WorldWideScience

Sample records for carbon sequestration database

  1. A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    Science.gov (United States)

    Carr, T.R.; Iqbal, A.; Callaghan, N.; ,; Look, K.; Saving, S.; Nelson, K.

    2009-01-01

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of

  2. National Carbon Sequestration Database and Geographic Information System (NatCarb)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Nelson; Timothy Carr

    2009-03-31

    This annual and final report describes the results of the multi-year project entitled 'NATional CARBon Sequestration Database and Geographic Information System (NatCarb)' (http://www.natcarb.org). The original project assembled a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) in the midcontinent of the United States (MIDCARB) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide (CO{sub 2}) geologic sequestration. The NatCarb system built on the technology developed in the initial MIDCARB effort. The NatCarb project linked the GIS information of the Regional Carbon Sequestration Partnerships (RCSPs) into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project includes access to national databases and GIS layers maintained by the NatCarb group (e.g., brine geochemistry) and publicly accessible servers (e.g., USGS, and Geography Network) into a single system where data are maintained and enhanced at the local level, but are accessed and assembled through a single Web portal to facilitate query, assembly, analysis and display. This project improves the flow of data across servers and increases the amount and quality of available digital data. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO{sub 2} emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project worked to provide all stakeholders with improved online tools for the display and analysis of CO{sub 2} carbon capture and storage data through a single website portal (http://www.natcarb.org/). While the external

  3. NATIONAL CARBON SEQUESTRATION DATABASE AND GEOGRAPHIC INFORMATION SYSTEM (NATCARB) FORMER TITLE-MIDCONTINENT INTERACTIVE DIGITAL CARBON ATLAS AND RELATIONAL DATABASE (MIDCARB)

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. Carr

    2004-07-16

    This annual report describes progress in the third year of the three-year project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. The project assembled a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide (CO{sub 2}) geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project has been extended and expanded as a ''NATional CARBon Sequestration Database and Geographic Information System (NATCARB)'' to provide national coverage across the Regional CO{sub 2} Partnerships, which currently cover 40 states (http://www.natcarb.org). Advanced distributed computing solutions link database servers across the five states and other publicly accessible servers (e.g., USGS) into a single system where data is maintained and enhanced at the local level but is accessed and assembled through a single Web portal and can be queried, assembled, analyzed and displayed. This project has improved the flow of data across servers and increased the amount and quality of available digital data. The online tools used in the project have improved in stability and speed in order to provide real-time display and analysis of CO{sub 2} sequestration data. The move away from direct database access to web access through eXtensible Markup Language (XML) has increased stability and security while decreasing management overhead. The MIDCARB viewer has been simplified to provide improved display and organization of the more than 125 layers and data tables that have been generated as part of the project. The MIDCARB project is a functional demonstration of distributed management of

  4. Carbon Sequestration in Agricultural Soils

    OpenAIRE

    World Bank

    2009-01-01

    The purpose of this report is to improve the knowledge base for facilitating investments in land management technologies that sequester soil organic carbon. While there are many studies on soil carbon sequestration, there is no single unifying volume that synthesizes knowledge on the impact of different land management practices on soil carbon sequestration rates across the world. A meta-a...

  5. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-06-30

    , monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO2 concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. A third Partnership meeting has been planned for August 04 in Idaho Falls; a preliminary agenda is attached.

  6. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-10-31

    technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to

  7. Carbon dioxide sequestration by mineral carbonation

    OpenAIRE

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  8. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-06-01

    soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership

  9. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  10. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  11. Chapter 4: Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, J; Herzog, H

    2006-06-14

    Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) from 600 large pulverized coal plants ({approx}1000 MW each) or 3600 injection projects at the scale of Statoil's Sleipner project. At present, global carbon emissions from coal approximate 2.5 Gt C. However, given reasonable economic and demand growth projections in a business-as-usual context, global coal emissions could account for 9 Gt C. These volumes highlight the need to develop rapidly an understanding of typical crustal response to such large projects, and the magnitude of the effort prompts certain concerns regarding implementation, efficiency, and risk of the enterprise. The key questions of subsurface engineering and surface safety associated with carbon sequestration are: (1) Subsurface issues: (a) Is there enough capacity to store CO{sub 2} where needed? (b) Do we understand storage mechanisms well enough? (c) Could we establish a process to certify injection sites with our current level of understanding? (d) Once injected, can we monitor and verify the movement of subsurface CO{sub 2}? (2) Near surface issues: (a) How might the siting of new coal plants be influenced by the distribution of storage sites? (b) What is the probability of CO{sub 2} escaping from injection sites? What are the attendant risks? Can we detect leakage if it occurs? (3) Will surface leakage negate or

  12. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-06-01

    soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership

  13. Soil Carbon Sequestration in India

    International Nuclear Information System (INIS)

    With a large land area and diverse ecoregions, there is a considerable potential of terrestrial/soil carbon sequestration in India. Of the total land area of 329 million hectares (Mha), 297 Mha is the land area comprising 162 Mha of arable land, 69 Mha of forest and woodland, 11 Mha of permanent pasture, 8 Mha of permanent crops and 58 Mha is other land uses. The soil organic carbon (SOC) pool is estimated at 21 Pg (petagram = Pg = 1 x 1015 g billion ton) to 30-cm depth and 63 Pg to 150-cm depth. The soil inorganic carbon (SIC) pool is estimated at 196 Pg to 1-m depth. The SOC concentration in most cultivated soils is less than 5 g/kg compared with 15 to 20 g/kg in uncultivated soils. Low SOC concentration is attributed to plowing, removal of crop residue and other biosolids, and mining of soil fertility. Accelerated soil erosion by water leads to emission of 6 Tg C/y. Important strategies of soil C sequestration include restoration of degraded soils, and adoption of recommended management practices (RMPs) of agricultural and forestry soils. Potential of soil C sequestration in India is estimated at 7 to 10 Tg C/y for restoration of degraded soils and ecosystems, 5 to 7 Tg C/y for erosion control, 6 to 7 Tg C/y for adoption of RMPs on agricultural soils, and 22 to 26 Tg C/y for secondary carbonates. Thus, total potential of soil C sequestration is 39 to 49 (44± 5) Tg C/y

  14. Carbon sequestration via wood burial

    OpenAIRE

    Zeng Ning

    2008-01-01

    Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux...

  15. Tropical forestry practices for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Costa, P. [Innoprise-Face Foundation Rainforest Rehabilitation Project, Lahad Datu, Sabah (Malaysia)

    1996-12-31

    Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of greenhouse gases and climate change. This chapter provides an overview of various aspects related to carbon sequestration through forestry. It describes the main concepts of carbon fixation; the trends in global environmental policy are discussed; different forestry practices are listed; and examples of existing projects are given. The paper also discusses issues related to the quantification of carbon sequestration potential of different forestry options. This section was included with the intention of specifically highlighting some problems related to commercial transactions for carbon sequestration. 92 refs., 6 figs., 2 tabs.

  16. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  17. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  18. Southeast Regional Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2006-08-30

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  19. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  20. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  1. Biochar production for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, J.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the use of agricultural biomass for biochar production and its storage in a landfill to sequester carbon. Capturing the energy from biomass that would otherwise decay, is among the many options available to mitigate the impact of the greenhouse gas (GHG) emissions associated with fossil fuel consumption. Biochar is a solid fuel which can be produced from agricultural biomass such as wheat and barley straw. This organic solid can be produced by slow pyrolysis of straw. A conceptual techno-economic model based on actual data was used to estimate the cost of producing biochar from straw in a centralized plant. The objectives of the study were to estimate the overall delivered cost of straw to the charcoal production plant; estimate the transportation costs of charcoal to the landfill site; estimate the cost of landfill; and estimate the overall cost of carbon sequestration through a charcoal landfill. According to preliminary results, the cost of carbon sequestration through this pathway is greater than $50 per tonne of carbon dioxide.

  2. Mechanisms of Soil Carbon Sequestration

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  4. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct

  5. Carbon sequestration via wood burial

    Directory of Open Access Journals (Sweden)

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  6. Carbon sequestration and eruption hazards

    Science.gov (United States)

    Zhang, Y.

    2007-12-01

    In order to reduce the buildup of carbon dioxide in the atmosphere, proposals have been made to sequestrate carbon in ocean, or in coal mines and other underground formations. High gas concentration in ocean or underground formations has to potential to power gas-driven eruptions. In this presentation, possible eruption hazards are explored. Whenever carbon dioxide is sequestrated in the form of carbon dioxide gas, or dissolved and/or absorbed carbon dioxide, it is necessary to exercise caution to avoid gas-driven eruption hazard. It is long known that explosive volcanic eruptions are driven by H2O gas in magma. Lake eruptions powered by dissolved CO2 in lake bottom water were discovered in the 1980's (Kling et al., 1987; Zhang, 1996). Gas-driven ocean eruptions with mechanism similar to lake eruptions have been hypothesized (Zhang, 2003; Zhang and Kling, 2006) although not confirmed. Mud volcanos are commonly thought to be driven by methane-rich fluids in sediment (Milkov, 2000). Recently, Zhang et al. (2007) have proposed that coal outbursts in underground coal mines are driven by dissolved high CO2 concentration in coal, causing coal fragmentation and outburst. That is, coal outbursts may be regarded as a new type of gas-driven eruptions. Therefore, high concentrations of free gas or dissolved/absorbed gas may power eruptions of magma, lake water, ocean water, sediment, and coal. Gas- driven volcanic, lake and ocean eruptions are due to volume expansion from bubble growth, whereas gas-driven coal and sediment eruptions are due to high gas-pressure, leading to fragmentation of coal and sediment. (In explosive volcanism, magma fragmentation is also a critical point.) The threshold conditions for many of these eruptions are not known yet. In planning large (industrial) scale injection of CO2 into a natural reservoir, it is important to know the eruption threshold and design the injection scheme accordingly. More safe sequestration in terms of eruption hazards would

  7. Method for carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  8. Outcome-based Carbon Sequestration Resource Assessment

    Science.gov (United States)

    Sundquist, E. T.; Jain, A. K.

    2015-12-01

    Opportunities for carbon sequestration are an important consideration in developing policies to manage the mass balance of atmospheric carbon dioxide (CO2). Assessments of potential carbon sequestration, like other resource assessments, should be widely accepted within the scientific community and broadly applicable to public needs over a range of spatial and temporal scales. The essential public concern regarding all forms of carbon sequestration is their effectiveness in offsetting CO2 emissions. But the diverse forms and mechanisms of potential sequestration are reflected in diverse assessment methodologies that are very difficult for decision-makers to compare and apply to comprehensive carbon management. For example, assessments of potential geologic sequestration are focused on total capacities derived from probabilistic analyses of rock strata, while assessments of potential biologic sequestration are focused on annual rates calculated using biogeochemical models. Non-specialists cannot readily compare and apply such dissimilar estimates of carbon storage. To address these problems, assessment methodologies should not only tabulate rates and capacities of carbon storage, but also enable comparison of the time-dependent effects of various sequestration activities on the mitigation of increasing atmospheric CO2. This outcome-based approach requires consideration of the sustainability of the assessed carbon storage, as well as the response of carbon-cycle feedbacks. Global models can be used to compare atmospheric CO2 trajectories implied by alternative global sequestration strategies, but such simulations may not be accessible or useful in many decision settings. Simplified assessment metrics, such as ratios using impulse response functions, show some promise in providing comparisons of CO2 mitigation that are broadly useful while minimizing sensitivity to differences in global models and emissions scenarios. Continued improvements will require close

  9. Carbon sequestration research and development

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  10. Shallow Carbon Sequestration Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  11. Federal Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold W. [Univ. of Utah, Salt Lake City, UT (United States)

    2011-04-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  12. Technological Development in Carbon Sequestration at Petrobras

    Energy Technology Data Exchange (ETDEWEB)

    Castello Branco, R.; Vazquez Sebastian, G.; Murce, T.; Cunha, P.; Dino, R.; Sartori Santarosa, C.

    2007-07-01

    Petrobras defined, in its mission, the intention to act in a safe and profitable way, with social and environmental responsibility. In its vision, the company decided to be an oil and energy company, taking into account climate change mitigation. These changes were partially caused, without the company's knowledge, for many years, by the burning of fossil fuels. Among many technologies available for this mitigation, carbon sequestration is the one that, in a short space of time, can avoid the collapse of earth's climate. In order to meet this carbon sequestration challenge, there has been established, at CENPES, three strategies for its technological development: (i) establishment of a Systemic Project for Carbon Sequestration within the scope of the Environmental Technology Program - PROAMB; (ii) creation of a Group of Carbon Sequestration Technologies for Climate Change Mitigation - formation of team and qualification program, which includes the realization of the International Seminar on Carbon Sequestration and Climate Change at Petrobras in October 2006; and (iii) Implementation of the Technological Network of Technologies for Climate Change Mitigation. (auth)

  13. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  14. Developing Carbon Sequestration Forestry for Mitigating Climate Change: Practice and Management of Carbon Sequestration Forestry in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By elaborating the functions and effects of forestry in mitigating climate change, introducing the concepts and significance of forest carbon sink, forestry carbon sequestration, and carbon sequestration forestry, and summarizing the practices of carbon sequestration forestry in China, the paper came up with the outline for strengthening the management of carbon sequestration forestry, i.e. implementing the Climate Change Forestry Action Plan, reinforcing the accounting and monitoring of national forest car...

  15. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  16. Federal Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold

    2011-04-11

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­‐burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­‐fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  17. Natural CO2 Analogs for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Scott H. Stevens; B. Scott Tye

    2005-07-31

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  18. Impacts of crop rotations on soil organic carbon sequestration

    Science.gov (United States)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  19. SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2004-04-01

    The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential

  20. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  1. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  2. Southwest Regional Partnership on Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners

  3. Southeast Regional Carbon Sequestration Partnership (SECARB)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2005-09-30

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing

  4. Carbon sequestration in leaky reservoirs

    OpenAIRE

    Jean-Marie, Alain; MOREAUX Michel; Tidball, Mabel

    2011-01-01

    PDF file identical to the paper submitted (available online at the conference site) with authors and affiliations added. International audience We propose in this paper a model of optimal Carbon Capture and Storage in which the reservoir of sequestered carbon is leaky, and pollution eventually is released into the atmosphere. We formulate the social planner problem as an optimal control program and we describe the optimal consumption paths as a function of the initial conditions, the ph...

  5. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP)

    Energy Technology Data Exchange (ETDEWEB)

    David Ball; Judith Bradbury; Rattan Lal; Larry Wickstrom; Neeraj Gupta; Robert Burns; Bob Dahowski

    2004-04-30

    This is the first semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  6. Southwest Regional Partnership on Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2006-04-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

  7. Research on Global Carbon Emission and Sequestration

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Prof.Fang Jingyun,member of the Chinese Academy of Science,of Peking University and colleagues published an online article on Science in July,2011 introducing the findings of an international research group about the global carbon emission and sequestration which will produce significant influence on researches on climate change as well as the international climate change policies.The research project was funded by NSFC and MOST.

  8. Carbon Sequestration on Surface Mine Lands

    Energy Technology Data Exchange (ETDEWEB)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-10-02

    During this quarter a general forest monitoring program was conducted to measure treatment effects on above ground and below ground carbon C and Nitrogen (N) pools for the tree planting areas. Detailed studies to address specific questions pertaining to Carbon cycling was initiated with the development of plots to examine the influence of mycorrhizae, spoil chemical and mineralogical properties, and use of amendment on forest establishment and carbon sequestration. Efforts continued during this period to examine decomposition and heterotrophic respiration on C cycling in the reforestation plots. Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies to sequester carbon in various terrestrial ecosystems. Reclaimed surface mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. New plantings required the modification and design and installation on monitoring equipment. Maintenance and data monitoring on past and present installations are a continuing operation. The Department of Mining Engineering continued the collection of penetration resistance, penetration depth, and bulk density on both old and new treatment areas. Data processing and analysis is in process for these variables. Project scientists and graduate students continue to present results at scientific meetings, tours and field days presentations of the research areas are being conducted on a request basis.

  9. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    Energy Technology Data Exchange (ETDEWEB)

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential

  10. Dutch (organic) agriculture, carbon sequestration and energy production

    NARCIS (Netherlands)

    Burgt, van der G.J.H.M.; Staps, S.; Timmermans, B.

    2010-01-01

    Carbon sequestration in soils is often mentioned in the discussions about climate changes. In this paper the opportunities for carbon sequestration in Dutch agriculture are discussed at farm and national level. Farm internal carbon sources are already completely used in livestock farming. The effect

  11. The NatCarb geoportal: Linking distributed data from the Carbon Sequestration Regional Partnerships

    Science.gov (United States)

    Carr, T.R.; Rich, P.M.; Bartley, J.D.

    2007-01-01

    The Department of Energy (DOE) Carbon Sequestration Regional Partnerships are generating the data for a "carbon atlas" of key geospatial data (carbon sources, potential sinks, etc.) required for rapid implementation of carbon sequestration on a broad scale. The NATional CARBon Sequestration Database and Geographic Information System (NatCarb) provides Web-based, nation-wide data access. Distributed computing solutions link partnerships and other publicly accessible repositories of geological, geophysical, natural resource, infrastructure, and environmental data. Data are maintained and enhanced locally, but assembled and accessed through a single geoportal. NatCarb, as a first attempt at a national carbon cyberinfrastructure (NCCI), assembles the data required to address technical and policy challenges of carbon capture and storage. We present a path forward to design and implement a comprehensive and successful NCCI. ?? 2007 The Haworth Press, Inc. All rights reserved.

  12. Carbon dioxide sequestration in cement kiln dust through mineral carbonation.

    Science.gov (United States)

    Huntzinger, Deborah N; Gierke, John S; Kawatra, S Komar; Eisele, Timothy C; Sutter, Lawrence L

    2009-03-15

    Carbon sequestration through the formation of carbonates is a potential means to reduce CO2 emissions. Alkaline industrial solid wastes typically have high mass fractions of reactive oxides that may not require preprocessing, making them an attractive source material for mineral carbonation The degree of mineral carbonation achievable in cement kiln dust (CKD) underambienttemperatures and pressures was examined through a series of batch and column experiments. The overall extent and potential mechanisms and rate behavior of the carbonation process were assessed through a complementary set of analytical and empirical methods, including mass change, thermal analysis, and X-ray diffraction. The carbonation reactions were carried out primarily through the reaction of CO2 with Ca(OH)2, and CaCO3 was observed as the predominant carbonation product. A sequestration extent of over 60% was observed within 8 h of reaction without any modifications to the waste. Sequestration appears to follow unreacted core model theory where reaction kinetics are controlled by a first-order rate constant at early times; however, as carbonation progresses, the kinetics of the reaction are attenuated by the extent of the reaction due to diffusion control, with the extent of conversion never reaching completion. PMID:19368202

  13. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHP (SECARB)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2005-04-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first 18-months of its two year program. Work during the semiannual period (fifth and sixth project quarters) of the project (October 1, 2004-March 31, 2005) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, no changes occurred during the fifth or sixth quarters of the project. Under Task 2.0 Characterize the Region, refinements have been made to the general mapping and screening of sources and sinks. Integration and geographical information systems (GIS) mapping is ongoing. Characterization during this period was focused on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB continues to expand upon its assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has used results of a survey and focus group meeting to refine approaches that are being taken to educate and involve the public. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB has evaluated findings from work performed during the first 18-months. The focus of the project team has shifted from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team is developing an integrated approach to implementing the most promising opportunities and in setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. Milestones completed during the

  14. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2004-09-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing

  15. Evaluating the seismic risk of mineral carbon sequestration

    Science.gov (United States)

    Balcerak, Ernie

    2013-04-01

    Geologic carbon sequestration, in which carbon is captured and stored underground, has been proposed as one way to mitigate the climatic effects of carbon dioxide emissions. One method of geologic carbon sequestration is to inject carbon dioxide in aqueous solution into rocks. However, as the solution fills the pore space in the rocks, the fluid pressure on the rocks increases, potentially increasing the risk of earthquakes. Another option would be to inject carbon dioxide solutions into mafic rocks; the silicate minerals in these rocks react with the carbon dioxide, leaving solid carbonate reaction products, which decrease the amount of pore fluid.

  16. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  17. PV water pumping for carbon sequestration in dry land agriculture

    International Nuclear Information System (INIS)

    Highlights: • A novel model for carbon sequestration in dry land agriculture is developed. • We consider the water-food-energy-climate nexus to assess carbon sequestration. • Using water for carbon sequestration should be assessed critically. • Co-benefits of carbon sequestration should be included in the assessment. • Moisture feedback is part of the nexus model. - Abstract: This paper suggests a novel model for analysing carbon sequestration activities in dry land agriculture considering the water-food-energy-climate nexus. The paper is based on our on-going studies on photovoltaic water pumping (PVWP) systems for irrigation of grasslands in China. Two carbon sequestration projects are analysed in terms of their water productivity and carbon sequestration potential. It is concluded that the economic water productivity, i.e. how much water that is needed to produce an amount of grass, of grassland restoration is low and that there is a need to include several of the other co-benefits to justify the use of water for climate change mitigation. The co-benefits are illustrated in a nexus model including (1) climate change mitigation, (2) water availability, (3) downstream water impact, (4) energy security, (5) food security and (6) moisture recycling. We argue for a broad approach when analysing water for carbon sequestration. The model includes energy security and food security together with local and global water concerns. This makes analyses of dry land carbon sequestration activities more relevant and accurate. Without the nexus approach, the co-benefits of grassland restoration tend to be diminished

  18. [Seagrass ecosystems: contributions to and mechanisms of carbon sequestration].

    Science.gov (United States)

    Qiu, Guang-Long; Lin, Hsing-Juh; Li, Zong-Shan; Fan, Hang-Qing; Zhou, Hao-Lang; Liu, Guo-Hua

    2014-06-01

    The ocean's vegetated habitats, in particular seagrasses, mangroves and salt marshes, each capture and store a comparable amount of carbon per year, forming the Earth's blue carbon sinks, the most intense carbon sinks on the planet. Seagrass meadows, characterized by high primary productivity, efficient water column filtration and sediment stability, have a pronounced capacity for carbon sequestration. This is enhanced by low decomposition rates in anaerobic seagrass sediments. The carbon captured by seagrass meadows contributes significantly to the total blue carbon. At a global scale, seagrass ecosystems are carbon sink hot spots and have profound influences on the global carbon cycle. This importance combined with the many other functions of seagrass meadows places them among the most valuable ecosystems in the world. Unfortunately, seagrasses are declining globally at an alarming rate owing to anthropogenic disturbances and climate change, making them also among the most threatened ecosystems on the Earth. The role of coastal systems in carbon sequestration has received far too little attention and thus there are still many uncertainties in evaluating carbon sequestration of global seagrass meadows accurately. To better assess the carbon sequestration of global seagrass ecosystems, a number of scientific issues should be considered with high priorities: 1) more accurate measurements of seagrass coverage at national and global levels; 2) more comprehensive research into species- and location-specific carbon sequestration efficiencies; 3) in-depth exploration of the effects of human disturbance and global climate change on carbon capture and storage by seagrass ecosystems. PMID:25223044

  19. An Overview of Geologic Carbon Sequestration Potential in California

    Energy Technology Data Exchange (ETDEWEB)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  20. Carbon sequestration R&D overview

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Justine [Office of Fossil Energy, U.S. Department of Energy (United States)

    2008-07-15

    In this presentation the author discusses over the technological options for the handling of carbon. He shows the objectives and challenges of the program of carbon sequestration of the Department of Energy of the United States, as well as a table with the annual CO{sub 2} emissions in the United States; a graph with the world-wide capacity of CO{sub 2} geologic storage and a listing with the existing projects of CCS at the moment in the world. [Spanish] En esta presentacion el autor platica sobre las opciones tecnologicas para el manejo del carbono. Muestra los objetivos y retos del programa de secuestro de carbono del Departamento de Energia de los Estados Unidos, asi como una tabla con las emisiones anuales de CO{sub 2} en los Estados Unidos; un grafico con la capacidad mundial de almacenamiento de CO{sub 2} en el subsuelo y un listado con los proyectos de CCS existentes actualmente en el mundo.

  1. A spatial resolution threshold of land cover in estimating terrestrial carbon sequestration in four counties in Georgia and Alabama, USA

    Science.gov (United States)

    Zhao, S.Q.; Liu, S.; Li, Z.; Sohl, T.L.

    2010-01-01

    Changes in carbon density (i.e., carbon stock per unit area) and land cover greatly affect carbon sequestration. Previous studies have shown that land cover change detection strongly depends on spatial scale. However, the influence of the spatial resolution of land cover change information on the estimated terrestrial carbon sequestration is not known. Here, we quantified and evaluated the impact of land cover change databases at various spatial resolutions (250 m, 500 m, 1 km, 2 km, and 4 km) on the magnitude and spatial patterns of regional carbon sequestration in four counties in Georgia and Alabama using the General Ensemble biogeochemical Modeling System (GEMS). Results indicated a threshold of 1 km in the land cover change databases and in the estimated regional terrestrial carbon sequestration. Beyond this threshold, significant biases occurred in the estimation of terrestrial carbon sequestration, its interannual variability, and spatial patterns. In addition, the overriding impact of interannual climate variability on the temporal change of regional carbon sequestration was unrealistically overshadowed by the impact of land cover change beyond the threshold. The implications of these findings directly challenge current continental- to global-scale carbon modeling efforts relying on information at coarse spatial resolution without incorporating fine-scale land cover dynamics.

  2. Accelerated carbonation of brucite in mine tailings for carbon sequestration.

    Science.gov (United States)

    Harrison, Anna L; Power, Ian M; Dipple, Gregory M

    2013-01-01

    Atmospheric CO(2) is sequestered within ultramafic mine tailings via carbonation of Mg-bearing minerals. The rate of carbon sequestration at some mine sites appears to be limited by the rate of CO(2) supply. If carbonation of bulk tailings were accelerated, large mines may have the capacity to sequester millions of tonnes of CO(2) annually, offsetting mine emissions. The effect of supplying elevated partial pressures of CO(2) (pCO(2)) at 1 atm total pressure, on the carbonation rate of brucite [Mg(OH)(2)], a tailings mineral, was investigated experimentally with conditions emulating those at Mount Keith Nickel Mine (MKM), Western Australia. Brucite was carbonated to form nesquehonite [MgCO(3) · 3H(2)O] at a rate that increased linearly with pCO(2). Geochemical modeling indicated that HCO(3)(-) promoted dissolution accelerated brucite carbonation. Isotopic and aqueous chemistry data indicated that equilibrium between CO(2) in the gas and aqueous phases was not attained during carbonation, yet nesquehonite precipitation occurred at equilibrium. This implies CO(2) uptake into solution remains rate-limiting for brucite carbonation at elevated pCO(2), providing potential for further acceleration. Accelerated brucite carbonation at MKM offers the potential to offset annual mine emissions by ~22-57%. Recognition of mechanisms for brucite carbonation will guide ongoing work to accelerate Mg-silicate carbonation in tailings. PMID:22770473

  3. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

    Energy Technology Data Exchange (ETDEWEB)

    P. UNKEFER; M. EBINGER; ET AL

    2001-02-01

    Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies. A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation

  4. Water Challenges for Geologic Carbon Capture and Sequestration

    OpenAIRE

    Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utiliza...

  5. The role of carbon sequestration in a global energy future

    International Nuclear Information System (INIS)

    Governmental policies and international treaties that aim at curbing the emissions of greenhouse gases and local pollutants can be expected. These regulations will increase the competitiveness of CO2-neutral energy sources, i.e., renewables, nuclear or decarbonization of fossil fuels with CO2-sequestration. The purpose of this paper is to illustrate the potential role carbon sequestration may play if stringent carbon constraints are applied

  6. Carbon sequestration using sea water agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Platt, Joseph B. [Planetary Design Corp., Phoenix, AZ (United States)

    1998-09-01

    An innovative biomass technology is described which is being used in the Activities Implemented Jointly programme which seeks to promote climatic change mitigation and economic development through cooperation between developed and developing countries. Commercially viable halophyte farms are being created by the American Planetary Design Corporation in Mexico and India. Halophytes are salt resistant plants which can be cultivated on desert lands using sea water for irrigation. Virtually all parts of one such plant, salicornia, yields useful by-products which include seed oil rich in polyunsaturates, animal feed, protein rich flour, and particle board from the waste. These by-products contribute to the economics of a biomass crop which contributes to carbon sequestration and makes use of land which cannot support other crops. The economics can be further improved where halophyte farming is integrated with aquaculture. Sea water is first pumped into raceways that grow shrimp, then into ponds for fin fish; finally the nutrient rich waste water, which is a major concern for the aquaculture industry, is applied to the halophyte fields where it enriches the crop. (UK)

  7. Carbon sequestration potential of extensive green roofs.

    Science.gov (United States)

    Getter, Kristin L; Rowe, D Bradley; Robertson, G Philip; Cregg, Bert M; Andresen, Jeffrey A

    2009-10-01

    Two studies were conducted with the objective of quantifying the carbon storage potential of extensive green roofs. The first was performed on eight roofs in Michigan and four roofs in Maryland, ranging from 1 to 6 years in age. All 12 green roofs were composed primarily of Sedum species, and substrate depths ranged from 2.5 to 12.7 cm. Aboveground plant material was harvested in the fall of 2006. On average, these roofs stored 162 g C x m(-2) in aboveground biomass. The second study was conducted on a roof in East Lansing, MI. Twenty plots were established on 21 April 2007 with a substrate depth of 6.0 cm. In addition to a substrate only control, the other plots were sown with a single species of Sedum (S. acre, S. album, S. kamtshaticum, or S. spurium). Species and substrate depth represent typical extensive green roofs in the United States. Plant material and substrate were harvested seven times across two growing seasons. Results at the end of the second year showed that aboveground plant material storage varied by species, ranging from 64 g C x m(-2) (S. acre) to 239 g C x m(-2) (S. album), with an average of 168 g C x m(-2). Belowground biomass ranged from 37 g C x m(-2) (S. acre) to 185 g C x m(-2) (S. kamtschaticum) and averaged 107 g C x m(-2). Substrate carbon content averaged 913 g C x m(-2), with no species effect, which represents a sequestration rate of 100 g C x m(-2) over the 2 years of this study. The entire extensive green roof system sequestered 375 g C x m(-2) in above- and belowground biomass and substrate organic matter.

  8. Carbon sequestration by young Norway spruce monoculture

    Science.gov (United States)

    Pokorny, R.; Rajsnerova, P.; Kubásek, J.

    2012-04-01

    Many studies have been focused on allometry, wood-mass inventory, carbon (C) sequestration, and biomass expansion factors as the first step for the evaluation of C sinks of different plant ecosystems. To identify and quantify these terrestrial C sinks, and evaluate CO2 human-induced emissions on the other hand, information for C balance accounting (for impletion of commitment to Kyoto protocol) are currently highly needed. Temperate forest ecosystems have recently been identified as important C sink. Carbon sink might be associated with environmental changes (elevated [CO2], air temperature, N deposition etc.) and large areas of managed fast-growing young forests. Norway spruce (Pice abies L. Karst) is the dominant tree species (35%) in Central European forests. It covers 55 % of the total forested area in the Czech Republic, mostly at high altitudes. In this contribution we present C sequestration by young (30-35 year-old) Norway spruce monocultures in highland (650-700 m a.s.l., AT- mean annual temperature: 6.9 ° C; P- annual amount of precipitation: 700 mm; GL- growing season duration: 150 days) and mountain (850-900 m a.s.l.; AT of 5.5 ° C; P of 1300 mm; and GL of 120 days) areas and an effect of a different type of thinning. However, the similar stem diameter at the breast height and biomass proportions among above-ground tree organs were obtained in the both localities; the trees highly differ in their height, above-ground organ's biomass values and total above ground biomass, particularly in stem. On the total mean tree biomass needle, branch and stem biomass participated by 22 %, 24 % and 54 % in highland, and by 19 %, 23 % and 58 % in mountain area, respectively. Silvicultural management affects mainly structure, density, and tree species composition of the stand. Therefore, dendrometric parameters of a tree resulted from genotype, growth conditions and from management history as well. Low type of thinning (LT; common in highland) stimulates rather tree

  9. Plant functional traits and soil carbon sequestration in contrasting biomes.

    Science.gov (United States)

    De Deyn, Gerlinde B; Cornelissen, Johannes H C; Bardgett, Richard D

    2008-05-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its release from soil through respiration, fire and leaching. However, our mechanistic understanding of these processes is incomplete. Here, we present a mechanistic framework, based on the plant traits that drive soil carbon inputs and outputs, for understanding how alteration of vegetation composition will affect soil carbon sequestration under global changes. First, we show direct and indirect plant trait effects on soil carbon input and output through autotrophs and heterotrophs, and through modification of abiotic conditions, which need to be considered to determine the local carbon sequestration potential. Second, we explore how the composition of key plant traits and soil biota related to carbon input, release and storage prevail in different biomes across the globe, and address the biome-specific mechanisms by which plant trait composition may impact on soil carbon sequestration. We propose that a trait-based approach will help to develop strategies to preserve and promote carbon sequestration.

  10. State and Regional Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Durrant, Marie [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  11. State and Regional Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold; Durrant, Marie

    2011-03-31

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­‐three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­‐and-­‐trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  12. Soil carbon sequestration in mixed farming landscapes: Insights from the Lachlan soil carbon project

    OpenAIRE

    Pearson, Leonie J.; Crean, Jason; Badgery, Warwick; Murphy, Brian; Rawson, Andrew; Capon, Timothy; Reeson, Andrew

    2012-01-01

    The potential for soil carbon sequestration to play a significant role in meeting Australia’s greenhouse reduction targets has attracted widespread interest. Despite this interest, the economic scope for soil carbon sequestration remains poorly understood and the practical approaches that could be used to capture any opportunities have not been explored. In this paper we present preliminary results on a pilot soil carbon sequestration variable price, reverse tender auction in the mixed (wheat...

  13. Contribution of Donana wetlands to carbon sequestration.

    Directory of Open Access Journals (Sweden)

    Edward P Morris

    Full Text Available Inland and transitional aquatic systems play an important role in global carbon (C cycling. Yet, the C dynamics of wetlands and floodplains are poorly defined and field data is scarce. Air-water CO2 fluxes in the wetlands of Doñana Natural Area (SW Spain were examined by measuring alkalinity, pH and other physiochemical parameters in a range of water bodies during 2010-2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous CO2 transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of CO2 (-0.8 and 36.3 mmol(CO2 m(-2 d(-1. Fluxes in semi-permanent streams and ponds changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and -1.2 mmol(CO2 m(-2 d(-1. Overall, Doñana's water bodies were a net annual source of CO2 (5.2 mol(C m(-2 y(-1. Up-scaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous CO2 transport (13.1 Gg(C y(-1. Nevertheless, this estimate is about 6 times < local marsh net primary production, suggesting the system acts as an annual net CO2 sink. Initial indications suggest longer hydroperiods may favour autochthonous C capture by phytoplankton. Direct anthropogenic impacts have reduced the hydroperiod in Doñana and this maybe exacerbated by climate change (less rainfall and more evaporation, suggesting potential for the modification of C sequestration.

  14. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  15. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    Science.gov (United States)

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  16. Carbon sequestration in the agricultural soils of Europe

    NARCIS (Netherlands)

    Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, A.

    2004-01-01

    In this review, technical and economically viable potentials for carbon sequestration in the agricultural soils of Europe by 2008¿2012 are analysed against a business-as-usual scenario. We provide a quantitative estimation of the carbon absorption potential per hectare and the surface of agricultura

  17. Carbon Sequestration on Surface Mine Lands

    Energy Technology Data Exchange (ETDEWEB)

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    reclamation practice. In addition, experiments were integrated within the reforestation effort to address specific questions pertaining to sequestration of carbon (C) on these sites.

  18. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    Science.gov (United States)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  19. Assessment of Carbon Sequestration in German Alley Cropping Systems

    Science.gov (United States)

    Tsonkova, P. B.; Quinkenstein, A.; Böhm, C.; Freese, D.

    2012-04-01

    Alley cropping systems (ACS) are agroforestry practices in which perennial trees or shrubs are grown in wide rows and arable crops are cultivated in the alleys between the tree rows. Recently, ACS which integrate stripes of short rotation coppices into conventional agricultural sites have gained interest in Germany. These systems can be used for simultaneous production of crops and woody biomass which enables farmers to diversify the provision of market goods. Adding trees into the agricultural landscape creates additional benefits for the farmer and society also known as ecosystem services. An ecosystem service provided by land use systems is carbon sequestration. The literature indicates that ACS are able to store more carbon compared to agriculture and their implementation may lead to greater benefits for the environment and society. Moreover, carbon sequestration in ACS could be included in carbon trading schemes and farmers rewarded additionally for the provision of this ecosystem service. However, methods are required which are easy to use and provide reliable information regarding change in carbon sequestration with change of the land use practice. In this context, our aim was to develop a methodology to assess carbon sequestration benefit provided by ACS in Germany. Therefore, the change of carbon in both soil and biomass had to be considered. To predict the change in soil carbon our methodology combined the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and the soil organic carbon balance recommended by the Association of German Agricultural Investigation and Research Centers (VDLUFA). To reflect the change in biomass carbon average annual yields were adopted. The results showed that ACS established on agricultural sites can increase the carbon stored because in the new soil-plant system carbon content is higher compared to agriculture. ACS have been recommended as suitable land use systems for marginal sites, such as post-mining areas. In

  20. Barriers and Prospects of Carbon Sequestration in India.

    Science.gov (United States)

    Gupta, Anjali; Nema, Arvind K

    2014-04-01

    Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects. PMID:26563072

  1. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. PMID:26732128

  2. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    Science.gov (United States)

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  3. Carbon sequestration, optimum forest rotation and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr [Department of Economics, Bahcesehir University, Besiktas, Istanbul (Turkey); Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr [Department of Business Studies, Bahcesehir University, Besiktas, Istanbul (Turkey)

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.

  4. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  5. Genome-enabled Discovery of Carbon Sequestration Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Kalluri, Udaya C [ORNL; Yin, Tongming [ORNL; Yang, Xiaohan [ORNL; Zhang, Xinye [ORNL; Engle, Nancy L [ORNL; Ranjan, Priya [ORNL; Basu, Manojit M [ORNL; Gunter, Lee E [ORNL; Jawdy, Sara [ORNL; Martin, Madhavi Z [ORNL; Campbell, Alina S [ORNL; DiFazio, Stephen P [ORNL; Davis, John M [University of Florida; Hinchee, Maud [ORNL; Pinnacchio, Christa [U.S. Department of Energy, Joint Genome Institute; Meilan, R [Purdue University; Busov, V. [Michigan Technological University; Strauss, S [Oregon State University

    2009-01-01

    The fate of carbon below ground is likely to be a major factor determining the success of carbon sequestration strategies involving plants. Despite their importance, molecular processes controlling belowground C allocation and partitioning are poorly understood. This project is leveraging the Populus trichocarpa genome sequence to discover genes important to C sequestration in plants and soils. The focus is on the identification of genes that provide key control points for the flow and chemical transformations of carbon in roots, concentrating on genes that control the synthesis of chemical forms of carbon that result in slower turnover rates of soil organic matter (i.e., increased recalcitrance). We propose to enhance carbon allocation and partitioning to roots by 1) modifying the auxin signaling pathway, and the invertase family, which controls sucrose metabolism, and by 2) increasing root proliferation through transgenesis with genes known to control fine root proliferation (e.g., ANT), 3) increasing the production of recalcitrant C metabolites by identifying genes controlling secondary C metabolism by a major mQTL-based gene discovery effort, and 4) increasing aboveground productivity by enhancing drought tolerance to achieve maximum C sequestration. This broad, integrated approach is aimed at ultimately enhancing root biomass as well as root detritus longevity, providing the best prospects for significant enhancement of belowground C sequestration.

  6. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.

  7. Geo-Spatial Technologies for Carbon Sequestration Monitoring and Management

    Directory of Open Access Journals (Sweden)

    V. Jeyanny

    2011-01-01

    Full Text Available Problem statement: Globally, the quantification of Carbon Sequestration (CS potential of various ecosystems is a challenge. There is an urgent need for technologies that can quantify CS potential cost-efficiently in a repeated and organized manner. Approach: Remote Sensing (RS and Geographic Information System (GIS have great potential in current estimation, future prediction and management of carbon sequestration potential in terrestrial ecosystems. This review discusses the current utilization of RS and GIS technologies in CS management in various sectors. Results: Deployment of RS and GIS for CS sequestration improves accuracy, reduces costs, increases productivity, and provides current observations from a regional scale. Conclusion: This review demonstrates the synergistic role of RS and GIS technologies in improving CS management.

  8. Current Status and Development Prospect of Carbon Sequestration Forestry in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbon sequestration forestry plays an important role in climate change and global warming mitigation, and thus gains more and more attention around the world. The paper introduced the concept, the significance and the status of carbon sequestration forestry in China, discussed existing issues and put forward countermeasures and suggestions to address these issues. Finally, development prospect of carbon sequestration forestry was analyzed.

  9. 75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop

    Science.gov (United States)

    2010-06-14

    ... of Energy Efficiency and Renewable Energy Notice of the Carbon Sequestration--Geothermal Energy... the Carbon Sequestration--Geothermal Energy--Science Joint Workshop. SUMMARY: The DOE Geothermal....geothermal.energy.gov . DATES: The Carbon Sequestration--Geothermal Energy--Science Joint Workshop will...

  10. Additional carbon sequestration benefits of grassland diversity restoration

    NARCIS (Netherlands)

    De Deyn, G.B.; Shiel, R.S.; Ostle, N.J.; McNamara, N.P.; Oakley, S.; Young, I.; Freeman, C.; Fenner, N.; Quirk, H.; Bardgett, R.D.

    2011-01-01

    1. In Europe, grassland agriculture is one of the dominant land uses. A major aim of European agri-environment policy is the management of grassland for botanical diversity conservation and restoration, together with the delivery of ecosystem services including soil carbon (C) sequestration. 2. To t

  11. Additional carbon sequestration benefits of grassland diversity restoration

    NARCIS (Netherlands)

    Deyn, de G.B.; Shiel, R.S.; Ostle, N.J.; McNamara, N.P.; Oakley, S.; Young, I.; Freeman, C.; Fenner, N.; Quirk, H.; Bardgett, R.D.

    2011-01-01

    1. In Europe, grassland agriculture is one of the dominant land uses. A major aim of European agri-environment policy is the management of grassland for botanical diversity conservation and restoration, together with the delivery of ecosystem services including soil carbon (C) sequestration. 2. To t

  12. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  13. A Sustainability Initiative to Quantify Carbon Sequestration by Campus Trees

    Science.gov (United States)

    Cox, Helen M.

    2012-01-01

    Over 3,900 trees on a university campus were inventoried by an instructor-led team of geography undergraduates in order to quantify the carbon sequestration associated with biomass growth. The setting of the project is described, together with its logistics, methodology, outcomes, and benefits. This hands-on project provided a team of students…

  14. Soil Carbon Sequestration and the Greenhouse Effect (2nd Edition)

    Science.gov (United States)

    This volume is a second edition of the book “Soil Carbon Sequestration and The Greenhouse Effect”. The first edition was published in 2001 as SSSA Special Publ. #57. The present edition is an update of the concepts, processes, properties, practices and the supporting data. All chapters are new co...

  15. Cost Evaluation of CO2 Sequestration by Aqueous Mineral Carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2007-01-01

    A cost evaluation of CO2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO3) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a

  16. How strongly can forest management influence soil carbon sequestration?

    NARCIS (Netherlands)

    Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.M.S.D.L.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A.

    2007-01-01

    We reviewed the experimental evidence for long-term carbon (C) sequestration in soils as consequence of specific forest management strategies. Utilization of terrestrial C sinks alleviates the burden of countries which are committed to reducing their greenhouse gas emissions. Land-use changes such a

  17. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    Science.gov (United States)

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  18. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function

    Energy Technology Data Exchange (ETDEWEB)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration costs are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change.

  19. Impact of parameter uncertainty on carbon sequestration modeling

    Science.gov (United States)

    Bandilla, K.; Celia, M. A.

    2013-12-01

    Geologic carbon sequestration through injection of supercritical carbon dioxide (CO2) into the subsurface is one option to reduce anthropogenic CO¬2 emissions. Widespread industrial-scale deployment, on the order of giga-tonnes of CO2 injected per year, will be necessary for carbon sequestration to make a significant contribution to solving the CO2 problem. Deep saline formations are suitable targets for CO2 sequestration due to their large storage capacity, high injectivity, and favorable pressure and temperature regimes. Due to the large areal extent of saline formations, and the need to inject very large amounts of CO2, multiple sequestration operations are likely to be developed in the same formation. The injection-induced migration of both CO2 and resident formation fluids (brine) needs to be predicted to determine the feasibility of industrial-scale deployment of carbon sequestration. Due to the larger spatial scale of the domain, many of the modeling parameters (e.g., permeability) will be highly uncertain. In this presentation we discuss a sensitivity analysis of both pressure response and CO2 plume migration to variations of model parameters such as permeability, compressibility and temperature. The impact of uncertainty in the stratigraphic succession is also explored. The sensitivity analysis is conducted using a numerical vertically-integrated modeling approach. The Illinois Basin, USA is selected as the test site for this study, due to its large storage capacity and large number of stationary CO2 sources. As there is currently only one active CO2 injection operation in the Illinois Basin, a hypothetical injection scenario is used, where CO2 is injected at the locations of large CO2 emitters related to electricity generation, ethanol production and hydrocarbon refinement. The Area of Review (AoR) is chosen as the comparison metric, as it includes both the CO2 plume size and pressure response.

  20. Seagrass restoration enhances "blue carbon" sequestration in coastal waters.

    Directory of Open Access Journals (Sweden)

    Jill T Greiner

    Full Text Available Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zosteramarina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years, were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and ²¹⁰Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m⁻² yr⁻¹. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone.

  1. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.

    Science.gov (United States)

    Strand, Stuart E; Benford, Gregory

    2009-02-15

    For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean. PMID:19320149

  2. Carbon sequestration processes in tropical seagrass beds

    OpenAIRE

    Lyimo, Liberatus Dominick

    2016-01-01

    Seagrass meadows may play a substantial role in climate change mitigation as they are capable to sequester and store substantial amounts of anthropogenic carbon in plant biomass and, more importantly, in their underlying sediments. In this PhD thesis, the carbon-burial potential was assessed by quantifying the amount of organic carbon stored in different seagrass meadows, each dominated by one of the four major seagrass species in the Western Indian Ocean region. Impacts of anthropogenic dist...

  3. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    OpenAIRE

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (

  4. Saharan dust enhances carbon sequestration in the North Atlantic

    Science.gov (United States)

    Pabortsava, Katsiaryna; Lampitt, Richard; Le Moigne, Frederic; Sanders, Richard; Statham, Peter

    2016-04-01

    We present unique time-series data from sediment traps deployed at 3000 m depth in the subtropical North (NOG) and South (SOG) Atlantic oligotrophic gyres during 2007-2010. The sampling sites have similar physical properties and carbon fixation rates but different surface ocean biogeochemistry owing to enhanced input of Saharan dust in the North. NOG and SOG sites are thus ideal to investigate the effects of dust input on carbon sequestration in low-nutrient low-chlorophyll oceans. Analyses of the trap material (chemical, microscopic and stable isotope) revealed significant inter-basin differences in the downward particle flux and its composition, showing that biogeochemical differences at the surface have major effects on deep ocean sequestration scenarios. Particulate organic carbon flux in the dustier Northern gyre was twice that in the dust-poor Southern gyre. We conclude that this is a consequence of tight coupling between fertilization and ballasting due to dust deposition. We suggest that excess of micronutrient Fe from the dust increased phytoplankton biomass by stimulating di-nitrogen fixation, while dust particles caused rapid and more efficient transport to depth via ballasting. These findings present compelling direct evidence of two distinct biogeochemical provinces in the subtropical oligotrophic Atlantic not only with respect to surface nutrient biogeochemistry but also with respect to carbon sequestration.

  5. Common Scientific Challenges in Carbon Sequestration and Geothermal Energy Systems

    Science.gov (United States)

    LaBonte, A.; Groat, C. G.; Schwartz, L.

    2011-12-01

    In June of 2010, DOE convened a Carbon Sequestration- Geothermal Energy--Science Joint Workshop composed of academic, industry, and government experts. Participants were charged with looking beyond needs unique to either geothermal energy or carbon storage to identify common research needs. The expectation is greater collaboration in the identified common research areas will accelerate understanding of scientific processes critical to scaling up Carbon Sequestration and Geothermal Energy Systems. The major topic areas of the workshop include: Assessment and Characterization, to aide preliminary screening for prospective sites at the regional scale and subsurface characterization to assess feasibility at the site scale, Reservoir Sustainability, such as understanding evolution of pore and fracture structure to determine storage or production capacity and integrity of the reservoir over its intended lifetime, Modeling, a key element to conceptualizing, predicting, and managing the effects of reservoir processes over a wide variety of temporal and spatial scales when subjected to perturbations, Monitoring, requiring improvements to sensors, and data collection and interpretation methods to track changes in the reservoir and seal properties, and Performance Assessment, as a critical component to both optimize economic aspects and minimize health and environmental risks of a project. Workshop outcomes detailing research to enable scale-up of both carbon sequestration and geothermal energy applications will be presented.

  6. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects.

    Science.gov (United States)

    Yadav, Raju R; Krishnamurthi, Kannan; Mudliar, Sandeep N; Devi, S Saravana; Naoghare, Pravin K; Bafana, Amit; Chakrabarti, Tapan

    2014-06-01

    Anthropogenic activities have substantially increased the level of greenhouse gases (GHGs) in the atmosphere and are contributing significantly to the global warming. Carbon dioxide (CO2 ) is one of the major GHGs which plays a key role in the climate change. Various approaches and methodologies are under investigation to address CO2 capture and sequestration worldwide. Carbonic anhydrase (CA) mediated CO2 sequestration is one of the promising options. Therefore, the present review elaborates recent developments in CA, its immobilization and bioreactor methodologies towards CO2 sequestration using the CA enzyme. The promises and challenges associated with the efficient utilization of CA for CO2 sequestration and scale up from flask to lab-scale bioreactor are critically discussed. Finally, the current review also recommends the possible future needs and directions to utilize CA for CO2 sequestration. PMID:24740638

  7. Agricultural influences on carbon emissions and sequestration

    OpenAIRE

    Ball, Andrew S.; Pretty, Jules N.

    2002-01-01

    This report was presented at the UK Organic Research 2002 Conference. Agricultural systems contribute to carbon emissions through several mechanisms: the direct use of fossil fuels in farm operations, the indirect use of embodied energy in inputs that are energy intensive to manufacture (e.g. fertilizers), and the cultivation of soils resulting in the loss of soil organic matter. However agriculture can also sequester carbon when organic matter accumulates in the soil or above-ground woody bi...

  8. Monopolistic Sequestration of European Carbon Emissions

    OpenAIRE

    Niko Jaakkola

    2013-01-01

    Mitigating climate change by carbon capture and storage (CCS) will require vast infrastructure investments. These investments include pipeline networks for transporting carbon dioxide (CO2) from industrial sites ('sources') to the storage sites ('sinks'). This paper considers the decentralised formation of trunk-line networks when geological storage space is exhaustible and demand is increasing. Monopolistic control of an exhaustible resource may lead to overinvestment and/or excessively earl...

  9. Optimal Carbon Sequestration Policies in Leaky Reservoirs

    OpenAIRE

    Jean-Marie, Alain; MOREAUX Michel; Tidball, Mabel

    2014-01-01

    We study in this report a model of optimal Carbon Capture and Storage in which the reservoir of sequestered carbon is leaky, and pollution eventually is released into the atmosphere. We formulate the social planner problem as an optimal control program and we describe the optimal consumption paths as a function of the initial conditions, the physical constants and the economical parameters. In particular, we show that the presence of leaks may lead to situations which do not occur otherwise, ...

  10. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    Science.gov (United States)

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  11. Technological Learning for Carbon Capture and Sequestration Technologies

    OpenAIRE

    K. Riahi; Rubin, E.S.; Taylor, M. R.; L. Schrattenholzer; Hounshell, D.

    2004-01-01

    This paper analyzes potentials of carbon capture and sequestration technologies (CCT) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCT. In order to get a reasonable guide to future technological progress in managing CO2 emissions, we review past experience in controlling sulfur dioxide (SO2) emissions from power plants. By doing so, we quantify a "learning curve" for CCT, which describes the relationship between ...

  12. Land-Use Change and Carbon Sinks: Econometric Estimation of the Carbon Sequestration Supply Function

    OpenAIRE

    Plantinga, Andrew J.; Robert N. Stavins; Ruben N. Lubowski

    2005-01-01

    When and if the United States chooses to implement a greenhouse gas reduction program, it will be necessary to decide whether carbon sequestration policies, such as those that promote forestation and discourage deforestation, should be part of the domestic portfolio of compliance activities. We investigate the cost of forest-based carbon sequestration. In contrast with previous approaches, we econometrically examine micro-data on revealed landowner preferences, modeling six major private land...

  13. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  14. Evaluating Soil Carbon Sequestration in Central Iowa

    Science.gov (United States)

    Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

    2005-12-01

    The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

  15. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    Science.gov (United States)

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate. PMID:20698546

  16. Implementation of Emission Trading in Carbon Dioxide Sequestration Optimization Management

    Science.gov (United States)

    Zhang, X.; Duncan, I.

    2013-12-01

    As an effective mid- and long- term solution for large-scale mitigation of industrial CO2 emissions, CO2 capture and sequestration (CCS) has been paid more and more attention in the past decades. A general CCS management system has complex characteristics of multiple emission sources, multiple mitigation technologies, multiple sequestration sites, and multiple project periods. Trade-off exists among numerous environmental, economic, political, and technical factors, leading to varied system features. Sound decision alternatives are thus desired for provide decision supports for decision makers or managers for managing such a CCS system from capture to the final geologic storage phases. Carbon emission trading has been developed as a cost-effective tool for reducing the global greenhouse gas emissions. In this study, a carbon capture and sequestration optimization management model is proposed to address the above issues. The carbon emission trading is integrated into the model, and its impacts on the resulting management decisions are analyzed. A multi-source multi-period case study is provided to justify the applicability of the modeling approach, where uncertainties in modeling parameters are also dealt with.

  17. Sequestration of CO2 by concrete carbonation.

    Science.gov (United States)

    Galan, Isabel; Andrade, Carmen; Mora, Pedro; Sanjuan, Miguel A

    2010-04-15

    Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. The characteristics of the concrete cover should ensure alkaline protection for the steel bars but should also be able to combine CO2 to a certain depth. This work attempts to advance the knowledge of the carbon footprint of cement. As it is one of the most commonly used materials worldwide, it is very important to assess its impact on the environment. In order to quantify the capacity of cement based materials to combine CO2 by means of the reaction with hydrated phases to produce calcium carbonate, Thermogravimetry and the phenolphthalein indicator have been used to characterize several cement pastes and concretes exposed to different environments. The combined effect of the main variables involved in this process is discussed. The moisture content of the concrete seems to be the most influential parameter. PMID:20225850

  18. Optimal timing of carbon sequestration policies

    OpenAIRE

    Lafforgue, Gilles; MOREAUX Michel

    2015-01-01

    Carbon capture and storage (CCS) is one of the most promising abatement options to curb CO2 emissions of the energy sector. Usually, in models where the atmospheric carbon stock is constrained to not exceed a given ceiling and under constant average costs, it is never optimal to deploy CCS before the time at which this ceiling is reached. In this paper, we show that, when the CCS technology is submitted to decreasing returns to scale, abatement activities must begin earlier, i.e. before the c...

  19. Weathering approaches to carbon dioxide sequestration

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The aim of enhanced weathering is to capture CO2 by the carbonation of silicates, or by dissolution of these silicates during which the greenhouse gas CO2 is converted to bicarbonate in solution. Research in this field is still focused on increasing the rate of reaction, but the required additional

  20. Analysis and Comparison of Carbon Capture & Sequestration Policies

    Science.gov (United States)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the

  1. A Quantitative Investigation of CO2 Sequestration by Mineral Carbonation

    OpenAIRE

    Mohammad, Muneer; Ehsani, Mehrdad

    2015-01-01

    Anthropogenic activities have led to a substantial increase in carbon dioxide (CO2), a greenhouse gas (GHG), contributing to heightened concerns of global warming. In the last decade alone CO2 emissions increased by 2.0 ppm/yr. globally. In the year 2009, United States and China contributed up to 43.4% of global CO2 emissions. CO2 capture and sequestration have been recognized as promising solutions to mitigate CO2 emissions from fossil fuel based power plants. Typical techniques for carbon c...

  2. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    Science.gov (United States)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable

  3. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  4. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, Gail L.; Anisfeld, Shimon C.; Cahoon, Donald R.; Lynch, James C.

    2003-12-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4°S in the Indian Ocean to 55.5°N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ± 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ± 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area.

  5. Nitrogen input effectiveness on carbon sequestration in rainfed cropping system

    Science.gov (United States)

    Novara, Agata; Gristina, Luciano; Poma, Ignazio

    2016-04-01

    The combined effect of total N and C/N ratio had a large influence on the decomposition rate and consequently on potential soil organic carbon sequestration. The aim of the work was to evaluate Carbon sequestration potentiality under three mineral N fertilization levels in interaction with two cropping systems characterized by addition of N input due to leguminous species in the rotation. The study was carried out in the semiarid Mediterranean environment in a 18years long-term experiment. Is well know that in the semiarid environment the excess of N fertilization reduces biomass yield and the consequent C input. On the contrary, both N and C input determine high difference in C/N input ratio and faster organic matter mineralization. Results showed no influence of N fertilization on SOC sequestration and a reduction of SOC stock due to crop rotation due to lower C input. Crop residue quality of durum wheat-pea crop rotation characterized by a faster decomposition rate could explain the lower ability of crop rotation to sequester C in the semiarid environment.

  6. Community perceptions of carbon sequestration: insights from California

    International Nuclear Information System (INIS)

    Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.

  7. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  8. Carbon Sequestration, Economic Policies and Growth

    OpenAIRE

    Grimaud, André; Rougé, Luc

    2012-01-01

    The possibility of capturing and sequestering some fraction of the CO2 emissions arising from fossil fuel combustion, often labeled as carbon capture and storage (CCS), is drawing an increasing amount of attention in the business and academic communities. We present here a model of endogenous growth in which the use of a non-renewable resource in production yields flows of pollution whose accumulated stock negatively a¤ects welfare. A CCS technology allows, via some effort, for the partial r...

  9. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    Energy Technology Data Exchange (ETDEWEB)

    K. Lorenz; R. Lal

    2007-12-31

    This research project was aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of RMS and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. Restoration of disturbed land is followed by the application of nutrients to the soil to promote the vegetation development. Reclamation is important both for preserving the environmental quality and increasing agronomic yields. Since reclamation treatments have significant influence on the rate of soil development, a study on subplots was designed with the objectives of assessing the potential of different biosolids on soil organic C (SOC) sequestration rate, soil development, and changes in soil physical and water transmission properties. All sites are owned and maintained by American Electric Power (AEP). These sites were reclaimed by two techniques: (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover.

  10. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  11. MIDCONTINENT INTERACTIVE DIGITAL CARBON ATLAS AND RELATIONAL DATABASE (MIDCARB)

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. Carr; Scott W. White

    2003-07-01

    This annual report describes progress in the second year of the three-year project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. This project, funded by the Department of Energy, is a cooperative project that assembles a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project is providing advanced distributed computing solutions to link database servers across the five states into a single system where data is maintained at the local level but is accessed through a single Web portal and can be queried, assembled, analyzed and displayed. Each individual state has strengths in data gathering, data manipulation and data display, including GIS mapping, custom application development, web development, and database design. Sharing of expertise provides the critical mass of technical expertise to improve CO{sub 2} databases and data access in all states. This project improves the flow of data across servers in the five states and increases the amount and quality of available digital data. Data is being assembled to analyze CO{sub 2} sequestration potential from a single object (e.g., power plant or well) to a region and across geographic boundaries. The MIDCARB system is robust and capable of being updated from multiple sources on a daily basis. The MIDCARB project has developed improved online tools to provide real-time display and analysis of CO{sub 2} sequestration data. The MIDCARB project is a functional template for distributed data systems to address CO{sub 2} sequestration and other natural resource issues

  12. Carbon Dioxide Sequestration, Weathering Approaches to

    Science.gov (United States)

    Schuiling, R. D.

    The aim of enhanced weathering is to capture CO2 by the carbonation of silicates, or by dissolution of these silicates during which the greenhouse gas CO2 is converted to bicarbonate in solution. Research in this field is still focused on increasing the rate of reaction, but the required additional technologies add considerably to the cost of the process. In this entry, the focus is on the optimization of the weathering conditions, by selecting the most reactive abundantly available minerals, grinding them, and spreading the grains over land. Thereafter nature takes its course. Since its formulation in the late 1990s, more and more people realize that this simple and natural approach may well turn out to be one of the most promising and environmentally friendliest ways to counteract climate change and ocean acidification

  13. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    Energy Technology Data Exchange (ETDEWEB)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-08-02

    The April-June 2004 quarter was dedicated to the establishment of monitoring systems for all the new research areas. Hydrology and water quality monitoring continues to be conducted on all areas as does weather data pertinent to the research. Studies assessing specific questions pertaining to carbon flux has been established and the invasion of the vegetation by small mammals is being quantified. The approval of two experimental practices associated with this research by the United States Office of Surface Mining was a major accomplishment during this period of time. These experimental practices will eventually allow for tree planting on long steep slopes with loose grading systems and for the use of loose dumped spoil on mountain top removal areas with no grading in the final layer of rooting material for tree establishment.

  14. Carbon Capture and Sequestration. Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, P.; Santillo, D. [Greenpeace Research Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS (United Kingdom)

    2003-02-01

    Over the last few years, understanding of the profound implications of anthropogenically driven climate change has grown. In turn, this has fuelled research into options to mitigate likely impacts. Approaches involving the capture of carbon dioxide and its storage in geological formations, or in marine waters, have generated a raft of proposed solutions. The scale of some of these proposals is such that they will exert impacts of global significance in their own right. Proposals fall into two broad categories: (1) storage of liquid CO2 or products of reacted CO2 into intermediate/deep oceanic waters. and (2) storage of liquid CO2 into sub-seabed or terrestrial geological formations. For the most part, while the technical feasibility of these schemata has been widely explored, the same is not true of their ecological implications. In the case of deep/intermediate oceanic waters, poor baseline understanding of the associated ecosystems is a considerable impediment to any reliable predictive assessment of likely impacts of carbon dioxide storage in these systems. Disruption of marine microbiological processes and degradation of benthic ecosystems, including those with high levels of endemicity, have been identified as potentially serious impacts. Similarly, the physiology, ecology and likely responses of micro-organisms present in targeted geological formations require evaluation prior to any consideration of the use of such formations for storage of CO2. In addition, the impacts of any leakage to surface need also to be considered. Accordingly this paper explores current uncertainties and detailed informational needs related to ocean and geological storage of fossil fuel-derived CO2. Particular emphasis is placed upon the ecological impacts of these proposals in relation to existing and emergent understanding of deep water/soil ecosystems and the indeterminacies attached to this understanding.

  15. Carbon sequestration in sinks. An overview of potential and costs

    International Nuclear Information System (INIS)

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  16. Trace Metal Source Terms in Carbon Sequestration Environments

    Energy Technology Data Exchange (ETDEWEB)

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  17. Carbon sequestration in sinks. An overview of potential and costs

    Energy Technology Data Exchange (ETDEWEB)

    Kolshus, Hans H.

    2001-07-01

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  18. SITE CHARACTERIZATION AND SELECTION GUIDELINES FOR GEOLOGICAL CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, S J

    2007-08-31

    Carbon capture and sequestration (CCS) is a key technology pathway to substantial reduction of greenhouse gas emissions for the state of California and the western region. Current estimates suggest that the sequestration resource of the state is large, and could safely and effectively accept all of the emissions from large CO2 point sources for many decades and store them indefinitely. This process requires suitable sites to sequester large volumes of CO2 for long periods of time. Site characterization is the first step in this process, and the state will ultimately face regulatory, legal, and technical questions as commercial CCS projects develop and commence operations. The most important aspects of site characterizations are injectivity, capacity, and effectiveness. A site can accept at a high rate a large volume of CO2 and store it for a long time is likely to serve as a good site for geological carbon sequestration. At present, there are many conventional technologies and approaches that can be used to estimate, quantify, calculate, and assess the viability of a sequestration site. Any regulatory framework would need to rely on conventional, easily executed, repeatable methods to inform the site selection and permitting process. The most important targets for long-term storage are deep saline formations and depleted oil and gas fields. The primary CO2 storage mechanisms for these targets are well understood enough to plan operations and simulate injection and long-term fate of CO2. There is also a strong understanding of potential geological and engineering hazards for CCS. These hazards are potential pathway to CO2 leakage, which could conceivably result in negative consequences to health and the environmental. The risks of these effects are difficult to quantify; however, the hazards themselves are sufficiently well understood to identify, delineate, and manage those risks effectively. The primary hazard elements are wells and faults, but may include other

  19. Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. Carr; Scott W. White

    2002-06-01

    This annual report describes progress of the project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. This project, funded by the Department of Energy, is a cooperative project that assembles a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project is working to provide advanced distributed computing solutions to link database servers across the five states into a single system where data is maintained at the local level but is accessed through a single Web portal and can be queried, assembled, analyzed and displayed. Each individual state has strengths in data gathering, data manipulation and data display, including GIS mapping, custom application development, web development, and database design. Sharing of expertise provides the critical mass of technical expertise to improve CO{sub 2} databases and data access in all states. This project improves the flow of data across servers in the five states and increases the amount and quality of available digital data. The MIDCARB project is developing improved online tools to provide real-time display and analyze CO{sub 2} sequestration data. The system links together data from sources, sinks and transportation within a spatial database that can be queried online. Visualization of high quality and current data can assist decision makers by providing access to common sets of high quality data in a consistent manner.

  20. Soil carbon sequestration via cover crops- A meta-analysis

    Science.gov (United States)

    Poeplau, Christopher; Don, Axel

    2014-05-01

    Agricultural soils are depleted in soil organic carbon (SOC) and have thus a huge potential to sequester SOC. This can primarily be achieved by increasing carbon inputs into the soil. Replacing winter fallows by cover crop cultivation for green manure has many benefits for the soil and forms an additional carbon input. An increase in carbon concentration has been reported in several studies worldwide. However, the effect on SOC stocks, as well as the influence of environmental parameters and management on SOC dynamics is not known. We therefore conducted a meta-analysis to investigate those issues. A total of 33 studies, comprising 47 sites and 147 plots were compiled. A pedotransfer function was used to estimate bulk densities and calculate SOC stocks. SOC stock change was found to be a linear function of time since introduction, with an annual sequestration rate of 0.32 Mg C ha-1 yr-1. Since no saturation was visible in the observations, we used the model RothC to estimate a new steady state level and the resulting total SOC stock change for an artificial "average cropland". The total average SOC stock change with an annual input of 1.87 Mg C ha-1 yr-1 was 16.76 Mg C ha-1 for the average soil depth of 22 cm. We estimated a potential global SOC sequestration of 0.12±0.03 Pg C yr-1, which would compensate for 8 % of the direct annual greenhouse gas emissions from agriculture.

  1. Risk Assessment of Carbon Sequestration for Terrestrial Ecosystems in China

    Institute of Scientific and Technical Information of China (English)

    Shi Xiaoli; Wu Shaohong; Dai Erfu; Zhao Dongsheng; Pan mao

    2012-01-01

    Climate change will alter the capacity of carbon seques- tration, and the risk assessment of carbon sequestration for terres- trial ecosystems will be helpful to the decision-making for climate change countermeasures and international climate negotiations. Based on the net ecosystem productivity of terrestrial ecosystems simulated by Atmosphere Vegetation Integrated Model, each grid of the risk criterion was set by time series trend analysis. Then the risks of carbon sequestration of terrestrial ecosystems were investigated. The results show that, in the IPCCSRES-B2 climate scenario, climate change will bring risks of carbon sequestra- tion, and the high-risk level will dominate terrestrial ecosystems. The risk would expand with the increase of warming degree. By the end of the long-term of this century, about 60% of the whole country will face the risk; Northwest China, mountainous areas in Northeast China, middle and lower reaches plain of Yangtze River areas, Southwest China and Southeast China tend to be extremely vulnerable. Risk levels in most regions are likely to grow with the increase of warming degree, and this increase will mainly occur during the near-term to mid-term. Northwest China will become an area of high risks, and deciduous coniferous forests, temperate mixed forests and desert grassland tend to be extremely vulnerable.

  2. Carbon Sequestration to Mitigate Climate Change

    Science.gov (United States)

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  3. On leakage and seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-07-18

    Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by

  4. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  5. Quercus ilex L. carbon sequestration capability related to shrub size.

    Science.gov (United States)

    Gratani, Loretta; Catoni, Rosangela; Varone, Laura

    2011-07-01

    CO(2) sequestration capacity of Quercus ilex L., an evergreen species developing in shrub and forest communities widely distributed in the Mediterranean Basin, was analysed. Experiments were carried out in the period of January to December 2009 on 20 shrubs of different size, growing at the Botanical Garden of Rome. At shrub level, the largest differences concern total photosynthetic leaf surface area per shrub and shrub volume. Shrubs structure significantly contribute to reduce total irradiance and air temperature below the canopy. Leaf mass per area is higher in sun leaves than in shade ones (20 ± 1 and 12 ± 2 mg cm( -2), respectively). Sun leaves are also characterised by the highest leaf thickness (78% higher in sun than in shade leaves), the spongy parenchyma thickness (71% higher in sun than in shade leaves) and the highest adaxial cuticle thickness (7.2 ± 1.2 and 4.7 ± 0.5 μm, respectively). Net photosynthetic rates (P (N)) of sun and shade leaves are the highest in spring, and shade leaves contribute 6% to the whole shrub P (N). Q. ilex CO(2) sequestration depends on shrub size. In particular, the CO(2) sequestration per shrub was 0.20 ± 0.02 Kg CO(2) year( -1) in small shrubs, and it was 75% and 98% lower than in medium and large ones. The highest CO(2) sequestration is measured in spring, decreasing 77% during drought. Q. ilex may play a significant role in mitigating carbon dioxide concentration and lowering air and soil temperature in areas around the Mediterranean Basin.

  6. Terrestrial Biological Carbon Sequestration: Science for Enhancement and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Post, W. M.; Amonette, James E.; Birdsey, Richard A.; Garten, Jr, C. T.; Izaurralde, Roberto C.; Jardine, Philip M.; Jastrow, Julie D.; Lal, Rattan; Marland , G.; McCarl, Bruce A.; Thomson, Allison M.; West, T. O.; Wullschleger, Stan D.; Metting, F. Blaine

    2009-12-01

    Fossil-fuel combustion and land-use change have elevated atmospheric CO2 concentrations from 280 ppmv at the beginning of the industrial era to more than 381 ppmv in 2006. Carbon dioxide emissions from fossil fuels and cement rose 71% during 1970–2000 to a rate of 7.0 PgC/y (1). Canadell et al. (2) estimated that CO2 emissions rose at a rate at 1.3% per year during 1990–1999, but since 2000 it has been growing at 3.3% per year. Emissions reached 8.4 PgC/y in 2006. It is likely that the current 2-ppm annual increase will accelerate as the global economy expands, increasing the risk of climate system impacts. There is good agreement that photosynthetic CO2 capture from the atmosphere and storage of the C in above- and belowground biomass and in soil organic and inorganic forms could be exploited for safe and affordable greenhouse gas (GHG) mitigation (3). Nevertheless, C sequestration in the terrestrial biosphere has been a source of contention before and since the drafting of the Kyoto Protocol in 1997. Concerns have been raised that C sequestration in the biosphere is not permanent, that it is difficult to measure and monitor, that there would be “carbon leakage” outside of the mitigation activity, and that any attention paid to environmental sequestration would be a distraction from the central issue of reducing GHG emissions from energy production and use. A decade after drafting the Kyoto Protocol, it is clear that international accord and success in reducing emissions from the energy system are not coming easily and concerns about climate change are growing. It is time to re-evaluate all available options that might not be permanent yet have the potential to buy time, bridging to a future when new energy system technologies and a transformed energy infrastructure can fully address the climate challenge. Terrestrial sequestration is one option large enough to make a contribution in the coming decades using proven land-management methods and with the

  7. A Quantitative Investigation of CO2 Sequestration by Mineral Carbonation

    CERN Document Server

    Mohammad, Muneer

    2015-01-01

    Anthropogenic activities have led to a substantial increase in carbon dioxide (CO2), a greenhouse gas (GHG), contributing to heightened concerns of global warming. In the last decade alone CO2 emissions increased by 2.0 ppm/yr. globally. In the year 2009, United States and China contributed up to 43.4% of global CO2 emissions. CO2 capture and sequestration have been recognized as promising solutions to mitigate CO2 emissions from fossil fuel based power plants. Typical techniques for carbon capture include post-combustion capture, pre-combustion capture and oxy-combustion capture, which are under active research globally. Mineral carbonation has been investigated as a suitable technique for long term storage of CO2. Sequestration is a highly energy intensive process and the additional energy is typically supplied by the power plant itself. This leads to a reduction in net amount of CO2 captured because of extra CO2 emitted. This paper presents a quantitative analysis of the energy consumption during sequestra...

  8. Biogeologic Carbon Sequestration - a Cost-Effective Proposal

    Science.gov (United States)

    Shaw, G. H.; Kuhns, R.

    2009-05-01

    Carbon sequestration has been proposed as a strategy for reducing the impact of carbon dioxide emissions from burning of fossil fuels. There are two main routes: 1) capture CO2 emissions from power plants or other large point sources followed by some form of "burial/sequestration", and 2) extraction of CO2 from the ambient atmosphere (involving substantial concentration relative to atmospheric levels) also followed by burial/sequestration. In either case the goal is to achieve significant long-term isolation of CO2 at an economically sustainable price, perhaps measured by some "market price" for CO2, such as the European carbon futures market, where the price is now (2/3/09) about 14-15/tonne of CO2. The second approach, removal of CO2 from the atmosphere, has the potential benefit of reversing the previous buildup of atmospheric CO2, and perhaps even providing a means to "adjust" terrestrial climate by regulating atmospheric CO2 concentrations. For the present, ideas of planetary "geo-engineering" are not as popular as reducing the impact of continued CO2 emissions. In fact, the energy and capital costs of extraction from a dilute atmosphere appear to make this approach uneconomical. Proposals to fertilize the open ocean suffer from concerns about long term ecosystem effects, to say nothing of a lack of verifiability. There is, however, an approach using biological systems that can not only extract significant amounts of CO2, but can do so cost-effectively. Lakes are known in which primary productivity approaches or exceeds 1gm C/cm2-yr. This equates to removal of 35,000 tonnes of CO2 per km2 per year, with a "market value" of about 500,000/yr. Such productivity only occurs under highly eutrophic conditions, and presumably requires significant nutrient additions. As such it would be unthinkable to pursue this technique on a large scale in extant lakes. If, however, it is possible to produce one or more large artificial lakes under acceptable conditions it is

  9. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration.

    Science.gov (United States)

    Xiong, Xiong; Grunwald, Sabine; Myers, D Brenton; Ross, C Wade; Harris, Willie G; Comerford, Nicolas B

    2014-09-15

    Historically, Florida soils stored the largest amount of soil organic carbon (SOC) among the conterminous U.S. states (2.26 Pg). This region experienced rapid land use/land cover (LULC) shifts and climate change in the past decades. The effects of these changes on SOC sequestration are unknown. The objectives of this study were to 1) investigate the change in SOC stocks in Florida to determine if soils have acted as a net sink or net source for carbon (C) over the past four decades and 2) identify the concomitant effects of LULC, LULC change, and climate on the SOC change. A total of 1080 sites were sampled in the topsoil (0-20 cm) between 2008 and 2009 representing the current SOC stocks, 194 of which were selected to collocate with historical sites (n = 1251) from the Florida Soil Characterization Database (1965-1996) for direct comparison. Results show that SOC stocks significantly differed among LULC classes--sugarcane and wetland contained the highest SOC, followed by improved pasture, urban, mesic upland forest, rangeland, and pineland while crop, citrus and xeric upland forest remained the lowest. The surface 20 cm soils acted as a net sink for C with the median SOC significantly increasing from 2.69 to 3.40 kg m(-2) over the past decades. The SOC sequestration rate was LULC dependent and controlled by climate factors interacting with LULC. Higher temperature tended to accelerate SOC accumulation, while higher precipitation reduced the SOC sequestration rate. Land use/land cover change observed over the past four decades also favored the C sequestration in soils due to the increase in the C-rich wetland area by ~140% and decrease in the C-poor agricultural area by ~20%. Soils are likely to provide a substantial soil C sink considering the climate and LULC projections for this region. PMID:25010945

  10. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration.

    Science.gov (United States)

    Xiong, Xiong; Grunwald, Sabine; Myers, D Brenton; Ross, C Wade; Harris, Willie G; Comerford, Nicolas B

    2014-09-15

    Historically, Florida soils stored the largest amount of soil organic carbon (SOC) among the conterminous U.S. states (2.26 Pg). This region experienced rapid land use/land cover (LULC) shifts and climate change in the past decades. The effects of these changes on SOC sequestration are unknown. The objectives of this study were to 1) investigate the change in SOC stocks in Florida to determine if soils have acted as a net sink or net source for carbon (C) over the past four decades and 2) identify the concomitant effects of LULC, LULC change, and climate on the SOC change. A total of 1080 sites were sampled in the topsoil (0-20 cm) between 2008 and 2009 representing the current SOC stocks, 194 of which were selected to collocate with historical sites (n = 1251) from the Florida Soil Characterization Database (1965-1996) for direct comparison. Results show that SOC stocks significantly differed among LULC classes--sugarcane and wetland contained the highest SOC, followed by improved pasture, urban, mesic upland forest, rangeland, and pineland while crop, citrus and xeric upland forest remained the lowest. The surface 20 cm soils acted as a net sink for C with the median SOC significantly increasing from 2.69 to 3.40 kg m(-2) over the past decades. The SOC sequestration rate was LULC dependent and controlled by climate factors interacting with LULC. Higher temperature tended to accelerate SOC accumulation, while higher precipitation reduced the SOC sequestration rate. Land use/land cover change observed over the past four decades also favored the C sequestration in soils due to the increase in the C-rich wetland area by ~140% and decrease in the C-poor agricultural area by ~20%. Soils are likely to provide a substantial soil C sink considering the climate and LULC projections for this region.

  11. Sequestration of carbon dioxide (CO2) using red mud.

    Science.gov (United States)

    Yadav, Vishwajeet S; Prasad, Murari; Khan, Jeeshan; Amritphale, S S; Singh, M; Raju, C B

    2010-04-15

    Red mud, an aluminium industry hazardous waste, has been reported to be an inexpensive and effective adsorbent. In the present work applicability of red mud for the sequestration of green house gases with reference to carbon dioxide has been studied. Red mud sample was separated into three different size fractions (RM I, RM II, RM III) of varying densities (1.5-2.2 g cm(-3)). Carbonation of each fraction of red mud was carried out separately at room temperature using a stainless steel reaction chamber at a fixed pressure of 3.5 bar. Effects of reaction time (0.5-12 h) and liquid to solid ratio (0.2-0.6) were studied for carbonation of red mud. Different instrumental techniques such as X-ray diffraction, FTIR and scanning electron microscope (SEM) were used to ascertain the different mineral phases before and after carbonation of each fraction of red mud. Characterization studies revealed the presence of boehmite, cancrinite, chantalite, hematite, gibbsite, anatase, rutile and quartz. Calcium bearing mineral phases (cancrinite and chantalite) were found responsible for carbonation of red mud. Maximum carbonation was observed for the fraction RM II having higher concentration of cancrinite. The carbonation capacity is evaluated to be 5.3 g of CO(2)/100 g of RM II. PMID:20036053

  12. Ocean carbon sequestration by fertilization: An integrated bioeochemical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, N.; Sarmiento, J.L.; Gnandesikan, A.

    2005-05-31

    Under this grant, the authors investigated a range of issues associated with the proposal to fertilize the ocean with nutrients (such as iron) in order to increase the export of organic matter from the ocean's near surface waters and consequently increase the uptake of CO{sub 2} from the atmosphere. There are several critical scientific questions that have the potential to be make-or-break issues for this proposed carbon sequestration mechanism: (1) If iron is added to the ocean, will export of organic carbon from the surface actually occur? Clearly, if no export occurs, then there will be no sequestration. (2) if iron fertilization does lead to export of organic carbon from the surface of the ocean, how much CO{sub 2} will actually be removed from the atmosphere? Even if carbon is removed from the surface of the ocean, this does not guarantee that there will be significant removal of CO{sub 2} from the atmosphere, since the CO{sub 2} may be supplied by a realignment of dissolved inorganic carbon within the ocean. (3) What is the time scale of any sequestration that occurs? If sequestered CO{sub 2} returns to the atmosphere on a relatively short time scale, iron fertilization will not contribute significantly to slowing the growth of atmospheric CO{sub 2}. (4) Can the magnitude of sequestration be verified? If verification is extremely difficult or impossible, this option is likely to be viewed less favorably. (5) What unintended consequences might there be from fertilizing the ocean with iron? If these are severe enough, they will be a significant impact on policy decisions. Most research on carbon sequestration by fertilization has focused on the first of these issues. Although a number of in situ fertilization experiments have successfully demonstrated that the addition of iron leads to a dramatic increase in ocean productivity, the question of whether this results in enhanced export remains an open one. The primary focus of the research was on the

  13. Southwest Regional Partnership on Carbon Sequestration Phase II

    Energy Technology Data Exchange (ETDEWEB)

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the

  14. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-05-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as a major sink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied under different plantation forest ecosystems comprising of eight different tree species: Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnusnitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57±48.99tha-1 and below ground (42.47±10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera(118.37±1.49 tha-1 and minimum (36.50±9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86±10.34 tha-1 in Alnus nitida, and minimum (170.83±20.60 tha-1 in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79±2.0 tha-1. Carbon sequestration (7.91±3.4 tha-1 and CO2 mitigation potential (29.09±12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions for sustainable management of fragile hilly ecosystem.

  15. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-07-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as amajorsink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied underdifferent plantation forest ecosystems comprising of eight different tree species viz. Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnus nitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57 ą 48.99 tha-1 and below ground (42.47 ą 10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera (118.37 ą 1.49 tha-1 and minimum (36.50 ą 9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86ą 10.34 tha-1 in Alnus nitida, and minimum (170.83ą 20.60 tha-1in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79 ą 2.0 tha-1. Carbon sequestration (7.91ą 3.4 tha-1 and CO2 mitigation potential (29.09 ą 12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions forsustainable management of fragile hilly ecosystem. 

  16. Agricultural Encroachment: Implications for Carbon Sequestration in Tropical African Wetlands

    Science.gov (United States)

    Jones, M. B.; Saunders, M.; Kansiime, F.

    2013-12-01

    Tropical wetlands have been shown to exhibit high rates of net primary productivity and may therefore play an important role in global climate change mitigation through carbon assimilation and sequestration. Many permanently flooded areas of tropical East Africa are dominated by the highly productive C4 emergent macrophyte sedge, Cyperus papyrus L. (papyrus). However, increasing population densities around wetland margins in East Africa are reducing the extent of papyrus coverage due to the planting of subsistence crops such as Cocoyam (Colocasia esculenta). We have assessed the impact of this land use change on the carbon cycle in theis wetland environment. Eddy covariance techniques were used, on a campaign basis, to measure fluxes of carbon dioxide over both papyrus and cocoyam dominated wetlands located on the Ugandan shore of Lake Victoria. The integration of flux data over the annual cycle shows that papyrus wetlands have the potential to act as a sink for significant amounts of carbon, in the region of 10 t C ha-1 yr-1. The cocoyam vegetation was found to assimilate ~7 t C ha-1 yr-1 but when carbon exports from crop biomass removal were taken into account these wetlands represent a significant net loss of carbon of similar magnitude. The development of sustainable wetland management strategies are therefore required in order to promote the dual wetland function of crop production and the mitigation of greenhouse gas emissions especially under future climate change scenarios.

  17. Sediment transport and carbon sequestration characteristics along mangrove fringed coasts

    Institute of Scientific and Technical Information of China (English)

    TU Qiang; YANG Shengyun; ZHOU Qiulin; YANG Juan

    2015-01-01

    Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the vegetation boun-daries. To detect the effects of mangrove forests on sediment transportation and organic carbon sequestration, the granulometric and organic carbon characteristics of mangrove sediments were investigated from three vegetation zones of four typical mangrove habitats on the Leizhou Peninsula coast. Based on our results, sediment transport was often“environmentally sensitive”to the vegetation friction. A transition of the sediment transport mode from the mudflat zone to the interior/fringe zone was often detected from the cumulative frequency curve. The vegetation cover also assists the trapping of material, resulting in a significantly higher concentration of organic carbon in the interior surface sediments. However, the graphic parameters of core sediments reflected a highly temporal variability due to the sedimentation process at different locations. The sediment texture ranges widely from sand to mud, altho-ugh the sedimentary environments are restricted within the same energy level along the fluvial-marine transition zone. Based on the PCA results, the large variation was mainly attributed to either the mean grain size features or the organic carbon features. A high correlation between the depth andδ13C value also indicated an increasing storage of mangrove-derived organic carbon with time.

  18. Substantial role of macroalgae in marine carbon sequestration

    Science.gov (United States)

    Krause-Jensen, Dorte; Duarte, Carlos M.

    2016-10-01

    Vegetated coastal habitats have been identified as important carbon sinks. In contrast to angiosperm-based habitats such as seagrass meadows, salt marshes and mangroves, marine macroalgae have largely been excluded from discussions of marine carbon sinks. Macroalgae are the dominant primary producers in the coastal zone, but they typically do not grow in habitats that are considered to accumulate large stocks of organic carbon. However, the presence of macroalgal carbon in the deep sea and sediments, where it is effectively sequestered from the atmosphere, has been reported. A synthesis of these data suggests that macroalgae could represent an important source of the carbon sequestered in marine sediments and the deep ocean. We propose two main modes for the transport of macroalgae to the deep ocean and sediments: macroalgal material drifting through submarine canyons, and the sinking of negatively buoyant macroalgal detritus. A rough estimate suggests that macroalgae could sequester about 173 TgC yr-1 (with a range of 61-268 TgC yr-1) globally. About 90% of this sequestration occurs through export to the deep sea, and the rest through burial in coastal sediments. This estimate exceeds that for carbon sequestered in angiosperm-based coastal habitats.

  19. Carbon sequestration from fossil fuels and biomass - long-term potentials

    International Nuclear Information System (INIS)

    Carbon sequestration and disposal from fossil fuels combustion is gaining attraction as a means to deal with climate change. However, CO2 emissions from biomass combustion can also be sequestered. If that is done, biomass energy with carbon sequestration (BECS) would become a net negative carbon sink that would at the same time deliver carbon free energy (heat, electricity or hydrogen) to society. Here we estimate some global technoeconomical potentials for BECS, and we also present some rough economics of electricity generation with carbon sequestration

  20. Predicting and Evaluating the Effectiveness of Ocean Carbon Sequestration by Direct Injection

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K; Herzog, H J; Wickett, M E

    2001-04-24

    Direct injection of CO{sub 2} into the ocean is a potentially effective carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection and develop the appropriate analytic framework to allow us to compare the effectiveness of this strategy with other carbon management options. Here, after a brief review of direct oceanic injection, we estimate the effectiveness of ocean carbon sequestration using one dimensional and three dimensional ocean models. We discuss a new measure of effectiveness of carbon sequestration in a leaky reservoir, which we denote sequestration potential. The sequestration potential is the fraction of global warning cost avoided by sequestration in a reservoir. We show how these measures apply to permanent sequestration and sequestration in leaky reservoirs, such as the oceans, terrestrial biosphere, and some geologic formations. Under the assumptions of a constant cost of carbon emission and a 4% discount rate, injecting 900 m deep in the ocean avoids {approx}90% of the global warming cost associated with atmospheric emission; an injection 1700 m deep would avoid > 99 % of the global warming cost. Hence, for discount rates in the range commonly used by commercial enterprises, oceanic direct injection may be nearly as economically effective as permanent sequestration at avoiding global warming costs.

  1. Progress report to the Iowa Department of Natural Resources : Carbon Sequestration Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a progress report on carbon sequestration studies in progress at Neal Smith National Wildlife Refuge. The objectives of the project are to: estimate carbon...

  2. Testing carbon sequestration site monitor instruments using a controlled carbon dioxide release facility

    Science.gov (United States)

    Humphries, Seth D.; Nehrir, Amin R.; Keith, Charlie J.; Repasky, Kevin S.; Dobeck, Laura M.; Carlsten, John L.; Spangler, Lee H.

    2008-02-01

    Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide (CO2) release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.0027-2.0042 μm spectral region that contains three CO2 absorption lines and is used for aboveground atmospheric CO2 concentration measurements. The second instrument also uses a temperature tunable DFB diode laser capable of accessing the 2.0032-2.0055 μm spectral region that contains five CO2 absorption lines for underground CO2 soil gas concentration measurements. The performance of these instruments for carbon sequestration site monitoring was studied using a newly developed controlled CO2 release facility. A 0.3 ton CO2/day injection experiment was performed from 3-10 August 2007. The aboveground differential absorption instrument measured an average atmospheric CO2 concentration of 618 parts per million (ppm) over the CO2 injection site compared with an average background atmospheric CO2 concentration of 448 ppm demonstrating this instrument's capability for carbon sequestration site monitoring. The underground differential absorption instrument measured a CO2 soil gas concentration of 100,000 ppm during the CO2 injection, a factor of 25 greater than the measured background CO2 soil gas concentration of 4000 ppm demonstrating this instrument's capability for carbon sequestration site monitoring

  3. What is Carbon? Conceptualising carbon and capabilities in the context of community sequestration projects in the global South

    OpenAIRE

    Twyman, Chasca; Smith, Thomas; Arnall, Alex

    2015-01-01

    Carbon has been described as a ‘surreal commodity.’ While carbon trading, storage, sequestration, and emissions have become a part of the contemporary climate lexicon, how carbon is understood, valued, and interpreted by actors responsible for implementing carbon sequestration projects is still unclear. In this review paper, we are concerned with how carbon has come to take on a range of meanings. In particular, we appraise what is known about the situated meanings that people involved in del...

  4. Enhanced Performance Assessment System (EPAS) for carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Sun, Amy Cha-Tien; McNeish, Jerry A. (Sandia National Laboratories, Livermore, CA); Dewers, Thomas A.; Hadgu, Teklu; Jove-Colon, Carlos F.

    2010-09-01

    Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Numerous factors are important in determining the overall effectiveness of long-term geologic storage of carbon, including leakage rates, volume of storage available, and system costs. Recent efforts have been made to apply an existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage (Viswanathan et al., 2008; Stauffer et al., 2009). However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support optimization of CO{sub 2} injection and real-time site monitoring as an integral part of the system design and operation. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). Under the support of Laboratory-Directed Research & Development (LDRD), a late-start LDRD project was initiated in June of Fiscal Year 2010 to explore the concept of an enhanced performance assessment system (EPAS) for carbon sequestration and storage. In spite of the tight time constraints, significant progress has been made on the project: (1) Following the general PA methodology, a preliminary Feature, Event, and Process (FEP) analysis was performed for

  5. Carbon footprint of milk from sheep farming systems in northern Spain including soil carbon sequestration in grasslands

    DEFF Research Database (Denmark)

    Batalla, Inma M.; Knudsen, Marie Trydeman; Mogensen, Lisbeth;

    2015-01-01

    calculations. In this study, the carbon footprint of sheep milk was estimated from 12 farms in Northern Spain. Before taken into account contribution from soil carbon sequestration in the calculation, the carbon footprint values varied from 2.0 to 5.2 kg CO2 eq. per kg Fat and Protein Corrected Milk (FPCM......The link between climate change and livestock production has made carbon footprint based on life cycle assessment a world-wide indicator to assess and communicate the amount of greenhouse gases emitted per unit of product. Nevertheless, the majority of studies have not included soil carbon...... sequestration in the carbon footprint calculations. Especially in grasslands, soil carbon sequestration might be a potential sink to mitigate greenhouse gas emissions in the livestock sector. However, there is no commonly accepted methodology on how to include soil carbon sequestration in carbon footprint...

  6. Biochar: a synthesis of its agronomic impact beyond carbon sequestration.

    Science.gov (United States)

    Spokas, Kurt A; Cantrell, Keri B; Novak, Jeffrey M; Archer, David W; Ippolito, James A; Collins, Harold P; Boateng, Akwasi A; Lima, Isabel M; Lamb, Marshall C; McAloon, Andrew J; Lentz, Rodrick D; Nichols, Kristine A

    2012-01-01

    Biochar has been heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity, and enter into future carbon trading markets. However, scientific and economic technicalties may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties due to the net result of production (e.g., feedstock and pyrolysis conditions) and postproduction factors (storage or activation). Therefore, biochar is not a single entity but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases after black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be key to meeting future global food production, food security, and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the conditions under which biochar can provide economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits. PMID:22751040

  7. Carbon dioxide sequestration in deep-sea basalt.

    Science.gov (United States)

    Goldberg, David S; Takahashi, Taro; Slagle, Angela L

    2008-07-22

    Developing a method for secure sequestration of anthropogenic carbon dioxide in geological formations is one of our most pressing global scientific problems. Injection into deep-sea basalt formations provides unique and significant advantages over other potential geological storage options, including (i) vast reservoir capacities sufficient to accommodate centuries-long U.S. production of fossil fuel CO2 at locations within pipeline distances to populated areas and CO2 sources along the U.S. west coast; (ii) sufficiently closed water-rock circulation pathways for the chemical reaction of CO2 with basalt to produce stable and nontoxic (Ca(2+), Mg(2+), Fe(2+))CO(3) infilling minerals, and (iii) significant risk reduction for post-injection leakage by geological, gravitational, and hydrate-trapping mechanisms. CO2 sequestration in established sediment-covered basalt aquifers on the Juan de Fuca plate offer promising locations to securely accommodate more than a century of future U.S. emissions, warranting energized scientific research, technological assessment, and economic evaluation to establish a viable pilot injection program in the future.

  8. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Zhijie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fang, Yilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-23

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  9. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Mordensky, S. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Rabjohns, K. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Colwell, F. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences

    2016-06-21

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO2 levels is a goal for many nations and carbon sequestration which traps CO2 in the Earth’s subsurface is one method to reduce atmospheric CO2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role in biogeochemistry and accordingly may determine how CO2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO2 sequestration could be most efficiently implemented.

  10. Soil sustainability as measured by carbon sequestration using carbon isotopes from crop-livestock management systems

    Science.gov (United States)

    Soil Organic Carbon (SOC) is an integral part of maintaining and measuring soil sustainability. This study was undertaken to document and better understand the relationships between two livestock-crop-forage systems and the sequestration of SOC with regards to soil sustainability and was conducted o...

  11. Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration

    Science.gov (United States)

    US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

  12. Modeling of induced seismicity during mineral carbon sequestration

    Science.gov (United States)

    Yarushina, V.; Bercovici, D. A.

    2013-12-01

    Rapidly developing carbon capture and storage (CCS) technologies are a promising way of reducing the climate impact of greenhouse gases. These technologies involve injecting large amounts of CO2-bearing fluids underground, which potentially leads to high pore pressure and the conditions for seismic activity in the proximity of the injection site. Previously, we developed a simple conceptual model to estimate the seismic risk of mineral or mafic CCS operations (Yarushina & Bercovici, GRL vol.40, doi:10.1002/grl.50196, 2013). In this model, the storage reservoir is treated as a porous rock with grains that evolve during carbonation reactions. Seismic triggering occurs when local stresses at grain-grain contacts reach the Mohr-Coulomb failure criterion. We showed that injection of CO2 into reactive mafic or ultramafic rocks potentially reduces seismic risk since carbonation reactions increase the contact area between the rock grains and reduce the local stresses. Here we further develop this model and consider the effect of fluid injection flux and pressure gradients along grain boundaries on induced seismicity. Grain evolution not only changes the stress support but also alters the matrix permeability, which in turn affects the driving pressure gradients and the associated deviatoric stresses. The resulting coupled porous flow, chemical reactive grain-growth and failure model is an important step in understanding the seismic risks of carbon sequestration.

  13. Effects of organic carbon sequestration strategies on soil enzymatic activities

    Science.gov (United States)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  14. Biological Carbon Sequestration and Carbon Trading Re-Visited

    NARCIS (Netherlands)

    Kooten, van G.C.

    2009-01-01

    Biological activities that sequester carbon create CO2 offset credits that could obviate the need for reductions in fossil fuel use. Credits are earned by storing carbon in terrestrial ecosystems and wood products, although CO2 emissions are also mitigated by delaying deforestation, which accounts f

  15. Animals as an indicator of carbon sequestration and valuable landscapes

    Directory of Open Access Journals (Sweden)

    Jan Szyszko

    2011-05-01

    Full Text Available Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance, representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use.

  16. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  17. Carbon budgets and carbon sequestration potential of Indian forests

    NARCIS (Netherlands)

    Kaul, M.

    2010-01-01

    Keywords: Carbon uptake, Forest biomass, Bioenergy, Land use change, Indian forests, Deforestation, Afforestation, Rotation length, Trees outside forests. Global climate change is a widespread and growing concern that has led to extensive international discussions and negotiations. Responses to thi

  18. Management of water extracted from carbon sequestration projects

    Energy Technology Data Exchange (ETDEWEB)

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods

  19. Soil Carbon Storage in Christmas Tree Farms: Maximizing Ecosystem Management and Sustainability for Carbon Sequestration

    Science.gov (United States)

    Chapman, S. K.; Shaw, R.; Langley, A.

    2008-12-01

    Management of agroecosystems for the purpose of manipulating soil carbon stocks could be a viable approach for countering rising atmospheric carbon dioxide concentrations, while maximizing sustainability of the agroforestry industry. We investigated the carbon storage potential of Christmas tree farms in the southern Appalachian mountains as a potential model for the impacts of land management on soil carbon. We quantified soil carbon stocks across a gradient of cultivation duration and herbicide management. We compared soil carbon in farms to that in adjacent pastures and native forests that represent a control group to account for variability in other soil-forming factors. We partitioned tree farm soil carbon into fractions delineated by stability, an important determinant of long-term sequestration potential. Soil carbon stocks in the intermediate pool are significantly greater in the tree farms under cultivation for longer periods of time than in the younger tree farms. This pool can be quite large, yet has the ability to repond to biological environmental changes on the centennial time scale. Pasture soil carbon was significantly greater than both forest and tree farm soil carbon, which were not different from each other. These data can help inform land management and soil carbon sequestration strategies.

  20. Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA

    International Nuclear Information System (INIS)

    Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of carbon stocks, such as vegetation type and management regime, and to some degree, on economic incentives. However, the actual potential for carbon sequestration critically depends on who owns the land and additional land management decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the 'carbon stewardship landscape'-that is, the decision making context for carbon sequestration. We examine the carbon stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use management to help mitigate carbon emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.

  1. Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA

    Science.gov (United States)

    Failey, Elisabeth L.; Dilling, Lisa

    2010-04-01

    Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of carbon stocks, such as vegetation type and management regime, and to some degree, on economic incentives. However, the actual potential for carbon sequestration critically depends on who owns the land and additional land management decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the 'carbon stewardship landscape'—that is, the decision making context for carbon sequestration. We examine the carbon stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use management to help mitigate carbon emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.

  2. Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Hernandez, R.; Koohafkan, P.; Antoine, J. (eds.)

    2004-07-01

    This publication presents a methodology and software tools for assessing carbon stocks and modelling scenarios of carbon sequestration that were developed and tested in pilot field studies in Mexico and Cuba. The models and tools enable the analysis of land use change scenarios in order to identify in a given area (watershed or district) land use alternatives and land management practices that simultaneously maximize food production, maximize soil carbon sequestration, maximize biodiversity conservation and minimize land degradation. The objective is to develop and implement 'win-win' options that satisfy the multiple goals of farmers, land users and other stakeholders in relation to food security, carbon sequestration, biodiversity and land conservation.

  3. Measurement of carbon for carbon sequestration and site monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Wullschleger, Stan D [ORNL; Garten Jr, Charles T [ORNL; Palumbo, Anthony Vito [ORNL

    2007-01-01

    A 2 to 6 degree C increase in global temperature by 2050 has been predicted due to the production of greenhouse gases that is directly linked to human activities. This has encouraged an increase in the international efforts on ways to reduce anthropogenic emissions of greenhouse gases particularly carbon dioxide (CO{sub 2}) as evidence for the link between atmospheric greenhouse gases and climate change has been established. Suggestion that soils and vegetation could be managed to increase their uptake and storage of CO{sub 2}, and thus become 'land carbon sinks' is an incentive for scientists to undertake the ability to measure and quantify the carbon in soils and vegetation to establish base-line quantities present at this time. The verification of the permanence of these carbon sinks has raised some concern regarding the accuracy of their long-term existence. Out of the total percentage of carbon that is potentially sequestered in the terrestrial land mass, only 25% of that is sequestered above ground and almost 75% is hypothesized to be sequestered underground. Soil is composed of solids, liquids, and gases which is similar to a three-phase system. The gross chemical composition of soil organic carbon (SOC) consists of 65% humic substances that are amorphous, dark-colored, complex, polyelectrolyte-like materials that range in molecular weight from a few hundred to several thousand Daltons. The very complex structure of humic and fulvic acid makes it difficult to obtain a spectral signature for all soils in general. The humic acids of different soils have been observed to have polymeric structure, appearing as rings, chains and clusters as seen in electron microscope observations. The humification processes of the soils will decide the sizes of their macromolecules that range from 60-500 angstroms. The percentage of the humus that occurs in the light brown soils is much lower than the humus present in dark brown soils. The humus of forest soils is

  4. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  5. Mineland reclamation and soil organic carbon sequestration in Ohio

    International Nuclear Information System (INIS)

    The mining industry has been continuously involved in initiatives to reduce the emission of green house gases in to atmosphere. Control measures have been introduced in all steps starting from the mining of coal to energy production. Reclamation of mined land was and is one of the eco-friendly measures adopted by the industry. Apart from the inherent benefits of reclamation to improve on and offsite environmental quality, its potential to produce biomass and enhance soil organic carbon (SOC) has not been addressed. Reclamative effects of establishing forest and pasture with (graded) and without topsoil (ungraded) application on soil quality and soil carbon sequestration was studied on mine land in Ohio. The SOC pool for 0--30 cm depth for the undisturbed control sites was 56.6 MgC/ha for forest and 66.3 MgC/ha for pasture. In comparison, the SOC pool in the forest and pasture of graded mineland for 0--30 cm depth after 25 years of reclamation was 58.9 MgC/ha and 62.7 MgC/ha respectively. In ungraded mineland, the SOC pool in the 0--30 cm depth after 30 years of reclamation was 51.5 MgC/ha in forest and 58.9 MgC/ha in the pasture

  6. Understanding Carbon Sequestration Options in the United States: Capabilities of a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Dooley, James J.; Brown, Daryl R.; Mizoguchi, Akiyoshi; Shiozaki, Mai

    2001-04-03

    While one can discuss various sequestration options at a national or global level, the actual carbon management approach is highly site specific. In response to the need for a better understanding of carbon management options, Battelle in collaboration with Mitsubishi Corporation, has developed a state-of-the-art Geographic Information System (GIS) focused on carbon capture and sequestration opportunities in the United States. The GIS system contains information (e.g., fuel type, location, vintage, ownership, rated capacity) on all fossil-fired generation capacity in the Untied States with a rated capacity of at least 100 MW. There are also data on other CO2 sources (i.e., natural domes, gas processing plants, etc.) and associated pipelines currently serving enhanced oil recovery (EOR) projects. Data on current and prospective CO2 EOR projects include location, operator, reservoir and oil characteristics, production, and CO2 source. The system also contains information on priority deep saline aquifers and coal bed methane basins with potential for sequestering CO2. The GIS application not only enables data storage, flexible map making, and visualization capabilities, but also facilitates the spatial analyses required to solve complex linking of CO2 sources with appropriate and cost-effective sinks. A variety of screening criteria (spatial, geophysical, and economic) can be employed to identify sources and sinks most likely amenable to deployment of carbon capture and sequestration systems. The system is easily updateable, allowing it to stay on the leading edge of capture and sequestration technology as well as the ever-changing business landscape. Our paper and presentation will describe the development of this GIS and demonstrate its uses for carbon management analysis.

  7. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    Science.gov (United States)

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (pdensity and the environmental/anthropogenic factors (R(2)=0.59). The soil pH, land use, and elevation are the most important factors for determining SOC dynamics. In contrast, the effect of the reclamation age on the SOC density is negligible, where SOC content in the land reclaimed during years 1047-1724 is as low as that reclaimed during years 1945-2004. The scenario analysis results indicate that the carbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year. PMID:27196991

  8. The Effect of Gasification Biochar on Soil Carbon Sequestration, Soil Quality and Crop Growth

    DEFF Research Database (Denmark)

    Hansen, Veronika

    New synergies between agriculture and the energy sector making use of agricultural residues for bioenergy production and recycling recalcitrant residuals to soil may offer climate change mitigation potential through the substitution of fossil fuels and soil carbon sequestration. However, concerns...

  9. CARBON SEQUESTRATION AND LAND MANAGEMENT AT DOD INSTALLATIONS: AN EXPLORATORY STUDY

    Science.gov (United States)

    This report explores the influence of management practices such as tree harvesting, deforestation, and reforestation on carbon sequestration potential by DOD forests by performing a detailed analysis of a specific installation, Camp Shelby, Mississippi. amp Shelby was selected fo...

  10. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S. Z., E-mail: zfisher@lanl.gov; Kovalevsky, A. Y. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Domsic, J. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Mustyakimov, M. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Silverman, D. N. [Department of Pharmacology and Therapeutics, PO Box 100267, University of Florida, Gainesville, FL 32610 (United States); McKenna, R. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Langan, P. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-11-01

    The first neutron crystal structure of carbonic anhydrase is presented. The structure reveals interesting and unexpected features of the active site that affect catalysis. Carbonic anhydrase (CA) is a ubiquitous metalloenzyme that catalyzes the reversible hydration of CO{sub 2} to form HCO{sub 3}{sup −} and H{sup +} using a Zn–hydroxide mechanism. The first part of catalysis involves CO{sub 2} hydration, while the second part deals with removing the excess proton that is formed during the first step. Proton transfer (PT) is thought to occur through a well ordered hydrogen-bonded network of waters that stretches from the metal center of CA to an internal proton shuttle, His64. These waters are oriented and ordered through a series of hydrogen-bonding interactions to hydrophilic residues that line the active site of CA. Neutron studies were conducted on wild-type human CA isoform II (HCA II) in order to better understand the nature and the orientation of the Zn-bound solvent (ZS), the charged state and conformation of His64, the hydrogen-bonding patterns and orientations of the water molecules that mediate PT and the ionization of hydrophilic residues in the active site that interact with the water network. Several interesting and unexpected features in the active site were observed which have implications for how PT proceeds in CA.

  11. Private valuation of carbon sequestration in forest plantations

    Energy Technology Data Exchange (ETDEWEB)

    Guitart, A. Bussoni [Facultad de Agronomia, Universidad de la Republica. Avda. E. Garzon, 780, CP 12.900, Montevideo (Uruguay); Rodriguez, L.C. Estraviz [Escola Superior de Agricultura ' ' Luiz de Queiroz' ' , Universidad de Sao, Paulo (Brazil)

    2010-01-15

    Approval of the Clean Development Mechanism, provided for in the Kyoto Protocol, enables countries with afforested land to trade in carbon emissions reduction certificates related to carbon dioxide equivalent quantities (CO{sub 2-e}) stored within a certain forest area. Potential CO{sub 2-e} above base line sequestration was determined for two forest sites on commercial eucalyptus plantations in northern Brazil (Bahia). Compensation values for silvicultural regimes involving rotation lengths greater than economically optimal were computed using the Faustmann formula. Mean values obtained were US$8.16 (MgCO{sub 2-e}){sup -} {sup 1} and US$7.19 (MgCO{sub 2-e}){sup -} {sup 1} for average and high site indexes, respectively. Results show that carbon supply is more cost-efficient in highly productive sites. Annuities of US$18.8 Mg C{sup -} {sup 1} and US$35.1 Mg C{sup -} {sup 1} and yearly payments of US$4.4 m{sup -} {sup 3} and US$8.2 m{sup -} {sup 3} due for each marginal cubic meter produced were computed for high and average sites, respectively. The estimated value of the tonne of carbon defines minimum values to be paid to forest owners, in order to induce a change in silvicultural management regimes. A reduction of carbon supply could be expected as a result of an increase in wood prices, although it would not respond in a regular manner. For both sites, price elasticity of supply was found to be inelastic and increased as rotation length moved further away from economically optimal: 0.24 and 0.27 for age 11 years in average- and high-productivity sites, respectively. This would be due to biomass production potential as a limiting factor; beyond a certain threshold value, an increase in price does not sustain a proportional change in carbon storage supply. The environmental service valuation model proposed might be adequate for assessing potential supply in plantation forestry, from a private landowner perspective, with an economic opportunity cost. The model is

  12. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, M.C. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  13. Carbon sequestration from waste via conversion to charcoal : equipment for a small scale operation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.C. [Cenovus Energy Inc., Calgary, AB (Canada); Struyk, A. [AST Technical Services, Calgary, AB (Canada); Gilbert, D. [GTEC Consulting, Calgary, AB (Canada)

    2010-07-01

    Carbon capture and sequestration (CCS) is not very cost effective in oilsand operations. For that reason, this study examined the feasibility of using charcoal sequestration (CS) as an alternative carbon offset method to CCS. The economics of the charcoal approach depends on 2 factors, notably the cost of the feed biomass and the cost of processing. The first factor was addressed in this study by using municipal waste as feedstock which is available free of charge. Since the cost of processing depends on the apparatus and the scale of operation, a robust kiln was designed to convert waste at remote industrial camp sites to charcoal. In charcoal sequestration, carbon contained in a portion of naturally produced biomass is preserved in solid form by converting it to charcoal, thus preventing it from entering into atmosphere as carbon dioxide. The paper showed that the newly designed equipment can contribute to a reduction in waste disposal costs and that the study can serve as a demonstration and data collection project for waste-to-charcoal projects for carbon sequestration. These demo projects can also help evaluate various aspects of this novel method of sequestration, and enhance public awareness on the subject. In view of the growing per capita waste worldwide, use of municipal waste as feedstock for charcoal sequestration can be a significant measure of carbon offset at global scale. 10 refs., 7 figs.

  14. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil.

    Science.gov (United States)

    Shrestha, Raj K; Lal, Rattan

    2006-08-01

    Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an

  15. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  16. Estimates of Carbon Sequestration and Storage in Tidal Coastal Wetlands Along the US East Coast

    Science.gov (United States)

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  17. Estimates of Carbon Sequestration in Tidal Coastal Wetlands Along the US east Coast

    Science.gov (United States)

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  18. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2004-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  19. Calcium Carbonate Produced by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2007-06-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO2 through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids - single-celled, marine algae that are the major global producers of calcium carbonate - to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  20. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V. J. Fabry

    2003-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  1. CALCIUM CARBONATE PRODUCTION BY COCCOLITHAPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V. J.Fabry

    2004-01-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  2. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2004-04-26

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  3. Allometric biomass and carbon factors database

    Directory of Open Access Journals (Sweden)

    Seufert G

    2008-07-01

    Full Text Available The "Allometric, Biomass and Carbon factors" database (ABC factors database was designed to facilitate the estimation of the biomass carbon stocks of forests in order to support the development and the verification of greenhouse gas inventories in the LULUCF sector (Land Use, Land Use Change and Forestry. The database contains several types of expansion, conversion and combined factors, by various tree species or species groups that can be used to calculate biomass or carbon of forests of Eurasian region from proxy variables (e.g., tree volume that may come from forest inventories. In addition to the factors, and depending on the information that was available in the cited source, the database indicates: (1 the biomass compartments involved when the factor was developed; and (2 the possible applicability of the factor, e.g. by country or by ecological regions. The applicability of the factors is either suggested by the source itself, or the type of source (e.g. National Greenhouse Gas Inventory Report, or was based on the expert judgement by the compilers of the database. Finally, in order to facilitate the selection of the most appropriate of the data, the web-based interface provides the possibility to compare several factors that may come from different sources. The ABC factors database is freely available at the URL: http://afoludata.jrc.it/data_fs.cfm, in the web site AFOLU-DATA, funded and hosted by the Joint Research Centre (European Commission, DG-JRC.

  4. Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon-Sequestration Capacity

    Science.gov (United States)

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3-7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within +or- 1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0-0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  5. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks

    OpenAIRE

    Marbà, Núria; Arias-Ortiz, Ariane; Masqué, Pere; Kendrick, Gary A.; Mazarrasa, Inés; Bastyan, Geoff R.; García-Orellana, Jordi; Duarte, Carlos M.

    2015-01-01

    © 2015 British Ecological Society. Seagrass meadows are sites of high rates of carbon sequestration and they potentially support 'blue carbon' strategies to mitigate anthropogenic CO2 emissions. Current uncertainties on the fate of carbon stocks following the loss or revegetation of seagrass meadows prevent the deployment of 'blue carbon' strategies. Here, we reconstruct the trajectories of carbon stocks associated with one of the longest monitored seagrass restoration projects globally. We d...

  6. Decomposition Analysis of the Mechanism Behind the Spatial and Temporal Patterns of Changes in Carbon Bio-Sequestration in China

    OpenAIRE

    Bin Chen; Jiao Luo; Nana Shi; Jinyan Zhan; Haiming Yan

    2012-01-01

    Great attention has been paid to carbon bio-sequestration due to increasing concerns over global warming. Understanding the relationship between carbon bio-sequestration and its influencing factors is of great significance for formulating appropriate management measures for global warming mitigation. Since change in carbon bio-sequestration is a complex process, it is difficult to take into account all of its influencing factors, while the panel data model may provide an effective way to meas...

  7. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  8. Vertically-integrated Approaches for Carbon Sequestration Modeling

    Science.gov (United States)

    Bandilla, K.; Celia, M. A.; Guo, B.

    2015-12-01

    Carbon capture and sequestration (CCS) is being considered as an approach to mitigate anthropogenic CO2 emissions from large stationary sources such as coal fired power plants and natural gas processing plants. Computer modeling is an essential tool for site design and operational planning as it allows prediction of the pressure response as well as the migration of both CO2 and brine in the subsurface. Many processes, such as buoyancy, hysteresis, geomechanics and geochemistry, can have important impacts on the system. While all of the processes can be taken into account simultaneously, the resulting models are computationally very expensive and require large numbers of parameters which are often uncertain or unknown. In many cases of practical interest, the computational and data requirements can be reduced by choosing a smaller domain and/or by neglecting or simplifying certain processes. This leads to a series of models with different complexity, ranging from coupled multi-physics, multi-phase three-dimensional models to semi-analytical single-phase models. Under certain conditions the three-dimensional equations can be integrated in the vertical direction, leading to a suite of two-dimensional multi-phase models, termed vertically-integrated models. These models are either solved numerically or simplified further (e.g., assumption of vertical equilibrium) to allow analytical or semi-analytical solutions. This presentation focuses on how different vertically-integrated models have been applied to the simulation of CO2 and brine migration during CCS projects. Several example sites, such as the Illinois Basin and the Wabamun Lake region of the Alberta Basin, are discussed to show how vertically-integrated models can be used to gain understanding of CCS operations.

  9. A Novel Strategy for Carbon Capture and Sequestration by rHLPD Processing

    OpenAIRE

    Li, Qinghua; Gupta, Surojit; Tang, Ling; Quinn, Sean; Atakan, Vahit; Riman, Richard E.

    2016-01-01

    Monoethanolamine (MEA) scrubbing is an energy-intensive process for carbon capture and sequestration (CCS) due to the regeneration of amine in stripping towers at high temperature (100–120°C) and the subsequent pressurization of CO2 for geological sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD), which is able to solidify (densify) monolithic materials without using high temperature kilns. Then, we integrate MEA-based CCS proc...

  10. A Novel Strategy of Carbon Capture and Sequestration by rHLPD Processing

    OpenAIRE

    Richard Eric Riman

    2016-01-01

    Monoethanolamine (MEA) scrubbing is an energy intensive process for Carbon Capture and Sequestration (CCS) due to the regeneration of amine in stripping towers at high temperature (100-120 ºC) and the subsequent pressurization of CO2 for geologic sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD), which is able to solidify (densify) monolithic materials without using high temperature kilns. Then we integrate MEA-based CCS proces...

  11. Comparison of carbon sequestration potential in agricultural and afforestation farming systems

    Directory of Open Access Journals (Sweden)

    Chinsu Lin

    2013-04-01

    Full Text Available In the last few decades, many forests have been cut down to make room for cultivation and to increase food or energy crops production in developing countries. In this study, carbon sequestration and wood production were evaluated on afforested farms by integrating the Gaussian diameter distribution model and exponential diameter-height model derived from sample plots of an afforested hardwood forest in Taiwan. The quantity of sequestrated carbon was determined based on aboveground biomass. Through pilot tests run on an age-volume model, an estimation bias was obtained and used to correct predicted volume estimates for a farm forest over a 20-year period. An estimated carbon sequestration of 11,254 t C was observed for a 189ha-hardwood forest which is equivalent to 41,264 t CO2. If this amount of carbon dioxide were exchanged on the Chicago Climate Exchange (CCX market, the income earned would be 821 US$ ha- 1. Carbon sequestration from rice (Oryza sativa or sugarcane (Saccharum officinarum production is discharged as a result of straw decomposition in the soil which also improves soil quality. Sugarcane production does not contribute significantly to carbon sequestration, because almost all the cane fiber is used as fuel for sugar mills. As a result of changing the farming systems to hardwood forest in this study area, carbon sequestration and carbon storage have increased at the rate of 2.98 t C ha- 1 year- 1. Net present value of afforestation for a 20-year period of carbon or wood management is estimated at around US$ 30,000 given an annual base interest rate of 3 %.

  12. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    Energy Technology Data Exchange (ETDEWEB)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  13. Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration

    Science.gov (United States)

    Jo, Byung Hoon; Park, Tae Yoon; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je; Cha, Hyung Joon

    2016-01-01

    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions. PMID:27385052

  14. Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration

    Science.gov (United States)

    Jo, Byung Hoon; Park, Tae Yoon; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je; Cha, Hyung Joon

    2016-07-01

    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.

  15. A blue carbon soil database: Tidal wetland stocks for the US National Greenhouse Gas Inventory

    Science.gov (United States)

    Feagin, R. A.; Eriksson, M.; Hinson, A.; Najjar, R. G.; Kroeger, K. D.; Herrmann, M.; Holmquist, J. R.; Windham-Myers, L.; MacDonald, G. M.; Brown, L. N.; Bianchi, T. S.

    2015-12-01

    Coastal wetlands contain large reservoirs of carbon, and in 2015 the US National Greenhouse Gas Inventory began the work of placing blue carbon within the national regulatory context. The potential value of a wetland carbon stock, in relation to its location, soon could be influential in determining governmental policy and management activities, or in stimulating market-based CO2 sequestration projects. To meet the national need for high-resolution maps, a blue carbon stock database was developed linking National Wetlands Inventory datasets with the USDA Soil Survey Geographic Database. Users of the database can identify the economic potential for carbon conservation or restoration projects within specific estuarine basins, states, wetland types, physical parameters, and land management activities. The database is geared towards both national-level assessments and local-level inquiries. Spatial analysis of the stocks show high variance within individual estuarine basins, largely dependent on geomorphic position on the landscape, though there are continental scale trends to the carbon distribution as well. Future plans including linking this database with a sedimentary accretion database to predict carbon flux in US tidal wetlands.

  16. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  17. The Carbon Sequestration Potential of Soils: Some Data from Northern Italian Regions

    Directory of Open Access Journals (Sweden)

    Fabio Petrella

    2007-06-01

    Full Text Available It is well known that soil plays, within terrestrial ecosystems, an essential role in many biogeochemical cycles and in the regulation of greenhouse gas fluxes. Less known, and often underestimated, is the importance of carbon sequestration potential of soil, especially trough humified carbon. Even within the agro-forestry practices of the Kyoto Protocol, most of the attention is devoted to the biomass carbon storage, rather than soil carbon sequestration. The highest potentialities for carbon sequestration are related to the arable lands, that accounts for the 11% of earth surface; the increase of 0.1% of organic carbon content in the 0-30 cm layer of cultivated soils, achievable with minor adjustment of agronomic practices, is equivalent to the sequestration of 5,000 millions t of carbon. On the other hand, the conversion of a grasslands into cultivated land determine, during 50-70 years, a release of 80-150 t CO2 ha-1.Within this paper the estimate of soil organic carbon of three Northern Italian regions is presented.

  18. Gasification biochar as soil amendment for carbon sequestration and soil quality

    DEFF Research Database (Denmark)

    Hansen, Veronika

    2014-01-01

    Thermal gasification of biomass is an efficient and flexible way to generate energy. Besides the energy, avaluable by-product, biochar, is produced. Biochar contains a considerable amount of recalcitrant carbon thathas potential for soil carbon sequestration and soil quality improvement if recycled...

  19. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands

    NARCIS (Netherlands)

    Vries, de W.; Solberg, S.; Dobbertin, M.; Sterba, H.; Laubhann, D.; Oijen, van M.; Evans, C.; Gundersen, P.; Kros, H.; Wamelink, W.; Reinds, G.J.; Sutton, M.A.

    2009-01-01

    In this study, we present estimated ranges in carbon (C) sequestration per kg nitrogen (N) addition in above-ground biomass and in soil organic matter for forests and heathlands, based on: (i) empirical relations between spatial patterns of carbon uptake and influencing environmental factors includi

  20. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Science.gov (United States)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  1. Carbon sequestration for different management alternatives in sweet chestnut coppice in northern Spain

    OpenAIRE

    Prada, Marta; Bravo Oviedo, Felipe; Berdasco, Lorena; Canga, Elena; Martínez Alonso, Celia

    2016-01-01

    This paper provides an innovative approach to assessing carbon sequestration in sweet chestnut coppice taking into account the importance of carbon fluxes in the whole forest-industry value chain in the mitigation of climate change. The goals of this study were: to evaluate the baseline carbon capture of sweet chestnut forest in the north of Spain; to assess the effect of thinning and extending the rotation period on carbon storage; and to evaluate the substitution effect of using...

  2. Economic impacts of carbon sequestration in reforestation: examples from boreal and moist tropical conditions.

    OpenAIRE

    Niskanen, Anssi; Saastamoinen, Olli; Rantala, Tapio

    1996-01-01

    Part I Climate Change The impact of carbon sequestration on the financial profitability of four tree plantation cases in Finland and the Philippines were examined. On the basis of stem wood growth; the accumulation of carbon in forest biomass, the formation and decomposition of litter, and the carbon flows in wood-based products were assessed for each reforestation case representing boreal (Finland) and moist tropical conditions (the Philippines). Using different unit values for carbon seq...

  3. An equity assessment of introducing uncertain forest carbon sequestration in EU climate policy

    International Nuclear Information System (INIS)

    Large emissions of greenhouse gases are expected to cause major environmental problems in the future. European policy makers have therefore declared that they aim to implement cost-efficient and fair policies to reduce carbon emissions. The purpose of this paper is to assess whether the cost of the EU policies for 2020 can be reduced through the inclusion of carbon sequestration as an abatement option while equity is also improved. The assessment is done by numerical calculations using a chance-constrained partial equilibrium model of the EU Emissions Trading Scheme and national effort-sharing targets, where forest sequestration is introduced as an uncertain abatement option. Fairness is evaluated by calculation of Gini-coefficients for six equity criteria to policy outcomes. The estimated Gini-coefficients range between 0.11 and 0.32 for the current policy, between 0.16 and 0.66 if sequestration is included and treated as certain, and between 0.19 and 0.38 when uncertainty about sequestration is taken into account and policy-makers wish to meet targets with at least 90 per cent probability. The results show that fairness is reduced when sequestration is included and that the impact is larger when sequestration is treated as certain. - Highlights: • We model EU's CO2 emission reduction targets to 2020 for the 27 member states. • We assess the equity of including forest carbon sequestration in EU policy with six equity criteria. • A stochastic partial equilibrium model is used, in which abatement cost is minimised. • Current burden sharing within the EU is quite fair when compared with current income inequality. • The abatement cost is reduced and inequality increased when including sequestration

  4. Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration

    DEFF Research Database (Denmark)

    Taghizadeh-Toosi, Arezoo; Olesen, Jørgen Eivind

    2016-01-01

    over the same period of time. The results of the C-TOOL simulations demonstrated that application of organic manure, use of cover crop, and converting the croplands to grassland had the potential to increase SOC in Danish mineral soils. The simulated data also suggested that C-TOOL gave a reasonably......Soil organic carbon (SOC) is in active exchange with the atmosphere. The amount of organic carbon (OC) input into the soil and SOC turnover rate are important for predicting the carbon (C) sequestration potential of soils subject to changes in land-use and climate. The C-TOOL model was developed...... to simulate the dynamics of SOC storage on medium- to long-term trends in the whole soil profile (0–100 cm), and was used to compare SOC changes under typical Danish farming conditions for two sites in Denmark having the greatest possible temperature differences for the period 1986 and 2012. For this purpose...

  5. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  6. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral

  7. Mineral Influence on Microbial Survival During Carbon Sequestration

    Science.gov (United States)

    Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

    2012-12-01

    CO2 sequestered in a deep saline aquifer will perturb subsurface biogeochemistry by acidifying the groundwater and accelerating mineral diagenesis. Subsurface microbial communities heavily influence geochemistry through their metabolic processes, such as with dissimilatory iron reducing bacteria (DIRB). However, CO2 also acts as a sterilant and will perturb these communities. We investigated the role of mineralogy and its effect on the survival of microbes at high PCO2 conditions using the model DIRB Shewanella oneidensis MR-1. Batch cultures of Shewanella were grown to stationary phase and exposed to high PCO2 using modified Parr reactors. Cell viability was then determined by plating cultures after exposure. Results indicate that at low PCO2 (2 bar), growth and iron reduction are decreased and cell death occurs within 1 hour when exposed to CO2 pressures of 10 bar or greater. Further, fatty acid analysis indicates microbial lipid degradation with C18 fatty acids being the slowest lipids to degrade. When cultures were grown in the presence of rocks or minerals representative of the deep subsurface such as carbonates and silicates and exposed to 25 bar CO2, survival lasted beyond 2 hours. The most effective protecting substratum was quartz sandstone, with cultures surviving beyond 8 hours of CO2 exposure. Scanning electron microscope images reveal biofilm formation on the mineral surfaces with copious amounts of extracellular polymeric substances (EPS) present. EPS from these biofilms acts as a reactive barrier to the CO2, slowing the penetration of CO2 into cells and resulting in increased survival. When biofilm cultures were grown with Al and As to simulate the release of toxic metals from minerals such as feldspars and clays, survival time decreased, indicating mineralogy may also enhance microbial death. Biofilms were then grown on iron-coated quartz sand to determine conversely what influence biofilms may have on mineral dissolution during CO2 perturbation

  8. Assessment of biomass and carbon sequestration potentials of standing Pongamia pinnata in Andhra University, Visakhapatnam, India

    Directory of Open Access Journals (Sweden)

    Annissa Muhammed Ahmedin, Keredin Temam Siraj,

    2013-07-01

    Full Text Available The significance of forested areas in carbon sequestration is conventional, and well renowned. But, hardly any attempts have been made to study the potential of trees in carbon sequestration from urban areas. Andhra University was selected for the study in Visakhapatnam city with the objectives of quantifying the total carbon sequestration by Pongamia pinata. Stratified random sampling was used for assessing biomass in two site and about 230 P. pinnata trees were taken. Biomass was calculated using Non-destructive allometric models. The biomass carbon content was taken as 55% of the tree biomass. Soil samples were taken from soil profile up to 40 cm depth for deep soils and up to bedrock for shallow soils at an interval of 10 and 20 cm for top and sub-soil respectively. Walkley‐Black Wet Oxidation method was applied for measuring soil organic carbon. Belowground biomass was estimated by the Root:Shoot ratio relationship. Total biomass and soil carbon was higher in Site-2 than in Site-1. Total carbon sequestration in Site-2 was found 1.59 times higher compared to Site-1 but the mean SOC stored was found higher in Site-1 than in Site-2, i.e.,14.48 tC/ha and 10.33 tC/ha, respectively.

  9. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere

    International Nuclear Information System (INIS)

    Northern mid-latitude forests are a larger terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition. (author)

  10. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    Science.gov (United States)

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. PMID:25764465

  11. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  12. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    International Nuclear Information System (INIS)

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  13. Soil Tillage Conservation and its Effect on Erosion Control, Water Management and Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    MORARU Paula Ioana

    2010-12-01

    Full Text Available Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of humanintervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered animportant intervention to limit these changes. Carbon sequestration in soil is net advantageous, improving theproductivity and sustainability. The more the organic content in soil is higher the better soil aggregation is. The soilwithout organic content is compact. This reduces its capacity to infiltrate water, nutrients solubility and productivity,and that way it reduces the soil capacity for carbon sequestration. Also it raises soil vulnerability to erosion throughwater and wind. Presently a change it is necessary concerning the concept of conservation practices and a newapproach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditionalunderstanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus toanother level concerning conservation by focusing on the soil quality. Carbon management is necessary for a complexof matters including soil, water management, field productivity, biological fuel and climatic change. Profound researchis necessary in order to establish the carbon sequestration practices and their implementation impact. Soil oxygen andcarbon dioxide concentration dynamics can be continuously monitored in the present using new generation of sensorsavailable. Systems for soil gas measurements offer crucial information regarding production, consume, and transport ofgas, with major implications in quantitative and qualitative evaluation of soil respiration and soil aeration.

  14. Simulating the effects of forest managements on carbon sequestration: TREPLEX- Management model development

    Science.gov (United States)

    Wang, W.; Peng, C.; Lei, X.; Zhang, T.; Kneeshaw, D.; Larocque, G.

    2009-05-01

    With common concern surrounding the impact of increased atmospheric CO2 on global climate change, the role of forest management (i.e. thinning) on carbon sequestration is growing as a hotspot in the post Kyoto period. However, the combination strategies between forest management and carbon management are less established. Jack pine is one of the most important commercial and reforestation species in lake states of the United States and Canada, and the specie was reported to show stronger response to forest management like thinning. Obviously, there is an urgent need for understanding how harvesting intensity (i.e., thinning) affects C sequestration in jack pine stands. The aim of this study is to quantify and predict the biomass and carbon sequestration in thinned jack pine stands in eastern Canada. TRIPLEX is a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. The TRIPLEX-Management concept model was developed. The following carbon components were considered: above ground live biomass carbon, standing dead biomass carbon, harvested wood product carbon and soil organic carbon. Thinning was linked with LAI (Leaf Area Index), stand density and soil conditions and included in NPP and biomass production and allocation models. The model was also integrated with DBH distribution models, biomass allometric models, and wood products C models as well as the established height-diameter models. It is expected to optimize thinning regimes for carbon and forest management in order to mitigate climate change impacts.

  15. LBNL deliverable to the Tricarb carbon sequestration partnership: Final report on experimental and numerical modeling activities for the Newark Basin

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sumit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pester, Nick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Saldi, Giuseppe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beyer, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, Jim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Knauss, Kevin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-09-04

    This report presents findings for hydrological and chemical characteristics and processes relevant to large-scale geologic CO2 sequestration in the Newark Basin of southern New York and northern New Jersey. This work has been conducted in collaboration with the Tri-Carb Consortium for Carbon Sequestration — comprising Sandia Technologies, LLC; Conrad Geoscience; and Schlumberger Carbon Services.

  16. An Integrated Functional Genomics Consortium to Increase Carbon Sequestration in Poplars: Optimizing Aboveground Carbon Gain

    Energy Technology Data Exchange (ETDEWEB)

    Karnosky, David F (deceased); Podila, G Krishna; Burton, Andrew J (for DF Karnosky)

    2009-02-17

    This project used gene expression patterns from two forest Free-Air CO2 Enrichment (FACE) experiments (Aspen FACE in northern Wisconsin and POPFACE in Italy) to examine ways to increase the aboveground carbon sequestration potential of poplars (Populus). The aim was to use patterns of global gene expression to identify candidate genes for increased carbon sequestration. Gene expression studies were linked to physiological measurements in order to elucidate bottlenecks in carbon acquisition in trees grown in elevated CO2 conditions. Delayed senescence allowing additional carbon uptake late in the growing season, was also examined, and expression of target genes was tested in elite P. deltoides x P. trichocarpa hybrids. In Populus euramericana, gene expression was sensitive to elevated CO2, but the response depended on the developmental age of the leaves. Most differentially expressed genes were upregulated in elevated CO2 in young leaves, while most were downregulated in elevated CO2 in semi-mature leaves. In P. deltoides x P. trichocarpa hybrids, leaf development and leaf quality traits, including leaf area, leaf shape, epidermal cell area, stomatal number, specific leaf area, and canopy senescence were sensitive to elevated CO2. Significant increases under elevated CO2 occurred for both above- and belowground growth in the F-2 generation. Three areas of the genome played a role in determining aboveground growth response to elevated CO2, with three additional areas of the genome important in determining belowground growth responses to elevated CO2. In Populus tremuloides, CO2-responsive genes in leaves were found to differ between two aspen clones that showed different growth responses, despite similarity in many physiological parameters (photosynthesis, stomatal conductance, and leaf area index). The CO2-responsive clone shunted C into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2

  17. Sequestration of organochlorine pesticides in soils of distinct organic carbon content

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Na [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); Yang Yu [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Tao Shu, E-mail: taos@urban.pku.edu.cn [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Liu Yan; Shi Kelu [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2011-03-15

    In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for {alpha}-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. - Research highlights: > Soil organic carbon content determines the OCP sequestration fraction in soil. > Magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. > The more hydrophobic compounds have relatively higher sequestration fractions in soils with SOC contents >2%. > DDD may have higher sorption by soil organic matter than DDE. - The effect of soil organic matter on the sequestration of organochlorine pesticides (HCHs and DDTs) in soils was investigated in an innovative microcosm chamber.

  18. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  19. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling

    Science.gov (United States)

    Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

  20. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Randhir K Bharti

    Full Text Available A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO. The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC, however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  1. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration

    Directory of Open Access Journals (Sweden)

    S. Zhao

    2009-03-01

    Full Text Available Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS, along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively, to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at local to global scales.

  2. Theoretical and Experimental on Carbon Dioxide Sequestration Degree of Steel Slag

    Institute of Scientific and Technical Information of China (English)

    LI Jian-li; ZHANG Hui-ning; XU An-jun; CUI Jian; HE Dong-feng; TIAN Nai-yuan

    2012-01-01

    The limitation and experimental CO2 sequestration degree of steel slag is the focus. The theoretical and the practical COe sequestration degree was assessed under mild operating conditions. After calculation in theory, it can be found that the CO2 sequestration limitation degree for every kilogram steel slag is about 442 g when taking magne- sium into consideration, and the experimental CO2 sequestration degree for every kilogram slag is about 77 g, under the conditions that the liquid to solid ratio is 50 L/kg, CO2 flow is 0.5 L/min and the temperature of reaction is the ambient temperature. When solution NH4Cl and CHa COOH for experiments and other conditions keep the same, the actual potential CO2 sequestration for every kilogram slag is 69.3 g and 31.20 g respectively. Thus, optimization of process parameters like granularity of slag is necessary to enhance the carbon dioxide sequestration degree for steel slag.

  3. ECOLOGICAL, ECONOMIC AND SOCIAL ISSUES OF IMPLEMENTING CARBON DIOXIDE SEQUESTRATION TECHNOLOGIES IN THE OIL AND GAS INDUSTRY IN RUSSIA

    OpenAIRE

    Alexey Cherepovitsyn; Alina Ilinova

    2016-01-01

    The objective of this paper is to define the main approaches to the implementation of carbon dioxide sequestration technologies in the oil and gas industry in Russia, and also to identify ecological, economic and social issues of their usage. Promotion of the technology of carbon dioxide (CO2) sequestration by means of capturing and injecting it into underground reservoirs is a promising mechanism of reducing carbon dioxide concentration. Carbon capture and storage (CCS) technologies might be...

  4. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    Science.gov (United States)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.

  5. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting

    DEFF Research Database (Denmark)

    Brandao, Miguel; Levasseur, Annie; Kirschbaum, Miko U. F.;

    2013-01-01

    Purpose: Biological sequestration can increase the carbon stocks of non-atmospheric reservoirs (e.g. land and landbased products). Since this contained carbon is sequestered from, and retained outside, the atmosphere for a period of time, the concentration of CO2 in the atmosphere is temporarily...... reduced and some radiative forcing is avoided. Carbon removal from the atmosphere and storage in the biosphere or anthroposphere, therefore, has the potential to mitigate climate change, even if the carbon storage and associated benefits might be temporary. Life cycle assessment (LCA) and carbon...... footprinting (CF) are increasingly popular tools for the environmental assessment of products, that take into account their entire life cycle. There have been significant efforts to develop robust methods to account for the benefits, if any, of sequestration and temporary storage and release of biogenic carbon...

  6. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenju; Xu, Minggang [Chinese Academy of Agricultural Sciences, Beijing (China). Ministry of Agriculture Key Lab. of Crop Nutrition and Fertilization; Wang, Xiujun [Chinese Academy of Sciences, Urumqi (China). Xinjiang Inst. of Ecology and Geography; Maryland Univ., College Park, MD (United States). Earth System Science Interdisciplinary Centre; Huang, Qinhai [National Engineering and Technology Research Center for Red Soil Improvement, Jinxian (China). Jiangxi Inst. of Red Soils; Nie, Jun [Soil and Fertilizer Institute of Hunan Province, Changsha (China); Li, Zuzhang [Jiangxi Academy of Agricultural Sciences, Nanchang (China). Inst. of Soils and Fertilizers and Agricultural Resources; Li, Shuanglai [Hubei Academy of Agricultural Sciences, Wuhan (China). Inst. of Plant Protection and Soil Science; Hwang, Seon Woong; Lee, Kyeong Bo [National Institute of Crop Sciences, Iksan (Korea, Republic of). Dept. of Rice and Winter Cereal Crop

    2012-04-15

    Purpose: Although organic amendments have been recommended as one of the practices for crop production and soil carbon sequestration, little has been done to evaluate soil organic carbon (SOC) dynamics following long-term application of organic amendments. The objective of this research were to (1) assess the effect of long-term organic amendments on SOC dynamics in rice-based systems; (2) evaluate the relationship between soil carbon sequestration and carbon input based on various mineral and organic fertilization treatments. Materials and methods: A multi-sites analysis was conducted on four long-term experiments with double-rice (three sites) and rice-wheat (one site) cropping systems which started in the 1980s in Southern China. We selected three groups of treatments in common at each site: (1) control (no fertilizer), (2) mineral nitrogen-phosphorus with and without potassium (NPK/NP), and (3) the combined treatments of mineral NP/NPK with pig manure (M), green manure (G, Astragalus sinicus L.), rice straw (S), and/or their combinations. Harvestable crop biomass was annually recorded for all plots. SOC in topsoil was determined in 1-5 yearly intervals after rice harvest. Results and discussion: Analysis showed that organic amendments sustained or significantly increased carbon biomass, but had little effects on the coefficient of variance (CV) of the carbon biomass production compared with the mineral NPK/NP treatments. With additional carbon input, organic amendments increased SOC significantly by 7-45% after 25-28 years of fertilization compared with the mineral treatments. These combined treatments sequestered carbon at a rate from 0.20 to 0.48 tha{sup -1} year{sup -1} under the double-rice and 0.70 to 0.88 t ha{sup -1} year{sup -1} under rice-wheat cropping system. The estimated annual SOC decomposition rate ranged from 0.15 to 0.82 tha{sup -1} at these studied sites. Our analyses revealed strong positive correlations between soil carbon sequestration and

  7. Assessing the economic impacts of agricultural carbon sequestration: Terraces and agroforestry in the Peruvian Andes

    NARCIS (Netherlands)

    Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O.

    2007-01-01

    There is an increasing demand for information about the economic impact of agricultural carbon (C) sequestration in the developing world, but as yet no studies have assessed the potential for farmers in the highland tropics to participate in C contracts. In this paper we show how an econometric-proc

  8. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper;

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two...... an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements....

  9. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Protection Agency 40 CFR Parts 72, 78, and 98 Mandatory Reporting of Greenhouse Gases: Injection and Geologic... 2060-AP88 Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon... regulation to require greenhouse gas monitoring and reporting from facilities that conduct...

  10. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-04-12

    ... Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases: Injection and Geologic... Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide AGENCY: Environmental... require control of greenhouse gases (GHGs), rather it requires only monitoring and reporting of CO...

  11. Carbon storage and sequestration potential of selected tree species in India

    NARCIS (Netherlands)

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    A dynamic growth model (CO2FIX) was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus (Eucalyptus Tereticornis Sm.), poplar (Populus Deltoides Marsh), and teak (Tectona Grandis Linn. f.) forests in India. The results indicate that long-term total c

  12. Development of an assessment methodology for hydrocarbon recovery potential using carbon dioxide and associated carbon sequestration-Workshop findings

    Science.gov (United States)

    Verma, Mahendra K.; Warwick, Peter D.

    2011-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.

  13. EPIC modeling of soil organic carbon sequestration in croplands of Iowa.

    Science.gov (United States)

    Causarano, Hector J; Doraiswamy, Paul C; McCarty, Gregory W; Hatfield, Jerry L; Milak, Sushil; Stern, Alan J

    2008-01-01

    Depending on management, soil organic carbon (SOC) is a potential source or sink for atmospheric CO(2). We used the EPIC model to study impacts of soil and crop management on SOC in corn (Zea mays L.) and soybean (Glycine max L. Merr.) croplands of Iowa. The National Agricultural Statistics Service crops classification maps were used to identify corn-soybean areas. Soil properties were obtained from a combination of SSURGO and STATSGO databases. Daily weather variables were obtained from first order meteorological stations in Iowa and neighboring states. Data on crop management, fertilizer application and tillage were obtained from publicly available databases maintained by the NRCS, USDA-Economic Research Service (ERS), and Conservation Technology Information Center. The EPIC model accurately simulated state averages of crop yields during 1970-2005 (R(2) = 0.87). Simulated SOC explained 75% of the variation in measured SOC. With current trends in conservation tillage adoption, total stock of SOC (0-20 cm) is predicted to reach 506 Tg by 2019, representing an increase of 28 Tg with respect to 1980. In contrast, when the whole soil profile was considered, EPIC estimated a decrease of SOC stocks with time, from 1835 Tg in 1980 to 1771 Tg in 2019. Hence, soil depth considered for calculations is an important factor that needs further investigation. Soil organic C sequestration rates (0-20 cm) were estimated at 0.50 to 0.63 Mg ha(-1) yr(-1) depending on climate and soil conditions. Overall, combining land use maps with EPIC proved valid for predicting impacts of management practices on SOC. However, more data on spatial and temporal variation in SOC are needed to improve model calibration and validation. PMID:18574164

  14. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    Science.gov (United States)

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions. PMID:26915193

  15. Quantification of soil organic carbon sequestration potential in cropland:A model approach

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Agroecosystems have a critical role in the terrestrial carbon cycling process.Soil organic carbon(SOC) in cropland is of great importance for mitigating atmospheric carbon dioxide increases and for global food security.With an understanding of soil carbon saturation,we analyzed the datasets from 95 global long-term agricultural experiments distributed across a vast area spanning wide ranges of temperate,subtropical and tropical climates.We then developed a statistical model for estimating SOC sequestration potential in cropland.The model is driven by air temperature,precipitation,soil clay content and pH,and explains 58% of the variation in the observed soil carbon saturation(n=76).Model validation using independent data observed in China yielded a correlation coefficient R2 of 0.74(n=19,P<0.001).Model sensitivity analysis suggested that soils with high clay content and low pH in the cold,humid regions possess a larger carbon sequestration potential than other soils.As a case study,we estimated the SOC sequestration potential by applying the model in Henan Province.Model estimations suggested that carbon(C) density at the saturation state would reach an average of 32 t C ha-1 in the top 0-20 cm soil depth.Using SOC density in the 1990s as a reference,cropland soils in Henan Province are expected to sequester an additional 100 Tg C in the future.

  16. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    Science.gov (United States)

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions.

  17. Carbon stocks and soil sequestration rates of tropical riverine wetlands

    Science.gov (United States)

    Adame, M. F.; Santini, N. S.; Tovilla, C.; Vázquez-Lule, A.; Castro, L.; Guevara, M.

    2015-06-01

    Riverine wetlands are created and transformed by geomorphological processes that determine their vegetation composition, primary production and soil accretion, all of which are likely to influence C stocks. Here, we compared ecosystem C stocks (trees, soil and downed wood) and soil N stocks of different types of riverine wetlands (marsh, peat swamp forest and mangroves) whose distribution spans from an environment dominated by river forces to an estuarine environment dominated by coastal processes. We also estimated soil C sequestration rates of mangroves on the basis of soil C accumulation. We predicted that C stocks in mangroves and peat swamps would be larger than marshes, and that C, N stocks and C sequestration rates would be larger in the upper compared to the lower estuary. Mean C stocks in mangroves and peat swamps (784.5 ± 73.5 and 722.2 ± 63.6 MgC ha-1, respectively) were higher than those of marshes (336.5 ± 38.3 MgC ha-1). Soil C and N stocks of mangroves were highest in the upper estuary and decreased towards the lower estuary. C stock variability within mangroves was much lower in the upper estuary (range 744-912 MgC ha-1) compared to the intermediate and lower estuary (range 537-1115 MgC ha-1) probably as a result of a highly dynamic coastline. Soil C sequestration values were 1.3 ± 0.2 MgC ha-1 yr-1 and were similar across sites. Estimations of C stocks within large areas need to include spatial variability related to vegetation composition and geomorphological setting to accurately reflect variability within riverine wetlands.

  18. Carbon Sequestration in Mediterranean Tidal Wetlands: San Francisco Bay and the Ebro River Delta (Invited)

    Science.gov (United States)

    Callaway, J.; Fennessy, S.; Ibanez, C.

    2013-12-01

    Tidal wetlands accumulate soil carbon at relatively rapid rates, in large part because they build soil to counteract increases in sea-level rise. Because of the rapid rates of carbon sequestration, there is growing interest in evaluating carbon dynamics in tidal wetlands around the world; however, few measurements have been completed for mediterranean-type tidal wetlands, which tend to have relatively high levels of soil salinity, likely affecting both plant productivity and decomposition rates. We measured sediment accretion and carbon sequestration rates at tidal wetlands in two mediterranean regions: the San Francisco Bay Estuary (California, USA) and the Ebro River Delta (Catalonia, Spain). Sampling sites within each region represented a range of conditions in terms of soil salinity and plant communities, and these sites serve as potential analogs for long-term carbon sequestration in restored wetlands, which could receive credits under emerging policies for carbon management. Within San Francisco Bay, we collected six sediment cores per site at four salt marshes and two brackish tidal wetlands (two transects with three stations per transect at each site) in order to identify spatial variation both within and among wetlands in the Estuary. At the Ebro Delta, individual sediment cores were collected across 14 tidal wetland sites, including salt and brackish marshes from impounded areas, river mouths, coastal lagoon, and open bay settings. Cores were collected to 50 cm, and cores were dated using 137Cs and 210Pb. Most sites within San Francisco accreted 0.3-0.5 cm/yr, with slightly higher rates of accretion at low marsh stations; accretions rates based on 137Cs were slightly higher than those based on 210Pb, likely because of the shorter time frame covered by 137Cs dating. Accretion rates from the Ebro Delta sites were similar although more variable, with rates based on 137Cs ranging from 0.1 to 0.9 cm/yr and reflecting the wide range of conditions and management

  19. Global potential for carbon sequestration. Geographical distribution, country risk and policy implications

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Pablo C. [Department of Economics, University of Victoria, PO Box 1700 STN CSC, Victoria, BC (Canada); McCallum, Ian; Obersteiner, Michael [Forestry Project, International Institute for Applied Systems Analysis (Austria); Yamagata, Yoshiki [National Institute for Environmental Studies (Japan)

    2007-01-15

    We have provided a framework for identifying least-cost sites for afforestation and reforestation and deriving carbon sequestration cost curves at a global level in a scenario of limited information. Special attention is given to country risk in developing countries and the sensitivity to spatial datasets. Our model results suggest that within 20 years and considering a carbon price of USD 50/tC, tree-planting activities could offset 1 year of global carbon emissions in the energy sector. However, if we account for country risk considerations-associated with political, economic and financial risks - carbon sequestration is reduced by approximately 60%. With respect to the geography of supply, illustrated by grid-scale maps, we find that most least-cost sites are located in regions of developing countries such as the Sub-Sahara, Southeast Brazil and Southeast Asia. (author)

  20. Economic consequences of consideration of permanence, leakage and additionality for soil carbon sequestration projects

    International Nuclear Information System (INIS)

    This paper introduces, explains, and describes methods for addressing the issues of permanence, leakage, and additionality (PLA) of agricultural soil carbon sequestration (ASCS) activities at the project level. It is important to cast these as project-level issues, because they relate to the integrity and consistency of using location-specific ASCS projects as an offset against GHG emissions generated in other sectors (e.g., energy). The underlying objective is to understand and quantify what the net carbon benefits of an ASCS project are once we account for the fact that (1) the sequestered carbon may be stored impermanently, (2) the project may displace emissions outside the project boundaries (leakage), and (3) the project's carbon sequestration may not be entirely additional to what would have occurred anyway under business-as-usual (no project) conditions. This article evaluates methods for identifying and estimating PLA and gauges the potential magnitude of these effects on the economic returns to a project

  1. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    Science.gov (United States)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  2. The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

    Energy Technology Data Exchange (ETDEWEB)

    Gitz, V.; Hourcade, J.Ch.; Ciais, Ph

    2005-10-15

    This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector. thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a 'safety valve' after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades. (authors)

  3. Using improved technology for widespread application of a geological carbon sequestration study

    Science.gov (United States)

    Raney, J.

    2013-12-01

    The Kansas Geological Survey is part of an ongoing collaboration between DOE-NETL, academia, and the petroleum industry to investigate the feasibility of carbon utilization and storage in Kansas. Latest findings in the 25,000 mi2 study area in southern Kansas estimate CO2 storage capacity ranges from 8.8 to 75.5 billion metric tons in a deep Lower Orodovican-age Arbuckle saline aquifer. In addition, an estimated 100 million tonnes of CO2 could be used for extracting additional oil from Kansas' fields, making transitions to carbon management economic. This partnership has a rare opportunity to synchronize abundant, yet previously disseminated knowledge into a cohesive scientific process to optimize sequestration site selection and implementation strategies. Following a thorough characterization, a small-scale CO2 injection of 70,000 tonnes will be implemented in Wellington Field in Sumner County, including a five-plot miscible CO2-EOR flood of a Mississippian reservoir followed by the underlying Arbuckle saline aquifer. Best practices and lessons learned from the field study will improve estimates on CO2 storage capacity, plume migration models, and identify potential leakage pathways to pursue safe and effective geological carbon sequestration at commercial scales. A highly accessible and multifunctional online database is being developed throughout the study that integrates all acquired geological, physical, chemical, and hydrogeologic knowledge. This public database incorporates tens of thousands of data points into easily viewable formats for user downloads. An Interactive Project Map Viewer is a key mechanism to present the scientific research, and will delineate compartment candidates and reservoirs matching reference criteria or user defined attributes. This tool uses a familiar pan and zoom interface to filter regional project data or scale down to detailed digitized information from over 3,300 carefully selected preexisting Kansas wells. A Java-based log

  4. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  5. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay

    DEFF Research Database (Denmark)

    Dithmer, Line; Nielsen, Ulla Gro; Lundberg, Daniel;

    2016-01-01

    A laboratory scale experiment was set up to test the effect of dissolved organic carbon (DOC) as well as ageing of the La–P complex formed during phosphorus (P) sequestration by a La modified clay (Phoslock®). Short term (7 days) P adsorption studies revealed a significant negative effect of added...... DOC on the P sequestration of Phoslock®, whereas a long-term P adsorption experiment revealed that the negative effect of added DOC was reduced with time. The reduced P binding efficiency is kinetic, as evident from solid-state 31P magic-angle spinning (MAS) NMR spectroscopy, who showed that the P...

  6. Dissolution and carbonation of mechanically activated olivine-Investigating CO2 sequestration possibilities

    OpenAIRE

    Haug, Tove Anette

    2010-01-01

    Mineral carbonation used for CO2 sequestration faces three main challenges: increasing the overall carbonation rate, handle large amounts of feedstock and products, and developing a practical process with commercially acceptable energy consumption. High intensity milling, also called mechanical activation, has been found to increase the extraction rate of metals in the metallurgical industry. The focus of this PhD study has been the use of mechanical activation as a pre-treatment method withi...

  7. Dissolution and carbonation of mechanically activated olivine-Investigating CO2 sequestration possibilities

    OpenAIRE

    Haug, Tove Anette

    2010-01-01

    Mineral carbonation used for CO2 sequestration faces three main challenges: increasing the overall carbonation rate, handle large amounts of feedstock and products, and developing a practical process with commercially acceptable energy consumption.High intensity milling, also called mechanical activation, has been found to increase the extraction rate of metals in the metallurgical industry. The focus of this PhD study has been the use of mechanical activation as a pre-treatment method within...

  8. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  9. Rock Physics of Geologic Carbon Sequestration/Storage

    Energy Technology Data Exchange (ETDEWEB)

    Dvorkin, Jack; Mavko, Gary

    2013-05-31

    This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

  10. Allometric biomass and carbon factors database

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Z. [European Commission Joint Research Centre, Ispra (Italy). Institute for Environment and Sustainability]|[Hungarian Forest Research Institute, Budapest (Hungary); Teobaldelli, M.; Federici, S.; Pagliari, V.; Grassi, G.; Seufert, G. [European Commission Joint Research Centre, Ispra (Italy). Institute for Environment and Sustainability; Matteucci, G. [Consiglio Nazionale delle Ricerche, Rende (Italy). Istituto per i Sistemi Agricoli e Forestali del Mediterraneo

    2008-09-30

    The United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol (KP) recognize that forest ecosystems may contribute to mitigate the human-induced greenhouse effect. In particular, Article 3.3 of the KP makes mandatory for countries that have ratified the KP to submit inventory information on the carbon stock changes and non-CO{sub 2} (carbon dioxide) emission from afforestation (A), reforestation (R) and deforestation (D), whereas Article 3.4 of the KP allows countries to elect specific activities, among others forest management (FM), whose emissions and removals must also be included in the greenhouse gas inventories. The greenhouse gas (GHG) inventory information, which Annex I (i.e., developed) countries have to submit to the UNFCCC secretariat annually, provides the basis for climate change policy analysis development, and for checking the compliance with Countries' commitments under the KP. As a Party to both the UNFCCC and its KP, the European Community (EC) has to submit its annual GHG inventory. Within the EC GHG inventory system, the Climate Change Unit of the Joint Research Centre (European Commission, DG-JRC) is responsible for the Quality Assessment/Quality Control of GHG emissions and sinks in the sectors 'Agriculture' and 'Land Use, Land Use Change and Forestry' (LULUCF), which includes the check of Member States' inventories and the contribution to the EC Inventory Report. The work of JRC on the EC inventory is complemented by continuous efforts for harmonizing and improving the measuring and reporting of GHG emissions and sinks in the agriculture and forestry sector in Europe. To this aim, the JRC has established a web site 'AFOLU DATA' with the aim to offer EU-wide data sets, models and other tools to promote transparent, complete, consistent and comparable estimates of GHG emissions and removals. The aim of the present paper is to illustrate one of the databases hosted by AFOLU

  11. Carbon sequestration by fruit trees--Chinese apple orchards as an example.

    Directory of Open Access Journals (Sweden)

    Ting Wu

    Full Text Available Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits.

  12. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, K. [Department of Oceanography, SOEST, University of Hawaii, Honolulu, HI (United States); Capone, D.G. [University of Southern California, Los Angeles, CA (United States). Wrigley Institute for Environmental Studies and Department of Biological Sciences; Carpenter, E.J. [San Francisco State University, Tiburon, CA (United States). Romberg Tiburon Center; Cooley, S. [University of Georgia, Athens, GA (United States). Department of Marine Sciences; Kustka, A.B. [Ruters, The State University of New Jersey, New Brunswick, NJ (United States). Institute of Marine and Coastal Sciences; Mahaffey, C. [University of Liverpool (United Kingdom). Department of Earth and Ocean Science; Montoya, J.P. [Georgia Institute of Technology, Atlanta, GA (United States). School of Biology; Sanudo-Wilhelmy, S.A. [University of Southern California, Los Angeles, CA (United States). Wrigley Institute for Environmental Studies and Department of Biological Sciences; Shipe, R. [University of California, Los Angeles, CA (United States). Department of Ecology and Evolutionary Biology and Institute of the Environment; Subramaniam, A. [Columbia University, Palisades, NY (United States). Lamont-Doherty Earth Observatory; Yager, P.L. [University of Georgia, Athens, GA (United States). Department of Marine Sciences

    2008-07-15

    The fresh water discharged by large rivers such as the Amazon is transported hundreds to thousands of kilometers away from the coast by surface plumes. The nutrients delivered by these river plumes contribute to enhanced primary production in the ocean, and the sinking flux of this new production results in carbon sequestration. Here, we report that the Amazon River plume supports N2 fixation far from the mouth and provides important pathways for sequestration of atmospheric CO2 in the western tropical North Atlantic (WTNA). We calculate that the sinking of carbon fixed by diazotrophs in the plume sequesters 1.7 Tmol of C annually, in addition to the sequestration of 0.6 Tmol of C yr-1 of the new production supported by NO3 delivered by the river. These processes revise our current understanding that the tropical North Atlantic is a source of 2.5 Tmol of C to the atmosphere [Mikaloff-Fletcher SE, et al. (2007) Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochem Cycles 21, doi:10.1029/2006GB002751]. The enhancement of N2 fixation and consequent C sequestration by tropical rivers appears to be a global phenomenon that is likely to be influenced by anthropogenic activity and climate change.

  13. Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Wendy (Harvard Environmental Law and Policy, Cambridge, MA (US)); Chohen, Leah; Kostakidis-Lianos, Leah; Rundell, Sara (Harvard Law School, Cambridge, MA (US))

    2009-03-01

    Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in the absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.

  14. Comparison of the Farming System and Carbon Sequestration between Conventional and Organic Rice Production in West Java, Indonesia

    OpenAIRE

    M. Faiz Syuaib; Masakazu Komatsuzaki

    2010-01-01

    Organic farming provides many benefits in Indonesia: it can improve soil quality, food quality and soil carbon sequestration. This study was designed to compare soil carbon sequestration levels between conventional and organic rice farming fields in west Java, Indonesia. The results from soil analysis indicate that organic farming leads to soil with significantly higher soil carbon storage capacity than conventional farming. Organic farming can also cut some farming costs, but it requires abo...

  15. Conservation and sequestration of carbon: The potential of forest and agroforest management practices

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.K.; Winjum, J.K.; Schroeder, P.E.

    1993-01-01

    Forests play a major role in the Earth's carbon cycle through assimilation, storage, and emission of CO2. Establishment and management of boreal, temperate, and tropical forest and agroforest systems could potentially enhance sequestration of carbon in the terrestrial biosphere. A biologic and economic analysis of forest establishment and management options from 94 nations revealed that forestation, agroforestry, and silviculture could be employed to conserve and sequester one gigaton (Gt) of carbon annually over a 50 year period. The marginal cost of implementing these options to sequester 55 Gt of carbon would be approximately $10/ton.

  16. Soil carbon sequestration and the CDM. Opportunities and challenges for Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ringius, Lasse

    1999-12-17

    The agriculture sector dominates the economies of most sub-Saharan countries, contributing about one-third of the region's GDP, accounting for forty percent of the export, and employing about two-thirds of the economically active population. Moreover, some soils in sub-Saharan Africa could, by providing sinks for carbon sequestration, play an important role in managing global climate change. Improvements in agricultural techniques and land use practices could lead to higher agricultural productivity and accumulate soil carbon. Hence, soil carbon sequestration could produce local economic income as well as social and other benefits in Africa. The Clean Development Mechanism (CDM) established in the 1997 Kyoto Protocol is designed to give developed countries with high domestic abatement cost access to low-cost greenhouse gas abatement projects in developing countries, and to benefit developing countries selling projects to investors in developed countries. It is presently unclear whether the CDM will provide credit for sink enhancement and permit broader sink activities. Unfortunately, few cost estimates of soil carbon sequestration strategies presently exist. While these costs are uncertain and all input costs have not been estimated, manure-based projects in small-holdings in Kenya could increase maize yield significantly and sequester one ton of soil carbon for a net cost of -US$806. Clearly, such projects would be very attractive economically. There is presently an urgent need to launch useful long-term (>10 years) field experiments and demonstration projects in Africa. Existing data are not readily comparable, it is uncertain how large amount of carbon could be sequestered, findings are site-specific, and it is unclear how well the sites represent wider areas. To develop CDM projects, it is important that experimental trials generate reliable and comparable data. Finally, it will be important to estimate local environmental effects and economic benefits

  17. Terrestrial Carbon Sequestration in National Parks: Values for the Conterminous United States

    Science.gov (United States)

    Richardson, Leslie A.; Huber, Christopher; Zhu, Zhi-Liang; Koontz, Lynne

    2015-01-01

    Lands managed by the National Park Service (NPS) provide a wide range of beneficial services to the American public. This study quantifies the ecosystem service value of carbon sequestration in terrestrial ecosystems within NPS units in the conterminous United States for which data were available. Combining annual net carbon balance data with spatially explicit NPS land unit boundaries and social cost of carbon estimates, this study calculates the net metric tons of carbon dioxide sequestered annually by park unit under baseline conditions, as well as the associated economic value to society. Results show that, in aggregate, NPS lands in the conterminous United States are a net carbon sink, sequestering more than 14.8 million metric tons of carbon dioxide annually. The associated societal value of this service is estimated at approximately $582.5 million per year. While this analysis provides a broad overview of the annual value of carbon sequestration on NPS lands averaged over a five year baseline period, it should be noted that carbon fluxes fluctuate from year to year, and there can be considerable variation in net carbon balance and its associated value within a given park unit. Future research could look in-depth at the spatial heterogeneity of carbon flux within specific NPS land units.

  18. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    Science.gov (United States)

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques.

  19. Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX network. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.

  20. Carbon Sequestration and Sedimentation in Mangrove Swamps Influenced by Hydrogeomorphic Conditions and Urbanization in Southwest Florida

    Directory of Open Access Journals (Sweden)

    Daniel A. Marchio

    2016-05-01

    Full Text Available This study compares carbon sequestration rates along two independent tidal mangrove creeks near Naples Bay in Southwest Florida, USA. One tidal creek is hydrologically disturbed due to upstream land use changes; the other is an undisturbed reference creek. Soil cores were collected in basin, fringe, and riverine hydrogeomorphic settings along each of the two tidal creeks and analyzed for bulk density, total organic carbon profiles, and sediment accretion. Radionuclides 137Cs and 210Pb were used to estimate recent sediment accretion and carbon sequestration rates. Carbon sequestration rates (mean ± standard error for seven sites in the two tidal creeks on the Naples Bay (98 ± 12 g-C m−2·year−1 (n = 18 are lower than published global means for mangrove wetlands, but consistent with other estimates from the same region. Mean carbon sequestration rates in the reference riverine setting were highest (162 ± 5 g-C m−2·year−1, followed by rates in the reference fringe and disturbed riverine settings (127 ± 6 and 125 ± 5 g-C m−2·year−1, respectively. The disturbed fringe sequestered 73 ± 10 g-C m−2·year−1, while rates within the basin settings were 50 ± 4 g-C m−2·year−1 and 47 ± 4 g-C m−2·year−1 for the reference and disturbed creeks, respectively. These data support our hypothesis that mangroves along a hydrologically disturbed tidal creek sequestered less carbon than did mangroves along an adjacent undisturbed reference creek.

  1. Carbon enhancing management systems (CEMS): Estimation of soil carbon sequestration potential in small-holder farming systems in Northern Ghana

    OpenAIRE

    Naab, J.B.; Koo, J.; P.C.S. Traore; S.G.K. Adiku; Jones, J. W.; Boote, K. J.

    2008-01-01

    This bulletin explores the results of a study which measured the carbon sequestration potential for soils under different management options in Northern Ghana. Using simulation modeling, these researchers determined that soil organic carbon accumulation can be enhanced if farmers incorporate residue retention and fertilizer application practices and incorporate no-till practices into their crop management strategy. This study implies that exploring different soil management techniques in farm...

  2. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  3. [Effects of different fertilization modes on paddy field topsoil organic carbon content and carbon sequestration duration in South China].

    Science.gov (United States)

    Zhu, Li-Qun; Yang, Min-Fang; Xu, Min-Lun; Zhang, Wu-Yi; Bian, Xin-Min

    2012-01-01

    Based on the organic carbon data of 222 topsoil samples taken from 38 paddy field experiment sites in South China, calculations were made on the relative annual change of topsoil organic carbon content (RAC) and carbon sequestration duration in the paddy fields in South China under five fertilization modes (inorganic nitrogen fertilization, N; inorganic nitrogen and phosphorus fertilization, NP; inorganic nitrogen, phosphorus, and potassium fertilization, NPK; organic fertilization, O; and inorganic plus organic fertilization, OF). The RAC under the fertilizations was 0-0.4 g x kg(-1) x a(-1), with an increment of 0.20 and 0.26 g x kg(-1) x a(-1) in double and triple cropping systems, respectively. The RAC was higher in treatments O and OF than in treatments N, NP, and NPK, being the highest (0.32 g x kg(-1) x a(-1)) in treatment OF. The topsoil organic carbon accumulation rate decreased with increasing time, and the carbon sequestration duration in treatments N, NP, NPK, O, and OF was about 22, 28, 38, 57, and 54 years, respectively. Inorganic plus organic fertilization was the most effective practice for soil carbon sequestration in the paddy fields in South China.

  4. Carbon Sequestration Potential in Aboveground Biomass of Hybrid Eucalyptus Plantation Forest

    Directory of Open Access Journals (Sweden)

    Siti Latifah

    2013-04-01

    Full Text Available Forests are a significant part of the global carbon cycle. Forests sequester carbon by conducting photosynthesis, which is the process of converting light energy to chemical energy and storing it in the chemical bonds of sugar. Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.  The present investigation was carried out to determine carbon sequestration potential of hybrid Eucalyptus. This study was conducted primarily to develop a prediction model of carbon storage capacity for plantation forest of hybrid Eucalyptus in Aek Nauli, Simalungun District, North Sumatera. Models were tested and assessed for statistical validity and accuracy in predicting biomass and carbon, based on determination coefficient (R and correlation coefficient (r, aggregative deviation percentage (AgD, and the average deviation percentage (AvD. The best general model to estimate the biomass of hybrid Eucalyptus was Y = 1351,09x^0,876. e^(0,094.  Results showed that hybrid Eucalyptus had an average above-ground biomass in year 0 (the land without the eucalyptus trees up to year 3 as large as 1.36, 11.56, 43.18, and 63.84 t ha. The carbon content of hybrid Eucalyptus were 0.61, 5.2, 19.43 t^(-1, and 28,73  t^(-1 C ha while the carbon sequestration potential were 2.23, 19.08, 71.31, and 105.43 t^(-1 CO  ha^(-1 respectively.Keywords: biomass, carbon stock, model, hybrid Eucalyptus, plantation forest

  5. GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS J M

    2007-10-11

    Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, the ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.

  6. Net Carbon Sequestration Potential and Emissions in Home Lawn Turfgrasses of the United States

    Science.gov (United States)

    Selhorst, Adam; Lal, Rattan

    2013-01-01

    Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha-1 year-1 to 5.4 Mg C ha-1 year-1. Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0-96.3 ± 6.0 Mg C ha-1. Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha-1 year-1 and 45.8 ± 3.5 Mg C ha-1, respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha-1 year-1) and fertilizer use (63.6 kg Ce ha-1 year-1) for all sites totaled 254.3 kg Ce ha-1 year-1. Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year-1 under low management regimes and 7551.4 Gg Ce year-1 under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.

  7. Chemical sensing and imaging in microfluidic pore network structures relevant to natural carbon cycling and industrial carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Zhang, Changyong; Wilkins, Michael J.; Warner, Marvin G.; Anheier, Norman C.; Suter, Jonathan D.; Kelly, Ryan T.; Oostrom, Martinus

    2013-06-11

    Energy and climate change represent significant factors in global security. Atmospheric carbon dioxide levels, while global in scope, are influenced by pore-scale phenomena in the subsurface. We are developing tools to visualize and investigate processes in pore network microfluidic structures with transparent covers as representations of normally-opaque porous media. In situ fluorescent oxygen sensing methods and fluorescent cellulosic materials are being used to investigate processes related to terrestrial carbon cycling involving cellulytic respiring microorganisms. These structures also enable visualization of water displacement from pore spaces by hydrophobic fluids, including carbon dioxide, in studies related to carbon sequestration.

  8. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil

    Institute of Scientific and Technical Information of China (English)

    Qian Kuimei; Wang Liping; Yin Ningning

    2012-01-01

    A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycorrhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil.A complex substrate of coal gangue,fly ash and sludge was used as reclaimed mine soil,and ryegrass was planted with AMF inoculation to construct a plant-complex substrate-microbe ecological restoration system.The changes to the soil organic carbon (SOC),activities of soil enzymes and glomalin-related soil protein (GRSP) were measured and the effects of AMF on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil were analyzed.The results show that the contents of GRSP (total glomalin (TG) and easily extractable glomalin (EEG)),SOC and activities of enzymes increased,and the increments were higher in the AMF inoculation treated plant-complex substrate-microbe ecological restoration systems than those with no AMF inoculated treatments after 12 months of ryegrass growth.TG,EEG and soil enzyme activity have a significant positive correlation,and the correlative coefficient was 0.427-0.573; SOC and TG,EEG have a significant positive correlation (p < 0.01 ),indicating that AMF plays an important role in carbon sequestration of reclaimed mine soils.

  9. Carbon Sequestration in Tropical and Subtropical Plant Species in Collaborative and Community Forests of Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar Mandal

    2016-01-01

    Full Text Available Different plant species have different capacity of carbon sequestration but it is not assessed yet in Nepal. Therefore, this study was done to assess the species-wise carbon sequestration in two periods in forests. Three collaborative and three community forests were selected for the study. The selected forests were surveyed using GPS and mapped and stratified into tree, pole, and regeneration. Specifically 32, 33, and 31 samples were collected from Banke-Maraha, Tuteshwarnath, and Gadhanta-Bardibash collaborative forests, respectively, while 30, 25, and 22 samples were collected from Chureparwati, Buddha, and Chyandanda community forests correspondingly. The sample plots were of 25 m × 20 m for tree strata. The diameter and height of plants were measured and samples were collected for three consecutive years. The estimated carbon stock of Shorea robusta was the highest 35.93 t ha−1 in 2011 which was slightly decreased to 34.43 t ha−1 in 2012 and reached 32.02 t ha−1 in 2013 in Banke-Maraha collaborative forest but it was the least 7.97, 8.92, and 10.29 t ha−1 in 2011, 2012, and 2013, respectively, in Chyandanda community forest. The highest carbon sequestration was recorded about 5.02 t ha−1 of Shorea robusta in Chyandanda community forest in between t2013 and t2012.

  10. A Novel Strategy of Carbon Capture and Sequestration by rHLPD Processing

    Directory of Open Access Journals (Sweden)

    Richard Eric Riman

    2016-01-01

    Full Text Available Monoethanolamine (MEA scrubbing is an energy intensive process for Carbon Capture and Sequestration (CCS due to the regeneration of amine in stripping towers at high temperature (100-120 ºC and the subsequent pressurization of CO2 for geologic sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD, which is able to solidify (densify monolithic materials without using high temperature kilns. Then we integrate MEA-based CCS processing and mineral carbonation by using rHLPD technology. This integration is designated as rHLPD-Carbon Sequestration (rHLPD-CS process. Our results show that the CO2 captured in the MEA-CO2 solution was sequestered by the mineral (wollastonite CaSiO3 carbonation at a low operating temperature (60 ºC and simultaneously monolithic materials with a compressive strength of ~121 MPa were formed. This suggests that the use of rHLPD-CS technology eliminates the energy consumed for CO2-MEA stripping and CO2 compression and also sequesters CO2 to form value-added products, which have a potential to be utilized as construction and infrastructure materials. In contrast to the high energy requirements and excessive greenhouse gas emissions from conventional Portland cement manufacturing, our calculations show that the integration of rHLPD and CS technologies provides a low energy alternative to production of traditional cementitious binding materials.

  11. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  12. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security

    Science.gov (United States)

    Lal, R.

    2004-06-01

    The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient management, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil carbon pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, carbon sequestration has the potential to offset fossil-fuel emissions by 0.4 to 1.2 gigatons of carbon per year, or 5 to 15% of the global fossil-fuel emissions.

  13. Algal-based CO2 Sequestration Technology and Global Scenario of Carbon Credit Market: A Review

    Directory of Open Access Journals (Sweden)

    Shailendra Kumar Singh

    2016-08-01

    Full Text Available The objective of this paper is to provide an overview of the global and national scenario of Carbon credit. This paper will also discuss the advantages of the algae-based carbon capture technology in growing carbon credit market. Carbon Dioxide (CO2, the most important greenhouse gas produced by combustion of fuels, has become a cause of global panic as its concentration in the Earth’s atmosphere has been rising alarmingly. However, it is now turning into a product that helps people, countries, consultants, traders, corporations and even farmers earn billion of rupees. A carbon credit is a generic term for any tradable certificate or permit representing the right to emit one tone of CO2 or CO2 equivalent (CO2-e. Businesses can exchange, buy or sell carbon credits in the international markets at the prevailing market price. India and China are likely to emerge as biggest seller and Europe is going to be biggest buyers of carbon credits. Using algae for reduction the CO2 concentration in the atmosphere is known as algae-based carbon capture technology. This new technology has attracted companies that need inexpensive CO2 sequestration solutions. Algae farming emerge as the best CO2 sequestration technique in comparison with other methods.

  14. Enhanced oil recovery & carbon sequestration building on successful experience

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Fred [BEPC (United States)

    2008-07-15

    In this paper it is spoken of the experiences in the capture and sequestration of CO{sub 2} in the companies Basin Electric Power Cooperative (BEPC) and Dakota Gasification Company (DGC); their by-products are mentioned and what these companies are making to control the CO{sub 2} emissions. Their challenges to compress CO{sub 2} are presented and how they have reduced the CO{sub 2} emissions in the DGC of the 2000 to the 2008; how they use CO{sub 2} to enhance the oil recovery and which are their challenges in the CO{sub 2} transport. [Spanish] En esta ponencia se habla de las experiencias en la captura y secuestro de CO{sub 2} en las empresas Basin Electic Power Cooperative (BEPC) y Dakota Gasification Campany (DGC); se mencionan sus subproductos y que estan haciendo estas empresas para controlar las emisiones de CO{sub 2}. Se presentan sus retos para comprimir CO{sub 2} y como han reducido las emisiones de CO{sub 2} en la DGC del 2000 al 2008; como utilizan el CO{sub 2} para mejorar la recuperacion de petroleo y sus cuales son retos en el transporte de CO{sub 2}.

  15. 广东省营造碳汇林的思考%Thoughts on Carbon Sequestration Afforestation in Guangdong Province

    Institute of Scientific and Technical Information of China (English)

    李清湖; 林中大

    2014-01-01

    阐述了碳汇造林的重要意义,分析了广东省碳汇林建设的有利条件以及发展现状,指出近年来碳汇造林存在的主要问题,并提出了促进碳汇造林建设的具体对策,为广东省碳汇林业发展提供借鉴。%This paper illustrated the significance of carbon sequestration afforestation and analysed the advan-tage conditions and current status of carbon sequestration forestry construction in Guangdong province. The ma-jor problems of carbon sequestration afforestation in recent years were also pointed out. Besides,the paper pro-posed concrete countermeasures to promote the development of carbon sequestration forestry in Guangdong prov-ince.

  16. Thoughts on Carbon Sequestration Afforestation in Guangdong Province%广东省营造碳汇林的思考

    Institute of Scientific and Technical Information of China (English)

    李清湖; 林中大

    2014-01-01

    This paper illustrated the significance of carbon sequestration afforestation and analysed the advan-tage conditions and current status of carbon sequestration forestry construction in Guangdong province. The ma-jor problems of carbon sequestration afforestation in recent years were also pointed out. Besides,the paper pro-posed concrete countermeasures to promote the development of carbon sequestration forestry in Guangdong prov-ince.%阐述了碳汇造林的重要意义,分析了广东省碳汇林建设的有利条件以及发展现状,指出近年来碳汇造林存在的主要问题,并提出了促进碳汇造林建设的具体对策,为广东省碳汇林业发展提供借鉴。

  17. Is a Clean Development Mechanism project economically justified? Case study of an International Carbon Sequestration Project in Iran.

    Science.gov (United States)

    Katircioglu, Salih; Dalir, Sara; Olya, Hossein G

    2016-01-01

    The present study evaluates a carbon sequestration project for the three plant species in arid and semiarid regions of Iran. Results show that Haloxylon performed appropriately in the carbon sequestration process during the 6 years of the International Carbon Sequestration Project (ICSP). In addition to a high degree of carbon dioxide sequestration, Haloxylon shows high compatibility with severe environmental conditions and low maintenance costs. Financial and economic analysis demonstrated that the ICSP was justified from an economic perspective. The financial assessment showed that net present value (NPV) (US$1,098,022.70), internal rate of return (IRR) (21.53%), and payback period (6 years) were in an acceptable range. The results of the economic analysis suggested an NPV of US$4,407,805.15 and an IRR of 50.63%. Therefore, results of this study suggest that there are sufficient incentives for investors to participate in such kind of Clean Development Mechanism (CDM) projects.

  18. Carbon Dioxide Sequestration and ECBM in the Powder River Basin

    Science.gov (United States)

    Colmenares, L. B.; Zoback, M. D.

    2003-12-01

    Coal seams are both a source of coal bed methane (CBM) and a potential carbon dioxide sink. For sub-bituminous coals like those in the Powder River Basin (PRB), the CO2/CH4 adsorption ratio is approximately 10:1, which indicates the significant potential for sequestering carbon dioxide. In addition, injected carbon dioxide would also enhance the production of methane from the coal seam because of its higher adsorption capacity. This means that the injection of carbon dioxide in coal beds may have the dual benefit of sequestering carbon dioxide and enhancing CBM production. Moreover, if carbon dioxide injection efficiently displaces the adsorbed methane, it may reduce the amount of water produced from CBM wells as part of the depressurization process. Our work in the Powder River Basin indicates that drilling and completion operations result in hydraulic fracturing of the coal and possibly the adjacent strata. This would result in both excess CBM water production and inefficient depressurization of coals. We have been able to collect water-enhancement tests data in coals to obtain the magnitude of the least principal stress in the coal seam. The preliminary data we have analyzed indicates that the hydrofracs are horizontal in some areas because the least principal stress corresponds to the overburden. It is interesting to speculate that one could use horizontal hydrofracs near the bottom of the coal seam for carbon dioxide injection and a horizontal hydrofrac near the upper part of the coal seam for methane production.

  19. Limits to the potential of bio-fuels and bio-sequestration of carbon

    International Nuclear Information System (INIS)

    This document examines bio-physical limits of bio-fuels and bio-sequestration of carbon by examining available solar radiation and observed efficiencies with which natural ecosystems and agricultural systems convert that energy to biomass. It compares these energy/carbon exchanges with national levels of energy use and carbon emissions for Australia, Brazil, China, Japan, Republic of Korea, New Zealand, Papua New Guinea, Singapore, Sweden, United Kingdom and United States. Globally primary energy consumption (related carbon emissions) is currently equivalent to ∼0.06% of the incident solar energy, and 43% of the energy (carbon) captured by photosynthesis. The nations fall into three categories. Those with primary energy consumption that is: 1–10% (Japan, Korea and Singapore); ∼0.1% (China, UK and the US) and; 0.1–0.01% (Australia, Brazil, Papua New Guinea, New Zealand and Sweden) of incident solar radiation. The percentage of energy captured in biomass follows this pattern, but generally lower by ∼3 orders of magnitude. The energy content of traded wheat, corn and rice represents conversion efficiencies of solar radiation of 0.08–0.17% and for sugar close to 1%, ignoring energy use in production and conversion of biomass to fuels. The study implies that bio-fuels or bio-sequestration can only be a small part of an inclusive portfolio of actions towards a low carbon future and minimised net emissions of carbon to the atmosphere. - Highlights: • Global energy consumption is ∼0.06% of solar; 43% of net primary production. • 11 nations studied fall into 3 groups: consumption/solar=1–10%; ∼0.1%; 0.1–0.01%. • % of energy captured in biomass is lower by ∼3 orders of magnitude. • Crops and natural ecosystems capture 0.1–0.3% and sugar 1% of solar energy. • Significant bio-energy/carbon sequestration via biomass is unrealistic

  20. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China.

    Science.gov (United States)

    Niu, Li; Manxia, Chen; Xiumei, Gao; Xiaohua, Long; Hongbo, Shao; Zhaopu, Liu; Zed, Rengel

    2016-10-15

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in guream(-2)): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419gCkg(-1). Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0-10cm than 10-20cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. PMID:27317133

  1. Carbon sequestration potential in aboveground biomass of Thong Pha Phum National Forest, Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Terakunpisut, J. [Kasetsart Univ. Kamphaeng Saen, Nakornpratom (Thailand). Faculty of Liberal Arts and Science; Gajaseni, N.; Ruankawe, N. [Chulalongkorn Univ., Bangkok (Thailand). Biology Dept.

    2007-07-01

    Increasingly convincing evidence shows that the Earth is getting warmer and in the future warming could have serious effects on humans. Atmospheric concentration of carbon dioxide (CO{sub 2}), the primary and best studied greenhouse gas, has increased by about 30% from the start of the industrial revolution to 1992 due to fossil fuel combustion and changes in land use. The ultimate objective of the United Nations Framework, in which Thailand is a member, is to stabilize the atmospheric greenhouse gas concentrations at a level that will not cause dangerous anthropogenic interference with the climate system. The emission reduction of greenhouse gases from members of industrialized countries is called for in the Kyoto Protocol. Thailand ratified the Kyoto Protocol August 28, 2002, and therefore will voluntarily participate in CO{sub 2} reduction. There are two alternatives to reduce CO{sub 2}: decreasing carbon source and increasing carbon sink. The world's forests are prominent sites to study climate change, not only in terms of total net carbon emissions but also in terms of global storage capacity, important for climatic regulation. This study assessed the potential of carbon sequestration on aboveground biomass in the different forest ecosystems in Thong Pha Phum National Forest, Thailand. The assessment was based on a total inventory for woody stem at {>=}4.5 cm diameter at breast height (DBH). Aboveground biomass was estimated using allometric equation and aboveground carbon stock was calculated by multiplying the 0.5 conversion factor to the biomass. As the results, carbon sequestration showed varied in different types of forests. Tropical rain forest (Ton Mai Yak station) higher carbon stock than dry evergreen forest (KP 27 station) and mixed deciduous forest (Pong Phu Ron station) as 137.73 {+-} 48.07, 70.29 {+-} 7.38 and 48.14 {+-} 16.72 tonne C/ha, respectively. Habitat variability caused differences of biomass accumulation, species composition and the

  2. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    Science.gov (United States)

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  3. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential

    DEFF Research Database (Denmark)

    Zeng, Ning; King, Anthony W.; Zaitchik, Ben;

    2013-01-01

    emissions). Earlier estimates of the theoretical potential of wood harvest and storage (WHS) based on coarse wood production rates were 10±5 GtC y−1. Starting from this physical limit, here we apply a number of practical constraints: (1) land not available due to agriculture; (2) forest set aside...... more efficient wood use without increasing harvest, finds 0.1–0.5 GtC y−1 available for carbon sequestration. We suggest a range of 1–3 GtCy−1 carbon sequestration potential if major effort is made to expand managed forests and/or to increase harvest intensity. The implementation of such a scheme...... to be managed this way on half of the world’s forested land, or on a smaller area but with higher harvest intensity.We recommendWHS be considered part of the portfolio of climate mitigation and adaptation options that needs further research....

  4. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Science.gov (United States)

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change. PMID

  5. Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio

    OpenAIRE

    Ogden, Joan M; Johnson, Nils; Yang, Christopher; Ni, Jason; Lin, Zhenhong; Figueroa, José; Johnson, Joshua

    2005-01-01

    Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration DOE/NETL (CCS 2005), Arlington, VA, May 2 - 5, 2005 Researchers at the University of California, Davis, in support of the Department of Energy's Fossil Energy programs, are developing engineering/economic/geographic models of fossil hydrogen energy systems with carbon capture and sequestration. In this paper, we present initial results from an ongoing assessment of alternative transition strategies from toda...

  6. Carbon turnover and sequestration potential of fodder radish cover crop

    DEFF Research Database (Denmark)

    Mutegi, James; Petersen, Bjørn Molt; Munkholm, Lars Juhl

    2013-01-01

    We studied fodder radish carbon turnover as affected by soil tillage in Foulum, Denmark. Actively growing fodder radish monoliths from direct-drilled (DD) and conventionally tilled (CT) plots were extracted and labelled regularly with 14C isotope across their entire growth period. At the end......- to 45-cm-depth increments for determination of 14C distribution and retention. Carbon-14 declined significantly with increasing soil depth at each sampling for the two tillage practices (P

  7. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature.

    Science.gov (United States)

    Rushendra Revathy, T D; Palanivelu, K; Ramachandran, A

    2016-04-01

    Rapid increase of CO2 concentration in the atmosphere has forced the international community towards adopting actions to restrain from the impacts of climate change. Moreover, in India, the dependence on fossil fuels is projected to increase in the future, implying the necessity of capturing CO2 in a safe manner. Alkaline solid wastes can be utilized for CO2 sequestration by which its disposal issues in the country could also be met. The present work focuses to study direct mineral carbonation of steelmaking slag (SS) at room temperature and low-pressure conditions (carbonation of SS was carried out in a batch reactor with pure CO2 gas. The process parameters that may influence the carbonation of SS, namely, CO2 gas pressure, liquid to solid ratio (L/S) and reaction time were also studied. The results showed that maximum sequestration of SS was attained in the aqueous route with a capacity of 82 g of CO2/kg (6 bar, L/S ratio of 10 and 3 h). In the gas-solid route, maximum sequestration capacity of about 11.1 g of CO2/kg of SS (3 bar and 3 h) was achieved indicating that aqueous route is the better one under the conditions studied. These findings demonstrate that SS is a promising resource and this approach could be further developed and used for CO2 sequestration in the country. The carbonation process was evidenced using FT-IR, XRD, SEM and TG analysis. PMID:26681331

  8. Carbon capture and sequestration: how much does this uncertain option affect near-term policy choices?

    OpenAIRE

    Bosetti, Valentina; Gilotte, Laurent

    2006-01-01

    Policy makers as well as many economists recognize geological Carbon Capture and Sequestration (CCS) as a key option to avoid costly emission reduction. While an extreme perspective is to envision CCS as a magic bullet to solve the issue of climate change, the economics perspective is more balanced and see it as a part of a portfolio of mitigation actions. Besides, as any novel mitigation technology, CCS can be implemented with a twofold purpose; on one side it can substitute some other techn...

  9. Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration

    Institute of Scientific and Technical Information of China (English)

    PAN Gen-xing; LI Lian-qing; ZHANG Qi; WANG Xu-kui; SUN Xing-bin; XU Xiao-bo; JIANG Ding-an

    2005-01-01

    Data collection of soil organic carbon(SOC) of 154 soil series of Jiangsu, China from the second provincial soil survey and of recent changes in SOC from a number of field pilot experiments across the province were collected. Statistical analysis of SOC contents and soil properties related to organic carbon storage were performed. The provincial total topsoil SOC stock was estimated to be 0.1 Pg with an extended pool of 0.4 Pg taking soil depth of 1 m, being relatively small compared to its total land area of 101700 km2 . One quarter of this topsoil stock was found in the soils of the Taihu Lake region that occupied 1/6 of the provincial arable area. Paddy soils accounted for over 50% of this stock in terms of SOC distribution among the soil types in the province. Experimental data from experimental farms widely distributed in the province showed that SOC storage increased consistently over the last 20 years despite a previously reported decreasing tendency during the period between 1950-1970. The evidence indicated that agricultural management practices such as irrigation, straw return and rotation of upland crops with rice or wheat crops contributed significantly to the increase in SOC storage. The annual carbon sequestration rate in the soils was in the range of 0.3-3.5 tC/( hm2 · a), depending on cropping systems and other agricultural practices. Thus, the agricultural production in the province, despite the high input, could serve as one of the practical methods to mitigate the increasing air CO2.

  10. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

    2006-01-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  11. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

    2005-10-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  12. Carbon sequestration capacity of sediments, algae, and zooplankton from fresh water aquaculture ponds.

    Science.gov (United States)

    Anikuttan, K K; Adhikari, S; Kavitha, M; Jayasankar, P

    2016-07-01

    The contribution of aquaculture and allied activities to the emission of green house gases and consequently to global warming is an emerging concern among environmentalists in the recent past. However, there exists ample scope for aquaculture activities to sequester carbon and thus compensate for the carbon emissions linked to aquaculture. This article attempts to elucidate the carbon sequestration capacity of sediments, algae, and zooplankton from fresh water aquaculture ponds. The percent organic carbon in the pond sediments ranged from 0.39 to 1.31 with an average value of 0.912 ± 0.321 whereas the carbon sequestration capacity ranged from 0.442 to 1.882 MgC/ha (1 Mg = 10(6) g) with an average value of 1.018 ± 0.447 MgC/ha. In the case of zooplankton and algae from pond, the percent organic carbon was 7.688 ± 0.196 and 2.354 ± 0.047, respectively, whereas the total estimated carbon burial rate was 0.009 ± 0.005 and 0.150 ± 0.003 MgC/ha, respectively. These findings are discussed with the previous reports available at present and are found to be in comparable ranges. PMID:27321139

  13. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-09-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  14. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2007-03-31

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2007. The specific tasks discussed include: Task 1--carbon inventory advancements; Task 2--emerging technologies for remote sensing of terrestrial carbon; Task 3--baseline method development; Task 4--third-party technical advisory panel meetings; Task 5--new project feasibility studies; and Task 6--development of new project software screening tool.

  15. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-12-31

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between October 1st and December 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  16. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

    2006-04-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  17. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.

    Science.gov (United States)

    Chang, E-E; Pan, Shu-Yuan; Chen, Yi-Hung; Chu, Hsiao-Wen; Wang, Chu-Fang; Chiang, Pen-Chi

    2011-11-15

    Carbon dioxide (CO(2)) sequestration experiments using the accelerated carbonation of three types of steelmaking slags, i.e., ultra-fine (UF) slag, fly-ash (FA) slag, and blended hydraulic slag cement (BHC), were performed in an autoclave reactor. The effects of reaction time, liquid-to-solid ratio (L/S), temperature, CO(2) pressure, and initial pH on CO(2) sequestration were evaluated. Two different CO(2) pressures were chosen: the normal condition (700 psig) and the supercritical condition (1300 psig). The carbonation conversion was determined quantitatively by using thermo-gravimetric analysis (TGA). The major factors that affected the conversion were reaction time (5 min to 12h) and temperature (40-160°C). The BHC was found to have the highest carbonation conversion of approximately 68%, corresponding to a capacity of 0.283 kg CO(2)/kg BHC, in 12h at 700 psig and 160°C. In addition, the carbonation products were confirmed to be mainly in CaCO(3), which was determined by using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) to analyze samples before and after carbonation. Furthermore, reaction kinetics were expressed with a surface coverage model, and the carbon footprint of the developed technology in this investigation was calculated by a life cycle assessment (LCA). PMID:21889848

  18. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Zoe Kant; Gilberto Tiepolo; Wilber Sabido; Ellen Hawes; Jenny Henman; Miguel Calmon; Michael Ebinger

    2004-07-10

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  19. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    Science.gov (United States)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P P = 0.001), as did root-associated ECM structures (P = 0.021). The amount of carbon sequestered within living mycorrhizal structures (0.013 to 0

  20. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Directory of Open Access Journals (Sweden)

    Irene Criscuoli

    Full Text Available The addition of pyrogenic carbon (C in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2 with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2. After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  1. Controls on soil carbon sequestration and dynamics: lessons from land-use change.

    Science.gov (United States)

    Morris, Sherri J; Conant, Richard; Mellor, Nathan; Brewer, Elizabeth; Paul, Eldor A

    2010-03-01

    Soil carbon (C) dynamics and sequestration are controlled by interactions of chemical, physical and biological factors. These factors include biomass quantity and quality, physical environment and the biota. Management can alter these factors in ways that alter C dynamics. We have focused on a range of managed sites with documented land use change from agriculture or grassland to forest. Our results suggest that interactions of soil type, plant and environment impact soil C sequestration. Above and below ground C storage varied widely across sites. Results were related to plant type and calcium on sandy soils in our Northern sites. Predictors of sequestration were more difficult to detect over the temperature range of 12.4°C in the present study. Accrual of litter under pines in the moist Mississippi site limited C storage in a similar manner to our dry Nebraska site. Pre-planting heterogeneity of agricultural fields such as found in Illinois influences C contents. Manipulation of controls on C sequestration such as species planted or amelioration of soil quality before planting within managed sites could increase soil C to provide gains in terrestrial C storage. Cost effective management would also improve soil C pools positively affecting soil fertility and site productivity. PMID:22736841

  2. Carbon dioxide sequestration via olivine carbonation: Examining the formation of reaction products

    Science.gov (United States)

    King, H. E.; Plümper, O.; Putnis, A.

    2009-04-01

    Due to its abundance and natural ability to sequester CO2, olivine has been proposed as one mineral that could be used in the control of CO2 emissions into the atmosphere (Metz, 2005). Large scale peridotite deposits found in locations such as the Western Gneiss Region in Norway could provide in-situ sites for sequestration or the raw materials for ex-situ mineral carbonation. Determining the conditions under which magnesite (MgCO3) forms most efficiently is crucial to conduct a cost effective process. Understanding the development of secondary minerals is particularly important for in-situ methods as these phases can form passivating layers and affect the host rock porosity. The final solution of flow-through experiments conducted at alkaline pH have been shown to be supersaturated with respect to talc and chrysotile (Giammer et al., 2005), although these phases were not found to have precipitated the formation of a passivating, amorphous silica layer has been observed on reacted olivine surfaces (Bearat et al., 2006). By studying magnesite and other products produced during the carbonation of olivine within Teflon lined steel autoclaves we have begun to form a more comprehensive understanding of how these reactions would proceed during sequestration processes. We have performed batch experiments using carbonated saline solutions in the presence of air or gaseous CO2 from 80 to 200 ˚ C. X-ray powder diffraction was used to identify magnesite within the reaction products. Crystals of magnesite up to 20 m in diameter can be observed on olivine grain surfaces with scanning electron microscopy. Secondary reaction products formed a platy layer on olivine surfaces in reactions above 160 ˚ C and below pH 12. Energy dispersive X-ray analysis of the platy layer revealed an increase in Fe concentration. The macroscopically observable red colouration of the reaction products and Raman spectroscopy indicate that hematite is present in these layers. For experiments with

  3. Dissolution and carbonation of mechanically activated olivine-Investigating CO{sub 2} sequestration possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Haug, Tove Anette

    2010-03-15

    Mineral carbonation used for CO{sub 2} sequestration faces three main challenges: increasing the overall carbonation rate, handle large amounts of feedstock and products, and developing a practical process with commercially acceptable energy consumption. High intensity milling, also called mechanical activation, has been found to increase the extraction rate of metals in the metallurgical industry. The focus of this PhD study has been the use of mechanical activation as a pre-treatment method within mineral carbonation as applied to CO{sub 2} sequestration. Olivine was chosen due to the availability of this mineral in Norway. Experiments were conducted to determine how mechanical activation changed the specific surface area, particle size distribution and the crystallinity; and to explore how milling conditions and material characteristics were correlated with increased dissolution rates and increased extent of carbonation. A planetary mill was used in all experiments in addition to a laboratory ball mill, a pilot scale Hicom mill and a pilot scale Szegvari attritor when mechanical activation was evaluated for implementation within mineral carbonation. Finally the energy consumption during milling was evaluated in the context of CO{sub 2} sequestration. Over 60 olivine samples were prepared by milling including duplicates. Two dissolution experiments were performed, one at room conditions with 0.01 M HCl and one at 128 deg. C and 150 bar of CO{sub 2}. The specific dissolution rates of mechanically activated samples increased up to three orders of magnitude compared to an un activated reference sample. Crystallinity as calculated from X-ray diffractograms was the material parameter with the best correlation with the measured dissolution rates. Specific surface area was only correlated to dissolution rates for samples with relatively high crystallinity. The particle size distribution was not correlated with the measured dissolution rates. Neither the dissolution

  4. DOE Ocean Carbon Sequestration Research Workshop 2005 - May 26th thru 27th

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L.; Chavez, Francisco; Maltrud, Matthew; Adams, Eric; Arrigo, Kevin; Barry, James; Carmen, Kevin; Bishop, James; Bleck, Rainer; Gruber, Niki; Erickson, David; Kennett, James; Tsouris, Costas; Tagliabue, Alessandro; Paytan, Adina; Repeta, Daniel; Yeager, Patricia; Marshall, John; Gnanadesikan, Anand

    2007-01-11

    The purpose of this workshop was to bring together the principal investigators of all the projects that were being funded under the DOE ocean carbon sequestration research program. The primary goal of the workshop was to interchange research results, to discuss ongoing research, and to identify future research priorities. In addition, we hoped to encourage the development of synergies and collaborations between the projects and to write an EOS article summarizing the results of the meeting. The primary outcome of the meeting was a decision to write two papers for the reviewed literature on carbon sequestration by iron fertilization, and on carbon sequestration by deep sea injection and to examine the possibility of an overview article in EOS on the topic of ocean carbon sequestration. There has been significant progress on several of these goals since the meeting: (1) Review of carbon sequestration by iron fertilization: One of the most interesting results of the meeting was a presentation by John Marshall of iron fertilization simulations carried out at MIT that suggested a much higher efficiency of CO2 uptake from the atmosphere with a newer generation model (since published by Dutkiewicz, et al., 2006]) than earlier studies had found with an older generation model (cf., Gnanadesikan, et al., 2003). The decision was made that this finding should be investigated with a new set of simulations using other newer generation models with realistic parameterization of biological processes. This research has progressed considerably, with the modeling groups of MIT, Princeton University, UCLA, Stanford University, and Los Alamos National Laboratory participating. A follow up meeting of the principal participants was held on September 11-15, 2006, using remaining funds from the original grant, and three manuscripts are now in an advanced state of preparation: Chavez, F., et al., in preparation. A review of iron fertilization Jin, X., N. Gruber, and H. Frenzel, in

  5. Balancing carbon sequestration and GHG emissions in a constructed wetland

    NARCIS (Netherlands)

    Klein, de J.J.M.; Werf, van der A.K.

    2014-01-01

    In many countries wetlands are constructed or restored for removing nutrients from surface water. At the same time vegetated wetlands can act as carbon sinks when CO2 is sequestered in biomass. However, it is well known that wetlands also produce substantial amounts of greenhouse gasses CH4 and N2O.

  6. Temperature controls organic carbon sequestration in a subarctic lake

    Science.gov (United States)

    Rantala, Marttiina V.; Luoto, Tomi P.; Nevalainen, Liisa

    2016-10-01

    Widespread ecological reorganizations and increases in organic carbon (OC) in lakes across the Northern Hemisphere have raised concerns about the impact of the ongoing climate warming on aquatic ecosystems and carbon cycling. We employed diverse biogeochemical techniques on a high-resolution sediment record from a subarctic lake in northern Finland (70°N) to examine the direction, magnitude and mechanism of change in aquatic carbon pools prior to and under the anthropogenic warming. Coupled variation in the elemental and isotopic composition of the sediment and a proxy-based summer air temperature reconstruction tracked changes in aquatic production, depicting a decline during a cool climate interval between ~1700–1900 C.E. and a subsequent increase over the 20th century. OC accumulation rates displayed similar coeval variation with temperature, mirroring both changes in aquatic production and terrestrial carbon export. Increase in sediment organic content over the 20th century together with high inferred aquatic UV exposure imply that the 20th century increase in OC accumulation is primarily connected to elevated lake production rather than terrestrial inputs. The changes in the supply of autochthonous energy sources were further reflected higher up the benthic food web, as evidenced by biotic stable isotopic fingerprints.

  7. Economics of afforestation for carbon sequestration in western Canada

    NARCIS (Netherlands)

    Kooten, van G.C.; Stennes, B.; Krcmar-Nozic, E.; Gorkom, van R.

    2000-01-01

    The Kyoto Accord on climate change requires developed countries to achieve CO2-emissions reduction targets, but permits them to charge uptake of carbon (C) in terrestrial (primarily forest) ecosystems against emissions. Countries such as Canada hope to employ massive afforestation programs to achiev

  8. THE APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2002-09-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  9. Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-zhu; CHEN Qing-rui; QIN Yu-sheng; CHEN Kun; TU Shi-hua; XU Ming-gang; ZHANG Wen-ju

    2015-01-01

    Carbon sequestration in agricultural soils is a complex process controled by farming practices, climate and some other environment factors. Since purple soils are unique in China and used as the main cropland in Sichuan Basin of China, it is of great importance to study and understand the impacts of different fertilizer amendments on soil organic carbon (SOC) changes with time. A research was carried out to investigate the relationship between soil carbon sequestration and organic carbon input as affected by different fertilizer treatments at two long-term rice-based cropping system experiments set up in early 1980s. Each experiment consisted of six identical treatments, including (1) no fertilizer (CK), (2) nitrogen and phos-phorus fertilizers (NP), (3) nitrogen, phosphorus and potassium fertilizers (NPK), (4) fresh pig manure (M), (5) nitrogen and phosphorus fertilizers plus manure (MNP), and (6) nitrogen, phosphorus and potassium fertilizers plus manure (MNPK). The results showed that annual harvestable carbon biomass was the highest in the treatment of MNPK, folowed by MNP and NPK, then M and NP, and the lowest in CK. Most of fertilizer treatments resulted in a signiifcant gain in SOC ranging from 6.48 to 29.13% compared with the CK, and raised soil carbon sequestration rate to 0.10–0.53 t ha–1 yr−1. Especialy, addition of manure on the basis of mineral fertilizers was very conducive to SOC maintenance in this soil. SOC content and soil carbon sequestration rate under balanced fertilizer treatments (NPK and MNPK) in the calcareous purple soil (Suining) were higher than that in the acid purple soil (Leshan). But carbon conversion rate at Leshan was 11.00%, almost 1.5 times of that (7.80%) at Suining. Signiifcant linear correlations between soil carbon sequestration and carbon input were observed at both sites, signifying that the purple soil was not carbon-saturated and stil had considerable potential to sequestrate more carbon.

  10. The economics of an efficient reliance on biomass, carbon capture and carbon sequestration in a Kyoto-style emissions control environment

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, G.W. [Wesleyan University, Middleton, CT (United States). Dept. of Economics; Carnegie Mellon University, Pittsburgh, PA (United States). Dimensions of Global Change

    2001-10-01

    This note employs the economics paradigm to sort through the complications of relying simultaneously on biomass fuels, carbon capture with active sequestration and passive carbon sequestration to meet Kyoto-style carbon emission limits. It does so by exploiting the structure of a tax cum repurchase scheme for carbon. Under such a scheme, the carbon content of fossil fuel should be taxed at the point of purchase at a price that matches the shadow price of the carbon emission limit, but carbon embedded in biomass fuel should go un-taxed. The price of biomass fuel would, though, have to reflect the marginal cost of any externalities it might cause and the opportunity cost of its land-use requirements. Captured carbon could be repurchased at a price equal to the shadow price of carbon, net of the cost of active sequestration, itself the sum of private and social marginal costs. Finally, the price of the passive sequestration of carbon should equal the shadow price of carbon, net of the opportunity cost of setting those resources aside. Since a marketable permit system would support direct estimates of the requisite shadow price of carbon, such a system would also provide direct information about base prices for the tax cum repurchase scheme. To support long-term investment in biomass supply and sequestration, though, changes over time in emission limits must be accomplished in a smooth and predictable manner. (author)

  11. CARBON SEQUESTRATION BY URBAN TREES ON ROADSIDES OF VADODARA CITY

    OpenAIRE

    G Sandhya Kiran,; Shah Kinnary

    2011-01-01

    A potential enhancement of the Earth's greenhouse effect is a critical environmental problem. Carbon Dioxide (CO2) is the most significant contributor to the human influence on the greenhouse effect. Because CO2 emissions are directly linked to many economically prosperous activities, it is difficult for the society to quickly accomplish large reductions in its production. As trees grow, they remove CO2 from the atmosphere during the process of photosynthesis. The CO2 is fixed as organic carb...

  12. CARBON SEQUESTRATION BY URBAN TREES ON ROADSIDES OF VADODARA CITY

    Directory of Open Access Journals (Sweden)

    G Sandhya Kiran,

    2011-04-01

    Full Text Available A potential enhancement of the Earth's greenhouse effect is a critical environmental problem. Carbon Dioxide (CO2 is the most significant contributor to the human influence on the greenhouse effect. Because CO2 emissions are directly linked to many economically prosperous activities, it is difficult for the society to quickly accomplish large reductions in its production. As trees grow, they remove CO2 from the atmosphere during the process of photosynthesis. The CO2 is fixed as organic carbon accumulating in the form of biomass. Our own findings suggest that 73.59 tones of CO2 is removed by trees planted on road sides of Vadodara city whichrepresents 22% of the City's estimated total CO2 production. Total CO2 Emission at major roads was found around 159.47 tones because of more number of automobiles as it is the third most-populated city in the Indian state of Gujarat. Results are restricted to the CO2 that is sequestered by trees planted only on road sides excluding other carbon sinks. It is therefore evident that tree planting on roadside are an effective method of offsetting CO2 from human sources.

  13. Carbon sequestration by urban trees on roadsides of Vadodara city

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, G.S.; Kinnary, S. [M. S. University of Baroda, Vadodara (India). Dept. of Botany

    2011-07-01

    A potential enhancement of the Earth's greenhouse effect is a critical environmental problem. Carbon dioxide (CO{sub 2}) is the most significant contributor to the human influence on the greenhouse effect. Because CO{sub 2} emissions are directly linked to many economically prosperous activities, it is difficult for society to quickly accomplish large reductions in its production. As trees grow, they remove CO{sub 2} from the atmosphere during the process of photosynthesis. The CO{sub 2} is fixed as organic carbon accumulating in the form of biomass. Our own findings suggest that 73.59 tonnes of CO{sub 2} is removed by trees planted on roadsides of Vadodara city which represents 22% of the city's estimated total CO{sub 2} production. Total CO{sub 2} emission at major roads was found around 159.47 tonnes because of increase in number of automobiles as it is the third most-populated city in the Indian state of Gujarat. Results are restricted to the CO{sub 2} that is sequestered by trees planted only on roadsides excluding other carbon sinks. It is therefore evident that tree planting on roadsides is an effective method of offsetting CO{sub 2} from human sources.

  14. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    Science.gov (United States)

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

  15. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    Science.gov (United States)

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  16. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    Science.gov (United States)

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  17. Estimating the carbon sequestration capacity of shale formations using methane production rates.

    Science.gov (United States)

    Tao, Zhiyuan; Clarens, Andres

    2013-10-01

    Hydraulically fractured shale formations are being developed widely for oil and gas production. They could also represent an attractive repository for permanent geologic carbon sequestration. Shales have a low permeability, but they can adsorb an appreciable amount of CO2 on fracture surfaces. Here, a computational method is proposed for estimating the CO2 sequestration capacity of a fractured shale formation and it is applied to the Marcellus shale in the eastern United States. The model is based on historical and projected CH4 production along with published data and models for CH4/CO2 sorption equilibria and kinetics. The results suggest that the Marcellus shale alone could store between 10.4 and 18.4 Gt of CO2 between now and 2030, which represents more than 50% of total U.S. CO2 emissions from stationary sources over the same period. Other shale formations with comparable pressure-temperature conditions, such as Haynesville and Barnett, could provide significant additional storage capacity. The mass transfer kinetic results indicate that injection of CO2 would proceed several times faster than production of CH4. Additional considerations not included in this model could either reinforce (e.g., leveraging of existing extraction and monitoring infrastructure) or undermine (e.g., leakage or seismicity potential) this approach, but the sequestration capacity estimated here supports continued exploration into this pathway for producing carbon neutral energy.

  18. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States

    Science.gov (United States)

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C.; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m2 compared to 16.2 kg C/m2 in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on 137Cs and 210Pb dating of soil cores, ranged from 41 to 152 g/m2/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  19. Optimization of capillary trapping for application in geological carbon dioxide sequestration

    Science.gov (United States)

    Harper, E.; Wildenschild, D.; Armstrong, R. T.; Herring, A. L.

    2011-12-01

    Geological carbon sequestration, as a method of atmospheric greenhouse gas reduction, is at the technological forefront of the climate change movement. Sequestration is achieved by capturing carbon dioxide (CO2) gas effluent from coal fired power plants and injecting it into saline aquifers. In an effort to fully understand and optimize CO2 trapping efficiency, the capillary trapping mechanisms that immobilize subsurface CO2 were analyzed at the pore scale. Pairs of analogous fluids representing the range of in situ supercritical CO2 and brine conditions were used during experimentation. The two fluids (identified as wetting and non wetting) were imbibed and drained from a flow cell apparatus containing a sintered glass bead column. Experimental and fluid parameters, such as interfacial tension, non-wetting fluid viscosity and flow rate, were altered to characterize their impact on capillary trapping. Through the use of computed x-ray microtomography (CMT), we were able to quantify distinct differences between initial (post NW phase imbibition) and residual (post wetting fluid flood) non-wetting phase saturations. Observed trends will be used to identify optimal conditions for trapping CO2 during subsurface sequestration.

  20. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-02-15

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures

  1. Assessing the potential of native tree species for carbon sequestration forestry in Northeast China.

    Science.gov (United States)

    Thomas, S C; Malczewski, G; Saprunoff, M

    2007-11-01

    Although the native forests of China are exceptionally diverse, only a small number of tree species have been widely utilized in forest plantations and reforestation efforts. We used dendrochronological sampling methods to assess the potential growth and carbon sequestration of native tree species in Jilin Province, Northeast China. Trees were sampled in and near the Changbaishan Biosphere Reserve, with samples encompassing old-growth, disturbed forest, and plantations. To approximate conditions for planted trees, sampling focused on trees with exposed crowns (dominant and co-dominant individuals). A log-linear relationship was found between diameter increment and tree diameter, with a linear decrease in increment with increasing local basal area; no significant differences in these patterns between plantations and natural stands were detected for two commonly planted species (Pinus koraiensis and Larix olgensis). A growth model that incorporates observed feedbacks with individual tree size and local basal area (in conjunction with allometric models for tree biomass), was used to project stand-level biomass increment. Predicted growth trajectories were then linked to the carbon process model InTEC to provide estimates of carbon sequestration potential. Results indicate substantial differences among species, and suggest that certain native hardwoods (in particular Fraxinus mandshurica and Phellodendron amurense), have high potential for use in carbon forestry applications. Increased use of native hardwoods in carbon forestry in China is likely to have additional benefits in terms of economic diversification and enhanced provision of "ecosystem services", including biodiversity protection. PMID:17188419

  2. Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO2 sequestration.

    Science.gov (United States)

    Cappai, G; Cara, S; Muntoni, A; Piredda, M

    2012-03-15

    The present study focuses on the application of an aqueous phase accelerated carbonation treatment on air pollution control (APC) residues from municipal solid waste combustion, aimed at assessing its influence on the environmental behaviour of the residue under concern, as well as the potential of the process in terms of sequestration of the CO2. APC residues are considered hazardous waste and must be treated before final disposal in order to achieve the immobilization/mobilization of critical contaminants such as heavy metals as well as mobilization of soluble salts. The treatment applied proved to be effective in reducing the mobility of Pb, Zn, Cr, Cu and Mo, the optimum final pH for the carbonated APC residues being in a range of 10-10.5, whilst a mobilization effect was noticed for Sb and no effect was assessed for chlorides. The effect of carbonation treatment on the contaminant release was further evaluated by means of a sequential extraction procedure, indicating that the distribution of contaminants on water soluble, exchangeable and carbonate fraction was modified after treatment. The CO2 sequestration potential assessed for the APC residues showed that the carbonation technology could be a technically viable option in order to reduce emissions from WtE plants. PMID:21601357

  3. Using CaO- and MgO-rich industrial waste streams for carbon sequestration

    International Nuclear Information System (INIS)

    To prevent rapid climate change, it will be necessary to reduce net anthropogenic CO2 emissions drastically. This likely will require imposition of a tax or tradable permit scheme that creates a subsidy for negative emissions. Here, we examine possible niche markets in the cement and steel industries where it is possible to generate a limited supply of negative emissions (carbon storage or sequestration) cost-effectively. Ca(OH)2 and CaO from steel slag or concrete waste can be dissolved in water and reacted with CO2 in ambient air to capture and store carbon safely and permanently in the form of stable carbonate minerals (CaCO3). The kinetics of Ca dissolution for various particle size fractions of ground steel slag and concrete were measured in batch experiments. The majority of available Ca was found to dissolve on a time scale of hours, which was taken to be sufficiently fast for use in an industrial process. An overview of the management options for steel slag and concrete waste is presented, which indicates how their use for carbon sequestration might be integrated into existing industrial processes. Use of the materials in a carbon sequestration scheme does not preclude subsequent use and is likely to add value by removing the undesirable qualities of water absorption and expansion from the products. Finally, an example scheme is presented which could be built and operated with current technology to sequester CO2 with steel slag or concrete waste. Numerical models and simple calculations are used to establish the feasibility and estimate the operating parameters of the scheme. The operating cost is estimated to be US$8/t-CO2 sequestered. The scheme would be important as an early application of technology for capturing CO2 directly from ambient air

  4. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical

  5. Biogeochemical Modeling of Wetland Carbon Sequestration and Greenhouse Gas Emission Factors for the U.S. Temperate Prairie Ecoregions

    Science.gov (United States)

    Abdul-Aziz, O.; WU, Y.; Liu, S.; Grangaard, L.; Liu, J.

    2011-12-01

    Wetlands are known to play a critical role in carbon sequestration and major greenhouse gas (GHG) emissions. They are important depositional systems interfacing the terrestrial and aquatic ecosystems. We included a wetland component into the well-known terrestrial soil organic carbon dynamics model, CENTURY IV to simulate/predict carbon sequestration and emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from wetland ecosystems. The CENTURY-Wetland package was incorporated into a generalized ensemble biogeochemical modeling system (GEMS) to develop a regional-scale wetland biogeochemical model. We applied the regional CENTURY-Wetland to simulate major GHG emissions and carbon sequestration of the wetlands in the U.S. Temperate Prairie Ecoregions (i.e., US EPA Level II Ecoregion 9.2). The simulations are analyzed to develop regional emissions factors of wetland CO2, CH4, and N2O under historical, as well as different land use/cover and IPCC climate change scenarios. This research is a part of the USGS efforts to quantify 'biological' carbon sequestrations under a changing climate, land use/cover, and policy scenarios. The CENTURY-Wetland will be applied to other U.S. ecoregions for quantifying the wetland carbon sequestration and GHG emissions from the continental United States.

  6. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  7. Topographic variability influences the carbon sequestration potential of arable soils

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Elsgaard, Lars; Thomsen, Ingrid Kaag;

    2012-01-01

    There is presently limited knowledge on the influence of field spatial variability on the carbon (C) sink-source relationships in arable landscapes. This is accompanied by the fact that our understanding of soil profile C dynamics is also limited. This study aimed at investigating how spatial...... position has been subject to soil erosion while the footslope position has been a depositional site; thus the subsoil at the footslope position was to a large extent a buried topsoil horizon. The topographic relationship between the upslope and footslope position made the latter a sink for soil C...

  8. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcy’s law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Green’s function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  9. Carbon sequestration potential of coastal wetland soils of Veracruz, Mexico

    Science.gov (United States)

    Fuentes-Romero, Elisabeth; García-Calderón, Norma Eugenia; Ikkonen, Elena; García-Varela, Kl

    2014-05-01

    Tropical coastal wetlands, including rainforests and mangrove ecosystems play an increasingly important ecological and economic role in the tropical coastal area of the State of Veracruz /Mexico. However, soil processes in these environments, especially C-turnover rates are largely unknown until today. Therefore, we investigated CO2 and CH4 emissions together with gains and losses of organic C in the soils of two different coastal ecosystems in the "Natural Protected Area Cienaga del Fuerte (NPACF)" near Tecolutla, in the State of Veracruz. The research areas were an artificially introduced grassland (IG) and a wetland rainforest (WRF). The gas emissions from the soil surfaces were measured by a static chamber array, the soil organic C was analysed in soil profiles distributed in the two areas, humic substances were characterized and C budget was calculated. The soils in both areas acted as carbon sinks, but the soils of the WRF sequestered more C than those of the IG, which showed a higher gas emission rate and produced more dissolved organic carbon. The gas emission measurements during the dry and the rainy seasons allowed for estimating the possible influence of global warming on gas fluxes from the soils of the two different ecological systems, which show in the WRF a quite complex spatial emission pattern during the rainy season in contrast to a more continuous emission pattern in the IG plots

  10. Simulation and comparison of forest carbon sequestration in the United States and China in recent decades

    Science.gov (United States)

    Liu, Jinxun; Sleeter, Benjamin; Zhu, Zhiliang; Hawbaker, Todd; Zhu, Qiuan; Ju, Weimin; Wilson, Tamara; Sherba, Jason; Xin, Xiaoping; Gong, Peng; Chen, Jing

    2016-04-01

    Terrestrial ecosystems sequester roughly 30% of anthropogenic carbon emissions globally. While climate change is believed to drive ecosystem carbon cycles, land use and land cover (LULC) changes are becoming increasingly recognized as dominant drivers as well. The United States and China are the top two CO2 emitting countries in the world. On the other hand, the two countries both have tremendous land extent and thus enormous potential to sequester carbon. In this study, we focused on quantifying and comparing the climate effect and the LULC change effect on forest carbon sequestration in the two countries. The process-based Integrated Biosphere Simulator (IBIS) was used to simulate the effects of atmospheric CO2 fertilization, nitrogen deposition, climate change, fire disturbance, logging, and deforestation/reforestation on ecosystem carbon changes. Output variables included carbon stocks, such as live and dead biomass, and carbon fluxes, such as fire carbon combustion, logging removal, net ecosystem productivity (NPP) and net biome productivity (NBP). A comprehensive environmental input spatial dataset (1-km to 10-km resolution) was developed and used in IBIS, which included land cover change information derived from the Landsat data archive (1973 -2010), wildland fire scar and burn severity information (1984-2010), forest canopy percentage and live biomass (~2000), spatially heterogeneous atmospheric CO2 concentration and nitrogen deposition (2003-2009), and newly available climate and soil variables. In addition, forest field inventory data were used to calibrate the IBIS model. Initial comparison of results indicate that although the two countries have significant differences in forest land area, forest age structure, biomass stock level, and disturbance type, the overall annual carbon sequestration rates are comparable.

  11. Potential contribution of the forestry sector in Bangladesh to carbon sequestration.

    Science.gov (United States)

    Yong Shin, Man; Miah, Danesh M; Lee, Kyeong Hak

    2007-01-01

    The Kyoto Protocol provides for the involvement of developing countries in an atmospheric greenhouse gas reduction regime under its Clean Development Mechanism (CDM). Carbon credits are gained from reforestation and afforestation activities in developing countries. Bangladesh, a densely populated tropical country in South Asia, has a huge degraded forestland which can be reforested by CDM projects. To realize the potential of the forestry sector in developing countries for full-scale emission mitigation, the carbon sequestration potential of different species in different types of plantations should be integrated with the carbon trading system under the CDM of the Kyoto Protocol. This paper discusses the prospects and problems of carbon trading in Bangladesh, in relation to the CDM, in the context of global warming and the potential associated consequences. The paper analyzes the effects of reforestation projects on carbon sequestration in Bangladesh, in general, and in the hilly Chittagong region, in particular, and concludes by demonstrating the carbon trading opportunities. Results showed that tree tissue in the forests of Bangladesh stored 92tons of carbon per hectare (tC/ha), on average. The results also revealed a gross stock of 190tC/ha in the plantations of 13 tree species, ranging in age from 6 to 23 years. The paper confirms the huge atmospheric CO(2) offset by the forests if the degraded forestlands are reforested by CDM projects, indicating the potential of Bangladesh to participate in carbon trading for both its economic and environmental benefit. Within the forestry sector itself, some constraints are identified; nevertheless, the results of the study can expedite policy decisions regarding Bangladesh's participation in carbon trading through the CDM.

  12. Prairie restoration and carbon sequestration: difficulties quantifying C sources and sinks using a biometric approach.

    Science.gov (United States)

    Cahill, Kimberly Nicholas; Kucharik, Christopher J; Foley, Jonathan A

    2009-12-01

    We investigated carbon cycling and ecosystem characteristics among two prairie restoration treatments established in 1987 and adjacent cropland, all part of the Conservation Reserve Program in southwestern Wisconsin, USA. We hypothesized that different plant functional groups (cool-season C3 vs. warm-season C4 grasses) between the two prairie restoration treatments would lead to differences in soil and vegetation characteristics and amount of sequestered carbon, compared to the crop system. We found significant (P soil CO2 respiration and above- and belowground productivity, but no significant differences in long-term (approximately 16-year) carbon sequestration. We used a biometric approach aggregating short-term observations of above- and belowground productivity and CO2 respiration to estimate total net primary production (NPP) and net ecosystem production (NEP) using varied methods suggested in the literature. Net ecosystem production is important because it represents the ecosystem carbon sequestration, which is of interest to land managers and policymakers seeking or regulating credits for ecosystem carbon storage. Such a biometric approach would be attractive because it might offer the ability to rapidly assess the carbon source/sink status of an ecosystem. We concluded that large uncertainties in (1) estimating aboveground NPP, (2) determining belowground NPP, and (3) partitioning soil respiration into microbial and plant components strongly affect the magnitude, and even the sign, of NEP estimates made from aggregating its components. A comparison of these estimates across treatments could not distinguish differences in NEP, nor the absolute sign of the overall carbon balance. Longer-term quantification of carbon stocks in the soil, periodically linked to measurements of individual processes, may offer a more reliable measure of the carbon balance in grassland systems, suitable for assigning credits. PMID:20014587

  13. Conservation Agriculture and Soil Carbon Sequestration; Between Myth and Farmer Reality

    International Nuclear Information System (INIS)

    Improving food security, environmental preservation and enhancing livelihood should be the main targets of the innovators of today's farming systems. Conservation agriculture (CA), based on minimum tillage, crop residue retention and crop rotations, has been proposed as an alternative system combining benefits for the farmer with advantages for the society. This paper reviews the potential impact of CA on C sequestration by synthesizing the knowledge of carbon and nitrogen cycling in agriculture, summarizing the influence of tillage, residue management and crop rotation on soil organic carbon stocks and compiling the existing case study information. To evaluate the C sequestration capacity of farming practices, their influence on emissions from farming activities should be considered together with their influence on soil C stocks. The largest contribution of CA to reducing emissions from farming activities is made by the reduction of tillage operations. The soil C case study results are not conclusive. In 7 of the 78 cases withheld, the soil C stock was lower in zero compared to conventional tillage, in 40 cases it was higher and in 31 of the cases there was no significant difference. The mechanisms that govern the balance between increased or no sequestration after conversion to zero tillage are not clear, although some factors that play a role can be distinguished e.g. root development and rhizodeposits, baseline soil C content, bulk density and porosity, climate, landscape position and erosion/deposition history. Altering crop rotation can influence soil C stocks by changing quantity and quality of organic matter input. More research is needed, especially in the tropical areas where good quantitative information is lacking. However, even if C sequestration is questionable in some areas and cropping systems, CA remains an important technology that improves soil processes, controls soil erosion and reduces tillage-related production costs. (author)

  14. [Estimation of Topsoil Carbon Sequestration Potential of Cropland Through Different Methods: A Case Study in Zhuanglang County, Gansu Province].

    Science.gov (United States)

    Shi, Chen-di; Xu, Ming-xiang; Qiu, Yu-jie

    2016-03-15

    By analyzing the sampled data and the SOC data of the second national soil survey by the mid 80s and the national cultivated land quality evaluation in 2006 in Zhuanglang County, the article studied the cropland topsoil organic carbon sequestration potential estimation using several different methods. The results showed that: (1) There was no significant difference among different estimation methods about cropland carbon sequestration potential in the same region. Taking cropland carbon sequestration potential in Zhuanglang County for example, the theoretical values estimated by maximum value method and classification grading method were 1. 13 Mt and 1.09 Mt, respectively. (2) The real values estimated by classification grading method, saturation method, weighting method were 0.37 Mt, 0.32 Mt, 0.28 Mt, respectively, which were about 1/3 of the theoretical value. (3) The SOC density increments to reach the real level of carbon sequestration potential estimated by classification grading method, saturation method and weighting method were 6.76 t · hm⁻², 5.21 t · hm⁻², 4.56 t · hm⁻² respectively. According to the topsoil carbon sequestration rate of cropland in Zhuanglang county in the recent 30 a, it would need about 24-34 a to achieve the real level. (4) At the county scale, the weighted method was superior to the saturation value method, and the saturation value method was better than the classification grading method in the actual carbon sequestration potential estimation. The classification grading method was better than the maximum value method in the ideal carbon sequestration potential estimation.

  15. Characterization of Malaysian coals for carbon dioxide sequestration

    Science.gov (United States)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.

  16. U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview

    Science.gov (United States)

    Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.

    2009-01-01

    The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (Phase (2008-2018): The primary objective is the development of large-scale (>1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed as an integrated whole, with many of the goals and objectives transitioning from one phase to the next. Accomplishments and results from the Characterization Phase have helped to refine goals and activities in the Validation and Deployment

  17. A low-cost electro-gen solvent for carbon dioxide sequestration

    Science.gov (United States)

    Neelameggham, Neale R.; Davis, Brian R.

    2010-09-01

    An innovative concept for one of the lowest-cost carbon dioxide capture methods from power plants and other carbon-dioxide-emitting facilities is provided here. The concept is to use a novel electro-thermo-chemical regeneration approach which will generate a product solution containing hydroxyl ions for absorbing the flue gas CO2. This may work with existing flue gas desulfurizing equipment to minimize the cost of carbon capture. The process involves the use of low-cost make-up reagents which are capable of providing credits for partial mineralization of CO2, thus offsetting some of the costs for carbon capture and sequestration. The process presents the possibility of making this a low-cost on-site mineralization with cost offsets.

  18. Biomimetic sequestration of CO2 in carbonate form: Role of produced waters and other brines

    International Nuclear Information System (INIS)

    The objective of our research is the development of a system resembling a CO2 scrubber, in which carbonic anhydrase catalyzes the rate of CO2 hydration for subsequent fixation into stable mineral carbonates. The present focus is on the use of produced waters as one of various possible sources of the counterions for precipitation. Carbonate precipitation has been studied from synthetic brines corresponding to a range of compositions of produced waters from the Permian and San Juan Basins, and promising results have been obtained with carbonic anhydrase. CO2 sequestration capacities are estimated to be 0.49-1.85x103 tonnes CO2/year and 1.28-2.80x105 tonnes CO2/year for the San Juan and Permian Basins, respectively, per cycle, up to ∼3mt CO2 per year total, based on the volumes of produced waters in 2002. (author)

  19. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    Science.gov (United States)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  20. Environmental bonds and the challenge of long-term carbon sequestration.

    Science.gov (United States)

    Gerard, David; Wilson, Elizabeth J

    2009-02-01

    The potential to capture carbon from industrial sources and dispose of it for the long-term, known as carbon capture and sequestration (CCS), is widely recognized as an important option to reduce atmospheric carbon dioxide emissions. Specifically, CCS has the potential to provide emissions cuts sufficient to stabilize greenhouse gas levels, while still allowing for the continued use of fossil fuels. In addition, CCS is both technologically-feasible and commercially viable compared with alternatives with the same emissions profile. Although the concept appears to be solid from a technical perspective, initial public perceptions of the technology are uncertain. Moreover, little attention has been paid to developing an understanding of the social and political institutional infrastructure necessary to implement CCS projects. In this paper we explore a particularly dicey issue--how to ensure adequate long-term monitoring and maintenance of the carbon sequestration sites. Bonding mechanisms have been suggested as a potential mechanism to reduce these problems (where bonding refers to financial instruments used to ensure regulatory or contractual commitments). Such mechanisms have been successfully applied in a number of settings (e.g., to ensure court appearances, completion of construction projects, and payment of taxes). The paper examines the use of bonding to address environmental problems and looks at its possible application to nascent CCS projects. We also present evidence on the use of bonding for other projects involving deep underground injection of materials for the purpose of long-term storage or disposal. PMID:18619728

  1. Reassessing carbon sequestration in the North China Plain via addition of nitrogen.

    Science.gov (United States)

    Dong, Wenxu; Duan, Yongmei; Wang, Yuying; Hu, Chunsheng

    2016-09-01

    Soil inorganic carbon (SIC) exerts a strong influence on the carbon (C) sequestered in response to nitrogen (N) additions in arid and semi-arid ecosystems, but limited information is available on in situ SIC storage and dissolution at the field level. This study determined the soil organic/inorganic carbon storage in the soil profile at 0-100cm depths and the concentration of dissolved inorganic carbon (DIC) in soil leachate in 4N application treatments (0, 200, 400, and 600kgNha(-1)yr(-)(1)) for 15years in the North China Plain. The objectives were to evaluate the effect of nitrogen fertilizer on total amount of carbon sequestration and the uptake of atmospheric CO2 in an agricultural system. Results showed that after 15years of N fertilizer application the SOC contents at depths of 0-100cm significantly increased, whereas the SIC contents significantly decreased at depths of 0-60cm. However, the actual measured loss of carbonate was far higher than the theoretical maximum values of dissolution via protons from nitrification. Furthermore, the amount of HCO3(-) and the HCO3(-)/(Ca(2+)+Mg(2+)) ratio in soil leachate were higher in the N application treatments than no fertilizer input (CK) for the 0-80cm depth. The result suggested that the dissolution of carbonate was mainly enhanced by soil carbonic acid, a process which can absorb soil or atmosphere CO2 and less influenced by protons through the nitrification which would release CO2. To accurately evaluate soil C sequestration under N input scenarios in semi-arid regions, future studies should include both changes in SIC storage as well as the fractions of dissolution with different sources of acids in soil profiles. PMID:27135576

  2. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    Science.gov (United States)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  3. Analysis of pipeline transportation systems for carbon dioxide sequestration

    Directory of Open Access Journals (Sweden)

    Witkowski Andrzej

    2014-03-01

    Full Text Available A commercially available ASPEN PLUS simulation using a pipe model was employed to determine the maximum safe pipeline distances to subsequent booster stations as a function of carbon dioxide (CO2 inlet pressure, ambient temperature and ground level heat flux parameters under three conditions: isothermal, adiabatic and with account of heat transfer. In the paper, the CO2 working area was assumed to be either in the liquid or in the supercritical state and results for these two states were compared. The following power station data were used: a 900 MW pulverized coal-fired power plant with 90% of CO2 recovered (156.43 kg/s and the monothanolamine absorption method for separating CO2 from flue gases. The results show that a subcooled liquid transport maximizes energy efficiency and minimizes the cost of CO2 transport over long distances under isothermal, adiabatic and heat transfer conditions. After CO2 is compressed and boosted to above 9 MPa, its temperature is usually higher than ambient temperature. The thermal insulation layer slows down the CO2 temperature decrease process, increasing the pressure drop in the pipeline. Therefore in Poland, considering the atmospheric conditions, the thermal insulation layer should not be laid on the external surface of the pipeline.

  4. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees.

    Directory of Open Access Journals (Sweden)

    Chang Zhao

    Full Text Available Studies that assess the distribution of benefits provided by ecosystem services across urban areas are increasingly common. Nevertheless, current knowledge of both the supply and demand sides of ecosystem services remains limited, leaving a gap in our understanding of balance between ecosystem service supply and demand that restricts our ability to assess and manage these services. The present study seeks to fill this gap by developing and applying an integrated approach to quantifying the supply and demand of a key ecosystem service, carbon storage and sequestration, at the local level. This approach follows three basic steps: (1 quantifying and mapping service supply based upon Light Detection and Ranging (LiDAR processing and allometric models, (2 quantifying and mapping demand for carbon sequestration using an indicator based on local anthropogenic CO2 emissions, and (3 mapping a supply-to-demand ratio. We illustrate this approach using a portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that 1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 million kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by human sources. Thus, carbon sequestration service provided by urban trees in the study location play a minor role in combating climate change, offsetting approximately 1% of local anthropogenic carbon emissions per year, although avoided emissions via storage in trees are substantial. Our supply-to-demand ratio map provides insight into the balance between carbon sequestration supply in urban trees and demand for such sequestration at the local level, pinpointing critical locations where higher levels of supply and demand exist. Such a ratio map could help planners and policy makers to assess and manage the supply of and demand for carbon sequestration.

  5. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees.

    Science.gov (United States)

    Zhao, Chang; Sander, Heather A

    2015-01-01

    Studies that assess the distribution of benefits provided by ecosystem services across urban areas are increasingly common. Nevertheless, current knowledge of both the supply and demand sides of ecosystem services remains limited, leaving a gap in our understanding of balance between ecosystem service supply and demand that restricts our ability to assess and manage these services. The present study seeks to fill this gap by developing and applying an integrated approach to quantifying the supply and demand of a key ecosystem service, carbon storage and sequestration, at the local level. This approach follows three basic steps: (1) quantifying and mapping service supply based upon Light Detection and Ranging (LiDAR) processing and allometric models, (2) quantifying and mapping demand for carbon sequestration using an indicator based on local anthropogenic CO2 emissions, and (3) mapping a supply-to-demand ratio. We illustrate this approach using a portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that 1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 million kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by human sources. Thus, carbon sequestration service provided by urban trees in the study location play a minor role in combating climate change, offsetting approximately 1% of local anthropogenic carbon emissions per year, although avoided emissions via storage in trees are substantial. Our supply-to-demand ratio map provides insight into the balance between carbon sequestration supply in urban trees and demand for such sequestration at the local level, pinpointing critical locations where higher levels of supply and demand exist. Such a ratio map could help planners and policy makers to assess and manage the supply of and demand for carbon sequestration. PMID:26317530

  6. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees.

    Science.gov (United States)

    Zhao, Chang; Sander, Heather A

    2015-01-01

    Studies that assess the distribution of benefits provided by ecosystem services across urban areas are increasingly common. Nevertheless, current knowledge of both the supply and demand sides of ecosystem services remains limited, leaving a gap in our understanding of balance between ecosystem service supply and demand that restricts our ability to assess and manage these services. The present study seeks to fill this gap by developing and applying an integrated approach to quantifying the supply and demand of a key ecosystem service, carbon storage and sequestration, at the local level. This approach follows three basic steps: (1) quantifying and mapping service supply based upon Light Detection and Ranging (LiDAR) processing and allometric models, (2) quantifying and mapping demand for carbon sequestration using an indicator based on local anthropogenic CO2 emissions, and (3) mapping a supply-to-demand ratio. We illustrate this approach using a portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that 1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 million kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by human sources. Thus, carbon sequestration service provided by urban trees in the study location play a minor role in combating climate change, offsetting approximately 1% of local anthropogenic carbon emissions per year, although avoided emissions via storage in trees are substantial. Our supply-to-demand ratio map provides insight into the balance between carbon sequestration supply in urban trees and demand for such sequestration at the local level, pinpointing critical locations where higher levels of supply and demand exist. Such a ratio map could help planners and policy makers to assess and manage the supply of and demand for carbon sequestration.

  7. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    Science.gov (United States)

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage. PMID:23181908

  8. Aggregation of carbon dioxide sequestration storage assessment units

    Science.gov (United States)

    Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.

    2013-01-01

    The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.

  9. Does canopy nitrogen uptake enhance carbon sequestration by trees?

    Science.gov (United States)

    Nair, Richard K F; Perks, Micheal P; Weatherall, Andrew; Baggs, Elizabeth M; Mencuccini, Maurizio

    2016-02-01

    Temperate forest (15) N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply (15) N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional (15) N additions typically trace mineral (15) N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/(15) N ha(-1)  yr(-1) to Sitka spruce saplings. We compared tree and soil (15) N recovery among treatments where enrichment was due to either (1) a (15) N-enriched litter layer, or mineral (15) N additions to (2) the soil or (3) the canopy. We found that 60% of (15) N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of (15) N applied to the soil was found in these pools. (15) N recovery from litter was low and highly variable. (15) N partitioning among biomass pools and age classes also differed among treatments, with twice as much (15) N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from (15) N applied to the soil, scaled to real-world conditions, was 43 kg C kg N(-1) , similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N(-1) . Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies. PMID:26391113

  10. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices

    Science.gov (United States)

    Chappell, Adrian; Baldock, Jeffrey A.

    2016-09-01

    Improved management of agricultural land has the potential to reduce greenhouse gas emissions and to reduce atmospheric CO2 via soil carbon sequestration. However, SOC stocks are reduced by soil erosion which is commonly omitted from calculations of crop production, C cycling, C sequestration and C accounting. We used fields from the wind eroded dryland cropping region of Western Australia to demonstrate the global implications for C sequestration and C accounting of omitting soil erosion. For the fields we previously estimated mean net (1950s-1990) soil erosion of 1.2 ± 1.0 t ha-1 y-1. The mean net (1990-2013) soil erosion increased by nearly four times to 4.4 ± 2.1 t ha-1 y-1. Conservation agriculture has evidently not reduced wind erosion in this region. The mean net (1990-2013) SOC erosion was up to 0.2 t C ha-1 y-1 across all sampled fields and similar to measured sequestration rates in the region (up to 0.5 t C ha-1 y-1; 10 years) for many management practices recommended for building SOC stocks. The minimum detectable change (MDC; 10 years) of SOC without erosion was up to 0.2 t C ha-1 y-1 whilst the MDC of SOC with erosion was up to 0.4 t C ha-1 y-1. These results illustrate the generally applicable outcome: (i) if SOC erosion is equal to (or greater than) the increase in SOC due to management practices, the change will not be detectable (or a loss will be evident); (ii) without including soil erosion in SOC sequestration calculations, the monitoring of SOC stocks will lead to, at best the inability to detect change and, at worst the false impression that management practices have failed to store SOC. Furthermore, continued omission of soil erosion in crop production, C accounting and C sequestration will most likely undermine confidence in policy designed to encourage adoption of C farming and the attendant benefits for soil stewardship and food security.

  11. Sequestration of carbon in the deep Atlantic during the last glaciation

    Science.gov (United States)

    Yu, J.; Menviel, L.; Jin, Z. D.; Thornalley, D. J. R.; Barker, S.; Marino, G.; Rohling, E. J.; Cai, Y.; Zhang, F.; Wang, X.; Dai, Y.; Chen, P.; Broecker, W. S.

    2016-04-01

    Atmospheric CO2 concentrations declined markedly about 70,000 years ago, when the Earth’s climate descended into the last glaciation. Much of the carbon removed from the atmosphere has been suspected to have entered the deep oceans, but evidence for increased carbon storage remains elusive. Here we use the B/Ca ratios of benthic foraminifera from several sites across the Atlantic Ocean to reconstruct changes in the carbonate ion concentration and hence the carbon inventory of the deep Atlantic across this transition. We find that deep Atlantic carbonate ion concentration declined by around 25 μmol kg-1 between ~80,000 and 65,000 years ago. This drop implies that the deep Atlantic carbon inventory increased by at least 50 Gt around the same time as the amount of atmospheric carbon dropped by about 60 Gt. From a comparison with proxy records of deep circulation and climate model simulations, we infer that the carbon sequestration coincided with a shoaling of the Atlantic meridional overturning circulation. We thus conclude that changes in the Atlantic Ocean circulation may have played an important role in reductions of atmospheric CO2 concentrations during the last glaciation, by increasing the carbon storage in the deep Atlantic.

  12. Comparison of the Farming System and Carbon Sequestration between Conventional and Organic Rice Production in West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    M. Faiz Syuaib

    2010-03-01

    Full Text Available Organic farming provides many benefits in Indonesia: it can improve soil quality, food quality and soil carbon sequestration. This study was designed to compare soil carbon sequestration levels between conventional and organic rice farming fields in west Java, Indonesia. The results from soil analysis indicate that organic farming leads to soil with significantly higher soil carbon storage capacity than conventional farming. Organic farming can also cut some farming costs, but it requires about twice as much labor. The sharecropping system of rice farming in Indonesia is highly exploitative of workers; therefore, research should be conducted to develop a fairer organic farming system that can enhance both local and global sustainability.

  13. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    Science.gov (United States)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  14. A Finite-Element Model for Simulation of Carbon Dioxide Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2014-09-01

    Herein, we present a coupled thermal-hydro-mechanical model for geological sequestration of carbon dioxide followed by the stress, deformation, and shear-slip failure analysis. This fully coupled model considers the geomechanical response, fluid flow, and thermal transport relevant to geological sequestration. Both analytical solutions and numerical approach via finite element model are introduced for solving the thermal-hydro-mechanical model. Analytical solutions for pressure, temperature, deformation, and stress field were obtained for a simplified typical geological sequestration scenario. The finite element model is more general and can be used for arbitrary geometry. It was built on an open-source finite element code, Elmer, and was designed to simulate the entire period of CO2 injection (up to decades) both stably and accurately—even for large time steps. The shear-slip failure analysis was implemented based on the numerical results from the finite element model. The analysis reveals the potential failure zone caused by the fluid injection and thermal effect. From the simulation results, the thermal effect is shown to enhance well injectivity, especially at the early time of the injection. However, it also causes some side effects, such as the appearance of a small failure zone in the caprock. The coupled thermal-hydro-mechanical model improves prediction of displacement, stress distribution, and potential failure zone compared to the model that neglects non-isothermal effects, especially in an area with high geothermal gradient.

  15. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per;

    2006-01-01

    for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils......An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...

  16. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  17. Carbon dioxide sequestration monitoring and verification via laser based detection system in the 2 mum band

    Science.gov (United States)

    Humphries, Seth David

    Carbon Dioxide (CO2) is a known contributor to the green house gas effect. Emissions of CO2 are rising as the global demand for inexpensive energy is placated through the consumption and combustion of fossil fuels. Carbon capture and sequestration (CCS) may provide a method to prevent CO2 from being exhausted to the atmosphere. The carbon may be captured after fossil fuel combustion in a power plant and then stored in a long term facility such as a deep geologic feature. The ability to verify the integrity of carbon storage at a location is key to the success of all CCS projects. A laser-based instrument has been built and tested at Montana State University (MSU) to measure CO2 concentrations above a carbon storage location. The CO2 Detection by Differential Absorption (CODDA) Instrument uses a temperature-tunable distributed feedback (DFB) laser diode that is capable of accessing a spectral region, 2.0027 to 2.0042 mum, that contains three CO2 absorption lines and a water vapor absorption line. This instrument laser is aimed over an open-air, two-way path of about 100 m, allowing measurements of CO2 concentrations to be made directly above a carbon dioxide release test site. The performance of the instrument for carbon sequestration site monitoring is studied using a newly developed CO2 controlled release facility. The field and CO2 releases are managed by the Zero Emissions Research Technology (ZERT) group at MSU. Two test injections were carried out through vertical wells simulating seepage up well paths. Three test injections were done as CO2 escaped up through a slotted horizontal pipe simulating seepage up through geologic fault zones. The results from these 5 separate controlled release experiments over the course of three summers show that the CODDA Instrument is clearly capable of verifying the integrity of full-scale CO2 storage operations.

  18. Nitrogen deposition enhances carbon sequestration by plantations in northern China.

    Directory of Open Access Journals (Sweden)

    Zhihong Du

    Full Text Available Nitrogen (N deposition and its ecological effects on forest ecosystems have received global attention. Plantations play an important role in mitigating climate change through assimilating atmospheric CO2. However, the mechanisms by which increasing N additions affect net ecosystem production (NEP of plantations remain poorly understood. A field experiment was initialized in May 2009, which incorporated additions of four rates of N (control (no N addition, low-N (5 g N m⁻² yr⁻¹, medium-N (10 g N m⁻² yr⁻¹, and high-N (15 g N m⁻² yr⁻¹ at the Saihanba Forestry Center, Hebei Province, northern China, a locality that contains the largest area of plantations in China. Net primary production (NPP, soil respiration, and its autotrophic and heterotrophic components were measured. Plant tissue carbon (C and N concentrations (including foliage, litter, and fine roots, microbial biomass, microbial community composition, extracellular enzyme activities, and soil pH were also measured. N addition significantly increased NPP, which was associated with increased litter N concentrations. Autotrophic respiration (AR increased but heterotrophic respiration (HR decreased in the high N compared with the medium N plots, although the HR in high and medium N plots did not significantly differ from that in the control. The increased AR may derive from mycorrhizal respiration and rhizospheric microbial respiration, not live root respiration, because fine root biomass and N concentrations showed no significant differences. Although the HR was significantly suppressed in the high-N plots, soil microbial biomass, composition, or activity of extracellular enzymes were not significantly changed. Reduced pH with fertilization also could not explain the pattern of HR. The reduction of HR may be related to altered microbial C use efficiency. NEP was significantly enhanced by N addition, from 149 to 426.6 g C m⁻² yr⁻¹. Short-term N addition may

  19. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  20. Using Silviculture to Influence Carbon Sequestration in Southern Appalachian Spruce-Fir Forests

    Directory of Open Access Journals (Sweden)

    Patrick T. Moore

    2012-06-01

    Full Text Available Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled. We explicitly considered C stored in standing forest stocks and the fate of forest products derived from harvesting. Over a 100-year simulation period the even-aged scenario (250 Mg C ha1 outperformed the no-action scenario (241 Mg C ha1 in total carbon (TC sequestered. The uneven-aged scenario approached 220 Mg C ha1, but did not outperform the no-action scenario within the simulation period. While the average annual change in C (AAC of the no-action scenario approached zero, or carbon neutral, during the simulation, both the even-aged and uneven-aged scenarios surpassed the no-action by year 30 and maintained positive AAC throughout the 100-year simulation. This study demonstrates that silvicultural treatment of forest stands can increase potential C storage, but that careful consideration of: (1 accounting method (i.e., TC versus AAC; (2 fate of harvested products and; (3 length of the planning horizon (e.g., 100 years will strongly influence the evaluation of C sequestration.

  1. Carbon stocks and soil sequestration rates of riverine mangroves and freshwater wetlands

    Science.gov (United States)

    Adame, M. F.; Santini, N. S.; Tovilla, C.; Vázquez-Lule, A.; Castro, L.

    2015-01-01

    Deforestation and degradation of wetlands are important causes of carbon dioxide emissions to the atmosphere. Accurate measurements of carbon (C) stocks and sequestration rates are needed for incorporating wetlands into conservation and restoration programs with the aim for preventing carbon emissions. Here, we assessed whole ecosystem C stocks (trees, soil and downed wood) and soil N stocks of riverine wetlands (mangroves, marshes and peat swamps) within La Encrucijada Biosphere Reserve in the Pacific coast of Mexico. We also estimated soil C sequestration rates of mangroves on the basis of soil accumulation. We hypothesized that riverine wetlands have large C stocks, and that upland mangroves have larger C and soil N stocks compared to lowland mangroves. Riverine wetlands had large C stocks with a mean of 784.5 ± 73.5 Mg C ha-1 for mangroves, 722.2 ± 83.4 Mg C ha-1 for peat swamps, and 336.5 ± 38.3 Mg C ha-1 for marshes. C stocks and soil N stocks were in general larger for upland (833.0 ± 7.2 Mg C ha-1; 26.4 ± 0.5 Mg N ha-1) compared to lowland mangroves (659.5 ± 18.6 Mg C ha-1; 13.8 ± 2.0 Mg N ha-1). Soil C sequestration values were 1.3 ± 0.2 Mg C ha-1 yr-1. The Reserve stores 32.5 Mtons of C or 119.3 Mtons of CO2, with mangroves sequestering (via soil accumulation) 27 762 ± 0.5 Mg C ha-1 every year.

  2. Carbon stocks and soil sequestration rates of riverine mangroves and freshwater wetlands

    Directory of Open Access Journals (Sweden)

    M. F. Adame

    2015-01-01

    Full Text Available Deforestation and degradation of wetlands are important causes of carbon dioxide emissions to the atmosphere. Accurate measurements of carbon (C stocks and sequestration rates are needed for incorporating wetlands into conservation and restoration programs with the aim for preventing carbon emissions. Here, we assessed whole ecosystem C stocks (trees, soil and downed wood and soil N stocks of riverine wetlands (mangroves, marshes and peat swamps within La Encrucijada Biosphere Reserve in the Pacific coast of Mexico. We also estimated soil C sequestration rates of mangroves on the basis of soil accumulation. We hypothesized that riverine wetlands have large C stocks, and that upland mangroves have larger C and soil N stocks compared to lowland mangroves. Riverine wetlands had large C stocks with a mean of 784.5 ± 73.5 Mg C ha-1 for mangroves, 722.2 ± 83.4 Mg C ha-1 for peat swamps, and 336.5 ± 38.3 Mg C ha-1 for marshes. C stocks and soil N stocks were in general larger for upland (833.0 ± 7.2 Mg C ha-1; 26.4 ± 0.5 Mg N ha-1 compared to lowland mangroves (659.5 ± 18.6 Mg C ha-1; 13.8 ± 2.0 Mg N ha-1. Soil C sequestration values were 1.3 ± 0.2 Mg C ha-1 yr-1. The Reserve stores 32.5 Mtons of C or 119.3 Mtons of CO2, with mangroves sequestering (via soil accumulation 27 762 ± 0.5 Mg C ha-1 every year.

  3. Engineering and Economic Assessment of Carbon Dioxide Sequestration in Saline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Lawrence A. [Battelle Memorial Institute, Columbus, OH (US); Gupta, Neeraj [Battelle Memorial Institute, Columbus, OH (US); Sass, Bruce M. [Battelle Memorial Institute, Columbus, OH (US); Bubenik, Thomas A. [Battelle Memorial Institute, Columbus, OH (US); Byrer, Charles [National Energy Technology Laboratory, Morgantown, WV (US); Bergman, Perry [National Energy Technology Laboratory, Pittsburgh, PA (US)

    2001-05-31

    Concern over the potential effects of greenhouse gases such as carbon dioxide (CO2) on global climate has triggered research about ways to mitigate the release of these gases to the atmosphere. A project to study the engineering feasibility and costs of sequestering CO2 in deep, saline reservoirs was completed as part of a U.S. Department of Energy (DOE) program supporting research on novel technologies to mitigate greenhouse gas emissions. Study activities included a review of the status of existing technologies that could be used for CO2 sequestration, development of a preliminary engineering concept for accomplishing the required operations, and estimation of costs for sequestration systems. The primary components of the CO2 sequestration system considered are: · Capture of the CO2 from the flue gas · Preparation of the CO2 for transportation (compression and drying) · Transportation of the CO2 through a pipeline · Injection of the CO2 into a suitable aquifer. Costs are estimated for sequestration of CO2 from two types of power plants: pulverized coal with flue gas desulphurization (PC/FGD) and integrated coal gasification combined cycle (IGCC). The sensitivity of cost to a variety of transportation and injection scenarios was also studied. The results show that the engineering aspects of the major components of CO2 capture and geologic storage are well understood through experience in related industries such as CO2 production, pipeline transport, and subsurface injection of liquids and gases for gas storage, waste disposal, and enhanced oil recovery. Capital costs for capture and compression and the operational cost for compression are the largest cost components.

  4. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach

    NARCIS (Netherlands)

    Masera, O.R.; Garza-Caligaris, J.F.; Kanninen, M.; Karjalainen, T.; Liski, J.; Nabuurs, G.J.; Pussinen, A.; Jong de, B.H.J.; Mohren, G.M.J.

    2003-01-01

    The paper describes the Version 2 of the CO2FIX (CO2FIX V.2) model, a user-friendly tool for dynamically estimating the carbon sequestration potential of forest management, agroforesty and afforestation projects. CO2FIX V.2 is a multi-cohort ecosystem-level model based on carbon accounting of forest

  5. Perspectives on Carbon Capture and Sequestration in the United States

    Science.gov (United States)

    Wong-Parodi, Gabrielle Mei-Ling

    Overall, this dissertation examines a sequence of important interconnected issues: the perspectives of potential and actual CCS host communities, the perspectives of the environmental community on the rationality of CCS as viable mitigation solution for the United States, and strategies for engaging with the public on CCS. Much of the research in this dissertation is original work addressing major interdisciplinary gaps in existing literature as well as in industry and government public engagement practice. Each of the chapters is a stand-alone paper that provides a unique contribution to a series of different types of carbon management technologies and academic disciplines. They are assembled together to provide a unique integrated evaluation of these related problems. Collectively, these chapters capture some of the major challenges facing mitigation technology engagement from the potentially time consuming need for careful social site characterization to the opportunities for using citizen-guided marketing methods to identify factors that may enhance effective public engagement. Chapters 2 and 3 are essays on the perspectives of potential and actual CCS host communities. Chapter 2 finds that host communities in California's Central Valley are more concerned with the social risks of hosting a CCS project (e.g. fear of neglect should something go wrong) rather than with the technical risks of the technology. Chapter 3 finds that host communities across the US are more concerned with social risks, and want a say in how those risks should be mitigated. This Chapter concludes with a discussion of how a 'social site characterization' conducted along side a traditional site characterization when evaluating the potential for a CCS project may be a good way to both encourage positive relationships with community members and mitigate potential concerns. Chapter 4 is an essay on the perspectives of the environmental community towards the potential of CCS as a viable

  6. Willingness to Pay for Carbon Sequestration and Co-Benefits of Forests in Turkey

    Directory of Open Access Journals (Sweden)

    Ahmet Tolunay

    2015-03-01

    Full Text Available Scientists express concern about increasing levels of greenhouse gases mainly due to fossil fuel consumption and deforestation. In response to the latter, policy-makers have introduced a range of policy measures to conserve and enhance forest ecosystems for carbon sequestration. The costs for policy measures to maintain ecosystem services can be calculated easily, but especially non-market/non-use benefits of forests are not easy to estimate. Economics can help designing climate change policies by eliciting public preferences on different attributes of climate change and carbon sequestration. This study was prepared for the purpose of identifying per capita consumer/equivalent surplus or maximum willingness to pay and the total economic value in relation to forests to be established in Turkey to reduce air pollution around cities, to prevent the adverse effects of climate change and to sequester carbon. The data for the estimation of maximum willingness to pay, total economic value and co-benefits of forests were collected with a questionnaire form prepared according to the contingent valuation method. Analyses have been conducted by correlation analysis and regression analysis. According to the analyses, per capita consumer/equivalent surplus or maximum willingness to pay to establish a new forest was estimated at US$ 23.52 on average, while total economic value was estimated at US$ 270,443,962.68.

  7. Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation.

    Science.gov (United States)

    Cui, Xiaoqiang; Hao, Hulin; He, Zhenli; Stoffella, Peter J; Yang, Xiaoe

    2016-05-15

    Management of biomass waste is crucial to the efficiency and sustainable operation of constructed wetlands. In this study, biochars were prepared using the biomass of 22 plant species from constructed wetlands and characterized by BET-N2 surface area analysis, FTIR, TGA, SEM, EDS, and elemental compositions analysis. Biochar yields ranged from 32.78 to 49.02%, with mesopores dominating the pore structure of most biochars. The biochars had a R50 recalcitrance index of class C and the carbon sequestration potential of 19.4-28%. The aquatic plant biomass from all the Chinese constructed wetlands if made into biochars has the potential to sequester 11.48 Mt carbon yr(-1) in soils over long time periods, which could offset 0.4% of annual CO2 emissions from fossil fuel combustion in China. In terms of adsorption capacity for selected pollutants, biochar derived from Canna indica plant had the greatest adsorption capacity for Cd(2+) (98.55 mg g(-1)) and NH4(+) (7.71 mg g(-1)). Whereas for PO4(3-), Hydrocotyle verticillata derived biochar showed the greatest adsorption capacities (2.91 mg g(-1)). The results from this present study demonstrated that wetland plants are valuable feedstocks for producing biochars with potential application for carbon sequestration and contaminant removal in water remediation. PMID:26978731

  8. Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation.

    Science.gov (United States)

    Cui, Xiaoqiang; Hao, Hulin; He, Zhenli; Stoffella, Peter J; Yang, Xiaoe

    2016-05-15

    Management of biomass waste is crucial to the efficiency and sustainable operation of constructed wetlands. In this study, biochars were prepared using the biomass of 22 plant species from constructed wetlands and characterized by BET-N2 surface area analysis, FTIR, TGA, SEM, EDS, and elemental compositions analysis. Biochar yields ranged from 32.78 to 49.02%, with mesopores dominating the pore structure of most biochars. The biochars had a R50 recalcitrance index of class C and the carbon sequestration potential of 19.4-28%. The aquatic plant biomass from all the Chinese constructed wetlands if made into biochars has the potential to sequester 11.48 Mt carbon yr(-1) in soils over long time periods, which could offset 0.4% of annual CO2 emissions from fossil fuel combustion in China. In terms of adsorption capacity for selected pollutants, biochar derived from Canna indica plant had the greatest adsorption capacity for Cd(2+) (98.55 mg g(-1)) and NH4(+) (7.71 mg g(-1)). Whereas for PO4(3-), Hydrocotyle verticillata derived biochar showed the greatest adsorption capacities (2.91 mg g(-1)). The results from this present study demonstrated that wetland plants are valuable feedstocks for producing biochars with potential application for carbon sequestration and contaminant removal in water remediation.

  9. Oak (Quercus Floribunda: A Prominent Indigenous Multipurpose Tree for Carbon Storage and Sequestration Potential

    Directory of Open Access Journals (Sweden)

    K. K. Pandey

    2015-12-01

    Full Text Available A dynamic growth model (CO2FIX has been used for estimating the carbon sequestration potential of Oak (Quercus floribunda, an indigenous multipurpose tree used for timber, fuel wood, fiber and specially fodder in addition to its ability of soil binder. The present study has been carried out in the campus of V.C.S.G. College of Horticulture, U.U.H.F., Bharsar, Pauri Garhwal, Uttarakhand. It is capable of thriving on snow and heavy rainfall condition. CO2FIX was parameterized for a simulation of 100 years respectively. The results indicate that the long term tree biomass accumulated was 120.11 t/ha in above ground and 79.89 t/ha in below ground (Soil Carbon component respectively at the end of simulation period assuming a tree density of 825t/ha (approximately. The net annual carbon sequestration for Oak over the entire simulation period was 1.9 Mg C ha-1 yr -1 (t/ha/yr. Useful for scientific planning and effective implementation of Forestry and Agroforestry developmental programmes at district level as well as at State level for the development of country. For future research work following are few suggestions for better planning and development of State. This type of study can be taken including other parameters/resources such as different trees, different area, and different state and different country as well.

  10. Carbon fluxes in soil:long-term sequestration in deeper soil horizons

    Institute of Scientific and Technical Information of China (English)

    JohnF.MCCARTHY

    2005-01-01

    Terrestrial ecosystems represent the second largest carbon reservoir, and the C balance in terrestrial ecosystems can be directly impacted by human activities such as agricultural management practices and land-use changes. This paper focuses on the C-sequestration in soil. Although many studies showed that the concentration of SOC is much higher in the shallow soils (0-30 cm), the deeper horizons represent a much greater mass of soil and represent a huge C-storage pool. The process of preferential retention of more strongly adsorbing components, along with competitive displacement of weakly binding components are the key processes that enhance the movement of organic carbon to deeper soil horizons. DOC represents the most dynamic part of organic carbon in soils, and thus can be used as a timely indicator of the short-term change of C-sequestration.Long-term experiments have demonstrated that higher SOC levels in shallow soils would lead to increased fluxes of DOC to deeper horizons, but more data on a wider range of soils and treatment strategies are needed to fully evaluate the linkages between changes in SOC in shallow soil, vertical fluxes of DOC to deeper soil horizons, and enhanced C-inventories in deeper, slow-turnover SOC pools.

  11. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean

    OpenAIRE

    Kennedy, Martin J.; Wagner, Thomas

    2011-01-01

    The majority of carbon sequestration at the Earth’s surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m2 g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% ...

  12. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  13. Oak (Quercus Floribunda): A Prominent Indigenous Multipurpose Tree for Carbon Storage and Sequestration Potential

    OpenAIRE

    Pandey, K. K.; T. A. Bhosale; Awasthi, A. K.; Garima Gupta; Deepak Maurya

    2015-01-01

    A dynamic growth model (CO2FIX) has been used for estimating the carbon sequestration potential of Oak (Quercus floribunda), an indigenous multipurpose tree used for timber, fuel wood, fiber and specially fodder in addition to its ability of soil binder. The present study has been carried out in the campus of V.C.S.G. College of Horticulture, U.U.H.F., Bharsar, Pauri Garhwal, Uttarakhand. It is capable of thriving on snow and heavy rainfall condition. CO2FIX was parameterized for a simulation...

  14. Supercritical CO 2 -philic nanoparticles suitable for determining the viability of carbon sequestration in shale

    KAUST Repository

    Xu, Yisheng

    2015-01-01

    © The Royal Society of Chemistry. A fracture spacing less than a decimeter is probably required for the successful sequestration of CO2 in shale. Tracer experiments using inert nanoparticles could determine if a fracturing this intense has been achieved. Here we describe the synthesis of supercritical CO2-philic nanoparticles suitable for this application. The nanoparticles are ~50 nm in diameter and consist of iron oxide (Fe3O4) and silica (SiO2) cores functionalized with a fluorescent polymeric corona. The nanoparticles stably disperse in supercritical carbon dioxide (scCO2) and are detectable to concentrations of 10 ppm. This journal is

  15. Reduced carbon sequestration in a Mediterranean seagrass (Posidonia oceanica) ecosystem impacted by fish farming

    DEFF Research Database (Denmark)

    Apostolaki, E; Holmer, Marianne; Marbà, N;

    2011-01-01

    We studied the relationship between sediment nutrient enrichment and carbon sequestration, using the ratio of gross primary production to respiration (P/R), in a fish-farming impacted and an unaffected Mediterranean seagrass (Posidonia oceanica) ecosystem in the Aegean Sea, Greece. Carbon (C...... enhanced in the impacted meadow throughout the year, even during winter when fish farming activity was low. In the impacted sediment, the increase in C and N was higher than P, reflecting a faster remineralization and uptake of P than C and N. The ecosystem P/R ratio decreased exponentially with sediment....... Such a regime shift indicates a loss of storage capacity of the seagrass ecosystem, jeopardizing the key role of P. oceanica as a carbon sink in the Mediterranean....

  16. Mineral replacements during carbonation of peridotite: implications for carbon dioxide sequestration in ultramafic rocks

    Science.gov (United States)

    Beinlich, Andreas; Hövelmann, Jörn; Plümper, Oliver; Austrheim, Hâkon

    2010-05-01

    In contact with CO2, ultramafic rocks are known to be reactive and eventually form ophicarbonates and listwaenites. Here we present observations from serpentinized peridotite clasts from the Solund Devonian Basin, SW Norway. These clasts show evidence for a stepwise reaction history starting with initial serpentinization and resulting in the formation of carbonates (mainly calcite and dolomite) and quartz. Thus, they represent a natural analogue for CO2 sequestration in ultramafic rocks, which was proposed by the Inter Governmental Panel on Climate Change (IPCC 2005) as one possibility for long-term CO2 storage. In several layers of the basin, the carbonatized ultramafic clasts are important constituents and account for up to 20 vol. % of the basin infill. The investigated clasts show a concentric build-up with green to grey colored cores surrounded by mm to 10 cm thick zones of red to black shades. Textural evidence indicates the following alteration sequence: An early stage is represented by serpentinization of peridotite resulting in a typical mesh texture, with veins of serpentine and Ni-rich hematite surrounding compartments of relict olivine (Fo90). Subsequently, relict olivine breaks down to form an alteration product which is significantly depleted in Mg relative to the precursor olivine. In the more advanced ophicarbonate stage, compartments are filled with calcite, quartz, and talc. In the most advanced stage, quartz, calcite, and hematite dominate and occur together with minor amounts of chromite, talc, and chlorite. The textural evolution is accompanied by a decrease in whole-rock MgO from 40 to 2 wt. % and a CaO increase from 1 to 35 wt. %. All clasts are characterized by high Cr and Ni (1000-4000 and 500-3000 ppm, respectively) revealing their ultramafic origin. Transmission electron microscopy (TEM) observations indicate that the alteration product after olivine is composed of an amorphous material, which is compositionally close to serpentine

  17. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the

  18. Southwestern Regional Partnership For Carbon Sequestration (Phase 2): Pump Canyon CO2-ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO2 sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO2-enhanced coalbed methane (CO2/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO2 sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO2 was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO2 movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO2. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO2 fluxes, and tracers were used to help in tracking the injected CO2. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

  19. Soil quality and carbon sequestration in a reclaimed coal mine spoil of Jharia coalfield, India

    Science.gov (United States)

    Mukhopadhyay, Sangeeta; Masto, Reginald; Ram, Lal

    2016-04-01

    Revegetation of coal mine spoil helps in carbon storage and the success of remediation depend on the selection of appropriate tree species. A study was conducted at the coalmine overburden dumps of Jharia Coalfield, Dhanbad, India to evaluate the impact of revegetation on the overall soil quality and carbon sequestration. Morphological parameters (tree height, diameter at breast height, tree biomass, wood specific gravity) of the dominant tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo and Leucaena leucocephala) growing on the mine spoil was recorded. Mine spoil samples were collected under the canopy cover of different tree species and analyzed for soil physical, chemical, and biological parameters. In general reclaimed sites had better soil quality than the reference site. For instance, D. sissoo and C. siamea improved soil pH (+28.5%, +27.9%), EC (+15.65%, +19%), cation exchange capacity (+58.7%, +52.3%), organic carbon (+67.5%, +79.5%), N (+97.2%, +75.7%), P (+98.2%, +76.9%), K (+31.8%, +37.4%), microbial biomass carbon (+143%, +164%) and dehydrogenase activity (+228%, +262%) as compared to the unreclaimed reference coal mine site. The concentration of polycyclic aromatic hydrocarbons (PAHs) decreased significantly in the reclaimed site than the reference spoil, C. siamea was found to be more promising for PAH degradation. The overall impact of tree species on the quality of reclaimed mine spoil cannot be assessed by individual soil parameters, as most of the parameters are interlinked and difficult to interpret. However, combination of soil properties into an integrated soil quality index provides a more meaningful assessment of reclamation potential of tree species. Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity were the most critical properties controlling growth of tree

  20. A National Disturbance Modeling System to Support Ecological Carbon Sequestration Assessments

    Science.gov (United States)

    Hawbaker, T. J.; Rollins, M. G.; Volegmann, J. E.; Shi, H.; Sohl, T. L.

    2009-12-01

    The U.S. Geological Survey (USGS) is prototyping a methodology to fulfill requirements of Section 712 of the Energy Independence and Security Act (EISA) of 2007. At the core of the EISA requirements is the development of a methodology to complete a two-year assessment of current carbon stocks and other greenhouse gas (GHG) fluxes, and potential increases for ecological carbon sequestration under a range of future climate changes, land-use / land-cover configurations, and policy, economic and management scenarios. Disturbances, especially fire, affect vegetation dynamics and ecosystem processes, and can also introduce substantial uncertainty and risk to the efficacy of long-term carbon sequestration strategies. Thus, the potential impacts of disturbances need to be considered under different scenarios. As part of USGS efforts to meet EISA requirements, we developed the National Disturbance Modeling System (NDMS) using a series of statistical and process-based simulation models. NDMS produces spatially-explicit forecasts of future disturbance locations and severity, and the resulting effects on vegetation dynamics. NDMS is embedded within the Forecasting Scenarios of Future Land Cover (FORE-SCE) model and informs the General Ensemble Biogeochemical Modeling System (GEMS) for quantifying carbon stocks and GHG fluxes. For fires, NDMS relies on existing disturbance histories, such as the Landsat derived Monitoring Trends in Burn Severity (MTBS) and Vegetation Change Tracker (VCT) data being used to update LANDFIRE fuels data. The MTBS and VCT data are used to parameterize models predicting the number and size of fires in relation to climate, land-use/land-cover change, and socioeconomic variables. The locations of individual fire ignitions are determined by an ignition probability surface and then FARSITE is used to simulate fire spread in response to weather, fuels, and topography. Following the fire spread simulations, a burn severity model is used to determine annual

  1. Serpentinite Carbonation in the Pollino Massif (southern Italy) for CO2 Sequestration

    Science.gov (United States)

    Carmela Dichicco, Maria; Mongelli, Giovanni; Paternoster, Michele; Rizzo, Giovanna

    2015-04-01

    Anthropogenic gas emissions are projected to change future climates with potentially nontrivial impacts (Keller et al., 2008 and references therein) and the impacts of the increased CO2 concentration are, among others, the greenhouse effect, the acidification of the surface of the ocean and the fertilization of ecosystems (e.g. Huijgen and Comans, 2003). Geologic Sequestration into subsurface rock formations for long-term storage is part of a process frequently referred to as "carbon capture and storage" or CCS. A major strategy for the in situ geological sequestration of CO2 involves the reaction of CO2 with Mg-silicates, especially in the form of serpentinites, which are rocks: i) relatively abundant and widely distributed in the Earth's crust, and ii) thermodynamically convenient for the formation of Mg-carbonates (e.g., Brown et al., 2011). In nature, carbonate minerals can form during serpentinization or during hydrothermal carbonation and weathering of serpentinites whereas industrial mineral carbonation processes are commonly represented by the reaction of olivine or serpentine with CO2 to form magnesite + quartz ± H2O (Power et al., 2013). Mineral carbonation occurs naturally in the subsurface as a result of fluid-rock interactions within serpentinite, which occur during serpentinization and carbonate alteration. In situ carbonation aims to promote these reactions by injecting CO2 into porous, subsurface geological formations, such as serpentinite-hosted aquifers. In the northern sector of the Pollino Massif (southern Italy) extensively occur serpentinites (Sansone et. al., 2012) and serpentinite-hosted aquifers (Margiotta et al., 2012); both serpentinites and serpentinite-hosted aquifers are the subject of a comprehensive project devoted to their possible use for in situ geological sequestration of CO2. The serpentinites derived from a lherzolitic and subordinately harzburgitic mantle, and are within tectonic slices in association with metadolerite dykes

  2. CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust.

    Science.gov (United States)

    El-Naas, Muftah H; El Gamal, Maisa; Hameedi, Suhaib; Mohamed, Abdel-Mohsen O

    2015-06-01

    Mineral CO2 sequestration is a promising process for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline calcium-rich dust particles collected from bag filters of electric arc furnaces (EAF) for steel making were utilized as a viable raw material for mineral CO2 sequestration. The dust particles were pre-treated through hydration, drying and screening. The pre-treated particles were then subjected to direct gas-solid carbonation reaction in a fluidized-bed reactor. The carbonated products were characterized to determine the overall sequestration capacity and the mineralogical structures. Leaching tests were also performed to measure the extracted minerals from the carbonated dust and evaluate the carbonation process on dust stabilization. The experimental results indicated that CO2 could be sequestered using the pre-treated bag house dust. The maximum sequestration of CO2 was 0.657 kg/kg of dust, based on the total calcium content. The highest degree of carbonation achieved was 42.5% and the carbonation efficiency was 69% at room temperature.

  3. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Repasky, Kevin [Montana State Univ., Bozeman, MT (United States)

    2014-02-01

    A fiber sensor array for sub-surface CO2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO2} absorption features where a transmission measurement is made allowing the CO2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO2/day began on July 10, 2012. The elevated subsurface CO2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project

  4. Development of a Differential Absorption Lidar (DIAL) for Carbon Sequestration Site Monitoring

    Science.gov (United States)

    Johnson, W.; Bares, A.; Nehrir, A. R.; Repasky, K. S.; Carlsten, J.

    2010-12-01

    Rising levels of carbon dioxide (CO2) in the Earth’s atmosphere have been identified as a major contributor to climate change. Geologic carbon sequestration has the potential for mitigating CO2 emission into the atmosphere by capturing CO2 at power generation facilities and storing the CO2 in geologic formations. Several technological challenges need to be overcome for successful geologic sequestration of CO2 including surface monitoring tools and techniques for monitoring CO2 sequestration sites to ensure site integrity and public safety. Researchers at Montana State University are developing an eye-safe scanning differential absorption lidar (DIAL) capable of spatially mapping above-ground CO2 number densities for carbon sequestration site monitoring. The eye-safe scanning CO2 DIAL utilizes a temperature tunable fiber pigtailed distributed feedback (DFB) laser operating wavelength of 1.573 μm to access CO2 absorption features. The output of the DFB laser is split using an inline fiber splitter with part of the light sent to an optical wavemeter to monitor the operating wavelength of the laser transmitter. The remaining light is modulated using an inline acousto-optic modulator producing a pulse train with a 20 kHz pulse repetition frequency and a 2 μs duration. This pulse train is amplified in a commercial fiber amplifier producing up to 80 μJ per pulse energy. The output from the fiber amplifier is sent horizontally through the atmosphere and the scattered light is collected using a 28 cm diameter commercial Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and focused into a multimode optical fiber. A fiber coupled photomultiplier (PMT) tube is then used to monitor the light collected by the DIAL receiver. Data is collected in the following manner. The DFB laser is tuned to the online wavelength of the CO2 absorption feature and data is collected for a user defined time. A feedback loop utilizing the optical wavemeter is used

  5. Soil organic carbon sequestration in cotton production systems of the southeastern United States: a review.

    Science.gov (United States)

    Causarano, H J; Franzluebbers, A J; Reeves, D W; Shaw, J N

    2006-01-01

    Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated. PMID:16825457

  6. Recovery Act: Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Domenico

    2013-05-31

    The main objective of this project is to provide training opportunities for two graduate students in order to improve the human capital and skills required for implementing and deploying carbon capture and sequestration (CCS) technologies. The graduate student effort will be geared towards the formulation and implementation of an integrated simulation-optimization framework to provide a rigorous scientific support to the design CCS systems that, for any given site: (a) maximize the amount of carbon storage; (b) minimize the total cost associated with the CCS project; (c) minimize the risk of CO2 upward leakage from injected formations. The framework will stem from a combination of data obtained from geophysical investigations, a multiphase flow model, and a stochastic multi-objective optimization algorithm. The methodology will rely on a geostatistical approach to generate ensembles of scenarios of the parameters that are expected to have large sensitivities and uncertainties on the model response and thus on the risk assessment, in particular the permeability properties of the injected formation and its cap rock. The safety theme will be addressed quantitatively by including the risk of CO2 upward leakage from the injected formations as one the objectives that should be minimized in the optimization problem. The research performed under this grant is significant to academic researchers and professionals weighing the benefits, costs, and risks of CO2 sequestration. Project managers in initial planning stages of CCS projects will be able to generate optimal tradeoff surfaces and with corresponding injection plans for potential sequestration sites leading to cost efficient preliminary project planning. In addition, uncertainties concerning CCS have been researched. Uncertainty topics included Uncertainty Analysis of Continuity of Geological Confining Units using Categorical Indicator Kriging (CIK) and the Influence of Uncertain Parameters on the Leakage of CO2 to

  7. QUANTIFYING CARBON SEQUESTRATION IN A PROSOPIS CINERARIA - DOMINATED DESERT OF THE UAE

    Energy Technology Data Exchange (ETDEWEB)

    Taoufik Ksiksi; Owaisha Binhajraf [Biology Department - College of Science - UAE University, Al-Ain (United Arab Emirates)

    2008-09-30

    Prosopis cinerea is the largest desert tree of the region and constitutes a key species for the United Arab Emirates (UAE) rangelands. It promotes biodiversity and improves soil characteristics. The tree's effect on the soil surrounding its trunk constitutes an important aspect of the ecology of these desert ecosystems and good forage source for many wildlife and livestock species in the region. The present study will, therefore, shed some light on the effect of P. cineraria on soil carbon sequestration. The study area was located in the Emirate of Sharjah on the eastern coast of the UAE. A total of 15 stands, representing 3 different tree sizes (ie. small less than 2 m; medium around 5 m; and large more than 5 m) were identified. 4 sandy soil samples were collected around each tree. Two samples were collected directly from under the tree and the other two samples were collected from the area beyond the canopy cover. Percent soil carbon varied between the various tree sizes and was also affected by the position under P. cineraria canopy. Large P. cineraria individuals had the highest percentage of soil carbon (6.46 percent) when compared to the other 2 tree sizes. Suggesting that large and medium P. cineraria trees are contributing to the overall input of soil carbon and therefore improving soil carbon sequestration. More substantial efforts are to be implemented in the UAE to increase P. cineraria plantations, as they constitute a crucial component of the health of desert ecosystems. The urgency of the actions stems from the need for long periods, up to 30 years, for the P. cineraria trees to reach a crown diameter of at least 5 meters.

  8. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pitombo

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS generated with high carbon (C and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L. was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer, 1SS (recommended rate and 2SS (double rate. Carbon stocks (0-40 cm were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  9. Test/QA Plan for Verification of Isotopic Carbon Dioxide Analyzers for Carbon Sequestration Monitoring

    Science.gov (United States)

    The purpose of this verification test is to generate performance data on isotopic CO2 analyzers with a particular focus on applications relevant to GCS monitoring applications, specifically for the sequestration of CO2 from a coal-fired power plant. The data generated from this ...

  10. Primary Estimation of Chinese Terrestrial Carbon Sequestration during 2001-2010

    Science.gov (United States)

    Wang, Q.; Yu, G.; Zhu, X.; Chen, Z.; Zheng, H.

    2015-12-01

    Quantifying the carbon budgets of terrestrial ecosystems is the foundation on which to understand the role of these ecosystems as carbon sinks and to mitigate global climate change. Through a re-examination of the conceptual framework of ecosystem productivity and the integration of multi-source data, we assumed that the entire terrestrial ecosystems in China to be a large-scale regional biome-society system. We approximated the carbon fluxes of key natural and anthropogenic processes at a regional scale, including fluxes of emissions from reactive carbon and creature ingestion, and fluxes of emissions from anthropogenic and natural disturbances. The gross primary productivity (GPP), ecosystem respiration (ER) and net ecosystem productivity (NEP) in China were 7.78, 5.89 and 1.89 PgC a-1, respectively, during the period from 2001 to 2010. After accounting for the consumption of reactive carbon and creature ingestion (0.078 PgC a-1), fires (0.002 PgC a-1), water erosion (0.038 PgC a-1) and agricultural and forestry utilization (0.806 PgC a-1), the final carbon sink in China was about 0.966 PgC a-1; this was considered as the climate-based potential terrestrial ecosystem carbon sink for the current climate conditions in China. The carbon emissions caused by anthropogenic disturbances accounted for more than 42% of the NEP, which indicated that humans can play an important role in increasing terrestrial carbon sequestration and mitigating global climate change. This role can be fulfilled by reducing the carbon emissions caused by human activities and by prolonging the residence time of fixed organic carbon in the large-scale regional biome-society system through the improvement of ecosystem management.

  11. Development of a Method for Measuring Carbon Balance in Chemical Sequestration of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhongxian; Pan, Wei-Ping; Riley, John T.

    2006-09-09

    Anthropogenic CO2 released from fossil fuel combustion is a primary greenhouse gas which contributes to “global warming.” It is estimated that stationary power generation contributes over one-third of total CO2 emissions. Reducing CO2 in the atmosphere can be accomplished either by decreasing the rate at which CO2 is emitted into the atmosphere or by increasing the rate at which it is removed from it. Extensive research has been conducted on determining a fast and inexpensive method to sequester carbon dioxide. These methods can be classified into two categories, CO2 fixation by natural sink process for CO2, or direct CO2 sequestration by artificial processes. In direct sequestration, CO2 produced from sources such as coal-fired power plants, would be captured from the exhausted gases. CO2 from a combustion exhaust gas is absorbed with an aqueous ammonia solution through scrubbing. The captured CO2 is then used to synthesize ammonium bicarbonate (ABC or NH4HCO3), an economical source of nitrogen fertilizer. In this work, we studied the carbon distribution after fertilizer is synthesized from CO2. The synthesized fertilizer in laboratory is used as a “CO2 carrier” to “transport” CO2 from the atmosphere to crops. After biological assimilation and metabolism in crops treated with ABC, a considerable amount of the carbon source is absorbed by the plants with increased biomass production. The majority of the unused carbon source percolates into the soil as carbonates, such as calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). These carbonates are environmentally benign. As insoluble salts, they are found in normal rocks and can be stored safely and permanently in soil. This investigation mainly focuses on the carbon distribution after the synthesized fertilizer is applied to soil. Quantitative examination of carbon distribution in an ecosystem is a challenging task since the carbon in the soil may come from various sources. Therefore synthesized 14C

  12. Deep-C Drilling: Carbon Sequestration at Depth under Vine Crops

    Science.gov (United States)

    Holmes, Allister; Mueller, Karin; Clothier, Brent; Deurer, Markus

    2014-05-01

    Management practices designed to increase carbon sequestration via perennial tree crops, are potential tools to mitigate the consequences of climate change. Changes in orchard management could enable growers to meet eco-verification market demands for products with a low carbon footprint, and potentially exploit the emerging business opportunity in carbon storage, whilst enhancing the delivery of ecosystem services that depend on soil carbon stocks. However, there is no standard methodology to verify any potential claims of carbon storage by perennial vine crops. We developed a robust methodology to quantify carbon storage in kiwifruit orchards. Soil carbon stocks (SCS) were determined in six depth increments to 1 m depth in two adjacent kiwifruit blocks, which had been established 10 ('young') and 25 ('old') years earlier. We used a 'space-for-time' analysis. Our key results were: • The 'young' and 'old' kiwifruit block stored about 139 and 145 t C/ha to 1 m depth. Between 80-90% of the SCS were stored in the top 0.5 m, and 89-95% in the top 0.7 m. • There was no significant difference between the SCS in row and alley to a depth of 0.5 m. • A CV of 5-15% indicates that 4-10 cores are needed for 80% confidence in the estimated SCS. • We recommend separating each core into the depths 0-0.1, 0.1-0.3, 0.3-0.5 and 0.5-1 m to allow the assessment of SCS dynamics. • We detected a weak spatial pattern of the SCS only for the 'old' kiwifruit block with a range of about 3 m. A sampling bay along a vine-row should have a maximum length of 3 m. We then assessed SCS in over 60 kiwifruit orchards throughout New Zealand. They stored on average 174.9 ± 3 t C ha-1 to 1 m depth. On average, 51% of the SCS down to 1 m depth were stored in the top 0.3 m, which is the standard depth according to the Kyoto protocol. About 72% of the SCS to 1 m depth were captured when increasing the sampling depth to 0.5 m. These results underscore the necessity to analyze SCS in an orchard

  13. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

  14. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  15. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  16. Accounting for Model Uncertainties Using Reliability Methods - Application to Carbon Dioxide Geologic Sequestration System. Final Report

    International Nuclear Information System (INIS)

    A new computer code, CALRELTOUGH, which uses reliability methods to incorporate parameter sensitivity and uncertainty analysis into subsurface flow and transport models, was developed by Geomatrix Consultants, Inc. in collaboration with Lawrence Berkeley National Laboratory and University of California at Berkeley. The CALREL reliability code was developed at the University of California at Berkely for geotechnical applications and the TOUGH family of codes was developed at Lawrence Berkeley National Laboratory for subsurface flow and tranport applications. The integration of the two codes provides provides a new approach to deal with uncertainties in flow and transport modeling of the subsurface, such as those uncertainties associated with hydrogeology parameters, boundary conditions, and initial conditions of subsurface flow and transport using data from site characterization and monitoring for conditioning. The new code enables computation of the reliability of a system and the components that make up the system, instead of calculating the complete probability distributions of model predictions at all locations at all times. The new CALRELTOUGH code has tremendous potential to advance subsurface understanding for a variety of applications including subsurface energy storage, nuclear waste disposal, carbon sequestration, extraction of natural resources, and environmental remediation. The new code was tested on a carbon sequestration problem as part of the Phase I project. Phase iI was not awarded.

  17. The Role of Extension in Adopting Solar Energy in Rural Areas Case of Carbon Sequestration Project

    Directory of Open Access Journals (Sweden)

    Seyed J.F. Hosseini

    2011-01-01

    Full Text Available Problem statement: Solar energy as a renewable energy source is considered as an important alternative options for farmers. The development of renewable energy in rural areas faces several challenges. Agricultural extension by its nature has an important role in promoting the adoption of new technologies and innovations. Approach: The main focus of this study is to find out the role of extension in adopting solar energy in rural areas by participants in carbon sequestration project. A questionnaire was developed and data was collected from 310 participants in carbon sequestration project. Regression analysis was used to analyze the data. The stepwise method was used in the regression analysis. Results: The result indicates that 30% of the variance in the perception of respondents about role of extension in adopting solar energy could be explained by using educational films and slides, contacting with extension agents, visiting sample sites and providing lectures. Conclusion and Recommendations: The results demonstrated that success of solar energy will depend on the informing population about benefits and in this regard the authorities should provide accurate and on time information. There is no single and appropriate intervention for developing and protecting solar energy in rural areas and in view of the numerous and varied constraints and opportunities, there is need to develop location- specific strategies.

  18. Stand Structure, Productivity and Carbon Sequestration Potential of Oak Dominated Forests in Kumaun Himalaya

    Directory of Open Access Journals (Sweden)

    Bijendra Lal

    2016-08-01

    Full Text Available Present study deals with stand structure, biomass, productivity and carbon sequestration in oak dominated forests mixed with other broad leaved tree species. The sites of studied forests were located in Nainital region between 29058’ N lat. and 79028’ E long at 1500-2150 m elevation. Tree density of forests ranged from 980-1100 ind.ha-1. Of this, oak trees shared 69-97%. The basal area of trees was 31.81 to 63.93 m2 ha-1. R. arboreum and Q. floribunda shared maximum basal area 16.45 and 16.32 m2 ha-1, respectively in forest site-1 and 2 while Quercus leucotrichophora shared maximum (35.69 m2 ha-1 in site-3. The biomass and primary productivity of tree species ranged from 481-569 t ha-1 and 16.9-20.9 t ha-1yr-1, respectively. Of this, biomass and primary productivity of oak tree species accounted for 81 to 95 and 78 to 98%, respectively. Carbon stock and carbon sequestration ranged from 228 to 270 t ha-1 and 8.0 to 9.9 t ha-1yr-1, respectively. The share of oak tree species ranged from 81 to 94.7 and 79 to 97%, respectively. The diversity of tree species ranged from 0.03 to 0.16 in forest sites-1, 2 and 3. The diversity of oak species was 0.08-0.16 in all the forest sites. Thus it is concluded that among the oak tree species, Quercus floribunda and Quercus leucotrichophora were highly dominated in the studied forests. The climax form of oak dominated trees in the studied forest sites depicted slightly lower richness and diversity of tree species compared to the forests in the region and elsewhere. As far as dry matter and carbon of forests is concerned, these estimates are close to the earlier reports of forests in the region. Therefore, studied forests have the potential to increase the diversity, productivity and carbon sequestration of forest tree species by providing the adequate scientific conservation and management inputs.

  19. Electricity without carbon dioxide: Assessing the role of carbon capture and sequestration in United States electric markets

    Science.gov (United States)

    Johnson, Timothy Lawrence

    2002-09-01

    Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model

  20. Development of a CO2 Sequestration Module by Integrating Mineral Activation and Aqueous Carbonation

    Energy Technology Data Exchange (ETDEWEB)

    George Alexander; Parvana Aksoy; John Andresen; Mercedes Maroto-Valer; Harold Schobert

    2006-08-14

    Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw materials and the permanent storage of CO{sub 2} in solid form as carbonates. The sequestration of CO{sub 2} through the employment of magnesium silicates--olivine and serpentine--is beyond the proof of concept stage. For the work done in this project, serpentine was chosen as the feedstock mineral due to its abundance and availability. Although the reactivity of olivine is greater than that of serpentine, physical and chemical treatments have been shown to increase greatly the reactivity of serpentine. The primary drawback to mineral carbonation is reaction kinetics. To accelerate the carbonation, aqueous processes are preferred, where the minerals are first dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface-controlled. The relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has been investigated. To accelerate the dissolution process, the mineral can be ground to very fine particle size, <37 {micro}m, but this is a very energy-intensive process. Previous work in our laboratory showed that chemical surface activation helps to dissolve magnesium from the serpentine (of particle size {approx} 100 {micro}m) and that the carbonation reaction can be conducted under mild conditions (20 C and 4.6 MPa) compared to previous studies that required >185 C, >13 MPa, and <37 {micro}m particle size. This work also showed that over 70% of the magnesium can be extracted at ambient temperature, leaving an amorphous silica with surface area of about 330 m{sup 2}/g. The overall objective of this research program is to optimize the active carbonation

  1. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass.

    Science.gov (United States)

    Liu, YingChun; Yu, GuiRui; Wang, QiuFeng; Zhang, YangJian; Xu, ZeHong

    2014-12-01

    Forests play an important role in acting as a carbon sink of terrestrial ecosystem. Although global forests have huge carbon carrying capacity (CCC) and carbon sequestration potential (CSP), there were few quantification reports on Chinese forests. We collected and compiled a forest biomass dataset of China, a total of 5841 sites, based on forest inventory and literature search results. From the dataset we extracted 338 sites with forests aged over 80 years, a threshold for defining mature forest, to establish the mature forest biomass dataset. After analyzing the spatial pattern of the carbon density of Chinese mature forests and its controlling factors, we used carbon density of mature forests as the reference level, and conservatively estimated the CCC of the forests in China by interpolation methods of Regression Kriging, Inverse Distance Weighted and Partial Thin Plate Smoothing Spline. Combining with the sixth National Forest Resources Inventory, we also estimated the forest CSP. The results revealed positive relationships between carbon density of mature forests and temperature, precipitation and stand age, and the horizontal and elevational patterns of carbon density of mature forests can be well predicted by temperature and precipitation. The total CCC and CSP of the existing forests are 19.87 and 13.86 Pg C, respectively. Subtropical forests would have more CCC and CSP than other biomes. Consequently, relying on forests to uptake carbon by decreasing disturbance on forests would be an alternative approach for mitigating greenhouse gas concentration effects besides afforestation and reforestation.

  2. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage.

    Science.gov (United States)

    Ezcurra, Paula; Ezcurra, Exequiel; Garcillán, Pedro P; Costa, Matthew T; Aburto-Oropeza, Octavio

    2016-04-19

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900-34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth-age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico's arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region.

  3. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage.

    Science.gov (United States)

    Ezcurra, Paula; Ezcurra, Exequiel; Garcillán, Pedro P; Costa, Matthew T; Aburto-Oropeza, Octavio

    2016-04-19

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900-34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth-age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico's arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region. PMID:27035950

  4. Atmospheric Mg2+ wet deposition within the continental United States and implications for soil inorganic carbon sequestration

    OpenAIRE

    Goddard, Megan A.; Mikhailova, Elena A.; Post, Christopher J.; Schlautman, Mark A.

    2011-01-01

    Little is known about atmospheric magnesium ion (Mg2+) wet deposition in relation to soil inorganic carbon sequestration. Understanding the conversion of carbon dioxide (CO2) or organic carbon to a form having a long residence time within the soil (e.g., dolomite, magnesian calcite) will greatly benefit agriculture, industry, and society on a global scale. This preliminary study was conducted to analyze atmospheric Mg2+ wet deposition within the continental United States (U.S.) and to rank th...

  5. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung; Mueller, Steffen; Wander, Michelle M.

    2016-01-01

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.

  6. Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    McCray, John

    2013-09-30

    Capturing carbon dioxide (CO2) and injecting it into deep underground formations for storage (carbon capture and underground storage, or CCUS) is one way of reducing anthropogenic CO2 emissions. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Understanding the mechanisms and parameters that can contribute to leakage of the CO2 and the ultimate impact on shallow water aquifers that overlie injection formations is an important step in evaluating the efficacy and risks associated with long-term CO2 storage. Three students were supported on the grant Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration. These three students each examined a different aspect of simulation and risk assessment related to carbon dioxide sequestration and the potential impacts of CO2 leakage. Two performed numerical simulation studies, one to assess leakage rates as a function of fault and deep reservoir parameters and one to develop a method for quantitative risk assessment in the event of a CO2 leak and subsequent changes in groundwater chemistry. A third student performed an experimental evaluation of the potential for metal release from sandstone aquifers under simulated leakage conditions. This study has resulted in two student first-authored published papers {Siirila, 2012 #560}{Kirsch, 2014 #770} and one currently in preparation {Menke, In prep. #809}.

  7. Carbon-sequestration and ecosystem services in the boreal ecoregion of Alaska

    Science.gov (United States)

    Wang, B.; Manies, K.; Labay, K.; Johnson, W. N.; Harden, J. W.

    2011-12-01

    Managing public lands for carbon (C) sequestration is increasingly discussed as a component of national carbon policies. However, management of public land to facilitate carbon sequestration must be considered in the context of other management mandates and the effects on other ecosystem services. Of the United States Fish and Wildlife Service's (USFWS) National Wildlife Refuge lands in Alaska, about 35% are in the boreal ecoregion; primarily in the Intermountain and the Alaska Range Transition ecoregions. These refuges were established to conserve wildlife habitat, fulfill treaty obligations, provide for continued subsistence uses, and ensure necessary water quality and quantity. One of the major factors in determining ecosystem distribution in the boreal ecoregion is disturbance. Fire is the dominant disturbance for Alaska's boreal region. Most USFWS refuge lands are managed with "limited" suppression, where fires burn naturally and are monitored to assure the protection of human life, property, and site specific values (such as historical or religious). However, there is increasing interest in biomass harvest and combustion for local energy production. Harvest and fire can have differing effects on both the spatial and temporal aspects of carbon storage. The current biomass harvest for energy production proposals are considered to be C neutral because they focus on "hazardous" biomass which would burn naturally or in a prescribed burn. The goal of this effort is to explore the relation between C storage and other public land management priorities, as well as, to explore how disturbance type (fire and harvest) affect C storage and boreal ecosystem distribution in the context of wildlife habitat and subsistence use management priorities. We present a conceptual model that defines the linkages among these management priorities, a data gap analysis, and scenarios to be evaluated.

  8. Carbon sequestration and water flow regulation services in mature Mediterranean Forest

    Science.gov (United States)

    Beguería, S.; Ovando, P.

    2015-12-01

    We develop a forestland use and management model that integrates spatially-explicit biophysical and economic data, to estimate the expected pattern of climate regulation services through carbon dioxide (CO2) sequestration in tree and shrubs biomass, and water flow regulation. We apply this model to examine the potential trade-offs and synergies in the supply of CO2 sequestration and water flow services in mature Mediterranean forest, considering two alternative forest management settings. A forest restoration scenario through investments in facilitating forest regeneration, and a forestry activity abandonment scenario as result of unprofitable forest regeneration investment. The analysis is performed for different discount rates and price settings for carbon and water. The model is applied at the farm level in a group of 567 private silvopastoral farms across Andalusia (Spain), considering the main forest species in this region: Quercus ilex, Q. suber, Pinus pinea, P. halepensis, P. pinaster and Eucalyptus sp., as well as for tree-less shrubland and pastures. The results of this research are provided by forest land unit, vegetation, farm and for the group of municipalities where the farms are located. Our results draw attention to the spatial variability of CO2 and water flow regulation services, and point towards a trade-off between those services. The pattern of economic benefits associated to water and carbon services fluctuates according to the assumptions regarding price levels and discounting rates, as well as in connection to the expected forest management and tree growth models, and to spatially-explicit forest attributes such as existing tree and shrubs inventories, the quality of the sites for growing different tree species, soil structure or the climatic characteristics. The assumptions made regarding the inter-temporal preferences and relative prices have a large effect on the estimated economic value of carbon and water services. These results

  9. Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Zoe Kant; Patrick Gonzalez

    2009-01-07

    The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other

  10. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    Science.gov (United States)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  11. Monitoring to ensure safe and effective geologic sequestration of carbon dioxide

    International Nuclear Information System (INIS)

    Reliable and cost-effective monitoring will be an important part of making geologic sequestration a safe, effective and acceptable method for greenhouse gas control. Monitoring is likely to be required as part of the permitting process for underground injection and will be used for a number of purposes, namely, tracking the location of the plume of injected carbon dioxide, ensuring that injection and abandoned wells are not leaking, and for verification of the quantity of carbon dioxide that has been injected underground. Additionally, depending on site-specific considerations, monitoring may also be required to ensure that natural resources such as groundwater and ecosystems are protected and that local populations are not exposed to unsafe concentrations of carbon dioxide. This paper reviews the methods that are available for monitoring carbon dioxide in surface and subsurface environments for onshore geologic storage sites. Methods for monitoring the subsurface environments include geophysical techniques such as the time-lapse 3-D seismic imaging that has been used successfully at Sleipner and the high-resolution cross-well seismic imaging that has been used to monitor carbon dioxide behavior in EOR projects. In addition, the potential for other geophysical methods such as electromagnetic imaging, gravity and tilt meters are discussed. For monitoring geochemical interactions between carbon dioxide and the geologic formation, natural and introduced tracers, major ion geochemical indicators and pH are discussed. Methods for monitoring carbon dioxide concentrations and fluxes on the surface range from conventional flowmeters and simple carbon dioxide sensors, to the potential for future applications of remote sensing and laser-based techniques for detecting carbon dioxide dispersed in the environment. The current state of the art and possible future for these technologies are described

  12. Microbially Accelerated Carbonate Mineral Precipitation as a Strategy for in Situ Carbon Sequestration and Rehabilitation of Asbestos Mine Sites.

    Science.gov (United States)

    McCutcheon, Jenine; Wilson, Siobhan A; Southam, Gordon

    2016-02-01

    A microbially accelerated process for the precipitation of carbonate minerals was implemented in a sample of serpentinite mine tailings collected from the abandoned Woodsreef Asbestos Mine in New South Wales, Australia as a strategy to sequester atmospheric CO2 while also stabilizing the tailings. Tailings were leached using sulfuric acid in reaction columns and subsequently inoculated with an alkalinity-generating cyanobacteria-dominated microbial consortium that was enriched from pit waters at the Woodsreef Mine. Leaching conditions that dissolved 14% of the magnesium from the serpentinite tailings while maintaining circumneutral pH (1800 ppm, pH 6.3) were employed in the experiment. The mineralogy, water chemistry, and microbial colonization of the columns were characterized following the experiment. Micro-X-ray diffraction was used to identify carbonate precipitates as dypingite [Mg5(CO3)4(OH)2·5H2O] and hydromagnesite [Mg5(CO3)4(OH)2·4H2O] with minor nesquehonite (MgCO3·3H2O). Scanning electron microscopy revealed that carbonate mineral precipitates form directly on the filamentous cyanobacteria. These findings demonstrate the ability of these organisms to generate localized supersaturating microenvironments of high concentrations of adsorbed magnesium and photosynthetically generated carbonate ions while also acting as nucleation sites for carbonate precipitation. This study is the first step toward implementing in situ carbon sequestration in serpentinite mine tailings via microbial carbonate precipitation reactions. PMID:26720600

  13. Variation of soil fertility and carbon sequestration by planting Hevea brasiliensis in Hainan Island, China

    Institute of Scientific and Technical Information of China (English)

    CHENG Chun-man; WANG Ru-song; JIANG Ju-sheng

    2007-01-01

    The development of rubber industry depends on the sustainable management of rubber plantation.To evaluate the environmental effects of planting Hevea brasiliensis on a subsystem of tropical forest ecosystem,the variation of soil fertility and carbon sequestration under rubber plantation within 30-year life period were investigated in Hainan Island.Results showed that(1)with the increase of stand age of rubber plantation.soil fertility decreased all along.From 1954 to 1995,soil organic matter,total N,available K and available P decreased by 48.2%.54.1%.56.7%and 64.1%,respectively.(2)If the complete return of litters was considered without additional fertilizer application to the soil of the rubber plantations,the consumption periods for P,N,K,Mg were only 825 years,329 years,94 years and 65 years.respectively.To improve soil fertility iS essential for rubber plantation development.(3)The C sequestration of rubber trees per hectare accounts for 272.08 t wimin 30-year life period and 57.91%of them was fixed in 1itters.In comparison with C sequestration by rain forest(234-305 t/hm2)and by secondary rain forest(150.203 t/hm2),rubber forest has more potentials for C fixation.On the base of above results.the following measures would benefit the maintenance of soil fertility and the development of rubber industry,including applying fertilizer to maintain the balance of soil nutrients,intercropping leguminous plant to improve soil fertility,reducing the collection of litters,optimizing soil properties to improve element P availability such as applying CaCO3.The information gathered from the study can be used as baseline data for the sustainable management of rubber plantation elsewhere.

  14. The Precambrian marine carbonate isotope database: version 1.1.

    OpenAIRE

    G. A. Shields; Veizer, J.

    2002-01-01

    We present a compilation of strontium, carbon, and oxygen isotope compositions of roughly 10,000 marine carbonate rocks of Archean - Ordovician age (3800 Ma – 450 Ma). The Precambrian Marine Carbonate Isotope Database (PMCID) has been compiled from 152 published and 3 unpublished articles and books of the past 40 years. Also included are 30 categories of relevant “metadata” that allow detailed comparisons and quality assessments of the isotope data to be made. The PMCID will be updated period...

  15. Organic farming and soil carbon sequestration: what do we really know about the benefits?

    Science.gov (United States)

    Leifeld, Jens; Fuhrer, Jürg

    2010-12-01

    Organic farming is believed to improve soil fertility by enhancing soil organic matter (SOM) contents. An important co-benefit would be the sequestration of carbon from atmospheric CO2. Such a positive effect has been suggested based on data from field experiments though many studies were not designed to address the issue of carbon sequestration. The aim of our study was to examine published data in order to identify possible flaws such as missing a proper baseline, carbon mass measurements, or lack of a clear distinction between conventional and organic farming practices, thereby attributing effects of specific practices to organic farming, which are not uniquely organic. A total of 68 data sets were analyzed from 32 peer-reviewed publications aiming to compare conventional with organic farming. The analysis revealed that after conversion, soil C content (SOC) in organic systems increased annually by 2.2% on average, whereas in conventional systems SOC did not change significantly. The majority of publications reported SOC concentrations rather than amounts thus neglecting possible changes in soil bulk density. 34 out of 68 data sets missed a true control with well-defined starting conditions. In 37 out of 50 cases, the amount of organic fertilizer in the organic system exceeded that applied in the compared conventional system, and in half of the cases crop rotations differed between systems. In the few studies where crop rotation and organic fertilization were comparable in both systems no consistent difference in SOC was found. From this data analysis, we conclude that the claim for beneficial effects of organic farming on SOC is premature and that reported advantages of organic farming for SOC are largely determined by higher and often disproportionate application of organic fertilizer compared to conventional farming.

  16. Organic carbon sequestration and discharge from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2009-10-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the sequestration and discharge of dissolved organic carbon (DOC and particulate organic carbon (POC in forested catchments. Both DOC and POC are highly concentrated in the soil surface in most forest ecosystems and their discharge may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: 1 how does stream discharge respond to storm events in a forest catchment? and 2 how much DOC and POC are discharged from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers for a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual discharge of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual discharge of organic carbon was estimated to be 4 to 14% of the net ecosystem carbon exchange (NEE obtained by eddy covariance technique at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon discharge from forest ecosystems would result in an overestimation (underestimation of the strength of forests

  17. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean.

    Science.gov (United States)

    Blain, Stéphane; Quéguiner, Bernard; Armand, Leanne; Belviso, Sauveur; Bombled, Bruno; Bopp, Laurent; Bowie, Andrew; Brunet, Christian; Brussaard, Corina; Carlotti, François; Christaki, Urania; Corbière, Antoine; Durand, Isabelle; Ebersbach, Frederike; Fuda, Jean-Luc; Garcia, Nicole; Gerringa, Loes; Griffiths, Brian; Guigue, Catherine; Guillerm, Christophe; Jacquet, Stéphanie; Jeandel, Catherine; Laan, Patrick; Lefèvre, Dominique; Lo Monaco, Claire; Malits, Andrea; Mosseri, Julie; Obernosterer, Ingrid; Park, Young-Hyang; Picheral, Marc; Pondaven, Philippe; Remenyi, Thomas; Sandroni, Valérie; Sarthou, Géraldine; Savoye, Nicolas; Scouarnec, Lionel; Souhaut, Marc; Thuiller, Doris; Timmermans, Klaas; Trull, Thomas; Uitz, Julia; van Beek, Pieter; Veldhuis, Marcel; Vincent, Dorothée; Viollier, Eric; Vong, Lilita; Wagener, Thibaut

    2007-04-26

    The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.

  18. Carbon sequestration in two created riverine wetlands in the midwestern United States.

    Science.gov (United States)

    Bernal, Blanca; Mitsch, William J

    2013-07-01

    Wetlands have the ability to accumulate significant amounts of carbon (C) and thus could provide an effective approach to mitigate greenhouse gas accumulation in the atmosphere. Wetland hydrology, age, and management can affect primary productivity, decomposition, and ultimately C sequestration in riverine wetlands, but these aspects of wetland biogeochemistry have not been adequately investigated, especially in created wetlands. In this study we investigate the ability of created freshwater wetlands to sequester C by determining the sediment accretion and soil C accumulation of two 15-yr-old created wetlands in central Ohio-one planted and one naturally colonized. We measured the amount of sediment and soil C accumulated over the parent material and found that these created wetlands accumulated an average of 242 g C m yr, 70% more than a similar natural wetland in the region and 26% more than the rate estimated for these same wetlands 5 yr before this study. The C sequestration of the naturally colonized wetland was 22% higher than that of the planted wetland (267 ± 17 vs. 219 ± 15 g C m yr, respectively). Soil C accrual accounted for 66% of the aboveground net primary productivity on average. Open water communities had the highest C accumulation rates in both wetlands. This study shows that created wetlands can be natural, cost-effective tools to sequester C to mitigate the effect of greenhouse gas emissions.

  19. Heat Treated Carbon Fiber Material Selection Database

    Science.gov (United States)

    Effinger, M.; Patel, B.; Koenig, J.

    2008-01-01

    Carbon fibers are used in a variety high temperature applications and materials. However, one limiting factor in their transition into additional applications is an understanding of their functional properties during component processing and function. The requirements on the fibers are governed by the nature of the materials and the environments in which they will be used. The current carbon fiber vendor literature is geared toward the polymeric composite industry and not the ceramic composite industry. Thus, selection of carbon fibers is difficult, since their properties change as a function of heat treatment, processing or component operational temperature, which ever is greatest. To enable proper decisions to be made, a program was established wherein multiple fibers were selected and heat treated at different temperatures. The fibers were then examined for their physical and mechanical properties which are reported herein.

  20. Tillage, crop residue, and nutrient management effects on soil organic carbon sequestration in rice-based cropping systems: a review

    Science.gov (United States)

    Sequestration of soil organic carbon (SOC) is one of the major agricultural strategies to mitigate greenhouse gas emissions, enhance food security, and improve agricultural sustainability. This paper synthesizes the much-needed state-of-knowledge on the effects of management practices, such as tilla...

  1. Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types

    NARCIS (Netherlands)

    Schaepman-Strub, G.; Limpens, J.; Menken, M.; Bartholomeus, H.; Schaepman, M.E.

    2009-01-01

    Peatlands accumulated large carbon (C) stocks as peat in historical times. Currently however, many peatlands are on the verge of becoming sources with their C sequestration function becoming sensitive to environmental changes such as increases in temperature, decreasing water table and enhanced nitr

  2. Terrestrial carbon losses from mountaintop coal mining offset regional forest carbon sequestration in the 21st century

    International Nuclear Information System (INIS)

    Studies that quantify the spatial and temporal variability of carbon sources and sinks provide process-level information for the prediction of future levels of atmospheric carbon dioxide as well as verification of current emission agreements. Assessments of carbon sources and sinks for North America that compare top-down atmospheric constraints with bottom-up inventories find particularly large carbon sinks in the southeastern US. However, this southeastern US sink may be impacted by extreme land-use disturbance events due to mountaintop coal mining (MCM). Here we apply ecosystem modeling and field experiment data to quantify the potential impact of future mountaintop coal mining on the carbon budget of the southern Appalachian forest region. For projections based on historical mining rates, grassland reclamation, and the continued regrowth of un-mined forests, we find that the southern Appalachian forests switch from a net carbon sink to a net carbon source by year 2025–33 with a 30%–35% loss in terrestrial carbon stocks relative to a scenario with no future mining by the year 2100. Alternatively, scenarios of forest sequestration due to the effect of CO2 fertilization result in a 15%–24% loss in terrestrial carbon stocks by the year 2100 for mining scenarios relative to scenarios with no future mining. These results suggest that while power plant stack emissions are the dominant life-cycle stage in coal-fired electricity, accounting for mountaintop coal mining in bottom-up inventories may be a critical component of regional carbon budgets. (letter)

  3. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengrong [Yale Univ., New Haven, CT (United States); Qiu, Lin [Yale Univ., New Haven, CT (United States); Zhang, Shuang [Yale Univ., New Haven, CT (United States); Bolton, Edward [Yale Univ., New Haven, CT (United States); Bercovici, David [Yale Univ., New Haven, CT (United States); Ague, Jay [Yale Univ., New Haven, CT (United States); Karato, Shun-Ichiro [Yale Univ., New Haven, CT (United States); Oristaglio, Michael [Yale Univ., New Haven, CT (United States); Zhu, Wen-Iu [Univ. of Maryland, College Park, MD (United States); Lisabeth, Harry [Univ. of Maryland, College Park, MD (United States); Johnson, Kevin [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  4. Interannual variation in carbon sequestration depends mainly on the carbon uptake period in two croplands on the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xueyan Bao

    Full Text Available Interannual variation in plant phenology can lead to major modifications in the interannual variation of net ecosystem production (NEP and net biome production (NBP as a result of recent climate change in croplands. Continuous measurements of carbon flux using the eddy covariance technique were conducted in two winter wheat and summer maize double-cropped croplands during 2003-2012 in Yucheng and during 2007-2012 in Luancheng on the North China Plain. Our results showed that the difference between the NEP and the NBP, i.e., the crop economic yield, was conservative even though the NEP and the NBP for both sites exhibited marked fluctuations during the years of observation. A significant and positive relationship was found between the annual carbon uptake period (CUP and the NEP as well as the NBP. The NEP and the NBP would increase by 14.8±5.2 and 14.7±6.6 g C m(-2 yr(-1, respectively, if one CUP-day was extended. A positive relationship also existed between the CUP and the NEP as well as the NBP for winter wheat and summer maize, respectively. The annual air temperature, through its negative effect on the start date of the CUP, determined the length of the CUP. The spring temperature was the main indirect factor controlling the annual carbon sequestration when a one-season crop (winter wheat was considered. Thus, global warming can be expected to extend the length of the CUP and thus increase carbon sequestration in croplands.

  5. Interannual variation in carbon sequestration depends mainly on the carbon uptake period in two croplands on the North China Plain.

    Science.gov (United States)

    Bao, Xueyan; Wen, Xuefa; Sun, Xiaomin; Zhao, Fenghua; Wang, Yuying

    2014-01-01

    Interannual variation in plant phenology can lead to major modifications in the interannual variation of net ecosystem production (NEP) and net biome production (NBP) as a result of recent climate change in croplands. Continuous measurements of carbon flux using the eddy covariance technique were conducted in two winter wheat and summer maize double-cropped croplands during 2003-2012 in Yucheng and during 2007-2012 in Luancheng on the North China Plain. Our results showed that the difference between the NEP and the NBP, i.e., the crop economic yield, was conservative even though the NEP and the NBP for both sites exhibited marked fluctuations during the years of observation. A significant and positive relationship was found between the annual carbon uptake period (CUP) and the NEP as well as the NBP. The NEP and the NBP would increase by 14.8±5.2 and 14.7±6.6 g C m(-2) yr(-1), respectively, if one CUP-day was extended. A positive relationship also existed between the CUP and the NEP as well as the NBP for winter wheat and summer maize, respectively. The annual air temperature, through its negative effect on the start date of the CUP, determined the length of the CUP. The spring temperature was the main indirect factor controlling the annual carbon sequestration when a one-season crop (winter wheat) was considered. Thus, global warming can be expected to extend the length of the CUP and thus increase carbon sequestration in croplands. PMID:25313713

  6. Comparison of marine macrophytes for their contributions to blue carbon sequestration.

    Science.gov (United States)

    Trevathan-Tackett, Stacey M; Kelleway, Jeffrey; Macreadie, Peter I; Beardall, John; Ralph, Peter; Bellgrove, Alecia

    2015-11-01

    Many marine ecosystems have the capacity for long-term storage of organic carbon (C) in what are termed "blue carbon" systems. While blue carbon systems (saltmarsh, mangrove, and seagrass) are efficient at long-term sequestration of organic carbon (C), much of their sequestered C may originate from other (allochthonous) habitats. Macroalgae, due to their high rates of production, fragmentation, and ability to be transported, would also appear to be able to make a significant contribution as C donors to blue C habitats. In order to assess the stability of macroalgal tissues and their likely contribution to long-term pools of C, we applied thermogravimetric analysis (TGA) to 14 taxa of marine macroalgae and coastal vascular plants. We assessed the structural complexity of multiple lineages of plant and tissue types with differing cell wall structures and found that decomposition dynamics varied significantly according to differences in cell wall structure and composition among taxonomic groups and tissue function (photosynthetic vs. attachment). Vascular plant tissues generally exhibited greater stability with a greater proportion of mass loss at temperatures > 300 degrees C (peak mass loss -320 degrees C) than macroalgae (peak mass loss between 175-300 degrees C), consistent with the lignocellulose matrix of vascular plants. Greater variation in thermogravimetric signatures within and among macroalgal taxa, relative to vascular plants, was also consistent with the diversity of cell wall structure and composition among groups. Significant degradation above 600 degrees C for some macroalgae, as well as some belowground seagrass tissues, is likely due to the presence of taxon-specific compounds. The results of this study highlight the importance of the lignocellulose matrix to the stability of vascular plant sources and the potentially significant role of refractory, taxon-specific compounds (carbonates, long-chain lipids, alginates, xylans, and sulfated

  7. Microbial characterization of basalt formation waters targeted for geological carbon sequestration.

    Science.gov (United States)

    Lavalleur, Heather J; Colwell, Frederick S

    2013-07-01

    Geological carbon sequestration in basalts is a promising solution to mitigate carbon emissions into the Earth's atmosphere. The Wallula pilot well in Eastern Washington State, USA provides an opportunity to investigate how native microbial communities in basalts are affected by the injection of supercritical carbon dioxide into deep, alkaline formation waters of the Columbia River Basalt Group. Our objective was to characterize the microbial communities at five depth intervals in the Wallula pilot well prior to CO2 injection to establish a baseline community for comparison after the CO2 is injected. Microbial communities were examined using quantitative polymerase chain reaction to enumerate bacterial cells and 454 pyrosequencing to compare and contrast the diversity of the native microbial communities. The deepest depth sampled contained the greatest amount of bacterial biomass, as well as the highest bacterial diversity. The shallowest depth sampled harbored the greatest archaeal diversity. Pyrosequencing revealed the well to be dominated by the Proteobacteria, Firmicutes, and Actinobacteria, with microorganisms related to hydrogen oxidizers (Hydrogenophaga), methylotrophs (Methylotenera), methanotrophs (Methylomonas), iron reducers (Geoalkalibacter), sulfur oxidizers (Thiovirga), and methanogens (Methermicocccus). Thus, the Wallula pilot well is composed of a unique microbial community in which hydrogen and single-carbon compounds may play a significant role in sustaining the deep biosphere.

  8. Warming climate extends dryness-controlled areas of terrestrial carbon sequestration

    Science.gov (United States)

    Yi, Chuixiang; Wei, Suhua; Hendrey, George

    2014-01-01

    At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16°C, above which terrestrial CO2 fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warming climate has moved the 16°C T latitudinal belt poleward. Land surface area with T > 16°C and now subject to dryness control rather than temperature as the regulator of carbon uptake has increased by 6% and is expected to increase by at least another 8% by 2050. Most of the land area subjected to this warming is arid or semiarid with ecosystems that are highly vulnerable to drought and land degradation. In areas now dryness-controlled, net carbon uptake is ~27% lower than in areas in which both temperature and dryness (T 16°C has implications not only for positive feedback on climate change, but also for ecosystem integrity and land cover, particularly for pastoral populations in marginal lands. PMID:24980649

  9. ECOLOGICAL, ECONOMIC AND SOCIAL ISSUES OF IMPLEMENTING CARBON DIOXIDE SEQUESTRATION TECHNOLOGIES IN THE OIL AND GAS INDUSTRY IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Alexey Cherepovitsyn

    2016-04-01

    Full Text Available The objective of this paper is to define the main approaches to the implementation of carbon dioxide sequestration technologies in the oil and gas industry in Russia, and also to identify ecological, economic and social issues of their usage. Promotion of the technology of carbon dioxide (CO2 sequestration by means of capturing and injecting it into underground reservoirs is a promising mechanism of reducing carbon dioxide concentration. Carbon capture and storage (CCS technologies might be used to enhance oil recovery (EOR-CO2 and production by means of oil extraction and decreasing oil viscosity. Conceptual view of the potential of EOR-СО2 technologies within the context of oil and gas industry sustainable development are presented. Incentives of the CCS projects implementation are identified. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are presented.

  10. Design of a Soil Science practical exercise to understand the soil carbon sequestration after biochar addition

    Science.gov (United States)

    Gascó, Gabriel; Cely, Paola; Saa-Requejo, Antonio; Mendez, Ana; Antón, Jose Manuel; Sánchez, Elena; Moratiel, Ruben; Tarquis, Ana M.

    2014-05-01

    The adaptation of the Universities to European Higher Education Area (EHEA) involves changes in the learning system. Students must obtain specific capabilities in the different degrees or masters. For example, in the degree of Agronomy at the Universidad Politécnica de Madrid (UPM, Spain), they must command Soil science, Mathematics or English. Sometimes, There is not a good communication between teachers and it causes that students do not understand the importance of the different subjects of a career. For this reason, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this paper is to explain the followed steps to the design of the practice. Acknowledgement to Universidad Politécnica de Madrid for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012.

  11. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

    2009-06-01

    We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

  12. In situ synthesis of polymer-modified mesoporous carbon CMK-3 composites for CO2 sequestration.

    Science.gov (United States)

    Hwang, Chih-Chau; Jin, Zhong; Lu, Wei; Sun, Zhengzong; Alemany, Lawrence B; Lomeda, Jay R; Tour, James M

    2011-12-01

    Here we report carbon-based composites polyethylenimine-mesocarbon (PEI-CMK-3) and polyvinylamine-mesocarbon (PVA-CMK-3) that can be used to capture and rapidly release CO(2). CO(2) uptake by the synthesized composites was determined using a gravimetric method at 30 °C and 1 atm; the 39% PEI-CMK-3 composite had ~12 wt % CO(2) uptake capacity and the 37% PVA-CMK-3 composite had ~13 wt % CO(2) uptake capacity. A desorption temperature of 75 °C was sufficient for regeneration. The CO(2) uptake was the same when using 10% CO(2) in a 90% CH(4), C(2)H(6), and C(3)H(8) mixture, underscoring this composite's efficacy for CO(2) sequestration from natural gas.

  13. Addressing the Grand Challenge of atmospheric carbon dioxide: geologic sequestration vs. biological recycling

    Directory of Open Access Journals (Sweden)

    Stuart Ben J

    2011-11-01

    Full Text Available Abstract On February 15, 2008, the National Academy of Engineering unveiled their list of 14 Grand Challenges for Engineering. Building off of tremendous advancements in the past century, these challenges were selected for their role in assuring a sustainable existence for the rapidly increasing global community. It is no accident that the first five Challenges on the list involve the development of sustainable energy sources and management of environmental resources. While the focus of this review is to address the single Grand Challenge of "develop carbon sequestration methods", is will soon be clear that several other Challenges are intrinsically tied to it through the principles of sustainability. How does the realm of biological engineering play a role in addressing these Grand Challenges?

  14. The impact of afforestation on soil organic carbon sequestration on the Qinghai Plateau, China.

    Directory of Open Access Journals (Sweden)

    Sheng-wei Shi

    Full Text Available Afforestation, the conversion of non-forested land into forest, is widespread in China. However, the dynamics of soil organic carbon (SOC after afforestation are not well understood, especially in plateau climate zones. For a total of 48 shrub- and/or tree-dominated afforestation sites on the Qinghai Plateau, Northwestern China, post-afforestation changes in SOC, total nitrogen (TN, the carbon-to-nitrogen ratio (C/N and soil bulk density (BD were investigated to a soil depth of 60 cm using the paired-plots method. SOC and TN accumulated at rates of 138.2 g C m(-2 yr(-1 and 4.6 g N m(-2 yr(-1, respectively, in shrub-dominated afforestation sites and at rates of 113.3 g C m(-2 yr(-1 and 6.7 g N m(-2 yr(-1, respectively, in tree-dominated afforestation sites. Soil BD was slightly reduced in all layers in the shrub-dominated afforestation plots, and significantly reduced in soil layers from 0-40cm in the tree-dominated afforestation plots. The C/N ratio was higher in afforested sites relative to the reference sites. SOC accumulation was closely related to TN accumulation following afforestation, and the inclusion of N-fixing species in tree-dominated afforestation sites additionally increased the soil accumulation capacity for SOC (p < 0.05. Multiple regression models including the age of an afforestation plot and total number of plant species explained 75% of the variation in relative SOC content change at depth of 0-20 cm, in tree-dominated afforestation sites. We conclude that afforestation on the Qinghai Plateau is associated with great capability of SOC and TN sequestration. This study improves our understanding of the mechanisms underlying SOC and TN accumulation in a plateau climate, and provides evidence on the C sequestration potentials associated with forestry projects in China.

  15. Energy Crops and their Implications on Soil Carbon Sequestration, Surface Energy and Water Balance

    Science.gov (United States)

    Song, Y.; Barman, R.; Jain, A. K.

    2011-12-01

    The quest to meet growing energy demand with low greenhouse gas emissions has increased attention on the potential of existing and advanced biomass energy crops. Potential energy crops include row crops such as corn, and perennial grasses such as switchgrass. However, a massive expansion of bioenergy crops raises many questions such as: how and where to grow energy crops; and what will be the impacts of growing large scale biofuel crops on the terrestrial hydrological cycle, the surface energy budget, soil carbon sequestration and the concurrent effects on the climate system. An integrated modeling system is being developed with in the framework of a land surface model, the Integrated Science Assessment Model (ISAM), and being applied to address these questions.This framework accounts for the biophysical, physiological and biogeochemical systems governing important processes that regulate crop growth including water, energy and nutrient cycles within the soil-plant-atmosphere system. One row crop (Corn) and two energy crops (Switchgrass and Miscanthus) are studied in current framework. Dynamic phenology processes and parameters for simulating each crop have been developed using observed data from a north to south gradient of field trial sites. This study will specifically focus on the agricultural regions in the US and in Europe. The potential productivity of these three crops will be assessed in terms of carbon sequestration, surface energy and water balance and their spatial variability. This study will help to quantify the importance of various environmental aspects towards modeling bioenergy crops and to better understand the spatial and temporal dynamics of bioenergy crop yields.

  16. Mineral Sequestration of Carbon Dixoide in a Sandstone-Shale System

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2004-07-09

    A conceptual model of CO2 injection in bedded sandstone-shale sequences has been developed using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments. Numerical simulations were performed with the reactive fluid flow and geochemical transport code TOUGHREACT to analyze mass transfer between sandstone and shale layers and CO2 immobilization through carbonate precipitation. Results indicate that most CO2 sequestration occurs in the sandstone. The major CO2 trapping minerals are dawsonite and ankerite. The CO2 mineral-trapping capacity after 100,000 years reaches about 90 kg per cubic meter of the medium. The CO2 trapping capacity depends on primary mineral composition. Precipitation of siderite and ankerite requires Fe+2 supplied mainly by chlorite and some by hematite dissolution and reduction. Precipitation of dawsonite requires Na+ provided by oligoclase dissolution. The initial abundance of chlorite and oligoclase therefore affects the CO2 mineral trapping capacity. The sequestration time required depends on the kinetic rate of mineral dissolution and precipitation. Dawsonite reaction kinetics is not well understood, and sensitivity regarding the precipitation rate was examined. The addition of CO2 as secondary carbonates results in decreased porosity. The leaching of chemical constituents from the interior of the shale causes slightly increased porosity. The limited information currently available for the mineralogy of natural high-pressure CO2 gas reservoirs is also generally consistent with our simulation. The ''numerical experiments'' give a detailed understanding of the dynamic evolution of a sandstone-shale geochemical system.

  17. Carbon dioxide reuse and sequestration: The state of the art today

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Sally M.; Dorchak, Thomas; Jacobs, Gary; Ekmann, James; Bishop, Jim; Grahame, Thomas

    2000-08-01

    Atmospheric concentrations of CO{sub 2} and other greenhouse gases (GHGs) are growing steadily. GHG levels seem likely to grow more quickly in the future as developed countries continue to use large amounts of energy, while developing countries become wealthy enough to afford energy-intensive automobiles, refrigerators, and other appliances (as well as live and work in larger, more comfortable structures). To keep GHGs at manageable levels, large decreases in CO{sub 2} emissions will be required. Yet analysts understand the difficulty of developing enough zero- and low-carbon-emission technologies to meet the goal of safe GHG stabilization. Carbon sequestration technologies can help bridge this gap. These technologies are only beginning to be developed, but their promise is already evident. In Europe, CO{sub 2} has been continuously and safely pumped into a below-sea limestone structure for over three years, where it remains. In New Mexico, CO{sub 2} is being used to drive out natural gas from within unminable coal seams 1,000 meters below the surface, and again, continuously injected CO{sub 2} has stayed sequestered for over three years, even though the project was designed for natural gas production, not CO{sub 2} sequestration. These and other beginnings suggest that much CO{sub 2} could be reused or sequestered over time. However, substantial R and D will be required so that CO{sub 2} can be captured inexpensively, and then reused or safely sequestered economically. Advanced concepts likely hold great promise as well.