of PVC-based black electrical tape (~20 brands, >60 products) Prior to analysis, adhesives were removed to prevent contamination by adhering debris, and plasticizers were extracted because of concern over their potential mobility. This result is consistent with each of these tapes having approximately the same plasticizer δ(13)C value and proportion of carbon in these plasticizers. The δ(13)C values of the 87 PVC tape backings ranged between -23.5 and -41.3 (‰, V-PDB), with negligible carbon isotopic variation within single rolls of tape, yet large variations among tape brands and tape products. Within this tape population, carbon isotope ratios permitted an average exclusion power of 93.7%, using a window of +/-0.3‰; the combination of carbon isotope ratio measurement with additional chemical and physical analyses raises the discrimination power to over 98.9%, with only 41 out of a possible 3741 pairs of tape samples being indistinguishable. There was a linear relationship between the δ(13)C value of tape backings and the change in δ(13)C value with the extraction of plasticizers. Analyses of pre- and post-blast tape sample pairs show that carbon isotope signatures are within 0.3‰ of

  17. Amorphous carbon film deposition on inner surface of tubes using atmospheric pressure pulsed filamentary plasma source

    CERN Document Server

    Pothiraja, Ramasamy; Awakowicz, Peter

    2011-01-01

    Uniform amorphous carbon film is deposited on the inner surface of quartz tube having the inner diameter of 6 mm and the outer diameter of 8 mm. A pulsed filamentary plasma source is used for the deposition. Long plasma filaments (~ 140 mm) as a positive discharge are generated inside the tube in argon with methane admixture. FTIR-ATR, XRD, SEM, LSM and XPS analyses give the conclusion that deposited film is amorphous composed of non-hydrogenated sp2 carbon and hydrogenated sp3 carbon. Plasma is characterized using optical emission spectroscopy, voltage-current measurement, microphotography and numerical simulation. On the basis of observed plasma parameters, the kinetics of the film deposition process is discussed.

  18. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    Science.gov (United States)

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  19. Effects of Nitrogen and Carbon Sources on Transcription of Soluble Methyltransferases in Methanosarcina mazei Strain Gö1†

    OpenAIRE

    Veit, Katharina; Ehlers, Claudia; Schmitz, Ruth A.

    2005-01-01

    The methanogenic archaeon Methanosarcina mazei strain Gö1 uses versatile carbon sources and is able to fix molecular nitrogen with methanol as carbon and energy sources. Here, we demonstrate that when growing on trimethylamine (TMA), nitrogen fixation does not occur, indicating that ammonium released during TMA degradation is sufficient to serve as a nitrogen source and represses nif gene induction. We further report on the transcriptional regulation of soluble methyltransferases, which catal...

  20. Sub microsecond notching of a negative hydrogen beam at low energy utilizing a magnetron ion source with a split extractor

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, Douglas; /Fermilab

    2004-12-01

    A technique for sub-microsecond beam notching is being developed at 20 keV utilizing a Magnetron ion source with a slit extraction system and a split extractor. Each half of the extractor is treated as part of a 50 ohm transmission line which can be pulsed at {+-}700 volts creating a 1400 volt gradient. This system along with the associated electronics is electrically floated on top of a pulsed extraction voltage. A beam reduction of 95% has been observed at the end of the Fermilab 400 MeV Linac and 35% notching has recently been achieved in the Booster.

  1. Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone

    Science.gov (United States)

    Hernández-López, Edna L.; Ramírez-Puebla, Shamayim T.; Vazquez-Duhalt, Rafael

    2015-01-01

    Asphaltenes are considered as the most recalcitrant petroleum fraction and represent a big problem for the recovery, separation and processing of heavy oils and bitumens. Neosartorya fischeri is a saprophytic fungus that is able to grow using asphaltenes as the sole carbon source [1]. We performed transcription profiling using a custom designed microarray with the complete genome from N. fischeri NRRL 181 in order to identify genes related to the transformation of asphaltenes [1]. Data analysis was performed using the genArise software. Results showed that 287 genes were up-regulated and 118 were down-regulated. Here we describe experimental procedures and methods about our dataset (NCBI GEO accession number GSE68146) and describe the data analysis to identify different expression levels in N. fischeri using this recalcitrant carbon source. PMID:26484261

  2. Effect of carbon source on alkaline phosphatase production and excretion in Aspergillus caespitosus.

    Science.gov (United States)

    Guimarães, Luis Henrique Souza; Jorge, João Atilio; Terenzi, Héctor Francisco; Jamur, Maria Célia; Oliver, Constance; De Lourdes Teixeira De Moraes Polizeli, Maria

    2003-01-01

    The effect of several carbon sources on the production of alkaline phosphatase by the thermotolerant Aspergillus caespitosus was analysed. The fungus released high levels of alkaline phosphatases into the medium after being cultured for long periods with xylan or industrial residues such as wheat raw and sugar cane bagasse in the culture media. In contrast, the alkaline phosphatase activities were found only intracellulary when the fungus was cultured in glucose-supplemented media. The pH of the medium likely affects the process of enzyme secretion according to the carbon source used. Addition of xylan or industrial residues in the culture medium stimulated the secretion of phosphatases. In contrast, media supplemented with glucose or disaccharides promoted retention of these enzymes into the cells. The subcellular location activities of alkaline phosphatases were studied using histochemical and immunochemical methods and showed that alkaline phosphatases were present in the mycelial walls and septa.

  3. Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source.

    Science.gov (United States)

    Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won

    2012-07-25

    Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior.

  4. Direct Synthesis of Co-doped Graphene on Dielectric Substrates Using Solid Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    Qi Wang; Pingping Zhang; Qiqi Zhuo; Xiaoxin Lv; Jiwei Wang; Xuhui Sun

    2015-01-01

    Direct synthesis of high-quality doped graphene on dielectric substrates without transfer is highly desired for simplified device processing in electronic applications. However, graphene synthesis directly on substrates suitable for device applications, though highly demanded, remains unattainable and challenging. Here, a simple and transfer-free synthesis of high-quality doped graphene on the dielectric substrate has been developed using a thin Cu layer as the top catalyst and polycyclic aromatic hydrocarbons as both carbon precursors and doping sources. N-doped and N, F-co-doped graphene have been achieved using TPB and F16CuPc as solid carbon sources, respectively. The growth conditions were systematically optimized and the as-grown doped graphene were well characterized. The growth strategy provides a controllable transfer-free route for high-quality doped graphene synthesis, which will facilitate the practical applications of graphene.

  5. Formation of Polyhydroxyalkanoate Blends by Pseudomonas pseudoalcaligenes M1-2 from Various Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Pseudomonas pseudoalcaligenes strain M1-2 isolated from oil-contaminated soil collected from an oilfield in northern China was found to be able to synthesize a blend of polyhydroxyalkanoates (PHAs) containing monomers of 3-hydroxybutyrate (C4), 3-hydroxyvalerate (C5), 3-hydroxyheptanoate (C7), 3-hydroxyoctanoate (C8), 3-hydroxynonanoate (C9), 3-hydroxydecanoate (C10) and 3-hydroxydodecanoate (C12) from various carbon sources.The hydroxyalkanoate (HA) monomer composition varied both quantitatively and qualitatively, depending on the carbon sources used.The presence of octanoate in substrates of myristic acid or tridecanoate promoted the synthesis of HB monomer in the blend.Concentration of octanoate was also found to significantly affect the PHB content in the blend.A PHA biosynthesis pathway in Pseudomonas pseudoalcaligens M1-2 was proposed.

  6. Vacuum ultraviolet light source utilizing rare gas scintillation amplification sustained by photon positive feedback

    Science.gov (United States)

    Aprile, Elena (Inventor); Chen, Danli (Inventor)

    1995-01-01

    A source of light in the vacuum ultraviolet (VUV) spectral region includes a reflective UV-sensitive photocathode supported in spaced parallel relationship with a mesh electrode within a rare gas at low pressure. A high positive potential applied to the mesh electrode creates an electric field which causes drifting of free electrons occurring between the electrodes and producing continuous VUV light output by electric field-driven scintillation amplification sustained by positive photon feedback mediated by photoemission from the photocathode. In one embodiment the lamp emits a narrow-band continuum peaked at 175 nm.

  7. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  8. Design of an Intense Muon Source with a Carbon and Mercury Target

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven; Berg, J. Scott [Brookhaven; Neuffer, David [Fermilab; Ding, Xiaoping [UCLA

    2015-06-01

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  9. Design of an intense muon source with a carbon and mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, D.; Berg, J. S.; Neuffer, D.; Ding, X.

    2015-05-03

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  10. Black carbon emissions from Russian diesel sources: case study of Murmansk

    Directory of Open Access Journals (Sweden)

    M. Evans

    2015-02-01

    Full Text Available Black carbon (BC is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture, fishing and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emission in Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 70% of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source emitting about 12% of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 56.7 Gg in 2010, and on-road transport contributed 55% of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  11. Distinct carbon sources indicate strong differentiation between tropical forest and farmland bird communities.

    Science.gov (United States)

    Ferger, Stefan W; Böhning-Gaese, Katrin; Wilcke, Wolfgang; Oelmann, Yvonne; Schleuning, Matthias

    2013-02-01

    The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C(4) crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C(3) carbon sources, whereas many farmland birds also assimilated C(4) carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C(4) carbon in the farmland than in the forest. Granivores assimilated more C(4) carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km(-2) year(-1). We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control.

  12. Silicate or Carbonate Weathering: Fingerprinting Sources of Dissolved Inorganic Carbon Using δ13C in a Tropical River, Southern India

    Science.gov (United States)

    Bhagat, H.; Ghosh, P.

    2015-12-01

    Rivers are an inherently vital resource for the development of any region and their importance is highlighted by the presence of many ancient human civilizations adjacent to river systems. δ13C - Si/HCO3 systematics has been applied to large south Indian rivers which drain the Deccan basaltic traps in order to quantify their relative contributions from silicate and carbonate weathering. This study investigates δ13C - Si/HCO3 systematics of the Cauvery River basin which flows through silicate lithology in the higher reaches and carbonate lithology with pedogenic and marine carbonates dominating the terrain in the lower reaches of the basin. The samples for the present study were collected at locations within the watershed during Pre-Monsoon and Monsoon Season 2014. The measurements of stable isotope ratios of δ13CDIC and were accomplished through a Thermo Scientific GasBench II interface connected to a MAT 253 IRMS. We captured a large spatial variation in δ13C and Si/HCO3 values during both seasons; Pre-Monsoon δ13C values ranges between -17.57‰ to -4.02‰ and during Monsoon it varies between -9.19‰ to +0.61‰. These results indicate a two end-member mixing component i.e. a silicate and a carbonate end member; governing the weathering interactions of the Cauvery River. Within the drainage basin, we identified silicate and carbonate dominating sources by using contributions of DIC and δ13C. Si/HCO3 values for Pre-Monsoon ranges between 0.028 - 0.67 and for Monsoon it varies between 0.073 - 0.80. Lighter δ13C composition was observed at sampling sites at higher altitude in contrast to sampling sites at flood plain which show relatively enriched δ13C which indicate mixing of soil derived CO2 with C4 plants. Result suggests dominance of carbonate weathering during the Monsoon Period, while silicate weathering is pronounced during Pre- Monsoon period.

  13. Biotransformation of Meloxicam by Cunninghamella blakesleeana: Significance of Carbon and Nitrogen Source

    OpenAIRE

    Shyam Prasad, Gurram; Narasimha Rao, Kollu; Preethi, Rama; Girisham, Sivasri; S. M. Reddy

    2011-01-01

    Influence of carbon and nitrogen source, on biotransformation of meloxicam was studied by employing Cunninghamella blakesleeana NCIM 687 with an aim to achieve maximum transformation of meloxicam and in search of new metabolites. The transformation was confirmed by HPLC and based on LC–MS–MS data and previous reports the metabolites were predicted as 5-hydroxymethyl meloxicam, 5-carboxy meloxicam and a novel metabolite. The quantification of metabolites was performed using HPLC peak areas. Th...

  14. Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone

    OpenAIRE

    Edna L. Hernández-López; Ramírez-Puebla, Shamayim T.; Rafael Vazquez-Duhalt

    2015-01-01

    Asphaltenes are considered as the most recalcitrant petroleum fraction and represent a big problem for the recovery, separation and processing of heavy oils and bitumens. Neosartorya fischeri is a saprophytic fungus that is able to grow using asphaltenes as the sole carbon source [1]. We performed transcription profiling using a custom designed microarray with the complete genome from N. fischeri NRRL 181 in order to identify genes related to the transformation of asphaltenes [1]. Data ana...

  15. The influence of carbon sources and morphology on nystatin production by Streptomyces noursei

    DEFF Research Database (Denmark)

    Jonsbu, E.; Mcintyre, Mhairi; Nielsen, Jens

    2002-01-01

    Carbon source nutrition and morphology were examined during cell growth and production of nystatin by Streptomyces noursei ATCC 11455. This strain was able to utilise glucose, fructose, glycerol and soluble starch for cell growth, but failed to grow on media supplemented with galactose, xylose, m...... that this coincided with loss of activity inside the core of the pellets, probably due to diffusion limitation of oxygen or other nutrients....

  16. A Method for Sustainable Carbon Dioxide Utilization Process Synthesis and Design

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Fjellerup, Kasper; Roh, Kosan

    As a result of increasing regulations and concern about the impact of greenhouse gases on the environment, carbon dioxide (CO2) emissions are a primary focus for reducing emissions and improving global sustainability. One method to achieve reduced emissions, is the conversion of CO2 to useful...

  17. Environmental Detection of Single-Walled Carbon Nanotubes Utilizing Near-Infrared Fluorescence

    Science.gov (United States)

    There are a growing number of applications for carbon nanotubes (CNT) in modern technologies and, subsequently, growth in production of CNT has expanded rapidly. Single-walled CNT (SWCNT) consist of a graphene sheet rolled up into a tube. With growing manufacture and use, the ...

  18. Environmental effects of energy production and utilization in the U. S. Volume I. Sources, trends, and costs of control

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W. (comp.)

    1976-05-01

    Volume I deals with sources (what the emissions are and where they come from), trends (quantities of emissions and their dispersion with time), and costs of control (what it takes in time, energy, and money to meet minimum standards). Volume II concerns itself with the public health effects of energy production and utilization. Volume III summarizes the various techniques for controlling emissions, technological as well as economic, social, and political. (For abstracts of Vols. II and III, see ERDA Energy Research Abstracts, Vol. 2, Absts. 5764 and 5670, respectively) Each volume is divided into sections dealing with the atmosphere, water, land, and social activities--each division indicating a particular sphere of man's environment affected by energy production and use. The sources of information that were used in this study included textbooks, journal articles, technical reports, memoranda, letters, and personal communications. These are cited in the text at the end of each subsection and on the applicable tables and figures.

  19. Potential utilization of Citrullus lanatus var. Colocynthoides waste as a novel source of pectin.

    Science.gov (United States)

    Korish, Mohamed

    2015-04-01

    The Citrullus lanatus var. Colocynthoides is an ancestor type of watermelon. It was investigated as a new source of pectin. It was cultivated in Egypt for seeds only, while the remaining fruits are discarded as waste. Effect of different extraction conditions such as pH, solid: liquid ratio, temperature and extraction time on pectin yield of Citrullus lanatus var. Colocynthoides waste was investigated in the present study. The highest yield (19.75 % w/w) was achieved at pH 2, solid: liquid ratio1:15 and 85 °C, for 60 min. Methylation degree and galacturonic acid content of extracted pectin were 55.25 %, w/w and 76.84 %, w/w. The main neutral sugars were galactose followed by arabinose and rhamnose. In addition, glucose, xylose and mannose existed as constituents in the pectin hydrolysate. The results indicated that Citrullus lanatus var. Colocynthoide waste is a potential new source of pectin.

  20. Deep Sediment-Sourced Methane Contribution to Shallow Sediment Organic Carbon: Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Richard B. Coffin

    2015-02-01

    Full Text Available Coastal methane hydrate deposits are globally abundant. There is a need to understand the deep sediment sourced methane energy contribution to shallow sediment carbon relative to terrestrial sources and phytoplankton. Shallow sediment and porewater samples were collected from Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico near a seafloor mound feature identified in geophysical surveys as an elevated bottom seismic reflection. Geochemical data revealed off-mound methane diffusion and active fluid advection on-mound. Gas composition (average methane/ethane ratio ~11,000 and isotope ratios of methane on the mound (average δ13CCH4(g = −71.2‰; D14CCH4(g = −961‰ indicate a deep sediment, microbial source. Depleted sediment organic carbon values on mound (δ13CSOC = −25.8‰; D14CSOC = −930‰ relative to off-mound (δ13CSOC = −22.5‰; D14CSOC = −629‰ suggest deep sourced ancient carbon is incorporated into shallow sediment organic matter. Porewater and sediment data indicate inorganic carbon fixed during anaerobic oxidation of methane is a dominant contributor to on-mound shallow sediment organic carbon cycling. A simple stable carbon isotope mass balance suggests carbon fixation of dissolved inorganic carbon (DIC associated with anaerobic oxidation of hydrate-sourced CH4 contributes up to 85% of shallow sediment organic carbon.

  1. Utilization of Human Urine as Fertilizer with Magnesium Oxide (MgO, Zeolite and Activated Carbon as Absorbent

    Directory of Open Access Journals (Sweden)

    Hijrah Purnama Putra

    2014-01-01

    Full Text Available Urine is residual fluid excreted by kidneys through urinary tract to outside of the human body, to maintain homeostasis of fluid in the body. Normally urine still contains high amount of nitrogen, which is 87%, phosphor 50%, potassium 54% and low bacterial content. With these contents urine potentially becomes organic fertilizer rich with nitrogen, phosphor and potassium contents and is beneficial to plants. However, until today the utilization or urine in Indonesia is very low. The urine produced is dispose with feces in toilets. This study aimed to utilize urine as solid organic fertilizer using magnesium oxide (MgO, zeolite, and actived carbon as absorbents of ammonium and phosphor. The study started with collecting urine, time variations of urine storage were 24; 48 and 72 hours, and urine was mixed with water as an assumption that urine mixes with water when flushed in urinals. The result showed effectiveness of optimum urine absorption in urine stored for 48 hours by adding 8 gram MgO, producing ammonium and phosphor contents 56.100 ppm and 3.610 ppm, respectively. From environmental perspective, utilization of urine as organic fertilizer was applicable because it satisfied the ecological principle of sanitation to prevent soil pollution, ground and surface water pollution and its utilization as agricultural resources.

  2. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source.

    Science.gov (United States)

    Tan, Mingqian; Zhang, Lingxin; Tang, Rong; Song, Xiaojie; Li, Yimin; Wu, Hao; Wang, Yanfang; Lv, Guojun; Liu, Wanfa; Ma, Xiaojun

    2013-10-15

    Carbon dots (C-dots) are a class of novel fluorescent nanomaterials, which have drawn great attention for their potential applications in bio-nanotechnology. Multicolor C-dots have been synthesized by chemical nitric acid oxidation using the reproducible plant soot as raw material. TEM analysis reveals that the prepared C-dots have an average size of 3.1 nm. The C-dots are well dispersed in aqueous solution and are strongly fluorescent under the irradiation of ultra-violet light. X-ray photoelectron spectroscopy characterization demonstrates that the O/C atomic ratio for C-dots change to from 0.207 to 0.436 due to the chemical oxidation process. The photo bleaching experiment reveals that the C-dots show excellent photostability as compared with the conventional organic dyes, fluorescein and rhodamine B. The fluorescence intensity of the C-dots did not change significantly in the pH range of 3-10. To further enhance the fluorescence quantum yield, the C-dots were surface modified with four types of passivation ligands, 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), poly-L-lysine (PLL), cysteine and chitosan and the fluorescence quantum yields of the TTDDA, PLL, cysteine and chitosan passivated C-dots were improved 1.53-, 5.94-, 2.00- and 3.68-fold, respectively. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The bio-application of the C-dots as fluorescent bio-probes was evaluated in cell imaging and ex vivo fish imaging, which suggests that the C-dots may have potential applications in biolabeling and bioimaging.

  3. Utilization of the water soluable fraction of wheat straw as a plant nutrient source

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.

    1990-01-01

    Recovery of water soluble, inorganic nutrients from the inedible portion of wheat was found to be an effective means of recycling nutrients within hydroponic systems. Through aqueous extraction (leaching), 60 percent of the total inorganic nutrient weight was removed from wheat straw and roots, although the recovery of individual nutrients varied. Leaching also removed about 20 percent of the total organic carbon from the biomass. In terms of dry weight, the leachate was comprised of approximately 60 percent organic and 40 percent inorganic compounds. Direct use of wheat straw leachate in static hydroponic systems had an inhibitory effect on wheat growth, both in the presence and absence of microorganisms. Biological treatment of leachate either with a mixed microbial community or the oyster mushroom Pleurotus ostreatus L., prior to use in hydroponic solutions, significantly reduced both the organic content and the inhibitory effects of the leachate. The inhibitory effects of unprocessed leachate appear to be a result of rapidly acting phytotoxic compounds that are detoxified by microbial activity. Leaching holds considerable promise as a method for nutrient recycling in a Controlled Ecological Life Support System (CELSS).

  4. Effect of carbon and nitrogen sources on carotenoids production by native strain of Aurantiochytrium Ch25

    Directory of Open Access Journals (Sweden)

    Mahdiye Esmizade

    2016-09-01

    Full Text Available Introduction: Microorganisms produce carotenoids as a part of their response to environmental stresses. Carotenoids have many applications in human health, such as antioxidant, anti-cancer, light protection activity and as a precursor for hormones. Materials and methods: In this study, the effect of different carbon and nitrogen sources was evaluated on carotenoids production by native Aurantiochytrium strain. The effects of different carbon and nitrogen sources were studied on biomass and carotenoid production. Then, carotenoids were extracted and analyzed by TLC, spectrophotometry and HPLC methods. Results: Results showed that glycerol is the best carbon source for production of high carotenoids content. Selected medium contained: glycerol (1.5% v/v, peptone (1g/l, yeast extract (1g/l and 50% of sea water. Total carotenoids content was 134.8 µg/g CDW in this medium. TLC analysis showed that the extracted carotenoid is included: beta-carotene, astaxanthin monoester, astaxanthin diester and free astaxanthin. The results of HPLC analysis showed presence of astaxanthin, canthaxanthin, echinenone and β-carotene in the carotenoid extract. Discussion and conclusion: In this research, production of carotenoids was investigated in native strain of Aurantiochytrium and carotenoids profile was included astaxanthin, canthaxanthin, β-carotene and echinenone.

  5. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    Science.gov (United States)

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  6. Thermal hydrolysis of sludge and the use of hydrolysate as carbon source for denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Barlindhaug, J.

    1995-10-01

    As a consequence of the North Sea- and the Baltic Sea Treaties as well as the Wastewater Directive of the EU, several large wastewater treatment plants discharging to sensitive receiving waters have to include phosphorus as well as nitrogen removal. This thesis evaluates the so called NTH-process for nutrient removal. In this process pre-precipitation is used in front of a biological nitrogen removal step that is based on a combination of pre- and post-denitrification in moving bed biofilm reactors. The biological step is followed by a final separation step, possibly after coagulant addition. Carbon source for the post denitrification step is made available by hydrolysis of the sludge produced. The idea is that the particulate organic matter, which in a traditional pre-denitrification step would have to be enzymatically hydrolyzed, can be more efficiently hydrolyzed in a concentrated sidestream and used in a post-denitrification step. In the thesis hydrolyzed sludge is used as a carbon source for denitrification. The objective is to investigate the influence of varying hydrolysis conditions on the composition and amount of the thermal hydrolysate produced, as well as the quality of the hydrolysate as a carbon source for denitrification. 201 refs., 78 refs., 53 tabs.

  7. The activated sludge metabolic characteristics changing sole carbon source from readily biodegradable acetate to toxic phenol.

    Science.gov (United States)

    Wu, Changyong; Zhou, Yuexi; Song, Jiamei

    2016-01-01

    A sequencing batch reactor was used to investigate the effect of carbon sources on the metabolism of activated sludge. Acetate and phenol, with the chemical oxygen demand (COD) of 330-350 mg L(-1), was used as the carbon source in Periods I and II, respectively. Acetate decreased in the initial 120 min with the intracellular storage materials (XSTO), extracellular polymeric substances (EPS), and the soluble microbial products (SMP) accumulating to 131.0 mg L(-1), 347.5 mg L(-1), and 35.5 mg L(-1), respectively. Then, XSTO and EPS decreased to 124.5 mg L(-1) and 340.0 mg L(-1), respectively, in the following 120 min. When acetate was replaced by phenol, it could not be used at the beginning due to its toxicity. The XSTO decreased from 142 mg L(-1) to 54.6 mg L(-1) during the aeration period. The EPS had a significant increase, with the highest value of 618.1 mg L(-1), which then decreased to 245.6 mg L(-1) at 240 min. The phenol was gradually degraded with the acclimation and it can be fully degraded 18 d later. Meanwhile, the usage ratio of the internal carbon source decreased. The effluent SMP in Period II was 1.7 times that in Period I.

  8. Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source.

    Science.gov (United States)

    Wozniak, Aniela; Lozano, Carla; Barahona, Salvador; Niklitschek, Mauricio; Marcoleta, Andrés; Alcaíno, Jennifer; Sepulveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor

    2011-05-01

    Xanthophyllomyces dendrorhous is a basidiomycetous yeast of considerable biotechnological interest because it synthesizes astaxanthin as its main carotenoid. The carotenoid production increases when it is grown using nonfermentable compounds as the sole carbon source. This work analyzes the expression of the carotenogenic genes and their relationship with the amount and types of carotenoids produced when X. dendrorhous is grown using a nonfermentable (succinate) or a fermentable carbon source (glucose). When X. dendrorhous is grown in succinate, carotenoid production is approximately three times higher than when it is grown in glucose. Moreover, carotenoid biosynthesis occurs at the start of the growth cycle when X. dendrorhous is grown in succinate, whereas when it is grown in glucose, carotenoids are produced at the end of the exponential phase. Additionally, we observed that some carotenogenic genes, such as alternative transcripts of crtYB and crtI, are differentially expressed when the yeast is grown in these carbon sources; other genes, such as crtS, exhibit a similar pattern of expression. Our data indicate that transcriptional regulation is not sufficient to explain the differences in carotenoid production between the two culture conditions, indicating that additional regulatory mechanisms may be operating in the carotenogenic pathway of X. dendrorhous.

  9. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    Science.gov (United States)

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment.

  10. Polypharmacy in HIV: impact of data source and gender on reported drug utilization.

    Science.gov (United States)

    Furler, Michelle D; Einarson, Thomas R; Walmsley, Sharon; Millson, Margaret; Bendayan, Reina

    2004-10-01

    Drug use in HIV is complex and may involve multiple therapeutic and nontherapeutic agents including prescription, over-the-counter, complementary and alternative medicine, and social/recreational drugs. This study was designed to assess the extent of such drug use in HIV-infected men and women. One hundred four adults were recruited through the HIV Ontario Observational Database from HIV outpatient clinics throughout Ontario, Canada. Patient demographics and data on drug use and physician awareness of drug use were collected through in-person interviews and medical chart review. All patient interviews and 96% of medical charts revealed the use of at least one drug. Eighty-five percent of patients reported use of antiretroviral medications; nearly 70% used highly active antiretroviral therapy. Patients used significantly more drugs by patient report (15.7 +/- 7.7) than by medical chart review (8.4 +/- 5.0) reporting up to 39 drugs per person. Pill burden was substantial, averaging 20.7 +/- 12.5 and ranged up to 69 "pills-per-day." Patient-reported physician awareness of drug use was highest for prescription drugs and lowest for social/recreational drugs; correspondingly agreement between medical chart and patient report ranged from 80% for antiretrovirals to 10% for non-prescribed drugs. The drug and pill burden faced by patients with HIV is considerable. Prevalence of use for specific drug classes varied with both data source and gender while number of drugs used differed only by data source. Our findings emphasize the complexity of pharmacotherapy in HIV and the need for comprehensive drug assessment, particularly because of the risks of drug-drug interactions and decreased adherence secondary to therapeutic complexity.

  11. Source Anonymity in WSNs against Global Adversary Utilizing Low Transmission Rates with Delay Constraints.

    Science.gov (United States)

    Bushnag, Anas; Abuzneid, Abdelshakour; Mahmood, Ausif

    2016-06-27

    Wireless sensor networks (WSN) are deployed for many applications such as tracking and monitoring of endangered species, military applications, etc. which require anonymity of the origin, known as Source Location Privacy (SLP). The aim in SLP is to prevent unauthorized observers from tracing the source of a real event by analyzing the traffic in the network. Previous approaches to SLP such as Fortified Anonymous Communication Protocol (FACP) employ transmission of real or fake packets in every time slot, which is inefficient. To overcome this shortcoming, we developed three different techniques presented in this paper. Dummy Uniform Distribution (DUD), Dummy Adaptive Distribution (DAD) and Controlled Dummy Adaptive Distribution (CAD) were developed to overcome the anonymity problem against a global adversary (which has the capability of analyzing and monitoring the entire network). Most of the current techniques try to prevent the adversary from perceiving the location and time of the real event whereas our proposed techniques confuse the adversary about the existence of the real event by introducing low rate fake messages, which subsequently lead to location and time privacy. Simulation results demonstrate that the proposed techniques provide reasonable delivery ratio, delay, and overhead of a real event's packets while keeping a high level of anonymity. Three different analysis models are conducted to verify the performance of our techniques. A visualization of the simulation data is performed to confirm anonymity. Further, neural network models are developed to ensure that the introduced techniques preserve SLP. Finally, a steganography model based on probability is implemented to prove the anonymity of the techniques.

  12. Source Anonymity in WSNs against Global Adversary Utilizing Low Transmission Rates with Delay Constraints

    Directory of Open Access Journals (Sweden)

    Anas Bushnag

    2016-06-01

    Full Text Available Wireless sensor networks (WSN are deployed for many applications such as tracking and monitoring of endangered species, military applications, etc. which require anonymity of the origin, known as Source Location Privacy (SLP. The aim in SLP is to prevent unauthorized observers from tracing the source of a real event by analyzing the traffic in the network. Previous approaches to SLP such as Fortified Anonymous Communication Protocol (FACP employ transmission of real or fake packets in every time slot, which is inefficient. To overcome this shortcoming, we developed three different techniques presented in this paper. Dummy Uniform Distribution (DUD, Dummy Adaptive Distribution (DAD and Controlled Dummy Adaptive Distribution (CAD were developed to overcome the anonymity problem against a global adversary (which has the capability of analyzing and monitoring the entire network. Most of the current techniques try to prevent the adversary from perceiving the location and time of the real event whereas our proposed techniques confuse the adversary about the existence of the real event by introducing low rate fake messages, which subsequently lead to location and time privacy. Simulation results demonstrate that the proposed techniques provide reasonable delivery ratio, delay, and overhead of a real event's packets while keeping a high level of anonymity. Three different analysis models are conducted to verify the performance of our techniques. A visualization of the simulation data is performed to confirm anonymity. Further, neural network models are developed to ensure that the introduced techniques preserve SLP. Finally, a steganography model based on probability is implemented to prove the anonymity of the techniques.

  13. Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica.

    Science.gov (United States)

    Fukuda, Ryouichi

    2013-01-01

    A potent ability to assimilate hydrophobic compounds, including n-alkanes and fatty acids as carbon sources, is one of important characteristics of the yeast Yarrowia lipolytica, and has been studied for both basic microbiological interest and biotechnological applications. This review summarizes recent progress on the metabolism of n-alkanes and its transcriptional control in response to n-alkanes and to fatty acids in Y. lipolytica. In the metabolism of n-alkanes, cytochromes P450ALK catalyze their initial hydroxylation to fatty alcohols, which are subsequently converted to fatty acids and utilized. The transcription of ALK1, encoding a predominant cytochrome P450ALK, is regulated in response to n-alkanes by two basic helix-loop-helix transcription activators, Yas1p and Yas2p, and Opi1-family transcription repressor Yas3p. Transcription of the genes involved in fatty acid utilization and peroxisome biogenesis is controlled by Ctf1-family Zn2Cys6 type transcription factor Por1p in response to fatty acids in Y. lipolytica.

  14. Geothermal source potential and utilization for methane generation and alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

  15. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    Science.gov (United States)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically "heavy" compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  16. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    Science.gov (United States)

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  17. UTILIZATION OF CORN GLUTEN MEAL AS A PROTEIN SOURCE IN DIETS FOR GILTHEAD SEA BREAM (Sparus aurata L. JUVENILES

    Directory of Open Access Journals (Sweden)

    Murat Yiğit

    2012-01-01

    Full Text Available The utilization of corn gluten meal (CGM was evaluated as a partial fish meal (FM substitute in practical diets for gilthead sea bream juveniles. Four test diets (isonitrogenous and isoca¬loric, 52% protein and 10% lipid, 19 kJ/g diet containing increasing levels of CGM were for¬mulated to replace anchovy meal at levels of 0%, 10%, 20%, and 30%. Triplicate groups of ju¬venile sea bream (initial body weight of 1.5 g were reared in a Recirculating Aquaculture System (RAS over 45 days at 18±2°C. Fish fed a diet containing 10% of CGM showed com¬parable growth performance similar to the control diet containing FM as the sole protein source. No mortality was observed in all treatment groups. Dietary CGM inclusion levels of 20% and 30% showed lower growth performance, feed utilization, and protein efficiency com¬pared to the control and the 10% CGM inclusion diets. However these values were not signifi¬cantly different among fish fed the CGM10 and CGM20 diets. Economical analyses also con¬firmed the growth related experimental results in terms of best profit obtained with the 10% CGM inclusion diet. Results in the present study showed that CGM alone without any amino acid supplements can substitute FM up to 10% with no adverse effects on growth performance, feed utilization, or economical inputs in gilthead sea bream juveniles.

  18. Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources

    Directory of Open Access Journals (Sweden)

    Dominik Szwajgier

    2011-09-01

    Full Text Available Background. Ferulic acid esterases (FAE, EC 3.1.1.73, also known as feruloyl esterases, cinnamic acid esterases or cinnamoyl esterases, belong to a common group of hydrolases distributed in the plant kingdom. Especially the fungal enzymes were very well characterised in the past whereas the enzyme was rarely found in the lactic acid bacteria (LAB strains. It is well known that strong antioxidants free phenolic acids can be released from the dietary fiber by the action of intestinal microflora composed among others also of Lactobacillus strains. The aim of this study was to examine four Lactobacillus strains (L. acidophilus K1, L. rhamnosus E/N, PEN, OXYfor the ability to produce extracellular FAE on different synthetic and natural carbon sources. Material and methods. The LAB strains were grown in the minimal growth media using German wheat bran, rye bran, brewers’ spent grain, isolated larchwood arabinogalactan, apple pectin, corn pectin, methyl ferulate, methyl p-coumarate, methyl syringate or methyl vanillate as the sole carbon source. FAE activity was determined using the post-cultivation supernatants, methyl ferulate and HPLC with UV detection. Results. The highest FAE activity was obtained with L. acidophilus K1 and methyl ferulate (max. 23.34 ±0.05 activity units and methyl p-coumarate (max. 14.96 ±0.47 activity units as carbon sources. L. rhamnosus E/N, OXY and PEN exhibited the limited ability to produce FAE with cinnamic acids methyl esters. Methyl syringate and methyl vanillate (MS and MV were insufficient carbon sources for FAE production. Brewers’ spent grain was the most suitable substrate for FAE production by L. acidophilus K1 (max. 2.64 ±0.06 activity units and L. rhamnosus E/N, OXY and PEN. FAE was also successfully induced by natural substrates rye bran, corn pectin (L. acidophilus K1, German wheat bran and larchwood arabinogalactan (E/N, PEN or German wheat bran and corn pectin (OXY. Conclusions. This study proved the

  19. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Abhay; Hussain, Nighat; Tang, Chi [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Rusling, James [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032 (United States); School of Chemistry, National University of Ireland, Galway (Ireland)

    2009-10-15

    Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-L-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH{sub 2} under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell. (author)

  20. STABLE CARBON ISOTOPES OF HCO//3 IN THE AQUIA AQUIFER, MARYLAND: EVIDENCE FOR AN ISOTOPICALLY HEAVY SOURCE OF CO//2.

    Science.gov (United States)

    Chapelle, Francis H.; Knobel, LeRoy L.

    1985-01-01

    Identifying sources and sinks of dissolved inorganic carbon species is an important step in understanding the geochemistry of ground-water systems. This is particularly important for Atlantic Coastal Plain aquifers because bicarbonate (HCO//3** minus ) is frequently the major dissolved anion. The purpose of this paper is to document the stable carbon isotope composition of dissolved inorganic carbon in the Aquia aquifer, Maryland, and to use this data to help identify sources and sinks of dissolved HCO//3** minus . Subjects covered include hydrogeology, ground-water chemistry, sources and sinks, and others. Refs.

  1. Badlands and the Carbon cycle: a significant source of petrogenic organic carbon in rivers and marine environments?

    Science.gov (United States)

    Copard, Yoann; Eyrolle-Boyer, Frederique; Radakovitch, Olivier; Poirel, Alain; Raimbault, Patrick; Lebouteiller, Caroline; Gairoard, Stéphanie; Di-Giovanni, Christian

    2016-04-01

    A key issue in the study of carbon biogeochemical cycle is to well constrain each carbon origin in term of fluxes between all C-reservoirs. From continental surfaces to oceans, rivers convey particulate organic carbon originate from the biomass (biospheric OC) and /or from the sedimentary rocks (petrogenic OC). Existence and importance of this petrogenic OC export to oceans was debated for several decades (see Copard et al., 2007 and ref.), but it is now assumed that 20% of the global carbon export to ocean has a geological origin (Galy et al., 2015). The main current challenge is to constrain the major contributors to this petrogenic OC flux. Amongst the expected sedimentary sources of petrogenic OC in rivers, sedimentary rocks forming badlands can be rightly considered as some viable candidates. Indeed these rocks show a strong erosion rate, may exceed 50 kt km-2 y-1 and in addition, shales, marls and argillaceous rocks, frequently forming badlands (see Nadal-Romero et al., 2011 for the Mediterranean area), contain a significant amount of petrogenic OC (frequently over 0.50 wt. %, Ronov and Yaroshevsky 1976). Our work illustrates the contribution of badlands, mainly distributed within the Durance catchment (a main tributary of the Rhône river), in the petrogenic OC export to the Mediterranean Sea. The approach is based on (i) the use of previous and new data on radiogenic carbon, (ii) bulk organic geochemistry (Rock-Eval pyrolysis), (iii) optical quantification of particulate OM (palynofacies), performed on suspended sediments from the Durance, the Rhône rivers and from small rivers draining the badlands. A mean erosion rate of badlands, previously calculated for instrumented catchments (SOERE Draix-Bléone, Graz et al., 2012) was also applied to the badlands disseminated within the Durance catchment. These different methodologies converge to a petrogenic contribution of the OC export to the Mediterranean Sea close to 30 %. Badlands from the Durance catchment

  2. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya

    Directory of Open Access Journals (Sweden)

    S. Bouillon

    2004-01-01

    Full Text Available The origin of carbon substrates used by in situ sedimentary bacterial communities was investigated in an intertidal mangrove ecosystem and in adjacent seagrass beds in Gazi bay (Kenya by δ13C analysis of bacteria-specific PLFA (phospholipid fatty acids and bulk organic carbon. Export of mangrove-derived organic matter to the adjacent seagrass-covered bay was evident from sedimentary total organic carbon (TOC and δ13CTOC data. PLFA δ13C data indicate that the substrate used by bacterial communities varied strongly and that exported mangrove carbon was a significant source for bacteria in the adjacent seagrass beds. Within the intertidal mangrove forest, bacterial PLFA at the surface layer (0-1cm typically showed more enriched δ13C values than deeper (up to 10cm sediment layers, suggesting a contribution from microphytobenthos and/or inwelled seagrass material. Under the simplifying assumption that seagrasses and mangroves are the dominant potential end-members, the estimated contribution of mangrove-derived carbon to benthic mineralization in the seagrass beds (16-74% corresponds fairly well to the estimated contribution of mangrove C to the sedimentary organic matter pool (21-71% across different seagrass sites. Based on the results of this study and a compilation of literature data, we suggest that trapping of allochtonous C is a common feature in seagrass beds and often represents a significant source of C for sediment bacteria - both in cases where seagrass C dominates the sediment TOC pool and in cases where external inputs are significant. Hence, it is likely that data on community respiration rates systematically overestimate the role of in situ mineralization as a fate of seagrass production.

  3. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  4. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  5. Carbon sources supporting a diverse fish community in a tropical coastal ecosystem (Gazi Bay, Kenya)

    Science.gov (United States)

    Nyunja, J.; Ntiba, M.; Onyari, J.; Mavuti, K.; Soetaert, K.; Bouillon, S.

    2009-07-01

    Interlinked mangrove-seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isotope composition of 42 fish species, 2 crustacean species and a range of potential primary food sources (e.g., mangroves, seagrasses and epiphytes, macroalgae) were analysed. There was considerable overlap in the δ 13C signatures between fish (-16.1 ± 2.1‰), seagrasses (-15.1 ± 3.0‰), seagrass epiphytes (-13.6 ± 3.3‰), and macroalgae (-20.4 ± 3.1‰). Nevertheless, the signatures for most primary producers were sufficiently distinct to indicate that the dominant carbon sources for fish were mainly derived from the seagrass and their associated epiphytic community, and possibly macroalgae. Mangrove-derived organic matter contributes only marginally to the overall fish food web. Carbon supporting these fish communities was derived directly through grazing by herbivorous and some omnivorous fishes, or indirectly through the benthic food web. Fishes from the mangrove creeks had distinctly lower δ 13C signatures (-16.8 ± 2.0‰) compared to those collected in the adjacent seagrass beds (-14.7 ± 1.7‰). This indicated that these habitats were used as distinct sheltering and feeding zones for the fishes collected, with minimal degree of exchange within the fish communities despite their regular movement pattern.

  6. Sources, determinants and utilization of health workers’ revenues: evidence from Sierra Leone

    Science.gov (United States)

    Bertone, Maria Paola; Lagarde, Mylene

    2016-01-01

    Exploring the entire set of formal and informal payments available to health workers (HWs) is critical to understand the financial incentives they face and devise effective incentive packages to motivate them. We investigate this issue in the context of Sierra Leone by collecting quantitative data through a survey and daily logbooks on the incomes of 266 HWs in three districts, and carrying out 39 qualitative in-depth interviews. We find that, while earnings related to the HWs official jobs represent the largest share, their income is fragmented and composed of a variety of payments, and there is a large heterogeneity in the importance of each income source within the total remuneration. Importantly, each income has different features in terms of regularity, reliability, ease of access, etc. Our analysis also reveals the determinants of the incomes received and their level based on individual and facility characteristics, and finds that these are not in line with HRH policies defined at national level. Additionally, from their narratives, it emerges that HWs are ‘managing’, in the sense both of ‘getting by’ and of enacting financial coping strategies, such as mental accounting (spending different incomes differently), income hiding to shelter it from family pressures, and re-investment of incomes to stabilize overall earnings over time, in order to ensure their livelihoods and those of their families. These strategies question the assumption of fungibility of incomes and the neutrality of increasing or regulating one rather than another of them. Together, our findings on earning and income use patterns have important policy implications for how we go about (re)thinking financial incentive strategies. PMID:27053639

  7. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    Science.gov (United States)

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  8. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    Science.gov (United States)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  9. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sako, T., E-mail: takayuki1.sako@toshiba.co.jp; Yamaguchi, A.; Sato, K. [Toshiba Corporation, Yokohama 235-8522 (Japan); Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T. [Cancer Research Center, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Takeuchi, T. [Accelerator Engineering Corporation, Chiba 263-0043 (Japan)

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  10. A carbon-cluster laser ion source for TRIGA-TRAP

    Energy Technology Data Exchange (ETDEWEB)

    Smorra, C; Eberhardt, K [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernchemie, Fritz-Strassmann Weg 2, D-55128 Mainz (Germany); Blaum, K [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg (Germany); Eibach, M; Ketelaer, J; Ketter, J; Knuth, K [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik, Staudingerweg 7, D-55128 Mainz (Germany); Nagy, Sz, E-mail: smorrac@uni-mainz.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2009-08-14

    A new laser ablation ion source was developed and tested for the Penning trap mass spectrometer TRIGA-TRAP in order to provide carbon-cluster ions for absolute mass calibration. Ions of different cluster sizes up to C{sup +}{sub 24} were successfully produced, covering the mass range up to the heavy actinide elements. The ions were captured in a Penning trap, and their time-of-flight cyclotron resonances recorded in order to determine their cyclotron frequency. Furthermore, the same ion source was used to produce GdO{sup +} ions from a gadolinium target in sufficient amount for mass spectrometry purposes. The design of the source and its characteristics are presented.

  11. The cold adaptability of microorganisms with different carbon source in activated sludge treating synthetical wastewater.

    Science.gov (United States)

    Niu, Chuan; Geng, Jinju; Ren, Hongqiang; Ding, Lili; Xu, Ke

    2012-11-01

    The cold adaptability of microorganisms with different carbon source under 5°C was studied in activated sludge for treating synthetical wastewater. Phospholipid fatty acid (PLFA) analysis indicated contents of unsaturated fatty acids in cell membrane at 5°C were 13.66% and 24.96% higher for glucose and sodium acetate source than that at 25°C. PLFA biomarkers showed more Gram-negative bacteria enriched than Gram-positive bacteria in low-temperature activated sludge. The Shannon-Wiener diversity analysis demonstrated glucose fed reactor in low temperature had lower PLFA diversity index (1.21-1.30) than that at 25°C and sodium acetate source was reverse (1.08-0.69). The 16S rRNA analysis manifested certain microbes were considerably suitable for existence under cold environment, most of which belong to Gram-negative bacteria.

  12. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    Science.gov (United States)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.

  13. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya

    Directory of Open Access Journals (Sweden)

    F. Dehairs

    2004-08-01

    Full Text Available The origin of carbon substrates used by in situ sedimentary bacterial communities was investigated in an intertidal mangrove ecosystem and in adjacent seagrass beds in Gazi bay (Kenya by δ13C analysis of bacteria-specific PLFA (phospholipid fatty acids and bulk organic carbon. Export of mangrove-derived organic matter to the adjacent seagrass-covered bay was evident from sedimentary total organic carbon (TOC and δ13CTOC data. PLFA δ13C data indicate that the substrate used by bacterial communities varied strongly and that exported mangrove carbon was a significant source for bacteria in the adjacent seagrass beds. Within the intertidal mangrove forest, bacterial PLFA at the surface layer (0-1 cm typically showed more enriched δ13C values than deeper (up to 10 cm sediment layers, suggesting a contribution from microphytobenthos and/or inwelled seagrass material. Under the assumption that seagrasses and mangroves are the dominant potential end-members, the estimated contribution of mangrove-derived carbon to benthic mineralization in the seagrass beds (16-74% corresponds fairly well to the estimated contribution of mangrove C to the sedimentary organic matter pool (21-71% across different seagrass sites. Based on these results and a compilation of literature data, we suggest that allochtonous carbon trapped in seagrass beds may often represent a significant fraction of the substrate for benthic mineralization - both in cases where seagrass C dominates the sediment TOC pool and in cases where external inputs are significant. Hence, it is likely that community respiration data systematically overestimate the role of mineralization in the overall seagrass C budget.

  14. The Radiological Hygienic Assessment of the Sources of Utility and Drinking Water Supply for the Population of Khakasia Republic

    Directory of Open Access Journals (Sweden)

    E. A. Pivovarova

    2016-01-01

    Full Text Available The article is aimed at the hygienic assessment of the sources of utility and drinking water for the Khakasia population regarding radiation protection indicators. The results. Annually over 50% of studied water samples of the utility and drinking water sources for the republic’s population do not comply with the regulatory requirements on specific total alpha –activity ( Aa. This value in the samples varies from 0.03 to 5 Bq/kg. Water samples of utility and drinking water supply sources with the exceedance of limit levels on Alfa – activity were pinpointed in Sorsk, Prigorsk, Verhnyaya Sogra water intake ( Abakan , Ordzhonikidze, Shirinsk, Bogradsk, Ust’ –Abakan, Altaisk, Beisk, Toshtypsk, Askizsk districts of the republic. For Betaactivity the exceedances of limit levels were not found. High alpha-activity levels are attributed to the natural radionuclides 238U and 234U. On the annual basis water samples from utility and drinking water supply sources display the growing amount of intervention level exceedances on 222Rn. The radon-222 specific activity in the samples varies from 6.0 to 170 Bq/kg. The ratio of the sum of natural radionuclides’ specific activities’ ratios to the corresponding intervention levels is below 1.0 in Ordzhenikidzevsk, Bogradsk, Ust’-Abakan, Shirinsk, Toshtypsk, Askizsk districts, Sorsk town, Prigorsk township, Verkhnaya Sogra water intake ( Abakan . This means that radiological protection measures are not necessary for those territories in present time. In Beisk and Altaisk districts of the republic, the sum of natural radionuclides’ specific activities’ ratios to the corresponding intervention levels is above 1.0 (the values are in the range of 1.02 – 1.2 . The average annual individual effective doses for population internal exposure from drinking water natural radionuclides in Khakasia Republic exceed twofold the average levels across Russia. In Beisk and Altaisk districts, the

  15. Sources of black carbon to the Himalayan–Tibetan Plateau glaciers

    Science.gov (United States)

    Li, Chaoliu; Bosch, Carme; Kang, Shichang; Andersson, August; Chen, Pengfei; Zhang, Qianggong; Cong, Zhiyuan; Chen, Bing; Qin, Dahe; Gustafsson, Örjan

    2016-01-01

    Combustion-derived black carbon (BC) aerosols accelerate glacier melting in the Himalayas and in Tibet (the Third Pole (TP)), thereby limiting the sustainable freshwater supplies for billions of people. However, the sources of BC reaching the TP remain uncertain, hindering both process understanding and efficient mitigation. Here we present the source-diagnostic Δ14C/δ13C compositions of BC isolated from aerosol and snowpit samples in the TP. For the Himalayas, we found equal contributions from fossil fuel (46±11%) and biomass (54±11%) combustion, consistent with BC source fingerprints from the Indo-Gangetic Plain, whereas BC in the remote northern TP predominantly derives from fossil fuel combustion (66±16%), consistent with Chinese sources. The fossil fuel contributions to BC in the snowpits of the inner TP are lower (30±10%), implying contributions from internal Tibetan sources (for example, yak dung combustion). Constraints on BC sources facilitate improved modelling of climatic patterns, hydrological effects and provide guidance for effective mitigation actions. PMID:27552223

  16. BIODEGRADATION POTENTIALS OF AUTOMOBILE WORKSHOP SOIL MYCOFLORA ON FLOW STATION PETROLEUM SLUDGE WITH AN EXTRA CARBON SOURCE

    Directory of Open Access Journals (Sweden)

    Nosa Omoregbe Obayagbona

    2013-08-01

    Full Text Available The biodegradation potentials of soil mycobiota isolated from six auto mechanic workshops and a farmland in Benin City on flow station crude oil sludge was investigated. Serial dilution and pour plate methods were utilized in the isolation and enumeration of the fungal bioload of the soil samples. The heterotrophic fungal counts ranged from 0.2×103 cfu/g to 3.2×103 cfu/g .Twenty (20 fungal species were identified from the soil samples; Aspergillus flavus, Aspergillus terreus, Aspergillus fumigatus, Aspergillus versicolor, Emericella nidulans, Aspergillus tamarii, Aspergillus niger, Aspergillus sp., Moniliella sp., Pichia farinosa, Sporobolomyces sp., Candida sp., Rhodotorula sp., Curvularia sp., Mucor sp., Rhizopus stolonifer, Penicillium sp. , Penicillium sp.2, Penicillium italicum, and Penicillium chrysogenum. A. flavus and A. nidulans had the highest percentage prevalence (85.7%. Physicochemical analyses revealed that the soil samples were acidic (pH 5.81-6.40 and sandy (50.3%-64.8%. Turbidimeteric screening revealed that A. flavus, A. terrus, Aspergillus sp., Penicillium sp., consortium of yeasts and the filamentous fungal consortium were able to maximally utilize the sludge as the sole source of carbon and energy. The growth profile results obtained for A. flavus revealed a decrease in pH (6.34 – 5.06 and an increase in turbidity (38 FAU – 625 FAU during the 20 day incubation period. Amongst the growth profile cultures, A. flavuscaused the highest percentage reduction in the residual TPH (DRO content of the inoculated sludge (96%. Soils within the premises of automobile workshops can serve as a source of hydrocarbonclastic fungi.

  17. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    Science.gov (United States)

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20 g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20 g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35 g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4 g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21 g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids.

  18. INCOME AND ENERGY SOURCES AMONG AGRARIAN HOUSEHOLDS IN NIGERIA: IMPLICATIONS FOR LOW CARBON ENERGY DEVELOPMENT IN LESS DEVELOPED COUNTRIES

    Directory of Open Access Journals (Sweden)

    M. Mkpado

    2012-07-01

    Full Text Available Low-carbon power comes from sources that produce fewer greenhouse gases than do traditional means of power generation. It includes zero carbon power generation sources, such as wind power, solar power, geothermal power and (except for fuel preparation nuclear power, as well as sources with lower-level emissions such as natural and petroleum gas, and also technologies that prevent carbon dioxide from being emitted into the atmosphere, such as carbon capture and storage. This article correlated value of income from different sources to energy sources used by agrarian households in Nigeria and drew implications for low carbon development in Africa. It analysis included use of wind power for irrigation purposes, harnessing solar energy for lightening and possible cost implications. Secondary data were collected from Community Based Monitoring System Nigeria Project. Descriptive statistics, correlation and qualitative analysis were employed. The average annual income of agrarian households from different sources such as crop farming, livestock farming, petty trading, forest exploitation, remittance and labour per day was below the poverty line of $1 per day. The source of energy that had the highest number of significant correlation was electrical energy (low carbon electrical energy. It showed the possibility of pooling resources as farmers group to attract grants or equity financing to build wind mills for irrigation. The study recommended use of energy efficient bulbs to reduce CO2 emissions. This requires creating awareness among rural dwellers of the need to make such change.

  19. Carbon Isotopes of Methane in the Atlantic Realm: Links Between Background Station Data and Emission Source Regions

    Science.gov (United States)

    Lowry, D.; Fisher, R. E.; Lanoisellé, M.; Nisbet, E. G.

    2011-12-01

    Large networks of cavity ring-down spectroscopy (CRDS) instruments to measure mixing ratios of greenhouse gases are currently being developed in wealthier populated regions. However, many major natural source regions are remote from wealthy nations, and there are often great logistical obstacles to setting up and maintaining continuous monitoring of these sources. Thus flux assessments in many regions of the world rely on a few unequally spaced 'background' stations, plus satellite interpolation. This limited network can be supplemented to great effect by methane isotope data to identify emissions from different sources and their region of emission. Ideally both carbon and hydrogen isotope signatures are needed for maximum separation of source groups. However the more complex analytical procedure and larger sample requirements for D/H measurement mean that resources are currently better utilized for high-precision carbon isotope (δ13C) measurement of methane. In particular, NOAA maintains an invaluable isotopic measurement network. Since 2008 the greenhouse gas group at Royal Holloway and partners have been measuring methane in and around the Atlantic region, currently measuring mixing ratios by CRDS at Barra (Scotland), Ascension, and E. Falklands. In addition, regular flask sampling for δ13C of CH4 is underway at these sites, plus Cape Point, South Africa, and Ny-Alesund, Spitzbergen, supplemented by collection at Sable Island, Canada, and sampling campaigns on-board the British Antarctic Survey ship, RRS James Clark Ross, between 50°S and 80°N. Methane mixing ratio and δ13C, when combined with back trajectory analysis, help to identify sources over which the air masses have passed. While the South Atlantic shows little N-S variation in δ13C (predominantly -47.2 to -46.8%) it is punctuated by emission plumes from sources in South America and Africa, and although infrequently sampled, they can in some instances be compared with the isotopic characteristics

  20. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    Energy Technology Data Exchange (ETDEWEB)

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry, E-mail: ferry@fi.itb.ac.id; Abdullah, Mikrajuddin; Khairurrijal [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10 Bandung, Indonesia 40132 (Indonesia); Ogi, Takashi; Okuyama, Kikuo [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Japan 739-8527 (Japan)

    2015-04-16

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  1. Mineralization of Calcium Carbonate on Multifunctional Peptide Assembly Acting as Mineral Source Supplier and Template.

    Science.gov (United States)

    Murai, Kazuki; Kinoshita, Takatoshi; Nagata, Kenji; Higuchi, Masahiro

    2016-09-13

    Crystal phase and morphology of biominerals may be precisely regulated by controlled nucleation and selective crystal growth through biomineralization on organic templates such as a protein. We herein propose new control factors of selective crystal growth by the biomineralization process. In this study, a designed β-sheet Ac-VHVEVS-CONH2 peptide was used as a multifunctional template that acted as mineral source supplier and having crystal phase control ability of calcium carbonate (CaCO3) during a self-supplied mineralization. The peptides formed three-dimensional nanofiber networks composed of assembled bilayer β-sheets. The assembly hydrolyzed urea molecules to one carbonate anion and two ammonium cations owing to a charge relay effect between His and Ser residues under mild conditions. CaCO3 was selectively mineralized on the peptide assembly using the generated carbonate anions on the template. Morphology of the obtained CaCO3 was fiber-like structure, similar to that of the peptide template. The mineralized CaCO3 on the peptide template had aragonite phase. This implies that CaCO3 nuclei, generated using the carbonate anions produced by the hydrolysis of urea on the surface of the peptide assembly, preferentially grew into aragonite phase, the growth axis of which aligned parallel to the direction of the β-sheet fiber axis.

  2. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    Science.gov (United States)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  3. The Utilization of Waste Date Seed as Bio-Oil and Activated Carbon by Pyrolysis Process

    Directory of Open Access Journals (Sweden)

    Mohammad Uzzal Hossain Joardder

    2012-01-01

    Full Text Available The renovation of biomass waste in the form of date seed waste into activated carbon and biofuel by fixed bed pyrolysis reactor has been focused in this study to obtain gaseous, liquid, and solid products. The date seed in particle form is pyrolysed in an externally heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 400°C to 600°C. A maximum liquid yield of 50 wt.% and char of 30 wt.% are obtained at a reactor bed temperature of 500°C with a running time of 120 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived. Decolonization of 85–97% is recorded for the textile effluent and 75–90% for the tannery effluent, in all cases decreasing with temperature increase. Good adsorption capacity of the prepared activated carbon in case of diluted textile and tannery effluent was found.

  4. Contribution of various carbon sources toward isoprene synthesis mediated by altered atmospheric CO2 concentrations

    Science.gov (United States)

    Trowbridge, A. M.; Asensio, D.; Eller, A. S.; Wilkinson, M. J.; Schnitzler, J.; Jackson, R. B.; Monson, R. K.

    2010-12-01

    Biogenically released isoprene is abundant in the troposphere, and has an essential function in determining atmospheric chemistry and important implications for plant metabolism. As a result, considerable effort has been made to understand the underlying mechanisms driving isoprene synthesis, particularly in the context of a rapidly changing environment. Recently, a number of studies have focused on the contribution of recently assimilated carbon as opposed to stored/alternative intracellular or extracellular carbon sources in the context of environmental stress. Results from these studies can offer clues about the importance of various carbon pools for isoprene production and elucidate the corresponding physiological changes that are responsible for these dynamic shifts in carbon allocation. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of the incorporation of recently assimilated photosynthate into isoprene emitted from poplar (Poplar x canescens) under sub-ambient, ambient, and elevated CO2 growth conditions. We also monitored the importance of pyruvate-derived carbon for isoprene biosynthesis and obtained a detailed account of where individual carbons are derived from by analyzing the ratio of the 3C subunit of isoprene (M41+) (a fragment which contains two carbons from pyruvate) to the ratio of the parent isoprene molecule (M69+). Dynamics in the M41+:M69+ ratio indicate that recently assimilated carbon is incorporated into the pyruvate carbon pool slowly across all CO2 treatments and is therefore accessible for isoprene synthesis at a slower rate when compared to substrates derived directly from photosynthesis. Analysis of the rates of change for individual masses indicated that the carbon pools in trees grown in sub-ambient CO2 (200 ppm) are labeled ~2 times faster than those of trees grown in ambient or elevated CO2. Analysis of the total isoprene emission rates between treatments

  5. Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113

    Science.gov (United States)

    Gavrailov, Simeon; Ivanova, Viara

    2016-03-01

    The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.

  6. Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode

    Directory of Open Access Journals (Sweden)

    E. F. Shevchenko

    2014-01-01

    Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.

  7. Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime

    Science.gov (United States)

    Jeantet, A.; Chassagneux, Y.; Raynaud, C.; Roussignol, Ph.; Lauret, J. S.; Besga, B.; Estève, J.; Reichel, J.; Voisin, C.

    2016-06-01

    The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong emission enhancement corresponding to a Purcell factor of up to 5. At the same time, the emitted photons retain a strong sub-Poissonian statistics. By exploiting the cavity feeding effect on the phonon wings, we locked the emission of the nanotube at the cavity resonance frequency, which allowed us to tune the frequency over a 4 THz band while keeping an almost perfect antibunching. By choosing the nanotube diameter appropriately, this study paves the way to the development of carbon-based tunable single-photon sources in the telecom bands.

  8. Carbon Source Influences Population Heterogeneity In Pseudomonas Putida Kt2440 Biofilms

    DEFF Research Database (Denmark)

    Juel Christensen, Anne-Mette; Sternberg, Claus; Molin, Søren

    2015-01-01

    Introduction: Pseudomonas putida is well known as a potential cell factory for many different biochemicals. Biofilm-based production can be advantageous for possibly toxic products due to increased chemical tolerance and robustness. Biofilm cells frequently differentiate, which challenges...... the benefits of biofilm-based production, and knowledge about factors driving the heterogeneity is therefore of importance.Methods: Biofilm flow chamber systems connected to confocal laser scanning microscopy were used to study biofilm structures of P. putida KT2440 at different carbon conditions. Subsequent...... plating of mature biofilm allowed for variant selection followed by pheno- and genotypic analysis.Results: Structure and cell differentiation in mature P. putida KT2440 biofilms were highly dependent on the type of carbon source utilised. Low glucose concentrations (0.3 mM – 10 mM) did not alter biofilm...

  9. Tempeh Waste as a Natural, Economical Carbon and Nutrient Source: ED-XRF and NCS Study

    Directory of Open Access Journals (Sweden)

    SITI KHODIJAH CHAERUN

    2009-09-01

    Full Text Available The purpose of this study was to determine the elemental composition of three types of waste from tempeh production. They are soybean hull “tempeh waste” after dehulling soybeans, tempeh wastewater after soaking dehulled soybeans in water for 24 h, and tempeh wastewater after boiling dehulled soybeans in water for 30 min. By using ED-XRF analyzer, it was revealed that tempeh waste contained Mg, Si, P, S, K, Ca, Mn, Fe, and Zn. The highest elemental content was K, followed by Ca, P, and Mg. NCS analysis showed that tempeh waste was composed of C, N, and S with C/N ratio of 11.20. The present study provides evidence that both tempeh waste and wastewater are rich in carbon and nutrient contents, thus their potential for both inorganic and organic nutrient and carbon sources for microbial growth in bioremediation or as natural NPK fertilizers is promising.

  10. BLACK Carbon Emissions from Diesel Sources in the Largest Arctic City: Case Study of Murmansk

    Science.gov (United States)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2014-12-01

    Russia has very little data on its black carbon (BC) emissions. Because Russia makes up such a large share of the Arctic, understanding Russian emissions will improve our understanding of overall BC levels, BC in the Arctic and the link between BC and climate change. This paper provides a detailed, bottom-up inventory of BC emissions from diesel sources in Murmansk, Russia, along with uncertainty estimates associated with these emissions. The research team developed a detailed data collection methodology. The methodology involves assessing the vehicle fleet and activity in Murmansk using traffic, parking lot and driver surveys combined with an existing database from a vehicle inspection station and statistical data. The team also assessed the most appropriate emission factors, drawing from both Russian and international inventory methodologies. The researchers also compared fuel consumption using statistical data and bottom-up fuel calculations. They then calculated emissions for on-road transportation, off-road transportation (including mines), diesel generators, fishing and other sources. The article also provides a preliminary assessment of Russia-wide emissions of black carbon from diesel sources.

  11. Production of bacterial cellulose using different carbon sources and culture media.

    Science.gov (United States)

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-01

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates.

  12. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    experiments performed in 5 liter bottles indicated that the denitrification rate can be instantaneously increased through the addition of either carbon source. The amount by which the rate was increased depended on the amount of carbon added. In the main experiments performed in a pilot scale alternating...

  13. Campylobacter jejuni carbon starvation protein A (CstA) is involved in peptide utilization, motility and agglutination, and has a role in stimulation of dendritic cells.

    Science.gov (United States)

    Rasmussen, J J; Vegge, C S; Frøkiær, H; Howlett, R M; Krogfelt, K A; Kelly, D J; Ingmer, H

    2013-08-01

    Campylobacter jejuni is the most frequent cause of severe gastroenteritis in the developed world. The major symptom of campylobacteriosis is inflammatory diarrhoea. The molecular mechanisms of this infection are poorly understood compared to those of less frequent disease-causing pathogens. In a previous study, we identified C. jejuni proteins that antibodies in human campylobacteriosis patients reacted with. One of the immunogenic proteins identified (Cj0917) displays homology to carbon starvation protein A (CstA) from Escherichia coli, where this protein is involved in the starvation response and peptide uptake. In contrast to many bacteria, C. jejuni relies on amino acids and organic acids for energy, but in vivo it is highly likely that peptides are also utilized, although their mechanisms of uptake are unknown. In this study, Biolog phenotype microarrays have been used to show that a ΔcstA mutant has a reduced ability to utilize a number of di- and tri-peptides as nitrogen sources. This phenotype was restored through genetic complementation, suggesting CstA is a peptide uptake system in C. jejuni. Furthermore, the ΔcstA mutant also displayed reduced motility and reduced agglutination compared to WT bacteria; these phenotypes were also restored through complementation. Murine dendritic cells exposed to UV-killed bacteria showed a reduced IL-12 production, but the same IL-10 response when encountering C. jejuni ΔcstA compared to the WT strain. The greater Th1 stimulation elicited by the WT as compared to ΔcstA mutant cells indicates an altered antigenic presentation on the surface, and thus an altered recognition of the mutant. Thus, we conclude that C. jejuni CstA is important not only for peptide utilization, but also it may influence host-pathogen interactions.

  14. Enhanced biological nutrient removal in modified carbon source division anaerobic anoxic oxic process with return activated sludge pre-concentration☆

    Institute of Scientific and Technical Information of China (English)

    Qin Lu; Haiyan Wu; Haoyan Li; Dianhai Yang

    2015-01-01

    A pilot-scale modified carbon source division anaerobic anoxic oxic (AAO) process with pre-concentration of returned activated sludge (RAS) was proposed in this study for the enhanced biological nutrient removal (BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60%and 50%, respectively, with an inner recycling ratio of 100%under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L−1 with a removal efficiency of 63%and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.

  15. Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I. (Univ. of Pittsburgh, PA); Heintz, Y.J. (Univ. of Pittsburgh, PA); Ilconich, J.B. (Parsons)

    2007-06-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  16. Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source.

    Directory of Open Access Journals (Sweden)

    Saori Kosono

    Full Text Available Lysine residues can be post-translationally modified by various acyl modifications in bacteria and eukarya. Here, we showed that two major acyl modifications, acetylation and succinylation, were changed in response to the carbon source in the Gram-positive model bacterium Bacillus subtilis. Acetylation was more common when the cells were grown on glucose, glycerol, or pyruvate, whereas succinylation was upregulated when the cells were grown on citrate, reflecting the metabolic states that preferentially produce acetyl-CoA and succinyl-CoA, respectively. To identify and quantify changes in acetylation and succinylation in response to the carbon source, we performed a stable isotope labeling by amino acids in cell culture (SILAC-based quantitative proteomic analysis of cells grown on glucose or citrate. We identified 629 acetylated proteins with 1355 unique acetylation sites and 204 succinylated proteins with 327 unique succinylation sites. Acetylation targeted different metabolic pathways under the two growth conditions: branched-chain amino acid biosynthesis and purine metabolism in glucose and the citrate cycle in citrate. Succinylation preferentially targeted the citrate cycle in citrate. Acetylation and succinylation mostly targeted different lysine residues and showed a preference for different residues surrounding the modification sites, suggesting that the two modifications may depend on different factors such as characteristics of acyl-group donors, molecular environment of the lysine substrate, and/or the modifying enzymes. Changes in acetylation and succinylation were observed in proteins involved in central carbon metabolism and in components of the transcription and translation machineries, such as RNA polymerase and the ribosome. Mutations that modulate protein acylation affected B. subtilis growth. A mutation in acetate kinase (ackA increased the global acetylation level, suggesting that acetyl phosphate-dependent acetylation is

  17. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    Science.gov (United States)

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz.

  18. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region.

    Science.gov (United States)

    Moşneag, Silvia C; Popescu, Violeta; Dinescu, Adrian; Borodi, George

    2013-01-01

    The level of nitrates from groundwater from Cluj County and other areas from Romania have increased values, exceeding or getting close to the allowed limit values, putting in danger human and animal heath. In this study we used granular activated carbon adsorbent (GAC) for nitrate (NO(-)3) removal for the production of drinking water from groundwater of the Cluj county. The influences of the contact time, nitrate initial concentration, and adsorbent concentration have been studied. We determined the equilibrium adsorption capacity of GAC, used for NO(-)3 removal and we applied the Langmuir and Freundlich isotherm models. Ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, X ray diffraction (XRD), Scanning Electron Microscopy (SEM) were used for process characterization. We also determined: pH, conductivity, Total Dissolved Solids and Total Hardness. The GAC adsorbents have excellent capacities of removing nitrate from groundwater from Cluj County areas.

  19. Utilization of activated carbon for the removal of basic dyes in fixed-bed microcolumn

    Energy Technology Data Exchange (ETDEWEB)

    El Qada, Emad N. [Department of Chemical Engineering Technology, Yanbu Industrial College, Yanbu, P.O. Box 30346 (Saudi Arabia); Abdelghany, Emad A.; Magdy, Yehia H. [Chemical Eng. Dept., Faculty of Eng., Minia University, Minia, P.O. Box 61519 (Egypt)

    2013-07-01

    Liquid-phase adsorption processes were performed using basic dyes (methylene blue (MB), basic red (BR) and basic yellow (BY)) in an activated carbon microcolumn. The effects of initial dye concentration, column diameter and particle size were investigated. The performance of the fixed-bed adsorber was evaluated through the concept of breakthrough curves. The Thomas model was employed to predict the breakthrough curves and compared with the experimental breakthrough curves. Furthermore, the Empty Bed Residence Time (EBRT) has been applied to the data to determine the minimum residence time and the minimum adsorbent exhaustion rate. Column studies showed effective use of adsorbents. The results reflected the significance of the experimental parameters on the efficient removal of basic dyes from aqueous solution. The Thomas model predicts the experimental data well.

  20. Carbon and nitrogen substrate utilization by archival Salmonella typhimurium LT2 cells

    Directory of Open Access Journals (Sweden)

    Edwards Kelly K

    2002-09-01

    Full Text Available Abstract Background A collection of over 20,000 Salmonella typhimurium LT2 mutants, sealed for four decades in agar stabs, is a unique resource for study of genetic and evolutionary changes. Previously, we reported extensive diversity among descendants including diversity in RpoS and catalase synthesis, diversity in genome size, protein content, and reversion from auxotrophy to prototrophy. Results Extensive and variable losses and a few gains of catabolic functions were observed by this standardized method. Thus, 95 catabolic reactions were scored in each of three plates in wells containing specific carbon and nitrogen substrates. Conclusion While the phenotype microarray did not reveal a distinct pattern of mutation among the archival isolates, the data did confirm that various isolates have used multiple strategies to survive in the archival environment. Data from the MacConkey plates verified the changes in carbohydrate metabolism observed in the Biolog™ system.

  1. Utility of 5A molecular sieves to measure carbon isotope ratios in lipid biomarkers.

    Science.gov (United States)

    Tolosa, Imma; Ogrinc, Nives

    2007-09-21

    A procedure using 5A zeolite sorption to separate cyclic/branched organic compounds from the linear ones was developed and carbon isotopic fractionation effects were investigated in different families of compounds, e.g. within the hydrocarbon and alcohol compounds. The 5A sieve has a pore size such that only linear components can be incorporated into the pores whereas the cyclic/branched compounds are remaining free in the organic solution. The sorbed compounds were released from the molecular sieve with HF and solvent extracted with hexane. The method enables the isolation of linear saturated classes, such as n-alkanes and n-fatty alcohols from branched/cyclic compounds without isotopic fractionation for compound-specific isotope analysis (CSIA) of delta(13)C. However, alkene hydrocarbons, sterols and some aromatics were completely or partly degraded with the molecular sieve.

  2. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  3. Differential utilization of allochthonous and autochthonous carbon by aquatic insects of two shrub-steppe desert spring-streams: A stable carbon isotope analysis and critique of the method

    Energy Technology Data Exchange (ETDEWEB)

    Mize, A.L. [Old Dominion Univ., Norfolk, VA (United States)

    1993-06-01

    The purpose of this study is to assess whether the carbon supporting stream food webs comes principally from terrestrial sources or is produced within the stream. Lacking data to resolve the allochthonous/autochthonous issue with any finality, stream ecologists have alternately postulated that stream carbon was principally autochthonous or principally allochthonous. Others argued that autochthonous and allochthonous carbon resources cannot be separated and that the allochthonous/autochthonous dependence issue is unresolvable. Many investigators have seized upon stable carbon isotopes technology as the tool to resolve the controversy. Unfortunately most investigators have conceded that the results are rarely quantitative and that the qualitative relationships are ambiguous. This study points out the fallacies of trying to conjure single isotopic values for either allochthonous or autochthonous carbon. It suggests that stable carbon isotope technology is not reliable in establishing specific consumer/food source relations and that it is not suitable for assessing allochthonous/autochthonous carbon dependence in freshwater streams.

  4. Radiocarbon-Based Source apportionment of Elemental Carbon Aerosols at Seoul, South Korea

    Science.gov (United States)

    Shakerian Ghahferrokhi, Farid; Ahn, Jinho; Czimczik, Claudia I.; Holden, Sandra; Park, JinSoo

    2016-04-01

    In this study, 10 samples of PM2.5 (aerosol particle with diameter less than 2.5 μm) were collected in the Northeast of Seoul (37.60o N, 127.05o E), South Korea, over 2-4 day periods in May and June of 2015 with a high volume air sampler. The samples were analyzed for their bulk carbon (TC) and nitrogen (N) elemental and stable isotope composition with EA-IRMS. Elemental carbon (EC) was quantified with the Swiss_4S protocol using a Sunset OC/EC analyzer. Both, TC and EC were analyzed for their radiocarbon (14C) content via accelerator mass spectrometry. The mass and isotopic composition of organic carbon (OC) was quantified by (isotope) mass balance. TC loads were 6.6 +/- 1.5 ug C m-3 air (ave. +/- sd; range 4.7-9.7), with a ∆14C ranging from 240 to -446 per mill and a δ13C of -25.4+/-0.3 per mill. EC was a minor fraction of TC (7.2+/-1.9% or 0.5+/-0.2 ug C m-3 air). EC was strongly depleted in 14C (∆14C = -915 to -819 per mill), with fossil sources accounting for 88+/-3% of EC (6.3+/-1.7% of TC). OC was enriched in 14C above natural levels (∆14C = -401 to 309 per mill), and thus could not be partitioned into fossil and modern sources. Local wind directions showed that air masses originated from the South, demonstrating that regional sources may be the crucial contributor to PM pollution in Seoul during that sampling period (early summer).

  5. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.

    Science.gov (United States)

    Uhde, Andreas; Youn, Jung-Won; Maeda, Tomoya; Clermont, Lina; Matano, Christian; Krämer, Reinhard; Wendisch, Volker F; Seibold, Gerd M; Marin, Kay

    2013-02-01

    Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTS(Glc) transport system to be responsible for glucosamine uptake in C. glutamicum. The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid L-lysine and the diamine putrescine from glucosamine was demonstrated.

  6. Influences of influent carbon source on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge.

    Science.gov (United States)

    Ye, Fenxia; Peng, Ge; Li, Ying

    2011-08-01

    It is necessary to understand the bioflocculation, settling and dewatering characteristics in the activated sludge process in order to establish more efficient operational strategies. The influences of carbon source on the extracellular polymeric substances (EPS) and flocculation, settling and dewatering properties of the activated sludge were investigated. Laboratory-scale completely mixed activated sludge processes were used to grow the activated sludge with different carbon sources of starch, glucose and sodium acetate. The sludge fed with acetate had highest loosely bound EPS (LB-EPS) and that fed with starch lowest. The amount of tightly bound EPS (TB-EPS), protein content in LB-EPS, polysaccharide content and protein contents in TB-EPS, were independent of the influent carbon source. The polysaccharide content in LB-EPS of the activated sludge fed with sodium acetate was lower slightly than those of starch and glucose. The sludge also had a nearly consistent flocs size and the sludge volume index (SVI) value. ESS content of the sludge fed with sodium acetate was higher initially, although it was similar to those fed with glucose and starch finally. However, the specific resistance to filtration and normalized capillary suction time fluctuated first, but finally were stable at around 5.0×10(8)mkg(-1) and 3.5 s Lg(-1) SS, respectively. Only the protein content in LB-EPS weakly correlated with the flocs size and SVI of the activated sludge. But there was no correlation between any other EPS contents or components and the physicochemical properties of the activated sludge.

  7. Differences in carbon source utilisation by orchid mycorrhizal fungi from common and endangered species of Caladenia (Orchidaceae).

    Science.gov (United States)

    Mehra, S; Morrison, P D; Coates, F; Lawrie, A C

    2017-02-01

    Terrestrial orchids depend on orchid mycorrhizal fungi (OMF) as symbionts for their survival, growth and nutrition. The ability of OMF from endangered orchid species to compete for available resources with OMF from common species may affect the distribution, abundance and therefore conservation status of their orchid hosts. Eight symbiotically effective OMF from endangered and more common Caladenia species were tested for their ability to utilise complex insoluble and simple soluble carbon sources produced during litter degradation by growth with different carbon sources in liquid medium to measure the degree of OMF variation with host conservation status or taxonomy. On simple carbon sources, fungal growth was assessed by biomass. On insoluble substrates, ergosterol content was assessed using ultra-performance liquid chromatography (UPLC). The OMF grew on all natural materials and complex carbon sources, but produced the greatest biomass on xylan and starch and the least on bark and chitin. On simple carbon sources, the greatest OMF biomass was measured on most hexoses and disaccharides and the least on galactose and arabinose. Only some OMF used sucrose, the most common sugar in green plants, with possible implications for symbiosis. OMF from common orchids produced more ergosterol and biomass than those from endangered orchids in the Dilatata and Reticulata groups but not in the Patersonii and Finger orchids. This suggests that differences in carbon source utilisation may contribute to differences in the distribution of some orchids, if these differences are retained on site.

  8. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.

    Science.gov (United States)

    Kao, Chien-Ya; Chen, Tsai-Yu; Chang, Yu-Bin; Chiu, Tzai-Wen; Lin, Hsiun-Yu; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng

    2014-08-01

    The biomass and lipid productivity of Chlorella sp. MTF-15 cultivated using aeration with flue gases from a coke oven, hot stove or power plant in a steel plant of the China Steel Corporation in Taiwan were investigated. Using the flue gas from the coke oven, hot stove or power plant for cultivation, the microalgal strain obtained a maximum specific growth rate and lipid production of (0.827 d(-1), 0.688 g L(-1)), (0.762 d(-1), 0.961 g L(-1)), and (0.728 d(-1), 0.792 g L(-1)), respectively. This study demonstrated that Chlorella sp. MTF-15 could efficiently utilize the CO₂, NOX and SO₂ present in the different flue gases. The results also showed that the growth potential, lipid production and fatty acid composition of the microalgal strain were dependent on the composition of the flue gas and on the operating strategy deployed.

  9. Differential Utilization of Carbon Substrates by Bacteria and Fungi in Tundra Soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Bååth, Erland

    2009-01-01

    , the allocation decreased over time, indicating use of the storage products, whereas for vanillin incorporation into fungal NLFA increased during the incubation. In addition to providing information on functioning of the microbial communities in an arctic soil, our study showed that the combination of PLFA...... acid, glycine, starch, and vanillin, and the incorporation of 13C into different phospholipid fatty acids (PLFA; indicative of growth) and neutral lipid fatty acids (NLFA; indicative of fungal storage) was measured after 1 and 7 days. The use of 13C-labeled substrates allowed the addition of substrates...... that different groups of the microbial community were responsible for substrate utilization. The 13C-incorporation from the complex substrates (starch and vanillin) increased over time. There was significant allocation of 13C into the fungal NLFA, except for starch. For glucose, acetic acid, and glycine...

  10. Use of Cassava Peel as Carbon Source for Production of Amylolytic Enzymes by Aspergillus niveus

    OpenAIRE

    SILVA, Tony Marcio; ALARCON, Ricardo Fernandes; DAMASIO, Andre Ricardo de Lima; Michelin, Michele; Maller, Alexandre; Douglas C. Masui; TERENZI, Hector Francisco; Jorge, Joao Atilio; Polizeli, Maria de Lourdes T. M.

    2009-01-01

    Aspergillus niveus produced high levels of alpha-amylase and glucoamylase in submerged fermentation using the agricultural residue cassava peel as a carbon source. In static conditions, the amylase production was substantially greater than in the agitated condition. The optimized culture conditions were initially at pH 5.0, 35 degrees C during 48 hours. Amylolytic activity was still improved (50%) with a mixture of cassava peel and soluble starch in the proportion 1:1 (w/w). The crude extract...

  11. Xylanase Production from Trichoderma harzianum 1073 D3 with Alternative Carbon and Nitrogen Sources

    OpenAIRE

    Seyis,Isil; Aksoz, Nilufer

    2005-01-01

    The effect of some natural wastes (orange pomace, orange peel, lemon pomace, lemon peel, apple pomace, pear peel, banana peel, melon peel and hazelnut shell) on the production of xylanase from Trichoderma harzianum 1073 D3 has been studied and maximum activity has been observed on melon peel (26.5 U/mg of protein) followed by apple pomace and hazelnut shell. Also, molasses could be used as an additional carbon source as it decreased the production time approximately by 50 %. Finally, potentia...

  12. Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    Science.gov (United States)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-08-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a

  13. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Darrel [Mississippi State Univ., Mississippi State, MS (United States); Brown, Lewis [Mississippi State Univ., Mississippi State, MS (United States); Lynch, F. Leo [Mississippi State Univ., Mississippi State, MS (United States); Kirkland, Brenda L. [Mississippi State Univ., Mississippi State, MS (United States); Collins, Krystal M. [Mississippi State Univ., Mississippi State, MS (United States); Funderburk, William K. [Mississippi State Univ., Mississippi State, MS (United States)

    2010-12-31

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115°C (239°F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66°C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 μm diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly

  14. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells.

    Science.gov (United States)

    Croese, Elsemiek; Jeremiasse, Adriaan W; Marshall, Ian P G; Spormann, Alfred M; Euverink, Gert-Jan W; Geelhoed, Jeanine S; Stams, Alfons J M; Plugge, Caroline M

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2 synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design (large versus small) including electrode material and flow path and in carbon source provided at the cathode (bicarbonate or acetate). A hydrogenase gene-based DNA microarray (Hydrogenase Chip) was used to analyze hydrogenase genes present in the three large setups. The small setups showed dominant groups of Firmicutes and two of the large setups showed dominant groups of Proteobacteria and Bacteroidetes. The third large setup received acetate but no sulfate (no sulfur source). In this setup an almost pure culture of a Promicromonospora sp. developed. Most of the hydrogenase genes detected were coding for bidirectional Hox-type hydrogenases, which have shown to be involved in cytoplasmatic H2 production.

  15. The sources of atmospheric black carbon at a European gateway to the Arctic

    Science.gov (United States)

    Winiger, P.; Andersson, A.; Eckhardt, S.; Stohl, A.; Gustafsson, Ö.

    2016-09-01

    Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models--seeking to advise mitigation policy--are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, PArctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic.

  16. Xylanase Production from Trichoderma harzianum 1073 D3 with Alternative Carbon and Nitrogen Sources

    Directory of Open Access Journals (Sweden)

    Isil Seyis

    2005-01-01

    Full Text Available The effect of some natural wastes (orange pomace, orange peel, lemon pomace, lemon peel, apple pomace, pear peel, banana peel, melon peel and hazelnut shell on the production of xylanase from Trichoderma harzianum 1073 D3 has been studied and maximum activity has been observed on melon peel (26.5 U/mg of protein followed by apple pomace and hazelnut shell. Also, molasses could be used as an additional carbon source as it decreased the production time approximately by 50 %. Finally, potential alternatives of organic nitrogen source (cotton leaf and soybean residue wastes were analyzed and it was concluded that peptone could be replaced with these residues especially when economics of the process is the major objective.

  17. The forest as a historic source and sink for carbon dioxide; Skogen som historisk kaella respektive saenka foer koldioxid

    Energy Technology Data Exchange (ETDEWEB)

    Kander, A. [Lund Univ. (Sweden). Dept. of Economic History

    1996-06-01

    The aim of the present project is to quantify the changes in the growing stock of timber between 1800 and 1985 in order to find out under which periods and to what extent the forest has served as a source resp. sink for carbon dioxide. These data are compared to the carbon dioxide emissions from combustion of fossil fuels under the same period. Another goal of the project is to find the order of magnitude of the effect of other potential sinks and sources for carbon dioxide. 32 refs, 9 figs, 1 tab

  18. Linking microbial carbon utilization with microbially-derived soil organic matter

    Science.gov (United States)

    Kallenbach, Cynthia M.; Grandy, A. Stuart

    2014-05-01

    Soil microbial communities are fundamental to plant C turnover, as all C inputs eventually pass through the microbial biomass. In turn, there is increasing evidence that this biomass accumulates as a significant portion of stable soil organic matter (SOM) via physiochemical interactions with the soil matrix. However, when exploring SOM dynamics, these two processes are often regarded as discrete from one another, despite potentially important linkages between microbial C utilization and the fate of that biomass C as SOM. Specifically, if stable SOM is largely comprised of microbial products, we need to better understand the soil C inputs that influence microbial biomass production and microbial C allocation. Microbial physiology, such as microbial growth efficiency (MGE), growth rate and turnover have direct influences on microbial biomass production and are highly sensitive to resource quality. Therefore, the importance of resource quality on SOM accumulation may not necessarily be a function of resistance to decay but the degree to which it optimizes microbial biomass production. To examine the relationship between microbial C utilization and microbial contributions to SOM, an ongoing 15-mo incubation experiment was set up using artificial, initially C- and microbial-free soils. Soil microcosms were constructed by mixing sand with either kaolinite or montmorillonite clays followed with a natural soil microbial inoculum. For both soil mineral treatments, weekly additions of glucose, cellobiose, or syringol are carried out, with an additional treatment of plant leachate to serve as a reference. This simplified system allows us to determine 1) if, in absence of plant-derived C, chemically complex SOM similar to natural soils can accumulate through the production of microbial residues and 2) how differences in C utilization of simple substrates, varying in energy yields, influence the quantity and chemistry of newly formed SOM. Over the course of the incubation, MGE

  19. Carbon sources in the Beaufort Sea revealed by molecular lipid biomarkers and compound specific isotope analysis

    Science.gov (United States)

    Tolosa, I.; Fiorini, S.; Gasser, B.; Martín, J.; Miquel, J. C.

    2012-10-01

    Molecular lipid biomarkers (hydrocarbons, alcohols, sterols and fatty acids) and compound specific isotope analysis of suspended particulate organic matter (SPM) and surface sediments of the Mackenzie Shelf and slope (Southeast Beaufort Sea, Arctic Ocean), were studied in summer 2009. The concentrations of the molecular lipid markers, characteristic of known organic matter sources, were grouped and used as proxies to evaluate the relative importance of fresh algal, detrital algal, fossil, C3 terrestrial plants, bacterial and zooplankton material in the sedimentary organic matter (OM). Fossil and detrital algal contributions were the major fractions of the freshwater SPM from the Mackenzie River with ~34% each of the total molecular biomarkers. Fresh algal, C3 terrestrial, bacterial and zooplanktonic components represented much lower percentages, 17, 10, 4 and 80%) with a minor contribution of fossil and C3 terrestrial biomarkers. Characterization of the sediments revealed a major sink of refractory algal material mixed with some fresh algal material, fossil hydrocarbons and a small input of C3 terrestrial sources. In particular, the sediments from the shelf and at the mouth of the Amundsen Gulf presented the highest contribution of detrital algal material (60-75%) whereas those from the slope contained the highest proportion of fossil (40%) and C3 terrestrial plant material (10%). Overall, considering that the detrital algal material is marine derived, autochthonous sources contributed more than allochthonous sources to the OM lipid pool. Using the ratio of an allochthonous biomarker (normalized to total organic carbon, TOC) found in the sediments to those measured at the river mouth water, we estimated that the fraction of terrestrial material preserved in the sediments accounted for 30-40% of the total carbon in the inner shelf sediments, 17% in the outer shelf and Amundsen Gulf and up to 25% in the slope sediments.

  20. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating - A molecular dynamic study

    Science.gov (United States)

    Badjian, H.; Setoodeh, A. R.

    2017-02-01

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  1. Determination of Aspartame and Caffeine in Carbonated Beverages Utilizing Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Bergen, H. Robert, III; Benson, Linda M.; Naylor, Stephen

    2000-10-01

    Mass spectrometry has undergone considerable changes in the past decade. The advent of "soft ionization" techniques such as electrospray ionization (ESI) affords the direct analysis of very polar molecules without need for the complex inefficient derivatization procedures often required in GC-MS. These ionization techniques make possible the direct mass spectral analysis of polar nonvolatile molecules such as DNA and proteins, which previously were difficult or impossible to analyze by MS. Compounds that readily take on a charge (acids and bases) lend themselves to ESI-MS analysis, whereas compounds that do not readily accept a charge (e.g. sugars) are often not seen or are seen only as inefficient adducts (e.g., M+Na+). To gain exposure to this state-of-the-art analytical procedure, high school students utilize ESI-MS in an analysis of aspartame and caffeine. They dilute a beverage sample and inject the diluted sample into the ESI-MS. The lab is procedurally simple and the results clearly demonstrate the potential and limitations of ESI-coupled mass spectrometry. Depending upon the instructional goals, the outlined procedures can be used to quantify the content of caffeine and aspartame in beverages or to understand the capabilities of electrospray ionization.

  2. RNA-stable-isotope probing shows utilization of carbon from inulin by specific bacterial populations in the rat large bowel.

    Science.gov (United States)

    Tannock, Gerald W; Lawley, Blair; Munro, Karen; Sims, Ian M; Lee, Julian; Butts, Christine A; Roy, Nicole

    2014-04-01

    Knowledge of the trophisms that underpin bowel microbiota composition is required in order to understand its complex phylogeny and function. Stable-isotope ((13)C)-labeled inulin was added to the diet of rats on a single occasion in order to detect utilization of inulin-derived substrates by particular members of the cecal microbiota. Cecal digesta from Fibruline-inulin-fed rats was collected prior to (0 h) and at 6, 12, 18 and 24 h following provision of the [(13)C]inulin diet. RNA was extracted from these cecal specimens and fractionated in isopycnic buoyant density gradients in order to detect (13)C-labeled nucleic acid originating in bacterial cells that had metabolized the labeled dietary constituent. RNA extracted from specimens collected after provision of the labeled diet was more dense than 0-h RNA. Sequencing of 16S rRNA genes amplified from cDNA obtained from these fractions showed that Bacteroides uniformis, Blautia glucerasea, Clostridium indolis, and Bifidobacterium animalis were the main users of the (13)C-labeled substrate. Culture-based studies of strains of these bacterial species enabled trophisms associated with inulin and its hydrolysis products to be identified. B. uniformis utilized Fibruline-inulin for growth, whereas the other species used fructo-oligosaccharide and monosaccharides. Thus, RNA-stable-isotope probing (RNA-SIP) provided new information about the use of carbon from inulin in microbiota metabolism.

  3. Understanding sources of carbon from a coastal mangrove forest: Shark River - Everglades National Park

    Science.gov (United States)

    Palya, A. P.; Anderson, W. T.; Jaffe, R.; Swart, P. K.

    2012-12-01

    Tropical and subtropical estuaries, particularly those occupied by mangrove forests, sequester a large amount of carbon dioxide from the atmosphere to be stored in biomass and ultimately in sediments. However, a significant portion of this carbon is lost as dissolved organic carbon (DOC) exported to the ocean. Therefore, the processes that transform and transport DOC within estuarine systems are an important part of the global carbon cycle. Analysis of stable carbon isotopes can provide insight on carbon dynamics in these coastal environments. Although DOC is the largest pool of reduced carbon in the ocean, few measurements of δ13C-DOC have been made for marine waters. Low DOC:DIC ratios and interference from large halide concentrations make such measurements difficult, time consuming, and costly. We have developed an approach that allows for the simultaneous measurement of DOC and δ13C-DOC in marine waters. By coupling a carbon analyzer utilizing a wet chemical oxidation technique to a high sensitivity cavity ring down spectrometer (WCO-CRDS), we are able to analyze δ13C-DOC of marine waters with DOC concentrations as low as 3 ppm C. Our approach uses an ambient atmospheric CO2 CRDS system originally designed to measure at 300 ppm (pCO2) which is an order-of-magnitude more sensitive than standard CRDS systems. This method for seawater analysis was developed by maximizing both the sample and sodium persulfate reagent volumes used in the oxidation reaction, as well as increasing the sodium persulfate concentration. Additionally, we operate the WCO-CRDS system using ultra high purity nitrogen as a carrier gas to prevent the oxidation of halides which reduces damage to the machines. These parameters allow for complete oxidation of the DOC in the sample, which was confirmed using two DOC standards mixed in an artificial seawater with a salinity around 30 g/L, and produces a sufficient volume of CO2 for detection and measurement by the CRDS. This configuration

  4. Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Pham Minh, Doan, E-mail: doan.phamminh@mines-albi.fr [Universite de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09 (France); Lyczko, Nathalie; Sebei, Haroun; Nzihou, Ange [Universite de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09 (France); Sharrock, Patrick [Universite de Toulouse, SIMAD, IUT Paul Sabatier, Avenue Georges Pompidou, 81104 Castres (France)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Calcium hydroxyapatite was synthesized from CaCO{sub 3} and four orthophosphates. Black-Right-Pointing-Pointer Only H{sub 3}PO{sub 4} led to the complete precipitation of orthophosphate species. Black-Right-Pointing-Pointer H{sub 3}PO{sub 4} was also the most efficient for calcium dissolution. Black-Right-Pointing-Pointer Reaction pathway was dissolution-precipitation accompanied by agglomeration step. - Abstract: The synthesis of calcium hydroxyapatite (Ca-HA) starting from calcium carbonate and different orthophosphate sources, including orthophosphoric acid, potassium, sodium and ammonium dihydrogen orthophosphates, was investigated under ambient conditions. The reaction started with calcium carbonate dissolution in an acid medium, followed by rapid precipitation of calcium cations with orthophosphate species to form calcium phosphate based particles which were in the size range of 0.4-1 {mu}m. These particles then agglomerated into much larger ones, up to 350 {mu}m in diameter (aggregates). These aggregates possessed an unstable porous structure which was responsible for the porosity of the final products. The highest specific surface area and pore volume were obtained with potassium dihydrogen orthophosphate. On the other hand, orthophosphoric acid led to the highest dissolution of calcium carbonate and the complete precipitation of orthophosphate species. Under ambient conditions, calcium phosphate based solid products of low crystallinity were formed. Different intermediates were identified and a reaction pathway proposed.

  5. Depletion of CCS in a Candidate Warm-Carbon-Chain-Chemistry Source L483

    CERN Document Server

    Hirota, Tomoya; Yamamoto, Satoshi

    2010-01-01

    We have carried out an observation of the CCS ($J_{N}$=2$_{1}$-1$_{0}$) line with the VLA in its D-configuration toward a protostellar core L483 (IRAS~18140-0440). This is a candidate source of the newly found carbon-chain rich environment called "Warm-Carbon-Chain-Chemistry (WCCC)", according to the previous observations of carbon-chain molecules. The CCS distribution in L483 is found to consist of two clumps aligned in the northwest-southeast direction, well tracing the CCS ridge observed with the single-dish radio telescope. The most remarkable feature is that CCS is depleted at the core center. Such a CCS distribution with the central hole is consistent with those of previously observed prestellar and protostellar cores, but it is rather unexpected for L483. This is because the distribution of CS, which is usually similar to that of CCS, is centrally peaked. Our results imply that the CCS ($J_{N}$=2$_{1}$-1$_{0}$) line would selectively trace the outer cold envelope in the chemically less evolved phase th...

  6. Dynamic changes and driving factors analysis of carbon source and carbon sink in Shandong province%山东省碳源与碳汇的动态变化及驱动因子分析

    Institute of Scientific and Technical Information of China (English)

    肖玲; 赵先贵; 许华兴

    2013-01-01

    IPCC method was adopted to study the dynamic variation of carbon source and carbon sink in Shandong province. Conclusions are as follows; carbon source increased from 59 456. 08 × 104 t to 144 961. 60×104 t year by year in Shandong province from 2000 to 2010,with an annual growth rate of 13. 07%; Besides, carbon source per capita increased from 6. 61 t to 15.13 t. Carbon source per unit area increased form 37. 68 t/hm2 to 91. 86 t/hm2, and then carbon source per ten thousand Yuan GDP dropped from 3. 63 t to 2. 88 t, which showed continuous improvement of energy utilization. During the same period, carbon sink dropped from 4 519. 03×104 t to 4 230.18×104 t, decreased by 6. 4%. At the same time, carbon sink per capita fell from 0. 50 t to 0. 44 t,and carbon sink per unit area decreased from 2.86 t/hm2 to 2. 68 t/hm2. Because the carbon source is larger than the carbon sink, the net carbon source increased from 54 937. 05 × 104 t to 140 731. 42 × 104 t, reaching a growth rate of 156. 17%. Accordingly, the net carbon source per capita in Shandong province is 3-7 times higher than the goal of global climate change, as well as higher than the average of China, and yet a little lower than that of the United States only. Furthermore, the net carbon source per unit area is 31. 08~79. 63 times higher than the goal of global climate changes, too. The results show that it is a carbon sink from a view of overall external performance in Shandong province, facing a very difficult task of carbon emission reduction. In terms of the driving factors of continual carbon increased resource, it is mainly due to the high proportion of secondary industry in the industry structure, as well as the high carbon characteristics of industry system. Besides, high-carbon energy such as the coal accounts for a large proportion of energy consumption structure, making up another driving factor for continual carbon resource.%采用IPCC方法研究了山东省碳源与碳汇的

  7. Energy storage capability of the dye sensitized solar cells via utilization of highly porous carbon electrodes

    Science.gov (United States)

    Rahimi, Fatemeh; Takshi, Arash

    2016-09-01

    Dye sensitized solar cells (DSSCs) have shown promising results in the field of renewable energy owing to their low cost and portable features. In practical applications, their harvested energy could be stored in a supercapacitor once it exceeds the regular consumption. Various methods of manipulation of the active electrode have been examined to facilitate the energy storage of the system, whereas the counter electrode has always been known for its catalytic functionality and its contribution to the capacitive response of the device left a well-oriented study to be desired. In this work, the substitution of the platinum electrode with a specific porous electrode resulted in a supercapacitive behavior of the device. The photoactive electrode was fabricated using zinc oxide nanowires (ZnO) grown on a conductive transparent substrate with hydrothermal deposition method. The electrode was used to make a standard DSSC using a ruthenium dye, iodide/triiodide standard redox electrolyte, and a platinum counter electrode. The cyclic voltammetry (CV) study of the device showed a low capacitance with 350 mV open circuit voltage. Replacing the platinum counter electrode with a particularly designed porous paper-based carbon nanotube electrode resulted in a considerable difference in the CV response. A capacitive behavior was observed due to the large surface area of the counter electrode and the ZnO nanostructures on the photoactive electrode. Due to the large capacitance and relatively small photocurrent, the change in the open circuit voltage was limited. However, enhancement of the photocurrent could improve both the energy harvesting and charge storage in the device.

  8. Utilization of Activated Carbon for the Removal of Ni Metal from Industrial Liquid Waste

    Directory of Open Access Journals (Sweden)

    *1H. Tahir

    2014-06-01

    Full Text Available Environmental pollution caused by toxic metals seems to occur globally. Metal intoxicated wastewater can be challenging to health safety. The high concentration of pollutants is required to be removed before the discharge of wastewater into open waste streams. The present study relates the monitoring of heavy metals in the industrial waste coming from Shairshah, Lyari SITE industrial area and control sites selected from Clifton beach of Karachi (Pakistan. Concentrations of selected trace metals, Cr, Fe, Hg, Na, K, Cd, Pb, Ni, Zn, Mo, Mn and Cu were estimated by using Atomic Absorption Spectrophotometer, Flame Photometer and 200 Multi parameter Ion Specific Meter under standard analytical conditions. Statistical methods of relevance were applied to check the accuracy of the system. Selective removal of Ni metal from waste water was carried out by adsorption process using activated carbon prepared from agricultural waste. The effectiveness of the adsorption process has been tested under the optimized conditions of temperature, concentration, stay time and amount of adsorbent. Adsorption isotherm models like Freundlich and Langmuir were applied to determine the feasibility of process by finding the values oftheir respective constants. The R2 values show that Langmuir model was the best fitted adsorption model. The feasibility of adsorption process was determined by RL factor. Thermodynamic parameters such as free energy (ΔG˚, enthalpy (ΔH˚ and entropy (ΔS˚ of the system were calculated. The sorption free energy (Es was also estimated. The pHpzc of adsorbent was also estimated by adopting pH drift method. The percentage removal and distribution coefficient (KD values for Ni removal were also determined. The present system represents that Ni and other metals can be effectively removed by employing adsorption method using low cost natural adsorbents.

  9. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W.K.; Ganju, Neil Kamal; Pohlman, John; Suttles, Steven

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  10. Effect of Carbon Sources on the Catalytic Performance of Ni/β-Mo2C.

    Science.gov (United States)

    Zeng, Li-Zhen; Zhao, Shao-Fei; Li, Wei-Shan

    2015-06-01

    In this paper, Ni/β-Mo2C(S) and Ni/β-Mo2C(G) were prepared from solution-derived precursor with two different carbon sources (starch and glucose) and tested as anodic noble-metal-free catalysts in air-cathode microbial fuel cells (MFCs). The carburized catalyst samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the electrocatalyst towards the oxidation of several common microbial fermentation products (formate, lactate, and ethanol) was studied for MFC based on Klebsiella pneumoniae conditions. The composite MFC anodes were fabricated, and their catalytic behavior was investigated. With different carbon sources, the crystalline structure does not change and the crystallinity and surface area increase. The electrocatalytic experiments show that the Ni/β-Mo2C(G) gives the better bio- and electrocatalytic performance than Ni/β-Mo2C(S) due to its higher crystallinity and BET surface area.

  11. [Effects of mixed carbon sources on glucose oxidase production by recombinant Pichia pastoris].

    Science.gov (United States)

    Shen, Yina; Gu, Lei; Zhang, Juan; Chen, Jian; Du, Guocheng

    2013-07-01

    Glucose oxidase (GOD) is an important industrial enzyme with many potential applications. In order to increase the production and productivity of GOD by recombinant Pichia pastoris GS115, we investigated the feeding strategies of mixed carbon sources during induction phase, based on results of the optimization of initial cell and methanol concentration on GOD production. The optimal initial cell and methanol concentration were 100 g/L and 18 g/L. During induction phase, the mixed-carbon-sources strategies showed that glycerol, sorbitol or mannitol co-feeding with methanol could enhance GOD production. With mannitol co-feeding (20:1(W/W)), the maximum GOD production and maximum GOD productivity reached 711.3 U/mL and 4.60 U/(mL x h) after an induction period of 156 h. Compared to the control, the enhancements of GOD production and productivity were 66.3% and 67.9%, respectively. Meanwhile, we found an appropriate mannitol co-feeding strategy that would not inhibit the expression of promote. The activity of alcohol oxidase was 8.8 U/g, which was enhanced by 69.2% compared to the control (5.2 U/g). We can use the same optimization process to improve the production of other proteins from recombinant Pichia pastoris by changing the fermentation parameters.

  12. Influence of carbon source and temperature on the denitrifying phosphorus removal process

    Institute of Scientific and Technical Information of China (English)

    WANG Yayi; WANG Shuying; PENG Yongzhen; Zhu Guibing; LING Yunfang

    2007-01-01

    To supply the valuable operating parameters for the popular usage of the new denitrifying phosphors removal process,it is essential to study the dominant biochemical reactions and the characteristics of denitriflying phosphorus removing bacteria(DPB).Thus,parallel batch experiments using DPB sludge were carried out to assess the effect of substrates(sewage,HAc,and endogenous carbon source)on denitriflying dephosphorus removal efficiency in this study.The results showed that the initial specific phosphorus release rate increased with the high concentration of the short-chain volatile fatty acids ratio in the influent,and sufficient phosphorus was released by DPB.This improved the subsequent denitrification and phosphorus uptake efficiency.The specific endogenous denitrification mainly relies on the internal carbon source(PHB)stored by poly-P bacteria.Denitrifying phosphorus removing bacteria were very hungry when the internal PHB was consumed.Consequently,the specific endogenous denitrification rate was low and the phosphorus uptake did not happen.On the other hand,in the experiment,the denitrifying phosphorus removal performance under two temperature conditions(8-10℃ and 25-26℃)was also investigated and analyzed.It was found that the lower temperature decreased the specific phosphorus release and uptake rate,but did not inhibit the denitrifying phosphorus removal completely.Therefore,the negative influence of the low temperature on the overall phosphorus removal was not significant.

  13. Health effects of carbon-containing particulate matter: focus on sources and recent research program results.

    Science.gov (United States)

    Rohr, Annette; McDonald, Jacob

    2016-02-01

    Air pollution is a complex mixture of gas-, vapor-, and particulate-phase materials comprised of inorganic and organic species. Many of these components have been associated with adverse health effects in epidemiological and toxicological studies, including a broad spectrum of carbonaceous atmospheric components. This paper reviews recent literature on the health impacts of organic aerosols, with a focus on specific sources of organic material; it is not intended to be a comprehensive review of all the available literature. Specific emission sources reviewed include engine emissions, wood/biomass combustion emissions, biogenic emissions and secondary organic aerosol (SOA), resuspended road dust, tire and brake wear, and cooking emissions. In addition, recent findings from large toxicological and epidemiological research programs are reviewed in the context of organic PM, including SPHERES, NPACT, NERC, ACES, and TERESA. A review of the extant literature suggests that there are clear health impacts from emissions containing carbon-containing PM, but difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. More focused epidemiological and toxicological studies, including increased characterization of organic materials, would increase understanding of this issue.

  14. Castor oil as secondary carbon source for production of sophorolipids using Starmerella bombicola NRRL Y-17069.

    Science.gov (United States)

    Bajaj, Vinit Kamalkishor; Annapure, Uday S

    2015-01-01

    Sophorolipids (SLs), a prominent member of the biosurfactants family are produced in acidic and/or lactonic form by yeast Starmerella bombicola NRRL Y-17069 when grown on hydrophilic or hydrophobic or both carbon sources. In current study, ricinoleic acid rich castor oil (10%) was used as hydrophobic and glycerol (10%) was used as hydrophilic carbon source. The yields of 24.5 ± 0.25 g/l sophorolipids were analyzed by anthrone and HPLC method which further increased upto 40.24 ± 0.76 g/l sophorolipids using fed batch process at 5L fermenter level. The structures of sophorolipids synthesized on castor oil were elucidated by liquid chromatography-mass spectrometer (LC-MS), (13)C and (1)H NMR. The results indicated that the ricinoleic acid (RA) gets hydroxylated at ω-1 position but incorporated into sophorolipids through already available hydroxyl group at 12(th) position. It resulted in the production of a novel sophorolipids with hydroxyl fatty acid as side chain and has applications as surfactant for novel drug delivery, anti microbial agent, cosmetic ingredient and emulsifier.

  15. Antibacterial Activity of Culture Extracts of Penicillium chrysogenum PCL501: Effects of Carbon Sources

    Directory of Open Access Journals (Sweden)

    Blessing M. Onyegeme-Okerenta

    2009-05-01

    Full Text Available Penicillium chrysogenum PCL501 produced β-lactam antibiotics when fermented with different agro-wastes: cassava shavings, corncob, sawdust and sugarcane pulp. In vitro antibacterial activity of the culture extracts was tested against four clinical bacterial isolates, namely, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. All the culture extracts and standard drug (commercial Benzyl Penicillin inhibited the growth B. subtilis and E. coli; the potency varied with carbon source. Antibacterial activity of extracts from cultures containing cassava shavings and sugarcane pulp was comparable with that of the standard drug. The MIC against the susceptible organisms was 0.20mg/ml for the standard drug and ranged from 0.40 to 1.50mg/ml for the culture extracts. Neither the culture extracts nor the standard drug inhibited K. pneumoniae and P. aeruginosa; the bacterial strains produced β-lactamase enzymes. Cassava shavings and sugarcane pulp are indicated as suitable cheap carbon sources for the production of antibiotics by Penicillium chrysogenum PCL501.

  16. Thermal simulation experiment on the hydrocarbon regeneration of marine carbonate source rock

    Institute of Scientific and Technical Information of China (English)

    LI HuiLi; JIN ZhiJun; HE ZhiLiang; QIN JianZhong; SHAO ZhiBing

    2007-01-01

    Hydrocarbon regeneration of marine carbonate source rock was simulated with thermal experiments in a laboratory. The results reveal that hydrocarbon regeneration does not simply continue the primary hydrocarbon generation process, and that, for marine carbonate source rock, discontinuous hydrocarbon generation differs greatly from the continuous generation. Several different features of hydrocarbon regeneration were observed in the experiments. First, the liquid hydrocarbon generation peak was always observed no matter what the initial maturity of the sample was. Moreover, the maturity and the liquid hydrocarbon yield corresponding to the peak varied with the sample's initial maturity. Second, the hydrocarbon regeneration started earlier than the continuous one. In the experiments, the hydrocarbon could be re-generated when the sample maturity did not rise to any great extent. Third, the accumulative hydrocarbon-generating quantity during discontinuous generation was always more than that during continuous generation. And the hydrocarbon-generating quantity varied with the discontinuous generation history. Chemical kinetic analysis suggests that discontinuous hydrocarbon generation should not only be explained by the parallel reaction mechanism but also by the consecutive reaction mechanism which has been ignored in the traditional chemical kinetic model for continuous hydrocarbon generation.

  17. Growth kinetics and toxicity of Enterobacter cloacae grown on linear alkylbenzene sulfonate as sole carbon source.

    Science.gov (United States)

    Khleifat, Khaled M; Tarawneh, Khaled A; Ali Wedyan, Mohammad; Al-Tarawneh, Amjad A; Al Sharafa, Khalid

    2008-10-01

    A successful attempt was made to isolate linear alkylbenzene sulfonate (LAS)-degrading bacteria from soil irrigated with wastewater. The isolated bacteria were able to use LAS as sole carbon and energy source. Maximum growth rates on LAS reached only 0.27 h(-1). 16S-rRNA sequencing and fatty-acid analysis placed the bacteria in the genus Enterobacter cloacae. The growth curves of E. cloacae both in the presence of and the absence of LAS were monitored using measurements of optical density at 600 nm in two different media, nutrient broth and M9 minimal medium, and were modeled mathematically. Growth in NB fit the Riccati and Voltera models, indicating that LAS is not toxic to E. cloacae cells. However, growth of E. cloacae in LAS-containing MM fit the Riccati and Voltera models, whereas growth in LAS-free MM fit the Riccati model only. Furthermore, the kinetic data shown were modeled by Monod's, Andrew's, and Tessier's specific growth rate equations, coupled with the rate of consumption of different concentrations of LAS as sole carbon and energy source, and we determined that Andrew's model best fit these data adequately as a result of the cell-inhibitory effect.

  18. New utilization and recall of carbon dioxide in domestic and foreign countries; Saikin no naigai ni okeru tansan gas no riyo to kaishu

    Energy Technology Data Exchange (ETDEWEB)

    Hanada, M.

    1994-09-01

    This paper summarizes the utilization technologies and recovery of carbon dioxide. Carbon dioxide is manufactured from such inorganic materials as carbonates and cokes, and such organic materials as hydrocarbons and alcohols. Carbon dioxide used in refreshing beverages is manufactured by sulfuric acid decomposition of sodium bicarbonate or limestone, pyrolysis of carbonates, natural gushing, and alcohol fermentation. Sodium carbonate is obtained by using the Solvay process that uses NaCl, NH3 and CaCO3 as the raw materials, but CO2 from hydrocarbons is utilized recently. The sugar industry uses slaked lime and CO2 in cleaning raw sugar concentrates. Grain size, shape, and grain size distribution of the precipitated calcium carbonate light obtained from reaction of slaked lime and CO2 are affected by reaction temperatures and concentrations. This precipitated calcium carbonate light is used in rubber filling, paper manufacturing, and plastics. South Africa and other countries manufacture gypsum for cement by using limestone and sulfuric acid as the raw materials. The annual dispersion of CO2 from fossil fuel consumption amounts to 5.2 billion tons. Discussed as its reducing measures include fixation by sea algae, adsorption, absorption and clathration by zeolite and monoethanol amine. 8 refs., 2 figs., 6 tabs.

  19. The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review.

    Science.gov (United States)

    Heal, Mathew R

    2014-01-01

    Organic carbon (OC) and elemental carbon (EC) together constitute a substantial proportion of airborne particulate matter (PM). Insight into the sources of this major contributor to PM is important for policies to mitigate the impact of PM on human health and climate change. In recent years measurement of the abundance of the radioisotope of carbon ((14)C) in samples of PM by accelerator mass spectrometry has been used to help quantify the relative contributions from sources of fossil carbon and contemporary carbon. This review provides an introduction to the different sources of carbon within PM and the role of (14)C measurements, a description of the preparation of PM samples and of the instrumentation used to quantify (14)C, and a summary of the results and source apportionment methods reported in published studies since 2004. All studies report a sizable fraction of the carbonaceous PM as of non-fossil origin. Even for PM collected in urban locations, the proportions of non-fossil carbon generally exceed 30%; typically the proportion in urban background locations is around 40-60% depending on the local influence of biomass burning. Where values have been measured directly, proportions of non-fossil carbon in EC are lower than in OC, reflecting the greater contribution of fossil-fuel combustion to EC and the generally small sources of contemporary EC. Detailed source apportionment studies point to important contributions from biogenic-derived secondary OC, consistent with other evidence of a ubiquitous presence of heavily oxidized background secondary OC. The review concludes with some comments on current issues and future prospects, including progress towards compound-class and individual-compound-specific (14)C analyses.

  20. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks.

  1. Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method

    Science.gov (United States)

    Zencak, Zdenek; Elmquist, Marie; Gustafsson, Örjan

    To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal-optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BC CTO-375 concentration and the reported elemental carbon (EC) concentration measured by the "Speciation Trends Network—National Institute of Occupational Safety and Health" method (EC NIOSH) with BC CTO-375 of 0.054±0.002 g g -1 and EC NIOSH of 0.067±0.008 g g -1. In contrast, there was an average factor of ca. 20 difference between BC CTO-375 and EC NIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BC CTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the EC NIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BC CTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BC CTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BC CTO-375 in Stockholm was 70% and in the background area 88%.

  2. Assessing the potential of amino acid δ13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    Science.gov (United States)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-01-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles, and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing biosynthetic origin of amino acid carbon skeletons, based on natural occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions; and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results underscore that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e. isoleucine, lysine, leucine and tyrosine), bacterial derived amino acids ranged from 10-15% in the sediment layers from the last 5000 years to 35% during the last glacial period. The larger bacterial fractions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to

  3. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    OpenAIRE

    Natalie Christine Nakaten; Rafiqul Islam; Thomas Kempka

    2014-01-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high- calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production....

  4. Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources.

    Science.gov (United States)

    Wang, Ping; Zhang, Geng; Li, Zhichen; Sheng, Wangjian; Zhang, Yichi; Gu, Jiangjiang; Zheng, Xinsheng; Cao, Feifei

    2016-10-03

    Polybenzoxazine is used as a novel carbon and nitrogen source for coating LiFePO4 to obtain LiFePO4@nitrogen-doped carbon (LFP@NC) nanocomposites. The nitrogen-doped graphene-like carbon that is in situ coated on nanometer-sized LiFePO4 particles can effectively enhance the electrical conductivity and provide fast Li(+) transport paths. When used as a cathode material for lithium-ion batteries, the LFP@NC nanocomposite (88.4 wt % of LiFePO4) exhibits a favorable rate performance and stable cycling performance.

  5. Grazer traits, competition, and carbon sources to a headwater-stream food web.

    Science.gov (United States)

    McNeely, Camille; Finlay, Jacques C; Power, Mary E

    2007-02-01

    We investigated the effect of grazing by a dominant invertebrate grazer (the caddisfly Glossosoma penitum) on the energy sources used by other consumers in a headwater-stream food web. Stable isotope studies in small, forested streams in northern California have shown that G. penitum larvae derive most of their carbon from algae, despite low algal standing crops. We hypothesized that the caddisfly competes with other primary consumers (including mayflies) for algal food and increases their reliance on terrestrial detritus. Because Glossosoma are abundant and defended from predators by stone cases, their consumption of algal energy may reduce its transfer up the food chain. We removed Glossosoma (natural densities >1000 caddisflies/m2) from five approximately 4 m2) stream sections during the summer of 2000 and measured responses of algae, invertebrate primary consumers, and invertebrate predators. The treatment reduced Glossosoma biomass by 80-90%. We observed a doubling in chlorophyll a per area in sections with reduced Glossosoma abundance and aggregative increases in the biomass of undefended primary consumers. Heptageniid mayfly larvae consumed more algae (as measured by stable carbon isotope ratios and gut content analysis) in caddisfly removal plots at the end of the 60-day experiment, although not after one month. We did not see isotopic evidence of increased algal carbon in invertebrate predators, however. Patterns of caddisfly and mayfly diets in the surrounding watershed suggested that mayfly diets are variable and include algae and detrital carbon in variable proportions, but scraping caddisflies consume primarily algae. Caddisfly and mayfly diets are more similar in larger, more productive streams where the mayflies assimilate more algae. Isotopic analysis, in combination with measurements of macroinvertebrate abundance and biomass in unmanipulated plots, suggested that a substantial portion of the invertebrate community (>50% of biomass) was supported

  6. Game Analysis of Carbon Emission Reduction of China's Industrial Source%我国工业源碳减排的博弈分析

    Institute of Scientific and Technical Information of China (English)

    蒙瑞海

    2012-01-01

    significant role in carbon emission reduction of the industrial source, and achieve utility maximization; when the higher productivity gains of industrial source, the smaller cost of reduction row, the higher corporate image obtained by the reduction proceeds, and the higher degree of punishing not to reduce carbon emission, the probability of the industrial source selects to reduce carbon emission are all higher. Finally, based on the conclusions of this study, the paper puts forward policy recommendations to promote carbon emission reduction of industrial source, and in order to provide the reference of practical significance for the relevant departments.

  7. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    Science.gov (United States)

    Pohl, K.; Cantwell, M.; Herckes, P.; Lohmann, R.

    2013-11-01

    Black carbon (BC) is the highly carbonaceous byproduct of biomass burning and fossil fuel combustion with a composition ranging from thermally stable soot to less recalcitrant charcoal. Atmospheric particulate matter samples across the tropical Atlantic Ocean were quantified for BC using four different methods: chemothermal oxidation at 375 °C (CTO-375), pyrene fluorescence loss, thermal optical transmittance, and optical transmission attenuation. The highest BC concentrations were detected in the Caribbean Sea and off the African coast, with a regional average of 0.6 μg m-3 for both. The lowest average concentrations were measured off the coast of South America at 0.2 to 0.3 μg m-3. The thermally-based CTO-375 method generally detected lower BC concentrations than the other three methods. The ratio of soot-like BC, as defined by the CTO-375 method, relative to the broader BC combustion continuum, as defined by the pyrene fluorescence loss, was <1 for all regions except for the Caribbean, supporting that charcoal was an important fraction of the aerosol BC. Regions impacted by biomass burning emissions should utilize multiple methods to better apportion the BC concentrations and sources.

  8. Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source.

    Science.gov (United States)

    Bhatia, Shashi Kant; Lee, Bo-Rahm; Sathiyanarayanan, Ganesan; Song, Hun-Seok; Kim, Junyoung; Jeon, Jong-Min; Kim, Jung-Ho; Park, Sung-Hee; Yu, Ju-Hyun; Park, Kyungmoon; Yang, Yung-Hun

    2016-10-01

    In this study, a biosugar obtained from empty fruit bunch (EFB) of oil palm by hot water treatment and subsequent enzymatic saccharification was used for undecylprodigiosin production, using Streptomyces coelicolor. Furfural is a major inhibitor present in EFB hydrolysate (EFBH), having a minimum inhibitory concentration (MIC) of 1.9mM, and it reduces utilization of glucose (27%), xylose (59%), inhibits mycelium formation, and affects antibiotic production. Interestingly, furfural was found to be a good activator of undecylprodigiosin production in S. coelicolor, which enhanced undecylprodigiosin production by up to 52%. Optimization by mixture analysis resulted in a synthetic medium containing glucose:furfural:ACN:DMSO (1%, 2mM, 0.2% and 0.3%, respectively). Finally, S. coelicolor was cultured in a fermenter in minimal medium with EFBH as a carbon source and addition of the components described above. This yielded 4.2μg/mgdcw undecylprodigiosin, which was 3.2-fold higher compared to that in un-optimized medium.

  9. Effect of Inoculum Age, Carbon and Nitrogen Sources on the Production of Lipase by Candida Cylindracea 2031 in Batch Fermentation

    Directory of Open Access Journals (Sweden)

    I. M. Noor

    2006-06-01

    Full Text Available Production of extracellular lipase by Candida cylindracea DSMZ 2031  was studied in a seven liters batch bioreactor, using palm oil (PO, palmitic acid (PA, lauric acid (LA, olive oil (OO and cooking oil (CO as carbon source.   The effect of  carbon and nitrogen sources  were studied by measuring the lipase activity.  The maximum lipase activity was found to be 12.7 kLU on palm oil as carbon source, urea as nitrogen sources and at 36 h inoculum age. This was achieved at a temperature of 30o C, pH of 6.0, agitation speed of 500 rpm and aeration of 1vvm.

  10. Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon Bay, France) by carbon and nitrogen stable isotopes: importance of locally produced sources

    NARCIS (Netherlands)

    Riera, P.; Stal, L.J.; Nieuwenhuize, J.; Richard, P.; Blanchard, G.F.; Gentil, F.

    1999-01-01

    delta(13)C and delta(15)N were measured in benthic invertebrates and food sources collected in the salt marsh of the Aiguillon Bay, France. The results showed that, although Spartina anglica was dominant, this marine phanerogame did not contribute significantly to the carbon and nitrogen requirement

  11. Utilization of bio-degradable fermented tapioca to synthesized low toxicity of carbon nanotubes for drug delivery applications

    Science.gov (United States)

    Nurulhuda, I.; Poh, R.; Mazatulikhma, M. Z.; Salman, A. H. A.; Haseeb, A. K.; Rusop, M.

    2016-07-01

    Carbon nanotubes (CNT) have potential biomedical applications, and investigations are shifting towards the production of such nanotubes using renewable natural sources. CNTs were synthesized at various temperatures of 700, 750, 800, 850 and 900 °C, respectively, using a local fermented food known as "tapai ubi" or fermented tapioca as a precursor. The liquid part of this fermented food was heated separately at 80°C and channeled directly into the furnace system that employs the thermal chemical vapor deposition (CVD) method. Ferrocene, which was the catalyst was placed in furnace 1 in the thermal CVD process. The resulting CNTs produced from the process were studied using field emission scanning electron microscopy (FESEM) and raman spectroscopy. The FESEM images showed the growth morphology of the CNTs at the different temperatures employed. It was observed that the higher the synthesis temperature up to a point, the diameter of CNTs produced, after which the diameter increased. CNTs with helical structures were observed at 700 °C with a diameter range of 111 - 143 nm. A more straightened structure was observed at 750 °C with a diameter range of 59 - 121 nm. From 800 °C onwards, the diameters of the CNTs were less than 60 nm. Raman analysis revealed the present of D, G and G' peak were observed at 1227-1358, 1565-1582, and 2678-2695 cm-1, respectively. The highest degree of crystallity of the carbon nanotubes synthesized were obtained at 800 °C. The radial breathing mode (RBM) were in range between 212-220 and 279-292 cm-1. Carbon nanotubes also being functionalized with Polyethylene bis(amine) Mw2000 (PEG 2000-NH2) and showed highly cells viability compared to non-functionalized CNT. The nanotubes synthesized will be applied as drug delivery in future study.

  12. Effect of carbon source on the morphology and electrochemical performances of LiFePO4/C nanocomposites.

    Science.gov (United States)

    Liu, Shuxin; Wang, Haibin; Yin, Hengbo; Wang, Hong; He, Jichuan

    2014-03-01

    The carbon coated LiFePO4 (LiFePO4/C) nanocomposites materials were successfully synthesized by sol-gel method. The microstructure and morphology of LiFePO4/C nanocomposites were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results showed that the carbon layers decomposed by different dispersant and carbon source had different graphitization degree, and the sugar could decompose to form more graphite-like structure carbon. The carbon source and heat-treatment temperature had some effect on the particle size and morphology, the sample LFP-S700 synthesized by adding sugar as carbon source at 700 degrees C had smaller particle size, uniform size distribution and spherical shape. The electrochemical behavior of LiFePO4/C nanocomposites was analyzed using galvanostatic measurements and cyclic voltammetry (CV). The results showed that the sample LFP-S700 had higher discharge specific capacities, higher apparent lithium ion diffusion coefficient and lower charge transfer resistance. The excellent electrochemical performance of sample LFP-S700 could be attributed to its high graphitization degree of carbon, smaller particle size and uniform size distribution.

  13. Investigating the Vertical Distribution and Source Attribution of Black Carbon over the Pacific Ocean

    Science.gov (United States)

    Zhang, J.; Liu, J.; Ban-Weiss, G. A.; Tao, S.

    2014-12-01

    Long-range transport of black carbon (BC) aerosols to the Pacific Ocean can potentially play a significant role in changing the marine climate through influences on temperature and cloud profiles and the top-of-atmosphere and surface energy balance. Therefore, quantitatively understanding sources of BC over the Pacific, particularly at different altitudes, is of great importance. In this study, we simulate the transport of thirteen continental BC tracers with a variety of e-folding aging times (few hours to 1 month) using the global chemical transport model MOZART-4. We then optimize BC aging rate according to different source regions by constraining the vertical profile of BC concentrations to the HAIPER Polo-to-Pole Observations (HIPPO). We find that for all HIPPO deployments, a shorter BC aging timescale (less than half day) for tropical and mid-latitude tracers and a longer aging timescale (2-10 days) for high-latitude tracers (except summer) in most cases significantly reduces model biases. By comparing the source-receptor relationship between the optimized BC tracers over the Pacific, we find that during 2009-2011, East Asia contributes most to the BC loading over the Northern Pacific in all seasons except summer, while South American, African and Australian tracers dominate the BC loadings over the Southern Pacific. In addition, unlike other tracers, African BC is a dominant contributor over a larger area in the free troposphere versus the boundary layer. Our findings indicate that the aging rate of BC strongly depends on source location and season, which may significantly influence the contribution of different source regions to BC forcing over the Pacific Ocean.

  14. Study on the restitution coefficient of original total organic carbon for high mature marine source rocks

    Institute of Scientific and Technical Information of China (English)

    QIN Jianzhong; ZHENG Longju; Tenger

    2007-01-01

    On the basis of the results of hydropyrolysis simulations for about 90 different types of immature to mature source rocks selected from about 5 000 marine source rocks in China,along with the natural thermal evolution profiles,the following conclusions were obtained.(1) Total organic carbon (TOC) content of excellent marine source rocks does not change obviously when Ro<0.8% or Ro > 1.3%,and the residual TOC content is decreasing gradually with the maturity increase at 0.8% <Ro< 1.3%.(2) At the high-post mature stage (Ro > 1.3%),the decreased maximums of residual TOC content for the kerogen of sapropel (Ⅰ),Ⅱ1,and Ⅱ are usually 40%,32% and 24%,respectively,and their TOC restitution coefficient is,respectively,1.68,1.48 and 1.32.(3)Both the TOC decreasing amplitude and the restitution coefficient decrease gradually with the decrease of TOC content for the source rocks with low organic matter abundance (usually 0.3% < TOC < 1.0%).The TOC restitution coefficients are,respectively,1.20 and 1.0,when 0.3%<TOC<0.5% and TOC < 0.3%.(4) TOCres.of solid bitumen and shale with high organic matter abundance (TOC > 30%) also require no restitution at the high mature stage.Such kind of TOC restitution is further supported by the coincidence of the decrease of residual TOC with the decreasing of S1 + S2 and the increasing of hydrocarbon quantity during the experimental simulation of hydrocarbon generation and expulsion for marine source rocks (0.3%<TOC&<30%) in natural thermal evolution profiles.

  15. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China

    Science.gov (United States)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2014-02-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). However, this effect corresponds to only 2-10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.

  16. Distribution and sources of carbon, nitrogen, phosphorus and biogenic silica in the sediments of Chilika lagoon

    Indian Academy of Sciences (India)

    Sadaf Nazneen; N Janardhana Raju

    2017-02-01

    The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia’s largest brackish water lagoon. Surface and core sediments were collected from various locations of the Chilika lagoon and were analysed for grain-size distribution and major elements in order to understand their distribution and sources. Sand is the dominant fraction followed by silt+clay. Primary production within the lagoon, terrestrial input from river discharge and anthropogenic activities in the vicinity of the lagoon control the distribution of OC, TN, TP and BSi in the surface as well as in the core sediments. Low C/N ratios in the surface sediments (3.49–3.41) and cores (4–11.86) suggest that phytoplankton and macroalgae may be major contributors of organic matter (OM) in the lagoon. BSi is mainly associated with the mud fraction. Core C5 from Balugaon region shows the highest concentration of OC ranging from 0.58–2.34%, especially in the upper 30 cm, due to direct discharge of large amounts of untreated sewage into the lagoon. The study highlights that Chilika is a dynamic ecosystem with a large contribution of OM by autochthonous sources with some input from anthropogenic sources as well.

  17. Analysis of a carbon dioxide transcritical power cycle using a low temperature