WorldWideScience

Sample records for carbon source glucose

  1. New bioemulsifiers produced by Candida lipolytica using D-glucose and babassu oil as carbon sources

    Directory of Open Access Journals (Sweden)

    Vance-Harrop Mabel H.

    2003-01-01

    Full Text Available Candida lipolytica IA 1055 produced extracellular biosurfactants with emulsification activity by fermentation using babassu oil and D-glucose as carbon sources. Natural seawater diluted at 50% supplemented with urea, ammonium sulfate, and phosphate was used as economic basal medium. The best results were achieved with the YSW-B2 medium, which contained urea, ammonium sulfate, and babassu oil and with YSW-B3 medium, which contained urea, ammonium sulfate, phosphate, and babassu oil, kept under fed batch fermentation for 60 hours with 5% of babassu oil. For the two media, the maximum specific growth rates were 0.02 h-1 and 0.04 h-1; the generation times were 34.6 h-1 and 17.3 h-1, and the emulsification activities were 0.666 and 0.158 units, respectively. The molecules of these new bioemulsifiers were contituted of carbohydrates, proteins and lipids.

  2. [Effects of mixed carbon sources on glucose oxidase production by recombinant Pichia pastoris].

    Science.gov (United States)

    Shen, Yina; Gu, Lei; Zhang, Juan; Chen, Jian; Du, Guocheng

    2013-07-01

    Glucose oxidase (GOD) is an important industrial enzyme with many potential applications. In order to increase the production and productivity of GOD by recombinant Pichia pastoris GS115, we investigated the feeding strategies of mixed carbon sources during induction phase, based on results of the optimization of initial cell and methanol concentration on GOD production. The optimal initial cell and methanol concentration were 100 g/L and 18 g/L. During induction phase, the mixed-carbon-sources strategies showed that glycerol, sorbitol or mannitol co-feeding with methanol could enhance GOD production. With mannitol co-feeding (20:1(W/W)), the maximum GOD production and maximum GOD productivity reached 711.3 U/mL and 4.60 U/(mL x h) after an induction period of 156 h. Compared to the control, the enhancements of GOD production and productivity were 66.3% and 67.9%, respectively. Meanwhile, we found an appropriate mannitol co-feeding strategy that would not inhibit the expression of promote. The activity of alcohol oxidase was 8.8 U/g, which was enhanced by 69.2% compared to the control (5.2 U/g). We can use the same optimization process to improve the production of other proteins from recombinant Pichia pastoris by changing the fermentation parameters.

  3. Production of extracellular proteases by Mucor circinelloides using D-glucose as carbon source / substrate

    Directory of Open Access Journals (Sweden)

    Andrade Vânia Sousa

    2002-01-01

    Full Text Available Recently, some Mucorales species have been reported as protease producers. The production of extracellular proteases by Mucor circinelloides using glucose as substrate was studied. Experiments were carried out with different D-glucose concentrations (40, 60 and 80 g/L. Biomass, pH and protease activity were determined. Although biomass production had reached best yields for the medium containing D-glucose in a concentration of 80 g/L, the enzymatic production was higher when the substrate concentration was reduced to 40 g/L. The yield factor for product on cell growth and the yield factor for product on carbon substrate were higher when the microorganism grew in medium containing 40 g/L glucose. The kinetics parameters suggest that this strain seems to be promising as an alternative microorganism for protease production.

  4. Xylem-Transported Glucose as an Additional Carbon Source for Leaf Isoprene Formation in Quercus Robur L.

    Science.gov (United States)

    Graus, M.; Kreuzwieser, J.; Schnitzler, J.; Wisthaler, A.; Hansel, A.; Rennenberg, H.

    2003-04-01

    Isoprene is emitted from mature, photosynthesizing leaves of many plant species, particularly of trees. Current interest in understanding the biochemical and physiological mechanisms controlling isoprene formation is caused by the important role isoprene plays in atmospheric chemistry. Isoprene reacts with hydroxyl radicals (OH) thereby generating oxidizing agents such as ozone and organic peroxides. Ozone causes significant deterioration in air quality and can pose threats to human health therefore its control is a major goal in Europe and the United States. In recent years, much progress has been made in elucidating the pathways of isoprene biosynthesis. Nevertheless the regulatory mechanisms controlling isoprene emission are not completely understood. Light and temperature appear to be the main factors controlling short-term variations in isoprene emission. Exposure of plants to C-13 labeled carbon dioxide showed instantaneous assimilated carbon is the primary carbon source for isoprene formation. However, variations in diurnal and seasonal isoprene fluxes, which cannot be explained by temperature, light, and leaf development led to the suggestion that alternative carbon sources may exist contributing to isoprene emissions. The aim of the present study was to test whether xylem-transported carbohydrates act as additional sources for isoprene biosynthesis. For this purpose, [U-C-13] alpha-D-glucose was fed to photosynthesizing leaves via the xylem of Quercus robur L. seedlings and the incorporation of glucose derived C-13 into emitted isoprene was monitored in real time using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). A rapid incorporation of C-13 from xylem-fed glucose into single (mass 70) and double (mass 71) C-13 labeled isoprene molecules was observed after a lag phase of approximately 5 to 10 minutes. This incorporation was temperature dependent and was highest (up to 13% C-13 of total carbon emitted as isoprene) at the temperature optimum of

  5. Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources.

    Science.gov (United States)

    Xu, Ke; Xu, Ping

    2014-02-01

    L-Lactic acid is an important platform chemical, which ought to be produced under cost control to meet its huge demand. Cane molasses, a waste from sugar manufacturing processes, is hopeful to be utilized as a cheap carbon source for L-lactic acid fermentation. Considering that cane molasses contains nutrients and hazardous substances, efficient production of L-lactic acid was developed by using a co-feeding strategy based on the utilization of cane molasses/glucose carbon sources. Based on the medium optimization with response surface method, 168.3g/L L-lactic acid was obtained by a Bacillus coagulans strain H-1 after 78h fed-batch fermentation, with a productivity of 2.1g/Lh and a yield of 0.88g/g. Since cane molasses is a feasible carbon source, the co-feeding fermentation might be a promising alternative for the economical production of L-lactic acid. PMID:24333698

  6. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-10-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic

  7. Enhanced Biological Phosphorus Removal in Anaerobic/Aerobic Sequencing Batch Reactor Supplied with Glucose as Carbon Source

    Institute of Scientific and Technical Information of China (English)

    LIU Yanan; YU Shui-li; JING Guo-lin; ZHAO Bing-jie; GUO Si-yuan

    2005-01-01

    Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storing of poly-β-hydroxyalkanoate (PHA) during the anaerobic phase. Whereas, glycogen was soon built up followed by rapid consumption, at the same time, glucose was depleted rapidly. Based on the analysis of different fractions of phosphorus in activated sludge, the relative ratio of organically bound phosphorus in sludge changed at the end of anaerobic and aerobic phases. The ratios were 45.3% and51.8% respectively. This showed that the polyphosphate broke down during the anaerobic phase to supply part of energy for PHA synthesis. The reason why there was no phosphate release might be the biosorption effect of extracellular exopolymers (EPS). It was also proved by the analysis of EPS with scanning electron microscopy (SEM)combined with energy dispersive spectrometry (EDS). The phosphorus weight percentage of EPS at the end of anaerobic phase was 9.22%.

  8. Carbon Nanotube Yarn-Based Glucose Sensing Artificial Muscle.

    Science.gov (United States)

    Lee, Junghan; Ko, Sachan; Kwon, Cheong Hoon; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2016-04-01

    Boronic acid (BA), known to be a reversible glucose-sensing material, is conjugated to a nanogel (NG) derived from hyaluronic acid biopolymer and used as a guest material for a carbon multiwalled nanotube (MWNT) yarn. By exploiting the swelling/deswelling of the NG that originates from the internal anionic charge changes resulting from BA binding to glucose, a NG MWNT yarn artificial muscle is obtained that provides reversible torsional actuation that can be used for glucose sensing. This actuator shows a short response time and high sensitivity (in the 5-100 × 10(-3) m range) for monitoring changes in glucose concentration in physiological buffer, without using any additional auxiliary substances or an electrical power source. It may be possible to apply the glucose-sensing MWNT yarn muscles as implantable glucose sensors that automatically release drugs when needed or as an artificial pancreas. PMID:26929006

  9. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Murugesan, Senthilkumar [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg{sup -1} protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg{sup -1} protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg{sup -1} protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg{sup -1} protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg{sup -1} protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions.

  10. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhigang; Burugapalli, Krishna; Moussy, Francis [Brunel Institute for Bioengineering, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Song, Wenhui [Wolfson Centre for Materials Processing, Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Li Yali; Zhong Xiaohua, E-mail: wenhui.song@brunel.ac.uk [School of Materials Science and Engineering, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300073 (China)

    2010-04-23

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 {mu}m in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 deg. C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 {mu}M. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  11. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor.

    Science.gov (United States)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-23

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 microm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 degrees C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 microM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor. PMID:20348597

  12. Carbon Nanotubes Based Glucose Needle-type Biosensor

    OpenAIRE

    Hong Li; Yongquan Li; Minghao Sim; Wenjun Guan; Jinyan Jia

    2008-01-01

    A novel needle-type biosensor based on carbon nanotubes is reported. The biosensor was prepared by packing a mixture of multi-wall carbon nanotubes (MWCNTs), graphite powder and glucose oxidase (Gox) freeze-dried powder into a glass capillary of 0.5 mm inner diameter. The resulting amperometric biosensor was characterized electrochemically using amperometry in the presence of hydrogen peroxide and in the presence of glucose. The glucose biosensor sensitivity was influenced by the glucose oxid...

  13. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  14. The preparation of glucose uniformly labelled with carbon-14

    International Nuclear Information System (INIS)

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO2 produced from 14C-barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs

  15. Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring

    OpenAIRE

    Sun, Tai-ping; Shieh, Hsiu-Li; Ching, Congo Tak-Shing; Yao, Yan-Dong; Huang, Su-Hua; Liu, Chia-Ming; Liu, Wei-Hao; Chen, Chung-Yuan

    2010-01-01

    This study aims to develop an amperometric glucose biosensor, based on carbon nanotubes material for reverse iontophoresis, fabricated by immobilizing a mixture of glucose oxidase (GOD) and multiwalled carbon nanotubes (MWCNT) epoxy-composite, on a planar screen-printed carbon electrode. MWCNT was employed to ensure proper incorporation into the epoxy mixture and faster electron transfer between the GOD and the transducer. Results showed this biosensor possesses a low detection potential (+50...

  16. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Abhay; Hussain, Nighat; Tang, Chi [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Rusling, James [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032 (United States); School of Chemistry, National University of Ireland, Galway (Ireland)

    2009-10-15

    Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-L-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH{sub 2} under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell. (author)

  17. Carbon Nanotubes Based Glucose Needle-type Biosensor

    Directory of Open Access Journals (Sweden)

    Hong Li

    2008-03-01

    Full Text Available A novel needle-type biosensor based on carbon nanotubes is reported. Thebiosensor was prepared by packing a mixture of multi-wall carbon nanotubes (MWCNTs,graphite powder and glucose oxidase (Gox freeze-dried powder into a glass capillary of 0.5mm inner diameter. The resulting amperometric biosensor was characterizedelectrochemically using amperometry in the presence of hydrogen peroxide and in thepresence of glucose. The glucose biosensor sensitivity was influenced by the glucoseoxidase concentration within the MWCNTs mixture. The optimized glucose needle-typebiosensor displayed better sensitivity and stability, and a detected range of up to 20 mM.Based on its favorable stability, the needle biosensor was first time used in real-timemonitoring system as a kind of online glucose detector. The decay of current response isless than 10% after 24-hour continuous observation.

  18. Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring.

    Science.gov (United States)

    Sun, Tai-Ping; Shieh, Hsiu-Li; Ching, Congo Tak-Shing; Yao, Yan-Dong; Huang, Su-Hua; Liu, Chia-Ming; Liu, Wei-Hao; Chen, Chung-Yuan

    2010-01-01

    This study aims to develop an amperometric glucose biosensor, based on carbon nanotubes material for reverse iontophoresis, fabricated by immobilizing a mixture of glucose oxidase (GOD) and multiwalled carbon nanotubes (MWCNT) epoxy-composite, on a planar screen-printed carbon electrode. MWCNT was employed to ensure proper incorporation into the epoxy mixture and faster electron transfer between the GOD and the transducer. Results showed this biosensor possesses a low detection potential (+500 mV), good sensitivity (4 microA/mM) and an excellent linear response range (r(2) = 0.999; 0-4 mM) of glucose detection at +500 mV (versus Ag/AgCl). The response time of the biosensor was about 25 s. In addition, the biosensor could be used in conjunction with reverse iontophoresis technique. In an actual evaluation model, an excellent linear relationship (r(2) = 0.986) was found between the glucose concentration of the actual model and the biosensor's current response. Thus, a glucose biosensor based on carbon nanotube composites and incorporated with reverse iontophoresis function was developed. PMID:20517479

  19. Resolving the sources of plasma glucose excursions following a glucose tolerance test in the rat with deuterated water and [U-13C]glucose

    NARCIS (Netherlands)

    Delgado, T.C.; Barosa, C.; Nunes, P.M.; Cerdán, S.; Geraldes, C.F.G.C.; Jones, J.G.

    2012-01-01

    Sources of plasma glucose excursions (PGE) following a glucose tolerance test enriched with [U-(13)C]glucose and deuterated water were directly resolved by (13)C and (2)H Nuclear Magnetic Resonance spectroscopy analysis of plasma glucose and water enrichments in rat. Plasma water (2)H-enrichment att

  20. Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring

    Directory of Open Access Journals (Sweden)

    Tai-Ping Sun

    2010-05-01

    Full Text Available Tai-Ping Sun1,2,5, Hsiu-Li Shieh2, Congo Tak-Shing Ching1,2,5, Yan-Dong Yao3, Su-Hua Huang4, Chia-Ming Liu1, Wei-Hao Liu1, Chung-Yuan Chen21Graduate Institute of Biomedicine and Biomedical Technology, 2Department of Electrical Engineering, National Chi Nan University, Nantou, Taiwan, ROC; 3Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; 4Department of Biotechnology, Asia University, Taichung, Taiwan, ROC; 5These authors contributed equally to this workAbstract: This study aims to develop an amperometric glucose biosensor, based on carbon nanotubes material for reverse iontophoresis, fabricated by immobilizing a mixture of glucose oxidase (GOD and multiwalled carbon nanotubes (MWCNT epoxy-composite, on a planar screen-printed carbon electrode. MWCNT was employed to ensure proper incorporation into the epoxy mixture and faster electron transfer between the GOD and the transducer. Results showed this biosensor possesses a low detection potential (+500 mV, good sensitivity (4 μA/mM and an excellent linear response range (r2 = 0.999; 0–4 mM of glucose detection at +500 mV (versus Ag/AgCl. The response time of the biosensor was about 25 s. In addition, the biosensor could be used in conjunction with reverse iontophoresis technique. In an actual evaluation model, an excellent linear relationship (r2 = 0.986 was found between the glucose concentration of the actual model and the biosensor’s current response. Thus, a glucose biosensor based on carbon nanotube composites and incorporated with reverse iontophoresis function was developed.Keywords: amperometric, carbon nanotubes, glucose monitoring, biosensors, reverse iontophoresis

  1. Amperometric Glucose Biosensor Based on Self-Assembling Glucose Oxidase on Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Lin, Yuehe

    2006-01-01

    A flow injection amperometric glucose biosensor based on electrostatic self-assembling glucose oxidase (GOx) on a carbon nanotube (CNT)-modified glassy carbon transducer is described. GOx is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and a GOx layer. The unique sandwich-like layer structure (PDDA/GOx/PDDA/CNT) formed by self-assembling provides a favorable microenvironment to keep the bioactivity of GOx and to prevent enzyme molecule leakage. The direct electrochemistry behavior of GOx and electrocatalysis of H2O2 on the fabricated PDDA/GOx/PDDA/CNT electrode demonstrated that such a biosensor fabrication method preserves the activity of enzyme molecules and the mechanical and electrocatalytic properties of carbon nanotubes, enabling sensitive determination of glucose. Flow injection amperometric detection of glucose is carried out at -100 mV (vs Ag/AgCl) in 0.05 M phosphate buffer solution (pH 7.4) with wide linear response range of 15 uM- 6 mM and a detection limit of 7 uM. The PDDA/GOx/PDDA/CNT/GC biosensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and free of interference from other co-existing electroactive species. The present methods can be applied to assemble other enzyme molecules and biological molecules, such as antibody, antigen, and DNA, to the CNT surface for wide biosensor and bioassay applications.

  2. A glucose biosensor based on partially unzipped carbon nanotubes.

    Science.gov (United States)

    Hu, Huifang; Feng, Miao; Zhan, Hongbing

    2015-08-15

    An amperometric glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of partially unzipped carbon nanotubes (PUCNTs) modified glassy carbon electrode (GCE) has been successfully fabricated. PUCNTs were synthesized via a facile chemical oxidative etching CNTs and used as a novel immobilization matrix for GOD. The cyclic voltammetric result of the PUCNT/GOD/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.470V and a peak to peak separation of 37mV, revealing that the fast direct electron transfer between GOD and the electrode has been achieved. It is notable that the glucose determination has been achieved in mediator-free condition. The developed biosensor displayed satisfactory analytical performance toward glucose including high sensitivity (19.50μA mM(-1)cm(-2)), low apparent Michaelis-Menten (5.09mM), a wide linear range of 0-17mM, and also preventing the interference from ascorbic acid, uric acid and dopamine usually coexisting with glucose in human blood. In addition, the biosensor acquired excellent storage stabilities. This facile, fast, environment-friendly and economical preparation strategy of PUCNT-GOD may provide a new platform for the fabrication of biocompatible glucose biosensors and other types of biosensors. PMID:25966382

  3. Enhanced biological phosphorus removal with different carbon sources.

    Science.gov (United States)

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared. PMID:27087523

  4. Bioethanol from different Finnish agricultural carbon sources

    Energy Technology Data Exchange (ETDEWEB)

    Kautola, H.; Kymaelaeinen, M.; Tokeensuu, L.; Alatalo, T. (HAMK University of Applied Sciences, Degree Programme in Biotechnology and Food Engineering, Haemeenlinna (Finland)); Caerdenas, R. (Universidad Central del Ecuador, Facultad Ciencias Quimicas, Escuela de Quimica, Av. America. Ciudadela Universitaria, Quito (Ecuador)); Siukola, K.; Naesi, J. (Suomen Biojalostus Oy, Renko (Finland))

    2007-07-01

    Bioethanol in fuel and its domestic production has become a great issue in Finland during the last few years. There has been discussion about what kind of raw materials should be used and are there any local priorities. In the years 2004-2007 local farmers in Haem e , in southern part of Finland, started to find alternative use for sugar beet due to drastic reduction of domestic sugar production in the near future. This was also the start of the experimental studies on bi oethanol production. The aim of the study was to find out how the change of carbon source will effect on bi oethanol yield. The bioethanol production was studied in laboratory scale using carbon sources of saccharose, glucose, sugar beet juice, sugar beet mash and barley hydrolysates pretreated with amylases, (beta-glucanase and xylanase). The yeast used was Saccharomyces sp. The pre experiments were performed in 250 mL flasks to optimize carbon, nitrogen and salts contents in production medium, also comparing different carbon sources and mixtures. The production was then studied in a 30 liter fermenter running for 36 hours. The preliminary studies showed that barley hydrolysate gave the best result 2,4% in bioethanol concentration during the performed fermentations, and saccharose was the best substrate in shake flask fermentations with a 9,6% bioethanol concentration. (orig.)

  5. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    OpenAIRE

    Zhu, Z.; Song, W.; Burugapalli, K; Moussy, F; Li, Y-L; Zhong, X-H

    2010-01-01

    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 IOP Publishing Ltd. A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon...

  6. Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay.

    Science.gov (United States)

    Wang, Yinling; Liu, Lin; Li, Maoguo; Xu, Shudong; Gao, Feng

    2011-12-15

    Polydopamine (Pdop) has recently been shown to adsorb to a wide variety of surfaces and serves as an adhesion layer to immobilize biological molecules. In this work, the multifunctional carbon nanotube (CNT) composites were prepared though the oxidation of dopamine at room temperature and subsequent electroless silver deposition by mildly stirring. The stable immobilization and direct electron transfer of glucose oxidase were achieved on the composite film modified glassy carbon electrode. The resulting electrode gave a well-defined redox peaks with a formal potential of about -482 mV (vs. SCE) in pH 7.0 buffer. The electron transfer rate constant was estimated to be 3.6 s(-1), due to the combined contribution of Pdop, CNTs and Ag nanoparticles with the help of Nafion. Furthermore, the method for detecting of glucose was proposed based on the decrease of oxygen caused by the enzyme-catalyzed reaction between glucose oxidase (GOD) and glucose. The linear response to glucose ranging from 50.0 μM to 1.1 mM (R(2)=0.9958), with a calculated detection limit of 17.0 μM at a signal-to-noise ratio of 3. The low calculated apparent Michaelis-Menten constant (K(M)(app)) was 5.46 mM, implying the high enzymatic activity and affinity of immobilized GOD for glucose. It can reasonably be expected that this observation might hold true for other noble metal nanostructure-electroactive protein systems, providing a promising platform for the development of biosensors and biofuel cells. PMID:21959226

  7. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    Science.gov (United States)

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability. PMID:26114193

  8. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    Science.gov (United States)

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible. PMID:26215343

  9. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    Science.gov (United States)

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible.

  10. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  11. Carbon dots from tryptophan doped glucose for peroxynitrite sensing

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Eliana F.C. [CIQ-UP, Grupo de Ciências Biológicas e Bioanalíticas, Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal); CIQ-UP, Departamento de Química, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal); Esteves da Silva, Joaquim C.G. [CIQ-UP, Departamento de Química, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal); Leitão, João M.M., E-mail: jleitao@ff.uc.pt [CIQ-UP, Grupo de Ciências Biológicas e Bioanalíticas, Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal)

    2014-12-10

    Highlights: • Synthesis of tryptophan doped carbon dots. • Experimental design optimization of the tryptophan doped carbon dots synthesis. • Fluorescence sensing of peroxynitrite by tryptophan doped carbon dots. • Peroxynitrite quantification in serum samples by tryptophan doped carbon dots. - Abstract: Tryptophan doped carbon dots (Trp-CD) were microwave synthesized. The optimum conditions of synthesizing of the Trp-CD were established by response surface multivariate optimization methodologies and were the following: 2.5 g of glucose and 300 mg of tryptophan diluted in 15 mL of water exposed for 5 min to a microwave radiation of 700 W. Trp-CD have an average size of 20 nm, were fluorescent with a quantum yield of 12.4% and the presence of peroxynitrite anion (ONOO{sup −}) provokes quenching of the fluorescence. The evaluated analytical methodology for ONOO{sup −} detection shows a linear response range from 5 to 25 μM with a limit of detection of 1.5 μM and quantification of 4.9 μM. The capability of the ONOO{sup −} quantification was evaluated in standard solutions and in fortified serum samples.

  12. Influence of carbon source on alpha-amylase production by Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens

    2001-01-01

    The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol and acet......The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol...... on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha -amylase, whereas addition of small amounts of glucose resulted in alpha -amylase production. A possible induction by alpha -methyl-D-glucoside during growth on glucose was also investigated......, but this compound was not found to be a better inducer of alpha -amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer....

  13. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene.

    Science.gov (United States)

    Zhu, Zhigang; Garcia-Gancedo, Luis; Flewitt, Andrew J; Xie, Huaqing; Moussy, Francis; Milne, William I

    2012-01-01

    There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. PMID:22778628

  14. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene

    Directory of Open Access Journals (Sweden)

    William I. Milne

    2012-05-01

    Full Text Available There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area.

  15. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode.

    Science.gov (United States)

    Zhu, Liande; Yang, Ruilan; Zhai, Jiangli; Tian, Chunyuan

    2007-11-30

    A bienzymatic glucose biosensor was proposed for selective and sensitive detection of glucose. This mediatorless biosensor was made by simultaneous immobilization of glucose oxidase (GOD) and horseradish peroxidase (HRP) in an electropolymerized pyrrole (PPy) film on a single-wall carbon nanotubes (SWNT) coated electrode. The amperometric detection of glucose was assayed by potentiostating the bienzymatic electrode at -0.1 versus Ag/AgCl to reduce the enzymatically produced H(2)O(2) with minimal interference from the coexisting electroactive compounds. The single-wall carbon nanotubes, sandwiched between the enzyme loading polypyrrole (PPy) layer and the conducting substrate (gold electrode), could efficiently promote the direct electron transfer of HRP. Operational characteristics of the bienzymatic sensor, in terms of linear range, detection limit, sensitivity, selectivity and stability, were presented in detail. PMID:17764922

  16. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    OpenAIRE

    Pop, A.(National Institute for Physics and Nuclear Engineering, Bucharest, Romania); Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite electrode (Cu/CNT-epoxy) exhibited the highest sensitivity to glucose determination.

  17. Metal Ions Extraction with Glucose Derivatives as Chelating Reagents in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Guo Chen YANG; Hai Jian YANG

    2006-01-01

    A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-1-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr2+ and Pb2+ extraction in supercritical carbon dioxide.

  18. The Denitrifying Biological Phosphorus Removal Performance in Anaerobic/Anoxic Sequencing Batch Reactor: The Effect of Carbon Source

    OpenAIRE

    Gürtekin, Engin; Nusret ŞEKERDAĞ

    2015-01-01

    In this study, the effect of carbon source on denitrifying biological phosphorus removal performance in acetate and glucose fed two anaerobic/anoxic sequencinq batch reactor (SBR) was investigated. Glucose and acetate were used as the substrates. In acetate and glucose fed reactors, the COD (Chemical Oxygen Demand) removal efficiencies were 91,90% and PO4-P removal efficiencies were 87,51% respectively. These results shows that the phosphorus removal efficiency is lower in glucose fed reactor.

  19. Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes

    OpenAIRE

    Wenwei Tang; Lei Li; Lujun Wu; Jiemin Gong; Xinping Zeng

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good ...

  20. Photoamperometric flow injection analysis of glucose based on dehydrogenase modified quantum dots-carbon nanotube nanocomposite electrode.

    Science.gov (United States)

    Ertek, Bensu; Dilgin, Yusuf

    2016-12-01

    In this work, a core-shell quantum dot (QD, ZnS-CdS) was electrodeposited onto multiwalled carbon nanotube modified glassy carbon electrode (ZnS-CdS/MWCNT/GCE) and following glucose dehydrogenase (GDH) was immobilized onto QD modified electrode. The proposed electrode (GDH/ZnS-CdS/MWCNT/GCE) was effectively used for the photoelectrochemical biosensing of glucose in flow injection analysis (FIA) system using a home-made flow cell. Results from cyclic voltammetric and FI amperometric measurements have revealed that GDH/ZnS-CdS/MWCNT/GCE is capable of signaling photoelectrocatalytic activity toward NADH when the surface of enzyme modified electrode was irradiated with a light source (250W Halogen lamp). Thus, photoelectrochemical biosensing of glucose was monitored by recording current-time curve of enzymatically produced NADH at optimized conditions. The biosensor response was found linear over the range 0.010-2.0mM glucose with detection limits of 6.0 and 4.0μM for amperometric and photoamperometric methods, respectively. The relative standard deviations (n=5) for 0.5mM glucose were 5.8% and 3.8% for photoamperometric and amperometric results, respectively. The photoelectrochemical biosensor was successfully applied to the real samples. The results with this biosensor showed good selectivity, repeatability and sensitivity for monitoring glucose in amperometric and photoamperometric FIA studies. PMID:26944347

  1. A glucose biosensor using methyl viologen redox mediator on carbon film electrodes

    OpenAIRE

    Ghica, Mariana Emilia; Christopher M. A. Brett

    2005-01-01

    A new methyl viologen-mediated amperometric enzyme electrode sensitive to glucose has been developed using carbon film electrode substrates. Carbon film electrodes from resistors fabricated by pyrolytic deposition of carbon were modified by immobilization of glucose oxidase through cross-linking with glutaraldehyde in the presence of bovine serum albumin. The mediator, methyl viologen, was directly immobilised with the enzyme together with Nafion cation-exchange polymer. The electrochemistry ...

  2. Fabrication of functionalized carbon nanotube buckypaper electrodes for application in glucose biosensors.

    Science.gov (United States)

    Papa, Henry; Gaillard, Melissa; Gonzalez, Leon; Chatterjee, Jhunu

    2014-12-01

    A highly sensitive glucose detection method was developed using functionalized carbon nanotube buckypaper as a free standing electrode in an electrochemical biosensor. Glucose oxidase was immobilized onto various buckypaper samples in order to oxidize glucose resulting in a measureable current/voltage signal output of the biosensor. Cyclic voltammetry (CV) and amperometry were utilized to determine the sensitivity of these buckypaper electrodes. Sensors of three different types of buckypaper were prepared and compared. These modified buckypaper electrode-based sensors showed much higher sensitivity to glucose compared to other electrochemical glucose sensors. PMID:25587433

  3. Fabrication of Functionalized Carbon Nanotube Buckypaper Electrodes for Application in Glucose Biosensors

    Directory of Open Access Journals (Sweden)

    Henry Papa

    2014-11-01

    Full Text Available A highly sensitive glucose detection method was developed using functionalized carbon nanotube buckypaper as a free standing electrode in an electrochemical biosensor. Glucose oxidase was immobilized onto various buckypaper samples in order to oxidize glucose resulting in a measureable current/voltage signal output of the biosensor. Cyclic voltammetry (CV and amperometry were utilized to determine the sensitivity of these buckypaper electrodes. Sensors of three different types of buckypaper were prepared and compared. These modified buckypaper electrode-based sensors showed much higher sensitivity to glucose compared to other electrochemical glucose sensors.

  4. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    Science.gov (United States)

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices. PMID:27591654

  5. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination

    OpenAIRE

    Hanxu Ji; Feng Zhou; Jiangjiang Gu; Chen Shu; Kai Xi; Xudong Jia

    2016-01-01

    Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalyti...

  6. Fabrication of Functionalized Carbon Nanotube Buckypaper Electrodes for Application in Glucose Biosensors

    OpenAIRE

    Henry Papa; Melissa Gaillard; Leon Gonzalez; Jhunu Chatterjee

    2014-01-01

    A highly sensitive glucose detection method was developed using functionalized carbon nanotube buckypaper as a free standing electrode in an electrochemical biosensor. Glucose oxidase was immobilized onto various buckypaper samples in order to oxidize glucose resulting in a measureable current/voltage signal output of the biosensor. Cyclic voltammetry (CV) and amperometry were utilized to determine the sensitivity of these buckypaper electrodes. Sensors of three different types of buckypaper ...

  7. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    OpenAIRE

    Xueping Zhang; Dong Liu; Libo Li; Tianyan You

    2015-01-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve ...

  8. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    Science.gov (United States)

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose. PMID:26278169

  9. Immobilization and Characterization Of Glucose Oxidase on Single-Walled Carbon Nanotubes and Its Application to Sensing Glucose

    Institute of Scientific and Technical Information of China (English)

    LIU,Shu-Na; YIN,Ya-Jing; CAI,Chen-Xin

    2007-01-01

    The negatively charged(at pH 8.2)glucose oxidase(GOx,pl ca.4.2)was assembled onto the surface of single-walled carbon nanotubes(SWNT),which was covered(or wrapped)by a layer of positively charged polyelectrolyte poly(dimethyldiallylammonium chloride)(PDDA),via the electrostatic interaction forming GOx-PDDA-SWNT nanocomposites.Fourier transform infrared(FTIR),UV-Vis and electrochemical impedance spectroscopy (EIS)were used to characterize the growth processes of the nanocomposites.The results indicated that GOx retained its native secondary conformational structure after it was immobilized on the surface of PDDA-SWNT. A biosensor(Nation-GOx-PDDA-SWNT/GC)was developed by immobilization of GOx-PDDA-SWNT nanocomposites on the surface of glassy carbon(GC)electrode using Nation(5%)as a binder. The biosensor showed the electrocatalytic activity toward the oxidation of glucose under the presence of ferrocene monocarboxylic acid(FcM) as an electroactive mediator with a good stability,reproducibility and higher biological affinity.Under an optimal condition,the biosensor could be used to detection of glucose,presenting a typical characteristic of Michaelis-Menten kinetics with the apparent Michaelis-Menten constant of Kapp/M ca.4.5 mmol/L,with a linear range of the concentrafion of glucose from 0.5 to 5.5 mmol/L(with correlation coefficient of 0.999)and the detection Iimit of ca.83μmol/L(at a signal-to-noise ratio of 3). Thus the biosensor was useful in sensing the glucose concentration in serum since the normal glucose concentration in blood serum was around 4.6 mmol/L.The facile procedure of immobilizing GOx used in present work would promote the developments of electrochemical research for enzymes(proteins). biosensors,biofuel cells and other bioelectrochemical devices.

  10. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate.

    Science.gov (United States)

    Miao, Lei; Wang, Shuying; Li, Baikun; Cao, Tianhao; Zhang, Fangzhai; Wang, Zhong; Peng, Yongzhen

    2016-09-01

    Glycogen accumulating organisms (GAOs) capable of storing organic compounds as polyhydroxyalkanoate (PHA) have been used for endogenous denitritation (ED), but the effect of carbon sources type on nitrogen removal performance of GAOs treating landfill leachate is unclear. In this study, a successful ED system treating landfill leachate (COD/NH4(+)-N (C/N): 4) without external carbon source addition was applied. The mature leachate with C/N of 1 was used as the feeding base solution, with acetate, propionate, and glucose examined as the carbon sources, and their effects on yields and compositions of PHA produced by GAOs were determined and associated with nitrogen removal performance. In the case of sole carbon source, acetate was much easier to be stored than propionate and glucose, which led to a higher nitrogen removal efficiency. Glucose had the lowest amount of PHA storage and led to the lowest performance. In the case of composite carbon sources (two scenarios: acetate + propionate; acetate + propionate + glucose), GAOs stored sufficient PHA and exhibited similar nitrogen removal efficiencies. Moreover, type of carbon source influenced the compositions of PHA. The polyhydroxybutyrate (PHB) fraction in PHA was far more than polyhydroxyvalerate (PHV) in all tests. PHV was synthesized only when acetate existed in carbon source. The microbial diversity analysis revealed that Proteobacteria was the most abundant phylum. Among the 108 genera detected in this ED system, the genera responsible for denitritation were Thauera, Paracoccus, Ottowia and Comamonadaceae_unclassified, accounting for 46.21% of total bacteria. Especially, Paracoccus and Comamonadaceae_unclassified transformed the carbon source into PHA for denitritation, and carried out endogenous denitritation. PMID:27232984

  11. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    International Nuclear Information System (INIS)

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (Ks) of GOx at the hybrid biocomposite was calculated to be 11.22 s−1. The higher Ks value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination

  12. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming, E-mail: smchen78@ms15.hinet.net

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K{sub s}) of GOx at the hybrid biocomposite was calculated to be 11.22 s{sup −1}. The higher K{sub s} value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination.

  13. Screen-Printed Carbon Electrodes Modified by Rhodium Dioxide and Glucose Dehydrogenase

    OpenAIRE

    Vojtěch Polan; Jan Soukup; Karel Vytřas

    2011-01-01

    The described glucose biosensor is based on a screen-printed carbon electrode (SPCE) modified by rhodium dioxide, which functions as a mediator. The electrode is further modified by the enzyme glucose dehydrogenase, which is immobilized on the electrode's surface through electropolymerization with m-phenylenediamine. The enzyme biosensor was optimized and tested in model glucose samples. The biosensor showed a linear range of 500–5000 mg L−1 of glucose with a detection limit of 210 mg L−1 (es...

  14. At neutral pH the chronological lifespan of Hansenula polymorpha increases upon enhancing the carbon source concentrations

    OpenAIRE

    Adam Kawałek; van der Klei, Ida J

    2014-01-01

    Dietary restriction is generally assumed to increase the lifespan in most eukaryotes, including the simple model organism Saccharomyces cerevisiae. However, recent data questioned whether this phenomenon is indeed true for yeast. We studied the effect of reduction of the carbon source concentration on the chronological lifespan of the yeast Hansenula polymorpha using four different carbon sources. Our data indicate that reduction of the carbon source concentration has a negative (glucose, eth...

  15. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    International Nuclear Information System (INIS)

    Highlights: → Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. → In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. → Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. → The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. → Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (ks) and Michaelis-Menten constant (KM), of immobilized GOx were 1.50 x 10-12 mol cm-2, 9.2 ± 0.5 s-1 and 3.42(±0.2) m

  16. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@yahoo.com [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Department of Nanotechnology Engenering, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. > In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. > Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. > The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. > Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}), of immobilized GOx were 1.50 x 10{sup -12} mol cm{sup -2}, 9.2 {+-} 0.5 s{sup -1

  17. Screen-printed carbon electrodes modified by rhodium dioxide and glucose dehydrogenase.

    Science.gov (United States)

    Polan, Vojtěch; Soukup, Jan; Vytřas, Karel

    2011-01-01

    The described glucose biosensor is based on a screen-printed carbon electrode (SPCE) modified by rhodium dioxide, which functions as a mediator. The electrode is further modified by the enzyme glucose dehydrogenase, which is immobilized on the electrode's surface through electropolymerization with m-phenylenediamine. The enzyme biosensor was optimized and tested in model glucose samples. The biosensor showed a linear range of 500-5000 mg L(-1) of glucose with a detection limit of 210 mg L(-1) (established as 3σ) and response time of 39 s. When compared with similar glucose biosensors based on glucose oxidase, the main advantage is that neither ascorbic and uric acids nor paracetamol interfere measurements with this biosensor at selected potentials. PMID:21528113

  18. Carbon dot based non enzymatic approach for the detection and estimation of glucose in blood serum

    Science.gov (United States)

    Shanti Krishna, A.; Nair, Priya A.; Radhakumary, C.; Sreenivasan, K.

    2016-05-01

    In this study we generated a simple, reliable and selective approach based on carbon dots (CDs) and 4-cyanophenylboronic acid (CPBA) for blood glucose sensing. The methodology relies on the quenching of the emission of CDs by CPBA followed by its recovery by glucose. The system consisting of CDs and CPBA was characterised by Fourier transform infra red spectrum, transmissions electron microscopic, dynamic light scattering instrument, UV–visible and fluorescence techniques. The response of the probe, CD-BA in presence of different concentrations of glucose was assessed. Linear range was obtained for glucose concentrations ranging from 1 to 30 mM. Interferences by other saccharides and various biomolecules coexisting in blood serum were negligible. The chemo sensor thus developed has been successfully used for the estimation of glucose in human blood serum. The system being sensitive, efficient and easy to perform is a promising platform for blood glucose sensing.

  19. Screen-Printed Carbon Electrodes Modified by Rhodium Dioxide and Glucose Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Vojtěch Polan

    2010-01-01

    Full Text Available The described glucose biosensor is based on a screen-printed carbon electrode (SPCE modified by rhodium dioxide, which functions as a mediator. The electrode is further modified by the enzyme glucose dehydrogenase, which is immobilized on the electrode's surface through electropolymerization with m-phenylenediamine. The enzyme biosensor was optimized and tested in model glucose samples. The biosensor showed a linear range of 500–5000 mg L−1 of glucose with a detection limit of 210 mg L−1 (established as 3σ and response time of 39 s. When compared with similar glucose biosensors based on glucose oxidase, the main advantage is that neither ascorbic and uric acids nor paracetamol interfere measurements with this biosensor at selected potentials.

  20. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue [School of Chemical Engineering, University of Science and Technology LiaoNing, 185 Qianshan Middle Road, High-tech Zone, Anshan, LiaoNing, 114501 (China); Hasebe, Yasushi, E-mail: hasebe@sit.ac.jp [Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293 (Japan)

    2012-04-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H{sub 2}O{sub 2} flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is - 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 {+-} 0.32 {mu}A/{mu}M) with the limit detection of 9.4 {mu}M (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: Black-Right-Pointing-Pointer Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. Black-Right-Pointing-Pointer GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. Black-Right-Pointing-Pointer This flow biosensor enabled the determination of glucose in beverages and

  1. Enzyme precipitate coatings of glucose oxidase onto carbon paper for biofuel cell applications.

    Science.gov (United States)

    Fischback, Mike; Kwon, Ki Young; Lee, Inseon; Shin, Su Jeong; Park, Hyun Gyu; Kim, Byoung Chan; Kwon, Yongchai; Jung, Hee-Tae; Kim, Jungbae; Ha, Su

    2012-02-01

    Enzymatic biofuel cells (BFC) have a great potential as a small power source, but their practical applications are being hampered by short lifetime and low power density. This study describes the direct immobilization of glucose oxidase (GOx) onto the carbon paper in the form of highly stable and active enzyme precipitation coatings (EPCs), which can improve the lifetime and power density of BFCs. EPCs were fabricated directly onto the carbon paper via a three-step process: covalent attachment (CA), enzyme precipitation, and chemical crosslinking. GOx-immobilized carbon papers via the CA and EPC approaches were used as an enzyme anode and their electrochemical activities were tested under the BFC-operating mode. The BFCs with CA and EPC enzyme anodes produced the maximum power densities of 50 and 250 µW/cm(2) , respectively. The BFC with the EPC enzyme anode showed a stable current density output of >700 µA/cm(2) at 0.18 V under continuous operation for over 45 h. When a maple syrup was used as a fuel under ambient conditions, it also produced a stable current density of >10 µA/cm(2) at 0.18 V for over 25 h. It is anticipated that the direct immobilization of EPC on hierarchical-structured electrodes with a large surface area would further improve the power density of BFCs that can make their applications more feasible.

  2. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    NARCIS (Netherlands)

    Pop, A.; Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite

  3. Effect of carbon source on the denitrification in constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    LU Songliu; HU Hongying; SUN Yingxue; YANG Jia

    2009-01-01

    The constructed wetlands with different plants in removal of nitrate were investigated.The factors promoting the rates of denitrification including organic carbon, nitrate load, plants in wetlands, pH and water temperature in field were systematically investigated.The results showed that the additional carbon source (glucose) can remarkably improve the nitrate removal ability of the constructed wetland.It demonstrated that the nitrate removal rate can increase from 20% to more than 50% in the summer and from 10% to 30% in the winter, when the nitrate concentration was 30-40 mg/L, the retention time was 24 h and 25 mg/L dissolved organic carbon (DOC) was ploughed into the constructed wetland.However, the nitrite in the constructed wetland accumulated a litter with the supply of the additional carbon source in summer and winter, and it increased from 0.15 to 2 mg/L in the effluent.It was also found that the abilities of plant in adjusting pH and temperature can result in an increase of denitrification in wetlands, and the seasonal change may impact the denitrification.

  4. Carbon nanotubes/pentacyaneferrate-modified chitosan nanocomposites platforms for reagentless glucose biosensing.

    Science.gov (United States)

    Parra-Alfambra, A M; Casero, E; Ruiz, M A; Vázquez, L; Pariente, F; Lorenzo, E

    2011-08-01

    The design, characterization and applicability of a nanostructured biosensor platform are described. The biosensor is developed through the immobilization of three components: a polymeric chitosan network previously modified with a redox mediator (denoted as PCF-Pyr-Ch), an enzyme (glucose oxidase, chosen as a model) and carbon nanotubes onto a solid glassy carbon electrode (C). In order to assess the influence of the nanomaterial in the performance of the resulting analytical device, a second biosensor, free of carbon nanotubes, is developed. The characterization of both biosensing platforms was performed in aqueous phosphate buffer solutions using atomic force microscopy technique. In the presence of glucose, both systems exhibit a clear electrocatalytic activity, and glucose could be amperometrically determined at +0.35 V versus Ag/AgCl. The performance of both biosensors was evaluated in terms of sensitivity, detection limit and linear response range. Finally, the enhancement of the analytical response induced by the presence of carbon nanotubes was evaluated. PMID:21633839

  5. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and...... gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression...... on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression....

  6. Production of Medium Chain Length Polyhydroxyalkanoates by Pseudomonas mendocina 0806 from Related and Unrelated Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Pseudomonas mendocina strain 0806 isolated from oil-contaminated soil was found to produce medium chain length polyhydroxyalkanoates (mcl PHAs).The mcl PHAs consist of monomers with even numbers of carbon atoms such as hydroxyhexanoate (HHx or C6), hydroxyoctanoate (HO or C8), and/or hydroxydecanoate (HD or C10) as major compositions when the strain was grown on unrelated carbon sources such as glucose, citric acid and related carbon sources such as octanoate, myristic acid or oleic acid.While even and odd number hydroxyalkanoate (HA) monomers were synthesized when tridecanoic acid was used as carbon source.The molar ratio of carbon to nitrogen (RC/N) had strong effects on PHA compositions: the strain produced PHAs with 97%-99% (molar ratio) HD (C10) monomer when grown in a glucose ammonium sulfate medium of RC/N40.It was demonstrated that the molar ratio of HO/HD remained constant in the polymers synthesized from media containing a constant RC/N, regardless of the change of glucose concentration.Up to 3.6 g/L cell dry weight containing 45% (mass fraction) PHAs was produced by the strain grown for 48 h in a medium containing 25 g/L glucose with RC/N of 40.

  7. Analytical modeling of glucose biosensors based on carbon nanotubes

    OpenAIRE

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-01

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization...

  8. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Wenwei Tang

    Full Text Available A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1 cm(-2 and a low detection limit of 5 µM (S/N = 3, with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  9. Influence of various carbohydrate sources on postprandial glucose, insulin and NEFA concentrations in obese cats.

    Science.gov (United States)

    Mori, A; Ueda, K; Lee, P; Oda, H; Ishioka, K; Sako, T

    2016-01-01

    Carbohydrate is an important source of energy, which can significantly affect postprandial blood glucose and insulin levels in cats. In healthy animals, this is not a big concern; however, in obese and diabetic animals, this is an important detail. In the present study, the impact of four different carbohydrate sources (glucose, maltose, corn starch, and trehalose) on short-term post-prandial serum glucose, insulin, and non-esterified fatty acid (NEFA) concentrations was investigated with four obese cats. Each of the carbohydrate sources was added to a commercial wet food diet for feeding the animals. A significant difference was observed in postprandial glucose, insulin, and NEFA area under the curve (AUC) values between each carbohydrate source in obese cats. Furthermore, glucose and maltose induced the highest postprandial glucose and insulin AUC values, whereas trehalose induced the lowest postprandial glucose and insulin AUC value amongst all carbohydrate sources, respectively, in obese cats. However, trehalose has a higher risk of inducing side effects, such as diarrhea, as compared to other carbohydrate sources. As such, different carbohydrate sources appear to have a very significant impact on post-prandial glycemia and subsequent insulin requirement levels in obese cats. These results might be useful when selecting a prescription diet for obese or diabetic cats. In addition, maltose appears to be capable of inducing experimentally evoked postprandial hyperglycemia in obese cats, which may serve as a good tool for use to check the impact and effectiveness of newly developed oral hypoglycemic drugs or supplements for cats in future experiments. PMID:27487514

  10. TCA Cycle Turnover And Serum Glucose Sources By Automated Bayesian Analysis Of NMR Spectra

    Science.gov (United States)

    Merritt, Matthew E.; Burgess, Shawn; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig; Bretthorst, G. Larry

    2004-04-01

    Changes in sources of serum glucose are indicative of a variety of pathological metabolic states. It is possible to measure the sources of serum glucose by the administration of deuterated water to a subject followed by analysis of the 2H enrichment levels in glucose extracted from plasma from a single blood draw by 2H NMR. Markov Chain Monte Carlo simulations of the posterior probability densities may then be used to evaluate the contribution of glycogenolysis, glycerol, and the Kreb's cycle to serum glucose. Experiments with simulated NMR spectra show that in spectra with a S/N of 20 to 1, the resulting metabolic information may be evaluated with an accuracy of about 4 percent.

  11. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    Directory of Open Access Journals (Sweden)

    Sergi Abad

    2015-12-01

    Full Text Available Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1, biomass (0.7–0.8 g cells/g Substrate and product (0.14–0.15 g DHA/g cells yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.

  12. Electrochemical Performance of Glucose/Oxygen Biofuel Cells Based on Carbon Nanostructures.

    Science.gov (United States)

    Koo, Min-Hye; Das, Gautam; Yoon, Hyon Hee

    2016-03-01

    The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 μW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier. PMID:27455759

  13. Electrochemical Performance of Glucose/Oxygen Biofuel Cells Based on Carbon Nanostructures.

    Science.gov (United States)

    Koo, Min-Hye; Das, Gautam; Yoon, Hyon Hee

    2016-03-01

    The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 μW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier.

  14. Ligninolytic Activity of Ganoderma strains on Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    TYPUK ARTININGSIH

    2006-10-01

    Full Text Available Lignin is a phenylpropanoid polymers with only few carbon bonds might be hydrolized. Due to its complexity, lignin is particularly difficult to decompose. Ganoderma is one of white rot fungi capable of lignin degradation. The ligninolytic of several species Ganoderma growing under different carbon sources was studied under controlled conditions which P. chrysosporium was used as standard comparison.Three types of ligninolytic, namely LiP, MnP, and laccase were assessed quantitatively and qualitatively. Ratio between clear zone and diameter of fungal colony was used for measuring specific activity qualitatively.Four sspecies of Ganoderma showed positive ligninolytic qualitatively that G. lucidum KT2-32 gave the highest ligninolytic. Activity of LiP and MnP in different carbon sources was consistently resulted by G. lucidum KT2-32, while the highest activity of laccase was shown by G. ochrolaccatum SA2-14. Medium of Indulin AT affected production of protein extracellular and induced ligninolytic. Glucose, BMC, and pine sawdust did not affect the activity of ligninolytic. The specific activity of Ganoderma species was found to be higher than the one of P. chrysosporium.

  15. Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu Baoyan [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, Guangdong (China); Hou Shihua [School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, Guangdong (China); Yu Min; Qin Xia; Li, Sha [Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Chen Qiang [Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)], E-mail: qiangchen@nankai.edu.cn

    2009-01-01

    A novel amperometric glucose biosensor based on multilayer films containing chitosan, multi-wall carbon nanotubes (MWCNTs) and glucose oxidase (GOD) was developed. MWCNTs were solubilized in chitosan (Chit-MWCNTs) used to interact with GOD. Poly (allylamine) (PAA) and polyvinylsulfuric acid potassium salt (PVS) were alternately deposited on the cleaned Pt electrode surface ((PVS/PAA){sub 3}/Pt). The (PVS/PAA){sub 3}/Pt electrode was alternately immersed in Chit-MWCNTs and GOD to assemble different layers of multilayer films. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Micrographs of MWCNTs were obtained by scanning electron microscope, and properties of the resulting biosensors were measured by electrochemical measurements. Among the resulting biosensors, the biosensor based on eight layers of multilayer films was best. The resulting biosensor was able to efficiently monitor glucose, with the response time within 8 s, a detection limit of 21 {mu}M estimated at a signal-to-noise ratio of 3, a linear range of 1-10 mM, the sensitivity of 0.45 {mu}A/mM, and well stability. The study can provide a feasible simple approach on developing a new immobilization matrix for biosensors and surface functionalization.

  16. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression.

    OpenAIRE

    Ozcan, S; Dover, J; Rosenwald, A G; Wölfl, S; Johnston, M.

    1996-01-01

    Glucose is the preferred carbon source for most eukaryotic cells and has profound effects on many cellular functions. How cells sense glucose and transduce a signal into the cell is a fundamental, unanswered question. Here we describe evidence that two unusual glucose transporters in the yeast Saccharomyces cerevisiae serve as glucose sensors that generate an intracellular glucose signal. The Snf3p high-affinity glucose transporter appears to function as a low glucose sensor, since it is requ...

  17. Role of metabolite transporters in source-sink carbon allocation.

    Science.gov (United States)

    Ludewig, Frank; Flügge, Ulf-Ingo

    2013-01-01

    Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or - in combination with nitrogen - as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters. PMID:23847636

  18. Role of metabolite transporters in source-sink carbon allocation

    Directory of Open Access Journals (Sweden)

    Frank eLudewig

    2013-07-01

    Full Text Available Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g. roots, flowers, small leaves and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer.The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole.In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or - in combination with nitrogen - as protein in protein storage vacuoles and protein bodies.Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters.

  19. Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12 and Streptococcus thermophilus (W22

    Directory of Open Access Journals (Sweden)

    Zehra Nur Yuksekdag

    2008-06-01

    Full Text Available Exopolysaccharides (EPSs production was studied by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12 and Streptococcus thermophilus (W22 in the medium containing various carbon sources (glucose, fructose, sucrose or lactose. For all the strains, glucose was the most efficient carbon source and B3, G12 and W22 strains produced 211, 175 and 120 EPS mg/L respectively. Also, the influence of different concentrations of glucose (5,10,15,20,25,30 g/L on EPS production and growth was studied. The results indicated that EPS production and growth were stimulated by the high glucose concentration (30 g/L.

  20. Plain to point network reduced graphene oxide - activated carbon composites decorated with platinum nanoparticles for urine glucose detection

    OpenAIRE

    Mohammad Faruk Hossain; Jae Y. Park

    2016-01-01

    In this study, a hydrothermal technique was applied to synthesize glucose-treated reduced graphene oxide-activated carbon (GRGO/AC) composites. Platinum nanoparticles (PtNP) were electrochemically deposited on the modified GRGO/AC surface, and chitosan-glucose oxidase (Chit-GOx) composites and nafion were integrated onto the modified surface of the working electrode to prepare a highly sensitive glucose sensor. The fabricated biosensor exhibited a good amperometric response to glucose in the ...

  1. A glucose oxidase sensor based on screen-printed carbon electrodes modified by polypyrrole.

    Science.gov (United States)

    Xu, Hui; Li, Guang; Wu, Jieying; Wang, You; Liu, Jun

    2005-01-01

    A disposable amperometric biosensor for detecting blood glucose has been developed. The sensor is based on a screen-printed electrode prepared by electrochemical polymerization of pyrrole with glucose oxidase (GOD) and LiClO4 dopants. In citric acid buffer (pH5.0), GOD with negative charges is immobilized within electropositive polypyrrole matrices onto a carbon electrode surface. Afterward, the electron transfer mediator, potassium ferricyanide is immobilized by adsorption. Experimentally the compositions of pyrrole, LiClO4 and potassium ferricyanide are optimized. Amperometry is used for the determination of glucose concentration. Four microliters of glucose solution is needed for one test, and the response time of the sensor is 70s. The amperometric response of the enzyme electrode is linear in the range of 1-30 mM. PMID:17282595

  2. Ceramic Carbon/Polypyrrole Materials for the Construction of Bienzymatic Amperometric Biosensor for Glucose

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10-5 and 1.3×10-3 mol/L of glucose. The biosensor showed a good suppression of inter- ference and a negligible deviation in the amperometric detection.

  3. Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction

    Directory of Open Access Journals (Sweden)

    Mark R. Anderson

    2010-09-01

    Full Text Available In 1962, Clark and Lyons proposed incorporating the enzyme glucose oxidase in the construction of an electrochemical sensor for glucose in blood plasma. In their application, Clark and Lyons describe an electrode in which a membrane permeable to glucose traps a small volume of solution containing the enzyme adjacent to a pH electrode, and the presence of glucose is detected by the change in the electrode potential that occurs when glucose reacts with the enzyme in this volume of solution. Although described nearly 50 years ago, this seminal development provides the general structure for constructing electrochemical glucose sensors that is still used today. Despite the maturity of the field, new developments that explore solutions to the fundamental limitations of electrochemical glucose sensors continue to emerge. Here we discuss two developments of the last 15 years; confining the enzyme and a redox mediator to a very thin molecular films at electrode surfaces by electrostatic assembly, and the use of electrodes modified by carbon nanotubes (CNTs to leverage the electrocatalytic effect of the CNTs to reduce the oxidation overpotential of the electrode reaction or for the direct electron transport to the enzyme.

  4. Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Houcem Maaoui

    2016-10-01

    Full Text Available Perturbations in glucose homeostasis is critical for human health, as hyperglycemia (defining diabetes leads to premature death caused by macrovascular and microvascular complications. However, the simple and accurate detection of glucose in the blood at low cost remains a challenging task, although it is of great importance for the diagnosis and therapy of diabetic patients. In this work, carbon quantum dots decorated with copper oxide nanostructures (CQDs/Cu2O are prepared by a simple hydrothermal approach, and their potential for electrochemical non-enzymatic glucose sensing is evaluated. The proposed sensor exhibits excellent electrocatalytic activity towards glucose oxidation in alkaline solutions. The glucose sensor is characterized by a wide concentration range from 6 µM to 6 mM, a sensitivity of 2.9 ± 0.2 µA·µM−1·cm−2, and a detection limit of 6 µM at a signal-to-noise ratio S/N = 3. The sensors are successfully applied for glucose determination in human serum samples, demonstrating that the CQDs/Cu2O-based glucose sensor satisfies the requirements of complex sample detection with adapted potential for therapeutic diagnostics.

  5. The preparation of glucose uniformly labelled with carbon-14; Preparacion de glucosa uniformemente marcada con carbono-14

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M. D.; Suarez, C.; Rodrigo, M. E.

    1978-07-01

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO{sub 2} produced from 14{sup C}-barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs.

  6. Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes

    Science.gov (United States)

    Fujimagari, Yusuke; Nishioka, Yasushiro

    2015-12-01

    In this study, we fabricated a flexible and stretchable glucose-biofuel cell with wirings made of multi wall carbon nanotube (MWCNTs) on a polydimethylsiloxane substrate. The biofuel cell investigated consists of a porous carbon anode (area of 30 mm2) modified by glucose oxidase and ferrocene, and a cathode (area of 30 mm2) modified by bilirubin oxidase. The anode and the cathode were connected with the MWCNT wirings. The maximum power of 0.31 μW at 76.6 mV, which corresponds to a power density of 1.04 μW/cm2, was realized by immersing the biofuel cell in a phosphate buffer solution with a glucose concentration of 100 mM, at room temperature.

  7. Monitoring of Glucose in Beer Brewing by a Carbon Nanotubes Based Nylon Nanofibrous Biosensor

    Directory of Open Access Journals (Sweden)

    Marco Mason

    2016-01-01

    Full Text Available This work presents the design, preparation, and characterization of a novel glucose electrochemical biosensor based on the immobilization of glucose oxidase (GOX into a nylon nanofibrous membrane (NFM prepared by electrospinning and functionalized with multiwalled carbon nanotubes (CNT. A disc of such GOX/CNT/NFM membrane (40 μm in thickness was used for coating the surface of a glassy carbon electrode. The resulting biosensor was characterized by cyclic voltammetry and chronoamperometry, with ferrocene methanol as mediator. The binding of GOX around the CNT/NFM greatly enhances the electron transfer, which results in a biosensor with a current five times higher than without CNT. The potential usefulness of the proposed biosensor was demonstrated with the analysis of glucose in commercial beverages and along the monitoring of the brewing process for making beer, from the mashing to the fermentation steps.

  8. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01

    Institute of Scientific and Technical Information of China (English)

    QIAO Hongjin; WANG Guangce

    2009-01-01

    Heterotrophic culture of microalgae to develop methods of increasing biomass productivity and storage lipids has brought new insight to commercial biodiesel production. To understand the relationship between heterotrophy and lipid production, the effects of carbon sources on the growth and lipid accumulation of Chlorella sorokiniana GXNN01 was studied. The alga exhibited an increased growth rate in response to the addition of carbon sources, which reached the stationary phase after 48 h at 30°C. In addition, glucose and NaAc had a significant effect on the lipid accumulation during the early-stationary phase. Specifically, the lipid content was 0.237±0.026 g g~(-1) cell dry weight and 0.272±0.041 g L~(-1) when glucose was used as the carbon source, whereas the lipid content reached 0.287±0.018 g g~(-1) cell dry weight and 0.288±0.008 g L~(-1) when NaAc was used as the carbon source. The neutral lipid content was found to first decrease and then increase over time during the growth phase. A glucose concentration of 20 mmol L~(-1) gave the maximal lipid yield and the optimum harvest time was the early-stationary phase.

  9. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    Science.gov (United States)

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  10. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    Science.gov (United States)

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-05-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12-1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor.

  11. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors

    OpenAIRE

    Ghica, M. Emilia; Christopher M. A. Brett

    2014-01-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer...

  12. Graphene-coated carbon fiber cloth for flexible electrodes of glucose fuel cells

    Science.gov (United States)

    Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro

    2016-02-01

    In this work, we fabricated flexible electrodes for a miniaturized, simple structured, and flexible glucose biofuel cell (BFC) using a graphene-coated carbon fiber cloth (GCFC). The areas of the anode and cathode electrodes were 3 × 10 mm2. The anode area was coated with the enzyme glucose oxidase, and the cathode area was coated with the enzyme bilirubin oxidase. No ion-exchange film was needed because glucose oxidase selectively oxidizes glucose and bilirubin oxidase selectively reduces oxygen. The power density of the BFC with GCFC electrodes in a phosphate buffer solution of 200 mM glucose solution at room temperature was 34.3 µW/cm2 at 0.43 V. The power density of a BFC using carbon fiber cloth (CFC) without graphene modification was 18.5 µW/cm2 at 0.13 V. The BFC with the GCFC electrode continued to function longer than 24 h with a power density higher than 5 µW/cm2. These effects were attributed to the much larger effective surface areas of the GCFC electrodes that maintain more enzymes than those of the CFC electrodes.

  13. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination

    Directory of Open Access Journals (Sweden)

    Hanxu Ji

    2016-05-01

    Full Text Available Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O2. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors.

  14. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination.

    Science.gov (United States)

    Ji, Hanxu; Zhou, Feng; Gu, Jiangjiang; Shu, Chen; Xi, Kai; Jia, Xudong

    2016-01-01

    Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O₂. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors. PMID:27153071

  15. Graphene-Multiwalled Carbon Nanotube Hybrids Synthesized by Gamma Radiations: Application as a Glucose Sensor

    Directory of Open Access Journals (Sweden)

    Leila Shahriary

    2014-01-01

    Full Text Available Three-dimensional hybrid nanomaterial of graphene-multiwalled carbon nanotubes (G-MWCNTs was synthesized using gamma rays emitted by a 60Co source with a dose rate of 3.95 Gy min−1. The products were characterized by fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, photoluminescence (PL, and micro-Raman spectroscopy, X-ray diffraction analysis (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. FTIR and UV-Vis analysis reveals the formation of hybrid nanomaterial which is confirmed by XRD, micro-Raman analysis, and PL. SEM micrograph depicts the composite structure of graphene layers and MWCNTs, while the TEM micrograph exhibits graphene layers covered by MWCNTs. The G-MWCNTs hybrid used as electrode for electrochemical studies in K3Fe(CN6 shows enhancement in electrocatalytic behavior, compared to each individual starting material, therefore, has been applied for amperometric sensing of glucose in alkaline solution and exhibits sensitivity of 12.5 μAmM-1 cm−2 and low detection limit 1.45 μM (S/N=3 in a linear range of 0.1 to 14 mM (R2=0.985.

  16. Electrospun Fibres of Polyhydroxybutyrate Synthesized by Ralstonia eutropha from Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    Victor U. Irorere

    2014-01-01

    Full Text Available The properties of PHB may be affected by the carbon source used in its production and this may affect nanofibres made from this polymer by electrospinning. In this study, P(3-HB was produced from glucose, rapeseed oil, and olive oil by Ralstonia eutropha H16. Cell growth and polymer production were higher in olive or rapeseed oil supplemented media compared to glucose supplemented media. FT-IR, 1H-, 13C-NMR, and ESI/MSn confirmed that the synthesized polymers were P(3-HB. SEM micrograph showed the formation of nanofibres from P(3-HB samples with the fibre diameters dependent on the source of the carbon used in polymer synthesis and the concentration of the polymer in the electrospinning solution. GPC showed that P(3-HB from glucose (G-PHB had a higher molecular weight (7.35×105 gmol−1 compared to P(3-HB from rapeseed (R-PHB and olive (O-PHB oil. Differential scanning calorimetry (DSC showed that the crystallinity of the electrospun polymers reduces with decreasing polymer concentration with R-PHB having lower crystallinity at all concentrations used. These observation shows that more PHB yield can be obtained using either rapeseed or olive oil compared to glucose with glucose producing polymers of higher molecular weight. It also show that electrospinning could be used to reduce the crystallinity of PHB fibres.

  17. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    Science.gov (United States)

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. PMID:25939764

  18. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  19. Enhancement of Glucose Utilization in Provision of Carbon Skeletons for Ammonium Assimilation in Wheat Roots

    OpenAIRE

    Koga, Nobuhisa; Ikeda, Motoki

    2000-01-01

    In providing carbon skeletons to be expended for amide synthesis during ammonium assimilation, glucose utilization in roots was studied. The roots of young wheat plants grown without nitrogen for 3d and grown with 4 mM NO_3^- or NH_4^+ for 1d were fed with ^C-glucose for 3h in the presence of NO_3^- or NH_4^+, and the distribution of ^C-metabolites within the plants was examined. The NH_4^+ supply changed the distribution of ^C to a greater extent than the NO_3^- supply. In roots grown with N...

  20. Glucose Biosensor Based on Carbon/PVC-COOH/Ferrocene Composite with Covalently Immobilized Enzyme

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A carbon/PVC-COOH/ferrocene composite electrode used for the determination of glucose has been prepared. The ferrocene acted as mediator was incorporated into the PVC-COOH polymer and the leakage could be prevented. The presence of carboxyl groups on the electrode surface allowed immobilizing enzyme via EDC and NHS. The ratio of PVC-COOH to graphite powder (w/w) has been studied. Amperometric determination of glucose has been performed at potential of 0.30 V vs SCE. The response time was < 15 s. The linear response range was of 0.1-20 mmol/L with a detection limit of 48 μmol/L.

  1. New amperometric glucose biosensor by entrapping glucose oxidase into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film

    Institute of Scientific and Technical Information of China (English)

    WEI Wan-zhi; ZHAI Xiu-rong; ZENG Jin-xiang; GAO Yan-ping; GONG Shu-guo

    2007-01-01

    A new nanocomposite material for construction of glucose biosensor was prepared. The biosensor was formed by entrapping glucose oxidase(Gox) into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film.In this biosensing thin film.the multiwalled carbon nanotubes can effectively catalyze hydrogen peroxide and nanoporous ZrO2, can enhance the stability of the immobilized enzyme. The resulting biosensor provides a very effective matrix for the immobilization of glucose oxidase and exhibits a wide linear response range from 8 μmol/L to 3 mmol/L with a correlation coefficient of 0.994 for the detection of glucose.And the response time and detection limit of the biosensor are determined to be 6 S and 3.5 μmaol/L.respectively. Another attractive characteristic is that the biosensor is inexpensive. stable and reliable.

  2. Mediatorless electron transfer in glucose dehydrogenase/laccase system adsorbed on carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: • Glucose dehydrogenase from Ewingella americana (GDH) demonstrated an effective mediatorless oxidation of glucose on single-walled carbon nanotubes (SWCNT). • Laccase from Trichaptum abietinum (LAC) exhibited mediatorless oxygen reduction when the enzyme was adsorbed on SWCNT. • Simultaneous adsorption of GDH and LAC on SWCNT formed an electron transfer chain in which glucose and lactose were oxidized by oxygen in mediatorless manner. - Abstract: A mediatorless electron transfer in the chain of glucose dehydrogenase (GDH) and laccase (LAC) catalysing the oxidation of glucose by molecular oxygen was studied. To demonstrate mediatorless processes, the GDH from Ewingella americana was adsorbed on single-walled carbon nanotubes (SWCNT). The effective mediatorless oxidation of glucose proceeded at 0.2–0.4 V vs. SCE. The electrode was most active at pH 6.1, and generated 0.8 mA cm−2 biocatalytic current in the presence of 50 mM glucose. The electrode showed a bell-shaped pH dependence with pKa values of 4.1 and 7.5. LAC from Trichaptum abietinum adsorbed on SWCNT exhibited mediatorless oxygen reduction at electrode potential less than 0.65 V. The electrode was most active at pH 3.0–4.0 and generated 1.1 mA cm−2 biocatalytic current in the presence of 0.254 mM oxygen, with an apparent pKa of 1.0 and 5.4. The electrodes prepared by simultaneous adsorption of GDH and LAC on SWCNT exhibited glucose oxidation at a potential higher than 0.25 V. The oxygen consumption in the chain was demonstrated using a Clark-type oxygen electrode. The dependence of oxygen consumption on glucose and lactose concentrations as well as activity of the system on pH were measured. A model of the pH dependence as well as mediatorless consecutive glucose oxidation with oxygen catalysed by LAC/GDH system is presented. This work provides a novel approach towards the synthesis of artificial multi enzyme systems by wiring oxidoreductases with SWCNT, and offers a better

  3. Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells

    KAUST Repository

    Pasta, Mauro

    2012-06-01

    In the present paper we propose a new anode material for glucose-gluconate direct oxidation fuel cells prepared by electrodepositing gold nanoparticles onto a conductive textile made by conformally coating single walled carbon nanotubes (SWNT) on a polyester textile substrate. The electrodeposition conditions were optimized in order to achieve a uniform distribution of gold nanoparticles in the 3D porous structure of the textile. On the basis of previously reported studies, the reaction conditions (pH, electrolyte composition and glucose concentration) were tuned in order to achieve the highest oxidation rate, selectively oxidizing glucose to gluconate. The electrochemical characterization was carried out by means of cyclic voltammetry. © 2012 Elsevier B.V. All rights reserved.

  4. Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source

    Science.gov (United States)

    Chen, Zhi-Gang; Li, Feng; Ren, Wen-Cai; Cong, Hongtao; Liu, Chang; Qing Lu, Gao; Cheng, Hui-Ming

    2006-07-01

    Double-walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67-4 nm and 1.96-3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10-30 nm in diameter with high purity (about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.

  5. Graphene versus Multi-Walled Carbon Nanotubes for Electrochemical Glucose Biosensing

    Directory of Open Access Journals (Sweden)

    Edmond Lam

    2013-03-01

    Full Text Available : A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx, with graphene or multi-walled carbon nanotubes (MWCNTs. Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs. The EDC (1-ethyl-(3-dimethylaminopropyl carbodiimide-activated GOx was then bound covalently on the graphene- or MWCNT-modified GCE. Both the graphene- and MWCNT-based biosensors detected the entire pathophysiological range of blood glucose in humans, 1.4–27.9 mM. However, the direct electron transfer (DET between GOx and the modified GCE’s surface was only observed for the MWCNT-based biosensor. The MWCNT-based glucose biosensor also provided over a four-fold higher current signal than its graphene counterpart. Several interfering substances, including drug metabolites, provoked negligible interference at pathological levels for both the MWCNT- and graphene-based biosensors. However, the former was more prone to interfering substances and drug metabolites at extremely pathological concentrations than its graphene counterpart.

  6. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes

    International Nuclear Information System (INIS)

    A carbon nanotube (CNT) modified biosensor based on oxygen-independent, pyrrole quinoline quinone glucose dehydrogenase (PQQ-GDH) for monitoring glucose was studied. The disposable amperometric biosensors based on screen-printed carbon paste electrodes are low cost and suitable for mass production. Potassium ferricyanide was immobilized on the surface of the electrodes as an electron mediator, which decreased the work potential. The biosensor showed a linear amperometric response to glucose from 1 to 35 mM, with a sensitivity of 31.0 µA mM−1 cm−2. Experimentally, the compositions of PQQ-GDH, potassium ferricyanide, CNTs and other components were evaluated and optimized. Only 2 µl of sample are needed for one test, and the response time of the sensor is 20 s. The characteristics of the biosensor were studied through cyclic voltammetry, and experimental results showed that the CNTs could facilitate the electron transfer between the enzyme and electrode surface significantly. Compared with the biosensor without carbon nanotube modification, the CNTs improved the sensitivity of the biosensor up to five times

  7. The influence of carbon sources and morphology on nystatin production by Streptomyces noursei

    DEFF Research Database (Denmark)

    Jonsbu, E.; Mcintyre, Mhairi; Nielsen, Jens

    2002-01-01

    Carbon source nutrition and morphology were examined during cell growth and production of nystatin by Streptomyces noursei ATCC 11455. This strain was able to utilise glucose, fructose, glycerol and soluble starch for cell growth, but failed to grow on media supplemented with galactose, xylose, m...... that this coincided with loss of activity inside the core of the pellets, probably due to diffusion limitation of oxygen or other nutrients....

  8. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.

    Science.gov (United States)

    MacAodha, Domhnall; Ó Conghaile, Peter; Egan, Brenda; Kavanagh, Paul; Leech, Dónal

    2013-07-22

    Co-immobilisation of three separate multiple blue copper oxygenases, a Myceliophthora thermophila laccase, a Streptomyces coelicolor laccase and a Myrothecium verrucaria bilirubin oxidase, with an [Os(2,2'-bipyridine)2 (polyvinylimidazole)10Cl](+/2+) redox polymer in the presence of multi-walled carbon nanotubes (MWCNTs) on graphite electrodes results in enzyme electrodes that produce current densities above 0.5 mA cm(-2) for oxygen reduction at an applied potential of 0 V versus Ag/AgCl. Fully enzymatic membraneless fuel cells are assembled with the oxygen-reducing enzyme electrodes connected to glucose-oxidising anodes based on co-immobilisation of glucose oxidase or a flavin adenine dinucleotide-dependent glucose dehydrogenase with an [Os(4,4'-dimethyl-2,2'-bipyridine)2(polyvinylimidazole)10Cl](+/2+) redox polymer in the presence of MWCNTs on graphite electrodes. These fuel cells can produce power densities of up to 145 μW cm(-2) on operation in pH 7.4 phosphate buffer solution at 37 °C containing 150 mM NaCl, 5 mM glucose and 0.12 mM O2. The fuel cells based on Myceliophthora thermophila laccase enzyme electrodes produce the highest power density if combined with glucose oxidase-based anodes. Although the maximum power density of a fuel cell of glucose dehydrogenase and Myceliophthora thermophila laccase enzyme electrodes decreases from 110 μW cm(-2) in buffer to 60 μW cm(-2) on testing in artificial plasma, it provides the highest power output reported to date for a fully enzymatic glucose-oxidising, oxygen-reducing fuel cell in artificial plasma.

  9. Carbon nanotube-hydroxyapatite nanocomposite: a novel platform for glucose/O2 biofuel cell.

    Science.gov (United States)

    Zhao, H Y; Zhou, H M; Zhang, J X; Zheng, W; Zheng, Y F

    2009-10-15

    This study demonstrates a novel carbon nanotubes-hydroxyapatite (CNTs-HA) nanocomposite-based compartment-less glucose/O(2) biofuel cell (BFC) with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. CNTs-HA nanocomposite prepared by the self-assembly method via an aqueous solution reaction has been used as the co-immobilization matrix to incorporate biocatalysts, i.e. GOD and laccase successfully. Moreover, the three-dimensional configuration of the CNTs-HA films electrode would be advantageous to the glucose oxidation on the bioanode and O(2) electroreduction on the biocathode of BFC. The maximum power density delivered by the assembled glucose/O(2) BFC could reach 15.8 muWcm(-2) at a cell voltage of 0.28 V with 10 mM glucose. The results indicate that the CNTs-HA nanocomposite is believed to be very useful for the development of novel BFC device.

  10. Carbon nanotube-hydroxyapatite nanocomposite: a novel platform for glucose/O2 biofuel cell.

    Science.gov (United States)

    Zhao, H Y; Zhou, H M; Zhang, J X; Zheng, W; Zheng, Y F

    2009-10-15

    This study demonstrates a novel carbon nanotubes-hydroxyapatite (CNTs-HA) nanocomposite-based compartment-less glucose/O(2) biofuel cell (BFC) with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. CNTs-HA nanocomposite prepared by the self-assembly method via an aqueous solution reaction has been used as the co-immobilization matrix to incorporate biocatalysts, i.e. GOD and laccase successfully. Moreover, the three-dimensional configuration of the CNTs-HA films electrode would be advantageous to the glucose oxidation on the bioanode and O(2) electroreduction on the biocathode of BFC. The maximum power density delivered by the assembled glucose/O(2) BFC could reach 15.8 muWcm(-2) at a cell voltage of 0.28 V with 10 mM glucose. The results indicate that the CNTs-HA nanocomposite is believed to be very useful for the development of novel BFC device. PMID:19713096

  11. Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors

    OpenAIRE

    Raicopol, Matei; Prună, Alina; Damian, Celina; Pilan, Luisa

    2013-01-01

    This article reports an amperometric glucose biosensor based on a new type of nanocomposite of polypyrrole (PPY) with p-phenyl sulfonate-functionalized single-walled carbon nanotubes (SWCNTs-PhSO3 −). An environmentally friendly functionalization procedure of the SWCNTs in the presence of substituted aniline and an oxidative species was adopted. The nanocomposite-modified electrode exhibited excellent electrocatalytic activities towards the reduction or oxidation of H2O2. This feature allowed...

  12. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    OpenAIRE

    SHI, JIN; Claussen, Jonathan C.; McLamore, Eric S.; ul Haque, Aeraj; Jaroch, David; Diggs, Alfred; Calvo-Marzal, Percy; Rickus, Jenna; Porterfield, D. Marshall

    2011-01-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an ...

  13. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    Science.gov (United States)

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  14. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  15. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Tabrizi, Mahmoud Amouzadeh [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. > A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. > The apparent electron transfer rate constant was measured to be 5.27 s{sup -1}. > A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E{sup o}') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k{sub s}) was calculated to be 5.27 s{sup -1}. The dependence of E{sup o}' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  16. Poly(lactic acid/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors

    Directory of Open Access Journals (Sweden)

    Valtencir Zucolotto

    2012-02-01

    Full Text Available The focus of this paper is the development and investigation of properties of new nanostructured architecture for biosensors applications. Highly porous nanocomposite fibers were developed for use as active materials in biosensors. The nanocomposites comprised poly(lactic acid(PLA/multi-walled carbon nanotube (MWCNT fibers obtained via solution-blow spinning onto indium tin oxide (ITO electrodes. The electrocatalytic properties of nanocomposite-modified ITO electrodes were investigated toward hydrogen peroxide (H2O2 detection. We investigated the effect of carbon nanotube concentration and the time deposition of fibers on the sensors properties, viz., sensitivity and limit of detection. Cyclic voltammetry experiments revealed that the nanocomposite-modified electrodes displayed enhanced activity in the electrochemical reduction of H2O2, which offers a number of attractive features to be explored in development of an amperometric biosensor. Glucose oxidase (GOD was further immobilized by drop coating on an optimized ITO electrode covered by poly(lactic acid/carbon nanotube nanofibrous mats. The optimum biosensor response was linear up to 800 mM of glucose with a sensitivity of 358 nA·mM−1 and a Michaelis-Menten constant (KM of 4.3 mM. These results demonstrate that the solution blow spun nanocomposite fibers have great potential for application as amperometric biosensors due to their high surface to volume ratio, high porosity and permeability of the substrate. The latter features may significantly enhance the field of glucose biosensors.

  17. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Varma

    2015-06-01

    Full Text Available Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001. However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes.

  18. A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: This study reports a novel, simple and fast approach for construction of a highly stable glucose biosensor based on the immobilization of glucose oxidase (GOx) onto a glassy carbon electrode (GCE) electrografted with 4-aminophenyl (AP) by diazonium chemistry. Aminophenyl was used as cross-linker for covalent attachment of glucose oxidase to the electrode surface. Cyclic voltammograms of the GOx-modified GCE in phosphate buffer solution exhibited a pair of well-defined redox peaks, attesting the direct electron transfer (DET) of GOx with the underlying electrode. The proposed biosensor could be used to detect glucose based on the consumption of O2 with the oxidation of glucose catalyzed by GOx and exhibited a wide linear range of glucose from 0.05 mM to 4.5 mM and low detection limit of 10 μM. The surface coverage of active GOx, heterogeneous electron transfer rate constant (ks) and Michaelis–Menten constant (KM) of immobilized GOx were 1.23 × 10−12 mol cm−2, 4.25 s−1 and 2.95 mM, respectively. The great stability of this biosensor, technically simple and possibility of preparation at short period of time make this method suitable for fabrication of low-cost glucose biosensors

  19. Mesoscale inversion of carbon sources and sinks

    International Nuclear Information System (INIS)

    Inverse methods at large scales are used to infer the spatial variability of carbon sources and sinks over the continents but their uncertainties remain large. Atmospheric concentrations integrate the surface flux variability but atmospheric transport models at low resolution are not able to simulate properly the local atmospheric dynamics at the measurement sites. However, the inverse estimates are more representative of the large spatial heterogeneity of the ecosystems compared to direct flux measurements. Top-down and bottom-up methods that aim at quantifying the carbon exchanges between the surface and the atmosphere correspond to different scales and are not easily comparable. During this phD, a mesoscale inverse system was developed to correct carbon fluxes at 8 km resolution. The high resolution transport model MesoNH was used to simulate accurately the variability of the atmospheric concentrations, which allowed us to reduce the uncertainty of the retrieved fluxes. All the measurements used here were observed during the intensive regional campaign CERES of May and June 2005, during which several instrumented towers measured CO2 concentrations and fluxes in the South West of France. Airborne measurements allowed us to observe concentrations at high altitude but also CO2 surface fluxes over large parts of the domain. First, the capacity of the inverse system to correct the CO2 fluxes was estimated using pseudo-data experiments. The largest fraction of the concentration variability was attributed to regional surface fluxes over an area of about 300 km around the site locations depending on the meteorological conditions. Second, an ensemble of simulations allowed us to define the spatial and temporal structures of the transport errors. Finally, the inverse fluxes at 8 km resolution were compared to direct flux measurements. The inverse system has been validated in space and time and showed an improvement of the first guess fluxes from a vegetation model

  20. Effect of photoperiod, light intensity and carbon sources on biomass and lipid productivities of Isochrysis galbana.

    Science.gov (United States)

    Babuskin, Srinivasan; Radhakrishnan, Kesavan; Babu, Packirisamy Azhagu Saravana; Sivarajan, Meenakshisundaram; Sukumar, Muthusamy

    2014-08-01

    Biomass and lipid productivities of Isochrysis galbana were optimized using nutrients of molasses (4, 8, 12 g l(-1)), glucose (4, 8, 12 g l(-1)), glycerol (4, 8, 12 g l(-1)) and yeast extract (2 g l(-1)). Combinations of carbon sources at different ratios were evaluated in which the alga was grown at three different light intensities (50, 100 and 150 μmol m(-2) s(-1)) under the influence of three different photoperiod cycles (12/12, 18/6 and 24/0 h light/dark). A maximum cell density of 8.35 g l(-1) with 32 % (w/w) lipid was achieved for mixotrophic growth at 100 μmol m(-2) s(-1) and 18/6 h light/dark with molasses/glucose (20:80 w/w). Mixotrophic cultivation using molasses, glucose and glycerol was thus effective for the cultivation of I. galbana.

  1. A disposable glucose biosensor based on drop-coating of screen-printed carbon electrodes with magnetic nanoparticles

    Science.gov (United States)

    Lu, Bo-Wen; Chen, Wen-Chang

    2006-09-01

    Magnetic Fe 3O 4 nanoparticles (Nano-Fe 3O 4) were prepared by co-precipitation method and a disposable glucose biosensor was fabricated by drop coating of ferricyanide (Ferri)-Nano-Fe 3O 4 mixture onto the surface of screen-printed carbon electrodes (SPCEs), and then by layering-on glucose oxidase (GOD). The electrochemical characteristics of modified SPCEs were analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). The glucose biosensors exhibit a relatively fast response (glucose.

  2. A method for the determination of carbon 13 content in glucose and glycerol of blood plasma; Methode pour la determination de la teneur en carbone 13 du glucose et du glycerol dans les plasmas sanguins

    Energy Technology Data Exchange (ETDEWEB)

    Koziet, J. [Centre de Recherche Pernod-Ricard, 94 - Creteil (France)

    1994-12-31

    The coupled gaseous chromatography and isotope ratio mass spectrometry approach was first validated on beet and maize glucose and glycerol aqueous solutions containing variable carbon 13 content. Then human plasma was used to prepare samples where glucose and glycerol were labelled with small amounts of (1.3-{sup 13}C{sub 2})-glycerol and D-(U{sup 13}-C{sub 6})-glucose. The samples are then de-proteinized with acetone before lyophilization and acetylation in order to be able to measure them in the form of acetates. Carbon 13 content evaluation should then take into account the exogenous carbons from the acetyl radicals. This method appears well adapted to the simultaneous metabolic monitoring of glycerol and glucose in the blood plasma. 1 fig., 3 tabs., 5 refs.

  3. Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications.

    Science.gov (United States)

    Hwa, Kuo-Yuan; Subramani, Boopathi

    2014-12-15

    Synthesis of zinc oxide nanoparticles incorporated graphene-carbon nanotubes hybrid (GR-CNT-ZnO) through a simple, one-pot method is demonstrated. The as-synthesized GR-CNT-ZnO composite is applied to fabricate an enzyme based glucose biosensor. The GOx immobilized on GR-CNT-ZnO composite exhibits well-defined redox peaks with a peak potential separation (ΔEp) of about 26 mV with enhanced peak currents, indicating a fast electron transfer at the modified electrode surface. The cyclic voltammetry measurements revealed that the modified film has high electrocatalytic ability towards glucose detection in the presence of oxygen. The proposed sensor has a wide linear detection range from 10 μM to 6.5 mM of glucose with a limit of detection (LOD) of 4.5 (±0.08) μM. In addition, the sensor possessed appreciable repeatability, reproducibility and remarkable stability for the sensitive determination of glucose. The practicality of this sensor has been demonstrated in human serum samples, with results being in good agreement with those determined using a standard photometric method. PMID:24997365

  4. Synthesis of carbon nanosheet from barley and its use as non-enzymatic glucose biosensor

    Directory of Open Access Journals (Sweden)

    Soma Das

    2014-12-01

    Full Text Available In this work, carbon nanosheet (CNS based electrode was designed for electrochemical biosensing of glucose. CNS has been obtained by the pyrolysis of barley at 600–750 °C in a muffle furnace; it was then purified and functionalized. The CNS has been characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and Raman spectroscopic techniques. The electrochemical activity of CNS-based electrode was investigated by linear sweep voltammetry (LSV and square wave voltammetry (SWV, for the oxidation of glucose in 0.001 M H2SO4 (pH 6.0. The linear range of the sensor was found to be 10−4–10−6 M (1–100 µM within the response time of 4 s. Interestingly, its sensitivity reached as high as ~26.002±0.01 μA/μM cm2. Electrochemical experiments revealed that the proposed electrode offered an excellent electrochemical activity towards the oxidation of glucose and could be applied for the construction of non-enzymatic glucose biosensors.

  5. An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes.

    Science.gov (United States)

    Sales, Fernanda C P F; Iost, Rodrigo M; Martins, Marccus V A; Almeida, Maria C; Crespilho, Frank N

    2013-02-01

    An intravenous implantable glucose/dioxygen hybrid enzyme-Pt micro-biofuel cell (BFC) was investigated. In this miniaturized BFC, a flexible carbon fiber (FCF) microelectrode modified with neutral red redox mediator and glucose oxidase was used as the bioanode, and an FCF modified with platinum nanoparticles stabilized on PAMAM-G4 dendrimer was used as the cathode. In vitro experiments conducted using the BFC in a phosphate buffer solution (50 mmol L(-1), pH = 7.2) and glucose (47 mmol L(-1)) showed high electrocatalytic performance with an open circuit voltage (OCV) of 400 mV, a maximum current density of 2700 μA cm(-2) at 0.0 V and a maximum output power of 200 μW cm(-2) at 250 mV. Under physiological conditions, glucose from rat blood is used as a fuel in anodic reactions and dissolved molecular oxygen is used as the oxidizing agent on the cathode. For in vivo experiments, the BFC was inserted into the jugular vein of a living rat (Rattus novergicus) using a catheter (internal diameter 0.5 mm). The power density of the implantable BFC was evaluated over a period of 24 h, and an OCV of 125 mV with a maximum power density of 95 μW cm(-2) was obtained at 80 mV.

  6. Carbon material distribution and flux analysis under varying glucose concentrations in hydrogen-producing Clostridium tyrobutyricum JM1.

    Science.gov (United States)

    Jo, Ji Hye; Kim, Woong

    2016-06-20

    Anaerobic glucose metabolism in hydrogen-producing Clostridium tyrobutyricum was investigated in batch culture with varying initial glucose concentrations (27.8-333.6mM). To understand the regulation of metabolism, the carbon material and reduction balances were applied to estimate the carbon flux distribution for the first time, and metabolic flux analysis (MFA) was used to provide qualitative information and guidance for effective metabolic design. The overall flux distribution suggested that C. tyrobutyricum metabolism has a high capacity for the production of butyrate and hydrogen at an initial glucose concentration of 222.4mM, with balanced activities of NADH and ATP.

  7. Direct electron transfer of glucose oxidase promoted by carbon nanotubes is without value in certain mediator-free applications

    International Nuclear Information System (INIS)

    We have investigated the direct electron transfer (DET) promoted by carbon nanotubes (CNTs) on an electrode containing immobilized glucose oxidase (GOx) with the aim to develop a third-generation glucose biosensor and a mediator-free glucose biofuel cell anode. GOx was immobilized via chitosan (CS) on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs). Cyclic voltammetric revealed that the GOx on the surface of such an electrode is unable to simultaneously demonstrate DET with the electrode and to retain its catalytic activity towards glucose, although the MWCNTs alone can promote electron transfer between GOx and electrode. This is interpreted in terms of two types of GOx on the surface, the distribution and properties of which are quite different. The first type exhibits DET capability that results from the collaboration of MWCNTs and metal impurities, but is unable to catalyze the oxidation of glucose. The second type maintains its glucose-specific catalytic capability in the presence of a mediator, which can be enhanced by MWCNTs, but cannot undergo DET with the electrode. As a result, the MWCNTs are capable of promoting the electron transfer, but this is without value in some mediator-free applications such as in third-generation glucose biosensors and in mediator-free anodes for glucose biofuel cells. (author)

  8. Effects of nitrogen sources and glucose on the consumption of ethylene and methane by temperate volcanic forest surface soils

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There is limited knowledge with regard to the consumption of ethylene (C2H4) and methane (CH4) in volcanic forest soils containing low microbial carbon-to-organic carbon ratio, and to the responses of both consumptions to nitrogen and carbon additions. Temperate volcanic forest surface soils under three forest stands (e.g. Pinus sylvestris L., Cryptomeria japonica and Quercus serrata) were used to compare CH4 and C2H4 consumption by forest soils, and to study the effects of nitrogen sources and glucose on both consumptions. There was a good parallel between CH4 and C2H4 consumption by forest soils, but mineralization reduced CH4 consumption rather than C2H4 consumption in forest soils, particularly in a Pinus forest soil. The stimulatory effect of glucose addition on both CH4 and C2H4 consumption by forest soils was increased by increasing the pre-incubation period after glucose addition, and a largest stimulation occurred in the Pinus forest soil. The addition of KNO3-N at the rate of 100 (g·g-1 significantly reduced the consumptions of both C2H4 and CH4 by forest soils (P≤0.05). In the presence of urea plus dicyandiamide, the consumption rates of C2H4 and CH4 by forest soils were higher than those in the KNO3-N and urea-N treated soils at the same N rate (P≤0.05), but were similar to those of the control. Hence, under experimental conditions, there was a strong inhibitory effect of NO3- rather than NH4+ addition on the CH4 and C2H4 consumption in these forest soils. When amount of the added NO3-N increased up to more than 2―3 times the soil initial NO3-N concentrations, both C2H4 and CH4 consumption rates were reduced to 10%―20% of the rates in soils without nitrate addition. By comparing the three forest stands, it was shown that there was a smallest effective concentration of the added nitrate that could inhibit C2H4 and CH4 consumption in the Pinus forest soil, which indicated that C2H4 and CH4 consumption of the soil was more sensitive to NO3?-N

  9. A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.

    Science.gov (United States)

    Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole

    2016-08-01

    This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process. PMID:27337723

  10. Effect of initial glucose concentrations on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1.

    Science.gov (United States)

    Jo, Ji Hye; Lee, Dae Sung; Kim, Junhoon; Park, Jong Moon

    2009-03-01

    The carbon metabolism of newly isolated Clostridium tyrobutyricum JM1 was investigated at varying initial glucose concentrations (27.8-333.6mM). Because an understanding of metabolic regulations was required to provide guidance for further effective metabolic design or optimization, in this case, maximizing hydrogen production, carbon material, and energy balances by C. tyrobutyricum JM1 were determined and applied in anaerobic glucose metabolism. The overall carbon distribution suggested that initial glucose concentrations had strong influence on the stoichiometric coefficients of products and the molar production of ATP on the formation of biomass. C. tyrobutyricum JM1 had a high capacity for hydrogen production at the initial glucose concentration of 222.4 mM with high concentrations of acetate and butyrate.

  11. Source Molecular Effect on Amorphous Carbon Film Deposition

    OpenAIRE

    Kawazoe, Hiroki; Inayoshi, Takanori; Shinohara, Masanori; Matsuda, Yoshinobu; Fujiyama, Hiroshi; Nitta, Yuki; Nakatani, Tatsuyuki

    2009-01-01

    We investigated deposition process of amorphous carbon films using acetylene and methane as a source molecule, by using infrared spectroscopy in multiple internal reflection geometry (MIR-IRAS). We found that deposited film structures were different due to source molecules.

  12. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    OpenAIRE

    Baoyan Wu; Shihua Hou; Zhiying Miao; Cong Zhang; Yanhong Ji

    2015-01-01

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for op...

  13. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.

    Science.gov (United States)

    Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao

    2015-01-21

    Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose. PMID:25429370

  14. Studies on the nutrition of marine flatfish. The metabolism of glucose by plaice (Pleuronectes platessa) and the effect of dietary energy source on protein utilization in plaice.

    Science.gov (United States)

    Cowey, C B; Adron, J W; Brown, D A

    1975-03-01

    1. The effects of dietary energy level and dietary energy source on protein utilization by plaice (Pleuronectes platessa) were examined by giving diets containing 400 g crude protein/kg to nine groups of fish. Five of these diets contained only lipid as a source of energy (in addition to protein) and their energy contents were varied by increasing the lipid level in a step-wise manner from 56 to 176 g/kg. The remaining four diets contained both lipid and carbohydrate (glucose plus dextrin) together as energy sources: two levels of carbohydrate (100 and 200 g/kg) being used at each of two (56 and 86 g/kg) lipid levels. 2. Weight gains of plaice given the diets containing only lipid as an energy source did not differ significantly from each other. Weight gains of plaice given diets containing carbohydrate as well as protein and lipid were superior to those given diets lacking carbohydrate. 3. Values obtained for protein efficiency ratio (PER) and net protein utilization (NPU) increased with increasing dietary energy level in both those fish given the diets containing carbohydrate and those given diets lacking it. Both PER and NPU values were greater for plaice given diets containing carbohydrate than for fish diets without carbohydrate even when the total energy content of the diets was approximately the same. 4. Liver glycogen levels were significantly higher in plaice given diets containing 200 g carbohydrate/kg than in plaice given diets without carbohydrate. Blood glucose levels and hepatic hexokinase (EC 2-7-1-1) levels were not significantly different in plaice given these diets. No glucokinase (EC 2-7-2-2) was detected in plaice given either diet. 5. The metabolic fate of glucose carbon in plaice was investigated by injecting the fish intraperitoneally with [U-14C] glucose and examining, 18 h afterwards the distribution of radioactivity in different biochemical fractions from the fish. 6. Glucose was respired much less rapidly in the carnivorous plaice

  15. Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture.

    Science.gov (United States)

    Boero, Cristina; Carrara, Sandro; Del Vecchio, Giovanna; Calzà, Laura; De Micheli, Giovanni

    2011-03-01

    Monitoring of metabolic compounds in cell cultures can provide real-time information of cell line status. This is particularly important in those lines not fully known, as the case of embryonic and mesenchymal cells. On the other hand, such approach can pave the way to fully automated systems for growing cell cultures, when integrated in Petri dishes. To date, the main efforts emphasize the monitoring of few process variables, like pH, pO(2), electronic impedance, and temperature in bioreactors. Among different presented strategies to develop biosensors, carbon nanotubes exhibit great properties, particularly suitable for high-sensitive detection. In this work, nanostructured electrodes by using multiwalled carbon nanotubes are presented for the detection of lactate and glucose. Some results from simulations are illustrated in order to foresee the behavior of carbon nanotubes depending on their orientation, when they are randomly dispersed onto the electrode surface. A comparison between nonnanostructured and nanostructured electrodes is considered, showing that direct electron-transfer between the protein and the electrode is not possible without nanostructuration. Such developed biosensors are characterized in terms of sensitivity and detection limit, and are compared to previously published results. Lactate production is monitored in a cell culture by using the developed biosensor, and glucose detection is also performed to validate lactate behavior. PMID:21518668

  16. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2015-06-01

    Full Text Available It is very important for human health to rapidly and accurately detect glucose levels in biological environments, especially for diabetes mellitus. We proposed a simple, highly sensitive, accurate, convenient, low-cost, and disposable glucose biosensor on a single chip. A working (sensor electrode, a counter electrode, and a reference electrode are integrated on a single chip through micro-fabrication. The working electrode is functionalized through a layer-by-layer (LBL assembly of single-walled carbon nanotubes (SWNTs and multilayer films composed of chitosan (CS, gold nanoparticles (GNp, and glucose oxidase (GOx to obtain high sensitivity and accuracy. The glucose sensor has following features: (1 direct electron transfer between GOx and the electrode surface; (2 on-a-chip; (3 glucose detection down to 0.1 mg/dL (5.6 μM; (4 good sensing linearity over 0.017–0.81 mM; (5 high sensitivity (61.4 μA/mM-cm2 with a small reactive area (8 mm2; (6 fast response; (7 high reproducibility and repeatability; (8 reliable and accurate saliva glucose detection. Thus, this disposable biosensor will be an alternative for real time tracking of glucose levels from body fluids, e.g. saliva, in a noninvasive, pain-free, accurate, and continuous way. In addition to being used as a disposable glucose biosensor, it also provides a suitable platform for on-chip electrochemical sensing for other chemical agents and biomolecules.

  17. Predominating stable adsorption and direct electrochemistry of glucose oxidase on carbon nanotubes by oxygen-containing groups

    Institute of Scientific and Technical Information of China (English)

    Chun Hai Yang; Cheng Guo Hu; Sheng Shui Hu

    2007-01-01

    Stable adsorption and direct electrochemistry of glucose oxidase (GOx) occurred on nitric acid (HNO3)-treated multi-walled carbon nanotubes (MWNTs) instead of as-received MWNTs, demonstrating the critical roles of oxygen-containing groups in stable adsorption and direct electrochemistry of GOx on carbon nanotubes (CNTs).

  18. Nitrogen-doped carbon nanospheres derived from cocoon silk as metal-free electrocatalyst for glucose sensing.

    Science.gov (United States)

    Li, Tongtong; Li, Yahang; Wang, Chunyu; Gao, Zhi-Da; Song, Yan-Yan

    2015-11-01

    Nitrogen-doped carbon materials have attracted tremendous attention because of their high activity in electrocatalysis. In the present work, cocoon silk -- a biomass material is used to prepare porous carbon fibers due to its abundant nitrogen content. The as-prepared carbon microfibers have been activated and disintegrated into carbon nanospheres (CNS) with a diameter of 20--60 nm by a simple nitric acid refluxing process. Considering their excellent electrocatalytic activity towards the reduction of oxygen, the CNS modified electrodes are further applied in the construction of glucose amperometric biosensor using glucose oxidase as a model. The proposed biosensor exhibits fast response, high sensitivity, good stability and selectivity for glucose detection with a wide linear range from 79.7 to 2038.9 μM, and a detection limit of 39.1 μM. The performance is comparable to leading literature results indicating a great potential for electrochemical sensing application. PMID:26452954

  19. Morphogenesis and Production of Enzymes by Penicillium echinulatum in Response to Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    Willian Daniel Hahn Schneider

    2014-01-01

    Full Text Available The effect of different carbon sources on morphology and cellulase and xylanase production of Penicillium echinulatum was evaluated in this work. Among the six carbon sources studied, cellulose and sugar cane bagasse were the most suitable for the production of filter paper activity, endoglucanases, xylanases, and β-glucosidases. However, sucrose and glucose showed β-glucosidase activities similar to those obtained with the insoluble sources. The polyacrylamide gels proved the enzymatic activity, since different standards bands were detected in the media mentioned above. Regarding morphology, it was observed that the mycelium in a dispersed form provided the greatest enzymatic activity, possibly due to greater interaction between the substrate and hyphae. These data are important in understanding the physiology of fungi and could contribute to obtaining enzyme with potential application in the technology of second generation ethanol.

  20. Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources.

    Science.gov (United States)

    Schneider, Willian Daniel Hahn; dos Reis, Laísa; Camassola, Marli; Dillon, Aldo José Pinheiro

    2014-01-01

    The effect of different carbon sources on morphology and cellulase and xylanase production of Penicillium echinulatum was evaluated in this work. Among the six carbon sources studied, cellulose and sugar cane bagasse were the most suitable for the production of filter paper activity, endoglucanases, xylanases, and β-glucosidases. However, sucrose and glucose showed β -glucosidase activities similar to those obtained with the insoluble sources. The polyacrylamide gels proved the enzymatic activity, since different standards bands were detected in the media mentioned above. Regarding morphology, it was observed that the mycelium in a dispersed form provided the greatest enzymatic activity, possibly due to greater interaction between the substrate and hyphae. These data are important in understanding the physiology of fungi and could contribute to obtaining enzyme with potential application in the technology of second generation ethanol.

  1. Biotransformation of Meloxicam by Cunninghamella blakesleeana: Significance of Carbon and Nitrogen Source.

    Science.gov (United States)

    Shyam Prasad, Gurram; Narasimha Rao, Kollu; Preethi, Rama; Girisham, Sivasri; Reddy, S M

    2011-01-01

    Influence of carbon and nitrogen source, on biotransformation of meloxicam was studied by employing Cunninghamella blakesleeana NCIM 687 with an aim to achieve maximum transformation of meloxicam and in search of new metabolites. The transformation was confirmed by HPLC and based on LC-MS-MS data and previous reports the metabolites were predicted as 5-hydroxymethyl meloxicam, 5-carboxy meloxicam and a novel metabolite. The quantification of metabolites was performed using HPLC peak areas. The results obtained indicate that glucose as carbon source, ammonium nitrate as nitrogen source, were found to be optimum for maximum transformation of meloxicam. The study suggests the significance of these factors in biotransformation of meloxicam using microbial cultures. The fermentation was scaled up to 1 l level. PMID:22282633

  2. Amperometric, screen-printed, glucose biosensor for analysis of human plasma samples using a biocomposite water-based carbon ink incorporating glucose oxidase.

    Science.gov (United States)

    Crouch, Eric; Cowell, David C; Hoskins, Stephen; Pittson, Robin W; Hart, John P

    2005-12-01

    This paper describes the optimisation of a screen-printing water-based carbon ink containing cobalt phthalocyanine (CoPC) and glucose oxidase (GOD) for the fabrication of a glucose biosensor. To optimise the performance of the biosensor, the loadings of the electrocatalyst (CoPC) and enzyme (GOD) were varied. It was found that the maximum linear range was achieved with a CoPC loading of 20% (m/m, relative to the mass of carbon) and a GOD loading of 628 U per gram of carbon. In our studies we chose to employ chronoamperometry, as this technique is commonly used for commercial devices. The optimum operating applied potential was found to be +0.5 V, following an incubation period of 60 s. The optimum supporting electrolyte was found to be 0.05 M phosphate buffer at pH 8.0, which resulted in a linear range of 0.2-5 mM, the former represents the detection limit. The sensitivity was 1.12 microA mM(-1). The effect of temperature was also investigated, and it was found that 40 degrees C gave optimal performance. The resulting amperometric biosensors were evaluated by measuring the glucose concentrations for 10 different human plasma samples containing endogenous glucose and also added glucose. The same samples were analysed by a standard spectrophotometric method, and the results obtained by the two different methods were compared. A good correlation coefficient (R(2) = 0.95) and slope (0.98) were calculated from the experimental data, indicating that the new devices hold promise for biomedical studies. PMID:16266677

  3. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    Science.gov (United States)

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively. PMID:26031087

  4. [Constitutive expression of human angiostatin in Pichia pastoris using glycerol as only carbon source].

    Science.gov (United States)

    Tu, Fa-Zhi; Fu, Ce-Yi; Zhang, Tian-Yuan; Luo, Jin-Xian; Zhang, Ai-Lian

    2007-09-01

    Carbon source plays an important role in the constitutive expression of foreign proteins in Pichia pastoris. In present study, glucose , glycerol , methanol and oil acid, was used respectively as the only carbon source to constitutively express hAS in Pichia pastoris GS115 (pGAP9K-AS)in shaking flask. The result shows that oleic acid is the best (163 mg/L) compared with glycerol (83mg/L), glucose (76 mg/L)and methanol (57 mg/L). Since oleic acid is insoluble in water, glycerol was used as the carbon source in the high-density cell culture of GS115 (pGAP9K-AS) in a 30 liter bioreactor and 169 mg/L of angiostatin was obtained after 48h of culture. The expressed angiostatin is immunologically active as shown by Western blotting. The recombinant hAS inhibits bFGF induced CAM angiogenesis and suppresses the growth of B16 melanoma in C57BL/6J mice. The tumor inhibition rate is 90% after 12 days of treatment. Statistics analysis revealed that the tumor volume difference of mice between the hAS group and PBS group is prominent (P < 0.01). PMID:18051873

  5. A high-performance glucose biosensor using covalently immobilised glucose oxidase on a poly(2,6-diaminopyridine)/carbon nanotube electrode.

    Science.gov (United States)

    Ali Kamyabi, Mohammad; Hajari, Nasim; Turner, Anthony P F; Tiwari, Ashutosh

    2013-11-15

    A highly-sensitive glucose biosensor amenable to ultra-miniaturisation was fabricated by immobilisation of glucose oxidase (GOx), onto a poly(2,6-diaminopyridine)/multi-walled carbon nanotube/glassy carbon electrode (poly(2,6-DP)/MWNT/GCE). Cyclic voltammetry was used for both the electrochemical synthesis of poly-(2,6-DP) on the surface of a MWNT-modified GC electrode, and characterisation of the polymers deposited on the GC electrode. The synergistic effect of the high active surface area of both the conducting polymer, i.e., poly-(2,6-DP) and MWNT gave rise to a remarkable improvement in the electrocatalytic properties of the biosensor. The transfer coefficient (α), heterogeneous electron transfer rate constant and Michaelis-Menten constant were calculated to be 0.6, 4 s(-1) and 0.20 mM at pH 7.4, respectively. The GOx/poly(2,6-DP)/MWNT/GC bioelectrode exhibited two linear responses to glucose in the concentration ranging from 0.42 μM to 8.0 mM with a correlation coefficient of 0.95, sensitivity of 52.0 μA mM(-1) cm(-2), repeatability of 1.6% and long-term stability, which could make it a promising bioelectrode for precise detection of glucose in the biological samples. PMID:24148477

  6. Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0. 3 V and pH 6. 8, the sensor displays a sensitivity of 57. 0 μA mM-1 cm-2, a response time of <5 s, a linear dynamic range from 0. 01 to 15. 2 mM, a correlation coefficient of 0. 9985, and a detection limit of 2 μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples. (author)

  7. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative

    International Nuclear Information System (INIS)

    Highlights: • Dual hydrogen peroxide and glucose sensor. • Direct electrochemistry of glucose oxidase used MWCNT-Py/GC electrode. • Change sensing function by adjusting pH value. - Abstract: A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H2O2) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H2O2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H2O2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10−9 mol cm−2) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM−1 cm−2) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H2O2 and glucose, thus owning high selectivity and reliability

  8. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiao-Chien [Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250, Wuxing St., Taipei 11031, Taiwan (China); Tu, Yi-Ming; Hou, Chung-Che [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Tao-Yuan 33302, Taiwan (China); Lin, Yu-Chen [Wah Hong industrial Co. Ltd., 6 Lixing St., Guantian Dist., Tainan City 72046,Taiwan (China); Chen, Ching-Hsiang [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec. 4, Taipei 10607, Taiwan (China); Yang, Kuang-Hsuan, E-mail: khy@mail.vnu.edu.tw [Department of Food and Beverage Management, Vanung University, 1, Van Nung Rd., Shuei-Wei Li, Chung-Li City 32061, Taiwan (China)

    2015-03-31

    Highlights: • Dual hydrogen peroxide and glucose sensor. • Direct electrochemistry of glucose oxidase used MWCNT-Py/GC electrode. • Change sensing function by adjusting pH value. - Abstract: A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H{sub 2}O{sub 2}) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H{sub 2}O{sub 2} in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H{sub 2}O{sub 2} in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10{sup −9} mol cm{sup −2}) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM{sup −1} cm{sup −2}) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H{sub 2}O{sub 2} and glucose, thus owning high selectivity and reliability.

  9. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2015-09-01

    Full Text Available A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs and glucose oxidase (GOD onto single-walled carbon nanotubes (SWCNTs-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  10. Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors

    Science.gov (United States)

    Raicopol, Matei; Prună, Alina; Damian, Celina; Pilan, Luisa

    2013-07-01

    This article reports an amperometric glucose biosensor based on a new type of nanocomposite of polypyrrole (PPY) with p-phenyl sulfonate-functionalized single-walled carbon nanotubes (SWCNTs-PhSO3 -). An environmentally friendly functionalization procedure of the SWCNTs in the presence of substituted aniline and an oxidative species was adopted. The nanocomposite-modified electrode exhibited excellent electrocatalytic activities towards the reduction or oxidation of H2O2. This feature allowed us to use it as bioplatform on which glucose oxidase (GOx) was immobilized by entrapment in an electropolymerized PPY/SWCNTs-PhSO3 - film for the construction of the glucose biosensor. The amperometric detection of glucose was assayed by applying a constant electrode potential value necessary to oxidize or reduce the enzymatically produced H2O2 with minimal interference from the possible coexisting electroactive compounds. With the introduction of a thin film of Prussian blue (PB) at the substrate electrode surface, the PPY/GOx/SWCNTs-PhSO3 -/PB system shows synergy between the PB and functionalized SWCNTs which amplifies greatly the electrode sensitivity when operated at low potentials. The biosensor showed good analytical performances in terms of low detection (0.01 mM), high sensitivity (approximately 6 μA mM-1 cm-2), and wide linear range (0.02 to 6 mM). In addition, the effects of applied potential, the electroactive interference, and the stability of the biosensor were discussed. The facile procedure of immobilizing GOx used in the present work can promote the development of other oxidase-based biosensors which could have a practical application in clinical, food, and environmental analysis.

  11. Direct electron transfer of glucose oxidase on the carbon nanotube electrode

    Institute of Scientific and Technical Information of China (English)

    CAI Chenxin; CHEN Jing; LU Tianhong

    2004-01-01

    The direct electron transfer of glucose oxidase (Gox) immobilized onto the surface of the carbon nanotube (CNT)-modified glassy carbon (CNT/GC) electrode is reported. The direct electron transfer rate of Gox is greatly enhanced when it was immobilized onto the surface of CNT/GC electrode. Cyclic voltammetric results show a pair of well-defined and nearly sym metric redox peaks, which corresponds to the direct electron transfer of Gox, with the formal potential (E0′), which is almost independent on the scan rates, of about -0.456 V (vs. SCE) in the phosphate buffer solution (pH 6.9). The apparent heterogeneous electron transfer rate constant (ks) of Gox at the CNT/GC electrode surface is estimated to be (1.74 ± 0.42) s-1, which is much higher than that reported previously. The dependence of E0′on solution pH indicates that the direct electron transfer of Gox is a two-electron-transfer coupled with two-proton-transfer reaction process. The experimental results also demonstrate that the immobilized Gox retains its bioelectrocatalytic activity toward the oxidation of glucose. The method presented here can be easily extended to obtain the direct electrochemistry of other enzymes or proteins.

  12. Carbon nanotube-based glucose oxidase nanocomposite anode materials for bio-fuel cells

    Science.gov (United States)

    Dudzik, Jonathan

    The field of nanotechnology has benefited medicine, science, and engineering. The advent of Carbon Nanotubes (CNTs) and protein-inorganic interfacing have received much attention due to their unique nanostructures which can be modified to act as a scaffold to house proteins or create nanowires. The current trend incorporates the robustness and specificity characteristics of proteins to the mechanical strength, enlarged surface area, and conductive capabilities emblematic of their inorganic counterparts. Bio-Fuel Cells (BFCs) and Biosensors remain at the forefront and devices such as implantable glucose monitors are closer to realization than ever before. This research strives to exploit potential energy from the eukaryotic enzyme Glucose Oxidase (GOx) during oxidation of its substrate, glucose. During this process, a two-electron transfer occurs at its two FAD redox centres which can be harnessed via an electrochemical setup involving a Multi-Walled Carbon Nanotube (MWCNTs) modified electrode. The objective is to develop a MWCNT-GOx bionanocomposite capable of producing and sustaining a competitive power output. To help with this aim, investigation into a crosslinked enzyme cluster (CEC) immobilization technique is envisioned to amplify power output due to its highly concentrated, reusable, and thermally stable characteristics. Numerous CEC-GOx-MWCNT composites were fabricated with the highest initial output reaching 170 muW/cm 2. It was hypothesized that the carbohydrate moiety increased tunnelling distance and therefore hindered electron transfer. Efforts to produce a recombinant GOx without the encumbrance were unsuccessful. Two sub-clone constructs were explored and although a recombinant protein was identified, it was not confirmed to be GOx. BFC testing on bionanocomposites integrating non-glycosylated GOx could not be performed although there remains a strong contention that the recombinant would demonstrate superior power densities in comparison to its

  13. Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863.

    Science.gov (United States)

    Ochsenreither, Katrin; Fischer, Christian; Neumann, Anke; Syldatk, Christoph

    2014-06-01

    L-Malic acid and fumaric acid are C4 dicarboxylic organic acids and considered as promising chemical building blocks. They can be applied as food preservatives and acidulants in rust removal and as polymerization starter units. Molds of the genus Aspergillus are able to produce malic acid in large quantities from glucose and other carbon sources. In order to enhance the production potential of Aspergillus oryzae DSM 1863, production and consumption rates in an established bioreactor batch-process based on glucose were determined. At 35 °C, up to 42 g/L malic acid was produced in a 168-h batch process with fumaric acid as a by-product. In prolonged shaking flask experiments (353 h), the suitability of the alternative carbon sources xylose and glycerol at a carbon-to-nitrogen (C/N) ratio of 200:1 and the influence of different C/N ratios in glucose cultivations were tested. When using glucose, 58.2 g/L malic acid and 4.2 g/L fumaric acid were produced. When applying xylose or glycerol, both organic acids are produced but the formation of malic acid decreased to 45.4 and 39.4 g/L, respectively. Whereas the fumaric acid concentration was not significantly altered when cultivating with xylose (4.5 g/L), it is clearly enhanced by using glycerol (9.3 g/L). When using glucose as a carbon source, an increase or decrease of the C/N ratio did not influence malic acid production but had an enormous influence on fumaric acid production. The highest fumaric acid concentrations were determined at the highest C/N ratio (300:1, 8.44 g/L) and lowest at the lowest C/N ratio (100:1, 0.7 g/L).

  14. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenju [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wang Fang [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)] [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yao Yanli [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Hu Shengshui [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shiu, Kwok-Keung, E-mail: kkshiu@hkbu.edu.h [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-09-30

    The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H{sub 2}O{sub 2} which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H{sub 2}O{sub 2} production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M{sup -1} cm{sup -2} at an applied potential of -0.10 V in air-saturated electrolytes.

  15. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    Science.gov (United States)

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. PMID:27485503

  16. Growth of graphene films from non-gaseous carbon sources

    Science.gov (United States)

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  17. Plain to point network reduced graphene oxide - activated carbon composites decorated with platinum nanoparticles for urine glucose detection

    Science.gov (United States)

    Hossain, Mohammad Faruk; Park, Jae Y.

    2016-02-01

    In this study, a hydrothermal technique was applied to synthesize glucose-treated reduced graphene oxide-activated carbon (GRGO/AC) composites. Platinum nanoparticles (PtNP) were electrochemically deposited on the modified GRGO/AC surface, and chitosan-glucose oxidase (Chit-GOx) composites and nafion were integrated onto the modified surface of the working electrode to prepare a highly sensitive glucose sensor. The fabricated biosensor exhibited a good amperometric response to glucose in the detection range from 0.002 mM to 10 mM, with a sensitivity of 61.06 μA/mMcm2, a short response time (4 s) and a low detection limit of 2 μM (signal to noise ratio is 3). The glucose sensor exhibited a negligible response to interference and good stability. In addition, the glucose levels in human urine were tested in order to conduct a practical assessment of the proposed sensor, and the results indicate that the sensor had superior urine glucose recognition. These results thus demonstrate that the noble nano-structured electrode with a high surface area and electrocatalytic activity offers great promise for use in urine glucose sensing applications.

  18. Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH.

    Science.gov (United States)

    Wang, Hui; Yi, Jinhui; Velado, David; Yu, Yanyan; Zhou, Shuiqin

    2015-07-29

    Nanosized carbon dots (CDs) are emerging as superior fluorophores for biosensing and a bioimaging agent with excellent photostability, chemical inertness, and marginal cytotoxicity. This paper reports a facile one-pot strategy to immobilize the biocompatible and fluorescent CDs (∼6 nm) into the glucose-imprinted poly(N-isopropylacrylamide-acrylamide-vinylphenylboronic acid) [poly(NIPAM-AAm-VPBA)] copolymer microgels for continuous optical glucose detection. The CDs designed with surface hydroxyl/carboxyl groups can form complexes with the AAm comonomers via hydrogen bonds and, thus, can be easily immobilized into the gel network during the polymerization reaction. The resultant glucose-imprinted hybrid microgels can reversibly swell and shrink in response to the variation of surrounding glucose concentration and correspondingly quench and recover the fluorescence signals of the embedded CDs, converting biochemical signals to optical signals. The highly imprinted hybrid microgels demonstrate much higher sensitivity and selectivity for glucose detection than the nonimprinted hybrid microgels over a clinically relevant range of 0-30 mM at physiological pH and benefited from the synergistic effects of the glucose molecular contour and the geometrical constraint of the binding sites dictated by the glucose imprinting process. The highly stable immobilization of CDs in the gel networks provides the hybrid microgels with excellent optical signal reproducibility after five repeated cycles of addition and dialysis removal of glucose in the bathing medium. In addition, the hybrid microgels show no effect on the cell viability in the tested concentration range of 25-100 μg/mL. The glucose-imprinted poly(NIPAM-AAm-VPBA)-CDs hybrid microgels demonstrate a great promise for a new glucose sensor that can continuously monitor glucose level change. PMID:26148139

  19. EFFECT OF CARBON SOURCES ON FORMATION OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS.

    Science.gov (United States)

    WELKER, N E; CAMPBELL, L L

    1963-10-01

    Welker, N. E. (Western Reserve University, Cleveland, Ohio) and L. Leon Campbell. Effect of carbon sources on formation of alpha-amylase by Bacillus stearothermophilus. J. Bacteriol. 86:681-686. 1963.-A chemically defined medium was devised for use in alpha-amylase induction studies. The addition of 0.1% casein hydrolysate to the chemically defined medium permitted growth on fructose, and with glucose, sucrose, maltose, starch, and glycerol it shortened the lag period and increased both the growth rate and the total enzyme produced. Growth did not occur when gluconate, acetate, or succinate were used as carbon sources. alpha-Amylase was produced during the logarithmic phase of growth; the amount produced was inversely proportional to the rate of growth. The poorer the carbon source for growth (glycerol, k = 0.24; glucose, k = 0.26; sucrose, k = 0.42), the higher was the amount of enzyme produced (glycerol, 109 units/ml; glucose, 103 units/ml; sucrose, 45 units/ml). Cells grown on technical-grade maltose (k = 0.26) or starch (k = 0.42) did not conform to this relationship in that unusually large amounts of alpha-amylase were produced (362 and 225 units/ml, respectively). Cells grown on fructose or sucrose had the same growth rate (k = 0.42), but smaller amounts of alpha-amylase were produced on fructose (fructose, 0 to 4 units/ml; sucrose, 45 units/ml). An intracellular alpha-amylase was not detected in Bacillus stearothermophilus.

  20. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  1. Shunting arc plasma source for pure carbon ion beama)

    Science.gov (United States)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  2. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  3. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  4. A miniature glucose/O{sub 2} biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianchan; Zhou, Haojie [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100080 (China); Graduate School of CAS, Beijing 100049 (China); Yu, Ping; Su, Lei; Mao, Lanqun [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100080 (China); Ohsaka, Takeo [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2008-06-15

    This study demonstrates a new kind of miniature glucose/O{sub 2} biofuel cells (BFCs) based on carbon fiber microelectrodes (CFMEs) modified with single-walled carbon nanotubes (SWNTs). SWNTs are used as a support both for stably confining the electrocatalyst (i.e., methylene green, MG) for the oxidation of NADH and the anodic biocatalyst (i.e., NAD{sup +}-dependent glucose dehydrogenase, GDH) for the oxidation of glucose and for efficiently facilitating direct electrochemistry of the cathodic biocatalyst (i.e., laccase) for the O{sub 2} reduction. The prepared micro-sized GDH-based bioanode and laccase-based biocathode exhibit good bioelectrocatalytic activity toward the oxidation of glucose and the reduction of oxygen, respectively. In 0.10 M phosphate buffer containing 10 mM NAD{sup +} and 45 mM glucose under ambient air, the power density of the assembled miniature compartment-less glucose/O{sub 2} BFC reaches 58 {mu}W cm{sup -2} at 0.40 V. The stability of the miniature glucose/O{sub 2} BFC is also evaluated. (author)

  5. Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources.

    Science.gov (United States)

    van der Werf, Mariët J; Overkamp, Karin M; Muilwijk, Bas; Koek, Maud M; van der Werff-van der Vat, Bianca J C; Jellema, Renger H; Coulier, Leon; Hankemeier, Thomas

    2008-04-01

    Metabolomics is an emerging, powerful, functional genomics technology that involves the comparative non-targeted analysis of the complete set of metabolites in an organism. We have set-up a robust quantitative metabolomics platform that allows the analysis of 'snapshot' metabolomes. In this study, we have applied this platform for the comprehensive analysis of the metabolite composition of Pseudomonas putida S12 grown on four different carbon sources, i.e. fructose, glucose, gluconate and succinate. This paper focuses on the microbial aspects of analyzing comprehensive metabolomes, and demonstrates that metabolomes can be analyzed reliably. The technical (i.e. sample work-up and analytical) reproducibility was on average 10%, while the biological reproducibility was approximately 40%. Moreover, the energy charge values of the microbial samples generated were determined, and indicated that no biotic or abiotic changes had occurred during sample work-up and analysis. In general, the metabolites present and their concentrations were very similar after growth on the different carbon sources. However, specific metabolites showed large differences in concentration, especially the intermediates involved in the degradation of the carbon sources studied. Principal component discriminant analysis was applied to identify metabolites that are specific for, i.e. not necessarily the metabolites that show those largest differences in concentration, cells grown on either of these four carbon sources. For selected enzymatic reactions, i.e. the glucose-6-phosphate isomerase, triosephosphate isomerase and phosphoglyceromutase reactions, the apparent equilibrium constants (K(app)) were calculated. In several instances a carbon source-dependent deviation between the apparent equilibrium constant (K(app)) and the thermodynamic equilibrium constant (K(eq)) was observed, hinting towards a potential point of metabolic regulation or towards bottlenecks in biosynthesis routes. For glucose-6

  6. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    International Nuclear Information System (INIS)

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 μA mM-1 cm-2), linear range (0.0037-12 mM), detection limit (3.7 μM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H2O2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  7. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jin; Jaroch, David; Rickus, Jenna L; Marshall Porterfield, D [Weldon School of Biomedical Engineering, Purdue University (United States); Claussen, Jonathan C; Ul Haque, Aeraj; Diggs, Alfred R [Physiological Sensing Facility, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University (United States); McLamore, Eric S [Department of Agricultural and Biological Engineering, University of Florida (United States); Calvo-Marzal, Percy, E-mail: porterf@purdue.edu [Department of Chemistry, Purdue University (United States)

    2011-09-02

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 {+-} 0.5 {mu}A mM{sup -1} cm{sup -2}), linear range (0.0037-12 mM), detection limit (3.7 {mu}M), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H{sub 2}O{sub 2} response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  8. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Science.gov (United States)

    Shi, Jin; Claussen, Jonathan C.; McLamore, Eric S.; Haque, Aeraj ul; Jaroch, David; Diggs, Alfred R.; Calvo-Marzal, Percy; Rickus, Jenna L.; Porterfield, D. Marshall

    2011-09-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM - 1 cm - 2), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H2O2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  9. Amperometric glucose sensor based on nickel nanoparticles/carbon Vulcan XC-72R.

    Science.gov (United States)

    Abdel Hameed, R M

    2013-09-15

    A stable non-enzymatic glucose sensor was constructed by chemical deposition of nickel nanoparticles on carbon Vulcan XC-72R using microwave irradiation technique. The mode and time of microwave irradiation during nickel salt reduction were varied. This was found to affect the morphology of formed Ni/C powder as evidenced by TEM analysis. Nickel nanoparticles aggregation becomes more serious at longer microwave irradiation times. The electrocatalytic activity of different Ni/C samples towards glucose oxidation was studied in KOH solution by employing cyclic voltammetry and chronoamperometry techniques. Ni/C sample, prepared by pulse mode with total operating time of 150s, showed the highest oxidation current density. An excellent sensitivity value of 1349.7μAmM(-1)cm(-2) with a detection limit of 0.232μM was gained by Ni/C sensor. It also exhibits good reproducibility and long-term stability, as well as high selectivity with insignificant interference from ascorbic acid.

  10. Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes.

    OpenAIRE

    Vincent, O.; Carlson, M

    1998-01-01

    The carbon source-responsive element (CSRE) mediates transcriptional activation of the gluconeogenic genes during growth of the yeast Saccharomyces cerevisiae on non-fermentable carbon sources. Previous studies have suggested that the Cat8 protein activates the expression of CSRE-binding factors. We show here that one of these factors is Sip4, a glucose-regulated C6 zinc cluster activator which was identified by its interaction with the Snf1 protein kinase. We present genetic evidence that Si...

  11. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing.

    Science.gov (United States)

    Wang, Li; Ye, Yinjian; Zhu, Haozhi; Song, Yonghai; He, Shuijian; Xu, Fugang; Hou, Haoqing

    2012-11-16

    Glucose detection is very important in biological analysis, clinical diagnosis and the food industry, and especially for the routine monitoring of diabetes. This work presents an electrochemical approach to the detection of glucose based on Prussian blue (PB) nanostructures/carboxylic group-functionalized carbon nanofiber (FCNF) nanocomposites. The hybrid nanocomposites were constructed by growing PB onto the FCNFs. The obtained PB-FCNF nanocomposites were characterized by scanning electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The mechanism of formation of PB-FCNF nanocomposites was investigated and is discussed in detail. The PB-FCNF modified glassy carbon electrode (PB-FCNF/GCE) shows good electrocatalysis toward the reduction of H(2)O(2), a product from the reduction of O(2) followed by glucose oxidase (GOD) catalysis of the oxidation of glucose to gluconic acid. Further immobilizing GOD on the PB-FCNF/GCE, an amperometric glucose biosensor was achieved by monitoring the generated H(2)O(2) under a relatively negative potential. The resulting glucose biosensor exhibited a rapid response of 5 s, a low detection limit of 0.5 μM, a wide linear range of 0.02-12 mM, a high sensitivity of 35.94 μA cm(-2) mM(-1), as well as good stability, repeatability and selectivity. The sensor might be promising for practical application. PMID:23090569

  12. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  13. Development of highly sensitive amperometric biosensor for glucose using carbon nanosphere/sodium alginate composite matrix for enzyme immobilization.

    Science.gov (United States)

    Han, En; Li, Xia; Cai, Jian-Rong; Cui, Hai-Ying; Zhang, Xing-Ai

    2014-01-01

    In this study, we developed a highly sensitive amperometric biosensor for glucose detection based on glucose oxidase immobilized in a novel carbon nanosphere (CNS)/sodium alginate (SA) composite matrix. This hybrid material combined the advantages of CNS and natural biopolymer SA. This composite film was characterized by scanning electron microscope, electrochemical impedance spectroscopy and UV-vis, which indicated that the hybrid material was suitable for immobilization of glucose oxidase. Various experimental conditions were investigated that influenced the performance of the biosensor, such as pH, applied potential and temperature. Under the optimum conditions, the biosensor showed excellent performance for glucose over a wide linear concentration range from 1.0 × 10(-6) to 4.6 × 10(-3) M with a detection limit of 0.5 μM based on a signal-to-noise ratio of 3. Furthermore, the biosensor exhibited excellent long-term stability and satisfactory reproducibility. PMID:25213818

  14. Vertically-aligned Prussian blue/carbon nanotube nanocomposites on a carbon microfiber as a biosensing scaffold for ultrasensitively detecting glucose.

    Science.gov (United States)

    Gong, Kuanping

    2013-11-15

    We describe our assembly and the analytical performance of a glucose biosensor consisting of an array of carbon nanotubes (CNTs) that perpendicularly fall on a 7-μm-diameter carbon fiber and are modified by a "dual" enzymatic system-viz. glucose oxidase (GOx) and Prussian blue (PB, an artificial peroxidase). We chose to use the PB-catalyzed reduction reaction of hydrogen peroxide, an end-product of the GOx-catalyzed oxidation of glucose, to "relay" electrons from GOx to the substrate electrode. We highlight that the electrode-structural alignment of this novel biosensing system plays a crucial role in optimizing the electrochemical- and catalytic-reactions of the enzymes with their substrates. The vertical alignment of enzyme-modified CNTs with the pores located between neighboring individual CNTs creates the simplest optimized pathways for substrates to diffuse to the enzymes and for the generated electrical signals to transport along the nanotube's length to an electronic analyzer. Consequently, the glucose biosensor thus constructed exhibits a high sensitivity of 4.9 μA/mM with a detection limit of 0.05 mmol/L and long-term stability in amperometrically detecting glucose. Our long-range-order assembling of electroactive biomolecules and microscale/nanoscale materials into a multifunctional biocomposite accounts for this superb performance of vital importance in their realistic applications in deciphering glucose and hydrogen peroxide. PMID:23998372

  15. Primary Nutritional Content of Bio-Flocs Cultured with Different Organic Carbon Sources and Salinity

    Directory of Open Access Journals (Sweden)

    JULIE EKASARI

    2010-09-01

    Full Text Available Application of bio-flocs technology (BFT in aquaculture offers a solution to avoid environmental impact of high nutrient discharges and to reduce the use of artificial feed. In BFT, excess of nutrients in aquaculture systems are converted into microbial biomass, which can be consumed by the cultured animals as a food source. In this experiment, upconcentrated pond water obtained from the drum filter of a freshwater tilapia farm was used for bio-flocs reactors. Two carbon sources, sugar and glycerol, were used as the first variable, and two different levels of salinity, 0 and 30 ppt, were used as the second variable. Bio-flocs with glycerol as a carbon source had higher total n-6 PUFAs (19.1 + 2.1 and 22.3 + 8.6 mg/g DW at 0 and 30 ppt, respectively than that of glucose (4.0 + 0.1 and 12.6 + 2.5 mg/g DW at 0 and 30 ppt. However, there was no effect of carbon source or salinity on crude protein, lipid, and total n-3 PUFAs contents of the bio-flocs.

  16. Non-enzymatic amperometric glucose biosensor from zinc oxide nanoparticles decorated multi-walled carbon nanotubes.

    Science.gov (United States)

    Baby, Tessy Theres; Ramaprabhu, S

    2011-06-01

    The present work describes the development of novel ZnO dispersed multi-walled carbon nanotubes (MWNT) based non-enzymatic glucose biosensor with 1 M NaOH solution as the supporting electrolyte. For a comparison, the same material has been used for the fabrication of enzymatic biosensor and studied its electrochemical activity with phosphate buffer solution as the electrolyte. MWNT have been synthesized by catalytic chemical vapor decomposition (CCVD) and a simple sol-gel method was used for decorating crystalline ZnO nanoparticles on MWNT. Cyclic voltammetry and chronoamperometry were used to study and optimize the electrochemical performance of the resulting enzymatic and non-enzymatic ZnO/MWNT biosensors. The non enzymatic Nafion/ZnO/MWNT/GC electrode shows linearity in the range 700 nM to 31 mM with the detection limit of 500 nM. Similarly enzymatic biosensor fabricated using Nafion/GOD/ZnO/MWNT on glassy carbon electrode (GCE) shows a linearity from 1 microM to 22 mM. This excellent performance of non enzymatic Nafion/ZnO/MWNT/GC is due to high surface area, good electron transfer rate of ZnO/MWNT and the high electrochemical catalytic activity of ZnO in NaOH solution. PMID:21770093

  17. Sorption study of uranium on carbon spheres hydrothermal synthesized with glucose from aqueous solution

    International Nuclear Information System (INIS)

    The ability of oxygen-rich carbon spheres (CSs) produced by hydrothermal carbonization with the glucose has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of CSs were characterized by FT-IR and SEM. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CSs showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 25 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, ΔGdeg(298 K), ΔHdeg and ΔSdeg were determined to be -16.88, 12.09 kJ mol-1 and 197.87 J mol-1 K-1, respectively, which demonstrated the sorption process of CSs towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CSs could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 3.0 g CSs. (author)

  18. Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: the impact of carbon source

    Institute of Scientific and Technical Information of China (English)

    Jin GUO; Feng SHENG; Jianhua GUO; Xiong YANG; Mintao MA; Yongzhen PENG

    2012-01-01

    Dissolved organic matter (DOM) transforma- tion in sequence batch reactor (SBR) fed with carbon sources of different biodegradability was investigated. During the biologic degradation process, the low mole- cular weight (MW) fraction (〈 1 kDa) gradually decreased, while the refractory compounds with higher aromaticity were aggregated. Size exclusion chromatogra- phy (SEC) and fluorescence of excitation emission matrices (EEM) demonstrated that more biopolymers (polysaccharides or proteins) and humic-like substances were presented in the extracellular polymeric substance (EPS) extracted from the SBR fed with sodium acetate or glucose, while the EPS from SBR fed with slowly biodegradable dissolved organic carbon (DOC) substrate- starch had relatively less biopolymers. Comparing the EfOM in sewage effluent of three SBRs, the effluent from SBR fed with starch is more aromatic. Organic carbon with MW 〉 1 kDa as well as the hydrophobic fraction in DOM gradually increased with the carbon sources changing from sodium acetate to glucose and starch. The DOC fractiona- tion and the EEM all demonstrated that EfOM from the effluent of the SBR fed with starch contained more fulvic acid-like substances comparing with the SBR fed with sodium acetate and glucose.

  19. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors.

    Science.gov (United States)

    Ghica, M Emilia; Brett, Christopher M A

    2014-12-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer pH 7.0 at -0.20 and +0.30 V vs. SCE, respectively, and the results were compared with other similarly modified electrodes existing in the literature. An interference study and recovery measurements in natural samples were successfully performed, indicating these architectures to be good and promising biosensor platforms. PMID:25159399

  20. The source of carbon dioxide for gastric acid production.

    Science.gov (United States)

    Steer, Howard

    2009-01-01

    The source of carbon dioxide for the chemical reaction leading to the production of gastric acid is unknown. The decarboxylation of an amino acid releases carbon dioxide. Pepsinogens provide a rich source of the amino acid arginine. Both the source of carbon dioxide, arginine, and the consequence of arginine decarboxylation, agmatine, have been studied. The site of carbon dioxide production has been related to the survival of the parietal cell. An immunohistochemical study has been carried out on glycol methacrylate embedded gastric biopsies from the normal stomach of 38 adult patients. The sections have been stained using polyclonal antibody to pepsinogen II, polyclonal antibody to agmatine, and polyclonal antibody to Helicobacter pylori. Pepsinogen II and agmatine are found in the parietal cell canaliculi. This is consistent with the production of carbon dioxide from arginine in the parietal cell canaliculi. Evidence is presented for the decarboxylation of arginine derived from the activation segment of pepsinogen as the source of carbon dioxide for the production of gastric acid. The production of carbon dioxide by the decarboxylation of arginine in the parietal cell canaliculus enables the extracellular hydration of carbon dioxide at the known site of carbonic anhydrase activity. The extracellular production of acid in the canaliculus together with the presence of agmatine helps to explain why the parietal cells are not destroyed during the formation of gastric acid. Agmatine is found in the mucus secreting cells of the stomach and its role in acid protection of the stomach is discussed. Anat Rec, 2009. (c) 2008 Wiley-Liss, Inc. PMID:18951509

  1. Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection.

    Science.gov (United States)

    Jia, Xueen; Hu, Guangzhi; Nitze, Florian; Barzegar, Hamid Reza; Sharifi, Tiva; Tai, Cheuk-Wai; Wågberg, Thomas

    2013-11-27

    We report on a novel sensing platform for H2O2 and glucose based on immobilization of palladium-helical carbon nanofiber (Pd-HCNF) hybrid nanostructures and glucose oxidase (GOx) with Nafion on a glassy carbon electrode (GCE). HCNFs were synthesized by a chemical vapor deposition process on a C60-supported Pd catalyst. Pd-HCNF nanocomposites were prepared by a one-step reduction free method in dimethylformamide (DMF). The prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The Nafion/Pd-HCNF/GCE sensor exhibits excellent electrocatalytic sensitivity toward H2O2 (315 mA M(-1) cm(-2)) as probed by cyclic voltammetry (CV) and chronoamperometry. We show that Pd-HCNF-modified electrodes significantly reduce the overpotential and enhance the electron transfer rate. A linear range from 5.0 μM to 2.1 mM with a detection limit of 3.0 μM (based on the S/N = 3) and good reproducibility were obtained. Furthermore, a sensing platform for glucose was prepared by immobilizing the Pd-HCNFs and glucose oxidase (GOx) with Nafion on a glassy carbon electrode. The resulting biosensor exhibits a good response to glucose with a wide linear range (0.06-6.0 mM) with a detection limit of 0.03 mM and a sensitivity of 13 mA M(-1) cm(-2). We show that small size and homogeneous distribution of the Pd nanoparticles in combination with good conductivity and large surface area of the HCNFs lead to a H2O2 and glucose sensing platform that performs in the top range of the herein reported sensor platforms. PMID:24180258

  2. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    Science.gov (United States)

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes. PMID:25522366

  3. [Study on degradation of polycyclic aromatic hydrocarbons (PAHs) with different additional carbon sources in aged contaminated soil].

    Science.gov (United States)

    Yin, Chun-Qin; Jiang, Xin; Wang, Fang; Wang, Cong-Ying

    2012-02-01

    This study was conducted with different additional carbon sources (such as: glucose, DL-malic acid, citrate, urea and ammonium acetate) to elucidate the degradation of polycyclic aromatic hydrocarbons (PAHs) in aged contaminated soil under an indoor simulation experiment. The results showed that the quantity of CO2 emission in different additional carbon sources treatments was obviously much more than that of check treatment in the first week, and the quantity of CO2 emission in DL-malic acid treatment was the largest. The average CO2 production decreased in an order urea > glucose approximately citrate approximately DL-malic acid approximately ammonium acetate > check. Meanwhile, the amount of volatized PAHs in applied carbon sources treatments was significantly less than that in check treatment. The amount of three volatized PAHs decreased in an order phenanthrene > fluoranthene > benzo(b)fluoranthene. Compared with the check treatment, the average degradation rates of the three PAHs were significantly augmented in the supplied carbon sources treatments, in which rates of the three PAHs were much higher in DL-malic acid and urea treatments than those in other treatments. The largest proportion of residual was benzo(b)fluoranthene (from 72% to 81%) among three PAHs compounds, followed by fluoranthene (from 53% to 70% ) and phenanthrene (from 27% to 44%).

  4. Development of Novel Glucose and Pyruvate Biosensors at Poly(Neutral Red) Modified Carbon Film Electrodes. Application to Natural Samples

    OpenAIRE

    Ghica, Mariana Emilia; Brett, Christopher M. A.

    2006-01-01

    Amperometric biosensors based on the corresponding oxidase enzyme with poly(neutral red) redox mediator have been developed for the determination of glucose and pyruvate. The enzymes have been immobilized on top of poly(neutral red) modified carbon film electrodes with glutaraldehyde as the cross-linking agent. The biosensors were characterized by cyclic voltammetry and by electrochemical impedance spectroscopy. The glucose biosensor exhibited a linear response in the range 90 muM to 1.8 mM w...

  5. Nickel-phendione complex covalently attached onto carbon nanotube/cross linked glucose dehydrogenase as bioanode for glucose/oxygen compartment-less biofuel cell

    Science.gov (United States)

    Korani, Aazam; Salimi, Abdollah; Hadadzadeh, Hasan

    2015-05-01

    Here, [Ni(phendion) (phen)]Cl2 complex, (phendion and phen are 1,10-phenanthroline-5,6-dione and 5-amino-1, 10-phenanthrolin) covalently attached onto carboxyl functionalized multi walls carbon nanotube modified glassy carbon electrode (GCE/MWCNTs-COOH) using solid phase interactions and combinatorial approaches.The attached [Ni(phendion) (phen)]Cl2 complex displays a surface controlled electrode process and it acts as an effective redox mediator for electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide (NADH) at reduced overpotentials. With co-immobilization of glucose dehydrogenase enzyme (GDH) by crosslinking an effective biocatalyst for glucose oxidation designed. The onset potential and current density are -0.1 V versus Ag/AgCl electrode and 0.550 mA cm-2, which indicate the applicability of the proposed system as an efficient bioanode for biofuel cell (BFC) design. A GCE/MWCNTs modified with electrodeposited gold nanoparticles (AuNPs) as a platform for immobilization of bilirubin oxidase (BOD) and the prepared GCE/MWCNTs/AuNPs/BOD biocathode exhibits an onset potential of 0.56 V versus Ag/AgCl. The performance of the fabricated bioanode and biocathode in a membraneless enzyme based glucose/O2 biofuel cell is evaluated. The open circuit voltage of the cell and maximum current density are 520 mV and 0.233 mA cm-2, respectively, while maximum power density of 40 μWcm-2 achieves at voltage of 280 mV with stable output power after 24 h continues operation.

  6. Role of metabolite transporters in source-sink carbon allocation

    OpenAIRE

    Ludewig, Frank; Flügge, Ulf-Ingo

    2013-01-01

    Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartme...

  7. Role of metabolite transporters in source-sink carbon allocation

    OpenAIRE

    Frank eLudewig; Ulf-Ingo eFlügge

    2013-01-01

    Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g. roots, flowers, small leaves and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartment...

  8. Boronic acid functionalized N-doped carbon quantum dots as fluorescent probe for selective and sensitive glucose determination

    Science.gov (United States)

    Jiang, Guohua; Jiang, Tengteng; Li, Xia; Wei, Zheng; Du, Xiangxiang; Wang, Xiaohong

    2014-04-01

    Nitrogen doped carbon quantum dots (NCQDs) of about 10 nm in diameter have been obtained by hydrothermal reaction from collagen. Because of the superiority of water dispersion, low toxicity and ease of functionlization, the NCQDs were designed as a glucose sensor after covalent grafting by 3-aminophenylboronic (APBA) (APBA-NCQDs). The as-prepared APBA-NCQDs were imparted with glucose sensitivity and selectivity from other saccharides via fluorescence (FL) quenching effect at physiological pH and at room temperature, which show high sensitivity and specificity for glucose determination with a wide range from 1 mM to 14 mM. FL quenching mechanism of APBA-NCQDs was also investigated by adding an external quencher. The APBA-NCQDs-based platform is an environmentally friendly way to substitute inorganic quantum dots containing heavy metals which offer a facile and low cost detection method.

  9. Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lihuan [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhu Yihua, E-mail: yhzhu@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Yang Xiaoling; Li Chunzhong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2009-05-05

    A novel amperometric glucose biosensor based on the nanocomposites of multi-wall carbon nanotubes (CNT) coated with polyaniline (PANI) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) is prepared. CNT coated with protonated PANI is in situ synthesized and Pt-DENs is absorbed on PANI/CNT composite surface by self-assembly method. Then Glucose oxidase (GOx) is crosslink-immobilizated onto Pt-DENs/PANI/CNT composite film. The results show that the fabricated GOx/Pt-DENs/PANI/CNT electrode exhibits excellent response performance to glucose, such as low detection limit (0.5 {mu}M), wide linear range (1 {mu}M-12 mM), short response time (about 5 s), high sensitivity (42.0 {mu}A mM{sup -1} cm{sup -2}) and stability (83% remains after 3 weeks).

  10. Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions.

    Science.gov (United States)

    Rich, Alisa L; Patel, Jay T; Al-Angari, Samiah S

    2016-01-01

    Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.

  11. Glucose biosensor based on titanium dioxide-multiwall carbon nanotubes-chitosan composite and functionalized gold nanoparticles.

    Science.gov (United States)

    Zhang, Meihe; Yuan, Ruo; Chai, Yaqin; Li, Wenjuan; Zhong, Huaan; Wang, Cun

    2011-11-01

    In this paper, a new glucose biosensor was prepared. At first, Prussian blue (PB) was electrodeposited on a glassy carbon electrode (GCE) modified by titanium dioxide-multiwall carbon nanotubes-chitosan (TiO(2)-MWNTs-CS) composite, and then gold nanoparticles functionalized by poly(diallyldimethylammonium chloride) (PDDA-Au) were adsorbed on the PB film. Finally, the negatively charged glucose oxidase (GOD) was self-assembled on to the positively charged PDDA-Au. The electrochemical performances of the modified electrodes had been studied by cyclic voltammetry (CV) and amperometric methods, respectively. In addition, the stepwise fabrication process of the as-prepared biosensor was characterized by scanning electron microscopy. PDDA-Au nanoparticles were characterized by ultraviolet-vis absorption spectroscopy and transmission electron microscopy. Under the optimal conditions, the as-prepared biosensor exhibited a good response performance to glucose with a linear range from 6 μM to 1.2 mM with a detection limit of 0.1 μM glucose (S/N = 3). In addition, this work indicated that TiO(2)-MWNTs-CS composite and PDDA-Au nanoparticles held great potential for constructing biosensors. PMID:21720965

  12. A new amperometric glucose biosensor based on screen printed carbon electrodes with rhenium(IV - oxide as a mediator

    Directory of Open Access Journals (Sweden)

    ALBANA VESELI

    2012-11-01

    Full Text Available Rhenium(IV-oxide, ReO2, was used as a mediator for carbon paste (CPE and screen printed carbon (SPCE electrodes for the catalytic amperometric determination of hydro-gen peroxide, whose overpotential for the reduction could be lowered to -0.1 V vs. Ag/AgCl in flow injection analysis (FIA using phosphate buffer (0.1 M, pH=7.5 as a carrier. For hydrogen peroxide a detection limit (3σ of 0.8 mg L-1 could be obtained.ReO2-modified SPCEs were used to design biosensors with a template enzyme, i.e. glucose oxidase, entrapped in a Nafion membrane. The resulting glucose sensor showed a linear dynamic range up to 200 mg L-1 glucose with a detection limit (3σ of 0.6 mg L-1. The repeatability was 2.1 % RSD (n = 5 measurements, the reproducibility 5.4 % (n = 5 sensors. The sensor could be applied for the determination of glucose in blood serum in good agreement with a reference method.

  13. [Effects of exogenous glucose and starch on soil carbon metabolism of root zone and root function in potted sweet cherry].

    Science.gov (United States)

    Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo

    2015-11-01

    One-year-old potted sweet cheery trees were treated with 4 g · kg(-1) exogenous glucose or starch and with non-addition of exogenous carbon as the control for up to 60 days. Soil of root zone was sampled to analyze soil microbial biomass carbon, activities of invertase and amylase and microbial community functional diversity during the 60-day treatment, and roots were sampled for analysis of root respiratory rate, respiratory pathways and root viability after treatment for 30 days. Results showed that the invertase activity and the microbial biomass carbon initially increased and decreased subsequently, with the maxima which were 14.0% and 13.1% higher in the glucose treatment than in the control treatment appeared after 15 and 7 days of treatments, respectively. Soil organic matter content increased first then decreased and finally moderately increased again. Amylase activity was 7.5-fold higher in the starch treatment than in the control treatment after 15-day treatment. Soil microbial biomass carbon was higher in the starch treatment than in the control treatment except after 7-day treatment. Soil organic matter content initially increased and then decreased, but it was still 19.8% higher than in the control after 60-day treatment. BIOLOG results showed that the maximum average well color development (AWCD) value and microbial activity appeared after 15-day treatment in the following order: starch>glucose>control. After 30-day treatment, glucose treatment resulted in a significant increase in the soil microbial utilization of carbohydrates, carboxylic acid, amino acids, phenolic acids and amines, and starch treatment significantly increased the soil microbial utilization of carbohydrates, carboxylic acid, polymers and phenolic acids. After 30-day treatment, the total root respiratory rate and root viability were 21.4%, 19.4% and 65.5%, 37.0% higher in glucose treatment than in the control and starch treatments, respectively. These results indicated exogenous

  14. Chemoselective Synthesis of Carbamates using CO2 as Carbon Source.

    Science.gov (United States)

    Riemer, Daniel; Hirapara, Pradipbhai; Das, Shoubhik

    2016-08-01

    Synthesis of carbamates directly from amines using CO2 as the carbon source is a straightforward and sustainable approach. Herein, we describe a highly effective and chemoselective methodology for the synthesis of carbamates at room temperature and atmospheric pressure. This methodology can also be applied to protect the amino group in amino acids and peptides, and also to synthesize important pharmaceuticals. PMID:27376902

  15. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes

    OpenAIRE

    Won-Yong Jeon; Young-Bong Choi; Hyug-Han Kim

    2015-01-01

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)2/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0–1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characteriz...

  16. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG MengDong; DENG ChunYan; NIE Zhou; XU XiaHong; YAO ShouZhuo

    2009-01-01

    Amino acid ionic liquids (AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes (CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase (GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes (CNTs) modified glassy carbon (GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM (S/N=3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.

  17. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Amino acid ionic liquids(AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes(CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase(GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes(CNTs) modified glassy carbon(GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM(S/N = 3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.

  18. Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination.

    Science.gov (United States)

    El Khatib, K M; Abdel Hameed, R M

    2011-04-15

    A novel and stable non-enzymatic glucose sensor was developed based on the chemical reduction of Cu(2)O nanoparticles on Carbon Vulcan XC-72 using NaBH(4) as the reducing agent via the impregnation method. Different molar ratios of NaBH(4) to the copper salt were employed during the reduction step. This was found to affect the morphology; composition and structure of the prepared samples as investigated by TEM, EDX and XRD analyses. Cyclic voltammetry and chronoamperometry were applied to examine the electrocatalytic activity of the different samples of Cu(2)O/Carbon Vulcan XC-72 towards glucose oxidation in alkaline medium. The 'x70' sample got the highest oxidation current density and the lowest oxidation potential. The performance of this sensor was evaluated showing a wide linear range up to 6mM with sensitivity of 629 μA cm(-2)mM(-1) and detection limit of 2.4 μM. Its good tolerance to ascorbic acid with long-term stability elects Cu(2)O/Carbon Vulcan XC-72 as a promising glucose sensor.

  19. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    Science.gov (United States)

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20 g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20 g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35 g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4 g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21 g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids.

  20. Effects of carbon source on expression of alcohol oxidase activity and on morphologic pattern of YR-1 Strain, a filamentous fungus isolated from petroleum-contaminated soils.

    Science.gov (United States)

    Robelo, Carmen Rodríguez; Novoa, Vanesa Zazueta; Zazueta-Sandoval, Roberto

    2004-01-01

    Soluble alcohol oxidase (AO) activity was detected in the supernatant fraction of a high-speed centrifugation procedure after ballistic cellular homo-genization to break the mycelium from a filamentous fungus strain named YR-1, isolated from petroleum-contaminated soils. AO activity from aerobically grown mycelium was detected in growth media containing different carbon sources, including alcohols and hydrocarbons but not in glucose. In previous work, zymogram analysis conducted with crude extracts from aerobic mycelium of YR-1 strain indicated the existence of two AO enzymes originally named AO-1 and AO-2. In the present study, we were able to separate the AO-1 band into two bands depending on culture conditions, carbon source, and polyacrylamide gel electrophoresis (PAGE) separation conditions; the enzyme activity pattern in zymograms from cell-free extracts exhibited three different bands after native PAGE. New nomenclature was used for upper bands AO-1 and AO-2 and lower band AO-3, respectively. The expression of AO activity was studied in the absence of glucose in the culture media and in the presence of hydrocarbons or petroleum as sole carbon source, suggesting that AO expression could be subjected to two regulatory possibilities: carbon catabolite regulation by glucose and induction by hydrocarbons. The possibility of catabolic inhibition of AO by glucose in the active enzyme was also tested, and the results confirm that this kind of regulatory mechanism is not present in AO activity. PMID:15054203

  1. Different carbon sources affect PCB accumulation by marine bivalves.

    Science.gov (United States)

    Laitano, M V; Silva Barni, M F; Costa, P G; Cledón, M; Fillmann, G; Miglioranza, K S B; Panarello, H O

    2016-02-01

    Pampean creeks were evaluated in the present study as potential land-based sources of PCB marine contamination. Different carbon and nitrogen sources from such creeks were analysed as boosters of PCB bioaccumulation by the filter feeder bivalve Brachidontes rodriguezii and grazer limpet Siphonaria lessoni. Carbon of different source than marine and anthropogenic nitrogen assimilated by organisms were estimated through their C and N isotopic composition. PCB concentration in surface sediments and mollusc samples ranged from 2.68 to 6.46 ng g(-1) (wet weight) and from 1074 to 4583 ng g(-1) lipid, respectively, reflecting a punctual source of PCB contamination related to a landfill area. Thus, despite the low flow of creeks, they should not be underestimated as contamination vectors to the marine environment. On the other hand, mussels PCB bioaccumulation was related with the carbon source uptake which highlights the importance to consider this factor when studying PCB distribution in organisms of coastal systems.

  2. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates.

    Science.gov (United States)

    Schmidt, Olaf; Dyckmans, Jens; Schrader, Stefan

    2016-01-01

    We tested experimentally if photoautotrophic microorganisms are a carbon source for invertebrates in temperate soils. We exposed forest or arable soils to a (13)CO2-enriched atmosphere and quantified (13)C assimilation by three common animal groups: earthworms (Oligochaeta), springtails (Hexapoda) and slugs (Gastropoda). Endogeic earthworms (Allolobophora chlorotica) and hemiedaphic springtails (Ceratophysella denticulata) were highly (13)C enriched when incubated under light, deriving up to 3.0 and 17.0%, respectively, of their body carbon from the microbial source in 7 days. Earthworms assimilated more (13)C in undisturbed soil than when the microbial material was mixed into the soil, presumably reflecting selective surface grazing. By contrast, neither adult nor newly hatched terrestrial slugs (Deroceras reticulatum) grazed on algal mats. Non-photosynthetic (13)CO2 fixation in the dark was negligible. We conclude from these preliminary laboratory experiments that, in addition to litter and root-derived carbon from vascular plants, photoautotrophic soil surface microorganisms (cyanobacteria, algae) may be an ecologically important carbon input route for temperate soil animals that are traditionally assigned to the decomposer channel in soil food web models and carbon cycling studies. PMID:26740559

  3. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    International Nuclear Information System (INIS)

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H2O2. The observed sensitivities for the electrocatalytic oxidation and reduction of H2O2 at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M−1, respectively. The detection limit (S/N = 3) for H2O2 was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M−1 and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M−1 and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H2O2 reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor

  4. Production of bacterial cellulose using different carbon sources and culture media.

    Science.gov (United States)

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-01

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates.

  5. Production of bacterial cellulose using different carbon sources and culture media.

    Science.gov (United States)

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-01

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates. PMID:25498666

  6. Methane and carbon at equilibrium in source rocks

    OpenAIRE

    Mango, Frank D

    2013-01-01

    Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C  Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are i...

  7. Application of biogenic carbon dioxide produced by yeast with different carbon sources for attraction of mosquitoes towards adult mosquito traps.

    Science.gov (United States)

    Sukumaran, D; Ponmariappan, S; Sharma, Atul K; Jha, Hemendra K; Wasu, Yogesh H; Sharma, Ajay K

    2016-04-01

    Surveillance is a prime requisite for controlling arthropod vectors like mosquitoes that transmit diseases such as malaria, dengue and chikungunya. Carbon dioxide (CO2) is one of the main cues from vertebrate breath that attracts mosquitoes towards the host. Hence, CO2 is used as an attractant during surveillance of mosquitoes either from commercial cylinders or dry ice for mosquito traps. In the present study, the biogenic carbon dioxide production was optimized with different carbon sources such as glucose, simple sugar and jaggery with and without yeast peptone dextrose (YPD) media using commercial baker's yeast. The results showed that yeast produced more biogenic CO2 with simple sugar as compared to other carbon sources. Further substrate concentration was optimized for the continuous production of biogenic CO2 for a minimum of 12 h by using 10 g of baker's yeast with 50 g of simple sugar added to 1.5 l distilled water (without YPD media) in a 2-l plastic bottle. This setup was applied in field condition along with two different mosquito traps namely Mosquito Killing System (MKS) and Biogents Sentinel (BGS) trap. Biogenic CO2 from this setup has increased the trapping efficiency of MKS by 6.48-fold for Culex quinquefasciatus, 2.62-fold for Aedes albopictus and 1.5-fold for Anopheles stephensi. In the case of BGS, the efficiency was found to be increased by 3.54-fold for Ae. albopictus, 4.33-fold for An. stephensi and 1.3-fold for Armigeres subalbatus mosquitoes. On the whole, plastic bottle setup releasing biogenic CO2 from sugar and yeast has increased the efficiency of MKS traps by 6.38-fold and 2.74-fold for BGS traps as compared to traps without biogenic CO2. The present study reveals that, among different carbon sources used, simple sugar as a substance (which is economical and readily available across the world) yielded maximum biogenic CO2 with yeast. This setup can be used as an alternative to CO2 cylinder and dry ice in any adult mosquito traps to

  8. Modern Approach to the Synthesis of Ni(OH)2 Decorated Sulfur Doped Carbon Nanoparticles for the Nonenzymatic Glucose Sensor.

    Science.gov (United States)

    Karikalan, Natarajan; Velmurugan, Murugan; Chen, Shen-Ming; Karuppiah, Chelladurai

    2016-08-31

    As a growing aspect of materials science, there are an enormous number of synthesis routes that have been identified to produce materials, particularly through simple methodologies. In this way, the present study focuses on the easiest way to prepare sulfur doped carbon nanoparticles (SDCNs) using a flame synthesis method and has also demonstrated a novel route to synthesize Ni(OH)2 decorated SDCNs by a simple adsorption cum precipitation method. The SDCNs are alternative candidates to prestigious carbon materials such as graphene, carbon nanotubes, and fullerenes. Moreover, SDCNs provide excellent support to the Ni(2+) ion adsorption and initiate the formation of Ni(OH)2. The formation of Ni(OH)2 on the SDCN matrix was confirmed by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), selected area diffraction pattern (SAED), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). After these meticulous structural evaluations, we have described the mechanism for the formation of Ni(OH)2 on an SDCN matrix. The as-prepared Ni(OH)2 decorated SDCN nanocomposites were used as an electrode material for nonenzymatic glucose sensors. The fabricated glucose sensor exhibited a wide linear concentration range, 0.0001-5.22 mM and 5.22-10.22 mM, and a low-level detection limit of 28 nM. Additionally, it reveals excellent selectivity in the potentially interfering ions and also possesses a good stability. The practicality of the fabricated glucose sensor was also demonstrated toward glucose detection in biological samples. PMID:27519122

  9. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery

    Science.gov (United States)

    Jiang, Guozhan; Hill, David J.; Kowalczuk, Marek; Johnston, Brian; Adamus, Grazyna; Irorere, Victor; Radecka, Iza

    2016-01-01

    Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs. PMID:27447619

  10. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery

    Directory of Open Access Journals (Sweden)

    Guozhan Jiang

    2016-07-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.

  11. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery.

    Science.gov (United States)

    Jiang, Guozhan; Hill, David J; Kowalczuk, Marek; Johnston, Brian; Adamus, Grazyna; Irorere, Victor; Radecka, Iza

    2016-01-01

    Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs' biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels' production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs. PMID:27447619

  12. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment.

    Science.gov (United States)

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-02-01

    Food wastes were used for anaerobic fermentation to prepare carbon sources for enhancing nitrogen removal in wastewater treatment. Under anaerobic conditions without pH adjustment, the fermentation liquid from food wastes (FLFW) with a high organic acid content was produced at room temperature (25 °C) and initial solid concentration of 13%. Using FLFW as the sole carbon source of artificial wastewater for biological treatment by sequence batch operation, maximized denitrification (with a denitrification rate of V(DN) = 12.89 mg/gVSS h and a denitrification potential of P(DN) = 0.174 gN/gCOD) could be achieved at a COD/TN ratio of 6. The readily biodegradable fraction in the FLFW was evaluated as 58.35%. By comparing FLFW with glucose and sodium acetate, two commonly used chemical carbon sources, FLFW showed a denitrification result similar to sodium acetate but much better than glucose in terms of total nitrogen removal, V(DN), P(DN), organic matter consumption rate (V(COD)) and heterotrophy anoxic yield coefficient (Y(H)).

  13. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria.

    Science.gov (United States)

    Rios-Covian, David; Arboleya, Silvia; Hernandez-Barranco, Ana M; Alvarez-Buylla, Jorge R; Ruas-Madiedo, Patricia; Gueimonde, Miguel; de los Reyes-Gavilan, Clara G

    2013-12-01

    Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics. PMID:24077708

  14. Regulatory switches for hierarchical use of carbon sources in E. coli

    Directory of Open Access Journals (Sweden)

    Ruth S. Perez-Alfaro

    2014-09-01

    Full Text Available In this work we study the preferential use of carbon sources in the bacterium Escherichia coli. To that end we engineered transcriptional fusions of the reporter gene gfpmut2, downstream of transcription-factor promoters, and analyzed their activity under several conditions. The chosen transcription factors are known to regulate catabolic operons associated to the consumption of alternative sugars. The obtained results indicate the following hierarchical order of sugar preference in this bacterium: glucose > arabinose > sorbitol > galactose. Further dynamical results allowed us to conjecture that this hierarchical behavior might be operated by at least the following three regulatory strategies: 1 the coordinated activation of the corresponding operons by the global regulator catabolic repressor protein (CRP, 2 their asymmetrical responses to specific and unspecific sugars and, 3 the architecture of the associated gene regulatory networks.

  15. Electrochemical behavior of gold nanoparticles modified nitrogen incorporated tetrahedral amorphous carbon and its application in glucose sensing.

    Science.gov (United States)

    Liu, Aiping; Wu, Huaping; Qiu, Xu; Tang, Weihua

    2011-12-01

    Gold nanoparticles (NPs) with 10-50 nm in diameter were synthesized on nitrogen incorporated tetrahedral amorphous carbon (ta-C:N) thin film electrode by electrodeposition. The deposition and nucleation processes of Au on ta-C:N surface were investigated by cyclic voltammetry and chronoamperometry. The morphology of Au NPs was characterized by scanned electron microscopy. The electrochemical properties of Au NPs modified ta-C:N (ta-C:N/Au) electrode and its ability to sense glucose were investigated by voltammetric and amperometric measurements. The potentiostatic current-time transients showed a progressive nucleation process and diffusion growth of Au on the surface of ta-C:N film according to the Scharifker-Hills model. The Au NPs acted as microelectrodes improved the electron transfer and electrocatalytic oxidation of glucose on ta-C:N electrode. The ta-C:N/Au electrode exhibited fast current response, a linear detection range of glucose from 0.5 to 25 mM and a detection limit of 120 microM, which hinted its potential application as a glucose biosensor. PMID:22409057

  16. An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods

    International Nuclear Information System (INIS)

    We describe a highly sensitive electrochemical enzymatic glucose biosensor. A glassy carbon electrode was modified with cylinder-shaped titanium dioxide nanorods (TiO2-NRs) for the immobilization of glucose oxidase. The modified nanorods and the enzyme biosensor were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The glucose oxidase on the TiO2-NRs displays a high activity and undergoes fast surface-controlled electron transfer. A pair of well-defined quasi-reversible redox peaks was observed at −0.394 and −0.450 V. The TiO2-NRs provide a good microenvironment to facilitate the direct electron transfer between enzyme and electrode surface. The biosensor has two linear response ranges, viz. from 2.0 to 52 μM, and 0.052 to 2.3 mM. The lower detection limit is 0.5 μM, and the sensitivity is 68.58 mA M−1 cm−2. The glucose biosensor is selective, well reproducible, and stable. In our perception, the cylindrically shaped TiO2-NRs provide a promising support for the immobilization of proteins and pave the way to the development of high-performance biosensors. (author)

  17. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    Science.gov (United States)

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability.

  18. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Won-Yong Jeon

    2015-12-01

    Full Text Available Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO electrodes (DSPNCE were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH2/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV, scanning from 0–1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM, X-ray photoelectron spectroscopy (XPS, and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0–10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA or ascorbic acid (AA. Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  19. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes.

    Science.gov (United States)

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-01-01

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)₂/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0-1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0-10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor. PMID:26690438

  20. Diabetes Numeracy and Blood Glucose Control: Association With Type of Diabetes and Source of Care

    OpenAIRE

    Zaugg, Stephanie D.; Dogbey, Godwin; Collins, Karen; Reynolds, Sharon; Batista, Carter; Brannan, Grace; Shubrook, Jay H.

    2014-01-01

    Limited diabetes numeracy may be an important factor affecting diabetes care and treatment adherence. This study assessed the relationship between the Diabetes Numeracy Test (DNT-15 score) and patient and treatment variables. Patients who had type 1 diabetes and those who received care from specialty centers had higher levels of numeracy, but this did not translate into improved glucose control.

  1. A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva.

    Science.gov (United States)

    Ye, Daixin; Liang, Guohai; Li, Huixiang; Luo, Juan; Zhang, Song; Chen, Hui; Kong, Jilie

    2013-11-15

    Here, we report on a novel nonenzymatic amperometric glucose sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode. The results of the scanning electron microscopy indicate that electronic network was formed through their direct binding with the graphene/carbon nanofiber, which leads to larger active surface areas and faster electron transfer for the glucose sensor. High electrocatalytic activity toward the oxidation of glucose was observed with a rapid response (<2 s), a low detection limit (0.1 µM), a wide and useful linear range (1-5.3 mM) as well as good stability and repeatability. Moreover, the common interfering species, such as ascorbic acid, uric acid, dopamine and so forth did not cause obvious interference. The sensor can also be used for quantification of glucose concentration in real saliva samples. Therefore, this work has demonstrated a simple and effective sensing platform for nonenzymatic detection of glucose. PMID:24148397

  2. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    International Nuclear Information System (INIS)

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility

  3. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Gao, Peng; Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn; Du, Dezhuang [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 (China); Guo, Jun [Testing and Analysis Center, Soochow University, Suzhou 215123 (China)

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  4. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States

    Science.gov (United States)

    Briggs, Nicole L.; Long, Christopher M.

    2016-11-01

    An increasing number of air pollution source apportionment studies in Europe and the United States have focused on the black carbon (BC) fraction of ambient particulate matter (PM) given its linkage with adverse public health and climate impacts. We conducted a critical review of European and US BC source apportionment studies published since 2003. Since elemental carbon (EC) has been used as a surrogate measure of BC, we also considered source apportionment studies of EC measurements. This review extends the knowledge presented in previous ambient PM source apportionment reviews because we focus on BC and EC and critically examine the differences between source apportionment results for different methods and source categories. We identified about 50 BC and EC source apportionment studies that have been conducted in either Europe or the US since 2003, finding a striking difference in the commonly used source apportionment methods between the two regions and variations in the assigned source categories. Using three dominant methodologies (radiocarbon, aethalometer, and macro-tracer methods) that only allow for BC to be broadly apportioned into either fossil fuel combustion or biomass burning source categories, European studies generally support fossil fuel combustion as the dominant ambient BC source, but also show significant biomass burning contributions, in particular in wintertime at non-urban locations. Among US studies where prevailing methods such as chemical mass balance (CMB) and positive matrix factorization (PMF) models have allowed for estimation of more refined source contributions, there are fewer findings showing the significance of biomass burning and variable findings on the relative proportion of BC attributed to diesel versus gasoline emissions. Overall, the available BC source apportionment studies provide useful information demonstrating the significance of both fossil fuel combustion and biomass burning BC emission sources in Europe and the US

  5. Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes.

    Science.gov (United States)

    Nie, Huagui; Yao, Zhen; Zhou, Xuemei; Yang, Zhi; Huang, Shaoming

    2011-12-15

    A nonenzymatic electrochemical sensor device was fabricated for glucose detection based on nickel nanoparticles (NiNPs)/straight multi-walled carbon nanotubes (SMWNTs) nanohybrids, which were synthesized through in situ precipitation procedure. SMWNTs can be easily dispersed in solution after mild sonication pretreatment, which facilitates the precursor of NiNPs binding to their surface and results in the homogeneous distribution of NiNPs on the surface of SMWNTs. The morphology and component of the nanohybrids were characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD), respectively. Cyclic voltammetry (CV) and amperometry were used to evaluate the catalytic activity of the NiNPs/SMWNTs nanohybrids modified electrode towards glucose. It was found that the nanohybrids modified electrode showed remarkably enhanced electrocatalytic activity towards the oxidation of glucose in alkaline solution compared to that of the bare glass carbon electrode (GCE), the NiNPs and the SMWNTs modified electrode, attributing to the synergistic effect of SMWNTs and Ni(2+)/Ni(3+) redox couple. Under the optimal detection conditions, the as-prepared sensors exhibited linear behavior in the concentration range from 1 μM to 1 mM for the quantification of glucose with a limit of detection of 500 nM (3σ). Moreover, the NiNPs/SMWNTs modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA), galactose (GA), and xylose (XY). The robust selectivities, sensitivities, and stabilities determined experimentally indicated the great potential of NiNPs/SMWNTs nanohybrids for construction of a variety of electrochemical sensors. PMID:21955756

  6. Effect of Carbon Sources on the Catalytic Performance of Ni/β-Mo2C.

    Science.gov (United States)

    Zeng, Li-Zhen; Zhao, Shao-Fei; Li, Wei-Shan

    2015-06-01

    In this paper, Ni/β-Mo2C(S) and Ni/β-Mo2C(G) were prepared from solution-derived precursor with two different carbon sources (starch and glucose) and tested as anodic noble-metal-free catalysts in air-cathode microbial fuel cells (MFCs). The carburized catalyst samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the electrocatalyst towards the oxidation of several common microbial fermentation products (formate, lactate, and ethanol) was studied for MFC based on Klebsiella pneumoniae conditions. The composite MFC anodes were fabricated, and their catalytic behavior was investigated. With different carbon sources, the crystalline structure does not change and the crystallinity and surface area increase. The electrocatalytic experiments show that the Ni/β-Mo2C(G) gives the better bio- and electrocatalytic performance than Ni/β-Mo2C(S) due to its higher crystallinity and BET surface area.

  7. Amperometric Detection of Aqueous Silver Ions by Inhibition of Glucose Oxidase Immobilized on Nitrogen-Doped Carbon Nanotube Electrodes.

    Science.gov (United States)

    Rust, Ian M; Goran, Jacob M; Stevenson, Keith J

    2015-07-21

    An amperometric glucose biosensor based on immobilization of glucose oxidase on nitrogen-doped carbon nanotubes (N-CNTs) was successfully developed for the determination of silver ions. Upon exposure to glucose, a steady-state enzymatic turnover rate was detected through amperometric oxidation of the H2O2 byproduct, directly related to the concentration of glucose in solution. Inhibition of the steady-state enzymatic glucose oxidase reaction by heavy metals ions such as Ag(+), produced a quantitative decrease in the steady-state rate, subsequently creating an ultrasensitive metal ion biosensor through enzymatic inhibition. The Ag(+) biosensor displayed a sensitivity of 2.00 × 10(8) ± 0.06 M(-1), a limit of detection (σ = 3) of 0.19 ± 0.04 ppb, a linear range of 20-200 nM, and sample recovery at 101 ± 2%, all acquired at a low-operating potential of 0.05 V (vs Hg/Hg2SO4). Interestingly, the biosensor does not display a loss in sensitivity with continued use due to the % inhibition based detection scheme: loss of enzyme (from continued use) does not influence the % inhibition, only the overall current associated with the activity loss. The heavy metals Cu(2+) and Co(2+) were also detected using the enzyme biosensor but found to be much less inhibitory, with sensitivities of 1.45 × 10(6) ± 0.05 M(-1) and 2.69 × 10(3) ± 0.07 M(-1), respectively. The mode of GOx inhibition was examined for both Ag(+) and Cu(2+) using Dixon and Cornish-Bowden plots, where a strong correlation was observed between the inhibition constants and the biosensor sensitivity. PMID:26079664

  8. Carbon trading and carbon taxation: how to consider biotic sources and sinks

    International Nuclear Information System (INIS)

    The Kyoto Protocol (KP) to the UNFCCC includes land-use change and forestry in the carbon accounting process, limited to afforestation, reforestation and deforestation since 1990, and explicitly provides for the option of using a variety of flexibility mechanisms to meet the greenhouse gas (GHG) reduction targets stipulated in a more cost-efficient manner. Domestically, different countries might adopt different approaches to achieve their emission reduction objectives, such as carbon trading or carbon taxation, and it is not clear to date what the implications for bioenergy use, forestry, and land-use change can be expected to be. With respect to national GHG emissions trading, the main issues studied in this paper are: Should trading of fossil fuel emissions allowances be coupled with trading of biotic credits and debits? Should credits for carbon sequestration in forests be auctioned or grandfathered? Should there be a distinction between a carbon permit issued for an additional biotic sink and those issued for fossil fuel carbon emissions? Is there a difference for biotic carbon sinks and sources between one-time permits and permits that allow a continued release of GHG over some pre-specified time? Should permits be issued only for the carbon-stock changes that count under the KP? With respect to national carbon taxation schemes, two questions are investigated: Should a tax credit be given for afforestation/reforestation (and a tax debit for deforestation)? Should tax credits also be given for projects that sequester carbon but do not count under the KP (such as forest protection rather than forest management)? For both schemes a crucial point is that by the formulation chosen in the KP two different classes of forest are created (i.e. those counted and those not counted under the KP), so that the implications for land prices might be significant. From a conceptual point of view this paper addresses the above-mentioned questions and contrasts some of the major

  9. Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15

    International Nuclear Information System (INIS)

    In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s-1 in 0.1 M phosphate buffer solution (PBS) (pH 7.12). Furthermore, it was also discovered that, in the presence of O2, GOD immobilized on Nafion and MC-FDU-15 matrices could produce a linear response to glucose. Thus, Nafion/GOD-MC-FDU-15/GC electrode is hopeful to be used in glucose biosensor. In addition, GOD immobilized on MC-FDU-15 and Nafion matrices possesses an excellent bioelectrocatalytic activity for the reduction of O2. So, the Nafion/GOD-MC-FDU-15/GC electrode can be utilized as the cathode in biofuel cell.

  10. Carbon source and myc expression influence the antiproliferative actions of metformin.

    Science.gov (United States)

    Javeshghani, Shiva; Zakikhani, Mahvash; Austin, Shane; Bazile, Miguel; Blouin, Marie-José; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael N

    2012-12-01

    Epidemiologic and experimental data have led to increased interest in possible roles of biguanides in cancer prevention and/or treatment. Prior studies suggest that the primary action of metformin is inhibition of oxidative phosphorylation, resulting in reduced mitochondrial ATP production and activation of AMPK. In vitro, this may lead to AMPK-dependent growth inhibition if AMPK and its effector pathways are intact or to an energetic crisis if these are defective. We now show that the effect of exposure of several transformed cell lines to metformin varies with carbon source: in the presence of glutamine and absence of glucose, a 75% decrease in cellular ATP and an 80% decrease in cell number is typical; in contrast, when glucose is present, metformin exposure leads to increased glycolysis, with only a modest reduction in ATP level and cell number. Overexpression of myc was associated with sensitization to the antiproliferative effects of metformin, consistent with myc involvement in "glutamine addiction". Our results reveal previously unrecognized factors that influence metformin sensitivity and suggest that metformin-induced increase in glycolysis attenuates the antiproliferative effects of the compound. PMID:23041548

  11. Trace Metal Source Terms in Carbon Sequestration Environments

    Energy Technology Data Exchange (ETDEWEB)

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  12. Effect on the Growth of Denitrifying Bacteria from Different Carbon Sources%不同碳源对反硝化细菌生长的影响

    Institute of Scientific and Technical Information of China (English)

    李建; 潘康成

    2012-01-01

    The growth of bacteria was relative to carbon sources intimately. The experiment was designed to find the best carbon source in enlarging denitrifying bacteria by research into effect on the growth of denitrifying bacteria from different carbon sources. The 5 carbon sources including glucose, potassium sodium tartrate, cane sugar, acetic acid and ethanol were used as the only carbon source respectively taking denitrifying bacteria into liquid culture media in the contrast test. Live bacteria number was used to denitrifying bacteria from different carbon sources. The results made it clear that of denitrifying bacteria more remarkably than the others. The results indicated others in enlarging denitrifying bacteria. estimate effect on the growth of glucose could promote the growth that glucose was better than the%细菌的生长速度和碳源有非常密切的关系,研究不同碳源对反硝化细菌生长的影响,以找到适合用于扩大培养菌种的最佳碳源。分别采用葡萄糖、酒石酸钾钠、蔗糖、乙酸和乙醇5种碳源作为唯一碳源,接种反硝化细菌进行对比实验,采用活菌数来反映不同碳源对反硝化细菌生长的影响。结果显示,葡萄糖促进反硝化细菌生长的作用明显优于其余4种碳源。对反硝化细菌进行扩大培养,葡萄糖的效果是比较好的。

  13. A Carbon Nanotube Electron Source Based Ionization Vacuum Gauge

    Energy Technology Data Exchange (ETDEWEB)

    Changkun Dong; Ganapati Myneni

    2003-10-01

    The results of fabrication and performance of an ionization vacuum gauge using a carbon nanotube (CNT) electron source are presented. The electron source was constructed with multi-wall nanotubes (MWNT), which were grown using thermal chemical vapor deposition (CVD) process. The electron emission of the source was stable in vacuum pressure up to 10-7 Torr, which is better than the metal field emitters. The measurement linearity of the gauge was better than {+-}10% from 10-6 to 10-10 Torr. The gauge sensitivity of 4 Torr-1 was achieved under 50 {micro}A electron emission in nitrogen. The gauge is expected to find applications in vacuum measurements from 10-7 Torr to below 10-11 Torr.

  14. Optical Performance of Carbon-Nanotube Electron Sources

    Science.gov (United States)

    de Jonge, Niels; Allioux, Myriam; Oostveen, Jim T.; Teo, Kenneth B.; Milne, William I.

    2005-05-01

    The figure of merit for the electron optical performance of carbon-nanotube (CNT) electron sources is presented. This figure is given by the relation between the reduced brightness and the energy spread in the region of stable emission. It is shown experimentally that a CNT electron source exhibits a highly stable emission process that follows the Fowler-Nordheim theory for field emission, fixing the relationship among the energy spread, the current, and the radius. The performance of the CNT emitter under realistic operating conditions is compared with state-of-the-art electron point sources. It is demonstrated that the reduced brightness is a function of the tunneling parameter, a measure of the energy spread at low temperatures, only, independent of the geometry of the emitter.

  15. Effects of carbon sources, oxygenation and ethanol on the production of inulinase by Kluyveromyces marxianus YX01

    Directory of Open Access Journals (Sweden)

    JIAOQI GAO

    2012-01-01

    Full Text Available Inulinase is one of the most important factors in consolidated bioprocessing, which combines enzyme production, inulin saccharification, and ethanol fermentation into a single process. In our study, inulinase production and cell growth of Kluyveromyces marxianus YX01 under different conditions were studied. Carbon source was shown to be significant on the production of inulinase, because the activity of inulinase was higher using inulin as a carbon source compared with glucose or fructose. The concentration of the carbon source had a repressive effect on the activity of inulinase. When the concentration was increased to 60 g/L, inulinase activity was only 50% compared with carbon source concentration of 20 g/L. Enzyme activity was also strongly influenced by aeration rate. It has been shown that the activity of inulinase and cell growth under anaerobic conditions were maintained at low levels, but aeration at 1.0 vvm (air volume/broth volume minute led to higher activity. Inulinase activity per unit biomass was not significantly different under different aeration rates. Ethanol had a repressive effect on the cell growth. Cells ceased growing when the level of ethanol was greater than 9% (v/v, but ethanol did not affect the activity of secreted inulinase and the enzyme was stable at ethanol concentration up to 15%.

  16. Utilization of carbon sources in a northern Brazilian mangrove ecosystem

    Science.gov (United States)

    Giarrizzo, Tommaso; Schwamborn, Ralf; Saint-Paul, Ulrich

    2011-12-01

    Carbon and nitrogen stable isotope ratios ( 13C and 15N) and trophic level (TL) estimates based on stomach content analysis and published data were used to assess the contribution of autotrophic sources to 55 consumers in an intertidal mangrove creek of the Curuçá estuary, northern Brazil. Primary producers showed δ 13C signatures ranging between -29.2 and -19.5‰ and δ 15N from 3.0 to 6.3‰. The wide range of the isotopic composition of carbon of consumers (-28.6 to -17.1‰) indicated that different autotrophic sources are important in the intertidal mangrove food webs. Food web segregation structures the ecosystem into three relatively distinct food webs: (i) mangrove food web, where vascular plants contribute directly or indirectly via POM to the most 13C-depleted consumers (e.g. Ucides cordatus and zooplanktivorous food chains); (ii) algal food web, where benthic algae are eaten directly by consumers (e.g. Uca maracoani, mullets, polychaetes, several fishes); (iii) mixed food web where the consumers use the carbon from different primary sources (mainly benthivorous fishes). An IsoError mixing model was used to determine the contributions of primary sources to consumers, based on δ 13C values. Model outputs were very sensitive to the magnitude of trophic isotope fractionation and to the variability in 13C data. Nevertheless, the simplification of the system by a priori aggregation of primary producers allowed interpretable results for several taxa, revealing the segregation into different food webs.

  17. Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source

    International Nuclear Information System (INIS)

    Highlights: • Bamboo fiber and waste paper were pyrolyzed to generate bamboo carbon and waste paper carbon as anode fuels of IT-DCFC. • Superior cell performance was achieved with the waste paper carbon. • The results suggested the high performance was due to the highest thermal reactivity and the catalytic inherent impurities. • Calcite and kaolinite as inherent impurities favored the thermal decomposition and the electrooxidation of carbon. - Abstract: Three kinds of carbon sources obtained from carbon black, bamboo fiber and waste paper were investigated as anode fuels in an intermediate temperature direct carbon fuel cell. The carbon sources were characterized with X-ray photoelectron spectroscopy, thermal gravimetric analysis, etc. The results indicated that the waste paper carbon was more abundant in calcite and kaolinite, and showed higher thermal reactivity in the intermediate temperature range compared with the other two carbon sources. The cell performance was tested at 650 °C in a hybrid single cell, using Sm0.20Ce0.80O2−x as the electrolyte. As a result, the cell fed with waste paper carbon showed the highest performance among the three carbon sources, with a peak power density of 225 mW cm−2. The results indicated that its inherent impurities, such as calcite and kaolinite, might favor the thermal gasification of renewable carbon sources, which resulted in the enhanced performance of the intermediate temperature direct carbon fuel cell

  18. Carbon sources and fates in the Gulf of Papua

    Science.gov (United States)

    Goni, M. A.; Monacci, N. M.; Gisewhite, R. A.; Ogston, A.; Crockett, J.; Nittrouer, C.

    2006-12-01

    Seabed sediments were collected along the particle-dispersal system associated with the Fly River-Gulf of Papua continental margin as part of the source to sink program in Papua New Guinea. Box and kasten cores were collected from the subaqueous delta located adjacent to the mouth of the Fly River as well as from the topset, foreset and bottomset regions of the active clinoform in the northern region of the Gulf of Papua. Analyses of elemental (organic carbon, inorganic carbon, nitrogen), stable isotopic (d13C and d15N), radiocarbon (14C), and biomarker (CuO oxidation products) signatures reveal significant differences in the content and composition of sedimentary organic matter (OM) along the dispersal system. The major sources of OM to the system appear to be remains of vascular plants, soil OM from the drainage basin, and materials derived from autochthonous productivity. The geographical contrasts in the concentrations and accumulation fluxes of these distinct types of allochthonous and autochthonous OM are presented in the context of patterns of sediment transport and deposition within the region. An overall OM budget for the whole dispersal system will be presented and its implication for carbon sequestration in fluvial-dominated continental margins discussed.

  19. Russia's black carbon emissions: focus on diesel sources

    Science.gov (United States)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  20. Highly sensitive nonenzymatic glucose sensor based on nickel nanoparticle-attapulgite-reduced graphene oxide-modified glassy carbon electrode.

    Science.gov (United States)

    Shen, Zongxu; Gao, Wenyu; Li, Pei; Wang, Xiaofang; Zheng, Qing; Wu, Hao; Ma, Yuehui; Guan, Weijun; Wu, Songmei; Yu, Yu; Ding, Kejian

    2016-10-01

    In this article, a fast and sensitive nonenzymatic glucose sensor is reported utilizing a glassy carbon electrode modified by synthesizing nanocomposites of nickel nanoparticle-attapulgite-reduced graphene oxide (Ni NPs/ATP/RGO). A facile one-step electrochemical co-deposition approach is adopted to synthesize Ni NPs-ATP-RGO nanocomposites via electrochemical reduction of mixed precursor solution containing graphene oxide (GO), attapulgite (ATP) and nickel cations (Ni(2+)) at the cathode potentials. This strategy results in simultaneous depositions of ATP, cathodic reduction of Ni(2+) into nickel nanoparticles under acidic conditions, and in situ reduction of GO. The as-prepared NiNPs/ATP/RGO-based glucose sensor exhibits outstanding performance for enzymeless glucose sensing with sensitivity (1414.4 μAmM(-1)cm(-2)), linear range (1-710μM) and detection limit (0.37μM). What is more, the sensor has excellent stability and selectivity against common interferences in real sample. PMID:27474298

  1. Amperometric glucose biosensor based on Prussian blue-multiwall carbon nanotubes composite and hollow PtCo nanochains

    Energy Technology Data Exchange (ETDEWEB)

    Che Xin [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.c [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Li Jingjing; Song Zhongju; Li Wenjuan [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2010-07-30

    In this paper, a novel glucose biosensor was developed based on immobilizing glucose oxidase (GOD) on Prussian blue-multiwall carbon nanotubes (PB-MWNTs) composite and hollow PtCo (H-PtCo) nanochains modified electrode. The PB-MWNTs/H-PtCo membrane showed good biocompatibility, large surface-to-volume ratio and excellent electron-conductive ability. The successful fabrication of the PB-MWNTs composite synthesized with MWNTs as a template and Fe(III)-reducer were characterized by UV-vis absorption spectroscopy, Fourier transform infrared (FTIR) spectrometry and transmission electron microscopy (TEM). The hollow PtCo nanochains were also characterized by TEM and X-ray photoelectron spectroscopy (XPS). The response of the biosensor towards glucose under the optimized conditions, as investigated by chronoamperometry, is linear from 3.0 {mu}M to 3.6 mM, with a low detection limit of 0.85 {mu}M (S/N = 3) and a high sensitivity 21 mA M{sup -1} cm{sup -2}. Moreover, the biosensor exhibits strong anti-interferent ability, good reproducibility and excellent stability.

  2. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir; Khosravi, Mehdi; Barati, Ali

    2014-07-01

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H{sub 2}O{sub 2}. The observed sensitivities for the electrocatalytic oxidation and reduction of H{sub 2}O{sub 2} at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M{sup −1}, respectively. The detection limit (S/N = 3) for H{sub 2}O{sub 2} was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M{sup −1} and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M{sup −1} and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H{sub 2}O{sub 2} reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor.

  3. Effect of reduction method on the performance of Pd catalysts supported on activated carbon for the selective oxidation of glucose

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The effect of the reduction method on the catalytic properties of palladium catalysts supported on activated carbon for the oxidation of D-glucose was examined.The reduction methods investigated include argon glow discharge plasma reduction at room temperature,reduction by flowing hydrogen at elevated temperature,and reduction by formaldehyde at room temperature.The plasma-reduced catalyst shows the smallest metal particles with a narrow size distribution that leads to a much higher activity.The catalyst characteristics show that the plasma reduction increases the amount of oxygen-containing functional groups,which significantly enhances the hydrophilic property of the activated carbon and improves the dispersion of the metal.

  4. Kupier prize lecture: Sources of solar-system carbon

    Science.gov (United States)

    Anders, Edward; Zinner, Ernst

    1994-01-01

    We have tried to deconvolve Solar-System carbon into its sources, on the basis of C-12/C-13 ratios (equivalent to R). Interstellar SiC in meteorites, representing greater than 4.6-Ga-old stardust from carbon stars, is isotopically heavier (bar R = 38 +/- 2) than Solar-System carbon (89), implying that the latter contains an additional, light component. A likely source are massive stars, mainly Type II supernovae and Wolf-Rayet stars, which, being O-rich, eject their C largely as CO rather than carbonaceous dust. The fraction of such light C in the Solar System depends on R(sub light) in the source. For R(sub light) = 180-1025 (as in 'Group 4' meteoritic graphite spherules, which apparently came from massive stars greater than 4.6 Ga ago), the fraction of light C is 0.79-0.61. Similar results are obtained for present-day data on red giants and interstellar gas. Although both have become enriched in C-13 due to galactic evolution (to bar-R = 20 and 57), the fraction of the light component in interstellar gas again is near 0.7. (Here bar R represents the mean of a mixture calculated via atom fractions; it is not identical to the arithmetic mean R). Interstellar graphite, unlike SiC, shows a large peak at R approximately equal 90, near the solar value. Although some of the grains may be of local origin, others show anomalies in other elements and hence are exotic. Microdiamonds, with R = 93, also are exotic on the basis of their Xe and N. Apparently R approximately 90 was a fairly common composition 4.6 Ga ago, of stars as well as the ISM.

  5. Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles.

    Science.gov (United States)

    Castro, Carolina; Corraze, Geneviève; Firmino-Diógenes, Alexandre; Larroquet, Laurence; Panserat, Stéphane; Oliva-Teles, Aires

    2016-07-01

    The long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH-) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase. Expression of phosphoenolpyruvate carboxykinase was down-regulated by carbohydrate intake, whereas, unexpectedly, glucose 6-phosphatase was up-regulated. Lipogenic enzyme activities (glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase) and ∆6 fatty acyl desaturase (FADS2) transcripts were increased in liver of fish fed CH+ diets, supporting an enhanced potential for lipogenesis and long-chain PUFA (LC-PUFA) biosynthesis. Despite the lower hepatic cholesterol content in CH+ groups, no influence on the expression of genes related to cholesterol efflux (ATP-binding cassette G5) and biosynthesis (lanosterol 14 α-demethylase, cytochrome P450 51 cytochrome P450 51 (CYP51A1); 7-dehydrocholesterol reductase) was recorded at the hepatic level. At the intestinal level, however, induction of CYP51A1 transcripts by carbohydrate intake was recorded. Dietary VO led to decreased plasma phospholipid and cholesterol concentrations but not on the transcripts of proteins involved in phospholipid biosynthesis (glycerol-3-phosphate acyltransferase) and cholesterol metabolism at intestinal and hepatic levels. Hepatic and muscular fatty acid profiles reflected that of diets, despite the up-regulation of FADS2 transcripts. Overall, this study demonstrated that dietary carbohydrates mainly affected carbohydrate metabolism, lipogenesis and LC-PUFA biosynthesis, whereas effects of dietary lipid source were mostly related with tissue fatty acid composition

  6. Amperometric Biosensors Based on Carbon Paste Electrodes Modified with Nanostructured Mixed-valence Manganese Oxides and Glucose Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured multivalent manganese oxides octahedral molecular sieve (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. Amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes (CPEs) with glucose oxidase as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs. Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mM and 1.75 mM, and detection limits (S/N = 3) of 0.1 mM and 0.05 mM for todorokite-type manganese oxide and cryptomelane-type manganese oxide modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  7. Amperometric biosensors based on carbon paste electrodes modified with nanostructured mixed-valence manganese oxides and glucose oxidase.

    Science.gov (United States)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured, multivalent, manganese-oxide octahedral molecular sieves (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with subnanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. With glucose oxidase (GOx) as an enzyme model, amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes with GOx as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mmol/L and 1.75 mmol/L, and detection limits (S/N = 3) of 0.1 mmol/L and 0.05 mmol/L for todorokite-type manganese oxide and cryptomelane-type manganese oxide-modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  8. A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink.

    Science.gov (United States)

    Crouch, Eric; Cowell, David C; Hoskins, Stephen; Pittson, Robin W; Hart, John P

    2005-11-15

    Screen-printed amperometric glucose biosensors have been fabricated using a water-based carbon ink. The enzyme glucose oxidase (GOD) and the electro-catalyst cobalt phthalocyanine were mixed with the carbon ink prior to the screen-printing process; therefore, biosensors are prepared in a one-step fabrication procedure. Optimisation of the biosensor performance was achieved by studying the effects of pH, buffer strength, and applied potential on the analytical response. Calibration studies were performed under optimum conditions, using amperometry in stirred solution, with an operating potential of +500 mV versus SCE. The sensitivity was found to be 1170 nA mM(-1), with a linear range of 0.025-2 mM; the former represents the detection limit. The disposable amperometric biosensor was evaluated by carrying out replicate determinations on a sample of bovine serum. This was achieved by the method of multiple standard additions and included a correction for background currents arising from oxidizable serum components. The mean serum concentration was calculated to be 8.63 mM and compared well with the supplier's value of 8.3 mM; the coefficient of variation was calculated to be 3.3% (n=6). PMID:16242609

  9. The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zi Li

    2016-06-01

    Full Text Available Six different electron mediators were immobilized on the activated carbon (AC anode and their effects on performance of a direct glucose alkaline fuel cell were explored. 2-hydroxy-1, 4-naphthoquinone (NQ, methyl viologen (MV, neutral red (NR, methylene blue (MB, 1, 5-dichloroanthraquinone (DA and anthraquinone (AQ were doped in activated carbon (AC, respectively, and pressed on nickel foam to fabricate the anodes. NQ shows comparable performance with MV, but with much lower cost and environmental impact. With NQ-AC anode, the fuel cell attained a peak power density of 16.10 Wm−2, peak current density of 48.09 Am−2, and open circuit voltage of 0.76 V under the condition of 1 M glucose, 3 M KOH, and ambient temperature. Polarization curve, EIS and Tafel measurements were also conducted to explore the mechanism of performance enhancement. The high performance is likely due to the enhanced charge transfer and more reactive sites provided on the anode.

  10. Quantification of carbon sources for isoprene emission in poplar leaves

    Science.gov (United States)

    Kreutzwieseer, J.; Graus, M.; Schnitzler, J. P.; Heizmann, U.; Rennenberg, H.; Hansel, A.

    2003-12-01

    Isoprene is the most abundant volatile organic compound emitted by plants and in particular by trees. Current interest in understanding its biosynthesis in chloroplasts is forced by the important role isoprene plays in atmospheric chemistry. Leaf isoprene formation is closely linked to photosynthesis by a dynamic use of recently fixed photosynthetic precursors in the chloroplast. Under steady state conditions in [13C]CO2 atmosphere approximately 75 % of isoprene became labeled within minutes. The source of unlabeled C is suggested to be of extra-chloroplastidic and/or from starch degradation. In order to test whether these alternative carbon sources - leaf internal C-pools and xylem-transported carbohydrates, contribute to leaf isoprene formation in poplar (Populus tremula x P. alba) on-line proton-transfer-reaction-mass spectrometry (PTR-MS) was used to follow 13C-labeling kinetics.

  11. Regional prediction of carbon isotopes in soil carbonates for Asian dust source tracer

    Science.gov (United States)

    Chen, Bing; Cui, Xinjuan; Wang, Yaqiang

    2016-10-01

    Dust particles emitted from deserts and semi-arid lands in northern China cause particulate pollution that increases the burden of disease particularly for urban population in East Asia. The stable carbon isotopes (δ13C) of carbonates in soils and dust aerosols in northern China were investigated. We found that the δ13C of carbonates in surface soils in northern China showed clearly the negative correlation (R2 = 0.73) with Normalized Difference Vegetation Index (NDVI). Using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived NDVI, we predicted the regional distribution of δ13C of soil carbonates in deserts, sandy lands, and steppe areas. The predictions show the mean δ13C of -0.4 ± 0.7‰ in soil carbonates in Taklimakan Desert and Gobi Deserts, and the isotope values decrease to -3.3 ± 1.1‰ in sandy lands. The increase in vegetation coverage depletes 13C in soil carbonates, thus the steppe areas are predicted by the lowest δ13C levels (-8.1 ± 1.7‰). The measurements of atmospheric dust samples at eight sites showed that the Asian dust sources were well assigned by the 13C mapping in surface soils. Predicting 13C in large geographical areas with fine resolution offers a cost-effective tracer to monitor dust emissions from sandy lands and steppe areas which show an increasing role in Asian dust loading driven by climate change and human activities.

  12. Sensing glucose based on its affinity for concanavalin A on a glassy carbon electrode modified with a C60 fullerene nanocomposite

    International Nuclear Information System (INIS)

    An ultrasensitive electrochemical glucose biosensor has been developed by depositing C60-fullerene functionalized with tetraoctylammonium bromide (C60-TOAB+) on the surface of a glassy carbon electrode (GCE). The glucose-binding protein concanavalin A (Con A) was then linked to the surface. Binding of glucose by Con A affects the electroactivity of the reversible redox couple C60/C60−, and this finding forms the basis for a quantitative glucose assay over the 10 to 10 mM concentration range and with a lower detection limit of 3.3 nM (at an S/N ratio of 3). The sensitivity of this sensor allowed glucose to be determined in saliva. This biosensor possesses excellent selectivity, outstanding reproducibility and good long-term stability. (author)

  13. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    International Nuclear Information System (INIS)

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l−1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l−1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l−1, 7.6 g l−1, and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  14. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate [Baylor Univ., Waco, TX (United States)

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  15. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact campaign was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Barrow, Alaska. The carbonaceous component was characterized by measuring the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the PM, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine PM fractions (PM2.5) and 49 coarse (PM10) PM fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the Barrow Black Carbon Source and Impact (BBCSI) study used standard Tisch “hi-vol” motors that have a known lifetime of approximately 1 month under constant use; this necessitated monthly maintenance, and it is suggested that, for future deployment in the Arctic, the motors be upgraded to industrial blowers. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric PM samples from Barrow, Alaska, from July 2012 to June 2013. Preliminary analysis of the OC and BC concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer. However, the annual OC concentrations had a very different seasonal pattern with the highest concentrations during the summer, lowest concentrations during the fall, and increased concentrations during the winter and spring (Figure 1).

  16. Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source.

    OpenAIRE

    Dailey, F E; Cronan, J E

    1986-01-01

    Escherichia coli K-12 has two acetohydroxy acid synthase (AHAS) isozymes (AHAS I and AHAS III). Both of these isozymes catalyze the synthesis of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate, which are key intermediates of the isoleucine-valine biosynthetic pathway. Strains lacking either isozyme but not both activities have been previously shown to grow well in minimal media in the absence of isoleucine and valine on any of several commonly used carbon sources (e.g., glucose or su...

  17. Carbon dioxide as a carbon source in organic transformation: carbon-carbon bond forming reactions by transition-metal catalysts.

    OpenAIRE

    Tsuji, Yasushi; Fujihara, Tetsuaki

    2012-01-01

    Recent carbon-carbon bond forming reactions of carbon dioxide with alkenes, alkynes, dienes, aryl zinc compounds, aryl boronic esters, aryl halides, and arenes having acidic C-H bonds are reviewed in which transition-metal catalysts play an important role.

  18. Growth Kinetics and Demineralization of Shrimp Shell Using L a c t o b a c i l l u s p l a n t a r u m PTCC 1058 on Various Carbon Sources

    Directory of Open Access Journals (Sweden)

    M. Khorrami

    2011-09-01

    Full Text Available The present study has focused on the effect of various carbon sources such as glucose, sucrose and date syrup as natural carbon sources along with Lactobacillus plantarum microorganism on demineralization (DM of shrimp shell. Logistic and Verhulst Equations were used for the determination of growth kinetic parameters. Maximum demineralization efficiency of 82% was obtained in the media contained date syrup. Data for fermentation with media contained date syrup were suitably fitted with both Verhulst and Logistic Equations. Kinetic data was obtained and Gompertz model for production of lactic acid was used. For the media contained date syrup as carbon source, maximum rate of acid production was obtained.

  19. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Santos, Júlia; Leitão-Correia, Fernanda; Sousa, Maria João; Leão, Cecília

    2016-04-26

    Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging. PMID:27072582

  20. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Santos, Júlia; Leitão-Correia, Fernanda

    2016-01-01

    Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging. PMID:27072582

  1. Influence of aeration and carbon source on production of microcin B17 by Escherichia coli ZK650.

    Science.gov (United States)

    Fang, A; Demain, A L

    1997-05-01

    Previous studies [Connell et al. (1987) Mol Microbiol 1: 195-201] have shown that expression of the microcin B17 (MccB17) promoter is inversely related to the growth rate of the culture, when slower growth was brought about by limitation of sources of carbon, nitrogen or phosphorus. When we used oxygen limitation to decrease growth in a glucose-based chemically defined medium, we found specific MccB17 production to be positively related to growth rate and extent. On the other hand, when we examined various nutritional variations of media, specific production of MccB17 showed a negative relationship to growth rate and extent, as would be predicted by the findings of Connell et al. (1987). Glucose, glycerol and acetate were found to repress MccB17 production; succinate was not repressive. Succinate is an excellent carbon source for production of MccB17 since high levels can be used with no or little interference in product synthesis.

  2. Glucose as substrate and signal in priming: Results from experiments with non-metabolizable glucose analogues

    Science.gov (United States)

    Mason-Jones, Kyle; Kuzyakov, Yakov

    2016-04-01

    Priming of soil organic matter remains the subject of intense research, but a mechanistic explanation of the phenomenon remains to be demonstrated. This is largely due to the multiple effects of easily available carbon on the soil microbial community, and the challenge of separating these influences from one another. Several glucose analogues can be taken up by microbial glucose transporters and have similar regulatory effects on metabolism. These substances are, however, not easily catabolized by the common glycolytic pathway, limiting their energy value. Therefore, they can be used to distinguish between the action of glucose as a metabolic signal, and its influence as an energy source. We incubated an agricultural Haplic Luvisol under controlled conditions for 24 days after addition of: 1) glucose, 2) 3-O-methyl-glucose, 3) α-methylglucoside or 4) 2-deoxyglucose, at three concentration levels, along with a control treatment of water addition. CO2 efflux from soil was monitored by trapping evolved CO2 in NaOH and back-titration with HCl. On the first day after amendment, CO2 efflux from soil increased strongly for glucose and much less for the analogues, relative to the control. Only glucose caused a peak in efflux within the first two days. Peak mineralization of 2-deoxyglucose and α-methylglucoside was delayed until the third day, while CO2 from 3-O-methyl-glucose increased gradually, with a peak delayed by approximately a week. For glucose, the immediate increase in respiration was strongly dependent on the amount of glucose added, but this was not the case for the analogues, indicating that the catabolic potential for these substances was saturated. This is consistent with only a small part of the microbial community being capable of utilizing these carbon sources. In a subsequent experiment, 14C-labelled glucose or 14C-labelled 3-O-methyl-glucose were added to the same soil, enabling quantification of the priming effect. For 3-O-methyl-glucose, priming was

  3. Black carbon as a carbon source for young soils in a glacier forefield?

    Science.gov (United States)

    Eckmeier, E.; Pichler, B.; Krebs, R.; Mavris, C.; Egli, M.

    2012-04-01

    Most evident changes in Alpine soils today occur in proglacial areas where existing young soils are continuously developing. Due to climate change, additional areas will become ice-free and subject to weathering and new soil formation. The glacier forefields of the European Alps are continuously exposed since the glaciers reached their maximum expansion in the 1850s. In these proglacial areas, initial soils have started to develop so that they may offer, under optimal conditions, a continuous chronosequence from 0 to 150 year-old soils. The buildup of organic carbon (Corg) in soil is an important factor controlling weathering and the formation of soils. Not only autochthonous but also distant (allochthonous) sources may contribute to the accumulation of soil organic carbon in young soils and surfaces of glacier forefields. Black carbon could be an important component in Alpine soils. However, only little is known about black carbon in very young soils that develop in glacier forefields. The aim of our study was to examine whether black carbon as an allochthonous source of soil organic matter can be detected in the initial soils, and to estimate its relative contribution (as a function of time) to total organic carbon. We investigated surface soil samples (topsoils, A or AO horizon) from 35 sites distributed over the whole proglacial area of Morteratsch, where ideal conditions for a soil chronosequence from 0 to 150 years can be found. Along this sequence, bare till sediments to weakly developed soils (Leptosols) can be encountered. Black carbon concentrations were determined in fine-earth using the benzene polycarboxylic acid (BPCA) marker method as described by Brodowski et al. (2005). We found that the proportion of BPCA-C to total Corg was related to the time since the surface was exposed. The youngest soils (younger than 40 years) contained the highest proportion of BPCA-C (up to 120 g BPCA-C/kg Corg). In these soils, however, the Corg concentrations were very

  4. Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.

    Science.gov (United States)

    Yassine, Fatima; Bassil, Nathalie; Flouty, Roula; Chokr, Ali; Samrani, Antoine El; Boiteux, Gisèle; Tahchi, Mario El

    2016-08-01

    Gluconacetobacter genera are valued for bacterial cellulose (BC) and acetic acid production. BC is produced at optimal yields in classical microbiological media that are expensive for a large scale of production. In addition, BC usage for industrial purposes is limited due to low conversion rate into cellulose and to long incubation duration. In this paper, Gluconacetobacter isolated from apple vinegar was kinetically studied to evaluate cellulose production in presence of different carbon sources. Acetic and citric acid effect on Gluconacetobacter metabolism is clarified. It was shown that Gluconacetobacter uses glucose as a primary carbon source for cells growth and products formation. Acetic acid employment as a co-carbon source in Hestrin Schramm medium showed an increase of 17% in BC yield with a moderate decrease in the crystallite size of the resulting polymer.

  5. Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.

    Science.gov (United States)

    Yassine, Fatima; Bassil, Nathalie; Flouty, Roula; Chokr, Ali; Samrani, Antoine El; Boiteux, Gisèle; Tahchi, Mario El

    2016-08-01

    Gluconacetobacter genera are valued for bacterial cellulose (BC) and acetic acid production. BC is produced at optimal yields in classical microbiological media that are expensive for a large scale of production. In addition, BC usage for industrial purposes is limited due to low conversion rate into cellulose and to long incubation duration. In this paper, Gluconacetobacter isolated from apple vinegar was kinetically studied to evaluate cellulose production in presence of different carbon sources. Acetic and citric acid effect on Gluconacetobacter metabolism is clarified. It was shown that Gluconacetobacter uses glucose as a primary carbon source for cells growth and products formation. Acetic acid employment as a co-carbon source in Hestrin Schramm medium showed an increase of 17% in BC yield with a moderate decrease in the crystallite size of the resulting polymer. PMID:27112876

  6. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    Science.gov (United States)

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. PMID:27491712

  7. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shumin; Zheng, Yudong, E-mail: zhengyudong@mater.ustb.edu.cn; Qiao, Kun [University of Science and Technology Beijing, School of Material Science and Engineering (China); Su, Lei [University of Science and Technology Beijing, School of Chemistry and Biological Engineering (China); Sanghera, Amendeep; Song, Wenhui [University College London, UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science (United Kingdom); Yue, Lina; Sun, Yi [University of Science and Technology Beijing, School of Material Science and Engineering (China)

    2015-12-15

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  8. A Novel Airborne Carbon Isotope Analyzer for Methane and Carbon Dioxide Source Fingerprinting

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Owano, T. G.; Leifer, I.

    2014-12-01

    Recent field studies on major sources of the important greenhouse gas methane (CH4) indicate significant underestimation of methane release from fossil fuel industrial (FFI) and animal husbandry sources, among others. In addition, uncertainties still exist with respect to carbon dioxide (CO2) measurements, especially source fingerprinting. CO2 isotopic analysis provides a valuable in situ measurement approach to fingerprint CH4 and CO2as associated with combustion sources, leakage from geologic reservoirs, or biogenic sources. As a result, these measurements can characterize strong combustion source plumes, such as power plant emissions, and discriminate these emissions from other sources. As part of the COMEX (CO2 and MEthane eXperiment) campaign, a novel CO2 isotopic analyzer was installed and collected data aboard the CIRPAS Twin Otter aircraft. Developing methods to derive CH4 and CO2 budgets from remote sensing data is the goal of the summer 2014 COMEX campaign, which combines hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages the synergy between high spatial resolution HSI and moderate spatial resolution NIS. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (100-3000 ppm). The laboratory accuracy is ±1.2 ppm (1σ) in CO2 from 370-1000 ppm, with a long-term (1000 s) precision of ±0.012 ppm. The long-term precision for both δ13C and δ18O is 0.04 ‰, and for δ17O is 0.06 ‰. The analyzer was field-tested as part of the COWGAS campaign, a pre-cursor campaign to COMEX in March 2014, where it successfully discriminated plumes related to combustion processes associated with

  9. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2008-09-01

    Full Text Available This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC, inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III by using a micro-orifice uniform deposit impactor (MOUDI. The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC and monosaccharide anhydrides from the filter samples (particle aerodynamic diameter smaller than 1 μm, PM1. Gravimetric mass concentration varied during the MOUDI samplings between 3.4 and 55.0 μg m−3 and the WSOC concentrations were between 0.3 and 7.4 μg m−3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 to convert the analyzed carbon mass to organic matter mass comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1–10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1–10 aerosol mass.

    Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas. Categories were identified mainly using levoglucosan concentration level for wood combustion and air mass backward trajectories for other groups. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs and aerosols as well as various transformation processes are likely

  10. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.

    Science.gov (United States)

    Espinosa Vidal, Esteban; de Morais, Marcos Antonio; François, Jean Marie; de Billerbeck, Gustavo M

    2015-01-01

    Higher alcohol formation by yeast is of great interest in the field of fermented beverages. Among them, medium-chain alcohols impact greatly the final flavour profile of alcoholic beverages, even at low concentrations. It is widely accepted that amino acid metabolism in yeasts directly influences higher alcohol formation, especially the catabolism of aromatic and branched-chain amino acids. However, it is not clear how the availability of oxygen and glucose metabolism influence the final higher alcohol levels in fermented beverages. Here, using an industrial Brazilian cachaça strain of Saccharomyces cerevisiae, we investigated the effect of oxygen limitation and glucose pulse on the accumulation of higher alcohol compounds in batch cultures, with glucose (20 g/l) and leucine (9.8 g/l) as the carbon and nitrogen sources, respectively. Fermentative metabolites and CO2 /O2 balance were analysed in order to correlate the results with physiological data. Our results show that the accumulation of isoamyl alcohol by yeast is independent of oxygen availability in the medium, depending mainly on leucine, α-keto-acids and/or NADH pools. High-availability leucine experiments showed a novel and unexpected accumulation of isobutanol, active amyl alcohol and 2-phenylethanol, which could be attributed to de novo biosynthesis of valine, isoleucine and phenylalanine and subsequent outflow of these pathways. In carbon-exhausted conditions, our results also describe, for the first time, the metabolization of isoamyl alcohol, isobutanol, active amyl alcohol but not of 2-phenylethanol, by yeast strains in stationary phase, suggesting a role for these higher alcohols as carbon source for cell maintenance and/or redox homeostasis during this physiological phase.

  11. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen, E-mail: yctsai@dragon.nchu.edu.tw

    2012-05-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E Degree-Sign Prime ) of - 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s{sup -1}; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M{sup -1} cm{sup -2} and an apparent Michaelis-Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: Black-Right-Pointing-Pointer A film composed of MWCNT-ACS was used for biosensor application. Black-Right-Pointing-Pointer High sensitivity and good selectivity were obtained for the detection of glucose. Black-Right-Pointing-Pointer This approach is potential for fabrication of mediator-free biosensor.

  12. Acetic Acid bacteria: physiology and carbon sources oxidation.

    Science.gov (United States)

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  13. Trends in the sources and sinks of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom; Raupach, Mike [GCP, Canberra, Australia; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Marland, Gregg [ORNL; Bopp, Laurent [National Center for Scientific Research, Gif-sur-Yvette, France; Ciais, Philippe [Laboratoire des Sciences du Climat et de l' Environement, France; Friedlingstein, Pierre [National Center for Scientific Research, Gif-sur-Yvette, France; Viovy, Nicolas [National Center for Scientific Research, Gif-sur-Yvette, France; Conway, T.J. [NOAA, Boulder, CO; Doney, Scott C. [Woods Hole Oceanographic Institution; Feely, R. A. [NOAA Pacific Marine Environmental Laboratory; Foster, Pru [University of Bristol, UK; House, Joanna I [University of Bristol, UK; Prentice, Colin I. [University of Bristol, UK; Gurney, Kevin [Purdue University; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Huntingford, Chris [Center for Ecology and Hydrology, Oxon, England; Levy, Peter E. [Center for Ecology and Hydrology, Midlothian, Scotland; Lomas, M. R. [University of Sheffield; Woodward, F. I. [University of Sheffield; Majkut, Joseph [Princeton University; Sarmiento, Jorge L. [Princeton University; Metzl, Nicolas [University of Paris; Ometto, Jean P [ORNL; Randerson, James T. [University of California, Irvine; Peters, Glen P [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Running, Steven [University of Montana, Missoula; Sitch, Stephen [University of Leeds, UK; Takahashi, Taro [Columbia University; Van der Werf, Guido [Universitate Amsterdam

    2009-12-01

    Efforts to control climate change require the stabilization of atmospheric CO2 concentrations. This can only be achieved through a drastic reduction of global CO2 emissions. Yet fossil fuel emissions increased by 29% between 2000 and 2008, in conjunction with increased contributions from emerging economies, from the production and international trade of goods and services, and from the use of coal as a fuel source. In contrast, emissions from land-use changes were nearly constant. Between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on average; the rest was absorbed by carbon sinks on land and in the oceans. In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO2 by the carbon sinks in response to climate change and variability. Changes in the CO2 sinks are highly uncertain, but they could have a significant influence on future atmospheric CO2 levels. It is therefore crucial to reduce the uncertainties.

  14. Carbon Nanotube/Magnesium Composite as a Hydrogen Source.

    Science.gov (United States)

    Yu, Min Kyu; Se, Kwon Oh; Kim, Min Joong; Hwang, Jae Won; Yoon, Byoung Young; Kwon, Hyuk Sang

    2015-11-01

    Hydrogen produced using the steam reforming process contains sulfur and carbon monoxide that are harmful to the Pt catalyst in proton-exchange-membrane fuel cells (PEMFCs). However, CO-free hydrogen can be generated from the hydrolysis of either Al in strongly alkaline water or Mg in neutral water with chlorides such as sea water. The hydrogen generation rate from the hydrolysis of Mg is extremely slow and linearly proportional to the corrosion rate of Mg in chloride water. In this work, we fabricated a carbon nanotube (CNT)--reinforced Mg--matrix composite by Spark Plasma Sintering as a fast hydrogen generation source for a PEMFC. The CNTs distributed in the Mg matrix act as numerous local cathodes, and hence cause severe galvanic corrosion between the Mg-matrix anode and CNT-cathode in NaCl solution. It was found that the hydrogen generation rate from the hydrolysis of the 5 vol.% CNT/Mg composite is 3300 times faster than that of the Mg without CNTs due primarily to the galvanic corrosion effect.

  15. Do Vermont's Floodplains Constitute an Important Source of Labile Carbon?

    Science.gov (United States)

    Perdrial, J. N.; Dolan, A.; Kemsley, M.

    2014-12-01

    Floodplains are extremely heterogeneous landscapes with respect to soil and sediment composition and can present an important source of carbon (C) during floods. For example, stream bank soils and sediments are zones of active erosion and deposition of sediment associated C. Due to the presence of plants, riparian soils contain high amounts of C that is exchanged between stream waters and banks. Abandoned channels and meander wetlands that remain hydrologically connected to the main channel contain high amounts of organic matter that can be flushed into the stream during high discharge. This heterogeneity, result of floodplain geomorphology, land cover and use, can profoundly impact the amount and type of dissolved organic matter (DOM) introduced into streams. In order to assess DOM characteristics leached from heterogeneous floodplain soils, aqueous soil extracts were performed on soil samples representative of different land covers (n=20) at four depths. Extracts were analyzed for dissolved organic C and total dissolved nitrogen with a Shimadzu C analyzer. Colored dissolved organic matter characteristics was measured with the Aqualog Fluorescence Spectrometer and quantified with parallel factor analysis (PARAFAC). Preliminary data from three floodplains in Vermont (Connecticut, Missisquoi and Mad River) show a 3D variability of longitudinal, lateral, and vertical extents on water-extractable, mobile C. Dissolved organic carbon concentrations in meander swamp samples were found up to 9 times higher than in those of soils from agricultural field indicative of an important C source. Although C concentrations in adjacent fields were low, high abundance of labile C (indicated by tryptophan-like fluorescence) in water extracts from fields indicates recent biological production of C. This labile C is easily processed by microbes and transformed to the greenhouse gas CO2. These results provide important information on the contribution and lability of different floodplain

  16. Land use effects on terrestrial carbon sources and sinks

    Institute of Scientific and Technical Information of China (English)

    Josep; G.; Canadell

    2002-01-01

    Current and past land use practices are critical in determining the distribution and size of global terrestrial carbon (C) sources and sinks. Althoughfossil fuel emissions dominate the anthropogenic perturbation of the global C cycle, land use still drives the largest portion of anthropogenic emissions in a number of tropical regions of Asia. The size of the emission flux owing to land use change is still the biggest uncertainty in the global C budget. The Intergovernmental Panel on Climate Change (IPCC) reported a flux term of 1.7 PgC@a-1 for 1990-1995 but more recent estimates suggest the magnitude of this source may be only of 0.96 PgC@a-1 for the 1990s. In addition, current and past land use practices are now thought to contribute to a large degree to the northern hemisphere terrestrial sink, and are the dominant driver for some regional sinks. However, mechanisms other than land use change need to be invoked in order to explain the inferred C sink in the tropics. Potential candidates are the carbon dioxide (CO2) fertilization and climate change; fertilization due to nitrogen (N) deposition is believed to be small or nil. Although the potential for managing C sinks is limited, improved land use management and new land uses such as reforestation and biomass fuel cropping, can further enhance current terrestrial C sinks. Best management practices in agriculture alone could sequester 0.4-0.8 PgC per year in soils if implemented globally. New methodologies to ensure verification and permanency of C sequestration need to be developed.

  17. Effect of various sources of organic carbon and high nitrite and nitrate concentrations on the selection of denitrifying bacteria. II. Continuous cultures in packed bed reactors.

    Science.gov (United States)

    Błaszczyk, M

    1983-01-01

    The effect of different organic compounds, nitrites and nitrates at the concentration of 1,000 mg N/l on the quantitative and strain-specific selection of denitrifying bacteria was determined in anaerobic packed bed reactors. Both the source of carbon and nitrogen form influenced strain specificity and the frequency of occurrence of denitrifying bacteria. The frequency of denitrifying bacteria within packed bed reactor ranged in different media from 11% (glucose and nitrates) to 100% (methanol and ethanol with nitrates). A single species selection was observed in the presence of nitrites within packed bed reactor: Pseudomonas aeruginosa in medium with acetate. Pseudomonas stutzeri in medium with ethanol, Pseudomonas mendocina in medium with methanol and Pseudomonas fluorescens in medium with glucose. When nitrates were present in packed bed reactor, the dominating bacteria were: P. stutzeri in medium with acetate, P. fluorescens in medium with ethanol, Paracoccus denitrificans in medium with methanol and Alcaligenes faecalis in medium with glucose. PMID:6194668

  18. Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes.

    Science.gov (United States)

    Zhou, Yi; Yang, Hui; Chen, Hong-Yuan

    2008-07-15

    Single-walled carbon nanotubes (SWCNTs) selectively wrapped by a water-soluble, environmentally friendly, biocompatible polymer chitosan (CHI) were employed for the construction of a bioelectrochemical platform for the direct electron transfer (DET) of glucose oxidase (GOD) and biosensing purposes. Scanning electron microscopy and Raman spectroscopy were used to investigate the properties of the SWCNT-CHI film. The results show that the preferentially wrapped small-diameter SWCNTs are dispersed within the CHI film and exist on the surface of the electrode as small bundles. The DET between GOD and the electrode surface was observed with a formal potential of about ca. -460 mV vs. SCE in phosphate buffer solution. The heterogeneous electron transfer rate constant and the surface coverage of GOD are estimated to be 3.0 s(-1) and 1.3 x 10(-10)mol/cm(2), respectively. The experimental results demonstrate that the immobilized GOD retains its catalytic activity towards the oxidation of glucose. Such a GOD/SWCNT-CHI film-based biosensor not only exhibits a rapid response time, a wide linear rang and a low detection limits at a detection potential of -400 mV but also shows the effective anti-interference capability. Significantly improved analytical capabilities of the GOD/SWCNT-CHI/GC electrode could be ascribed to the unique properties of the individual SWCNTs and to the biocompatibility of CHI.

  19. Carbon Nanotube-Plasma Polymer-Based Amperometric Biosensors: Enzyme-Friendly Platform for Ultrasensitive Glucose Detection

    Science.gov (United States)

    Muguruma, Hitoshi; Matsui, Yasunori; Shibayama, Yu

    2007-09-01

    An amperometric enzyme biosensor fabricated with carbon nanotubes (CNTs) and plasma-polymerized thin films (PPFs) is reported. A mixture of the enzyme glucose oxidase (GOD) and a CNT film is sandwiched with 10-nm-thick acetonitrile PPFs. Under PPF layer was deposited onto a sputtered gold electrode. To facilitate the electrochemical communication between the CNT layer and GOD, CNT was treated with oxygen plasma. The device with single-walled CNTs showed a sensitivity higher than that of multiwalled CNTs. The glucose biosensor showed ultrasensitivity (a sensitivity of 40 μA mM-1 cm-2, a correlation coefficient of 0.992, a linear response range of 0.025-1.9 mM, a detection limit of 6.2 μM at S/N = 3, +0.8 V vs Ag/AgCl), and a rapid response (< 4 s in reaching 95% of maximum response). This high performance is attributed to the fact that CNTs have excellent electrocatalytic activity and enhance electron transfer, and that PPFs and/or the plasma process for CNTs are the enzyme-friendly platform, i.e., a suitable design of the interface between GOD and CNTs.

  20. Tratamento anaeróbio de pentaclorofenol em reator de leito fluidificado alimentado com água residuária sintética contendo glicose como fonte única de carbono Anaerobic treatment of pentachlorophenol in a fluidized bed reactor fed with synthetic wastewater containing glucose as a single carbon source

    Directory of Open Access Journals (Sweden)

    Flavio Bentes Freire

    2008-09-01

    Full Text Available Neste trabalho foi utilizado um reator anaeróbio de leito fluidificado (RALF, tratando água residuária sintética contendo pentaclorofenol (PCP, submetido a condições operacionais menos idealizadas. Utilizou-se um reator com volume de 16 litros, com partículas de carvão ativado granular como meio suporte. O desempenho do reator foi verificado pelas análises usuais de monitoramento (pH, alcalinidade, DQO, ácidos voláteis e também por análises de microscopia e concentração de PCP. A presença de PCP no sistema, nas concentrações utilizadas, não alterou de maneira significativa a qualidade da biomassa presente, e nem os parâmetros de monitoramento. Em concentrações afluentes de PCP variando de 1 a 6 mg/L, foram observadas eficiências médias de remoção de 92% e 70%, respectivamente.In the present work, an anaerobic fluidized bed reactor (AFBR was used for the treatment of a synthetic wastewater containing pentachlorophenol (PCP subjected to less idealized operating conditions. The reactor was a 16 litres tank with granular activated carbon particles as support media. Evaluation of AFBR performance was done by the analysis of usual monitoring parameters (pH, alkalinity, COD, volatile acids together with microscopy and PCP concentration analysis. The presence of PCP under the concentrations used did not significantly alter the amount of biomass and the performance monitoring parameters. Removal average efficiencies of the order of 92% and 70% were obtained for PCP inflow concentrations in the range of 1 to 6mg/l.

  1. Enhanced glucose yield and structural characterization of corn stover by sodium carbonate pretreatment.

    Science.gov (United States)

    Kim, Ilgook; Rehman, Muhammad Saif Ur; Han, Jong-In

    2014-01-01

    Na2CO3 was employed as an efficient yet cheap alkaline catalyst for the pretreatment of corn stover. To systematically obtain an optimal condition, the effects of critical pretreatment parameters including Na2CO3 concentration (2-6%), temperature (120-160 °C), and reaction time (10-30 min) on glucose yield were evaluated in lab-scale using response surface methodology. The best conditions were found to be Na2CO3 of 4.1%, temperature of 142.6 °C, and reaction time of 18.0 min, under which glucose yield reached to 267.5 g/kg biomass. Physical properties, based on scanning electron microscopy (SEM) imagery, surface area, pore volume and size, and crystallinity of pretreated corn stover, were examined. The Na2CO3 pretreatment apparently damaged the surface and altered structural features of corn stover, which resulted in the enhancement of enzymatic of hydrolysis. These results evidently support that Na2CO3 is indeed a robust and feasible catalyst for pretreating lignocellulosic biomass.

  2. Synthesis of Carbon Nanotubes of Few Walls Using Aliphatic Alcohols as a Carbon Source

    Directory of Open Access Journals (Sweden)

    Francisco Espinosa-Magaña

    2013-06-01

    Full Text Available Carbon nanotubes with single and few walls are highly appreciated for their technological applications, regardless of the limited availability due to their high production cost. In this paper we present an alternative process that can lead to lowering the manufacturing cost of CNTs of only few walls by means of the use of the spray pyrolysis technique. For this purpose, ferrocene is utilized as a catalyst and aliphatic alcohols (methanol, ethanol, propanol or butanol as the carbon source. The characterization of CNTs was performed by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The study of the synthesized carbon nanotubes (CNTs show important differences in the number of layers that constitute the nanotubes, the diameter length, the quantity and the quality as a function of the number of carbons employed in the alcohol. The main interest of this study is to give the basis of an efficient synthesis process to produce CNTs of few walls for applications where small diameter is required.

  3. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase

    OpenAIRE

    Wenjun Zhang; Yunqing Du; Wang, Ming L.

    2015-01-01

    It is very important for human health to rapidly and accurately detect glucose levels in biological environments, especially for diabetes mellitus. We proposed a simple, highly sensitive, accurate, convenient, low-cost, and disposable glucose biosensor on a single chip. A working (sensor) electrode, a counter electrode, and a reference electrode are integrated on a single chip through micro-fabrication. The working electrode is functionalized through a layer-by-layer (LBL) assembly of single-...

  4. Comparative study on bacterial carbon sources in lake sediments : the role of methanotrophy

    OpenAIRE

    Steger, Kristin; K. Premke; Gudasz, Cristian; Boschker, H.T.S.; Tranvik, Lars J.

    2015-01-01

    Methane-derived carbon can be important in both benthic and pelagic food webs. Either generated in the anaerobic layers of the sediment or in the anaerobic hypolimnion of stratified eutrophic lakes, methane is an excellent carbon source for aerobic methanotrophic bacteria. The very negative methane delta C-13-signal in the methanotrophic biomass provides an excellent opportunity to trace the use of methane-derived carbon in food webs. We studied carbon sources of benthic bacteria in a range o...

  5. Response surface optimization of carbon and nitrogen sources for nuclease P1 production by Penicillium citrinum F-5-5

    International Nuclear Information System (INIS)

    Penicillium citrinum F-5-5, a nuclease P1 high-producing strain with 978.6 U/ml in potato glucose medium, was derived from the original Penicillium citrinum CICC 4011 with 60Co γ-rays irradiation mutation and then protoplasts fusion treatment. Culture components were optimized for the nuclease P1 production, and response surface methodology was applied for the critical medium components(carbon and nitrogen sources) which were preselected by Plackett-Burman design approach. Glucose, soluble starch and corn steep powder showed significant effects on production of nuclease. Central composite design was used for the optimization levels by software Minitab 15, and it showed that, the optimal values for the concentration of glucose, soluble starch and corn steep powder were 30.89, 42.46 and 11.60 g/L, respectively. With this medium,an enzyme activity of 1687.16 U/ml could be obtained theoretically. Using this optimized medium, an experimental enzyme activity of 1672.6 U/ml was reached. (authors)

  6. Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

    Science.gov (United States)

    Oza, A. V.; Leblanc, F.; Berthelier, J. J.; Becker, J.; Coulomb, R.; Gilbert, P.; Hong, N. T.; Lee, S.; Vettier, L.

    2015-12-01

    The characterization of planetary exospheres today, relies on the development of a highly efficient ionization source, due to the scant neutral molecules (n atmospheres provide insight on to physical processes known to occur such as: space weathering, magneto-atmosphere interactions, as well as atmospheric escape mechanisms, all of which are being heavily investigated via current 3D Monte Carlo simulations (Turc et al. 2014, Leblanc et al. 2016 in prep) at LATMOS. Validation of these studies will rely on in-situ observations in the coming decades. Neutral detection strongly depends on electron-impact ionization which via conventional cathode-sources, such as thermal filaments (heated up to 2000 K), may only produce the target ionization essential for energy-measurements with large power consumption. Carbon nanotubes (CNTs) however are ideal low-power, cold cathodes, when subject to moderate electric fields (E ~ 1 MV / m). We present our current device, a small CNT chip, of emission area 15 mm2, emitting electrons that pass through an anode grid and subsequent electrostatic analyzer. The device currently extracts hundreds of µAmperes with applied external voltages ~ -150 Volts, approaching minimum power consumption plasma sputtering the icy regolith with heavy ions and electrons (keV < E < MeV), producing predominately molecular oxygen (Johnson et al. 2002).

  7. Reduction of the interferences of biochemicals and hematocrit ratio on the determination of whole blood glucose using multiple screen-printed carbon electrode test strips.

    Science.gov (United States)

    Lin, Yueh-Hui; Shen, Thomas Y; Chang, C Allen

    2007-11-01

    A practical approach to reduce the interferences of biochemicals and hematocrit ratio (Hct%) in the determination of whole blood glucose using multiple screen-printed carbon electrode (SPCE) test strips is described. SPCE test strips with and without glucose oxidase [i.e., GOD(+)-SPCEs and GOD(-)-SPCEs] were used and the chronoamperometric currents of test glucose solutions with various spiked uric acid concentrations and Hct% were measured. By establishing the interference relationships between glucose concentrations and uric acid concentrations as well as Hct% values and with appropriate corrections, the whole blood glucose determinations could be made to be more accurate and comparable to those determined by the reference YSI method. Specifically, the use of the DeltaI value, i.e., the current difference between GOD(+)-SPCE and GOD(-)-SPCE measurements, would reduce most of the uric acid/biochemical interferences. An interpolation method was also established to correct for the glucose determinations with Hct% interferences. The Hct% corrections using the interpolation method are especially important and necessary for those blood samples with glucose concentrations higher than 110 mg dL(-1) and Hct% values lower than 35%. This approach should also be applicable to other biochemical determinations using similar electrochemical techniques. PMID:17912503

  8. A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola's Blue-Reinecke salt coated with glucose dehydrogenase, for the measurement of glucose.

    Science.gov (United States)

    Piano, M; Serban, S; Biddle, N; Pittson, R; Drago, G A; Hart, J P

    2010-01-15

    A biosensor for the measurement of glucose in serum has been developed, based on a screen-printed carbon electrode modified with Meldola's Blue-Reinecke salt, coated with the enzyme glucose dehydrogenase (from Bacillus sp.), and nicotinamide adenine dinucleotide coenzyme (NAD+). A cellulose acetate layer was deposited on top of the device to act as a permselective membrane. The biosensor was incorporated into a commercially available, thin-layer, amperometric flow cell operated at a potential of only +0.05 V versus Ag/AgCl. The mobile phase consisted of 0.2 M phosphate buffer (pH 7.0) containing 0.1 M potassium chloride solution, and a flow rate of 0.8 ml min(-1) was used throughout the investigation. The biosensor response was linear over the range of 0.075-30 mM glucose, with the former representing the detection limit. The precision of the system was determined by carrying out 20 repeat injections of a 5-mM glucose standard, and the calculated coefficient of variation was 3.9%. It was demonstrated that this biosensor system could be applied to the direct measurement of glucose in serum without pretreatment. Therefore, this would allow high-throughput analysis, at low cost, for this clinically important analyte. PMID:19766585

  9. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Darling, T.N.; Davis, D.G.; London, R.E.; Blum, J.J.

    1987-10-01

    Leishmania braziliensis panamensis promastigotes were incubated with glucose as the sole carbon source. About one-fifth of the glucose consumed under aerobic conditions was oxidized to CO/sub 2/. Nuclear magnetic resonance studies with (1-/sup 13/C)glucose showed that the other products released were succinate, acetate, alanine, pyruvate, and lactate. Under anaerobic conditions, lactate output increased, glycerol became a major product, and, surprisingly, glucose consumption decreased. Enzymatic assays showed that the lactate formed was D(-)-lactate. The release of alanine during incubation with glucose as the sole carbon source suggested that appreciable proteolysis occurred, consistent with our observation that a large amount of ammonia was released under these conditions. The discoveries that D-lactate is a product of L. braziliensis glucose catabolism, that glycerol is produced under anaerobic conditions, and that the cells exhibit a reverse Pasteur effect open the way for detailed studies of the pathways of glucose metabolism and their regulation in this organism.

  10. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man

    Energy Technology Data Exchange (ETDEWEB)

    Consoli, A.; Kennedy, F.; Miles, J.; Gerich, J.

    1987-11-01

    Current isotopic approaches underestimate gluconeogenesis in vivo because of Krebs cycle carbon exchange and the inability to measure intramitochondrial precursor specific activity. We therefore applied a new isotopic approach that theoretically overcomes these limitations and permits quantification of Krebs cycle carbon exchange and the individual contributions of gluconeogenesis and glycogenolysis to overall glucose outputex. (6-3H)Glucose was infused to measure overall glucose output; (2-14C)acetate was infused to trace phosphoenolpyruvate gluconeogenesis and to calculate Krebs cycle carbon exchange as proposed by Katz. Plasma (14C)3-OH-butyrate specific activity was used to estimate intramitochondrial acetyl coenzyme A (CoA) specific activity, and finally the ratio between plasma glucose 14C-specific activity and the calculated intracellular phosphoenolpyruvate 14C-specific activity was used to determine the relative contributions of gluconeogenesis and glycogenolysis to overall glucose output. Using this approach, acetyl CoA was found to enter the Krebs cycle at twice (postabsorptive subjects) and three times (2 1/2-d fasted subjects) the rate of pyruvate, respectively. Gluconeogenesis in postabsorptive subjects (3.36 +/- 0.20 mumol/kg per min) accounted for 28 +/- 2% of overall glucose output and increased twofold in subjects fasted for 2 1/2-d (P less than 0.01), accounting for greater than 97% of overall glucose output. Glycogenolysis in postabsorptive subjects averaged 8.96 +/- 0.40 mumol/kg per min and decreased to 0.34 +/- 0.08 mumol/kg per min (P less than 0.01) after a 2 1/2-d fast. Since these results agree well with previously reported values for gluconeogenesis and glycogenolysis based on determinations of splanchnic substrate balance and glycogen content of serial liver biopsies.

  11. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2008-04-01

    Full Text Available This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC, inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III by using a micro-orifice uniform deposit impactor (MOUDI. The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC and monosaccharide anhydrides from the filter samples. During the measurements gravimetric mass in the MOUDI collections varied between 3.4 and 55.0 μg m−3 and the WSOC concentration was between 0.3 and 7.4 μg m−3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1−10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1−10 aerosol mass.

    Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that especially the oxidation products of biogenic VOCs in summer had a clear effect on WSOC concentrations.

  12. Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co-Pt core-shell nanoparticles

    International Nuclear Information System (INIS)

    Co-Pt core-shell nanoparticles (NPs) were synthesized by a two-step reductive method using carbon (Vulcan XC-72) as a solid support. The NPs were characterized by X-ray diffraction, field emission gun scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. Their electrochemical performance was evaluated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry, and these showed that the Co-Pt NPs display an electrocatalytic activity towards the oxidation of glucose that is much better than that of plain Pt NPs. Under optimized conditions and at pH 7.0, the oxidation current of glucose at a working potential of −50 mV (vs. SCE) is linearly related to its concentration in the 1.0 to 30 mM range, and the detection limit is 0.3 mM (S/N = 3). It therefore covers the clinical range. The sensor also exhibits excellent stability and repeatability. (author)

  13. Tracing the sources of organic carbon in freshwater systems

    Science.gov (United States)

    Glendell, Miriam; Meersmans, Jeroen; Barclay, Rachel; Yvon-Durocher, Gabriel; Barker, Sam; Jones, Richard; Hartley, Iain; Dungait, Jennifer; Quine, Timothy

    2016-04-01

    both terrestrial and aquatic sources as recorded in lake sediments to the measured rates of soil erosion and terrestrial & aquatic CO2 respiration rates, this study has paved a way towards a novel and cross-disciplinary approach to investigate and further improve current status of knowledge as regards C-cycling across the entire terrestrial-aquatic continuum. 137Cs was found to be useful to understand the dynamics and spatial pattern of lateral fluxes of sediment & C at the catchment scale, while tracing chemical composition of C using n-alkanes and stable isotopes (δ13C, δ15N) allowed distinguishing between the terrestrial vs. aquatic origin of C and determining main sources of particulate organic carbon in the aquatic environment within the two study catchments.

  14. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose.

    Science.gov (United States)

    Li, Liang; Liang, Bo; Li, Feng; Shi, Jianguo; Mascini, Marco; Lang, Qiaolin; Liu, Aihua

    2013-04-15

    In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of D-glucose and D-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of D-glucose and D-xylose containing coenzyme NAD⁺ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at -0.5 V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of D-glucose, and oxidation peak at +0.55 V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD⁺ involved in the catalysis of D-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at -0.5 V was linear with the concentration of D-glucose within the range of 0.25-6 mM with a low detection limit of 0.1 mM D-glucose (S/N=3), and the anodic peak current at +0.55 V was linear with the concentration of d-xylose in the range of 0.25∼4 mM with a low detection limit of 0.1 mM D-xylose (S/N=3). Further, D-xylose and D-glucose did not interfere with each other. 300-fold excess saccharides including D-maltose, D-galactose, D-mannose, D-sucrose, D-fructose, D-cellobiose, and 60-fold excess L-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess D-xylitol did not affect the detection of D-glucose and D-xylose (both 1 mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. PMID:23202346

  15. Disposable, enzymatically modified printed film carbon electrodes for use in the high-performance liquid chromatographic-electrochemical detection of glucose or hydrogen peroxide from immobilized enzyme reactors.

    Science.gov (United States)

    Osborne, P G; Yamamoto, K

    1998-04-10

    Disposable screen-printed, film carbon electrodes (PFCE) were modified with cast-coated Osmium-polyvinylpyrridine-wired horse radish peroxidase gel polymer (Os-gel-HRP) to enable the detection of the reduction at 0 mV of hydrogen peroxide (H2O2) derived from a post-column immobilized enzyme reactor (IMER) containing acetylcholinesterase and choline oxidase. In another series of experiments PFCE were initially modified with cast-coated Os-gel-HRP and then treated with glucose oxidase in bovine serum albumin (BSA) and cross-linked with glutaraldehyde to form a bi-layer glucose-Os-gel-HRP PFCE. This bi-layer glucose-Os-gel-HRP PFCE generated a reduction current at 0 mV to H2O2 derived from the reaction of glucose oxidase and glucose in solution. These enzyme-modified PFCE were housed in a radial flow cell and coupled with cation-exchange liquid chromatographic methods to temporally separate substrates in solution for the determination of acetylcholine (ACh) and choline (Ch) in the first experimental series, or glucose in the second experimental series. These two disposable enzyme-modified PFCE exhibited linear current vs. substrate relations, were durable, being usable for approximately 40 determinations, and were sufficiently sensitive to be employed in biological sampling. Both assays utilized the same HPLC equipment. The limit of detection for ACh was 16 fmol/10 microl and that for glucose was 12 micromol/7.5 microl. ACh and Ch were measured from a microdialysate from the frontal cortex of a rat. Glucose in human urine was determined using the bi-layer glucose oxidase-Os-gel-HRP PFCE. PMID:9613927

  16. Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Elias Pião Benedetti

    2013-01-01

    Full Text Available A strain of the filamentous fungus Aspergillus niger was isolated and shown to possess extracellular xylanolytic activity. These enzymes have biotechnological potential and can be employed in various industries. This fungus produced its highest xylanase activity in a medium made up of 0.1% CaCO3 , 0.5% NaCl, 0.1% NH4 Cl, 0.5% corn steep liquor and 1% carbon source, at pH 8.0. A lowcost hemicellulose residue (powdered corncob proved to be an excellent inducer of the A. niger xylanolytic complex. Filtration of the crude culture medium with suspended kaolin was ideal for to clarify the extract and led to partial purification of the xylanolytic activity. The apparent molecular mass of the xylanase was about 32.3 kDa. Maximum enzyme activity occurred at pH 5.0 and 55-60ºC. Apparent Km was 10.41 ± 0.282 mg/mL and Vmax was 3.32 ± 0.053 U/mg protein, with birchwood xylan as the substrate. Activation energy was 4.55 kcal/mol and half-life of the crude enzyme at 60ºC was 30 minutes. Addition of 2% glucose to the culture medium supplemented with xylan repressed xylanase production, but in the presence of xylose the enzyme production was not affected.

  17. N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH.

    Science.gov (United States)

    Chen, Jun; Wang, Lei; Zheng, Ji; Chen, Jianmeng

    2015-07-01

    Chemical absorption-biological reduction (BioDeNOx), which uses Fe(II)(EDTA) as a complexing agent for promoting the mass transfer efficiency of NO from gas to water, is a promising technology for removing nitric oxide (NO) from flue gases. The carbon source and pH are important parameters for Fe(II)(EDTA)-NO (the production of absorption) reduction and N2O emissions from BioDeNOx systems. Batch tests were performed to evaluate the effects of four different carbon sources (i.e., methanol, ethanol, sodium acetate, and glucose) on Fe(II)(EDTA)-NO reduction and N2O emissions at an initial pH of 7.2 ± 0.2. The removal efficiency of Fe(II)(EDTA)-NO was 93.9%, with a theoretical rate of 0.77 mmol L(-1) h(-1) after 24 h of operation. The highest N2O production was 0.025 mmol L(-1) after 3 h when glucose was used as the carbon source. The capacities of the carbon sources to enhance the activity of the Fe(II)(EDTA)-NO reductase enzyme decreased in the following order based on the C/N ratio: glucose > ethanol > sodium acetate > methanol. Over the investigated pH range of 5.5-8.5, the Fe(II)(EDTA)-NO removal efficiency was highest at a pH of 7.5, with a theoretical rate of 0.88 mmol L(-1) h(-1). However, the N2O production was lowest at a pH of 8.5. The primary effect of pH on denitrification resulted from the inhibition of nosZ in acidic conditions. PMID:25698260

  18. Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors

    OpenAIRE

    Valtencir Zucolotto; Eliton Souto Medeiros; Luiz Henrique Capparelli Mattoso; Juliano Elvis Oliveira

    2012-01-01

    The focus of this paper is the development and investigation of properties of new nanostructured architecture for biosensors applications. Highly porous nanocomposite fibers were developed for use as active materials in biosensors. The nanocomposites comprised poly(lactic acid)(PLA)/multi-walled carbon nanotube (MWCNT) fibers obtained via solution-blow spinning onto indium tin oxide (ITO) electrodes. The electrocatalytic properties of nanocomposite-modified ITO electrodes were investigated to...

  19. A study of the ocean source of carbon disulphide

    Science.gov (United States)

    Xie, Huixiang

    1999-11-01

    The environmental importance of atmospheric carbon disulphide (CS 2) is recognised by its potential role as a major precursor of carbonyl Sulphide (OCS). The ocean is believed to emit CS2 to air, but large uncertainty may exist in the assessments of sea-to-air fluxes of this compound partly due to the meager database we currently have for CS2 in the ocean. This work is intended to re-assess the flux estimates and to identify and evaluate the potential Sources for Oceanic CS2. CS2 was measured in both the surface and subsurface waters during three cruises: two in the North Atlantic and one in the Pacific Ocean. All the investigated waters were supersaturated in CS2 relative to the atmosphere. Two distinct types of vertical profiles were observed: one in the cool waters of the North Atlantic, characterized by gradual reduction in CS2 with depth, and another in the warm waters of the North Pacific central are. showing the coexistence of subsurface CS2 and chlorophyll maxima. Solar UV-initiated photochemical reactions were identified as a significant source for oceanic CS2. The photo-production rate of CS2 is positively correlated with absorbance at 350 run, suggesting that the reactions are mediated by coloured dissolved organic matter. Laboratory irradiations confirmed that cysteine and cystine are efficient precursors of CS2 and that OH radicals are likely to be important intermediates. CS2 data were collected from axenic monocultures of six species of marine phytoplankton: Chaetoceros calcitrans, Phaeodactylum tricornutum, Phaeocystis sp., Porphyridium purpureum, Synechococcus sp. and Isochrysis sp. For a period of between two weeks and forty days, substantial accumulation Of CS2 was found in the cultures of C. calcitrans, P. tricornutum and Phaeocystis sp. C. calcitrans has a potential for CS2 production about 10 times higher than P. tricornutum or Phaeocystis sp. CS2 formation was strongly dependent on the growth stage of the cultured species. (Abstract shortened

  20. Production of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Recombinant Pseudomonas stutzeri 1317 from Unrelated Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    魏晓星; 刘峰; 简嘉; 王瑞妍; 陈国强

    2013-01-01

    Synthetic biology promises to simplify the construction of metabolic pathways by assembling the de-tached modules of the whole pathway. This gives new approaches for the microbial production of industrial products such as polyhydroxyalkanoates (PHA). In this study, to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by Pseudomonas stutzeri 1317 from unrelated carbon sources such as glucose, the phaC1-phaZ-phaC2 operon of P. stutzeri 1317 was knocked out to generate the PHA deficient mutant P. stutzeri 1317LF. Then three modules containing phaCAhAReBRe, phaCAhBReGPp and phaCAhPAh were introduced into P. stutzeri 1317LF separately. The shake flask results indicated that the precursor supply and PHA synthase activity were the vital factors for the PHBHHx accumulation of P. stutzeri 1317LF. Furthermore, the PHBHHx accumulation of the recombinants from different carbon resources were performed. The highest PHBHHx content was 23.7% (by mass) with 58.6% (by mole) 3HB fraction. These results provide basis for further improving the PHBHHx accumulation of P. stutzeri from unrelated carbon sources.

  1. Carbon nanotube based field emission X-ray sources

    Science.gov (United States)

    Cheng, Yuan

    This dissertation describes the development of field emission (FE) x-ray sources with a carbon-nanotube (CNT) cathode. Field emission x-rays have advantages over conventional x-rays by replacing the thermionic cathode with a cold cathode so that electrons are emitted at room temperature and emission is voltage controllable. CNTs are found to be excellent electron emitters with low threshold fields and high current density which makes them ideal for generate field emission x-rays. Macroscopic CNT cold cathodes are prepared and the parameters to tune their field emission properties are studied: structure and morphology of CNT cathodes, temperature as well as electronic work function of CNT. Macroscopic CNT cathodes with optimized performance are chosen to build a high-resolution x-ray imaging system. The system can readily generate x-ray radiation with continuous variation of temporal resolution up to nanoseconds and spatial resolution down to 10 micron. Its potential applications for dynamic x-ray imaging and micro-computed tomography are also demonstrated. The performance characteristics of this compact and versatile system are promising for non-destructive testing and for non-invasive small-animal imaging for biomedical research.

  2. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    Science.gov (United States)

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  3. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    Energy Technology Data Exchange (ETDEWEB)

    Mayorga, E; Aufdenkampe, A K; Masiello, C A; Krusche, A V; Hedges, J I; Quay, P D; Richey, J E; Brown, T A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C and {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  4. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    Science.gov (United States)

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  5. Brain nonoxidative carbohydrate consumption is not explained by export of an unknown carbon source

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nyberg, Nils; Jaroszewski, Jerzy W;

    2010-01-01

    Brain activation provokes nonoxidative carbohydrate consumption and during exercise it is dominated by the cerebral uptake of lactate resulting in that up to approximately 1 mmol/ 100 g of glucose equivalents cannot be accounted for by cerebral oxygen uptake. The fate of this 'extra' carbohydrate...... uptake is unknown, but it may be that brain metabolism is balanced by a yet-unidentified substance(s). This study used a nuclear magnetic resonance-based metabolomics approach to plasma samples obtained from the brachial artery and the right internal jugular vein in 16 healthy young males to identify...... carbon species going to and from the brain. We observed a carbohydrate accumulation of 255+/-37 mumol/100 g glucose equivalents at exhaustion not accounted for by the oxygen uptake. Although the cumulated uptake was lower than earlier observed, the results show that glucose and lactate are responsible...

  6. Ablation Properties of the Carbon-Based Composites Used in Artificial Heat Source Under Fire Accident

    Institute of Scientific and Technical Information of China (English)

    TANG; Xian; HUANG; Jin-ming; ZHOU; Shao-jian; LUO; Zhi-fu

    2012-01-01

    <正>The ablation properties of the carbon-based composites used in artificial heat source under fire accident were investigated by the arc heater. In this work, we tested the carbon-based composites referring to Fig. 1. Their linear/mass ablation ratio and ablation morphologies were studied. The results showed that the carbon-based composites used in artificial heat source behaved well

  7. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    Science.gov (United States)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  8. Boreal Lake Sediments as Sources and Sinks of Carbon

    OpenAIRE

    Gudasz, Cristian

    2011-01-01

    Inland waters process large amounts of organic carbon, contributing to CO2 and CH4 emissions, as well as storing organic carbon (OC) over geological timescales. Recently, it has been shown that the magnitude of these processes is of global significance. It is therefore important to understand what regulates OC cycling in inland waters and how is that affected by climate change. This thesis investigates the constraints on microbial processing of sediment OC, as a key factor of the carbon cycli...

  9. Comparative study on bacterial carbon sources in lake sediments: the role of methanotrophy

    OpenAIRE

    Steger, K.; K. Premke; Gudasz, C.; Boschker, H.T.S.; Tranvik, L.J.

    2015-01-01

    Methane-derived carbon can be important in both benthic and pelagic food webs.Either generated in the anaerobic layers of the sediment or in the anaerobic hypolimnion of stratifiedeutrophic lakes, methane is an excellent carbon source for aerobic methanotrophic bacteria.The very negative methane d13C-signal in the methanotrophic biomass provides an excellentopportunity to trace the use of methane-derived carbon in food webs. We studied carbon sourcesof benthic bacteria in a range of Swedish l...

  10. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    Science.gov (United States)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  11. Glucose inhibibion of galactose-induced synthesis of beta-galactosidase in Streptomyces violaceus.

    Science.gov (United States)

    Sánchez, J; Hardisson, C

    1980-03-01

    Various carbon compounds inhibited galactose induced synthesis of a beta-galactosidase activity in Streptomyces violaceus. Glucose and 2-deoxyglucose, but not methyl-alpha-D-glucose, caused inhibition of galactose uptake activity. In addition, glucose, or one of its metabolites, inhibited the synthesis of the glactose uptake system. Therefore it is concluded that the main inhibitory activity of glucose on galactose induced enzyme synthesis is exerted through inducer exclusion. Other carbon sources, such as D-ribose, D-gluconate, cellobiose or DL-alpha-glycerophosphate, did not inhibit uptake of the inducer galactose and may exert their effect through catabolite repression, inactivation or direct enzyme inhibition. PMID:6770791

  12. Enzyme-based sensing of glucose using a glassy carbon electrode modified with a one-pot synthesized nanocomposite consisting of chitosan, reduced graphene oxide and gold nanoparticles

    International Nuclear Information System (INIS)

    A nanocomposite was prepared that consists of chitosan, reduced graphene oxide and gold nanoparticles by in-situ and simultaneous reduction of graphene oxide and hexachloroaurate whereby chitosan acts as a reducing and stabilizing agent. The nanocomposite was then deposited on a glassy carbon electrode, and glucose oxidase (GOx) was immobilized on its surface to obtain a glucose biosensor. The immobilized GOx displays fast electron transfer with a transfer rate constant of 2.80 s−1. Operated at a working voltage of −0.45 V (vs. Ag/AgCl), the sensor gives a linear response to glucose in the 0.05 to 1.2 mM concentration range, with a sensitivity of 13.58 μA mM−1 cm−2, and a 0.52 μM detection limit. The apparent Michaelis-Menten constant is 2.39 mM. It also possesses good selectivity, reproducibility and stability. (author)

  13. Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes.

    Science.gov (United States)

    Chiu, Jing-Yang; Yu, Chung-Mu; Yen, Miao-Ju; Chen, Lin-Chi

    2009-03-15

    Here we report a new glucose sensing electrode based on a poly(3,4-ethylenedioxythiophene) (PEDOT)/Prussian blue (PB) bilayer and multi-walled carbon nanotubes (CNT). The bilayer was prepared on a flexible screen-printed carbon electrode (SPCE) by sequential electrodeposition. The inner PB layer was electrodeposited first for detecting H(2)O(2) from glucose oxidation; the outer PEDOT layer was electropolymerized on a baked or an unbaked PB film to entrap glucose oxidase (GOD). It was observed that the stability of PB in phosphate buffered saline (pH 7.4) was attained by post-deposition bake at 100 degrees C and the outer PEDOT layer both. In addition, a baked PB film enhanced the subsequent PEDOT growth and the corresponding GOD entrapment. As a result, the bilayer enzyme electrode showed highly resolved and reproducible signals (R.S.D.=2.54%) to glucose samples from 100 microM to 1M during a flow-injection analysis (FIA) at -0.1V vs. Ag/AgCl. The sensitivity of the linear range (1-10mM) was 2.67 microAcm(-2)mM(-1). Moreover, the electrode retained ca. 82% of the original response after 1-month storage in PBS, pH 6.0 at 4 degrees C and could determine the glucose level in human serum precisely. Besides, it was found that CNT incorporation could further improve the sensitivity and could achieve muM-range glucose detection. PMID:19042119

  14. Food sources for the mangrove tree crab aratus pisonii: a carbon isotopic study

    International Nuclear Information System (INIS)

    Muscle tissues from the mangrove tree crab Aratus pisonii was analysed for carbon isotopic composition, in order to trace its major food sources. Potential food sources: mangrove leaves epi phytic green algae, mangrove sediments and open water and mangrove suspended matter; were also analysed. The results show that A. pisonii is basically omnivorous, with major food sources from marine origin. However, mangrove carbon can contribute with 16% to 42% in the crab's diet. (author)

  15. A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer.

    Science.gov (United States)

    Gao, Qiang; Guo, Yanyan; Liu, Jing; Yuan, Xiaqing; Qi, Honglan; Zhang, Chengxiao

    2011-06-01

    A glucose biosensor based on a nanocomposite made by layer-by-layer electrodeposition of the redox polymer into a multilayer containing glucose oxidase (GOx) and single-walled carbon nanotubes (SWCNT) on a screen-printed carbon electrode (SPCE) surface was developed. The objectives of the electrodeposition of redox polymer are to stabilize further the multilayer using a coordinative cross-linked redox polymer and to wire the GOx. The electrochemistry of the layer-by-layer assembly of the GOx/SWCNT/redox polymer nanocomposite was followed by cyclic voltammetry. The resultant biosensor provided stable and reproducible electrocatalytic responses to glucose, and the electrocatalytic current for glucose oxidation was enhanced with an increase in the number of layers. The biosensor displayed a linear range from 0.5 to 6.0mM, a sensitivity of 16.4μA/(mMcm(2)), and a response time of about 5s. It shows no response to 0.05mM of ascorbic acid, 0.32mM of uric acid and 0.20mM of acetaminophen using a Nafion membrane covering the nanocomposite-modified electrode surface. PMID:21570925

  16. Dissolved black carbon in Antarctic lakes: Chemical signatures of past and present sources

    Science.gov (United States)

    Khan, Alia L.; Jaffé, Rudolf; Ding, Yan; McKnight, Diane M.

    2016-06-01

    The perennially ice-covered, closed-basin lakes in the McMurdo Dry Valleys, Antarctica, serve as sentinels for understanding the fate of dissolved black carbon from glacial sources in aquatic ecosystems. Here we show that dissolved black carbon can persist in freshwater and saline surface waters for thousands of years, while preserving the chemical signature of the original source materials. The ancient brines of the lake bottom waters have retained dissolved black carbon with a woody chemical signature, representing long-range transport of black carbon from wildfires. In contrast, the surface waters are enriched in contemporary black carbon from fossil fuel combustion. Comparison of samples collected 25 years apart from the same lake suggests that the enrichment in anthropogenic black carbon is recent. Differences in the chemical composition of dissolved black carbon among the lakes are likely due to biogeochemical processing such as photochemical degradation and sorption on metal oxides.

  17. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes.

    Science.gov (United States)

    Buchanan, R L; Lewis, D F

    1984-08-01

    Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes.

  18. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application

    Science.gov (United States)

    Tian, Jingqi; Liu, Qian; Ge, Chenjiao; Xing, Zhicai; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O.; Sun, Xuping

    2013-09-01

    In this communication, we demonstrate for the first time that ultrathin graphitic carbon nitride (g-C3N4) nanosheets can serve as a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide. We further demonstrate its application for electrochemical glucose biosensing in both buffer solution and human serum medium with a detection limit of 11 μM and 45 μM, respectively.In this communication, we demonstrate for the first time that ultrathin graphitic carbon nitride (g-C3N4) nanosheets can serve as a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide. We further demonstrate its application for electrochemical glucose biosensing in both buffer solution and human serum medium with a detection limit of 11 μM and 45 μM, respectively. Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c3nr02031b

  19. Wetlands as a large carbon source for inland waters

    Science.gov (United States)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L. Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F.; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C.; Deborde, Jonathan; Lima Souza, Edivaldo; Albéric, Patrick; Landim de Souza, Marcelo F.; Roland, Fabio

    2014-05-01

    Recent estimates suggests that up to 3 PgC y-1 could be emitted as CO2 from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon previously fixed upstream by land plant photosynthesis and subsequently transported downstream with runoff. But the observed carbon fluxes from first-order streams do not account for all of the CO2 outgassing at the scale of entire watersheds. Three-quarters of the world's flooded land are temporary wetlands. However, the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Based on observations in rivers and floodplains of the central Amazon, we suggest that wetlands pump large amounts of atmospheric CO2 into river waters. Indeed, the magnitude of CO2 outgassing in Amazonian waters is spatially and temporally related to their connection with the semi-aquatic vegetation that performs aerial photosynthesis (Flooded forests and floating macrophytes). These wetlands export half of their gross primary production to waters as dissolved CO2 and organic carbon, compared to only a few percent of gross primary production in upland ecosystems. Global carbon budgets should explicitly address temporary or vegetated flooded areas, as these ecosystems combine high aerial primary production with a large and fast carbon export capacity, potentially supporting a significant fraction of CO2 evasion from inland waters.

  20. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes

    OpenAIRE

    Korpan Ya. I.; Rogaleva N. S.; Biloivan O. A.

    2010-01-01

    Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2) for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD). To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the ìStat 200 device («DropSens», Spain). The enzymes were immobilised in glutaraldehyde vapour. Results....

  1. Fructose as a carbon source induces an aggressive phenotype in MDA-MB-468 breast tumor cells

    Science.gov (United States)

    MONZAVI-KARBASSI, BEHJATOLAH; HINE, R. JEAN; STANLEY, JOSEPH S.; RAMANI, VISHNU PRAKASH; CARCEL-TRULLOLS, JAIME; WHITEHEAD, TRACY L.; KELLY, THOMAS; SIEGEL, ERIC R.; ARTAUD, CECILE; SHAAF, SAEID; SAHA, RINKU; JOUSHEGHANY, FARIBA; HENRY-TILLMAN, RONDA; KIEBER-EMMONS, THOMAS

    2012-01-01

    Aberrant glycosylation is a universal feature of cancer cells, and certain glycan structures are well-known markers for tumor progression. Availability and composition of sugars in the microenvironment may affect cell glycosylation. Recent studies of human breast tumor cell lines indicate their ability to take up and utilize fructose. Here we tested the hypothesis that adding fructose to culture as a carbon source induces phenotypic changes in cultured human breast tumor cells that are associated with metastatic disease. MDA-MB-468 cells were adapted to culture media in which fructose was substituted for glucose. Changes in cell surface glycan structures, expression of genes related to glycan assembly, cytoskeleton F-actin, migration, adhesion and invasion were determined. Cells cultured in fructose expressed distinct cell-surface glycans. The addition of fructose affected sialylation and fucosylation patterns. Fructose feeding also increased binding of leukoagglutinating Phaseolus vulgaris isolectin, suggesting a possible rise in expression of branching β-1, 6 GlcNAc structures. Rhodamine-phalloidin staining revealed an altered F-actin cytoskeletal system. Fructose accelerated cellular migration and increased invasion. These data suggest that changing the carbon source of the less aggressive MDA-MB-468 cell line induced characteristics associated with more aggressive phenotypes. These data could be of fundamental importance due to the markedly increased consumption of sweeteners containing free fructose in recent years, as they suggest that the presence of fructose in nutritional micro-environment of tumor cells may negatively affect the outcome for some breast cancer patients. PMID:20664930

  2. Estimate of denitrifying microbiota in tertiary sewage treatment and kinetics of the denitrification process using different sources of carbon

    Directory of Open Access Journals (Sweden)

    Marchetto Margarida

    2003-01-01

    Full Text Available A study of the kinetics of denitrification was carried out in the laboratory based on the quantification of N2O, the final product of the activity of denitrifying microorganisms, when the enzymatic reduction of N2O to N2 was blocked by acetylene. Concentrated mixed liquor (sludge from a reactor with intermittent aeration used for sewage treatment was used as the inoculum, while methanol, acetic acid, glucose, effluent sewage from an anaerobic fluidized bed reactor and synthetic substrate simulating domestic sewage were used as carbon sources. The mean concentration of nitrate was 20 mg/L. Maxima of N2O production and NO3- consumption occurred between 0.5h and 2.0h of incubation using all the carbon sources, which characterized the denitrification process. Acetic acid and methanol were responsible for the highest rates of N2O production. The estimated number of denitrifying microorganisms in the reactor with intermittent aeration, using the MPN technique, varied from 10(9 to 10(10 MPN/g VSS, indicating a high potential for the occurrence of denitrification.

  3. Production of Feruloyl Esterase from Aspergillus niger by Solid-State Fermentation on Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    Shiyi Ou

    2011-01-01

    Full Text Available A mixture of wheat bran with maize bran as a carbon source and addition of (NH4SO4 as nitrogen source was found to significantly increase production of feruloyl esterase (FAE enzyme compared with wheat bran as a sole carbon and nitrogen source. The optimal conditions in conical flasks were carbon source (30 g to water 1 : 1, maize bran to wheat bran 1 : 2, (NH4SO4 1.2 g and MgSO4 70 mg. Under these conditions, FAE activity was 7.68 mU/g. The FAE activity on the mixed carbon sources showed, high activity against the plant cell walls contained in the cultures.

  4. Organic carbon in Antarctic snow: spatial trends and possible sources

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, R.; Mahalinganathan, K.; Thamban, M.; Nair, S.

    ) screw-capped glass bottles under a laminar-flow benchhousedinaC015C176Ccoldroomprocessingfacility.Carewas taken to ensure that the bottles were filled leaving no head space and were tightly sealed in order to minimize contamination from the atmosphere... addressing issues concerning global carbon dynamics. 6,7 Additionally, it has been shown that organic carbon in snow undergoes photochemical reactions, releasing reactive gas-phase species to the overlying atmosphere. 8C010 DespiteitsimportanceinairC0...

  5. Effect of Nitrogen Source and Carbon to Nitrogen Ratio on Hydrogen Production using C. acetobutylicum

    Directory of Open Access Journals (Sweden)

    Mohd Sahaid Kalil

    2008-01-01

    Full Text Available Problem statement: One of the main factors influenced the bacterial productivity and total yield of hydrogen is the nitrogen source and its concentration. Approach: Using different nitrogen source with different concentration on bacterial productivity of hydrogen showed to affect on both bacterial productivity of hydrogen and biomass concentration. Results: Yeast extract as nitrogen source at concentration of 13 g L-1 was the best organic nitrogen source and resulted in hydrogen yield YP/S of 308 mL g-1 glucose utilized with biomass concentration of 1.1 g L-1, hydrogen yield per biomass YP/X of 280 mL g-1 L-1, biomass per substrate utilized YX/S of 0.22 and produced hydrogen in gram per gram of glucose utilized YH2/S of 0.0275. C/N of 70 enhanced the YP/S from 308-350 mL g?1 glucose utilized with biomass concentration of 1.22 gL-1, YP/X of 287 mL g-1 L-1, YX/S of 0.244 and YH2/S of 0.03125. Conclusion: Nitrogen source with proper C:N ratio enhanced the hydrogen production.

  6. Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source.

    Science.gov (United States)

    Bhatia, Shashi Kant; Lee, Bo-Rahm; Sathiyanarayanan, Ganesan; Song, Hun-Seok; Kim, Junyoung; Jeon, Jong-Min; Kim, Jung-Ho; Park, Sung-Hee; Yu, Ju-Hyun; Park, Kyungmoon; Yang, Yung-Hun

    2016-10-01

    In this study, a biosugar obtained from empty fruit bunch (EFB) of oil palm by hot water treatment and subsequent enzymatic saccharification was used for undecylprodigiosin production, using Streptomyces coelicolor. Furfural is a major inhibitor present in EFB hydrolysate (EFBH), having a minimum inhibitory concentration (MIC) of 1.9mM, and it reduces utilization of glucose (27%), xylose (59%), inhibits mycelium formation, and affects antibiotic production. Interestingly, furfural was found to be a good activator of undecylprodigiosin production in S. coelicolor, which enhanced undecylprodigiosin production by up to 52%. Optimization by mixture analysis resulted in a synthetic medium containing glucose:furfural:ACN:DMSO (1%, 2mM, 0.2% and 0.3%, respectively). Finally, S. coelicolor was cultured in a fermenter in minimal medium with EFBH as a carbon source and addition of the components described above. This yielded 4.2μg/mgdcw undecylprodigiosin, which was 3.2-fold higher compared to that in un-optimized medium. PMID:26951741

  7. Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli

    Directory of Open Access Journals (Sweden)

    Martin Collin H

    2010-11-01

    Full Text Available Abstract Background The ability to synthesize chiral building block molecules with high optical purity is of considerable importance to the fine chemical and pharmaceutical industries. Production of one such compound, 3-hydroxyvalerate (3HV, has previously been studied with respect to the in vivo or in vitro enzymatic depolymerization of biologically-derived co-polymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate. However, production of this biopolymeric precursor typically necessitates the supplementation of a secondary carbon source (e.g., propionate into the culture medium. In addition, previous approaches for producing 3HV have not focused on its enantiopure synthesis, and thus suffer from increased costs for product purification. Results Here, we report the selective biosynthesis of each 3HV stereoisomer from a single, renewable carbon source using synthetic metabolic pathways in recombinant strains of Escherichia coli. The product chirality was controlled by utilizing two reductases of opposing stereoselectivity. Improvement of the biosynthetic pathway activity and host background was carried out to elevate both the 3HV titers and 3HV/3HB ratios. Overall, shake-flask titers as high as 0.31 g/L and 0.50 g/L of (S-3HV and (R-3HV, respectively, were achieved in glucose-fed cultures, whereas glycerol-fed cultures yielded up to 0.19 g/L and 0.96 g/L of (S-3HV and (R-3HV, respectively. Conclusions Our work represents the first report of direct microbial production of enantiomerically pure 3HV from a single carbon source. Continued engineering of host strains and pathway enzymes will ultimately lead to more economical production of chiral 3HV.

  8. Analysis of phosphate-accumulating organisms cultivated under different carbon sources with polymerase chain reaction-denaturing gradient gel electrophoresis assay

    Institute of Scientific and Technical Information of China (English)

    YU Shui-li; LIU Ya-nan; JING Guo-lin; ZHAO Bing-jie; GUO Si-yuan

    2005-01-01

    To investigate the microbial communities of microorganisms cultivated under different carbon sources, three sequencing batch reactors were operated. They were supplied with sewage, glucose and sodium acetate as carbon sources respectively and showed high phosphorus removal performance. The results of denaturing gradient gel electrophoresis(DGGE) of polymerase chain reaction-amplified (PCR) 16S rDNA fragments demonstrated that β-protebacteria, Actinomyces sp. and γ-protebacteria only exited in 1 # reactor. The microbiological diversity of 1 # reactor exceeded the other two reactors. Flavobacterium, Bacillales, Actinomyces, Actinobacteridae and uncultured bacteria(AF527584, AF502204, AY592749, AB076862, AJ619051, AF495454 and AY133070) could be detected in the biological phosphorus removal reactors.

  9. Sources and sinks of carbon in boreal ecosystems of interior Alaska: A review

    Directory of Open Access Journals (Sweden)

    Thomas A. Douglas

    2014-12-01

    Full Text Available Abstract Boreal ecosystems store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region in Alaska and Canada, largely underlain by discontinuous permafrost, presents a challenging landscape for itemizing carbon sources and sinks in soil and vegetation. The roles of fire, forest succession, and the presence (or absence of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in boreal ecosystems for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape and carbon cycle changes over the next 20 to 50 years. To assist land managers in interior Alaska in adapting and managing for potential changes in the carbon cycle we developed this review paper by incorporating an overview of the climate, ecosystem processes, vegetation, and soil regimes. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to guide policy and land management decisions on how to best manage carbon sources and sinks. We surveyed estimates of aboveground and belowground carbon stocks for interior Alaska boreal ecosystems and summarized methane and carbon dioxide fluxes. These data have been converted into similar units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance. A novel research question is how compounding disturbances affect carbon sources and sinks associated with boreal ecosystem processes. Finally, we provide recommendations to address the challenges facing land managers in efforts to manage carbon cycle processes. The results of this study can be used for carbon cycle management in other locations within the boreal biome which encompasses a broad distribution

  10. Carbon source from the toroidal pumped limiter during long discharge operation in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, E.; Brosset, C.; Lowry, C.; Bucalossi, J.; Chappuis, P.; Corre, Y.; Desgranges, C.; Guirlet, R.; Gunn, J.; Loarer, T.; Mitteau, R.; Monier-Garbet, P.; Pegourie, B.; Reichle, R.; Thomas, P.; Tsitrone, E. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA-Cadarache, 13 - St Paul-lez-Durance (France); Hogan, J. [Oak Ridge National Laboratory, 2 Fusion Energy Division, Oak Ridge, TN (United States); Roubin, P.; Martin, C.; Arnas, C. [CNRS-Universite de Provence, LPIIM, UMR 6633, 13 - Marseille (France)

    2005-07-01

    A better understanding of deuterium retention mechanisms requires the knowledge of carbon sources in Tore-Supra. The main source of carbon in the vacuum vessel during long discharges is the toroidal pumped limiter (TPL). This work is devoted to the experimental characterisation of the carbon source from the TPL surface during long discharges using a visible spectroscopy diagnostic. Moreover, we present an attempt to perform a carbon balance over a typical campaign and we discuss it with regards to the deuterium in-vessel inventory deduced from particle balance and the deuterium content of the deposited layers. The study shows that only a third of the estimated deuterium trapped in the vessel is trapped in the carbon deposits. Thus, in the present state of our knowledge and characterisation of the permanent retention, one has to search for mechanisms other than co-deposition to explain the deuterium retention in Tore Supra. (A.C.)

  11. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process

    OpenAIRE

    Marcelo Marques Tusi; Michele Brandalise; Olandir Vercino Correa; Almir Oliveira Neto; Marcelo Linardi; Estevam Vitorio Spinacé

    2007-01-01

    PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent...

  12. Treatment of hydroponic wastewater by denitrification filters using plant prunings as the organic carbon source.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Sukias, J P S

    2008-05-01

    This study investigated the feasibility of using pre-treated plant liquors as organic carbon sources for the treatment of hydroponic wastewater containing high nitrate-N (>300 mg N/L). The waste plant material was pre-treated to extract organic carbon-rich liquors. When this plant liquor was used as an organic carbon source in denitrification filters at the organic carbon:nitrogen dose rate of 3C:N, nitrate removal efficiencies were >95% and final effluent nitrate concentrations were consistently 140 mg/L) of organic carbon (fBOD5) remained in the final effluents. Therefore, a 'compromise' organic carbon:nitrogen dose rate (2C:N) was trialled, at which nitrate removal efficiencies were maintained at >85%, final effluent nitrate concentrations were consistently below 45 mg N/L, and effluent fBOD5 concentrations were hydroponic wastewater in a denitrification filter. PMID:17714940

  13. FOOD SOURCES AND CARBON BUDGET OF CHINESE PRAWN PENAEUS CHINENSIS

    Institute of Scientific and Technical Information of China (English)

    董双林; 张硕; 王芳

    2002-01-01

    This study deals with contribution of artificial food pellet and natural food to Chinese prawn (Penaeus orientalis) growth in a semiintensive culture pond. The prawn carbon consumption, budget, and the effects of some factors on the budget were investigated. The results showed that 26.2% of P. orientalis growth carbon came from formulated feed at the initial culture stage (when the prawns were 0.06±0.01 g in wet weight), and was 62.5% when the prawns were 9.56±1.04 g. The remaining part of the growth carbon was derived from organic fertilizer and natural food. The highest growth rate occurred at 20×10-3 salinity. Suitable salinity for culturing Chinese prawn was (20-28)×10-3.

  14. Food sources and carbon dudget of chinese prawn Penaeus chinensis

    Science.gov (United States)

    Dong, Shuang-Lin; Zhang, Shuo; Wang, Fang

    2002-03-01

    This study deals with contribution of artificial food pellet and natural food to Chinese prawn ( Penaeus orientalis) growth in a semi-intensive culture pond. The prawn carbon consumption, budget, and the effects of some factors on the budget were investigated. The results showed that 26.2% of P. orientalis growth carbon came from formulated feed at the initial culture stage (when the prawns were 0.06±0.01 g in wet weight), and was 62.5% when the prawns were 9.56±1.04 g. The remaining part of the growth carbon was derived from organic fertilizer and natural food. The highest growth rate occurred at 20×10-3 salinity. Suitable salinity for culturing Chinese prawn was (20 28)×10-3.

  15. Identification of glucose transporters in Aspergillus nidulans.

    Science.gov (United States)

    Dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and -E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  16. Identification of glucose transporters in Aspergillus nidulans.

    Directory of Open Access Journals (Sweden)

    Thaila Fernanda Dos Reis

    Full Text Available To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 % in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP, strongly suggest that hxtB, -C, and -E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.

  17. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  18. Quasi-steady carbon plasma source for neutral beam injector

    International Nuclear Information System (INIS)

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration

  19. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration. PMID:24593646

  20. Nitrate Removal from Drinking Water with Sodium Citrate as Sole Carbon Source

    Institute of Scientific and Technical Information of China (English)

    YAN Bo; ZHAO Lin; TAN Xin

    2005-01-01

    This paper investigates the effect of using sodium citrate(NaC6H5O6*2H2O)as sole carbon source for nitrate removal from drinking water.With sodium citrate as sole carbon source, batch experiments have been conducted to study the law of denitrification influenced by pH, C/N and temperature. Results show that a denitrification rate reaching 1.32 g NO-3-N /(g Biomass*d) was obtained when pH was at 7.5,C/N at 1.7(atom ratio), and temperature from 20 ℃ to 30 ℃. The results also show that denitrification rate with sodium citrate as carbon source approaches to that with methanol as carbon source.

  1. Hierarchical 3-dimensional nickel-iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing.

    Science.gov (United States)

    Kannan, Palanisamy; Maiyalagan, Thandavarayan; Marsili, Enrico; Ghosh, Srabanti; Niedziolka-Jönsson, Joanna; Jönsson-Niedziolka, Martin

    2016-01-14

    Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for various applications because they produce more reaction-active sites than 1-D and 2-D nanostructured materials and exhibit attractive optical, electrical and catalytic properties. In this work, freestanding 3-D/Ni-Fe interconnected hierarchical nanosheets, hierarchical nanospheres, and porous nanospheres are directly grown on a flexible carbon fiber paper (CFP) substrate by a single-step hydrothermal process. Among the nanostructures, 3-D/Ni-Fe interconnected hierarchical nanosheets show excellent electrochemical properties because of its high conductivity, large specific active surface area, and mesopores on its walls (vide infra). The 3-D/Ni-Fe hierarchical nanosheet array modified CFP substrate is further explored as a novel electrode for electrochemical non-enzymatic glucose sensor application. The 3-D/Ni-Fe hierarchical nanosheet arrays exhibit significant catalytic activity towards the electrochemical oxidation of glucose, as compared to the 3-D/Ni-Fe hierarchical nanospheres, and porous nanospheres. The 3-D/Ni-Fe hierarchical nanosheet arrays can access a large amount of glucose molecules on their surface (mesopore walls) for an efficient electrocatalytic oxidation process. Moreover, 3-D/Ni-Fe hierarchical nanosheet arrays showed higher sensitivity (7.90 μA μM(-1) cm(-2)) with wide linear glucose concentration ranging from 0.05 μM to 0.2 mM, and the low detection limit (LOD) of 0.031 μM (S/N = 3) is achieved by the amperometry method. Further, the 3-D/Ni-Fe hierarchical nanosheet array modified CFP electrode can be demonstrated to have excellent selectivity towards the detection of glucose in the presence of 500-fold excess of major important interferents. All these results indicate that 3-D/Ni-Fe hierarchical nanosheet arrays are promising candidates for non-enzymatic glucose sensing. PMID:26578259

  2. Comparative study on bacterial carbon sources in lake sediments: the role of methanotrophy

    NARCIS (Netherlands)

    Steger, K.; Premke, K.; Gudasz, C.; Boschker, H.T.S.; Tranvik, L.J.

    2015-01-01

    Methane-derived carbon can be important in both benthic and pelagic food webs.Either generated in the anaerobic layers of the sediment or in the anaerobic hypolimnion of stratifiedeutrophic lakes, methane is an excellent carbon source for aerobic methanotrophic bacteria.The very negative methane d13

  3. Sources of uncertainties in modelling black carbon at the global scale

    NARCIS (Netherlands)

    Vignati, E.; Karl, M.; Krol, M.C.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in th

  4. Theoretical study on the carbon nanotube used ashard x—radiation source

    Institute of Scientific and Technical Information of China (English)

    LuJing-Han; QinXi-Jun

    1998-01-01

    Calculations and analyses are made on the interaction between the carbon nanotube and the incident positron of high energy.The results obtained show that it is possible to use carbon nanotube as hard X-radiation source with high intensity and good monochromaticity.

  5. Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes

    NARCIS (Netherlands)

    Moens, T.; Luyten, C.; Middelburg, J.J.; Herman, P.M.J.; Vincx, M.

    2002-01-01

    The present study explores the use of stable carbon isotopes to trace organic matter sources of intertidal nematodes in the Schelde estuary (SW Netherlands). Stable carbon isotope signatures of nematodes from a saltmarsh and 4 tidal flat stations were determined in spring and winter situations, and

  6. The investments in renewable energy sources: do low carbon economies better invest in green technologies?

    OpenAIRE

    Antonio Angelo Romano; Giuseppe Scandurra (eds.)

    2011-01-01

    The aim of this study is to analyse the driving of investment in renewable energy sources in low carbon and high carbon economies. To address these issues, a dynamic panel analysis of the renewable investment in a sample of 29 countries was proposed. Results demonstrate that the dynamic of investments in renewable sources is similar in the two panels, and depends by nuclear power generation, GDP and technological efficiency. Results show that countries try to reduce their environmental footpr...

  7. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years

    Science.gov (United States)

    Gonneea, Meagan Eagle; Paytan, Adina; Herrera-Silveira, Jorge A.

    2004-10-01

    Mangrove ecosystems may be a source of organic carbon and nutrients to adjacent coastal systems on one hand and provide a sedimentary sink for organic carbon on the other. The balance between these two functions may be sensitive to both natural and anthropogenically induced variability, yet these effects have not been thoroughly evaluated in mangrove ecosystems. We determine organic matter sources and carbon burial rates over the past 160 years in three lagoons on the Yucatan Peninsula, Mexico. Carbon isotopes and C/N elemental ratios are utilized to trace the three sources contributing to sedimentary organic matter, mangroves, seagrasses and phytoplankton, while nitrogen isotopes are used to elucidate potential post-depositional biogeochemical transformations in mangrove lagoon sediments. All three organic matter sources contribute to organic carbon burial. Phytoplankton and mangroves are the dominant sources of organic matter in lagoon bank sediments and seagrasses are a significant source to central lagoon sediments. Organic carbon burial rates are higher at the lagoon fringes, where mangrove vegetation dominates, than in seagrass-dominated mid-lagoon areas. A reduction in mangrove contribution to the sedimentary organic matter pool concurrent with reduced total organic carbon burial rates is observed in the recent past at all three lagoons studied. Natural cycles in sediment organic matter source over the past 160 years are observed in a high-resolution core. These fluctuations correspond to climatic variability in this region, as recorded in deep-sea foraminiferal assemblages. Additional work is required in order to differentiate between recent anthropogenic perturbations and natural variability in organic carbon sources and burial rates within these ecosystems.

  8. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources.

    Science.gov (United States)

    Otani, Y; Hasegawa, K; Hanaki, K

    2004-01-01

    Abilities of three aerobic denitrifiers such as Alcaligenes faecalis, Microvirgula aerodenitrificans and Paracoccus pantotrophus were compared from the viewpoints of nitrate removal efficiency and organic matter utilization. First, the effect of carbon source was investigated. Although nitrate reduction was observed in all strains under aerobic conditions, a change of carbon source considerably affected the denitrification ability. In the case of P. pantotrophus, nitrate and nitrite were completely removed in three days under sodium acetate or leucine as a carbon source. In the case of A. faecalis, sufficient nitrate removal was observed only when sodium acetate or ethanol was added. P. pantotrophus and A. faecalis showed a higher ability of nitrate removal than that of M. aerodenitrificans. Therefore, P. pantotrophus was selected in order to investigate the effects of concentration and repetitive addition of carbon. Sodium acetate was used as a sole carbon source. Nitrate was not reduced when the carbon concentration was below 500 mgC/L. However, when carbon source was added repeatedly, nitrate was reduced under 100 mgC/L after the optical density of the bacterium reached above 1.0. This result indicated that a high enough level of bacterial density was necessary to express aerobic denitrification activity. PMID:15566182

  9. The glucose and insulin response to isoenergetic reduction of dietary energy sources in a true carnivore: the domestic cat ( Felis catus).

    Science.gov (United States)

    Verbrugghe, Adronie; Hesta, Myriam; Van Weyenberg, Stephanie; Papadopoulos, Georgios A; Gommeren, Kris; Daminet, Sylvie; Bosmans, Tim; Polis, Ingeborgh; Buyse, Johan; Janssens, Geert P J

    2010-07-01

    The present study assessed the effect of separate reduction of each energy-delivering nutrient - protein, fat and carbohydrate - on glucose tolerance and insulin response in a strict carnivore: the domestic cat (Felis catus). Three isoenergetic, home-made diets with the following energetic distribution, low protein (LP): protein 28 % of metabolisable energy; fat 43 %; nitrogen-free extract 29 %; low fat: 47, 27 and 25 %; low carbohydrate (LC): 45, 48 and 7 %, were tested in a 3 x 3 Latin square design. Nine healthy normal-weight cats were randomly assigned to each of the diets in a random order at intervals of 3 weeks. At the end of each testing period, intravenous glucose tolerance tests were performed. Plasma glucose concentrations and area under the glucose curve showed no differences. Area under the insulin curve was lower when cats were fed the LP diet, and the second insulin peak tended to be delayed when the LC diet was fed. In contrast to other studies, in which energy sources were elevated instead of being reduced, the present trial contradicts the often suggested negative impact of carbohydrates on insulin sensitivity in carnivores, and shows that reducing the dietary carbohydrate content below common amounts for commercial foods evokes an insulin-resistant state, which can be explained by the cats' strict carnivorous nature. It even points to a negative effect of protein on insulin sensitivity, a finding that corresponds with the highly gluconeogenic nature of amino acids in strict carnivores. PMID:20193098

  10. Optimization of an Atmospheric Carbon Source for Extremophile Cyanobacteria

    Science.gov (United States)

    Beaubien, Courtney

    This thesis examines the use of the moisture swing resin materials employed at the Center for Negative Carbon Emissions (CNCE) in order to provide carbon dioxide from ambient air to photobioreactors containing extremophile cyanobacteria cultured at the Arizona Center for Algae Technology and Innovation (AzCATI). For this purpose, a carbon dioxide feeding device was designed, built, and tested. The results indicate how much resin should be used with a given volume of algae medium: approximately 500 grams of resin can feed 1% CO2 at about three liters per minute to a ten liter medium of the Galdieria sulphuraria 5587.1 strain for one hour (equivalent to about 0.1 grams of carbon dioxide per hour per seven grams of algae). Using the resin device, the algae grew within their normal growth range: 0.096 grams of ash-free dry weight per liter over a six hour period. Future applications in which the resin-to-algae process can be utilized are discussed.

  11. Intertidal zones as carbon dioxide sources to coastal oceans

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; Rajagopal, M.D.

    To understand the factors controlling carbon dioxide (CO sub(2)) exchanges near land-sea boundary diurnal observations have been made twice on CO sub(2) in the air and water in a coastal region. The results suggest that CO sub(2) enrichment...

  12. Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures.

    Science.gov (United States)

    da Gioppo, Nereida Mello Rosa; Moreira-Gasparin, Fabiana G; Costa, Andréa M; Alexandrino, Ana Maria; de Souza, Cristina Giatti Marques; Peralta, Rosane M

    2009-05-01

    Myrothecium verrucaria is a nondermatophytic filamentous fungus able to grow and to produce keratinase in submerged (93.0 +/- 19 U/ml) and solid state (98.8 +/- 7.9 U/ml) cultures in which poultry feather powder (PFP) is the only substrate. The purpose of the present work was to verify how different carbon and nitrogen sources can influence the production of keratinase by this fungus. Addition of carbohydrates, such as glucose and sucrose, caused only slight improvements in keratinase production, but the addition of starch caused a significant improvement (135.0 +/- 25 U/ml). The highest levels of keratinase activity, however, were obtained by supplementing the PFP cultures with cassava bagasse, 168.0 +/- 28 U/ml and 189.0 +/- 26 U/ml in submerged and solid state cultures, respectively. Contrarily, the supplementation of PFP medium with organic or inorganic nitrogen sources, such as casein, soy bean protein, gelatin, ammonium nitrate and alanine, decreased the production of keratinase in both types of cultures (around 20 U/ml), showing that the production of keratinase by M. verrucaria is repressed by nitrogen sources. The results obtained in this work suggest that the association of the two residues PFP plus cassava bagasse could be an excellent option as a cheap culture medium for the production of keratinase in submerged and solid state cultures.

  13. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    Science.gov (United States)

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  14. Glucose Tests

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Glucose Tests Share this page: Was this page helpful? ... the meaning of other test results. Fasting Blood Glucose Glucose Level Indication From 70 to 99 mg/ ...

  15. Wintertime ecosystem respiration shifts tundra from carbon sink to carbon source at tundra warming experiment

    Science.gov (United States)

    Webb, E.; Schuur, E. A.; Natali, S.; Bracho, R.

    2013-12-01

    Northern latitude ecosystems play a significant role in the global carbon (C) budget due to the roughly 1700 Pg of C stored in permafrost soils. As high latitudes warm, previously frozen C is expected to decompose, thereby increasing CO2 fluxes to the atmosphere and potentially creating a positive feedback to climate warming. While warming has been shown to increase plant C uptake during the growing season, these seasonal C gains may be offset on an annual basis by ecosystem respiration (Reco) during the remaining seven months of the year. Here we present research from the Carbon in Permafrost Experimental Heating Research (CiPEHR) project, a tundra ecosystem warming experiment in interior Alaska. We partitioned the non-growing season into three segments: fall (October 1 until first snow), winter (snow-covered period until spring), and spring (snow depth less than 30cm until melt out). During fall, we measured net ecosystem exchange and Reco using a static flux chamber. In winter, we measured Reco using chamber measurements and soda lime. For spring, we modeled fluxes based on known relationships between snow depth and photosynthetic rate of arctic evergreen species. We found that ecosystem warming caused plants to photosynthesize later in fall and increased C uptake during spring but also enhanced respiration during the long winter. We combined these off-season estimates with measurements from growing season auto-chamber data and found that despite the C gained during the growing season, ecosystem warming resulted in net annual C loss for the two years measured. This annual C loss was dependent on the magnitude of wintertime Reco. Our results indicate that snow depth, soil temperature, and day of season are the major determinants of wintertime Reco. Some climate models predict that arctic ecosystems will experience warmer winters with more snow. Thus, despite increased plant productivity during the growing season, we document that increased wintertime temperatures

  16. One-step "green" preparation of graphene nanosheets and carbon nanospheres mixture by electrolyzing graphite rob and its application for glucose biosensing.

    Science.gov (United States)

    Yin, Huanshun; Zhou, Yunlei; Meng, Xiaomeng; Shang, Kun; Ai, Shiyun

    2011-12-15

    The graphene nanosheets and carbon nanospheres mixture (GNS-CNS) was prepared by electrolyzing graphite rob in KNO(3) solution under constant current, which was characterized by TEM, AFM, SEM, FT-IR, XRD, XPS, TGA and UV-vis. The nano-mixture can keep stable in water for more than one month. Based on this kind of mixture material, a novel electrochemical biosensing platform for glucose determination was developed. Cyclic voltammetry of glucose oxidase (GOD) immobilized on GNS-CNS/GCE exhibited a pair of well-defined quasi-reversible redox peaks at -0.488 V (E(pa)) and -0.509 V (E(pc)) by direct electron transfer between the protein and the electrode. The charge-transfer coefficient (α) was 0.51, the electron transfer rate constant was 2.64 s(-1) and the surface coverage of HRP was 3.18×10(-10) mol cm(-2). The immobilized GOD could retain its bioactivity and catalyze the reduction of dissolved oxygen. The glucose biosensor has a linear range from 0.4 to 20 mM with detection limit of 0.1 mM. Moreover, the biosensor exhibits acceptable reproducibility and storage stability. The fabricated biosensor was further used to determine glucose in human plasma sample with the recoveries from 96.83% to 105.52%. Therefore, GOD/GNS-CNS/GCE could be promisingly applied to determine blood sugar concentration in the practical clinical analysis. PMID:21959225

  17. Development of a stationary carbon emission inventory for Shanghai using pollution source census data

    Science.gov (United States)

    Li, Xianzhe; Jiang, Ping; Zhang, Yan; Ma, Weichun

    2016-03-01

    This study utilizes 521,631 activity data points from the 2007 Shanghai Pollution Source Census to compile a stationary carbon emission inventory for Shanghai. The inventory generated from our dataset shows that a large portion of Shanghai's total energy use consists of coal-oriented energy consumption. The electricity and heat production industries, iron and steel mills, and the petroleum refining industry are the main carbon emitters. In addition, most of these industries are located in Baoshan District, which is Shanghai's largest contributor of carbon emissions. Policy makers can use the enterpriselevel carbon emission inventory and the method designed in this study to construct sound carbon emission reduction policies. The carbon trading scheme to be established in Shanghai based on the developed carbon inventory is also introduced in this paper with the aim of promoting the monitoring, reporting and verification of carbon trading. Moreover, we believe that it might be useful to consider the participation of industries, such as those for food processing, beverage, and tobacco, in Shanghai's carbon trading scheme. Based on the results contained herein, we recommend establishing a comprehensive carbon emission inventory by inputting data from the pollution source census used in this study.

  18. Changing sources and sinks of carbon in boreal ecosystems of Interior Alaska: Current and future perspectives

    Science.gov (United States)

    Douglas, T. A.; Jones, M.; Hiemstra, C. A.

    2012-12-01

    Future climate scenarios predict a roughly 5°C increase in mean annual air temperatures for the Alaskan Interior over the next 80 years. Increasing temperatures and greater frequency and severity of climate-induced disturbances such as wildfires will be enough to initiate permafrost degradation in many areas of Alaska, leading to major changes in surface hydrology and ecosystem structure and function. This, in turn, is expected to alter the current inventories of carbon sources and sinks in the region and provide a management challenge for carbon itemization efforts. To assist land managers in adapting and planning for potential changes in Interior Alaska carbon cycling we synthesize information on climate, ecosystem processes, vegetation, and soil, permafrost, and hydrologic regimes in Interior Alaska. Our goal is to provide an assessment of the current and likely future regime of Interior Alaska carbon sources and sinks. For our carbon assessment we: 1) synthesize the most recent results from numerous studies on the carbon cycle with a focus on research from the Alaskan boreal biome, 2) assemble a summary of estimates of carbon sources in soil and vegetation in Interior Alaska, 3) categorize carbon sources and sinks for predominant Interior Alaska ecosystems, and 4) identify expected changes in sources and sinks with climate change and human activities. This information is used to provide recommendations on potential actions land managers can take to minimize carbon export from the boreal forest. Though the results from our project are geared primarily toward policy makers and land managers we also provide recommendations for filling research gaps that currently present uncertainty in our understanding of the carbon cycle in boreal forest ecosystems of Interior Alaska.

  19. Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress.

    Science.gov (United States)

    Jardine, Kolby; Chambers, Jeffrey; Alves, Eliane G; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D; Nielsen, Lars K; Torn, Margaret S; Vickers, Claudia E

    2014-12-01

    The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. PMID:25318937

  20. Using hydrocarbon as a carbon source for synthesis of carbon nanotube by electric field induced needle-pulsed plasma

    International Nuclear Information System (INIS)

    In this work different hydrocarbons are used as the carbon source, in the production of carbon nanotubes (CNTs) and nano onions. An electric field induced needle pulse arc-discharge reactor is used. The influence of starting carbon on the synthesis of CNTs is investigated. The production efficiency is compared for Acetone, Isopropanol and Naphthalene as simple hydrocarbons. The hydrocarbons are preheated and then pretreated by electric field before being exposed to plasma. The hydrocarbon vapor is injected into plasma through a graphite spout in the cathode assembly. The pulsed plasma takes place between two graphite rods while a strong electric field has been already established alongside the electrodes. The pulse width is 0.3 μs. Mechanism of precursor decomposition is discussed by describing three forms of energy that are utilized to disintegrate the precursor molecules: thermal energy, electric field and kinetic energy of plasma. Molecular polarity of a hydrocarbon is one of the reasons for choosing carbon raw material as a precursor in an electric field induced low power pulsed-plasma. The results show that in order to obtain high quality carbon nanotubes, Acetone is preferred to Isopropanol and Naphthalene. Scanning probe microscopy techniques are used to investigate the products. - Highlights: • We synthesized CNTs (carbon nano tubes) by needle pulsed plasma. • We use different hydrocarbons as carbon source in the production of CNTs. • We investigated the influence of starting carbon on the synthesis of CNTs. • Thermal energy, electric field and kinetic energy are used to break carbon bonds. • Polar hydrocarbon molecules are more efficient than nonpolar ones in production

  1. Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast.

    Directory of Open Access Journals (Sweden)

    Antoine E Roux

    2009-03-01

    Full Text Available Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Galpha subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Deltagit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span.

  2. The Role of PAS Kinase in PASsing the Glucose Signal

    Directory of Open Access Journals (Sweden)

    Julianne H. Grose

    2010-06-01

    Full Text Available PAS kinase is an evolutionarily conserved nutrient responsive protein kinase that regulates glucose homeostasis. Mammalian PAS kinase is activated by glucose in pancreatic beta cells, and knockout mice are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet. Yeast PAS kinase is regulated by both carbon source and cell integrity stress and stimulates the partitioning of glucose toward structural carbohydrate biosynthesis. In our current model for PAS kinase regulation, a small molecule metabolite binds the sensory PAS domain and activates the enzyme. Although bona fide PAS kinase substrates are scarce, in vitro substrate searches provide putative targets for exploration.

  3. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Goornavar, Virupaxi [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States); Jeffers, Robert [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Luna Innovations, Inc., 706 Forest St., Suite A, Charlottesville, VA 22902 (United States); Biradar, Santoshkumar [RICE University, 6100 Main St, Houston, TX 77251 (United States); Ramesh, Govindarajan T., E-mail: gtramesh@nsu.edu [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States)

    2014-07-01

    In this work we report the improved performance an electrochemical glucose sensor based on a glassy carbon electrode (GCE) that has been modified with highly purified single wall carbon nanotubes (SWCNTs) dispersed in polyethyleneimine (PEI), polyethylene glycol (PEG) and polypyrrole (PPy). The single wall carbon nanotubes were purified by both thermal and chemical oxidation to achieve maximum purity of ∼ 98% with no damage to the tubes. The SWCNTs were then dispersed by sonication in three different organic polymers (1.0 mg/ml SWCNT in 1.0 mg/ml of organic polymer). The stable suspension was coated onto the GCE and electrochemical characterization was performed by Cyclic Voltammetry (CV) and Amperometry. The electroactive enzyme glucose oxidase (GOx) was immobilized on the surface of the GCE/(organic polymer–SWCNT) electrode. The amperometric detection of glucose was carried out at 0.7 V versus Ag/AgCl. The GCE/(SWCNT–PEI, PEG, PPY) gave a detection limit of 0.2633 μM, 0.434 μM, and 0.9617 μM, and sensitivities of 0.2411 ± 0.0033 μA mM{sup −1}, r{sup 2} = 0.9984, 0.08164 ± 0.001129 μA mM{sup −1}, r{sup 2} = 0.9975, 0.04189 ± 0.00087 μA mM{sup −1}, and r{sup 2} = 0.9944 respectively and a response time of less than 5 s. The use of purified SWCNTs has several advantages, including fast electron transfer rate and stability in the immobilized enzyme. The significant enhancement of the SWCNT modified electrode as a glucose sensor can be attributed to the superior conductivity and large surface area of the well dispersed purified SWCNTs. - Highlights: • Purification method employed here use cheap and green oxidants. • The method does not disrupt the electronic structure of nanotubes. • This method removes nearly < 2% metallic impurities. • Increases the sensitivity and performance of glassy carbon electrode • This system can detect as low as 0.066 μM of H{sub 2}O{sub 2} and 0.2633 μM of glucose.

  4. Study on the threshold value of organic enrichment of carbonate as gas source rocks

    Institute of Scientific and Technical Information of China (English)

    XUE; Haitao; LU; Shuangfang; ZHONG; Ningning; WANG; Bo

    2004-01-01

    In this paper, calculations have been performed about gas quantity of generation, adsorption, dissolving in oil, dissolving in water, diffusion of unit area carbonate rocks at different geologic conditions in the Tarim basin. According to the material balance principle, the corresponding organic carbon content when gas started expelling from source rocks with separate phases has been worked out. We regard it as the theoretical threshold value (TOCmin) of gas source rocks under the same geologic condition. Based on the simulating calculation, a fact has been discovered that TOCmin decreases with the increasing source rocks thickness, decreases at the beginning and then increases with the increasing maturity and decreases with the better type of organic matter. TOCmin evaluation table of carbonate gas source rocks in the Tarim basin has been established. Investigations indicate that the TOCmin of carbonate gas source rocks varies greatly with the differences of geologic conditions, and gas source rocks cannot be evaluated with a unified TOC threshold value. And we also establish a preliminary evaluation table of TOC industrial threshold value, TOCgy, of carbonate gas source rocks in the Tarim basin.

  5. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity.

    Science.gov (United States)

    Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine

    2014-01-01

    Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.

  6. Study of the biosensor based on platinum nanoparticles supported on carbon nanotubes and sugar-lectin biospecific interactions for the determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjuan [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.c [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Zhong Huaan; Wang Yan [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-04-15

    Research highlights: This work described the synthesis of Pt nanoparticles supported on carbon nanotubes. The Pt{sub nano}-CNTs were used to construct biosensor for the determination of glucose. GOD can be assembled into multilayer thin films via sugar-lectin affinity. The protocol can avoid the chemical denaturation of the enzyme. It improve the stability and sensitivity of the enzyme biosensor. - Abstract: Highly sensitive electrochemical platform based on Pt nanoparticles supported on carbon nanotubes (Pt{sub nano}-CNTs) and sugar-lectin biospecific interactions is developed for the direct electrochemistry of glucose oxidase (GOD). Firstly, Pt{sub nano}-CNTs nanocomposites were prepared in the presence of carbon nanotubes (CNTs), and then the mixture was cast on a glassy carbon electrode (GCE) using chitosan as a binder. Thereafter, concanavalin A (Con A) was adsorbed onto the precursor film by the electrostatic force between positively charged chitosan and the negatively charged Con A. Finally, the multilayers of Con A/GOD films were prepared based on biospecific affinity of Con A and GOD via layer-by-layer (LBL) self-assembly technique. The electrochemical behavior of the sensor was studied using cyclic voltammetry and chronoamperometry. The electrochemical parameters of GOD in the film were calculated with the results of the electron transfer coefficient ({alpha}) and the apparent heterogeneous electron transfer rate constant (k{sub s}) as 0.5 and 5.093 s{sup -1}, respectively. Experimental results show that the biosensor responded linearly to glucose in the range from 1.2 x 10{sup -6} to 2.0 x 10{sup -3} M, with a detection limit of 4.0 x 10{sup -7} M under optimized conditions.

  7. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere

    Science.gov (United States)

    Box, Elgene O.

    1988-01-01

    The estimation of the seasonal dynamics of biospheric-carbon sources and sinks to be used as an input to global atmospheric CO2 studies and models is discussed. An ecological biosphere model is given and the advantages of the model are examined. Monthly maps of estimated biospheric carbon source and sink regions and estimates of total carbon fluxes are presented for an equilibrium terrestrial biosphere. The results are compared with those from other models. It is suggested that, despite maximum variations of atmospheric CO2 in boreal latitudes, the enormous contributions of tropical wet-dry regions to global atmospheric CO2 seasonality can not be ignored.

  8. Role of transitory carbon reserves during adjustment to climate variability and source-sink imbalances in oil palm (Elaeis guineensis).

    Science.gov (United States)

    Legros, S; Mialet-Serra, I; Clement-Vidal, A; Caliman, J-P; Siregar, F A; Fabre, D; Dingkuhn, M

    2009-10-01

    Oil palm (Elaeis guineensis Jacq.) is a perennial, tropical, monocotyledonous plant characterized by simple architecture and low phenotypic plasticity, but marked by long development cycles of individual phytomers (a pair of one leaf and one inflorescence at its axil). Environmental effects on vegetative or reproductive sinks occur with various time lags depending on the process affected, causing source-sink imbalances. This study investigated how the two instantaneous sources of carbon assimilates, CO(2) assimilation and mobilization of transitory non-structural carbohydrate (NSC) reserves, may buffer such imbalances. An experiment was conducted in Indonesia during a 22-month period (from July 2006 to May 2008) at two contrasting locations (Kandista and Batu Mulia) using two treatments (control and complete fruit pruning treatment) in Kandista. Measurements included leaf gas exchange, dynamics of NSC reserves and dynamics of structural aboveground vegetative growth (SVG) and reproductive growth. Drought was estimated from a simulated fraction of transpirable soil water. The main sources of variation in source-sink relationships were (i) short-term reductions in light-saturated leaf CO(2) assimilation rate (A(max)) during seasonal drought periods, particularly in Batu Mulia; (ii) rapid responses of SVG rate to drought; and (iii) marked lag periods between 16 and 29 months of environmental effects on the development of reproductive sinks. The resulting source-sink imbalances were buffered by fluctuations in NSC reserves in the stem, which mainly consisted of glucose and starch. Starch was the main buffer for sink variations, whereas glucose dynamics remained unexplained. Even under strong sink limitation, no negative feedback on A(max) was observed. In conclusion, the different lag periods for environmental effects on assimilate sources and sinks in oil palm are mainly buffered by NSC accumulation in the stem, which can attain 50% (dw:dw) in stem tops. The resulting

  9. Carbon Sources to Authigenic Carbonate Rock at Chemosynthetic Communities: Lower Slope of the Gulf of Mexico

    Science.gov (United States)

    Sassen, R.; Jung, W.; Zhang, C.; Defreitas, D. A.

    2004-12-01

    Flux of biogenic methane, crude oil and associated hydrocarbon gases occurs from the deep subsurface to the seafloor, water column, and atmosphere of the Gulf of Mexico slope. Chemosynthetic communities occur at sites of relatively high gas flux, frequently with gas hydrate, but always with authigenic carbonate rock \\(ACR\\). ACR contains carbonate carbon derived from microbial hydrocarbon oxidation that geologically sequesters much fossil carbon, perturbing the carbon cycle. ACR was collected using the ALVIN from sites with chemosynthetic communities in Alaminos Canyon, Atwater Valley, and the Florida Escarpment areas at water depths as much as 3.3 km. Bulk δ 13C was measured and carbonate petrology used to identify carbonate cements, normal marine carbonate, and non-carbonate components such as metal oxides and sulfides. ACR is depleted in 13C. However, the δ 13C of major hydrocarbon types is typically more depleted in 13C than the associated ACR. For example, the mean δ 13C of biogenic methane seeps in the Gulf slope is -74.0\\permil PDB but the lightest bulk ACR measured in the study area is -46.6\\permil PDB. Carbonate cements from hydrocarbon oxidation are shown to enclose skeletal remains of chemosynthetic fauna such as mussels, clams, as well as other fauna characterized by normal marine carbonate \\(\\sim 0\\permil PDB\\). The best explanation of why the δ 13C of ACR does not closely correspond to that of the hydrocarbon starting products is that normal marine carbon dilutes the δ 13C from hydrocarbon oxidation and thus affects the bulk isotopic properties of ACR.

  10. Could 4 degrees warming change Arctic tundra from carbon sink to carbon source?

    Science.gov (United States)

    Torn, M. S.; Abramoff, R. Z.; Chafe, O.; Curtis, J. B.; Smith, L. J.; Wullschleger, S. D.

    2015-12-01

    We have set up a controlled, active warming experiment in permafrost tundra on the North Slope of Alaska. The aim of this micro-warming experiment is to investigate the direct effect of soil warming on microbial decomposition of soil organic matter. We are testing the feasibility of small, short-term, in situ warming that can be run off batteries for distributed deployment and that preserves plant-soil relations and natural variability in wind, temperature, and precipitation. Based on preliminary results, the approach looks promising. One resistance heater cable per plot (25 cm diameter plots) was inserted vertically to 50 cm, spanning the full active layer (maximum thaw depth was 40 cm in 2014). Heaters were turned on August 1, 2015, and heated plots reached the 4ºC warming target within 1-3 days. We are measuring soil microclimate, thaw depth, CO2 and CH4 fluxes, and 14CO2, and microbial composition, as part of the DOE Next Generation Ecosystem Experiments (NGEE-Arctic). Ecosystem respiration increased immediately in the heated plots, and net ecosystem exchange under clear chambers changed from net uptake to net CO2 source in two of the four plots. CH4 flux shifted toward reduced net emissions or greater net uptake in all plots. These rapid responses demonstrate direct changes in decomposition without complications from microbial acclimation, altered community structure or changes in substrate availability. However, future Arctic tundra carbon balance will depend on both short term and long term microbial responses, as well as the links between warming, decomposition, nitrogen mineralization, and plant growth. Thus, we envision that distributed micro-warming plots could be combined with new approaches to aboveground passive warming being developed in NGEE, gradient studies, and modeling.

  11. Fabrication of ECL glucose sensor based on immobilization glucose oxidase on carbon nanotubes modified electrode%基于碳纳米管固定葡萄糖氧化酶的ECL葡萄糖传感器的制备

    Institute of Scientific and Technical Information of China (English)

    张然; 杨善丽; 买楠楠; 魏万之; 罗胜联; 聂舟

    2011-01-01

    将葡萄糖氧化酶(GOD)固定在多壁碳纳米管(MWCNTs)修饰电极(ME)上,GOD催化氧化葡萄糖生成过氧化氢,并使鲁米诺产生电致化学发光(ECL),据此构建了一种新型ECL葡萄糖传感器.结果表明:CNTs修饰的电极对鲁米诺和H2O2反应具有显著的电催化活性和增敏效果.该传感器对葡萄糖检测的线性范围为0.01~10.0 mmol/L,相关系数R=0.999(n=5),检测限为5.0 μmol/L.此传感器响应快,稳定性高,测定条件接近人体自然pH.将所建立的方法用于临床血清样品中葡萄糖含量的测定,获得了满意的结果.%Incorporation of multi-walled carbon nanotubes on the electrode is performed and modification of glassy carbon electrode with the prepared nano-hybrid material led to the fabrication of a novel electrode. The modified electrode shows attractive electrocatalytic activity and sensitizing effect on Luminol-H2O2 electrochemiluminescence (ECL) reactions at neutral media. The sensitized Luminol-H2O2 reactions are successfully applied for the ECL determination of glucose. Under the optimal conditions for Luminol-H2 O2 system, the ECL signal intensity of luminol is linear with the concentration of glucose in the range of 0. 01 ~10. 0 mmol/L,correlation coefficient R = 0. 999 ( n =5 ) , the limits of detection for glucose are 5. 0 μmol/L. Excellent electrocatalytic activity, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this glucose biosensor.

  12. Amperometric biosensor with nanostructured electrodes by using multi-alled carbon nanotubes for glucose detection in cell culture medium

    OpenAIRE

    Boero, Cristina; Carrara, Sandro; De Micheli, Giovanni

    2009-01-01

    The monitoring of metabolic compounds such as glucose is largely reported in literature. The applications of this type of analysis are mainly related to clinical purposes, e.g. in diabetes pathology, where a lot of studies are presented in literature. Recently, some authors presented studies about glucose and lactate detection in cell culture monitoring [1], [2]. A clear identification of medium compounds could be interesting for biologists and biotechnologists, since they may be identified a...

  13. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes

    Directory of Open Access Journals (Sweden)

    Korpan Ya. I.

    2010-02-01

    Full Text Available Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2 for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD. To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the ìStat 200 device («DropSens», Spain. The enzymes were immobilised in glutaraldehyde vapour. Results. The method of formation of bioselective matrix based on immobilised GOD with MNP-NH2 on the surface of gold amperometric electrodes was optimised. Optimal working conditions of the biosensor developed were determined. Conclusion. MWCNT integration into a bioselective matrix improves the biosensor analytical characteristics which means: higher signal value, wider linear range of glucose analysis, and possibility of substrate determination in wide range of working potential.

  14. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  15. Nonenzymatic sensing of glucose at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support

    International Nuclear Information System (INIS)

    Alloy nanoparticles of the type PtxFe (where x is 1, 2 or 3) were synthesized by coreduction with sodium borohydride in the presence of carbon acting as a chemical support. The resulting nanocomposites were characterized by scanning electron microscopy and X-ray diffraction. The nanocomposite was placed on a glassy carbon electrode, and electrochemical measurements indicated an excellent catalytic activity for the oxidation of glucose even a near-neutral pH values and at a working voltage as low as 50 mV (vs. SCE). Under optimized conditions, the sensor responds to glucose in the 10.0 μM to 18.9 mM concentration range and with a 3.0 μM detection limit (at an S/N ratio of 3). Interferences by ascorbic acid, uric acid, fructose, acetamidophenol and chloride ions are negligible. (author)

  16. Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions.

    Science.gov (United States)

    Wang, Zhihua; Liu, Fang; Lu, Chao

    2012-01-01

    In this work, serving as supports in immobilizing luminol reagent, catalysts of luminol chemiluminescence (CL), and buffer solutions for the CL reaction, Mg-Al-CO(3) layered double hydroxides (LDHs) were found to trigger luminol CL in weak acid solutions (pH 5.8). The silica sol-gel with glucose oxidase and horseradish peroxidase was immobilized in the first half of the inside surface of a clear quartz tube, and luminol-hybrid Mg-Al-CO(3) LDHs were packed in the second half. Therefore, a novel CL flow-through biosensor for glucose was constructed in weak acid solutions. The CL intensity was linear with glucose concentration in the range of 0.005-1.0mM, and the detection limit for glucose (S/N=3) was 0.1 μM. The proposed biosensor exhibited excellent stability, high reproducibility and high selectivity for the determination of glucose and has been successfully applied to determine glucose in human plasma samples with satisfactory results. The success of this work has broken the bottleneck of the pH incompatibility between luminol CL and enzyme activity. PMID:22770831

  17. Facile synthesis of ultrafine Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mian; Han, Ce; Zhang, Yufan; Bo, Xiangjie, E-mail: baoxj133@nenu.edu.cn; Guo, Liping, E-mail: guolp078@nenu.edu.cn

    2015-02-25

    Highlights: • Novel hyperfine Co{sub 3}O{sub 4} nanocrystals decorated porous carbon matrixes. • Facile synthesis without use of any harmful dispersing reagents or surfactants. • High dispersion degree of Co{sub 3}O{sub 4} nanocrystals and excellent e{sup −} transport rates. • A large current sensitivity of 955.9 μA cm{sup −2} mM{sup −1} toward glucose. • Excellent anti-interference and stability for glucose detection. - Abstract: A facile, effective, and environmentally friendly method has been adopted for the first time to prepare tiny Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices without using surfactants, harmful organic reagents or extreme conditions. Structural characterizations reveal that the size-controlled Co{sub 3}O{sub 4} nanocrystals are uniformly dispersed on carbon matrices. Electrochemical measurements reveal that Co{sub 3}O{sub 4}-ordered mesoporous carbon (OMC) can more efficiently catalyze glucose oxidation and acquire better detection parameters compared with those for the Co{sub 3}O{sub 4}-macroporous carbon, Co{sub 3}O{sub 4}-reduced graphene oxide, and free Co{sub 3}O{sub 4} nanoparticles (NPs) (such as: the large sensitivity (2597.5 μA cm{sup −2} mM{sup −1} between 0 and 0.8 mM and 955.9 μA cm{sup −2} mM{sup −1} between 0.9 and 7.0 mM), fast response time, wide linear range, good stability, and surpassingly selective capability to electroactive molecules or Cl{sup −}). Such excellent performances are attributed to the synergistic effect of the following three factors: (1) the high catalytic sites provided by the uniformly dispersed and size-controlled Co{sub 3}O{sub 4} nanocrystals embedded on OMC; (2) the excellent reactant transport efficiency caused by the abundant mesoporous structures of OMC matrix: (3) the improved electron transport in high electron transfer rate (confinement of the Co{sub 3}O{sub 4} NPs in nanoscale spaces ensured intimate contact between Co{sub 3}O{sub 4} nanocrystals and the

  18. The effects of whole grain high-amylose maize flour as a source of resistant starch on blood glucose, satiety, and food intake in young men.

    Science.gov (United States)

    Luhovyy, Bohdan L; Mollard, Rebecca C; Yurchenko, Svitlana; Nunez, Maria Fernanda; Berengut, Shari; Liu, Ting Ting; Smith, Christopher E; Pelkman, Christine L; Anderson, G Harvey

    2014-12-01

    The objective of this study was to determine the dose response effect of whole grain high-amylose maize (HAM) flour as a source of resistant starch (RS) on blood glucose, appetite and short-term food intake. In a repeated-measures crossover trial, healthy men (n = 30, 22.9 ± 0.6 y, BMI of 22.6 ± 0.3 kg/m(2)) were randomly assigned to consume 1 of 3 cookies once a week for 3 wk. Cookies were control (100% wheat flour), low-dose (63% wheat flour,37% HAM flour), and high-dose (33% wheat flour, 67% HAM flour) providing 53.5, 43.5, and 36.3 g of available carbohydrate, respectively. Ad libitum food intake was measured 120 min at a pizza meal, blood glucose and subjective appetite were measured after consumption of the cookie (0 to 120 min) and after the pizza meal (140 to 200 min). Blood glucose concentrations were lower at 30 and 45 min after high-dose treatment, and at 120 min after both high- and low-dose treatments compared to control (P < 0.05). Blood glucose AUC before the pizza meal (0 to 120 min) was 44% and 14% lower, and higher by 43% and 41% after the pizza meal (140 to 200 min) compared with control. Yet despite the higher response following the meal, cumulative AUC (0 to 200 min) was still 22% lower after the high-dose treatment (P < 0.05). All treatments equally suppressed subjective appetite and there was no effect on food intake. In conclusion, HAM flour as a source of RS and incorporated into a cookie was associated with better glycemic control in young men.

  19. Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles: a novel route for the fabrication of an oxygen sensor and a glucose biosensor.

    Science.gov (United States)

    Haghighi, Behzad; Bozorgzadeh, Somayyeh

    2011-07-01

    Incorporation of palladium nanoparticles on the surface of multi-walled carbon nanotubes and modification of glassy carbon electrode with the prepared nano-hybrid material led to the fabrication of a novel electrode. The modified electrode showed attractive electrocatalytic activity and sensitizing effect on luminol-O(2) and luminol-H(2)O(2) electrochemiluminescence (ECL) reactions at neutral media. The sensitized luminol-O(2) and luminol-H(2)O(2) reactions were successfully applied for the ECL determination of dissolved O(2) and glucose, respectively. Under the optimal conditions for luminol-O(2) system, the ECL signal intensity of luminol was linear with the concentration of dissolved oxygen in the range between 0.08 and 0.94 mM (r=0.9996) and for luminol-H(2)O(2) system, the ECL signal intensity of luminol was linear with the concentration of glucose in the range between 0.1 and 1000 μM (r=0.9998). The limits of detection (S/N=3) for dissolved oxygen and glucose were 0.02 mM and 54 nM, respectively. The relative standard deviations (RSD) for repetitive measurements of 0.50 mM oxygen (n=10) and 10 μM glucose (n=30) were 3.5% and 0.3%, respectively. Also, under the optimal conditions for luminol-H(2)O(2) system, the ECL signal intensity of luminol was linear with the concentration of H(2)O(2) in the range between 1 nM and 0.45 mM (r=0.9997). The limit of detection (S/N=3) for H(2)O(2) detection was 0.5 nM and the relative standard deviation for repetitive measurements of 10 μM H(2)O(2) (n=10) was 0.8%. PMID:21641423

  20. Mesozoic black shales, source mixing and carbon isotopes

    Science.gov (United States)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  1. A one-step single source route to carbon nanotubes

    Indian Academy of Sciences (India)

    Tao Cheng; Zhiyong Fang; Guifu Zou; Qixiu Hu; Biao Hu; Xiaozhi Yang; Youjin Zhang

    2006-12-01

    Carbon nanotubes (CNTs) have been synthesized via directly pyrolyzing ferrocene in the autoclave. The nanotubes with several micrometers in length have outer and inner diameters in the range of 40–100 nm and 20–40 nm, respectively. An yield of ∼70% of CNTs can be obtained without any accessorial solvents and catalysts. Experimental results showed that a temperature higher than 600°C in conjunction with proper pressure was favourable for achievement of the nanotubes. The growth mechanism of CNTs was also discussed.

  2. A series of tufted carbon fiber cathodes designed for different high power microwave sources

    Science.gov (United States)

    Liu, Lie; Li, Limin; Zhang, Jun; Zhang, Xiaoping; Wen, Jianchun; Liu, Yonggui

    2008-06-01

    We report the fabrication technique of tufted carbon fiber cathodes for different microwave sources. Three carbon fiber cathodes were constructed, including a planar cathode, an annular cathode, and a cylindrical cathode for radial emission. Experimental investigations on these cathodes were performed in a reflex triode virtual cathode oscillator (vircator), a backward wave oscillator (BWO), and a magnetically insulated transmission line oscillator (MILO), respectively. The pulse duration of microwave emission from the reflex triode vircator was lengthened by using the planar carbon fiber cathode. In the BWO with the annular carbon fiber cathode, the uniform electron beam with a kA /cm2 current density was observed. In addition, carbon fiber has great promise as field emitter for MILOs. These results show that the carbon fiber cathodes can be utilized for electron emission in high power diodes with different structures.

  3. Biodegradation of Alachlor in Liquid and Soil Cultures Under Variable Carbon and Nitrogen Sources by Bacterial Consortium Isolated from Corn Field Soil

    Directory of Open Access Journals (Sweden)

    Simin Nasseri

    2013-03-01

    Full Text Available Alachlor, an aniline herbicide widely used in corn production, is frequently detected in water resources. The main objectives of this research were focused on isolating bacterial consortium capable of alachlor biodegradation, assessing the effects of carbon and nitrogen sources on alachlor biodegradation and evaluating the feasibility of using bacterial consortium in soil culture. Kavar corn field soil with a long history of alachlor application in Fars province of Iran has been explored for their potential of alachlor biodegradation. The influence of different carbon compounds (glucose, sodium citrate, sucrose, starch and the combination of these compounds, the effect of nitrogen sources (ammonium nitrate and urea and different pH (5.5-8.5 on alachlor removal efficiency by the bacterial consortium in liquid culture were investigated. After a multi-step enrichment program 100 days of acclimation, a culture with the high capability of alachlor degradation was obtained (63%. Glucose and sodium citrate had the highest alachlor reduction rate (85%. Alachlor reduction rate increased more rapidly by the addition of ammonium nitrate (94% compare to urea. Based on the data obtained in the present study, pH of 7.5 is optimal for alachlor biodegradation. After 30 days of incubation, the percent of alachlor reduction were significantly enhanced in the inoculated soils (74% as compared to uninoculated control soils (17.67% at the soil moisture content of 25%. In conclusion, bioaugmentation of soil with bacterial consortium may enhance the rate of alachlor degradation in a polluted soil.

  4. Biodegradation of alachlor in liquid and soil cultures under variable carbon and nitrogen sources by bacterial consortium isolated from corn field soil.

    Science.gov (United States)

    Dehghani, Mansooreh; Nasseri, Simin; Zamanian, Zahra

    2013-01-01

    Alachlor, an aniline herbicide widely used in corn production, is frequently detected in water resources. The main objectives of this research were focused on isolating bacterial consortium capable of alachlor biodegradation, assessing the effects of carbon and nitrogen sources on alachlor biodegradation and evaluating the feasibility of using bacterial consortium in soil culture. Kavar corn field soil with a long history of alachlor application in Fars province of Iran has been explored for their potential of alachlor biodegradation. The influence of different carbon compounds (glucose, sodium citrate, sucrose, starch and the combination of these compounds), the effect of nitrogen sources (ammonium nitrate and urea) and different pH (5.5-8.5) on alachlor removal efficiency by the bacterial consortium in liquid culture were investigated. After a multi-step enrichment program 100 days of acclimation, a culture with the high capability of alachlor degradation was obtained (63%). Glucose and sodium citrate had the highest alachlor reduction rate (85%). Alachlor reduction rate increased more rapidly by the addition of ammonium nitrate (94%) compare to urea. Based on the data obtained in the present study, pH of 7.5 is optimal for alachlor biodegradation. After 30 days of incubation, the percent of alachlor reduction were significantly enhanced in the inoculated soils (74%) as compared to uninoculated control soils (17.67%) at the soil moisture content of 25%. In conclusion, bioaugmentation of soil with bacterial consortium may enhance the rate of alachlor degradation in a polluted soil. PMID:23452801

  5. Proteinase production in Pseudomonas fluorescens ON2 is affected by carbon sources and allows surface-attached but not planktonic cells to utilize protein for growth in lake water

    DEFF Research Database (Denmark)

    Nicolaisen, Mette Haubjerg; Worm, Jakob; Jørgensen, Niels O. G.;

    2012-01-01

    Proteins may be an important carbon and nitrogen source to bacteria in aquatic habitats, yet knowledge on the actual utilization of this substrate by proteolytic bacteria is scarce. In the present study, Pseudomonas fluorescens ON2 produced an alkaline proteinase (AprX) during growth...... and there was no evidence for cell density-regulated or starvation-induced proteinase production. Proteinase was produced in the absence of an organic nitrogen source, and citrate had a negative while glucose had a positive effect on the production. Hence P. fluorescens ON2 seems to exploit protein sources by expressing...

  6. The potential of non-carbon energy sources in developing countries - The case of the PRC

    International Nuclear Information System (INIS)

    While developing countries presently account for a small share of the world's carbon emissions, in coming years, the quantity of energy-related CO2 generated by developing nations will surpass the amount produced by industrialized countries. In response to this trend, an increasing amount o attention has been paid to the prospect of reducing emissions in developing countries by exploiting non-carbon energy resources. To date, however, financial constraints have limited the development of non-carbon alternatives; the costs of these sources typically loom far above the costs of conventional forms of energy. Due to its heavy reliance on coal energy, China makes a disproportionately high contribution to global CO2. In 1990, China's energy-related activities consumed 8% of the world's commercial energy, but accounted for 11% of global carbon emissions. While financial constraints will continue to hinder the exploration of non-carbon alternatives, increasing the roles of hydropower, nuclear energy, solar radiation and wind energy could play a major role in curtailing the growth of carbon emissions in the PRC. This paper evaluates the potential for integrating various non-carbon energy sources in China and provides possible strategies for deploying these sources

  7. Evaluation criteria for gas source rocks of marine carbonate in China

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaoyun; ZHAO Wenzhi; WANG Yunpeng

    2005-01-01

    Hydrocarbon generating and expulsion simulation experiments are carried out using samples artifically matched between the acid-dissolved residue of relatively low-maturity limestone and the original sample. This work makes up for the insufficiency of source rock samples with high abundance of organic matters and low maturity in China. The organic carbon content of the 10 prepared samples varies between 0.15 % and 0.74 %. Pyrolysis data and simulation experiment results of hydrocarbon generating and expulsion, which were obtained by a high-temperature and high-pressure open system, indicate that the lower limit of organic carbon content for marine carbonate rock to generate and expel hydrocarbons is 0.23 %-0.31%. In combination with the numerical analysis of organic carbon in marine carbonate rocks from Tarim Basin, Sichuan Basin, Ordos Basin and North China, as well as the contribution of these gas source rocks to the discovered gas pools, we think that the organic carbon criterion for carbonate gas source rocks should be 0.3%.

  8. Organic carbon source and burial during the past one hundred years in Jiaozhou Bay, North China

    Institute of Scientific and Technical Information of China (English)

    LI Xuegang; YUAN Huamao; LI Ning; SONG Jinming

    2008-01-01

    Organic carbon (OC), total nitrogen (TN), and 210Pb in core sediment were measured to quantify the burial of organic carbon and the relative importance of allochthonous and autochthonous contributions during the past one hundred years in Jiaozhou Bay, North China. The core sediment was dated using 210Pb chronology, which is the most promising method for estimation of sedimentation rate on a time scale of 100-150 years. The variation of the burial flux of organic carbon in the past one hundred years can be divided into the following three stages: (1) relatively steady before 1980s; (2) increasing rapidly from the 1980s to a peak in the 1990s, and (3) decreasing from the 1990s to the present. The change is consistent with the amount of solid waste and sewage emptied into the bay. The OC:TN ratio was used to evaluate the source of organic carbon in the Jiaozhou Bay sediment. In the inner bay and bay mouth, the organic carbon was the main contributor from terrestrial sources, whereas only about half of organic carbon was contributed from terrestrial source in the outer bay. In the inner bay, the terrestrial source of organic carbon showed a steady change with an increase in the range of 69%-77% before 1990 to 93% in 2000, and then decreased from 2000 because of the decrease in the terrestrial input. In the bay mouth, the percentage of organic carbon from land reached the highest value with 94% in 1994. In the outer bay, the sediment source maintained steady for the past one hundred years.

  9. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    Science.gov (United States)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  10. Hemicellulose concentration and composition in plant cell walls under extreme carbon source-sink imbalances

    Energy Technology Data Exchange (ETDEWEB)

    Schaedel, C.; Hoch, G. (Univ. of Basel, Institute of Botany, Basel (Switzerland)); Richter, A.; Bloechl, A. (Univ. of Vienna, Dept. of Chemical Ecology and Ecosystem Research, Vienna (Austria))

    2010-01-15

    Hemicelluloses account for one-quarter of the global dry plant biomass and therefore are the second most abundant biomass fraction after cellulose. Despite their quantitative significance, the responsiveness of hemicelluloses to atmospheric carbon oversupply is still largely unknown, although hemicelluloses could serve as carbon sinks with increasing CO{sub 2} concentrations. This study aimed at clarifying the role hemicelluloses play as carbon sinks, analogous to non-structural carbohydrates (NSC), by experimentally manipulating the plants' carbon supply. Sixteen plant species from four different plant functional types (grasses, herbs, seedlings of broad-leaved trees and conifers) were grown for 2 months in greenhouses at either extremely low (140 ppm), medium (280 ppm) or high (560 ppm) atmospheric CO{sub 2}concentrations, thus inducing situations of massive C-limitation or -oversupply. Above and below ground biomass as wellas NSC significantly increased in all species and tissues with increasing CO{sub 2}concentrations. Increasing CO{sub 2}concentrations had no significant effect on total hemicellulose concentrations in leaves and woody tissues in all species, except for two out of four grass species, where hemicellulose concentrations increased with atmospheric CO{sub 2}supply. Despite the overall stable total hemicellulose concentrations, the monosaccharide spectra of hemicelluloses showed a significant increase in glucose monomers in leaves of woody species as C-supply increased. In summary, total hemicellulose concentrations in de novo built biomass seem to be largely unaffected by changed atmospheric CO{sub 2}concentrations, while significant increases of hemicellulose-derived glucose with increasing CO{sub 2}concentrations in leaves of broad-leaved and conifer tree seedlings showed differential responses among the different hemicellulose classes in response to varying CO{sub 2}concentrations. (author)

  11. Hemicellulose concentration and composition in plant cell walls under extreme carbon source-sink imbalances.

    Science.gov (United States)

    Schädel, Christina; Richter, Andreas; Blöchl, Andreas; Hoch, Günter

    2010-07-01

    Hemicelluloses account for one-quarter of the global dry plant biomass and therefore are the second most abundant biomass fraction after cellulose. Despite their quantitative significance, the responsiveness of hemicelluloses to atmospheric carbon oversupply is still largely unknown, although hemicelluloses could serve as carbon sinks with increasing CO(2) concentrations. This study aimed at clarifying the role hemicelluloses play as carbon sinks, analogous to non-structural carbohydrates (NSC), by experimentally manipulating the plants' carbon supply. Sixteen plant species from four different plant functional types (grasses, herbs, seedlings of broad-leaved trees and conifers) were grown for 2 months in greenhouses at either extremely low (140 ppm), medium (280 ppm) or high (560 ppm) atmospheric CO(2) concentrations, thus inducing situations of massive C-limitation or -oversupply. Above and belowground biomass as well as NSC significantly increased in all species and tissues with increasing CO(2) concentrations. Increasing CO(2) concentrations had no significant effect on total hemicellulose concentrations in leaves and woody tissues in all species, except for two out of four grass species, where hemicellulose concentrations increased with atmospheric CO(2) supply. Despite the overall stable total hemicellulose concentrations, the monosaccharide spectra of hemicelluloses showed a significant increase in glucose monomers in leaves of woody species as C-supply increased. In summary, total hemicellulose concentrations in de novo built biomass seem to be largely unaffected by changed atmospheric CO(2) concentrations, while significant increases of hemicellulose-derived glucose with increasing CO(2) concentrations in leaves of broad-leaved and conifer tree seedlings showed differential responses among the different hemicellulose classes in response to varying CO(2) concentrations. PMID:20113432

  12. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    Science.gov (United States)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  13. Effects of different carbon sources on denitrification efficiency associated with culture adaptation and C/N ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gueven, Didem [Department of Environmental Engineering, Fatih University, Bueyuekcekmece, Istanbul (Turkey)

    2009-07-15

    Stringent effluent limitations for nitrogen necessitate an accurate interpretation of the design and operation conditions of biological nitrogen removal systems. In this study, the effects of the nature of the organic substrate on biomass adaptation and response to different C/N ratios in terms of denitrification efficiency were investigated. A relatively high chemical oxygen demand (COD){sub utilized}/NO{sub x}-N{sub reduced} ratio of 8.1 was obtained when an excess amount of readily biodegradable carbon was supplied, which is suggested as the conversion of substrate surplus into storage polymers. An anoxic yield of 0.64 g cell COD/g COD for a four-compound substrate mixture (acetate, propionate, ethanol and glucose), 0.63 g cell COD/g COD for a two-compound substrate mixture (acetate and propionate), and 0.5 g cell COD/g COD for methanol were calculated. Fluorescence in situ hybridization analysis showed that the {beta}-subclass of proteobacteria was dominant in the seed and in cultures adapted to both the four-compound and the two-compound substrate mixture, whereas in the methanol-adapted culture significant amounts of {beta}-proteobacteria were detected. The biocommunity composition, the type of organic compound and the COD/NO{sub 3}-N ratio strongly influence the nitrate reduction and carbon utilization profiles. Methanol has been shown to select for a denitrifying population consisting of Paracoccus and Hyphomicrobium vulgare genera, when used as only external carbon source. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Characteristics and source of black carbon aerosol over Taklimakan Desert

    Institute of Scientific and Technical Information of China (English)

    FU; S.Joshua

    2010-01-01

    Black carbon(BC) and PM10 in the center of the Taklimakan Desert were online monitored in the whole year of 2007.In addi-tion,TSP samples were also synchronously daily collected by medium-volume samplers with Whatman41 filters in the spring of 2007.BC in the dust aerosol was up to 1.14%of the total mass of PM10.A remarkable seasonal variation of BC in the aerosol was observed in the order of winter>spring>autumn>summer.The peak value of BC appeared at midnight while the lowest one in the evening each day,which was just the reverse of that in the urban area.The contribution of BC to the total mass of PM10 on non-dust storm days was~11 times of that in dust storm.Through back trajectory and principal component analysis,it was found that BC in the dust aerosol over Taklimakan Desert might be attributed to the emission from the anthropogenic activities,including domestic heating,cooking,combustion of oil and natural gas,and the medium-range transport from those oases located in the margins of the desert.The total BC aerosol from the Taklimakan Desert to be transported to the eastward downstream was estimated to be 6.3×104 ton yr-1.

  15. Direct Electrochemistry of Glucose Oxidase Immobilized on Chitosan-gold Nanoparticle Composite Film on Glassy Carbon Electrodes and Its Biosensing Application

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct electrochemistry of glucose oxidase (Gox) immobilized on a composite matrix based on chitosan (CHIT) and Au nanoparticles (Au NP) underlying on a glassy carbon electrode was achieved. The cyclic voltam-metry and electrochemical impedance spectroscopy were used to characterize the modified electrode. In deaerated buffer solutions, the cyclic voltammetry of the composite films of Gox-Au NP-CHIT showed a pair of well-behaved redox peaks that were assigned to the redox reaction of Gox, confirming the effective immobilization of Gox on the composite film. The electron transfer rate constant was estimated to be 15.6 s-1, indicating a high electron transfer between the Gox redox center and electrode. The combination of CHIT and Au NP also promoted the stability of Gox in the composite film and retained its bioactivity, which might have the potential application to glucose determination. The calculated apparent Michaelis-Menten constant was 10.1 mmol·L-1. Furthermore, the proposed biosensor could be used for the determination of glucose in human plasma samples.

  16. Glucose biosensor based on covalent immobilization of enzyme in sol-gel composite film combined with Prussian blue/carbon nanotubes hybrid.

    Science.gov (United States)

    Fu, Guanglei; Yue, Xiuli; Dai, Zhifei

    2011-05-15

    A novel electrochemical glucose biosensor was developed based on in situ covalent immobilization of glucose oxidase (GOx) by one-pot chitosan (CS)-incorporated sol-gel process in the presence of Prussian blue deposited multi-walled carbon nanotubes hybrids (PB/MWNTs) using 3-isocyanatopropyltriethoxysilane (ICPTES) as both a sol-gel precursor and a covalent coupling agent for GOx and CS. The electrode modified with the PB/MWNTs-GOx-CS-ICPTES sol-gel composite film showed good electrical conductivity and effective low-potential electron transfer mediation toward H2O2 reduction attributed to the incorporation of PB/MWNTs. The biosensor exhibited a linear response to glucose in the concentration range from 2.5×10(-5) to 1.3×10(-3) M with a correlation coefficient of 0.9998, a detection limit of 7.5×10(-6) M, a low response time (10s ), good sensitivity and high anti-interference ability. Compared with the control biosensor based on the traditional tetraethoxysilane derived sol-gel composite film, the biosensor showed a similarly small apparent Michaelis-Menten constant of 3.67 mM but much higher electrochemical and biosensing stability. PMID:21478008

  17. In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor.

    Science.gov (United States)

    Zhong, Huaan; Yuan, Ruo; Chai, Yaqin; Li, Wenjuan; Zhong, Xia; Zhang, Yu

    2011-07-15

    A new glucose amperometric biosensor, based on electrodeposition of platinum nanoparticles onto the surface of multi-wall carbon nanotube (MWNT)-polyaniline (PANI) nanocomposites, and then immobilizing glucose oxidase (GOD) with covalent interaction and adsorption effect, was constructed in this paper. Firstly, the MWNT-PANI nanocomposites had been synthesized by in situ polymerization and were characterized through transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet and visible (UV-vis) absorption spectra. The assembled process of the modified electrode was probed by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Chronoamperometry was used to study the electrochemical performance of the resulting biosensor. The glucose biosensor exhibited a linear calibration curve over the range from 3.0 μM to 8.2mM, with a detection limit of 1.0 μM and a high sensitivity of 16.1 μA mM(-1). The biosensor also showed a short response time (within 5s). Furthermore, the reproducibility, stability and interferences of the biosensor were also investigated. PMID:21645677

  18. Ni(II)-quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Li [Institute of Analytical Science, Northwest University, Xi' an, 710069 (China); College of Chemistry and Chemical Engineering, Xi' an Shiyou University, Xi' an, 710065 (China); Zhang Jiaoqiang [Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi' an, 710072 (China); Song Junfeng [Institute of Analytical Science, Northwest University, Xi' an, 710069 (China)], E-mail: songjunf@nwu.edu.cn

    2009-07-30

    A modified electrode Ni(II)-Qu-MWCNT-IL-PE has been fabricated by electrodepositing Ni(II)-quercetin [Ni(II)-Qu] complex on the surface of multi-wall carbon nanotube ionic liquid paste electrode (MWCNT-IL-PE) in alkaline solution. The Ni(II)-Qu-MWCNT-IL-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-Qu-MWCNT-PE. It also shows good electrocatalytic activity toward the oxidation of glucose. Kinetic parameters such as the electron transfer coefficient {alpha}, rate constant k{sub s} of the electrode reaction and the catalytic rate constant k{sub cat} of the catalytic reaction are determined. Moreover, the catalytic current presents linear dependence on the concentration of glucose from 5.0 {mu}M to 2.8 mM, with a detection limit of 1.0 {mu}M by amperometry. The modified electrode for glucose determination is of the property of simple preparation, good stability, fast response and high sensitivity.

  19. Sources of uncertainties in modelling black carbon at the global scale

    OpenAIRE

    Vignati, E.; Karl, M; M. Krol; Wilson, J.(School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom); Stier, P; F. Cavalli

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the...

  20. Morphology and Electrochemical Properties of Thermal Modified Nanoporous Carbon as Electrode of Lithium Power Sources

    Directory of Open Access Journals (Sweden)

    V.I. Mandzyuk

    2014-04-01

    Full Text Available The paper explored the effect of thermal modification on morphology of porous carbon material and specific energy parameters of lithium power sources formed on it bases. The structural and sorption properties of these materials – specific surface area, micropore surface, total pore volume, micropore volume, average pore diameter, are defined by low-temperature porometry method. The electro-stimulated diffusion coefficient of lithium ions into porous carbon material is calculated on the bases of galvanostatic intermittent titration.

  1. Carbon sources supporting a diverse fish community in a tropical coastal ecosystem (Gazi Bay, Kenya)

    OpenAIRE

    Nyunja, J.; Ntiba, M.; Onyari, J.; Mavuti, K.; K. Soetaert; BOUILLON, S

    2009-01-01

    Interlinked mangrove-seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isoto...

  2. Sources and delivery of carbon dioxide for enhanced oil recovery. Final report, October 1977--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hare, M.; Perlich, H.; Robinson, R.; Shah, M.; Zimmerman, F.

    1978-12-01

    Results are presented from a comprehensive study by Pullman Kellogg, with assistance from Gulf Universities Research Consortium (GURC) and National Cryo-Chemics Incorporated (NCI), of the carbon dioxide supply situation for miscible flooding operations to enhance oil recovery. A survey of carbon dioxide sources within the geographic areas of potential EOR are shown on four regional maps with the tabular data for each region to describe the sources in terms of quantity and quality. Evaluation of all the costs, such as purchase, production, processing, and transportation, associated with delivering the carbon dioxide from its source to its destination are presented. Specific cases to illustrate the use of the maps and cost charts generated in this study have been examined.

  3. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  4. Carbon storages in plantation ecosystems in sand source areas of north Beijing, China.

    Directory of Open Access Journals (Sweden)

    Xiuping Liu

    Full Text Available Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0-100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management.

  5. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams

    Science.gov (United States)

    Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrific...

  6. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  7. Innovative slow-release organic carbon-source material for groundwater in situ denitrification.

    Science.gov (United States)

    Zhang, Dayi; Zhang, Xu; Wang, Yun; Zhou, Guizhong; Li, Guanghe

    2015-01-01

    Slow-release organic carbon-source (SOC) material, a new kind of electron donor for in situ groundwater denitrification, was prepared and evaluated in this study. With starch as a biologically utilized carbon source and polyvinyl alcohol (PVA) as a frame, this material performed controllable carbon release rates and demonstrated stable behaviour during the simulated denitrification process. Raman spectrum analysis showed that the PVA skeleton formed cross-linking network structures for hydrogen-bonded water molecules reset in low temperatures, and the starchy molecules filled in the interspace of the skeleton to form a two-phase interlocking/disperse phase structure. In a static system, carbon release processes followed the Fickian law with (1.294-6.560)×10(-3) mg g(-1) s(-1/2) as the release coefficient. Under domestication and in situ groundwater simulation conditions, SOC material played a favourable role during denitrification, with 1.049±0.165 as an average carbon-nitrogen ratio. The denitrification process followed the law of zero-order kinetics, while the dynamics parameter kN was 0.563-8.753 gN m(-3) d(-1). Generally, SOC material was suggested to be a potential carbon source (electron donor) suitable for in situ groundwater denitrification.

  8. Sources of uncertainties in modelling Black Carbon at the global scale

    Directory of Open Access Journals (Sweden)

    F. Cavalli

    2009-11-01

    Full Text Available Our understanding of the global black carbon cycle is essentially qualitative due to uncertainties in our knowledge of the properties of black carbon. This work investigates uncertainties related to modelling black carbon: due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and due to the uncertainties in the definition and quantification of observed black carbon, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering black carbon as bulk aerosol and a simple treatment in the removal and (ii a more complete description of microphysical aging within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol. In the first approach a fixed 70% of black carbon is scavenged in clouds and removed when rain is present. The second leads to a global average of 40% black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, showing that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of magnitude.

  9. North America carbon dioxide sources and sinks: magnitude, attribution, and uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    King, Anthony W.; Hayes, Daniel J.; Huntzinger, Deborah N.; West, Tristram O.; Post, W. M.

    2012-12-01

    North America is both a source and sink of atmospheric CO2. Sources, predominately fossil-fuel combustion in the United States along with contributions from deforestation in Mexico, add CO2 to the atmosphere. Most North America ecosystems, particularly regrowing forests in the United States, are sinks for atmospheric CO2. CO2 is removed from the atmosphere in photosynthesis, converted into biomass and stored as carbon in vegetation, soil and wood products. Fossil-fuel emissions dominate the North American source-sink balance. North America is a net source of atmospheric CO2 with ecosystem sinks balancing approximately 35% of fossil-fuel CO2 emissions from North America.

  10. Glyphosate Utilization as the Source of Carbon: Isolation and Identification of new Bacteria

    Directory of Open Access Journals (Sweden)

    M. Mohsen Nourouzi

    2011-01-01

    Full Text Available Mixed bacteria from oil palm plantation soil (OPS were isolated to investigate their ability to utilize glyphosate as carbon source. Results showed that approximately all of the glyphosate was converted to aminomethyl-phosphonic acid (AMPA (99.5%. It is worthy to note that mixed bacteria were able to degrade only 2% of AMPA to further metabolites. Two bacterial strains i.e. Stenotrophomonas maltophilia and Providencia alcalifaciens were obtained from enrichment culture. Bacterial isolates were cultured individually on glyphosate as a sole carbon source. It was observed that both isolates were able to convert glyphosate to AMPA.

  11. The effect of various carbon sources on the growth of single-celled cyanophyta

    Science.gov (United States)

    Avilov, I. A.; Sidorenkova, E. S.

    1983-01-01

    In 19 strains of unicellular blue-green algae, belonging to general Synechococcus, Synechocystis, Aphanocapsa and Aphanothece, the capacity of growth under mixotrophic conditions in mineral media with organic carbon sources (carbohydrates, polyols) was investigated. At moderate light intensity (1200 lx) and 0.5% of carbon source there was revealed: (1) Stimulation of growth; (2) Partial or complete inhibition of growth; (3) No influence of carbohydrate and polyols on the growth of some algae strains. Three physiological groups for the investigated strains have been outlined on the basis of data obtained. The possibility of using the differences revealed in classification of unicellular blue-green algae is discussed.

  12. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    Science.gov (United States)

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-01

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources. PMID:23738892

  13. Comparative study on CO2 sources in soil developed on carbonate rock and non-carbonate rock in Central Guizhou

    Institute of Scientific and Technical Information of China (English)

    黎廷宇; 王世杰; 郑乐平

    2002-01-01

    In this paper, by using concentration and carbon stable isotope the CO2 sources of soil profiles developed on limestone, dolostone and claystone basements in Central Guizhou, China are comparatively studied. The results show that CO2 concentration of soil profiles developed on different basements is different, having the following sequence: limestone>dolostone>claystone. Below the soil depth of 20 cm from the surface the ? 13C value of CO2 in soil profile developed on limestone ranges from -12.811‰ - -13.492‰(PDB), that in soil profile developed on dolostone varys from -13.212‰ - -14.271‰(PDB) and that in soil profile developed on claystone is about -20.234‰ - -21.485‰(PDB). Taking the carbon isotope of soil organic matter and carbonate rock as two isotopic endmembers, the proportion of soil CO2 generated by dissolution of carbonate rock is calculated, about 21%-25% for soil profile developed on limestone basement, 19%-21% for soil profile developed on dolostone basement. There is almost no influx of CO2 generated by the dissolution of carbonate rock in soil profile developed on claystone basement.

  14. Effect of different carbon sources on the biological phosphorus removal by a sequencing batch reactor using pressurized pure oxygen

    OpenAIRE

    Wei, Jie; Imai, Tsuyoshi; Higuchi, Takaya; Arfarita, Novi; YAMAMOTO, Koichi; Sekine, Masahiko; Kanno, Ariyo

    2014-01-01

    The effect of different carbon source on the efficiency of enhanced biological phosphorus removal (EBPR) from synthetic wastewater with acetate and two ratios of acetate/starch as a carbon source was investigated. Three pressurized pure oxygen sequencing batch reactor (POSBR) experiments were operated. The reactors (POSBR1, POSBR2 and POSBR3) were developed and studied at different carbon source ratios of 100% acetate, 75% acetate plus 25% starch and 50% acetate plus 50% starch, respectively....

  15. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources.

    Science.gov (United States)

    Ekasari, Julie; Hanif Azhar, Muhammad; Surawidjaja, Enang H; Nuryati, Sri; De Schryver, Peter; Bossier, Peter

    2014-12-01

    The objective of this study was to document the immunological effects of growing shrimp in biofloc systems. The experiment consisted of four types of biofloc systems in which bioflocs were produced by daily supplementation of four different carbon sources, i.e. molasses, tapioca, tapioca-by-product, and rice bran, at an estimated C/N ratio of 15 and a control system without any organic carbon addition. Each biofloc system was stocked with Pacific white shrimp (Litopenaeus vannamei) juveniles that were reared for 49 days. The use of tapioca-by-product resulted in a higher survival (93%) of the shrimp as compared to the other carbon sources and the control. The highest yield and protein assimilation was observed when tapioca was used as the carbon source. After 49 days, phenoloxidase (PO) activity of the shrimp grown in all biofloc systems was higher than that of the shrimp from the control system. Following a challenge test by injection with infectious myonecrosis virus (IMNV), the levels of PO and respiratory burst (RB) activity in the shrimp of all biofloc treatments were higher than that of the challenged shrimp from the control treatment. An increased immunity was also suggested by the survival of the challenged shrimp from the experimental biofloc groups that was significantly higher as compared to the challenged shrimp from the control treatment, regardless of the organic carbon source used to grow the bioflocs. Overall, this study demonstrated that the application of biofloc technology may contribute to the robustness of cultured shrimp by immunostimulation and that this effect is independent of the type of carbon source used to grow the flocs. PMID:25218685

  16. Sources of uncertainties in modelling black carbon at the global scale

    Directory of Open Access Journals (Sweden)

    E. Vignati

    2010-03-01

    Full Text Available Our understanding of the global black carbon (BC cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of

  17. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    Science.gov (United States)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  18. Source apportionment of atmospheric particulate carbon in Las Vegas, Nevada,USA

    Institute of Scientific and Technical Information of China (English)

    Mark C.Green; Judith C.Chow; M.-C.Oliver Chang; L.-W.Antony Chen; Hampden D.Kuhns; Vicken R.Etyemezian; John G.Watson

    2013-01-01

    A study was conducted to quantify wintertime contributions of source types to carbonaceous PM2.5 at four urban sites in the Las Vegas Valley,one of the most rapidly growing urban areas in the southwestern United States.Twenty-four hour average ambient samples were collected for mass,ions,elements,organic carbon (OC),elemental carbon (EC),and trace organic markers analysis.Additional measurements were made to determine diurnal patterns in light-absorbing black carbon (BC) as a marker for combustion sources.Carbonaceous PM sources of on-road gasoline vehicles,on-road diesel vehicles,and off-road diesel engines were characterized with their chemical profiles,as well as fuel-based emission factors,using an In-Plume Sampling System.The Effective Variance Chemical Mass Balance (EV-CMB) source apportionment model was applied to the ambient samples collected,using source profiles developed in this study as well as profiles from other relevant studies.Four main sources contributed to PM2.5 carbon within the Las Vegas Valley:(1) paved road dust,(2) on-road gasoline vehicles,(3) residential wood combustion,and (4) on-road diesel vehicles.CMB estimated that on-road mixed fleet gasoline vehicles are the largest source for OC and EC at all the sites.The contribution of paved road dust to both OC and EC was 5-10% at the four sites.On-road diesel vehicles contribute 22% of the OC and 34% of the EC at a site near the city center,which is located immediately downwind of a major freeway.Residential wood combustion is a more important source than on-road diesel vehicles for two residential neighborhood sites.These results are consistent with our conceptual model,and the research methodology may be applied to studying other urban areas.

  19. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads

  20. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    Science.gov (United States)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer pipes can be critical to more effectively minimizing urban nonpoint nutrient sources. The sources, fluxes, and flowpaths of groundwater

  1. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process

    Directory of Open Access Journals (Sweden)

    Marcelo Marques Tusi

    2007-06-01

    Full Text Available PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent of carbon source and time used in the synthesis.

  2. High Laccase Expression by Trametes versicolor in a Simulated Textile Effluent with Different Carbon Sources and PHs

    Science.gov (United States)

    Ottoni, Cristiane; Simões, Marta F.; Fernandes, Sara; Santos, Cledir R.; Lima, Nelson

    2016-01-01

    Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L−1) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs. PMID:27490563

  3. High Laccase Expression by Trametes versicolor in a Simulated Textile Effluent with Different Carbon Sources and PHs

    Directory of Open Access Journals (Sweden)

    Cristiane Ottoni

    2016-08-01

    Full Text Available Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc activity (80.2 U∙L−1 was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction. Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs.

  4. High Laccase Expression by Trametes versicolor in a Simulated Textile Effluent with Different Carbon Sources and PHs.

    Science.gov (United States)

    Ottoni, Cristiane; Simões, Marta F; Fernandes, Sara; Santos, Cledir R; Lima, Nelson

    2016-01-01

    Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L(-1)) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs. PMID:27490563

  5. Analysis on carbon source in mixotrophic culture of S.platensis%螺旋藻混合营养培养中碳源分析

    Institute of Scientific and Technical Information of China (English)

    田华; 远凌威; 张义明

    2011-01-01

    Carbon source of inorganic carbon sodium bicarbonate and organic carbon source glucose in mixotrophic culture of S. Platensis were analyzed. The results showed that glucose were almost used on the third day; on the ninth day, HCO3- concentration was at the lowest of 3. Og /L. At the same time, sodium bicarbonate concentration in mixotrophic culture of S. Platensis was optimized. We found that sodium bicarbonate concentration significantly affected the biomass of S. Platensis, the appropriate concentration range was 8.4g/L ~ 16. 8g/L.%对螺旋藻混合营养培养过程中无机碳HCO3-和有机碳源葡萄糖进行详细的检测及分析,结果表明:在培养3d时各组所添加的葡萄糖基本用完,培养9d时,葡萄糖浓度为3.0g/L组培养液HCO3-含量最低.同时优选了螺旋藻混合营养培养的NaHCO3添加量,研究发现NaHCO3含量对螺旋藻混合营养细胞积累有很大的影响,NaHCO3的浓度在8.4g/L~16.8g/L时基本对螺旋藻生物量的积累没有太大的影响.

  6. Silica-Based Carbon Source Delivery for In-situ Bioremediation Enhancement

    Science.gov (United States)

    Zhong, L.; Lee, M. H.; Lee, B.; Yang, S.

    2015-12-01

    Colloidal silica aqueous suspensions undergo viscosity increasing and gelation over time under favorable geochemical conditions. This property of silica suspension can potentially be applied to deliver remedial amendments to the subsurface and establish slow release amendment sources for enhanced remediation. In this study, silica-based delivery of carbon sources for in-situ bioremediation enhancement is investigated. Sodium lactate, vegetable oil, ethanol, and molasses have been studied for the interaction with colloidal silica in aqueous suspensions. The rheological properties of the carbon source amendments and silica suspension have been investigated. The lactate-, ethanol-, and molasses-silica suspensions exhibited controllable viscosity increase and eventually became gels under favorable geochemical conditions. The gelation rate was a function of the concentration of silica, salinity, amendment, and temperature. The vegetable oil-silica suspensions increased viscosity immediately upon mixing, but did not perform gelation. The carbon source release rate from the lactate-, ethanol-, and molasses-silica gels was determined as a function of silica, salinity, amendment concentration. The microbial activity stimulation and in-situ bioremediation enhancement by the slow-released carbon from the amendment-silica gels will be demonstrated in future investigations planned in this study.

  7. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik;

    1994-01-01

    In alternating type activated sludge nutrient removal processes, the denitrification rate can be limited by the availability of readily-degradable carbon substrate. A control strategy is proposed by which an easily metabolizable COD source is added directly to that point in the process at which...

  8. Application of carbon isotope for discriminating sources of soil CO2 in karst area, Guizhou

    Institute of Scientific and Technical Information of China (English)

    黎廷宇; 王世杰

    2001-01-01

    Using carbon isotope of soil CO2 this paper discussed the sources of soil CO2 in karst area, Guizhou Province, China. Oxidation-decomposition of organic matter, respiration of plant root and activity of microbe are thought to be the major sources of soil CO2. However, in karst area, the contribution of dissolution of underlying carbonate rock to soil CO2 should be considered as in acidic environment. Atmospheric CO2 is the major composition of soil CO2 in surface layer of soil profiles and its proportion in soil CO2 decreases with increase of soil depth. CO2 produced by dissolution of carbonate rock contributes 34%-46% to soil CO2 below the depth of 10cm in the studied soil profiles covered by grass.

  9. 葡萄糖裂解释放一氧化碳的影响因素%Factors influencing carbon monoxide released from glucose during pyrolysis

    Institute of Scientific and Technical Information of China (English)

    张华; 刘献军; 张媛; 秦艳华; 韩开冬; 石怀彬; 尤晓娟; 庄亚东

    2016-01-01

    为考察烟叶中葡萄糖在卷烟燃烧过程中对烟气一氧化碳(CO)生成的影响,采用热重分析仪和裂解仪模拟卷烟燃烧过程中葡萄糖的热裂解,通过电化学法及红外散射法检测热裂解过程中CO的释放量变化,探讨了钾盐(柠檬酸钾、碳酸钾和硫酸钾)添加量(0%~4.0%,质量分数)、氧气浓度(0%~20%,体积分数)和升温速率(50℃/s~300℃/s)等因素对葡萄糖裂解产生CO的影响。结果表明:①有氧慢速裂解(10%O2、20℃/min)条件下,CO的释放过程与TG曲线的葡萄糖热解及残炭氧化两个阶段相对应,在此条件下,葡萄糖有氧裂解的CO产率约为无氧慢速裂解的2倍。②柠檬酸钾能降低葡萄糖的分解温度和CO的产率,且与CO产率存在明显的剂量效应关系。③在空气氛围中快速裂解(50℃/s~300℃/s)时,CO产率随着升温速率的增大而增加。④空气氛围、300℃/s条件下快速裂解时,柠檬酸钾、碳酸钾能降低葡萄糖的CO产率,但硫酸钾对葡萄糖裂解释放CO没有影响。%In order to investigate the influences of endogenic glucose in tobacco leaves on carbon monoxide (CO) release during cigarette combustion, the pyrolysis of glucose was simulated by a thermogravimetric analyzer (TG) and pyrolyzer, and the CO yield formed by pyrolysis was determined with an electrochemical method and FTIR method. Furthermore, the impacts of 0%-4.0% (mass fraction) of potassium salts (potassium citrate, potassium carbonate and potassium sulphate) addition, oxygen concentration (0%-20%, volume fraction) and heating rates (50 ℃/s-300 ℃/s) were also studied. The results showed that: 1) With oxygen-assisted pyrolysis under slow temperature ramp (10% of O2, 20 ℃/min), CO formation from glucose could be divided into a pyrolysis stage and a carbon residue oxidation stage, which corresponded with the two stages of mass loss curve. The CO yield in the presence of

  10. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Mcintyre, Mhairi; Nielsen, Jens

    2004-01-01

    The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivat......The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars...... of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression...... had been relieved. Xylose was both a repressor and an inducer of xylanases at the same time. The creA mutation seemed to have pleiotropic effects on carbohydratases and carbon catabolism....

  11. Relative Contributions of Fossil and Contemporary Carbon sources to PM 2.5 Aerosols at Nine IMPROVE Network Sites

    Energy Technology Data Exchange (ETDEWEB)

    Bench, G; Fallon, S; Schichtel, B; Malm, W; McDade, C

    2006-06-26

    Particulate matter aerosols contribute to haze diminishing vistas and scenery at National Parks and Wilderness Areas within the United States. To increase understanding of the sources of carbonaceous aerosols at these settings, the total carbon loading and {sup 14}C/C ratio of PM 2.5 aerosols at nine IMPROVE (Interagency Monitoring for Protection Of Visual Environments) network sites were measured. Aerosols were collected weekly in the summer and winter at one rural site, two urban sites, five sites located in National Parks and one site located in a Wildlife Preserve. The carbon measurements together with the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials were used to derive contemporary and fossil carbon contents of the particulate matter. Contemporary and fossil carbon aerosol loadings varied across the sites and suggest different percentages of carbon source inputs. The urban sites had the highest fossil carbon loadings that comprised around 50% of the total carbon aerosol loading. The Wildlife Preserve and National Park sites together with the rural site had much lower fossil carbon loading components. At these sites, variations in the total carbon aerosol loading were dominated by non-fossil carbon sources. This suggests that reduction of anthroprogenic sources of fossil carbon aerosols may result in little decrease in carbonaceous aerosol loading at many National Parks and rural areas.

  12. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    Science.gov (United States)

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  13. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    Directory of Open Access Journals (Sweden)

    B. He

    2010-04-01

    Full Text Available Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized by a variety of techniques, including elemental (C and N, stable carbon isotopic (δ 13C composition, as well as molecular-level analyses. Total organic carbon (TOC content was 1.61±1.20% in the upper reach down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.11‰ to −21.28‰ across the studied area, with a trend of enrichment seaward. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio from 10.9±1.3 in the Lingdingyang Bay surface sediments to 6.5±0.09 in the outer shelf surface sediments. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC−1, and typically followed TOC concentrations in the estuarine and shelf sediments, suggesting that the relative abundance of total carbohydrate was fairly constant in TOC. Total neutral sugars as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose yielded between 4.0 and 18.6 mg (100 mg OC−1 in the same sediments, suggesting that a significant amount of carbohydrates were not neutral aldoses. The bulk organic matter properties, isotopic composition and C/N ratios, combined with molecular-level carbohydrate compositions were used to assess the sources and accumulation of terrestrial organic matter in the Pearl River Estuary and the adjacent northern South China Sea shelf. Results showed a mixture of terrestrial riverine organic carbon with in situ phytoplankton organic carbon in the areas studied. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to

  14. Methane-derived authigenic carbonates of mid-Cretaceous age in southern Tibet: Types of carbonate concretions, carbon sources, and formation processes

    Science.gov (United States)

    Liang, Huimin; Chen, Xi; Wang, Chengshan; Zhao, Dekun; Weissert, Helmut

    2016-01-01

    Methane-derived authigenic carbonates with distinctive structures and morphologies have been documented worldwide, but they are rarely found from ancient strata in the Eastern Tethys Ocean. The methane-derived authigenic carbonates found in southern Tibet are developed in calcareous or silty shales of mid-Cretaceous age in the Xigaze forearc basin and in the Tethyan Himalaya tectonic zone. The morphology, mineralogy, elemental geochemistry and composition of carbon and oxygen isotopes of these carbonates are studied in detail. The carbonates have nodular, tubular, and tabular morphologies. They are primarily composed of carbonate cement that binds and partly replaces host sediment grains; host siliciclastic sediments are composed mainly of quartz and plagioclase feldspar; a few foraminifers; and framboidal or subhedral to euhedral pyrite. Carbonate cements dominantly are micritic calcite, with minor contribution of dolomite. Nodular concretions are characterized by depleted δ13C values, commonly ranging from -30‰ to -5‰. The δ13C values show a gradual decrease from the periphery to the center, and the CaO, SiO2, Fe2O3, Al2O3, K2O, and TiO2 contents generally show a gradual change. These features indicate that the nodular concretions grew from an early-formed center toward the periphery, and that the carbon source of the nodular concretions was derived from a mixture of methane, methanogenic CO2, and seawater-dissolved inorganic carbon. The tubular concretions are characterized by δ13C values of -8.85‰ to -3.47‰ in the Shangba Section, and -27.37‰ to -23.85‰ in the upper Gamba Section. Unlike the nodular concretions, the tubular concretions show central conduits, which are possible pathways of methane-rich fluids, suggesting that the cementation of tubular concretions begins at the periphery and proceeds inward. Moreover, the tubular concretions show morphological similarity with the methane-derived carbonate chimneys, pipes and slabs reported in

  15. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    International Nuclear Information System (INIS)

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development

  16. Comparative study on CO2 sources in soil developed on carbonate rock and non-carbonate rock in Central Guizhou

    Institute of Scientific and Technical Information of China (English)

    黎廷宇; 王世杰; 郑乐平

    2002-01-01

    In this paper, by using concentration and carbon stable isotope the.CO2 sources of soil profiles developed on limestone, dolostone and claystone basements in Central Guizhou, China are comparatively studied. The results show that CO2 concentration of soil profiles developed on different basements is different, having the following sequence: limestone>dolostone>claystone. Below the soil depth of 20 cm from the surface the δ13C value of CO2 in soil profile developed on limestone ranges from -12.811‰ - -13.492‰(PDB), that in soil profile developed on dolostone varys from -13.212‰--14.271‰(PDB) and that in soil profile developed on claystone is about -20.234‰- -21.485‰(PDB). Taking the carbon isotope of soil organic matter and carbonate rock as two isotopic endmembers, the proportion of soil C02 generated by dissolution of carbonate rock is calculated, about 21%-25% for soil profile developed on limestone basement, 19%-21% for soil profile developed on dolostone basement. There is almost no influx of

  17. Use of by-products rich in carbon and nitrogen as a nutrient source to produce Bacillus thuringiensis (Berliner)-based bio pesticide

    International Nuclear Information System (INIS)

    The amount and sources of carbon and nitrogen used to produce Bacillus thuringiensis (Berliner)-based biopesticide may influence the quality of the fi nal product. The objective of this research was to test different levels of carbon and nitrogen: medium 1 - 1.5% maize glucose + 0.5% soy fl our, medium 2 - 3.0% maize glucose + 1.0% soy flour, medium 3 - 1.0% maize glucose + 3.0% soy fl our and medium 4 - Luria Bertani (LB) + salts (FeSO4, ZnSO4, MnSO4, MgSO4). The seed culture was produced in LB medium plus salt, under agitation (200 rpm) for 18h at 30 deg C. The strain 344 of Bt was used (B. thuringiensis var tolworthi - belonging to the EMBRAPA's Bt Bank). The pH was measured at regular intervals, and After culturing for 96h, the pH of the four tested media was basified (6.91 and 8.15), the number of spores yielded 4.39 x 109 spores/ml in medium 3, where the amount of protein is high. The dry biomass weight accumulated in media 3 was 39.3 g/l. Mortality of 2-day-old larvae Spodoptera frugiperda (J.E. Smith) was 100% when using Bt produced in media 3 and 4. CL50 for medium 3 was 8.4 x 106 spores/ml. All tested media were satisfactory to Bt growth, and medium 3 was the most promising to be used on a large scale Bt-based biopesticide production. (author)

  18. Use of by-products rich in carbon and nitrogen as a nutrient source to produce Bacillus thuringiensis (Berliner)-based bio pesticide

    Energy Technology Data Exchange (ETDEWEB)

    Valicente, Fernando H. [EMBRAPA Milho e Sorgo, Sete Lagoas, MG (Brazil)]. E-mail: valicent@cnpms.embrapa.br; Mourao, Andre H.C. [Curso de Meio Ambiente, Sete Lagoas, MG (Brazil)

    2008-11-15

    The amount and sources of carbon and nitrogen used to produce Bacillus thuringiensis (Berliner)-based biopesticide may influence the quality of the fi nal product. The objective of this research was to test different levels of carbon and nitrogen: medium 1 - 1.5% maize glucose + 0.5% soy fl our, medium 2 - 3.0% maize glucose + 1.0% soy flour, medium 3 - 1.0% maize glucose + 3.0% soy fl our and medium 4 - Luria Bertani (LB) + salts (FeSO{sub 4}, ZnSO{sub 4}, MnSO{sub 4}, MgSO{sub 4}). The seed culture was produced in LB medium plus salt, under agitation (200 rpm) for 18h at 30 deg C. The strain 344 of Bt was used (B. thuringiensis var tolworthi - belonging to the EMBRAPA's Bt Bank). The pH was measured at regular intervals, and After culturing for 96h, the pH of the four tested media was basified (6.91 and 8.15), the number of spores yielded 4.39 x 10{sup 9} spores/ml in medium 3, where the amount of protein is high. The dry biomass weight accumulated in media 3 was 39.3 g/l. Mortality of 2-day-old larvae Spodoptera frugiperda (J.E. Smith) was 100% when using Bt produced in media 3 and 4. CL{sub 50} for medium 3 was 8.4 x 10{sup 6} spores/ml. All tested media were satisfactory to Bt growth, and medium 3 was the most promising to be used on a large scale Bt-based biopesticide production. (author)

  19. Isotopic evidence of magmatism and a sedimentary carbon source at the Endeavour hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T A; Proskurowski, G; Lilley, M D

    2004-01-07

    Stable and radiocarbon isotope measurements made on CO{sub 2} from high temperature hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge indicate both magmatic and sedimentary sources of carbon to the hydrothermal system. The Endeavour segment is devoid of overlying sediments and has shown no observable signs of surficial magmatic activity during the {approx}20 years of ongoing studies. The appearance of isotopically heavy, radiocarbon dead CO{sub 2} after a 1999 earthquake swarm requires that this earthquake event was magmatic in origin. Evidence for a sedimentary organic carbon source suggests the presence of buried sediments at the ridge axis. These findings, which represent the first temporally coherent set of radiocarbon measurements from hydrothermal vent fluids, demonstrate the utility of radiocarbon analysis in hydrothermal studies. The existence of a sediment source at Endeavour and the occurrence of magmatic episodes illustrate the extremely complex and evolving nature of the Endeavour hydrothermal system.

  20. The potential of carbon and nitrogen isotopes to conservatively discriminate between subsoil sediment sources

    Science.gov (United States)

    Laceby, J. Patrick; Olley, Jon

    2013-04-01

    Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the

  1. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    Science.gov (United States)

    He, B.; Dai, M.; Huang, W.; Liu, Q.; Chen, H.; Xu, L.

    2010-10-01

    Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized using a variety of techniques, including elemental (C and N) ratio, bulk stable organic carbon isotopic composition (δ13C), and carbohydrate composition analyses. Total organic carbon (TOC) content was 1.21±0.45% in the upper reach, down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from -25.1‰ to -21.3‰ in Lingdingyang Bay and the South China Sea shelf, with a trend of enrichment seawards. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio offshore. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC)-1, and typically followed TOC concentrations in the estuarine and shelf sediments. Total neutral sugars, as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose), were between 4.0 and 18.6 mg (100 mg OC)-1 in the same sediments, suggesting that significant amounts of carbohydrates were not neutral aldoses. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 78±11% for Lingdingyang Bay, 34±4% for the inner shelf, and 5.5±1% for the outer shelf. The molecular composition of the carbohydrate in the surface sediments also suggested that the inner estuary was rich in terrestrially derived carbohydrates but that their contribution decreased offshore. A relatively high abundance of deoxyhexoses in the estuary and shelf indicated a considerable bacterial source of these carbohydrates, implying that sediment organic matter had undergone extensive degradation and/or transformation during transport. Sediment budget based on calculated regional accumulation rates

  2. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    Directory of Open Access Journals (Sweden)

    B. He

    2010-10-01

    Full Text Available Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized using a variety of techniques, including elemental (C and N ratio, bulk stable organic carbon isotopic composition (δ13C, and carbohydrate composition analyses. Total organic carbon (TOC content was 1.21±0.45% in the upper reach, down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.1‰ to −21.3‰ in Lingdingyang Bay and the South China Sea shelf, with a trend of enrichment seawards. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio offshore. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC−1, and typically followed TOC concentrations in the estuarine and shelf sediments. Total neutral sugars, as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose, were between 4.0 and 18.6 mg (100 mg OC−1 in the same sediments, suggesting that significant amounts of carbohydrates were not neutral aldoses. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 78±11% for Lingdingyang Bay, 34±4% for the inner shelf, and 5.5±1% for the outer shelf. The molecular composition of the carbohydrate in the surface sediments also suggested that the inner estuary was rich in terrestrially derived carbohydrates but that their contribution decreased offshore. A relatively high abundance of deoxyhexoses in the estuary and shelf indicated a considerable bacterial source of these carbohydrates, implying that sediment organic matter had undergone extensive degradation and

  3. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions.

    Science.gov (United States)

    Gim, Geun Ho; Ryu, Jaewon; Kim, Moon Jong; Kim, Pyung Il; Kim, Si Wouk

    2016-05-01

    We attempted to enhance the growth and total lipid production of three microalgal species, Isochrysis galbana LB987, Nannochloropsis oculata CCAP849/1, and Dunaliella salina, which are capable of accumulating high content of lipid in cells. Low nitrogen concentration under photoautotrophic conditions stimulated total lipid production, but a decreasing total lipid content and an increasing biomass were observed with increasing nitrogen concentration. Among the different carbon sources tested for heterotrophic cultivation, glucose improved the growth of all three strains. The optimal glucose concentration for growth of I. galbana LB987 and N. oculata CCAP849/1 was 0.02 M, and that of D. salina was 0.05 M. Enhanced growth occurred when they were cultivated under heterotrophic or mixotrophic conditions compared with photoautotrophic conditions. Meanwhile, high total lipid accumulation in cells occurred when they were cultivated under photoautotrophic or mixotrophic conditions. During mixotrophic cultivation, biomass production was not affected significantly by light intensity; however, both chlorophyll concentration and total lipid content increased dramatically with increasing light intensity up to 150 µmol/m(2)/s. The amount and composition ratio of saturated and unsaturated fatty acids in cells were different from each other depending on both species and light intensity. The highest accumulation of total fatty acid (C16-C18) among the three strains was found from cells of N. oculata CCAP849/1, which indicates that this species can be used as a source for production of biodiesel. PMID:26856592

  4. Denitrification on internal carbon sources in RAS is limited by fibers in fecal waste of rainbow trout

    NARCIS (Netherlands)

    Meriac, A.; Eding, E.H.; Kamstra, A.; Busscher, J.P.; Schrama, J.W.; Verreth, J.A.J.

    2014-01-01

    Denitrification on internal carbon sources offers the advantage to control nitrate levels in recirculating aquaculture systems (RAS) by using the fecal carbon produced within the husbandry system. However, it is not clear to which extent fecal carbon can be utilized by the microbial community within

  5. Effects of Different Carbon Sources and NaBr-KCI on Synthesis of Ti(C,N)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Ti(C,N) was synthesized with the starting materi-als of 76.9% titania white and 23.1% carbon black (graphite or activated carbon),or 40% titania white and 60% amylum,with or without 10% NaBr-KCI,dry moulding and carbon embedded firing at 1 300 ℃ and 1 400 ℃ for 3 h,respectively.Phase composition and microstructure of the synthesized Ti (C,N) were analyzed by XRD,SEM and EPMA.Effects of different carbon sources and NaBr-KCl on the synthesis of Ti (C,N) were investigated.The results show that:(1) Ti (C,N) can be synthesized by using carbon black,graphite,activated carbon or amylum as carbon source separately;(2) Additive NaBr-KCI is more fa-vorable for accelerating the carbothdrmal reduction reac-tion using carbon black or amylum as carbon source;(3) In the presence of NaBr-KCl,particle size of the synthesized Ti (C,N) is 5-8 μm using carbon black as carbon source fired at 1 300 ℃ for 3 h,while that is only 1-3 μm using graphite,activated carbon or amy-lum fired at 1 400 ℃ for 3 h.

  6. Prairie restoration and carbon sequestration: difficulties quantifying C sources and sinks using a biometric approach.

    Science.gov (United States)

    Cahill, Kimberly Nicholas; Kucharik, Christopher J; Foley, Jonathan A

    2009-12-01

    We investigated carbon cycling and ecosystem characteristics among two prairie restoration treatments established in 1987 and adjacent cropland, all part of the Conservation Reserve Program in southwestern Wisconsin, USA. We hypothesized that different plant functional groups (cool-season C3 vs. warm-season C4 grasses) between the two prairie restoration treatments would lead to differences in soil and vegetation characteristics and amount of sequestered carbon, compared to the crop system. We found significant (P soil CO2 respiration and above- and belowground productivity, but no significant differences in long-term (approximately 16-year) carbon sequestration. We used a biometric approach aggregating short-term observations of above- and belowground productivity and CO2 respiration to estimate total net primary production (NPP) and net ecosystem production (NEP) using varied methods suggested in the literature. Net ecosystem production is important because it represents the ecosystem carbon sequestration, which is of interest to land managers and policymakers seeking or regulating credits for ecosystem carbon storage. Such a biometric approach would be attractive because it might offer the ability to rapidly assess the carbon source/sink status of an ecosystem. We concluded that large uncertainties in (1) estimating aboveground NPP, (2) determining belowground NPP, and (3) partitioning soil respiration into microbial and plant components strongly affect the magnitude, and even the sign, of NEP estimates made from aggregating its components. A comparison of these estimates across treatments could not distinguish differences in NEP, nor the absolute sign of the overall carbon balance. Longer-term quantification of carbon stocks in the soil, periodically linked to measurements of individual processes, may offer a more reliable measure of the carbon balance in grassland systems, suitable for assigning credits. PMID:20014587

  7. Australian net (1950s-1990) soil organic carbon erosion is an omitted CO2 source

    Science.gov (United States)

    Chappell, A.; Webb, N.; Viscarra Rossel, R. A.; Bui, E. N.

    2013-12-01

    The debate about agricultural erosion substantially offsetting fossil fuel emissions and acting as an important source or sink of CO2 is informed by studies of water and tillage erosion at the field scale and extrapolated across regions based on gross erosion. We use ';catchment' scale (~25 km2) estimates of 137Cs-derived net (1950s-1990) soil redistribution of all processes (wind, water and tillage) to calculate the soil organic carbon (SOC) net redistribution across Australia. We include the selective removal of SOC at net eroding locations, SOC enrichment of transported sediment and net depositional locations. We show that the total SOC net redistribution for Australia is -4.06 Tg SOC y-1, a net loss of SOC from the terrestrial ecosystem and 2% of the total carbon stock (0-10 cm) of Australia. Assuming the SOC is mineralised, these losses represent 12% of CO2-e emissions from all carbon pools in Australia and a significant source of uncertainty in the carbon budget SOC net redistribution as a proportion (%) of SOC stocks Calculation of soil organic carbon net (1950s-1990) redistribution and its proportion for land use classes across Australia *Using an equal area projection the area of a pixel is approximately 4.53 km x 4.87 km ≈ 22.03 km2 equivalent to 2203 ha

  8. Dietary Protein Source and Cyclooxygenase-Inhibition Influence Development of Diet-Induced Obesity, Glucose Homeostasis and Brown Adipose Tissue

    DEFF Research Database (Denmark)

    Aune, Ulrike Liisberg

    The prevalence of obesity and associated diseases, such as Type 2 diabetes, cardiovascular disease and non-alcoholic fatty liver disease, are accelerating worldwide and require urgent attention. Many of the obesity-related morbidities are likely to originate from a state of chronic low-grade infl......The prevalence of obesity and associated diseases, such as Type 2 diabetes, cardiovascular disease and non-alcoholic fatty liver disease, are accelerating worldwide and require urgent attention. Many of the obesity-related morbidities are likely to originate from a state of chronic low......-grade inflammation accompanying the increasing adipose mass. In order to investigate the relationship between obesity, inflammation and insulin resistance, we ran an experiment feeding mice a high fat/high sucrose diet supplemented with the antiinflammatory cyclooxygenase-inhibitor, indomethacin. We saw......, at least in part, due to the maintenance of a classical interscapular brown depot with high expression of UCP1 in these mice. Conversely, proteins from terrestrial animals promoted gain of adipose mass, hyperinsulinemia and impaired glucose tolerance. In addition, when combined in a typical Western diet...

  9. Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-zhen; MA Yong; WANG Shu-ying

    2007-01-01

    The aim of this study is to investigate the denitrification potential enhancement by addition of external carbon sources and to estimate the denitrification potential for the predenitrification system using nitrate utilization rate(NUR)batch tests.It is shown that the denitrification potential Can be substantially increased with the addition of three external carbon sources,i.e.methanol,ethanol,and acetate.and the denitrification rates of ethanol,acetate,and methanol reached up to 9.6,12,and 3.2 mgN/(gVSS·h),respectively,while mat of starch wastewater was only 0.74 mgN/(gVSS·h).By comparison,ethanol was found to be the best extemal carbon source.NUR batch tests with starch wastewater and waste ethanol were carried out.The denitrification potential increased from 5.6 to 16.5 mg NO.-N/L owing to waste ethanol addition.By means of NUR tests,the wastewater characteristics and kinetic parameters can be estimated.which are used to determine the denitrification potential of wastewater,to calculate the denitrification potential of the plant and to predict the nitrate effluent quality,as well as provide information for developing carbon dosage conlxol strategy.

  10. Spatial distribution and sources of organic carbon in the surface sediment of Bosten Lake, China

    Science.gov (United States)

    Yu, Z. T.; Wang, X. J.; Zhang, E. L.; Zhao, C. Y.; Liu, X. Q.

    2015-11-01

    Lake sediment is an important carbon reservoir. However, little is known on the dynamics and sources of sediment organic carbon in Bosten Lake. We collected 13 surface (0-2 cm) sediment samples in Bosten Lake and analyzed total organic carbon (TOC), total nitrogen (TN), stable carbon isotopic composition in TOC (δ13Corg), and grain size. We found a large spatial variability in TOC content (1.8-4.4 %) and δ 13Corg value (-26.77 to -23.98 ‰). Using a three-end-member mixing model with measured TOC : TN ratio and δ13Corg, we estimated that 54-90 % of TOC was from autochthonous sources. Higher TOC content (> 3.7 %) was found in the east and central-north sections and near the mouth of the Kaidu River, which was attributable to allochthonous, autochthonous plus allochthonous, and autochthonous sources, respectively. The lowest TOC content was found in the mid-west section, which might be a result of high kinetic energy levels. Our study indicated that the spatial distribution of sediment TOC in the Bosten Lake was influenced by multiple and complex processes.

  11. Fabrication of glucose biosensors by inkjet printing

    OpenAIRE

    Wang, Tianming; Cook, Christopher C.; Serban, Simona; Ali, Tarif; Drago, Guido; Derby, Brian

    2012-01-01

    Inkjet printing has been used to fabricate glucose sensors using glucose oxidase and screen printed carbon electrodes. By appropriate selection of printing and drying conditions we are able to fabricate sensor structures that show a good linear response to glucose concentration. In order to achieve these structures we must carefully control the spreading and drying of the enzyme solution on the carbon electrode. Carbon electrode suirfaces are hydrophobic and Triton X was used as a surfactant ...

  12. Synthesis of LiFePO_4/C Composite Cathode Materials Using High Surface Area Carbon as Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    George; Ting-kuo; Fey; Kai-Lun; Chiang

    2007-01-01

    1 Results The pyrolyzed product of peanut shells was utilized as a carbon source to synthesize a LiFePO4/C composite.The advantages of using agricultural wastes such as peanut shells are low costs,easy processing,and environmentally benigness.Peanut shell was first treated with a porogenic agent to produce a precursor with high porosity and surface area (>2 000 m2·g-1).A small amount of precursor was mixed with LiFePO4 fine powders and heated.The optimum calcination process for synthesizing LiFePO4/C co...

  13. Electrocatalytic Reduction of Hydrogen Peroxide on Palladium-Gold Codeposits on Glassy Carbon: Applications to the Design of Interference-Free Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Elena Horozova

    2011-01-01

    Full Text Available Following our previous studies on the catalytic activity electrochemically codeposited on graphite Pd-Pt electrocatalysts for hydrogen peroxide electroreduction, a series of glassy carbon electrodes were modified with Pd or (Pd+Au deposits aiming at the development of even more efficient electrocatalysts for the same process. The resulting electrodes were found to be very effective at low applied potentials (−100 and −50 mV versus Ag/AgCl, 1 M KCl. The surface topography of the electrode modified with Pd+Au mixed in proportions 90% : 10%, exhibiting optimal combination of sensitivity and linear dynamic range towards hydrogen peroxide electrochemical reduction, was studied with SEM and AFM. The applicability of the same electrode as transducer in an amperometric biosensor for glucose assay was demonstrated. At an applied potential of −50 mV, the following were determined: detection limit (S/N=3 of 6×10−6 M glucose, electrode sensitivity of 0.15 μA μM−1, and strict linearity up to concentration of 3×10−4 M.

  14. Metabolic Engineering of Saccharomyces cerevisiae for Conversion of d-Glucose to Xylitol and Other Five-Carbon Sugars and Sugar Alcohols▿

    Science.gov (United States)

    Toivari, Mervi H.; Ruohonen, Laura; Miasnikov, Andrei N.; Richard, Peter; Penttilä, Merja

    2007-01-01

    Recombinant Saccharomyces cerevisiae strains that produce the sugar alcohols xylitol and ribitol and the pentose sugar d-ribose from d-glucose in a single fermentation step are described. A transketolase-deficient S. cerevisiae strain accumulated d-xylulose 5-phosphate intracellularly and released ribitol and pentose sugars (d-ribose, d-ribulose, and d-xylulose) into the growth medium. Expression of the xylitol dehydrogenase-encoding gene XYL2 of Pichia stipitis in the transketolase-deficient strain resulted in an 8.5-fold enhancement of the total amount of the excreted sugar alcohols ribitol and xylitol. The additional introduction of the 2-deoxy-glucose 6-phosphate phosphatase-encoding gene DOG1 into the transketolase-deficient strain expressing the XYL2 gene resulted in a further 1.6-fold increase in ribitol production. Finally, deletion of the endogenous xylulokinase-encoding gene XKS1 was necessary to increase the amount of xylitol to 50% of the 5-carbon sugar alcohols excreted. PMID:17630301

  15. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State

    Science.gov (United States)

    Fry, B.; Hayes, J. M. (Principal Investigator)

    1986-01-01

    The trophic importance of bacterioplankton as a source of carbon and sulfur nutrition for consumers in meromictic lakes was tested using stable carbon (delta 13C) and sulfur (delta 34S) isotopic measurements. Studies in three lakes near Syracuse, New York, showed that most consumers ultimately derive their C and S nutrition from a mixture of terrestrial detritus, phytoplankton, and littoral vegetation, rather than from bacterioplankton. Food webs in these meromictic lakes are thus similar to those in other lakes that lack dense populations of bacterioplankton.

  16. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.

    Science.gov (United States)

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  17. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-01-01

    Full Text Available Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast.

  18. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Directory of Open Access Journals (Sweden)

    Thomas Larsen

    Full Text Available Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13C patterns among amino acids (δ(13CAA could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13CAA patterns in contrast to bulk δ(13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  19. Effect of source gas chemistry on tribological performance of diamond-like carbon films.

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Eryilmaz, O. L.; Fenske, G. R.; Nilufer, I. B.

    1999-08-23

    In this study, we investigated the effects of various source gases (i. e., methane, ethane, ethylene, acetylene and methane + hydrogen) on friction and wear performance of diamond-like carbon (DLC) films. Specifically, we described the anomalous nature and fundamental friction and wear mechanisms of DLC films derived from gas discharge plasmas with very low to very high hydrogen content. The films were deposited on steel substrates by a plasma enhanced chemical vapor deposition process at room temperature and the tribological tests were performed in dry nitrogen. The results of tribological tests revealed a close correlation between the friction and wear coefficients of the DLC films and the source gas chemistry. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios had much lower friction coefficients and wear rates than the films derived from source gases with lower hydrogen-to-carbon ratios. The lowest friction coefficient (0.002) was achieved with a film derived from 25% methane--75% hydrogen while the films derived from acetylene had a coefficient of 0.15. Similar correlations were observed on wear rates. Specifically, the films derived from hydrogen rich plasmas had the least wear while the films derived from pure acetylene suffered the highest wear. We used a combination of scanning and transmission electron microscopy and Raman spectroscopy to characterize the structural chemistry of the resultant DLC films.

  20. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Science.gov (United States)

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O'Brien, Diane M; Piatkowski, Uwe; McCarthy, Matthew D

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13)C patterns among amino acids (δ(13)CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13)CAA patterns in contrast to bulk δ(13)C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13)CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13)C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13)C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs. PMID:24069196

  1. [The effect of the main protein source in rations of ewes and the time of blood collection on the glucose and triacylglycerol levels in blood at the beginning of lactation].

    Science.gov (United States)

    Hatzipanagiotou, A; Liamadis, D; Hatzikas, A

    1994-01-01

    The effect of the protein source of the ration (soybean meal, cottonseed cake, corn gluten and fish meal) and the time (period) of blood sample taking was examined on the content of glucose and triacylglycerols in the blood during the initial lactation period. Thirty-six ewes of the Thessaloniki crossbred type were randomly allocated to 4 groups. The ewes of each group were fed ad libitum with one of the 4 different rations, respectively. From each ewe 4 blood samples were taken in different times. The experimental design was factorial 4x4 with 9 replicates with main factors the main protein source (ration), as well as the time of blood sample taking. The protein source effect on glucose and triacylglycerol concentration in blood was not significant, while that of time of blood sample taking was significant. The interaction "ration" X "time" of sampling for the glucose and TGC concentration was not significant. PMID:7487483

  2. Cultivation of Escherichia coli with mixtures of 3-phenylpropionic acid and glucose: dynamics of growth and substrate consumption.

    Science.gov (United States)

    Kovárová, K; Käch, A; Chaloupka, V; Egli, T

    In technical as well as natural ecosystems, pollutants are often mineralised in the presence of easily degradable carbon sources. A laboratory model system consisting of Escherichia coli ML 30 growing with mixtures of 3-phenylpropionic acid (3ppa, 'pollutant') and glucose (easily degradable substrate) was investigated in batch and carbon-limited continuous culture. Untypically, a linear growth pattern was observed during batch cultivation with 3ppa as the only carbon/energy source. When exposed to mixtures of both substrates in batch culture, E. coli utilised the two compounds sequentially. However, 3ppa and glucose were consumed simultaneously in continuous culture. Whereas a pulse of excess glucose to a batch culture growing with 3ppa led to the repression of 3ppa utilisation, an excess of glucose added into continuous culture did not inhibit the utilisation of 3ppa. During continuous cultivation the 3ppa-degrading enzyme system operated close to saturation.

  3. Fine and ultrafine particulate organic carbon in the Los Angeles basin: Trends in sources and composition.

    Science.gov (United States)

    Shirmohammadi, Farimah; Hasheminassab, Sina; Saffari, Arian; Schauer, James J; Delfino, Ralph J; Sioutas, Constantinos

    2016-01-15

    In this study, PM2.5 and PM0.18 (particles with dporganic carbons) and individual organic compounds. Concentrations of organic compounds were reported and compared with many previous studies in Central LA to quantify the impact of emissions control measurements that have been implemented for vehicular emissions over the past decades in this area. Moreover, a novel hybrid approach of molecular marker-based chemical mass balance (MM-CMB) analysis was conducted, in which a combination of source profiles that were previously obtained from a Positive Matrix Factorization (PMF) model in Central LA, were combined with some traditional source profiles. The model estimated the relative contributions from mobile sources (including gasoline, diesel, and smoking vehicles), wood smoke, primary biogenic sources (including emissions from vegetative detritus, food cooking, and re-suspended soil dust), and anthropogenic secondary organic carbon (SOC). Mobile sources contributed to 0.65 ± 0.25 μg/m(3) and 0.32 ± 0.25 μg/m(3) of PM2.5 OC in Central LA and Anaheim, respectively. Primary biogenic and anthropogenic SOC sources were major contributors to OC concentrations in both size fractions and sites. Un-apportioned OC ("other OC") accounted for an average 8.0 and 26% of PM2.5 OC concentration in Central LA and Anaheim, respectively. A comparison with previous studies in Central LA revealed considerable reduction of EC and OC, along with tracers of mobile sources (e.g. PAHs, hopanes and steranes) as a result of implemented regulations on vehicular emissions. Given the significant reduction of the impacts of mobile sources in the past decade in the LA Basin, the impact of SOC and primary biogenic emissions have a larger relative impact and the new hybrid model allows the impact of these sources to be better quantified.

  4. A new amperometric glucose biosensor based on screen printed carbon electrodes with rhenium(IV) - oxide as a mediator

    OpenAIRE

    ALBANA VESELI; AHMET HAJRIZI; TAHIR ARBNESHI; KURT KALCHER

    2012-01-01

    Rhenium(IV)-oxide, ReO2, was used as a mediator for carbon paste (CPE) and screen printed carbon (SPCE) electrodes for the catalytic amperometric determination of hydro-gen peroxide, whose overpotential for the reduction could be lowered to -0.1 V vs. Ag/AgCl in flow injection analysis (FIA) using phosphate buffer (0.1 M, pH=7.5) as a carrier. For hydrogen peroxide a detection limit (3σ) of 0.8 mg L-1 could be obtained. ReO2-modified SPCEs were used to design biosensors with a template enzyme...

  5. Amorphous carbon film deposition on inner surface of tubes using atmospheric pressure pulsed filamentary plasma source

    CERN Document Server

    Pothiraja, Ramasamy; Awakowicz, Peter

    2011-01-01

    Uniform amorphous carbon film is deposited on the inner surface of quartz tube having the inner diameter of 6 mm and the outer diameter of 8 mm. A pulsed filamentary plasma source is used for the deposition. Long plasma filaments (~ 140 mm) as a positive discharge are generated inside the tube in argon with methane admixture. FTIR-ATR, XRD, SEM, LSM and XPS analyses give the conclusion that deposited film is amorphous composed of non-hydrogenated sp2 carbon and hydrogenated sp3 carbon. Plasma is characterized using optical emission spectroscopy, voltage-current measurement, microphotography and numerical simulation. On the basis of observed plasma parameters, the kinetics of the film deposition process is discussed.

  6. Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source.

    Science.gov (United States)

    Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won

    2012-07-25

    Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior. PMID:22709270

  7. Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source.

    Science.gov (United States)

    Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won

    2012-07-25

    Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior.

  8. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.

    Science.gov (United States)

    Radauscher, Erich J; Keil, Adam D; Wells, Mitch; Amsden, Jason J; Piascik, Jeffrey R; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities. Graphical Abstract ᅟ. PMID:26133527

  9. Design of an Intense Muon Source with a Carbon and Mercury Target

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven; Berg, J. Scott [Brookhaven; Neuffer, David [Fermilab; Ding, Xiaoping [UCLA

    2015-06-01

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  10. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  11. Distinct carbon sources indicate strong differentiation between tropical forest and farmland bird communities.

    Science.gov (United States)

    Ferger, Stefan W; Böhning-Gaese, Katrin; Wilcke, Wolfgang; Oelmann, Yvonne; Schleuning, Matthias

    2013-02-01

    The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C(4) crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C(3) carbon sources, whereas many farmland birds also assimilated C(4) carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C(4) carbon in the farmland than in the forest. Granivores assimilated more C(4) carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km(-2) year(-1). We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control.

  12. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    OpenAIRE

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-p...

  13. Can ultrasonically disintegrated activated sludge be exploited as an internal carbon source for denitrification?

    OpenAIRE

    Lambert, Nico; Smets, Ilse; Impe, Jan Van; Dewil, Raf

    2013-01-01

    The recovery of a solubilized sludge carbon source from waste activated sludge by using ultrasonic treatment or a combination of ultrasonic treatment and alkaline hydrolysis was investigated. First the release of sCOD and the associated immediate sludge reduction as a result of the ultrasonic disintegration was experimentally studied. Respirometric data were used to quantify the amount of rapidly biodegradable COD (SS) that was formed during the disintegration process. In the second phase of ...

  14. Organic carbon sources and transformations in mangrove sediments : a Rock-Eval pyrolysis approach

    OpenAIRE

    Marchand, Cyril; Lallier-Vergès, Elisabeth; Disnar, Jean-Robert; Kéravis, Didier

    2008-01-01

    International audience A Rock-Eval pyrolysis study was carried out on sedimentary cores and leaf and woody tissue of vascular plant species from the mangroves of French Guiana. These forests develop on moving mudbanks and have a lifetime limited to few decades before being eroded. Our main purpose was to complete the understanding of carbon cycling in this specific environment using a method that allows monitoring the depth evolution of sources and transformation of organic matter (OM) wit...

  15. Organic carbon in intertidal mangrove forests: sources and utilization by benthic invertebrates

    OpenAIRE

    BOUILLON, S; N. Koedam; Raman, A. V.; Rao, A.V.V.S.; F. Dehairs

    2001-01-01

    In contrast to the large number of studies on the trophic significance of mangrove primary production to the aquatic foodweb, there have been few attempts to provide an overview of the relative importance of different primary carbon sources to invertebrates in the intertidal mangrove habitats. Mangrove sediments from three different mangrove ecosystems (Coringa Wildlife Sanctuary in the Godavari Delta, Andhra Pradesh, India, and Galle and Pambala, Sri Lanka) were analysed for their organic ca...

  16. Optimization of probiotic lactobacillus casei ATCC 334 production using date powder as carbon source

    OpenAIRE

    Shahravy A.; Tabandeh F.; Bambai B.; Zamanizadeh H.R.; Mizani M.

    2012-01-01

    This study was conducted to optimize culture conditions for economic production of a probiotic bacterium, Lactobacillus casei ATCC 334, in which palm date powder was applied for the first time as a low-cost main carbon source. The effect of eleven factors on bacterial growth was investigated using the Taguchi experimental design, and three factors including palm date powder, tryptone and agitation rate were found to be the most significant parameters. The optimum conditions including da...

  17. Deep Sediment-Sourced Methane Contribution to Shallow Sediment Organic Carbon: Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Richard B. Coffin

    2015-02-01

    Full Text Available Coastal methane hydrate deposits are globally abundant. There is a need to understand the deep sediment sourced methane energy contribution to shallow sediment carbon relative to terrestrial sources and phytoplankton. Shallow sediment and porewater samples were collected from Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico near a seafloor mound feature identified in geophysical surveys as an elevated bottom seismic reflection. Geochemical data revealed off-mound methane diffusion and active fluid advection on-mound. Gas composition (average methane/ethane ratio ~11,000 and isotope ratios of methane on the mound (average δ13CCH4(g = −71.2‰; D14CCH4(g = −961‰ indicate a deep sediment, microbial source. Depleted sediment organic carbon values on mound (δ13CSOC = −25.8‰; D14CSOC = −930‰ relative to off-mound (δ13CSOC = −22.5‰; D14CSOC = −629‰ suggest deep sourced ancient carbon is incorporated into shallow sediment organic matter. Porewater and sediment data indicate inorganic carbon fixed during anaerobic oxidation of methane is a dominant contributor to on-mound shallow sediment organic carbon cycling. A simple stable carbon isotope mass balance suggests carbon fixation of dissolved inorganic carbon (DIC associated with anaerobic oxidation of hydrate-sourced CH4 contributes up to 85% of shallow sediment organic carbon.

  18. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  19. [Nitrate removal from recirculating aquaculture system using polyhydroxybutyrate-co-hydroxyvalerate as carbon source ].

    Science.gov (United States)

    Zhang, Lanhe; Liu, Lili; Qiu, Tianlei; Gao, Min; Han, Meilin; Yuan, Ding; Wang, Xuming

    2014-09-01

    [ OBJECTIVE] Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) was used as solid carbon source and biofilm carrier to remove nitrate from recirculating aquaculture system (RAS). Dynamics of microbial community structure in biofilm coating on carbon source packed into denitrification reactor were investigated. [METHODS] Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial community in biofilm from denitrifiation reactor. Bacteria degrading PHBV were isolated from the reactor using pure culture method. [RESULTS] Nitrate decreased remarkably in the RAS connected with dentrification reactor. In contrast, Nitrate increased continuously in the conventional RAS without dentrification reactor. According to the phylogenetic analysis, the microbes in the biofilm samples from denitrification reactor were divided into Proteobacteria ( p-proteobacteria, γ-proteobacteria and δ- proteobacteria) , Firmicutes and Bacteroidetes. The major advantageous populations were Acidovorax and Bacillus in the 40-day reactor. The advantageous populations in the 150-day reactor were in order of Clostridium, Desulfitobacterium, Dechloromonas, Pseudoxanthomonas and Flavobacterium. Pure cultures of bacteria degrading PHBV isolated from denitrification reactor were classified into Acidovorax, Methylibium, Pseudoxanthomonas and Dechloromonas. [CONCLUSION] Nitrate could be removed effectively from RAS using PHBV as carbon source. Advantageous bacteria and their dynamic changes were ascertained in biofilm from denitrification reactor packed with PHBV. PMID:25522594

  20. The activated sludge metabolic characteristics changing sole carbon source from readily biodegradable acetate to toxic phenol.

    Science.gov (United States)

    Wu, Changyong; Zhou, Yuexi; Song, Jiamei

    2016-01-01

    A sequencing batch reactor was used to investigate the effect of carbon sources on the metabolism of activated sludge. Acetate and phenol, with the chemical oxygen demand (COD) of 330-350 mg L(-1), was used as the carbon source in Periods I and II, respectively. Acetate decreased in the initial 120 min with the intracellular storage materials (XSTO), extracellular polymeric substances (EPS), and the soluble microbial products (SMP) accumulating to 131.0 mg L(-1), 347.5 mg L(-1), and 35.5 mg L(-1), respectively. Then, XSTO and EPS decreased to 124.5 mg L(-1) and 340.0 mg L(-1), respectively, in the following 120 min. When acetate was replaced by phenol, it could not be used at the beginning due to its toxicity. The XSTO decreased from 142 mg L(-1) to 54.6 mg L(-1) during the aeration period. The EPS had a significant increase, with the highest value of 618.1 mg L(-1), which then decreased to 245.6 mg L(-1) at 240 min. The phenol was gradually degraded with the acclimation and it can be fully degraded 18 d later. Meanwhile, the usage ratio of the internal carbon source decreased. The effluent SMP in Period II was 1.7 times that in Period I.

  1. The activated sludge metabolic characteristics changing sole carbon source from readily biodegradable acetate to toxic phenol.

    Science.gov (United States)

    Wu, Changyong; Zhou, Yuexi; Song, Jiamei

    2016-01-01

    A sequencing batch reactor was used to investigate the effect of carbon sources on the metabolism of activated sludge. Acetate and phenol, with the chemical oxygen demand (COD) of 330-350 mg L(-1), was used as the carbon source in Periods I and II, respectively. Acetate decreased in the initial 120 min with the intracellular storage materials (XSTO), extracellular polymeric substances (EPS), and the soluble microbial products (SMP) accumulating to 131.0 mg L(-1), 347.5 mg L(-1), and 35.5 mg L(-1), respectively. Then, XSTO and EPS decreased to 124.5 mg L(-1) and 340.0 mg L(-1), respectively, in the following 120 min. When acetate was replaced by phenol, it could not be used at the beginning due to its toxicity. The XSTO decreased from 142 mg L(-1) to 54.6 mg L(-1) during the aeration period. The EPS had a significant increase, with the highest value of 618.1 mg L(-1), which then decreased to 245.6 mg L(-1) at 240 min. The phenol was gradually degraded with the acclimation and it can be fully degraded 18 d later. Meanwhile, the usage ratio of the internal carbon source decreased. The effluent SMP in Period II was 1.7 times that in Period I. PMID:27191552

  2. Thermal hydrolysis of sludge and the use of hydrolysate as carbon source for denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Barlindhaug, J.

    1995-10-01

    As a consequence of the North Sea- and the Baltic Sea Treaties as well as the Wastewater Directive of the EU, several large wastewater treatment plants discharging to sensitive receiving waters have to include phosphorus as well as nitrogen removal. This thesis evaluates the so called NTH-process for nutrient removal. In this process pre-precipitation is used in front of a biological nitrogen removal step that is based on a combination of pre- and post-denitrification in moving bed biofilm reactors. The biological step is followed by a final separation step, possibly after coagulant addition. Carbon source for the post denitrification step is made available by hydrolysis of the sludge produced. The idea is that the particulate organic matter, which in a traditional pre-denitrification step would have to be enzymatically hydrolyzed, can be more efficiently hydrolyzed in a concentrated sidestream and used in a post-denitrification step. In the thesis hydrolyzed sludge is used as a carbon source for denitrification. The objective is to investigate the influence of varying hydrolysis conditions on the composition and amount of the thermal hydrolysate produced, as well as the quality of the hydrolysate as a carbon source for denitrification. 201 refs., 78 refs., 53 tabs.

  3. 生物滤池外加碳源脱氮研究%Study on the effect of different external carbon source on nitrogen removal of biofilter

    Institute of Scientific and Technical Information of China (English)

    夏琼琼; 颜秀勤; 张维; 张向阳; 王金丽

    2011-01-01

    The denitrification treatment of secondary clarifier effluent was performed in pilot-scale biofilter with glucose,methanol,ethanol and acetic acid as external carbon source respectively. The effect of water temperature and hydraulic loading on treatment efficiency was also analyzed. Results showed that the biofilter presented perfect denitrification performance after adding external carbon source, the NO3-N removal rate ranged from 67. 1% to 83. 7%. Acetic acid was the most effective carbon source,among the 4 studied,for removing NO3-N. The NO3-N removal rate was lowest and the bacteria in filter had a long adaption phase when methanol was applied as carbon source, while methanol had the maximum utilizing rate. Water temperature had little effect on denitrification efficiency of biofilter; hydraulic loading affected the NO3-N removal of filter within a specific range,especially in biofilter with methanol as the carbon source.%以葡萄糖、甲醇、乙醇、乙酸4种有机物为碳源,以中试二沉池出水为原水,研究了生物滤池的反硝化效能,并分析了水温和水力负荷对反硝化效果的影响.结果表明,投加4种碳源后生物滤池均能有效脱氮,对NO-3-N的去除率达67.1%~83.7%.乙酸为碳源时,NO-3-N在生物滤池内浓度下降最快;甲醇为碳源时,NO-3-N浓度下降最慢,而且反硝化细菌对其需要一定的适应期,但是甲醇碳源的利用率最高.水温对生物滤池反硝化效果的影响较小,水力负荷对NO-3-N去除的影响是在一定范围内的,改变水力负荷对甲醇碳源情况下的反硝化效果影响最大,对乙酸的影响最小.

  4. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    Science.gov (United States)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically "heavy" compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  5. Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources

    Directory of Open Access Journals (Sweden)

    Dominik Szwajgier

    2011-09-01

    Full Text Available Background. Ferulic acid esterases (FAE, EC 3.1.1.73, also known as feruloyl esterases, cinnamic acid esterases or cinnamoyl esterases, belong to a common group of hydrolases distributed in the plant kingdom. Especially the fungal enzymes were very well characterised in the past whereas the enzyme was rarely found in the lactic acid bacteria (LAB strains. It is well known that strong antioxidants free phenolic acids can be released from the dietary fiber by the action of intestinal microflora composed among others also of Lactobacillus strains. The aim of this study was to examine four Lactobacillus strains (L. acidophilus K1, L. rhamnosus E/N, PEN, OXYfor the ability to produce extracellular FAE on different synthetic and natural carbon sources. Material and methods. The LAB strains were grown in the minimal growth media using German wheat bran, rye bran, brewers’ spent grain, isolated larchwood arabinogalactan, apple pectin, corn pectin, methyl ferulate, methyl p-coumarate, methyl syringate or methyl vanillate as the sole carbon source. FAE activity was determined using the post-cultivation supernatants, methyl ferulate and HPLC with UV detection. Results. The highest FAE activity was obtained with L. acidophilus K1 and methyl ferulate (max. 23.34 ±0.05 activity units and methyl p-coumarate (max. 14.96 ±0.47 activity units as carbon sources. L. rhamnosus E/N, OXY and PEN exhibited the limited ability to produce FAE with cinnamic acids methyl esters. Methyl syringate and methyl vanillate (MS and MV were insufficient carbon sources for FAE production. Brewers’ spent grain was the most suitable substrate for FAE production by L. acidophilus K1 (max. 2.64 ±0.06 activity units and L. rhamnosus E/N, OXY and PEN. FAE was also successfully induced by natural substrates rye bran, corn pectin (L. acidophilus K1, German wheat bran and larchwood arabinogalactan (E/N, PEN or German wheat bran and corn pectin (OXY. Conclusions. This study proved the

  6. Badlands and the Carbon cycle: a significant source of petrogenic organic carbon in rivers and marine environments?

    Science.gov (United States)

    Copard, Yoann; Eyrolle-Boyer, Frederique; Radakovitch, Olivier; Poirel, Alain; Raimbault, Patrick; Lebouteiller, Caroline; Gairoard, Stéphanie; Di-Giovanni, Christian

    2016-04-01

    A key issue in the study of carbon biogeochemical cycle is to well constrain each carbon origin in term of fluxes between all C-reservoirs. From continental surfaces to oceans, rivers convey particulate organic carbon originate from the biomass (biospheric OC) and /or from the sedimentary rocks (petrogenic OC). Existence and importance of this petrogenic OC export to oceans was debated for several decades (see Copard et al., 2007 and ref.), but it is now assumed that 20% of the global carbon export to ocean has a geological origin (Galy et al., 2015). The main current challenge is to constrain the major contributors to this petrogenic OC flux. Amongst the expected sedimentary sources of petrogenic OC in rivers, sedimentary rocks forming badlands can be rightly considered as some viable candidates. Indeed these rocks show a strong erosion rate, may exceed 50 kt km-2 y-1 and in addition, shales, marls and argillaceous rocks, frequently forming badlands (see Nadal-Romero et al., 2011 for the Mediterranean area), contain a significant amount of petrogenic OC (frequently over 0.50 wt. %, Ronov and Yaroshevsky 1976). Our work illustrates the contribution of badlands, mainly distributed within the Durance catchment (a main tributary of the Rhône river), in the petrogenic OC export to the Mediterranean Sea. The approach is based on (i) the use of previous and new data on radiogenic carbon, (ii) bulk organic geochemistry (Rock-Eval pyrolysis), (iii) optical quantification of particulate OM (palynofacies), performed on suspended sediments from the Durance, the Rhône rivers and from small rivers draining the badlands. A mean erosion rate of badlands, previously calculated for instrumented catchments (SOERE Draix-Bléone, Graz et al., 2012) was also applied to the badlands disseminated within the Durance catchment. These different methodologies converge to a petrogenic contribution of the OC export to the Mediterranean Sea close to 30 %. Badlands from the Durance catchment

  7. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya

    Directory of Open Access Journals (Sweden)

    S. Bouillon

    2004-01-01

    Full Text Available The origin of carbon substrates used by in situ sedimentary bacterial communities was investigated in an intertidal mangrove ecosystem and in adjacent seagrass beds in Gazi bay (Kenya by δ13C analysis of bacteria-specific PLFA (phospholipid fatty acids and bulk organic carbon. Export of mangrove-derived organic matter to the adjacent seagrass-covered bay was evident from sedimentary total organic carbon (TOC and δ13CTOC data. PLFA δ13C data indicate that the substrate used by bacterial communities varied strongly and that exported mangrove carbon was a significant source for bacteria in the adjacent seagrass beds. Within the intertidal mangrove forest, bacterial PLFA at the surface layer (0-1cm typically showed more enriched δ13C values than deeper (up to 10cm sediment layers, suggesting a contribution from microphytobenthos and/or inwelled seagrass material. Under the simplifying assumption that seagrasses and mangroves are the dominant potential end-members, the estimated contribution of mangrove-derived carbon to benthic mineralization in the seagrass beds (16-74% corresponds fairly well to the estimated contribution of mangrove C to the sedimentary organic matter pool (21-71% across different seagrass sites. Based on the results of this study and a compilation of literature data, we suggest that trapping of allochtonous C is a common feature in seagrass beds and often represents a significant source of C for sediment bacteria - both in cases where seagrass C dominates the sediment TOC pool and in cases where external inputs are significant. Hence, it is likely that data on community respiration rates systematically overestimate the role of in situ mineralization as a fate of seagrass production.

  8. Carbon Sources and Sinks in Freshwater and Estuarine Environments of the Arctic Coastal Plain.

    Science.gov (United States)

    Lougheed, V.; Tarin, G.; Tweedie, C. E.

    2015-12-01

    The source, fate and transport of terrestrially derived carbon as it moves through multiple landscape components (i.e. groundwater, rivers, ponds, wetlands, lakes, lagoons) on a path from land to sea in permafrost-dominated watersheds is poorly understood. Critical to our understanding of Arctic carbon budgets are small, but numerically abundant watersheds that dominate the landscape of the Alaskan Arctic Coastal Plain (ACP), which appears to be changing rapidly in response to climate warming and other environmental changes. This study was designed to understand the contribution of freshwater ecosystems in the Arctic to regional carbon budgets. pCO2 was logged continually in ponds, lakes and streams sites near Barrow, AK and recorded across transects in Elson Lagoon, a coastal lagoon on the Beaufort coast. Average pCO2 of the pond over 2 weeks in August (1196 μatm) was double that of lakes and streams, and four times higher than Elson Lagoon (216 μatm); thus, the Lagoon was acting as a small sink while the pond was a substantial source of CO2 to the atmosphere. The uptake of CO2 in Elson Lagoon, combined with an oversaturation of O2, may be due to enhanced primary productivity caused by freshwater nutrient inputs. Conversely, pCO2, chlorophyll-a and DOC increased substantially in the pond after a large rain event, suggesting that run-off introduced large amounts of terrestrially-derived carbon from groundwater. Further studies are required to elucidate the fate and transport of carbon in the numerically abundant smaller watersheds of the Arctic.

  9. Electrochemistry of glucose oxidase on modified carbon nanotubes%葡萄糖氧化酶在修饰碳纳米管上的电化学

    Institute of Scientific and Technical Information of China (English)

    王佳; 李俊华; 周健

    2014-01-01

    Glucose oxidase (GOx) was immobilized on the electrode surface of multi-walled carbon nanotubes, amino functionalized carbon nanotubes (AMWNTs)and carboxyl functionalized carbon nanotubes (MWNTs-COOH). Electrochemical measurements indicated that the formal potentials of GOx immobilized on AMWNTs and MWNTs-COOH did not change, but their peak currents were improved. The peak current of GOx immobilized on AMWNTs was four times larger than that immobilized on MWNTs. The electrochemistry behavior of Nafion/GOx-AMWNTs/GC electrode were further characterized. The results indicated that GOx immobilized on AMWNTs could undergo a direct quasi-reversible electrochemical reaction and show good stability. Amino-functionalized electrodes could significantly improve the performance of GOx-based biofuel cells.%将葡萄糖氧化酶(GOx)分别固定在多壁碳纳米管(MWNT)、氨基化碳纳米管(AMWNTs)和羧基化碳纳米管(MWNTs-COOH)修饰的电极表面,电化学测量表明固定在羧基和氨基碳纳米管上的 GOx 式量电位基本没变,而峰电流得到了很大提高。尤其是氨基化碳纳米管上的GOx的峰电流是未功能化碳管上GOx的4倍多。进一步研究Nafion/GOx-AMWNTs/GC电极的电化学行为,发现固定在AMWNTs上的GOx可进行直接准可逆的氧化还原反应,而且固定在 AMWNTs 上的 GOx 有良好的稳定性。氨基改性碳纳米管电极载体材料有望显著提高 GOx生物燃料电池性能。

  10. Importance of seagrass as a carbon source for heterotrophic bacteria in a subtropical estuary (Florida Bay)

    Science.gov (United States)

    Williams, Clayton J.; Jaffé, Rudolf; Anderson, William T.; Jochem, Frank J.

    2009-11-01

    A stable carbon isotope approach was taken to identify potential organic matter sources incorporated into biomass by the heterotrophic bacterial community of Florida Bay, a subtropical estuary with a recent history of seagrass loss and phytoplankton blooms. To gain a more complete understanding of bacterial carbon cycling in seagrass estuaries, this study focused on the importance of seagrass-derived organic matter to pelagic, seagrass epiphytic, and sediment surface bacteria. Particulate organic matter (POM), seagrass epiphytic, seagrass ( Thalassia testudinum) leaf, and sediment surface samples were collected from four Florida Bay locations with historically different organic matter inputs, macrophyte densities, and primary productivities. Bulk (observed and those reported previously) and compound-specific bacterial fatty acid δ 13C values were used to determine important carbon sources to the estuary and benthic and pelagic heterotrophic bacteria. The δ 13C values of T. testudinum green leaves with epiphytes removed ranged from -9.9 to -6.9‰. Thalassia testudinum δ 13C values were significant more enriched in 13C than POM, epiphytic, and sediment samples, which ranged from -16.4 to -13.5, -16.2 to -9.6, and -16.7 to -11.0‰, respectively. Bacterial fatty acid δ 13C values (measured for br14:0, 15:0, i15:0, a15:0, br17:0, and 17:0) ranged from -25.5 to -8.2‰. Assuming a -3‰ carbon source fractionation from fatty acid to whole bacteria, pelagic, epiphytic, and sediment bacterial δ 13C values were generally more depleted in 13C than T. testudinum δ 13C values, more enriched in 13C than reported δ 13C values for mangroves, and similar to reported δ 13C values for algae. IsoSource mixing model results indicated that organic matter derived from T. testudinum was incorporated by both benthic and pelagic bacterial communities, where 13-67% of bacterial δ 13C values could arise from consumption of seagrass-derived organic matter. The IsoSource model

  11. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sako, T., E-mail: takayuki1.sako@toshiba.co.jp; Yamaguchi, A.; Sato, K. [Toshiba Corporation, Yokohama 235-8522 (Japan); Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T. [Cancer Research Center, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Takeuchi, T. [Accelerator Engineering Corporation, Chiba 263-0043 (Japan)

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  12. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    Science.gov (United States)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  13. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    Science.gov (United States)

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4. PMID:26932119

  14. A fine-focusing x-ray source using carbon-nanofiber field emitter

    Science.gov (United States)

    Sugimoto, W.; Sugita, S.; Sakai, Y.; Goto, H.; Watanabe, Y.; Ohga, Y.; Kita, S.;